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Zusammenfassung

Veterinärepidemiologie, eine der facettenreichen Anwendungen der Statistik, zielt darauf ver-
mutete Zusammenhänge zwischen Kovariaten oder Prädiktoren und einer oder mehr Ziel-
variablen zu untersuchen. Häufig sind die zugrundeliegenden biologischen Prozesse kom-
plex und resultieren in multiplen Abhängigkeiten innerhalb der Prädiktoren und der Zielva-
riablen. Standardverfahren der Epidemiologie und Statistik sind nur begrenzt geeignet, um
multiple Abhängigkeiten multivariater Daten zu beschreiben. Die hier vorgestellte Arbeit ver-
wendet und entwickelt eine Methodik weiter, die sich dieser Herausforderung stellt: Additi-
ve Bayesianische Netze (ABN). ABN ist ein graphisches Modell, dass durch die Darstellung
der gemeinsamen Wahrscheinlichkeitsverteilung die üblichen generalisierten linearen Model-
le (GLM) ausweitet auf multiple abhängige Variablen.

Die PhD Arbeit besteht aus vier Teilen. In den ersten beiden Teilen wird die praktische Anwen-
dung von ABN anhand von zwei veterinärepidemiologischen Fallstudien dargestellt. Hierbei
wird der zusätzliche Nutzen durch ABN im Vergleich zu klassischen Verfahren deutlich. Die
ausgewerteten multivariaten Daten weisen hauptsächlich binäre, aber auch kontinuierliche
und Poisson Datenformate auf. Ziel der ersten Studie war es, vergleichend ausgewertet mit
ABN und GLM, Risikofaktoren für eine Infektion mit Leptospira interrogans sv pomona zu
bestimmen. Dass persönliche Schutzausrüstung die Odds einer Infektion erhöht, also nicht
schützt, wurde nur in der Auswertung mit ABN deutlich. Grund hierfür ist die Möglichkeit
in ABN die Abhängigkeiten zwischen allen Variablen zu berücksichtigen. Die zweite Fall-
studie beschäftigt sich mit der Einstellung von Tierärzten gegenüber der Euthanasie in der
Kleintierpraxis und Prädiktoren wie zum Beispiel Alter und Geschlecht. Mit klassischen Ver-
fahren ist es schwierig, die Effekte von Alter und Geschlecht in Beobachtungsstudien ge-
trennt zu schätzen, da die jüngeren Tierärzte mehrheitlich weiblich und die älteren männlich
sind. Auch hier erwies sich die Anwendung von ABN, aufgrund der Möglichkeit komplexe
Abhängigkeiten zwischen verschiedenen Variablen darzustellen, als vorteilhaft. Ebenfalls nur
durch ABN wurde die Bedeutung der Arbeit in einem Team deutlich: diese Variable wies
die höchste Anzahl an Verknüpfungen zu allen anderen Variablen auf und unterstreicht die
unterstützende Rolle eines Teams in stressvollen Situationen. Die Zuverlässigkeit der ABN
Modelle wurde durch ein parametrisches Bootstrapverfahren mittels Markov Chain Monte
Carlo (MCMC) mithilfe der Software JAGS überprüft. Der dritte Teil der PhD Arbeit beinhal-
tet Anpassung und Verbesserung einer Software zum Lernen und Anpassen von ABN Mo-
dellen: dem R Paket (ABN). Dies beinhaltete die Modifikation von Funktionen für die graphi-
sche Darstellung und die entsprechende Dokumentation. Der Höhepunkt dieser PhD Arbeit
liegt im Erkenntnisgewinn der ABN zugrundeliegenden Theorie. Hierbei sind zwei Heraus-
forderungen im Zusammenhang mit der Bayesianischen Modellauswahl herauszustreichen:
Die Spezifikation der Parameterprior und die Berechnung der resultierenden Posteriorwahr-
scheinlichkeiten mittels marginalem Likelihood. Ein geeigneter konjugierter Parameterprior
für ABN, der die Dirichlet-Dichte für additive Parameter generalisiert, wird vorgestellt. Die-
ser Prior erfüllt die erwünschte Eigenschaft der Unabhängigkeit der Bayesianischen Netze
und überwindet das Problem der kompletten Datenseparation, die mit anderen ausgewählten
Priors vorkommen kann. Weiterhin wurde eine analytische Lösung der marginalen Like-
lihood gefunden, die ohne Laplace Approximation oder MCMC Methoden angewendet wer-
den kann. Nachgewiesen wurde ebenfalls die Score Äquivalenzeigenschaft, dass äquivalente
Netze die gleiche Scorefunktion erlangen. Durch die praktische Anwendung in zwei vete-
rinärepidemiologischen Studien, die Anpassung einer ABN-Software und einer vereinfachten
Berechnungsmöglichkeit der marginalen Likelihood trägt diese PhD Arbeit zu einer Weiter-
entwicklung der ABN-Methodik bei.





Abstract

Veterinary epidemiology, one of the multifaceted applications of statistics, primarily aims to
investigate hypothesized relationships between covariates or predictors of interest and one,
or more, outcome variables. Commonly, the biological processes, which generated the data,
are extremely complex, resulting in multiple dependencies between explanatory and response
variables. Standard epidemiological and statistical approaches have shown a limited ability
to sufficiently describe such inter-dependent multivariate connections. The following work
extends and improves a methodology that addresses these issues: additive Bayesian networks
(ABNs). ABNs are types of graphical model that extend the usual Generalized Linear Model
(GLM) to multiple dependent variables through the representation of their joint probability.

The PhD thesis consists of four parts. The work begins with the presentation of the commonly
‘used’ ABN methodology in veterinary epidemiology. Two relevant case studies are presented,
giving evidence that ABN models offer added value compared to existing standard statistical
and epidemiological methods, i.e., GLM. The multivariate data analyzed are mainly binary,
but also continuous and count data. The objective of the first case study was to identify factors
associated with Leptospira interrogans sv Pomona infection by exploring the advantages and
disadvantages of the two methodologies. Thanks to ABN’s capacity to model the relationships
between all the variables, the results prove that personal protective gears increased the odds
of infection, hence they are in fact not protective. This information was not obtained when the
data were analyzed only with GLM. The second case study examines the attitudes of Austrian
veterinarians towards euthanasia of small animals. Association between gender and age with
views on euthanasia have been found. ABN methodology helped to disentangle the role of
gender in relation with age, mainly young females working in small animal practices were
influencing the outcome. These features were revealed by ABN due to its ability to capture
the natural complexity of data more effectively. Evidence on the importance of the number
of veterinarians working together was demonstrated considering the highest number of links,
in ABN models, to others variables. This highlights the supporting role of a team in stressful
situations. To ensure robustness and reliability of ABN models a parametric bootstrapping
approach was implemented, using a Markov Chain Monte Carlo (MCMC) technique in the
software JAGS. The third part consists of the update and improvement of a software for fit-
ting and learning ABN models: the R package abn. Modifications of functions, more related
to the model graphical representation, were implemented and the documentations related to
the R package entirely restructured and rewritten. The final part of this work relies on an
improvement related to the underlying theory for ABN models. Two main challenges posed
by Bayesian model selection have been addressed: the specification of parameter priors and
the computation of the resulting posterior model probabilities via the marginal likelihood.
A suitable conjugate prior for ABN which generalizes the Dirichlet density for additive pa-
rameters has been introduced. This prior satisfies the desirable independence assumptions
for Bayesian networks and overcomes the issue of complete data separation occurring with
previous prior choices. Furthermore, an analytic expression for the marginal likelihood was
found, which avoids using the Laplace Approximation or MCMC method. Then, the score
equivalence property, i.e., equivalent networks get the same score function, has been shown.
This work contributes to a better promotion of ABN methodology by illustrating their prac-
tical application to veterinary epidemiology, by improving software useful to deal with these
models and by gaining better knowledge of the posterior density and an easier computation
of the marginal likelihood.
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Notation

Random variables
X Random vector, set of random variables or corresponding sets of nodes

Xj ∈ X; X1, . . . , Xn Random variables or their corresponding sets of nodes
Xj = xs

j The variable Xj is in the state s
D = {x1·, . . . , xm·} A data set, a set of observations i, where xi· is a complete assignment

to the variables X = {X1, . . . , Xn}
P The joint probability distribution of all the variables in X

P(xj|xk) The probability that Xj = xj given Xk = xk, where k 6= j
(also used to describe a probability density, probability distribution)

E The expected value of a random variable Xj

Bayesian networks
S = (V, E) A Bayesian network structure (a directed acyclic graph)
B = (S ,θB) A Bayesian network model

V = {1, . . . , n} node (vertex) set
j ∈ V node (vertex)

E directed edge set
e ∈ E directed edge

op (S , E) The single edge operation E on the structure S
∆
(
Xi → Xj

)
Difference from an edge i to an edge j.

P(D|S) The total marginal likelihood of the structure given the data
Paj The variables or nodes corresponding to the parents of node Xj

in a Bayesian network structure, dim(Paj) = Pj
paj A configuration of the variables Paj, dim(paj) = Cj

Sj The number of states of discrete variable Xj
Cj The number of configurations of Paj

θjcs The binary parameter corresponding to the probability
P(Xj = xs

j |Paj = pac
j ) ≡ P(Xj = s|Paj = c)

θB = {θ1, . . . ,θn}
θ j = {θ j1, . . . ,θ jCj}
θ jc = {θjc1, . . . , θjcSj}

δ An equivalent sample size
δjcs The Dirichlet hyperparamer corresponding to θjcs

δjc = ∑
Sj
s=1 δjcs

Cjcs The number of cases in data set D where Xj = xs
j and Paj = pac

j

Cjc = ∑
Sj
s=1 Cjcs



Additive Bayesian networks
A = (S ,βA) Additive Bayesian network model

βA = {β1, . . . , βn}
βj = {β j1, . . . , β jCj}
βjc = {β jc1, . . . , β jcSj}
β jcs The logit transformed multinomial parameter

corresponding to the probability P(Xj = s|Paj = c)

β jcs =
c

∑
p=1

[
φj,p−1 +

min(c,Pj+1)

∑
p=2, p/Xp−1∈Paj

φj,p−1Xp−1 +
c

∑
p=Pj+2

φj,p−1

]

φj,p−1 Logistic regression coefficients
xj[i] ith case of the response variable Xj

Zij (Sj − 1)× (Sj − 1)Cj design matrix, for node j and case i,
constructed from Paj and from zT

ij
zT

ij = [zij,1, . . . , zij,Cj ] for each case i, element of Zij

zij,c indicator vector with zij,c = 1 if configuration c observed; zij,c = 0 otherwise
αj = {αj,1, . . . , αj,Cj}, the numerator coefficients for integrand of

P(Dj|S), node j, as a function of β jcs
γj = {γj,1, . . . , γj,Cj}, the denominator coefficients for integrand of

P(Dj|S), node j, as a function of β jcs
λj = {λj,0, . . . , λj,Cj−1}, the numerator coefficients for integrand of

P(Dj|S), node j, as a function of φj,c−1
ωj = {ωj,0, . . . , ωj,Cj−1}, the numerator coefficients for integrand of

P(Dj|S), node j, as a function of φj,c−1
Pajc+ Sum of all parents configuration c for node j
Xjc+ Sum of all Xj = 1 that corresponds to the parents configuration c
E Exponential family distribution type
E Approximation error

Likelihood theory
π(.) The parameter prior

π(.|D) The posterior distribution (or density)
L(.) The likelihood function
l(.) The log-likelihood function

h(βj) = − l(βj)+log π(βj)
m a convex and twice differentiable function

β∗ The posterior mode or maximum for the function h(βj)
argmax

β

f (β) The argument β which maximizes the function f

max The maximum of a given function
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Introduction

“Statistics starts with a problem, proceeds with the collection of data,
continues with the data analysis and finishes with conclusions.”

Faraway

Biostatistics, the application of statistics to a wide range of topics in biology and epidemiol-
ogy, as an independent field of study has been recognized slightly less than a century ago.
Biostatistical reasoning and modeling were of critical importance to the foundation theories
of modern biology and medicine. In particular, since the 1930s, thanks to the book writ-
ten by Fisher (1930), statisticians and models built on statistical reasoning have helped to
give birth to this fairly new discipline. Statistical models illustrate, in a mathematical way,
how deterministic and stochastic components generate observables events. The models are
defined by their structure and have model parameters that endow them with flexibility. A
large part of statistical models can be associated with regression techniques, a method which
has been of paramount importance for much of the scientist throughout the 20th century.
Regression methods are largely used in epidemiology, literally from Greek origin επι =on,
δηµoς =population, λoγoς = study: ‘study on the population’, one of the main application ar-
eas of biometry. An essential part of an epidemiological study is the identification of variables
that affects animal and human health. It is a biomedical discipline that deals with the spread
of disease and the patterns, causes, and effects of health conditions in defined populations, in
a given space and at a given time, in order to identify and analyze the risk factors, variables
associated with an increased risk of disease. Specifically, we focus on studies which primar-
ily aims to investigate hypothesized relationships between covariates of interest and one, or
more, outcome variables. Commonly, the biological processes, which generated the data, are
extremely complex, resulting in multiple dependencies between explanatory and response
variables. Standard epidemiological and statistical approaches, such as regression methods,
have shown a limited ability to sufficiently describe such inter-dependent multivariate con-
nections. In this thesis I develop and improve a methodology that addresses this challenge:
additive Bayesian networks (ABNs).

ABN is a form of graphical model that extends the generalized linear model (GLM) to multiple
dependent variables, through the representation of their joint probability. The key aspect
which distinguish ABN from standard methods, i.e., GLM, is that ABN attempt to model all
dependencies between all variables, and so they can potentially separate out variables which
are merely correlated with each other, from those which are actually directly dependent. It is
extremely important to identify the variables that are directly associated with health status,
because they are the natural targets for interventions stategies. While this feature is highly
desirable in any statistical modelling methodology, we do not present ABN as a replacement
for existing standard approaches, this would be absurd as no single methodology is a universal
panacea, but rather it should be viewed as an additional analytical tool, which offer new
insights into both existing and new data from complex epidemiological systems.

In Section 1, regression methods are introduced and their link with ABNs is outlined. Bayesian
network (BN) and ABN models are described in Section 2. Then, BN’s origins and a compari-
son with Markov networks is presented in Section 3. In Section 4 the process of learning a BN
is clarified. Finally, in Section 5, conclusive remarks on the concept of Laplace approximation
methods and Markov Chain Monte Carlo simulations are given, followed by a brief outlook
on further research developments in Section 6.



1. Regression models

Regression methods are one of the most widely used statistical techniques in epidemiological
analyses. These models have been introduced by Fisher in the 1920s, bringing an innovation
in the statistical thinking for the beginning of the century that it has become standard for
statistician nowdays.

Linear regression

The classical regression models assumes that the response variables yi (i = 1, . . . , m), which
represents the outcomes of some experiments or study, are independent and normally dis-
tributed conditional on the covariates xi = (xi1, . . . , xip)

T, representing the available data, with
expectation ηi = β0 + xi

Tβ and identical variance σ2. This assumption can be written as:

yi
ind∼ N (ηi, σ2),

ηi = β0 + xi
Tβ+ εi.

The intercept term is represented by β0, while β = (β1, . . . , βp) indicates the regression coef-
ficients vector. Let εi represents the error term and let us assume that E(εi) = 0, Var(εi) = σ2,
Cov(εj, εk) = 0 ∀j 6= k.
The goals of using this type of analysis are mainly the prediction of new observations, the
determination of the strength and the identification of a quantitative law (how does y change
when x is changed). The predictors can be continuous or categorical or a mixture of both, see
Faraway (2005).

Generalized linear regression

In an epidemiology context, the commonly regression methods used are the generalized linear
models (GLM), see Clayton and Hills (1993); McCullagh (1989), where the normal distribuiton
of the response variable is replaced by a member of the exponential family. This includes
many important ditribution, such as the Bernoulli, Poisson, binomial, negative-binomial and
exponential distributions. GLM can thus be applied to data with binary and count response
as well to data with stricly positive continuous response. The response function (or inverse
link function) h transforms the linear predictor ηi to the mean E(yi) = µi = h(ηi), which in
turn is mapped to the canonical parameter θi = (db/dθ)−1(µi) of the distribution. Often the
canonical response function h = db/dθ is used where θi = ηi. Here h = db/dθ is the first
derivative of the function b as defined in the likelihood contribution

p(yi|β0,βi) ∝ exp
{

yiθi − b(θi)

φi

}

of the ith observation. The dispersion φi = φ/wi can incorporate weights wi. The variance
Var(yi) = φid2b(θi)/dθ2(θi) is expressed through the variance function
v(µi) = d2b/dθ2((db/dθ)−1(µi)) as Var(yi) = φiv(µi), as in McCullagh (1989).
These two types of regression methods, with one dependent variable and multiple indepen-
dent variables, are known as multivariable regression.
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Multivariate regression models

Multivariable regression, for one dependent variable, can be extended to the scenario that more
than one response is measured on each sample unit, multivariate regression. The regression
model can be extended to the situation where we have measured n responses y1, y2, . . . , yn
and the same set of p predictors x1, x2, . . . , xp on each sample unit, see Alexopoulos (2010).
Each response follows its own regression model:

y1 = β01 + β11x1 + · · ·+ βp1xp + ε1,
y2 = β02 + β12x1 + · · ·+ βp2xp + ε2,

... =
...

yn = β0n + β1nx1 + · · ·+ βpnxp + εn.

The error vector term ε = (ε1, ε2, . . . , εn)′ has expectation 0 and variance matrix Σp×p. The er-
rors associated with different responses on the same sample unit may have different variances
and may be correlated.
Suppose we have a sample of size m and the design matrix is denoted with Z has dimension
m × (p + 1). Moreover the n m-dimensional vectors of responses and errors, i = 1, . . . , n,
are arranged in an m × n matrix, the multivariate multiple regression model can now be
formulated as:

Ym×n = Zm×(p+1)β(p+1)×m + εm×n,

E(ε(i)) = 0, Cov(ε(i), ε(k)) = σik I, i, k = 1, 2, . . . , n.

The multivariate regression model can be incorporated into an additive Bayesian network model,
that consists of a directed acyclic graph where each variable (possible response) in the graph
consists of a generalized linear model, combined together in a multivariate framework as a
result of the factorization of the joint probability distribution. All the details of ABN models,
with the corresponding notation, are explained in the Section 2, while in the next paragraph
follows a brief explanation of the advantages of multivariate techniques over multivariable
one, with some reasons why is worst applying them in Veterinary Epidemiology.

Additive Bayesian networks as a tool for developing veterinary systems epidemiology

Multivariable regression methods have been widely used during the 20th century in veterinary
epidemiology, see Dhand et al. (2007); Johnson et al. (2010); Phillips et al. (2010); Schemann et
al. (2012); Wagner et al. (2003); Zeileis et al. (2008), even though there is a risk that approaches
which do not take into account relationships between covariates, and more outcome variables,
may give unreliable results, as the Yule-Simpson paradox (Yule 1900; Simpson 1951) shows by
Hand et al. (1997); Tu et al. (2008): “An apparent relationship between variables may disappear
or even be reversed when others are taken into account. We would like to be able to analyse
the effects of possible confounding factors and hence avoid the incorrect simplifications which
result from collapsing across factors and studying marginal distributions”. In order to better
address these challenging situations, it may be preferable to use a generalization of usual
multivariable regression where all random variables are mutually statistically dependent. In
other words, a full multivariate regression modelling approach which it coincides with the
additive Bayesian network method.
ABN modelling is of particular relevance to veterinary systems epidemiology. The term ‘sys-
tems epidemiology’ is taken into account in several different scenary (Roux, 2007; Lusis et al.,

- 17 -



Figure 1.: A ‘systems epidemiology’ approach to tuberculosis, which integrates demography, ecology
and systems biology. Picture reported in Fenner et al. (2009) and drawing from Koch R. ‘Die
Aetiologie der Tuberkulose’. Berliner Klinische Wochenschrift, 1882; Dens of Death.

2008; Fenner et al., 2009; Galea et al., 2010). It indicates a collection of mutually interdepen-
dent variables some or all of which can forecast or influence the health outcomes of interest,
as shown in Figure 1. This terminology is used with the purpose of highlighting a holistic
view of epidemiology is more appropriate for reflecting the true complexity of disease oc-
curence. BN is a natural methodology for developing veterinary systems epidemiology in an
analogous way as, in the last decade, it has already happened in biomedical science/systems
biology (Jansen et al., 2003; Dojer et al., 2006; Poon et al., 2007a,b; Needham et al., 2007; Poon
et al., 2008; Djebbari and Quackenbush, 2008; Lycett et al., 2009; Hodges et al., 2010; Aminian
et al., 2010; Kuschner et al., 2010; Milns et al., 2010). Since in the standard epidemiological and
statistical approaches only one dependent variable is taken into account, this doesn’t allowed
to have a general and detailed vision of the presence of disease as part of a complex system
and cannot adequately describe such inter-dependent multi-factorial relationships. However,
only in the last few years, ABN models have been applied to veterinary epidemiology. To
date, we are aware of a general introduction to BN modelling in Lewis et al. (2011) and of
further applications of ABN, see (Lewis and McCormick, 2012; Lewis, 2012; Sanchez-Vazquez
et al., 2012; Firestone et al., 2013; Lewis and Ward, 2013; Ludwig et al., 2013; McCormick et al.,
2013; Schemann et al., 2013; Ward and Lewis, 2013; Wilson et al., 2013; Firestone et al., 2014),
resulting in dozens of publications. Hence, knowledge of this methodology within the vet-
erinary epidemiology field is extremely rare previous sentence “dozens”, possibly because it
comes from the machine learning and artificial intelligence literature (Buntine, 1991; Cooper
and Herskovits, 1992; Chickering, 1996; Heckerman et al., 1995), opposed to the most familiar
statistical literature. This is an important reason why, in Paper I and Paper II, we present this
novel method in comparison with the standard regression approaches, within a veterinary
epidemiologicy context.
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2. Bayesian networks

Bayesian networks are probabilistic graphical models, see Lauritzen (1996), developed in the
late 80’s by Lauritzen and Spiegelhalter (1988); Pearl (1988) with an easy and detailed intro-
duction in Jensen (2001). They represent a convergence between statistical methodology and
data mining, machine learning, see Cooper and Herskovits (1992); Heckerman et al. (1995);
Friedman et al. (1997); Jensen (2001); Friedman and Koller (2003); Boettcher (2004); Scutari
(2007). The joint, multidimensional aspect of a BN makes this methodology so attractive for
analysis of complex data. These structures result extremely interesting for their ability of ex-
pressing in a simple way a set of complex relationship, for that they represent an ideal tool
to deal with problems of uncertainty and complexity. A quite recent overview about their
different applications is available in Lauritzen (2003).

A BN is a form of graphical model that derives a directed acyclic graph from empirical data,
describing the dependency structure between random variables. It provides a compact rep-
resentation of the joint probability distribution using a combination of graph (the qualitative
part) and probability (the quantitative part) theory.
More precisely, a BN model B for a set of random variables X = {X1, . . . , Xn} consists of:
• A directed acyclic graph (DAG) structure S = (V, E), where V is a finite set of vertices

or nodes and E is a finite set of directed edges between the vertices. A DAG is acyclic;
hence, the edges in E do not form directed cycles. A random variable Xj corresponds to
each node j ∈ V = {1, . . . , n} in the graph. We do not distinguish between a variable Xj
and the corresponding node j.
• A set of parents for a node j is denoted by Paj. A vertex j is said to be a parent of a node

k if the edge set E contains an edge from j to k. Pj indicates the total number of parents
for a node j : dim(Paj) = Pj.
• A set of local probability distributions for all variables in the network called θB . Each

node j, with parent set Paj, is parametrized by a local probability distribution: P(Xj|Paj).
Edges represent both marginal and conditional dependencies. The main role of the network
structure is to express the conditional independence relationships among the variables in the
model through graphical separation, thus specifying the factorization of the global probability
distribution:

P(X) =
n

∏
j=1

P(Xj|Paj).

We denote a BN model, B, for a set of random variables, X, by a pair B = (S ,θB). The DAG
defines the structure S , and θB the parametrization of the model B. In order to specify a B for
X, we must therefore specify a DAG structure and a set of local probability distributions.
Figure 2 shows an example of B for five random variables; the joint probability distribution
can be factorized into five factors, one for each random variable conditioned on its parents:
P(X1, X2, X3, X4, X5) = P(X1)P(X2)P(X3|Pa3 = {X1, X2})P(X4|Pa4 = {X3})P(X5|Pa5 = {X3}).
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Figure 2.: A Bayesian network model B for five random variables.

P(X1, X2, X3, X4, X5) =
P(X1)P(X2)
P(X3|Pa3 = {X1, X2})
P(X4|Pa4 = {X3})P(X5|Pa5 = {X3})

2.1. Additive Bayesian networks

In order to introduce an additive Bayesian Network (ABN) model A, some further notation is
needed.
Let Sj be the number of states of the variable Xj, and s = {1, . . . , Sj} the corresponding set
of indexes. Let Cj = ∏p: Xp∈Paj

Sp be the number of configurations of Paj and c = {1, . . . , Cj}
indicates the corresponding set of indexes for the different parents configurations of Paj.
Let Xj = s indicate the possible observations for Xj. Hence, let P(Xj = s|Paj = c) be the
probability that Xj = s, given the c-th parent configuration of Paj, denoted by the multinomial
parameter θjcs. Therefore, the following notation is used:

θ jc =

Sj⋃

s=1

{θjcs},

θ j =

Cj⋃

c=1

{θ jc},

θB =
n⋃

j=1

{θ j}.

This means that θ jc denotes the set of local probability distributions associated with a node j,
its parent configuration c and node states s. θ j denotes the set of all parameters associated with
a node j and its parent configuration c. θB denotes the set of local probability distributions for
all variables in the Bayesian network B. All the local probability distributions are unrestricted,
discrete distributions with P(Xj = s|Paj = c) ≥ 0 ∀j ∈ V. Then ∑

Sj
s=1 θjcs = 1 and 0 ≤ θjcs ≤ 1.

Using this parametrization, the joint probability distribution factorizes into:

P(X|θB ,S) =
n

∏
j=1

P(Xj|Paj = c,θ jc).

It is now possible to introduce an ABN modelA. In this work, we are going to refer to additive
Bayesian networks with the abbreviation ABN and the notation A used interchangeably.
An additive Bayesian network A consists of a Bayesian network B that generalizes the multi-
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nomial logistic regression model M, introduced by Rijmen (2008). The multinomial logistic
regression model M can be integrated into a Bayesian network B by modelling each condi-
tional probability table P(Xj|Paj) = θjcs of a particular Bayesian network B via a multinomial
logistic regression model, where Xj is progressively the outcome variable, and the design
matrix Zij is constructed from Paj.
An additive Bayesian network model A without restrictions on the conditional probability
tables is obtained by constructing Zij from Paj as follows. For each possible configuration c
on Paj, c = 1, . . . , Cj, a dummy variable is defined. For each observation i, the covariate vector
zij = (zij1, . . . , zijCj)

T is defined as an indicator vector with zijc = 1 if the configuration c is
observed, and zijc = 0 if not. The (Sj− 1)× (Sj− 1)Cj design matrix Zij is constructed from zij

and βj = (β j11, . . . , β jcs, . . . , β jCj(Sj−1))
T, of dimension (Sj − 1)Cj × 1, is the coefficients vector

for the additive parameters. Then, the expression for the linear predictor for each observation i
is instantiated by:

ηij =




ηij1
...

ηij(Sj−1)


 = Zijβj =




zT
ij 0 0

0
. . . 0

0 0 zT
ij







β j11
...

β jCj(Sj−1)


 .

The corresponding conditional probabilities are obtained by applying the inverse of the link
function to the linear predictor.
Therefore, we denote an additive Bayesian network model A for a set of random variables X
by a pair A = (S ,βA) = (S , h(θB)), where h(θB) = logit(θB) = βA. The main difference
between a B and a A is the re-parametrization of the θB parameters, seen as a function of
the additive parameters βA. From the definition of the additive Bayesian network model A, a
‘transformed’ notation can be used to indicate the parameters in an A resulting from the logit
link transformation function, with a similar meaning to that of a B model:

βA = logit(θB) = h(θB) =
n⋃

j=1

{βj},

βj =

Cj⋃

c=1

{βjc},

βjc =

Sj⋃

s=1

{β jcs}.

In this thesis, specifically in Paper IV, we are interested in specifying networks for random
variables X that follow a Bernoulli distribution (with only two states: binary variables), as
specified in Dai et al. (2013). Hence, a special case of the multinomial logistic regression
model is treated, namely the binary logistic regression model. Therefore, we are going to
describe this specific discrete Bernoulli case, where we have Sj = 2 and Cj = ∏p: Xp∈Paj

Sp =

2Pj as the number of configurations of Paj. In particular, each conditional probability table
P(Xj = 1|Paj) = θjc1 from a B is modelled via a binary logistic regression model. Thus, we
get:

θjc1 =
eZijβj

1 + eZijβj
=

eβ jc1

1 + eβ jc1
⇒ β jc1 = h(θjc1) = logit(θjc1) = log

(
θjc1

1− θjc1

)
.
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Moreover, in order to better understand this parametrization, a specific example is described.
The structure shown in Figure 2 is considered; the related additive Bayesian network model
is called AI and leads to the additive parameters:

βAI = {β1,β2,β3,β4,β5, },
For j = {1, 2}, βj = {βj1} = {β j11 ∪ β j12},
β3 = {β31,β32,β33,β34},
β31 = {β311 ∪ β312} , β32 = {β321 ∪ β322},β33 = {β331 ∪ β332} , β34 = {β341 ∪ β342},
For j = {4, 5}, βj = {βj1,βj2} = {β j11 ∪ β j12, β j21 ∪ β j22}.

Specifically, the following reparametrization occurs, proceeding with a description of the node
that follows an increase in parent’s orders:

For j = {1, 2}, β j11 = h(θ111) = log
(

θ111

1− θ111

)
, θ111 = p(X1 = 1|Pa1 = 1 = ∅,θ11),

j = {4, 5}, β j11 = h(θj11) = log
(

θj11

1− θj11

)
, θj11 = p(Xj = 1|Paj = 1 = {X3 = 0},θ j1),

j = {4, 5}, β j21 = h(θj21) = log
(

θj21

1− θj21

)
, θj21 = p(Xj = 1|Paj = 2 = {X3 = 1},θ j2).

For node j = 3 further explanation is provided because two parents are involved, implying
more parents configuration that require carefulness:

β311 = h(θ311) = log
(

θ311

1− θ311

)
, θ311 = p(X3 = 1|Pa3 = 1 = {X1 = 0, X2 = 0},θ31),

β321 = h(θ321) = log
(

θ321

1− θ321

)
, θ321 = p(X3 = 1|Pa3 = 2 = {X1 = 1, X2 = 0},θ32),

β331 = h(θ331) = log
(

θ331

1− θ331

)
, θ331 = p(X3 = 1|Pa3 = 3 = {X1 = 0, X2 = 1},θ33),

β341 = h(θ341) = log
(

θ341

1− θ341

)
, θ341 = p(X3 = 1|Pa3 = 4 = {X1 = 1, X2 = 1},θ34).

The main novelty for an additive Bayesian network is the change of focus from a parametriza-
tion expressed in terms of θjcs to a corresponding one represented in terms of β jcs. It is a
one-to-one transformation from the θB to the βA parameters.

3. Causal networks

The definition of Bayesian networks does not refer to causality, and there is no requirement
that the links represent causal impact. However the origin of BNs lies in the causal networks
framework and they can be defined as causal networks with the strength of the causal links
represented as conditional probabilities, under particular assumptions and interventions, see
Jensen (2001). Hence, in this section we describe the main features characterizing causal net-
work models.
Specifically, a causal network consists then of a set of variables and a set of directed links (also
called arcs) between variables; structure mathematically called directed graph. In a causal net-
work, a variable represents a set of possible states of affairs, where for state of affair we mean

- 22 -



to know that the variable is in a particular state. Casual networks can be used to check how a
change of certainty in one variable could have consequences about certainty of other variables.
Below we list the three possible types of connections (serial, diverging and converging) typical
of causal networks and rules for reasoning about relevance in causal networks are given. We
then explain how they are linked to the concept of d-separation and Markov blanket.
In the following subsections, we say that a variable is instantiated when its state is known.
Moreover, evidence about a variable is a statement of the certainties of its states. If the variable
is instantiated, it is called hard evidence; otherwise, it is called soft.

3.1. Serial Connections

We start considering the model in Figure 3. Here we have three variables: A has an influence
on B, which then has an influence on C. Obviously, if we have an evidence (i.e., an information
known from the beginning) about A, this will influence the certainty of B, which in turn
influences the certainty of C. Similarly, making the argument to the contrary, an evidence
about C will influence, through B, the certainty of A. On the other hand, if the state of B is
known, then the link is blocked, and A and C become independent; mathematically we say
that A and C are d-separated given B. From this first example, we note that evidence may be

A

B

C

Figure 3.: Serial connection. When B is known, it blocks information between A and C.

transmitted through a serial connection unless the state of the variable in the middle of the
connection is istantiated.

3.2. Diverging Connections

We continue with the situation in Figure 4, called a diverging connection. In this case infor-
mation can pass to all the children of A unless the state of A is known. In other words if we
know the state of A, the passage of the information through its children is blocked and math-
ematically we say that B,C,D are d-separated given A. Finally, we can conclude that evidence
may pass through a diverging connection unless it is instantiated.

3.3. Converging Connections

A description of the situation in Figure 5, converging connection (known also as v-structure),
requires more attention. If nothing is known about A, except what may be deduced from
knowledge of its parents, then we say that parents are independent: evidence about one of
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A

B C

Figure 4.: Diverging connection. If A is instantiated, it blocks communication between its children.

them can not influence the certainties of the others through A. Knowledge of one possible
cause of an event does not tell us anything about the other possible causes of that event.
Nevertheless, if anything is known about the consequences, then information on one possible

A

B C

Figure 5.: Converging connection. If A change certainty, communications between its parents are
open.

cause may tell us something about the other causes (explaining away effect).
Therefore, we conclude that evidence may pass through a converging connection only if either
the variable in the connection or one of its descendants has received evidence.

3.4. d-Separation

The three preceding connections cover all ways in which evidence may be transmitted through
variables, and following the rules it is possible in a causal network to decide, for any pair of
variables, whether they are independent given the evidence entered into the network. The
rules can be summarized in the d-separation concept, formulated below.

Definition 1. In a causal network, two distinct variables A and B are d-separated (“d” is for directed
graph) if for all paths between A and B, there is an intermediate variable V (different from A and B)
such that either:

- the connection is serial or diverging and V is instantiated or,
- the connection is converging, and neither V nor any of V’s descendants have received evidence.

We say that A and B are d-connected, if they are not d-separated.

One way to check the property of d-separation is by the Markov blanket, defined below:

Definition 2. The Markov blanket of a variable A is the set consisting of the parents and the children
of A and the variables sharing a child with A.
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When the Markov blanket of A is instantiated, we have a property: A is d-separated from the
rest of the network. In Figure 6 we can see an example of a Markov blanket.

A

B

C

H I

D

E

F

G

J K L

M N

Figure 6.: The Markov blanket for I is {C, E, H, K, L}. Note that J is not d-separated from I if only I’s
neighbours are instantiated.

From the definition of d-separation we see that in order to analyze whether two variables, say
A and B, are d-separated given hard evidence on a set of variables C it is necessary to control
whether all paths connecting A and B are d-separating paths. An easier way of performing
this control, without having to consider the different types of connections, is as follows (see
Figure 7).

- Firstly, the so-called ancestral graph consisting of A, B and C is built together with all
nodes from which exist a directed path to either A, B and C.

- After, undirected links between each pair of nodes with a common child are inserted
and then all links become undirected. The resulting graph is called the moral graph.

- The moral graph can be used to control whether A and B are d-separated given C: if all
paths connecting A and B intersect C, then A and B are d-separated given C.

3.5. Bayesian and Markov networks

Markov networks (also known as Markov random fields) are, together with Bayesian net-
works, the subjects of most past and current literature on graphical models. These two classes
of graphical models share many common traits. Markov networks differs from Bayesian net-
works from the underlying structure S = (V, E), is an undirected graph. All the arcs of S ,
which are usually called edges in this setting, are undirected; the relationship between the two
nodes linked by an edge is symmetric, without the distinction between parents and children
that characterizes Bayesian networks.
In other word, this imply that situations like the converging connections can not happen for
Markov networks. Hence, in this case instead of having the so-called parents and children,
we have the terminology ‘neighborhoods’. Furthermore, only situation of conditional depen-
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Figure 7.: To test whether A is d-separated from F given evidence on B and M, we first construct the
ancestral graph for {A, B, F, M} (DAG on the left). Next we add undirected links between pairs of
nodes with common child and then the direction is ignored on all links (graph on the right). In the
resulting graph we have that the path A-D-H-K-I-E-C-F does not intersect B and M, hence A and F
are d-connected given B and M.

dency may arise and not of marginal dependence, like in the v-structure case for Bayesian
networks.

4. Learning an additive Bayesian network model

In the Bayesian network literature, see Buntine (1991); Heckerman et al. (1995); Heckerman
(1998); Friedman and Koller (2003); Boettcher (2004), the parameter estimation and the model
selection process are known as learning: 1) parameter learning: specifying the local probability
distributions (model parameters βA); and 2) structure learning: specifying the DAG structure
S . Hence, when constructing an additive Bayesian network model A, two steps need to be
considered. Being in a Bayesian framework, given a data set D, we have:

P(A|D) = P(βA,S|D)︸ ︷︷ ︸
model learning

= P(βA|S ,D)︸ ︷︷ ︸
parameter learning

· P(S|D)︸ ︷︷ ︸
structure learning

.

Both the learning procedures are relevant and necessary in order to understand the final model.
They are interconnected and dependent on each other, as explained in Jensen (2001).
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Both the two procedures played an important role for the work done in this thesis. The
structure learning approach is more linked with the software part, explained in Paper III, while
the parameter learning is mainly is connected to the choice of the prior and its properties,
developed in Paper IV. Hence, for this reason, both the procedures will be clarified.
First, the structure learning process is explained. The principal score functions and related
searching strategies to look for the best model, are presented. The parameter learning process
is then presented via a list of key assumptions that helps to simplify the most demanding
computations.

4.1. Learning the Structure

In this section, the main score functions and searching procedures, used to learn the structure
of an ABN network, are presented.

Learning the Structure of Bayesian networks

Consider having a data set D from an ABN A1 over the set of variables X. The task is now
to find a Bayesian network A2 from the data set D that is close to A1. In theory, this can
be done by performing parameter learning for all possible structures, and then selecting as
candidates those models for that the distribution of A2 is close to the sample distribution. Un-
fortunately, by following this simplified approach, three fundamental problems for learning
Bayesian networks can arise:

1. The space of all Bayesian network structures is extremely large. It has been shown that
the number of different structures (Sloane, 2013), f (n), grows more than exponentially
in the number n of nodes, as represented by:

f (n) =
n

∑
j=1

(−1)j+1 n!
(n− j)!n!

2j(n−j) f (n− 1) .

2. When searching through the network structures, it is likely that the result will be several
equally good candidate structures. Since a Bayesian network can represent any distri-
bution across the set of variables over a complete graph, several candidates may appear;
this implies that a Bayesian network over a complete graph cannot be the correct answer.

3. There is also the problem of overfitting: a complete graph can represent the sample dis-
tribution exactly, but D could have been sampled from a sparse network. Alternatively,
the selected model may be so close to the sample distribution that it also covers the
smallest deviances in the distribution of the original model A1.

Moreover, in Chickering (1996); Chickering et al. (2004) are presented one of the latest in
a series of results that show that the task of learning Bayesian network structures is NP-
hard. Therefore, another searching strategy needs to be followed. The first method for the
automated learning of a BN was the method that learned tree-structured models (Chow and
Liu, 1968). At present, there are two different types of methods for learning the structure of
a BN: constraint-based and score-based. The first establishes a set of conditional independence
statements holding for the data, and uses this set to build a network with graphical separation
properties corresponding to the conditional independence properties determined. The second
creates some candidate BNs, calculates a score for each candidate, and returns the network
with the highest score. Cowell (2001), has shown that, according to often quoted assumptions,
constraint-based learning and score-based learning are equivalent.
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In the next subsection score-based methods and an exact structure algorithm are presented,
because of their link with the developed work in the thesis.

Score-based learning methods

When performing structural learning, the aim is to look for a BN structure that can represent
the data set sufficiently well without being overly complex.
Score-based methods assign a number (a score) to each BN structure. The score reflects the
‘usefulness’ of the structure, in other words, how likely it is that the structure could have been
used to generate the data set at hand. The task of score-based learning can then be considered
to be a search problem: looking for the model structure with the highest score.
Therefore, a BN can be learned from a data set by performing a search of all the DAGs and
selecting the one with the highest score. Hence, in order to specify a score-based learning
algorithm entirely, two components are needed: a score function and a search procedure.

Bayesian score functions

A good score function should, at least have the following two properties: (a) a balance be-
tween the accuracy and the complexity of the structure; and (b) it should be computationally
tractable to evaluate.
Moreover, a desirable property for a score function is the decomposability, that occurs if it can
be expressed as a sum of local scores, one for each node in the data D:

score (D,S) =
n

∑
j=1

score
(
Xj, Paj,D

)
.

An example of a good Bayesian score function, that contains both a term measuring how well
the data fits the model and a term that controls model complexity, is the Bayesian Information
Criterion (BIC) (Bernardo and Smith, 2000).
The marginal likelihood is the classical Bayesian approach for measuring the fitness of a candi-
date BN structure, S . Specifically, we have:

P (S|D) = P (S) P (D|S)
P (D) , (1)

where P (D)−1 is the normalization constant, and is considered a constant because it does not
depend on S . From (1), it is easy to see that, in order to score a structure based on its posterior
probability given the data, we need two terms, namely the prior probability for the structures
P (S) and the marginal likelihood of the structure given the data P (D|S). Generally, the prior
probability distribution for the structures is chosen in order to be relatively easy to calculate
(it is usually assumed that all structures are equally supported, leading to an uninformative
structure prior) or with appropriate studies (Scutari, 2013). Therefore, the main computational
problem is the calculation of the marginal likelihood which is needed to deal with the parameters
of the model βA:

P (D|S) =
∫

βA
P (D|S ,βA)π (βA|S) dβA, (2)

where π (βA|S) is the prior probability distribution over the parameters, conditioned on S .
The integral in the above equation is over all the parameters and over all the possible Bayesian
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networks with the same structure, but with different conditional probability distributions.
Intuitively, the marginal likelihood can therefore be interpreted as the probability that the
data D could be generated if the parameters for S were selected randomly according to the
parameter prior π (βA|S).
As specified above, the difficult part in the calculation of P(D|S) is the evaluation of the
integral in (2). Fortunately, it has been shown by Cooper and Herskovits (1992); Heckerman
et al. (1995) that, for a standard Bayesian network model B, the evaluation of this integral can
be reduced to a simple counting problem, that can be executed in polynomial time based on
three crucial assumptions for the data set D (A1 to A3) and five regarding the parameters (A4
to A8), that are later clarified in the Learning the Parameters section. The first 3 assumptions
are important to guarantee that we are working with data that are fully representative of a
BN, because their completeness and independence facilitate the factorization of each entry. In
particular, we have:
A1. The data set D is a faithful sample of a Bayesian network.
A2. Observations in the data set D are independent, given the Bayesian network model.
A3. The data set D is complete.

In this thesis, we work with a fully observed data set D = {x1·, . . . , xm·}, where each xi· is a
set of simultaneous values of the set of variables X = {X1, . . . , Xn}. Hence, we consider a data
set D that fulfils assumptions A2 and A3.
In the literature, it has been shown that the BIC score of a model is an asymptotic approxi-
mation of the marginal likelihood of that model, and it is equivalent to the minimum descrip-
tion length proposed by Rissanen (1987), and adopted as a decomposable consistent score
for Bayesian networks by Lam and Bacchus (1994) and Friedman and Goldszmidt (1998). A
Bayesian metric for scoring models was proposed by Cooper and Herskovits (1992), where a
search algorithm that performs a greedy search conditioned on a linear ordering of the vari-
ables (known as the K2 algorithm) was also suggested. Finally, Friedman and Koller (2003)
provided a method for calculating the posterior probability of the absence or presence of
individual arcs in the generating net given the data.

The score function for ABN

The marginal likelihood has been introduced previously. In this subsection, we describe how
it is adapted for ABN models. As a result of the decomposability property of the score
function, the total network score, the marginal likelihood for an ABN model, can be written as
P(D|S) = ∏n

j=1 P(Dj|S). In a binary logistic additive Bayesian network model A, the network
score for node j is given by:

P(Dj|S) =
∫

βj

m

∏
i=1

(
ezT

ijβj

1 + ezT
ijβj

)xij(
1

1 + ezT
ijβj

)1−xij

π(βj|S)dβj, (3)

where Dj are the observed data at node j, and consist of tuples of [xij, zT
ij ]. The parameter

vector at node j is represented by βj, and has the same length as the possible parent con-
figuration: dim(βj) = Cj. The prior at node j is indicated by π(βj|S), and is the unknown
quantity that we characterize.
The main difficulty in moving towards an additive model is the computation of the marginal
likelihood. In fact, additive Bayesian network models A require considerably more computa-
tional time than do standard Bayesian network models B because, thus far, no work that aims
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to simplify the integral has been developed (3) in a similar framework to that of Cooper and
Herskovits (1992); Geiger and Heckerman (1994); Heckerman et al. (1995); Boettcher (2004).
In Paper IV, we show that a simplified expression for (3), based on assumptions A1 to A3 and
A4 to A8, listed below, can be also obtained for an ABN model. In order to achieve this goal,
a crucial role is played by the prior π (βA|S), that is chosen properly.

Search Procedures

Given a score function, the task is to find the highest-scoring Bayesian network structure in
the set of all possible network structures. In other words, the task of structural learning is
reduced to a searching problem.
Researchers have developed heuristic search strategies that move around in the search space
by iteratively performing small changes to the current structure. Specifically, these search
methods usually work directly in the space of the Bayesian network structures; hence, each
point in this search space corresponds to a particular DAG structure, and search operators need to
be defined. Search operators are used to move from one structure to another, and to determine
the neighbourhood of a DAG, namely those DAGs that can be reached in one step from the
current DAG. The operators consist of

- arc addition: insert a single arc between two nonadjacent nodes;
- arc deletion: remove a single arc between two nodes;
- arc reversal: reverse the direction of a single arc.

The notation op (S , E) represents the result of performing the edge operation E on the struc-
ture S ; in other words op (S , E) is a DAG that differs from S in terms of one edge only. One
important property of these operators is that they only result in local changes to the current
structure, i.e., if an arc between Xi and Xj is inserted or deleted, then only the family of Xj
is changed, while if an arc between Xi and Xj is reversed, the families of both Xi and Xj are
changed. This property is tightly connected to the decomposability of a score function.
If we insert an edge from Xi into Xj, only the local score for Xj will change; thus, when eval-
uating whether such a move is beneficial, we need only to compute the score difference (or
gain) ∆

(
Xi → Xj

)
= score

(
Xj, Paj ∪ {Xi} ,D

)
− score

(
Xj, Paj,D

)
. Of all the possible search-

ing procedures, a simple heuristic approach is the greedy search. In the next subsection, the
principal steps of a greedy search algorithm will be explained.

Greedy search

The greedy search algorithm chooses some initial structures (usually an empty structure, a
randomly chosen structure or a prior structure specified by the user), and then calculates the
gain for each legal arc operation; by legal, it is meant that the resulting graph must be acyclic.
Specifically, a greedy search algorithm consists of the following steps:

1. Let S be an initial structure.
2. Repeat

(a) Calculate ∆ (E) for each legal operation E
- Let ∆∗ = maxE ∆ (E) and E∗ = argmaxE ∆ (E).

(b) If ∆∗ > 0, then
- Set S = op (S, E∗).

3. Until ∆∗ ≤ 0.
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Note that, in the previous algorithm, if the parents of two nodes do not change from one
iteration to another, the gain ∆

(
Xi → Xj

)
of any edge operation involving these two nodes

will remain unchanged. This gain can therefore be cached for subsequent iterations, so that the
calculations can be reused. These properties are important consequences of the decomposition
property of the score function.
Using the R package abn, it is possible to conduct an heuristic search, through the command
search.hillclimber, whose functionalities are explained in details in Paper III.
However, the limitation of heuristic search algorithms is that it does not guarantee the finding
of an optimal global structure, but only of a local optimal structure. Various solutions have
been proposed, and an example is the greedy search algorithm with multiple restarts; in other
words, after a local maximum is found, the search is reinitialized with a random structure.
After this first attempt, the reinitialization is repeated for a fixed number of iterations, and the
best structure found, via the entire process is selected. Conversely, a valid alternative solution
is to use an exact algorithm (Koivisto and Sood, 2004; Lewis et al., 2014), explained later, in
which an optimal global structure is found via a reduction in the number of variables that
need to be considered.

Equivalence class search and score equivalence

It can sometimes be advantageous to define the search space using a more abstract repre-
sentation than that of DAGs. An example is a procedure called the greedy equivalence search.
The search is based on the observation that data alone cannot be used to discriminate among
network structures that represent the same assertions of conditional independence. We start
to define this particular form of structures, which are also of particular importance for the
work developed in Paper IV.

Definition 3. Two DAG network structures, S1 and S2 are equivalent if they represent the same
independence constraints.

To better understand the previous definition, an example is provided. Let S1 and S2 indi-
cate two DAG network structures, as represented in Figure 8. They are equivalent DAGs
because the same independence relations are represented: P(X1, X2) = P(X1)P(X2|X1) =
P(X2)P(X1|X2). This equivalence is referred to in Heckerman et al. (1995) as Likelihood Equiva-
lence, which implies that, if S1 and S2 are independent equivalent networks that are related to
two BN models (B1 and B2), they have the same joint likelihood P(X|θB1 ,S1) = P(X|θB2 ,S2).
The equivalence relation is reflexive, symmetric, and transitive; hence, the relationship defines
a collection of equivalence classes.

X X

X X

1

2

1

2

Figure 8.: S1 andS2, two equivalent DAG structures.

Definition 4. A score function that assigns the same score to equivalent structures is said to be score
equivalent.
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This definition means that it is not possible to distinguish between different DAGs in an
equivalence class from observations alone. Hence, fitting each DAG to the same dataset should
give the same likelihood of observing the data in each model: equivalent score function.
BIC represents an example of a score equivalent function. Heckerman et al. (1995), considered
the specification of prior information, such as that of equivalent network structures (Chicker-
ing, 1995), is given the same score. This was the first example of an equivalent Bayesian score
function. In this work, a parameter prior that leads to Score Equivalence for ABN models is
introduced.
This property means that, if we have found a particular structure using a score equivalent
function, we could just as well select any other structure that is equivalent to the one identified.
In order to move around in the space of equivalence classes, where each point in the search
space corresponds to an equivalence class, it is possible to identify some search operators, that
are a bit more complex than the ones used in DAG spaces, due to the nature of the search
space. These operators define the neighbourhood for an equivalence class, which is the set of
structures reachable by a single change to the current structure or to one of its equivalents. An
upper neighbourhood is one consisting of equivalence classes with fewer dependence statements,
and a lower neighbourhood is one with more dependence statements. All the neighbourhoods
are based on the definition of equivalence classes in terms of independence statements.
The two neighbourhoods are defined as the equivalence classes that can be obtained by either
adding or deleting a single arc from a DAG in the current equivalence class.
Based on this specification of the search space, the Greedy Equivalence Search Algorithm
consists of two steps:

1. Start with the equivalence class without dependencies among the variables, and perform
a greedy search upwards until a local maximum is reached.

2. Starting from the equivalence class just identified, perform a greedy search downwards
until a local maximum is reached.

If the database is sufficiently large, the resulting equivalence class is guaranteed to include
the Bayesian network from which the data were generated.
In the context of equivalent structures, greedy search procedures have been proposed by
Chickering (2002); Chickering and Meek (2002), and are guaranteed to identify the correct
structure when the amount of data becomes large. On the other hand, in the work of Hecker-
man et al. (1995); Geiger and Heckerman (1994); Boettcher (2004) it is shown for the discrete,
the Gaussian and the conditional Gaussian case, respectively, that when a specific choice of
the parameter priors is made, the marginal likelihood is the same for equivalent network
structures, leading to an Equivalent Network Score scenario: P(D|S1) = P(D|S2).
Finally, it should be emphasized that, even though another specification of the search space
has been made, the general complexity problem present in DAG spaces has unfortunately not
been solved: the number of equivalence classes also grows super exponentially in line with
the number of variables.

Order based searches

As mentioned before, it is practically impossible to search all possibles DAGs to find the
globally best model except in very small problems with only a handful of variables. This
is particularly true when dealing with additive models. A fairly tight upper bound on the
number of unique DAGs is n!2(

n
2). One way to avoid this problem is not to search across

DAGs but search across orders, introduced by Friedman and Koller (2003).
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Specifically, a node ordering is simply a list of the nodes, say as indexes 1 through n. A given
DAG structure is consistent with an ordering if and only if the parents of each node precede
their child node in this list. Orderings can be thought of as groups of DAG structures, those
structures which are consistent with that particular ordering.
The crucial idea is that by searching across orderings the model search space can be reduced
from n!2(

n
2) down to only n!, which it represents a massive decrease! While this search space

is much smaller it is still quickly computationally infeasible for larger problems. However,
the drawback for searching across the much smaller space of orders rather than DAGs, it is
the consistency of any given DAG with numerous different orders. For example the indepen-
dence DAG, with no arcs, will be consistent with every possible order. This means that when
searching across orders, DAGs which are consistent with more orders will be favoured!

Results from searching across DAGs and searching across orders may, and most likely will,
differ. It could or not be seen as a possible problem. A purist might be unhappy with any sort
of bias given that searching across DAGs is obviously the “gold standard”. On the other hand,
the bias is towards simpler models and so that might be considered an acceptable trade-off.
Of course the actual magnitude of the bias will be problem specific and dependent on things
like sample size.
Often “heuristic” approaches are not fully appreciated, hence it leads to a pragramatic ad-
vantage of exact-order based methods. However, the reality is that model selection, which is
absolutely essential, cannot generally be done in any other way without resorting to exhaus-
tive searches which are generally not feasible. MCMC is also a heuristic. Even so, providing
results using an exact, exhaustive search, using an order based approach can help both with
confirming results and also addressing such issues.

In the literature, two different approaches to order based searching have been proposed. The
first method proposed for order based searching was through the use of MCMC simulation
(Friedman and Koller, 2003). The basic idea is that a search algorithm is constructed which
randomly samples across the landscape of orders and it collects information about the degree
of statistical support for structural features of interest. The results are the posterior probability
for each arc, say. Conceptually, a nice approach.
Later an exact alternative was proposed which visits every order - using the Fast Möbius
Transform in order to vastly reduce the computation (Koivisto and Sood, 2004). This method
is implemented in the R package abn and it can be used through the function mostprobable.

4.2. Learning the Parameters

In this section, we assume that the structure of a BN model over the variables X is known, but
that the estimates for the conditional probabilities are not known. Hence, the specification of
the parameters in the distributions is considered, and the aim is to estimate the parameters of
the model: the conditional probabilities.
The first assumption is related to the parameter distribution, called the Multinomial sample:
A4. The parameters define a Multinomial distribution for each variable Xj and for each con-

figuration of the parents.
When working in a multivariate framework with more than one variable involved, we look at
the relationship of the parameters for all the variables in the network. In order to ensure that
the parameters can be learned independently we will satisfy two independence properties
in order to ensure that all the mathematical properties that enable the computation of the
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integral (3) are met. These properties were introduced by Spiegelhalter and Lauritzen (1990),
and later expanded by Heckerman et al. (1995). They are denoted by global and local parameter
independence. The former means that the parameters for the various variables are independent
that, in practice, means that it is possible to modify the tables for the variables independently.
The latter means that the parameters are independent for each configuration of the discrete
parents. In practice, this means that by having two different configurations, Pa1

j and Pa2
j ,

the uncertainties on P
(

Xj|Pa1
j

)
and on P

(
Xj|Pa2

j

)
are independent, and it is possible to

modify the parameters for the two distributions independently. If the parameters satisfy the
aforementioned independence property, then we have:
A5. Global parameter independence : π(βA|S) = ∏n

j=1 π(βj|S).
A6. Local parameter independence : π(βj|S) = ∏

Cj
c=1 π(βjc|S), j = 1, . . . , n.

The next assumption is related to the choice of the prior. Specific distributions guarantee a
close form expression for the posterior, helping with the computation of (3):
A7. The prior distribution of the parameters is a Dirichlet distribution.

Another important assumption is the parameter modularity:

A8. If a node Xj has the same parents in two structures S1 and S2 (PaS1
j = PaS2

j ), then
P(βjc|S1) = P(βjc|S2), c = 1, . . . , Cj.

This means that each discrete distribution has the property whereby, if the joint probability
distribution P(X) can be factorized according to a structure S , it can also be factorized ac-
cording to all other structures that represent the same set of conditional independencies as S .
The parameters are learned using the principle of maximum likelihood (Jensen, 2001; Held and
Sabanés Bové, 2014). These five assumptions (A4 to A8), together with A1 to A3, complete the
8 points that allow reducing the computation of the integral (3) to a counting problem, that it
is tackled in Paper IV.

5. Numerical techniques for Bayesian inference

A potential problem in the application of Bayesian inference to more complex models is the
integration necessary to compute the normalizing constant of the posterior distribution in
Bayes’ theorem, which it is also linked to the computation of the score function seen in the
previous section. The calculation of certain characteristics of the posterior distribution such
as the posterior mean may require additional numerical integration. In this section we will
discuss numerical techniques to perform such integrations. We start describing classical as the
Laplace approximation. We then move on to so-called Markov chain Monte Carlo (MCMC)
methods, which enable us to avoid explicit integration by simulating from the posterior dis-
tribution (Held and Sabanés Bové, 2014).

5.1. Laplace method

The Laplace approximation (LA) is used to calculate characteristics of the posterior distribu-
tion of an unknown scalar parameter θ. Application of the LA to this task involves optimiza-
tion, rather than integration, which is typically much easier. Analytical results are available to
study the approximation error in detail.
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Let p(θ|x) denote a posterior distribution. Assume we are interested in

E(g(θ)|x) =
∫

g(θ) · p(θ|x)dθ, (4)

for a certain positive function g(θ) on the parameter space. For example, if the parameter θ is
positive and g(θ) = θ and we obtain the posterior mean E(θ|x) . To calculate (4) we write

p(θ|x) = p(x|θ)p(θ)∫
p(x|θ)p(θ)

,

to obtain

E(g(θ)|x) =
∫

g(θ)p(x|θ)p(θ)dθ∫
p(x|θ)p(θ)dθ

, (5)

i.e., a ratio of two integrals. Suppose now that the data x = (x1, . . . , xn) is a realisation of a
random sample X = (X1, . . . , Xn), then (5) can be written as

E(g(θ)|x) =
∫

exp(−nhg(θ))dθ∫
exp(−nh(θ))dθ

, (6)

where

−nh(θ) = log p(x|θ) + log p(θ) and
−nhg(θ) = log g(θ) + log p(x|θ) + log p(θ).

Now let θ̂ and θ̂g denote the locations of the minima of h(θ) and hg(θ), respectively, i.e.,
the values where the terms −nh(θ) and −nhg(θ) are maximal. h(θ) is a convex and twice
differentiable function with a maximum at θ = θ̂. Further let

k̂ =
d2h(θ̂)

dθ2

∣∣∣∣
θ=θ̂

and k̂g =
d2h(θ̂)

dθ2

∣∣∣∣
θ=θ̂g

denote the curvature of h(θ) and hg(θ), respectively, at the corresponding minimum. Separate
application of the Laplace approximation (a second-order Taylor expansion of h around θ̂) to
both the numerator and denominator gives:

E(g(θ)|x) =
√

k̂
k̂g

exp{−n(hg(θ̂g)− h(θ))}. (7)

Tierney and Kadane (1986), have studied the approximation error of (7) in detail. They showed
that, although the approximation error of the Laplace approximation in the two integrals in
(6) is of order O(n−1), the leading terms in the two errors cancel in (7). As a result, the error of
the Laplace approximation of the posterior mean is only of order O(n−2), so smaller. Similar
results can be obtained for the posterior variance. The regularity condition required is that
the likelihood times the prior be unimodal.
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5.2. Monte Carlo integration

In order to calculate characteristics of the posterior distribution we often need to integrate cer-
tain functions. We have discussed the Laplace approximation as potentially useful approach
to integration when analytic computation is not possible. A second approach are so-called
Monte Carlo methods.
Assume first, that it is easy to generate independent samples θ(1), . . . ,θ(M) from the posterior
distribution p(θ|x) of interest. A Monte Carlo estimate of the posterior mean

E(θ|x) =
∫

θp(θ|x)dθ (8)

is then given by

Ê(θ|x) = 1
M

M

∑
m=1

θ(m).

The law of large numbers ensures, that this estimate is simulation-consistent, i.e., the estimate
converges (almost sure) to the true posterior mean for M→ ∞. This approach is called Monte
Carlo integration and avoids the integration in (8).

5.3. Markov chain Monte Carlo

Application of ordinary Monte Carlo methods is difficult if the unknown parameter is of high
dimension. However, Markov chain Monte Carlo (MCMC) methods will then be a useful
alternative. The idea is to simulate a Markov chain θ(1), . . . ,θ(m), . . . , which is designed in
a way such that it converges to the posterior distribution p(θ|x). After convergence, one
obtains random samples from the target distribution, which can be used to estimate posterior
characteristics. However, these samples will typically be dependent, an inherent feature of
Markov chains. Similar to rejection sampling, there is great liberty in the actual choice of the
underlying random samples of MCMC algorithms. These random samples typically depend
on the current state θ(m) of the Markov chain, here m denotes the current iteration index.
The new random variates are now generated from some arbitrary proposal distribution with
density h(θ|θ(m)), say. The so-called Metropolis-Hastings algorithm, the most general MCMC
approach, accepts the proposed random number θ∗ from h(θ|θ(m)) as the new state of the
Markov chain with probability

α = min
{

1,
p(θ∗|x)

p(θ(m)|x) ·
h(θ(m)|θ∗)
h(θ∗|θ(m))

}
,

i.e., θ(m+1) = θ∗, otherwise θ(m+1) = θ(m), i.e., θ∗ is rejected. The random number θ∗ is

often simply called proposal. The term p(θ∗|x)
p(θ(m)|x) is often called posterior ratio while h(θ(m)|θ∗)

h(θ∗|θ(m))

is the proposal ratio. So the acceptance probability is the product of the posterior ratio and
the proposal ratio, suitably truncated to the unit interval. Under some regularity conditions
one can show that this algorithm converges to the target distribution p(θ|x), regardless of
the specific choice of h(θ|θ(m)). However, the speed of convergence and the dependence
between successive samples will depend heavily on the choice of the proposal distribution.
Some special cases of this general algorithm have special names. If the proposal density is
symmetric around the current value, i.e., h(θ(m)|θ∗) = h(θ∗|θ(m)), one obtains the Metropolis
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algorithm with acceptance probability: α = min
{

1, p(θ∗|x)
p(θ(m)|x)

}
.

A special case of this is the so-called random walk proposal , which is defined as the current
value θ(m) plus a random number variate of a zero-centred symmetric distribution. If the
proposal density does not depend on θ(m), the proposal is called independence proposal
. Another special case occurs if the acceptance probability α always equals unity. This is
clearly the case if h(θ∗|θ(m)) = p(θ∗|x), i. e. if the proposal density is equal to the posterior
density, the target density. At first sight this appears to be of limited value, as we implicitly
assumed that direct sampling from the target density is unavailable. However, α will also
equal unity, if a specific component θj of θ is updated by a sample from its full conditional
distribution p(θj|x,θ−j), here θ−j denotes the vector θ without the component θj. Because
p(θj|x,θ−j) ∝ p(θ|x), j = 1, . . . , p, the acceptance probability is still one in this case. Iteratively
updating all components of θ with samples from their corresponding full conditionals is called
Gibbs sampling. The approach can be adopted to updating multidimensional blocks (not just
scalars) of θ from their respective full conditional distributions. The Gibbs sampling has been
implemented in the software JAGS, which it has been used both in Paper I and II to perform
MCMC approach for model validation.
The efficiency of the Metropolis-Hastings algorithm depends crucially on the acceptance rate,
i.e., the relative frequency of acceptance (typically assessed after convergence of the Markov
chain). However, an acceptance rate close to one is not always good. For example, for ran-
dom walk proposals an acceptance rate too large implies that the proposal density is too close
around the current value, so the algorithm needs many small steps to explore the target dis-
tribution sufficiently. On the other hand, if the acceptance rate of a random walk proposal is
too small, large moves are often proposed, but rarely accepted. In some cases, the algorithm
may even get stuck at a specific value and subsequent proposals will get rejected for a large
number of iterations. For random walk proposals acceptance rates between 30 and 50% are
typically recommended, which can be easily achieved through appropriate choice of the vari-
ance of the proposal distribution. Things are different for independence proposals, where a
high acceptance rate, which means that the proposal density is close to the target density, is
desired.

6. Outlook

This dissertation focuses on additive Bayesian network models. Applications, implementa-
tions and methodological improvements of these models are developed and tackled.
This thesis can be considered as an attempt to bring Bayesian networks modelling in the Vet-
erinary Epidemiology literature, with a first description of the technical details and mathemat-
ical notation underlying these complex models. Full description of the important statistical
features can be found in Paper IV with an emphasis of an initial improvement for choice of
the prior, the model computation and fitting.
Further developments of ABN models can be performed through the implementation of the
prior in Paper IV in the R package abn. To date, only the multivariate Bernoulli case has
been considered, for methodological improvements. However, other multivariate distribu-
tions (Gaussian, Poisson), always belonging to the exponential family, can be examined using
similar procedures and suggestions as in Paper IV. Another interesting, also if very challenging
question, is related to the characterization and description of ABN models for repeated mea-
surements, hence where instead of modelling each variable in the graph with a generalized
linear model, a generalized linear mixed model (GLMM) is considered.
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Thesis Summary

This thesis consists of four chapters, presented in a temporal order reflecting the chronology
of the work done. Their content and contribution are briefly summarized below.

Paper I

Comparison between Generalized Linear Modelling and Additive Bayesian Network. Identi-
fication of Factors associated with the Incidence of Antibodies against Leptospira interro-
gans sv Pomona in Meat Workers in New Zealand by Marta Pittavino∗ & Anou Dreyfus∗,
Cord Heuer, Jackie Benschop, Peter Wilson, Julie Collins-Emerson, Paul Torgerson, Rein-
hard Furrer.
∗: joint first authorship.

In this paper, we present a comparison between the results from Generalized Linear Mod-
elling (GLM) with those from Additive Bayesian Network (ABN) analysis, used to identify
factors associated with Leptospira interrogans sv Pomona (Pomona) infection. The advan-
tages and disadvantages of these two methodologies are explored, to corroborate inferences
informing health and safety measures at abattoirs in New Zealand (NZ). In a cohort study
in four sheep slaughtering abattoirs in NZ, sera were collected twice a year from 384 meat
workers and tested by Microscopic Agglutination with a 91% sensitivity and 94% specificity
for Pomona. The study primarily addressed the effect of work position, personal protective
equipment (PPE) and non-work related exposures such as hunting on a new infection with
Pomona. Directly, significantly associated with Pomona were “Work position” and “Abattoir”
(GLM), and “Work position” (ABN). The odds of Pomona infection (OR, [95% CI]) was high-
est at stunning and hide removal (ABN 41.0, [6.9-1044.2]; GLM 56.9, [6.5-496.6]), followed by
removal of intestines, bladder, and kidneys (ABN 30.7, [4.9-788.4]; GLM 28.8, [3.3-252.4]). In
ABN analysis of indirectly linked variables, the odds of Pomona infection was 3.0 [1.9-4.8]
times higher when wearing a facemask compared to not wearing a facemask and 2.2 [1.3-3.7]
times higher when wearing glasses compared to not wearing glasses for workers in the offal
and/or pet food area, once adjusted for the effect of work position.
The idea for this paper came from Paul Torgerson and Reinhard Furrer, who thought to
exploit the potential of ABN methodology with the Leptospira incidence data in order to
further assess the effect of the work position, PPE and related covariates, on a new infection
with Pomona. Anou Dreyfus conceived and designed the cohort study, helped by Cord Heuer,
Jackie Benschop, Julie Collins-Emerson and Peter Wilson, and collected the data as part of her
PhD project. Anou Dreyfus and I analyzed the data, she was responsible for the GLM method
part and I conducted all the analysis related to the ABN approach. I wrote a primary summary
of the analysis and results achieved, I created all the figures reported in the manuscript. Anou
and I drafted the manuscript together. All authors read and approved the final manuscript.
The main contribution of this paper is to highlight the multivariate properties of the ABN
methodology, finding new results in the usage of PPE. Hence, facemasks and safety glasses
did not show any indication of being protective in GLM, on the contrary, such PPE increased
the odds of infection in ABN, but this requires verification using other research methodology.
In ABN, all relationships between variables are modeled; hence it has an advantage over GLM
due to its capacity to capture the natural complexity of data more effectively.
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Paper II

Attitudes of Austrian veterinarians towards euthanasia in small animal practice: impacts of
age and gender on views on euthanasia by Sonja Hartnack, Svenja Springer, Marta Pittavino
& Herwig Grimm.

Veterinarians commit more often suicide than other members of the general population, but
little is known about the contributing factors. It has been hypothesized that occupational
stressors including long working hours, heavy workload, poor work-life balance, difficult re-
lations with owners and performing euthanasia act as contributing factors. In this paper we
aim to gain insight into the attitudes of Austrian veterinarians towards euthanasia of small
animals using both standard regression techniques and additive Bayesian network models.
This implied verifying their agreement with euthanasia in specific case scenarios, potentially
explained by demographic variables (e.g. gender, age, working in small animal practice, em-
ployment, working in a team, numbers of performed euthanasia) and also describing the
veterinarians’ agreement with a number of different normative and descriptive statements,
including also presumed coping strategies. Euthanasia of pets has been described by veteri-
narians as “the best and the worst” of the profession. The most commonly mentioned ethical
dilemmas veterinarians face in small animal practice are: limited treatment options due to
financial constraints, euthanizing of healthy animals and owners wishing to continue treat-
ment of terminally ill animals. A questionnaire with 9 euthanasia scenarios, 26 normative
and descriptive statements, and demographic data were sent to all members of the Austrian
Chamber of Veterinary Surgeons (n=2478). In total, 486 veterinarians fully answered to enable
analyses. Initially, responses were explored descriptively before being analyzed using both
linear regression and additive Bayesian networks (ABN). The main purpose of using ABN
models was to identify joint relationships between demographic variables, statements and
each of the 9 euthanasia scenarios. Mutual dependencies between the demographic variables
were found, i.e., female compared to male veterinarians worked mostly in small animal prac-
tice, and working mostly in small animal practice was linked to performing more euthanasia
per month.
The idea for this paper came from Sonja Hartnack, who designed and coordinated the study.
Svenja Springer, with the supervision of Herwig Grimm, collected the data in order to include
them as a part of her doctoral thesis. Sonja, Svenja and I analyzed and interpreted the data.
Svenja conducted the descriptive analysis part, Sonja and I analyzed and interpreted the data,
both using regression techniques and ABN models. In particular, I supervised Sonja for the
ABN models part, helping with my expertise with the R package ‘abn’. I created all the 9
figures, one for each of the 9 euthanasia scenario, present in the paper. All authors helped to
draft the manuscript, read and approved the final manuscript.
The main contribution of this paper is the association found between gender and age with
views on euthanasia: female veterinarians and veterinarians having worked for less years
were more likely to disagree with euthanasia in at least some of the convenience euthana-
sia scenarios. The paper provide evidence on the importance of the number of veterinarians
working together, which was found to be the variable with the highest number of links to
other variables, demographic as well as ethical statements. This highlights the role of a team
potentially providing support in stressful situations. The results are useful for a better under-
standing of coping strategies for veterinarians with moral stress due to euthanasia of small
animals.
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Paper III

abn: an R package for modelling multivariate data using additive Bayesian networks by
Marta Pittavino, Fraser Lewis & Reinhard Furrer.

This manual describes the R package abn which provides functionality for identifying statisti-
cal dependencies in complex data using additive Bayesian network models. This methodology
is ideally suited for both univariate - one response variable, and multiple explanatory variables
- and multivariate analysis, where in both cases all statistical dependencies between all vari-
ables in the data are sought. These models comprise of directed acyclic graphs (DAGs) where
each node in the graph comprises a generalized linear model, where model search algorithms
re used to identify those DAG structures most supported by the data. Currently implemented
are models for data comprising of categorical, continuous and/or count variables. Further
relevant information about abn can be found at: http://www.r-bayesian-networks.org.
Fraser Lewis designed, created and coded the R package abn, together with an initial draft
of the manual. Following ideas from Reinhard Furrer, I amended and extended the package.
Graphical representation of the models and their related functions have been edited. I entirely
restructured and rewritten the manual. All authors read and approved the final version of the
vignette, before uploading to CRAN.
The main contribution of this manual is to provide an accessible guide for the users of the R
package abn. Description of the different functionalities of the package are present, including
the explanation of a selected complete case study to show all the steps necessary to perform
when analyzing data using additive Bayesian networks.

Paper IV

Conjugate Priors for Additive Bayesian Networks by Marta Pittavino & Reinhard Furrer

This paper addresses the parameter learning process of an additive Bayesian network (ABN)
model for binary data. When an additive parametrization for Bayesian networks is used, the
marginal likelihood (ABN network score) computation is the major objective. In this paper,
we introduce a novel conjugate prior distribution for ABN that belongs to a flexible family of
conjugate priors called the Diaconis−Ylvisaker conjugate priors. We show that the suggested
prior is a generalization of the Dirichlet prior. Moreover, we prove that this prior satisfies
the desirable independence assumptions for a parameter prior in DAG models. Hence, it
helps to address the goodness of fit calculation. The resulting ABN network score is equal to
the Gaussian ordinary hypergeometric function. However, it can be approximated using the
Laplace method. We then present a method for selecting the hyperparameter priors in order
to have the score equivalence property satisfied. Finally, the priors, the derived methods and
the usefulness are illustrated by means of an example of a binary variable network.
The idea for this paper came from Reinhard Furrer, who proposed to address two of the
main challenges posed by ABN models linked to the specification of the prior and the com-
putation of the resulting marginal likelihood. Moreover, another aim was to satisfy the score
equivalence property, i.e., equivalent networks get the same score function, with the new in-
troduced prior. I did all the computations and worked on properties and theorems reported
in the manuscript, always fully supported and adviced by Reinhard Furrer, who constantly
contributed with good ideas and new thoughts to the work. I drafted the manuscript. Both
authors read and approved the final version of the manuscript.
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The main contribution of this paper is the introduction of a prior which is conjugate with
respect to ABN models and satisfy all their desirable assumptions, overcoming the issue of
complete data separation occurring with the previous suggested prior. Moreover, an analytic
expression for the marginal likelihood is provided, which has been compared with the usual
Laplace approximation method. The error between the analytic expression and the Laplace
approximation is negligible, also for small sample size. The results are useful from the model
fitting and parameter estimation perspective of ABN models. The analytic form expression
leads to an easier computation of the marginal likelihood, while the conjugacy property helps
to have a better knowledge of the posterior density. Moreover, as a novel result a proof of the
score equivalence, for ABN models, is provided.
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ABSTRACT 21 

Background: Additive Bayesian Network (ABN) is a graphical model which extends Generalized Linear 22 

Modelling (GLM) to multiple dependent variables. The present study compares results from GLM with those 23 

from ABN analysis used to identify factors associated with Leptospira interrogans sv Pomona (Pomona) 24 

infection by exploring the advantages and disadvantages of these two methodologies, to corroborate 25 

inferences informing health and safety measures at abattoirs in New Zealand (NZ). 26 

Methodology and Principal Findings: in a cohort study in four sheep slaughtering abattoirs in NZ, sera 27 

were collected twice a year from 384 meat workers and tested by Microscopic Agglutination with a 91% 28 

sensitivity and 94% specificity for Pomona.  29 

The study primarily addressed the effect of work position, personal protective equipment (PPE) and non-30 

work related exposures such as hunting on a new infection with Pomona. Directly, significantly associated 31 

with Pomona were “Work position” and “Abattoir” (GLM), and “Work position” (ABN). The odds of 32 

Pomona infection (OR, [95% CI]) was highest at stunning and hide removal (ABN 41.0, [6.9-1044.2]; GLM 33 

56.9, [6.5-496.6]), followed by removal of intestines, bladder, and kidneys (ABN 30.7, [4.9-788.4]; GLM 34 

28.8, [3.3-252.4]). In ABN analysis of indirectly linked variables, the odds of Pomona infection was 3.0 (1.9- 35 

4.8) times higher when wearing a facemask compared to not wearing a facemask and 2.2 [1.3-3.7] times 36 

higher when wearing glasses compared to not wearing glasses for workers in the offal and/or pet food area, 37 

once adjusted for the effect of work position. 38 
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Conclusions/Significance: Facemasks and safety glasses did not show any indication of being 39 

protective in GLM, on the contrary, such PPE increased the odds of infection in ABN, but this 40 

requires verification using other research methodology. In ABN, all relationships between variables 41 

are modelled; hence it has an advantage over GLM due to its capacity to capture the natural 42 

complexity of data more effectively.   43 

 44 

Key words: ABN, GLM, Pomona, Leptospirosis, MCMC, R, JAGS, abattoir workers, risk factors, protective 45 

equipments. 46 

 47 

AUTHOR SUMMARY 48 

A bacterial zoonotic disease, called “Leptospirosis” burdens New Zealand's (NZ) rural communities 49 

with most cases occurring in farmers and meat workers, due to transmission from livestock. A study 50 

in four sheep abattoirs had been conducted to see how many meat workers tested positive against 51 

one Leptospira type, called “Pomona”. Our aim was to identify factors associated with Leptospira 52 

interrogans sv Pomona infection in meat workers, comparing two different statistical methodologies 53 

called Generalized Linear Modelling (GLM) and Additive Bayesian Network (ABN) to inform 54 

public health policy and get new insights in statistical modelling.  55 

This research showed that the odds of a Pomona infection were highest at stunning and hide 56 

removal in both methodologies. While, facemasks and safety glasses did not show any indication of 57 

being protective in GLM, such protective equipment increased the odds of infection in ABN. The 58 

latter finding requires further discussion, verifying it with other research methodology. 59 

The strength of this new analytical tool (ABN) is given by the potential to provide far greater 60 

insights into both existing and new complex data across all areas of epidemiological research. 61 

 62 
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INTRODUCTION 63 

The present study compares results from Generalized Linear Modelling (GLM) with those from Additive 64 

Bayesian Network (ABN) analysis by exploring the advantages and disadvantages of these two analytical 65 

methods while analysing risk factors for occupational leptospirosis in New Zealand (NZ).  66 

A primary objective of many epidemiological studies is to investigate hypothesized relationships between 67 

covariates of interest, and one or more outcome variables. To date, a large variety of statistical models is 68 

available to analyse epidemiological data (i.e. cross validation criteria, ANOVA), and one of the most 69 

popular  are GLM (1). Typically, the biological and epidemiological processes, which generated this data, are 70 

highly complex, resulting in multiple correlations/dependencies between covariates and also between 71 

outcome variables. Unfortunately, standard epidemiological and statistical approaches have a limited ability 72 

to adequately describe such inter-dependent multi-factorial relationships. ABN is a form of probabilistic 73 

graphical model that extends the usual GLM to multiple dependent variables, through the representation of 74 

the joint probability distribution of random variables. It is a statistical model that allows the analysis of  75 

complex data and derives a directed acyclic graph (DAG) from empirical data, describing the dependency 76 

structure between random variables as opposed to fixed variables in GLM (2, 3). ABN models comprise two 77 

reciprocally dependent parts: a DAG and a set of parameters. A DAG is a graphical representation of the 78 

joint probability distribution of all random variables in the data. Each node in the DAG is the equivalent to 79 

the dependent variable in a GLM regression model. In a graphical statistical model there is no distinction 80 

between covariates and an outcome variable. Hence, while a standard GLM focuses on the association 81 

between covariates and a single dependent or outcome variable, an ABN is a multivariate (conditional) 82 

regression model, analysing the associations between all covariates with all variables being potentially 83 

dependent (4). Therefore, in a multifactorial complex disease system, interdependencies between risk factors 84 

may be revealed in ABN, that may or may not be discovered in GLM, as the latter imposes a linear 85 

relationship between covariates and the outcome (4). By comparing ABN with GLM using identical data, we 86 

explore the likely impact of such an analytical difference on the inferences from this study.  87 

The ABN models described here, also if consisting of a DAG, are only related with statistical dependency, 88 

and arcs present in such models do not imply any causal relationship. While the identification of a statistical 89 

dependency is often a step towards the conclusion of causal mechanisms, it is, however, more demanding to 90 

further claim that the given dependency exists within a particular causal web. 91 

Paper I - 51 -



 

In the last decades, Bayesian Network (BN) modelling has been widely used in biomedical 92 

science/systems biology (5-13) to analyse multi-dimensional data. However, only in the last few years, it has 93 

been applied in the veterinary epidemiology field. A general introduction to BN modelling in veterinary 94 

epidemiology is provided by Lewis et al. (14). Further applications of BN to veterinary studies were 95 

described by Ward et al., Wilson et al. and Sanchez-Vazquez et al. (15-17). Graphical modelling techniques 96 

used to analyse epidemiological data were used by Firestone et al., Schemann et al., Lewis et al., Ludwig et 97 

al. and McCormick et al. (2, 18-23). Some of these do not compare results from ABN and GLM (18-20), 98 

whereas others do (2, 21-23). In the literature, a detailed comparison of these two methodologies can be 99 

found in Lewis et al. (23). However, the aforementioned study was based on simulated (artificial) 100 

epidemiological data and differences of results were mainly discussed with graphical outputs (qualitatively), 101 

whereas this analysis also compares ORs of parameters directly and indirectly linked to the outcome, 102 

focusing on the contrast as well on a quantitative point of view.  103 

Leptospirosis is a zoonotic disease occurring in many mammals and is caused by a bacterium of the 104 

genus Leptospira spp. Transmission occurs from exposure to urine or aborted tissues of infected animals, 105 

either directly or via contact with contaminated water or soil (24). Pathogenic leptospires enter the body 106 

through mucous membranes or skin abrasions. In humans, infection with Leptospira spp. varies from being 107 

sub-clinical (asymptomatic), through a mild to a severe acute disease. A mild form with fever and “influenza-108 

like” symptoms appears to be more common in New Zealand (25). The acute disease is characterized by 109 

jaundice, renal failure, hepatic failure, myocarditis, uveitis and/or pulmonary haemorrhage (26, 27).  110 

Among temperate developed countries New Zealand (NZ) has a relatively high incidence of notified 111 

human leptospirosis cases of an average annual incidence risk of 2-3 cases per 100,000 population (28, 29). 112 

However, under-ascertainment is common and estimated to be 15-65 fold in sheep abattoir workers (25). The 113 

three most common serovars in humans are Leptospira interrogans sv Pomona (Pomona) and Leptospira 114 

borgpetersenii sv Hardjo (Hardjo) and Leptospira interrogans sv Ballum (Ballum) (29). The serovar Pomona 115 

is highly prevalent in cattle, deer and sheep in NZ (30-32). Therefore, livestock are a frequent source of 116 

human leptospirosis in farmers and meat workers (28) who are most at risk with less than 10% of deer mobs, 117 

sheep flocks or beef herds currently vaccinated against leptospirosis (33, 34). Dreyfus et al. (25) found that 118 

in 2011 the annual cumulative Pomona incidence risk (%) in sheep abattoir workers was on average 11.9% 119 

(95% CI 8.5-14.8%) with a range for four different abattoirs of 8.4-16.4%. The annual risk of confirmed 120 
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clinical leptospirosis was 0.78% (3/384, 95% CI 0.20-2.46%) and new infections with Pomona increased the 121 

risk of illness with ‘influenza-like’ symptoms 2.1-fold (= relative risk) (95% CI 1.5-3.0) (25).    122 

This study used the data of the study described above (25) with the following two aims: the first aim 123 

was to identify factors associated with Pomona infection in sheep abattoir workers in NZ, with two different 124 

methodologies GLM and ABN, in order to untangle the web of causality of human infection with Pomona 125 

with a real data set. Specifically, we aimed to test the hypothesis of work position being the main effect 126 

variable (most important risk factor), to evaluate the role of personal protective equipment (PPE) and non-127 

work related exposures, such as hunting, home slaughtering and farming. If PPE had a protective effect, it 128 

would be a good measure to protect workers. If workers were mainly exposed in their work place and not 129 

while hunting or home slaughtering, then it becomes clear where the emphasis on their protection should be. 130 

The second and equally important aim was to compare the results between GLM and ABN and discuss 131 

advantages and disadvantages of the two statistical analyses.  132 

MATERIALS AND METHODS 133 

Case study  134 

A prospective cohort study amongst voluntarily participating meat workers from four purposively selected 135 

sheep abattoirs in the North Island of NZ was conducted. Study methods were described in detail by Dreyfus 136 

et al. (25). Participants were blood sampled by certified phlebotomists or nurses and interviewed at the same 137 

time by trained researchers using a questionnaire (Supplementary Material). Serum antibodies against 138 

Pomona were analysed by the microscopic agglutination test (MAT) at doubling dilutions from 1:24 to 139 

1:1536 as described previously (35). Blood samples and data were collected twice at intervals ranging from 140 

50 – 61 weeks in order to estimate the incidence of new infections with Pomona. Study participants of 141 

“Abattoir 1” were sampled the first time between February and April 2008 and the second time in April 142 

2009. All other abattoirs were sampled initially in November 2009 - March 2010, and again in November 143 

2010 - May 2011. Hence, one abattoir (“Abattoir 1”) was studied twice in two consecutive years and three 144 

abattoirs were studied in the second year once. New infection occurred where a worker sero-converted (a 145 

sero-negative worker had a MAT titre increase to equal or higher than 1:48) or had an anamnestic response (a 146 

sero-positive worker had a MAT titre increase by two or more dilutions) (25).  147 

 148 
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Data structure  149 

Serological test results and questionnaire information were entered into an Access
©
 database. The data 150 

resulting from the serological test results and interviews comprised of 384 observations across 13 variables, 151 

including the outcome variable (Table 1). There were no missing data. To estimate the odds of infection in 152 

different work positions this was categorised as follows: the reference category 0 included workers with no 153 

or presumed low exposure to organs of the urinary tract or to urine and they worked in the office, “boning” 154 

room (where the carcass is cut into pieces), “chillers”, “freezers” or “blood processing”; category 1 were 155 

workers from areas where organs were handled, such as the “offal”/ “casing”/ “pet food”, hide processing 156 

positions, also including cleaners, renderers or engineers; category 2 included workers at the middle and end 157 

of the slaughter board, where animals were opened, organs removed and carcasses were inspected; category 158 

3 were workers in the yards, where animals were washed and waiting for slaughter and at the beginning of 159 

the slaughter board, where animals were stunned, bled and hides were removed.  160 

Workers were asked about the PPE worn for every task in the abattoir. PPE variables were “Facemasks” 161 

(mask with movable transparent protective shield covering the whole face), “Safety (= goggles) or normal 162 

glasses” and “Gloves on two hands” (made out of latex, or similar material or plastic). They were further 163 

asked about the frequency PPE was worn. Frequency category 1 was “always or often” and frequency 164 

category 0 “sometimes or never”. Further variables of interest were number of months worked during the 165 

study and in the three preceding seasons, years worked in an abattoir, whether workers went hunting, were 166 

farming, home slaughtering in the study year and the previous three years and personal data such as age and 167 

gender. Variable names and their description are presented in Table 1. 168 

In order to analyse the data with ABN methodology, the multicategorical variables had to be split into 169 

binary ones. Therefore, the variables “Work position” and “Abattoir” with four and five categories 170 

respectively, were split into three (“Work1”, “Work2”, “Work3”) and four (“Plant1”, “Plant2”, “Plant3” and 171 

“Plant4”) binary variables. Hence, the variable “Work1” corresponds to “category one” of the variable 172 

“Work position”, where workers remove the offal or work in the pet food area (Table 1). To address over 173 

parametrization and collinearity “Work0” and “Plant0” were omitted from the model. 174 
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Table 1: Potential determinants of new infection with Leptospira interrogans sv Pomona in sheep abattoir meat 175 
workers (n=384) in New Zealand. Multinomial variables in generalized linear modelling (GLM) were 176 
transformed into binary variables in Additive Bayesian Network (ABN) modelling. 177 

Variables and Categories in Positive 

cases
4
 

DAG
3
 

label GLM ABN 

Work position    

0 Boning, chillers, office Omitted
2
   

1 Offal removal, pet food Work position 1  Work1 

 0 Not working in offal removal, pet food 340  

 1 Working in offal removal, pet food 44  

2 Intestines or kidney removal, meat 

inspection 

Work position 2  Work2 

 0 Not removing intestines or kidneys, not inspecting 

meat 

296  

 1 Intestines or kidney removal, meat inspection 88  

3 Yards, stunning, pelting Work position 3  Work3 

 0 Not working in yards, not stunning or pelting 274  

 1 Working in yards, stunning or pelting 110  

Abattoir    

0 Working in Abattoir 1 (A1)
1 
(n=82) Omitted

2
   

1 Working in Abattoir 1 (A2) (n=135) Abattoir 1  Plant1 

 0 Not working in Abattoir 1 (A2) 302  

 1 Working in Abattoir 1 (A2) 82  

2 Working in Abattoir 2 (n=68) Abattoir 2  Plant2 

 0 Not working in Abattoir 2 316  

 1 Working in Abattoir 2 68  

3 Working in Abattoir 3 (n=21) Abattoir 3  Plant3 

 0 Not working in Abattoir 3 363  

 1 Working in Abattoir 3 21  

4 Working in Abattoir 4 (n=78) Abattoir 4  Plant4 

 0 Not working in Abattoir 4 306  

 1 Working in Abattoir 4 78  

Gender Gender  Gender 

0 Female 0 Female 128  

1 Male 1 Male 256  

Hunter of goats, pigs & or deer Hunter of goats, pigs & or deer  Hunt 

0 No 0 No 355  

1Yes 1Yes 29  

Slaughter of sheep, goats, pigs, beef 

& or deer at home 

Slaughter of sheep, goats, pigs, beef & or deer at 

home 

 

Kill 

0 No 0 No 320  

1 Yes 1 Yes 64  

Owning a farm with pigs, goats, 

sheep, beef cattle, alpaca & or deer 

Owning a farm with pigs, goats, sheep, beef 

cattle, alpaca & or deer 

 

Farm 

0 No 0 No 322  

1Yes 1 Yes 62  

Wearing normal or safety glasses Wearing normal or safety glasses  Glass 

0 Sometimes/ never 0 Sometimes/ never 166  

1 Always/ often 1 Always/ often 218  

Wearing gloves on both hands Wearing gloves on both hands  Gloves 

0 Sometimes/ never 0 Sometimes/ never 134  

1 Always/ often 1 Always/ often 250  

Wearing a facemask Wearing a facemask  Mask 

0 Sometimes/ never 0 Sometimes/ never 320  

1 Always/ often 1 Always/ often 64  
Months worked in the meat industry Months worked in the meat industry  Time 

Continuous Continuous 
4
217; 9-636  

Age Age  Age 

Continuous Continuous 
4
48;19-73  
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1
Sheep Abattoir 1 (A1) is the same as sheep Abattoir 1 (A2), but sampled in subsequent years with 57 of 135 178 

participants being resampled; 
2
Omitted due to over parametrization; 

3
Directed acyclic graph. 

4
For continuous variables 179 

the mean and range are given. 180 
 181 

Exploratory data analysis (EDA) with correlation matrices, captured using the Spearman's correlation 182 

coefficients, and parallel coordinate plots evaluation was conducted on the raw data to test the correlation 183 

between predictor variables. 184 

 185 

Analysis with GLM 186 

Data were analysed using the software R (36). We used multivariable logistic regression (MLR) to test the 187 

hypotheses that work position, hunting, slaughtering at home and farming were risk factors and PPE was a 188 

protective factor for new infection with Pomona. We evaluated risk factors and confounding variables by a 189 

manual forward stepwise selection in the MLR model, starting with a null model with only an intercept 190 

included and then adding one risk factor at a time. A variable was retained if the Likelihood Ratio Test (LRT) 191 

was statistically significant at a p-value ≤0.05 (= risk factor) or if its presence changed the OR of work 192 

position (main effect variable) in the model by more than 15% (= confounder) (37). Interaction between risk 193 

factors was tested by LRT. If the LRT was statistically significant (p ≤0.05) the interaction term was retained 194 

in the model. The tested interaction terms were “Gender*Wearing gloves”, “Work position*Wearing gloves”, 195 

“Work position*Wearing safety/normal glasses”, “Work position*Gender”, “Wearing safety/normal 196 

glasses*Abattoir” and “Wearing gloves*Abattoir”. 197 

Since 57 people from Abattoir 1 participated twice in the study, robust standard errors (SE) were 198 

calculated using generalised estimating equations (GEE) as adjustment for clustering due to repeated 199 

measurements (38). Results of GEE were compared to the ones without and adjustment kept if SE increased 200 

by ≥5%. 201 

The Hosmer-Lemeshow statistic was used to test the distributional assumption and the Pseudo R-square 202 

was used to evaluate the overall model fit. Influential covariate patterns and leverage were examined using 203 

described methods (39). 204 

 205 
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Analysis with ABN 206 

All analyses were conducted using the software R (36) and specifically the R package abn (40) which is 207 

maintained by one of the two principal authors and is available from CRAN (cran.r-project.org) with 208 

additional documentation and case studies at "http://www.r-bayesian-networks.org/". The resulting networks 209 

were manually created with the programme Xfig. 210 

Multicategorical variables were transformed to binary and hence, not presenting real associations, 211 

arcs (links, edges) between these were not allowed to be part of the model. Prior distributions were defined: 212 

all DAG structures were equally supported by a uniform prior in the absence of any data. A uniform prior 213 

was used to guarantee that no structure was preferred over the others, in order to allow a fully data-driven 214 

approach. While, uninformative Gaussian priors were applied for the parameters at each node: specifically 215 

independent Gaussian priors with mean zero and variance 1000 for the additive terms, equivalent to beta 216 

coefficients in a conventional logistic regression, and a diffuse Gamma distribution with shape and scale of 217 

0.001 for the precision, i.e., the inverse of the variance parameter in the Gaussian nodes. 218 

A three step procedure was utilized to determine a robust model for the case study data and to 219 

estimate the parameters. The first step was to find an optimal model, represented by the DAG, which is a 220 

graphical representation of the joint probability distribution of all the random variables where no cycles 221 

exist. The best goodness of fit to the available data was computed using the marginal likelihood method, 222 

which is the standard goodness of fit metric in Bayesian modelling and includes an implicit penalty for 223 

model complexity. This was estimated using the Laplace approximation at each node (41). The process of 224 

identifying an optimal DAG is referred to in the literature as structure learning (42, 43). This was found with 225 

an order based exact search method (44), which determines a DAG with goodness of fit being equal to the 226 

best possible goodness of fit of any DAG. In order to find the best DAG, the maximum number of parents 227 

allowed per node (= number of covariates in each regression model at each node) was increased until the 228 

goodness of fit remained constant and thereby identified the same globally optimal DAG. The model 229 

selection procedure started from three possible parents per node and then the parent limit increased gradually 230 

until ten possible parents per node (Figure 1). A best fitting ABN was identified at the end of this first step, 231 

with a maximum number of possible parents per node. 232 

In the second step, the model was adjusted by checking it for over-fitting (45) using Markov chain 233 

Monte Carlo (MCMC) simulation implemented in JAGS ( ‘just another Gibbs sampler’) (45, 46). Simulated 234 
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datasets were generated with MCMC as iterations of an identical size as the original one, from the optimal 235 

model found in step one. An identical exact search for an optimal model structure was then performed 236 

exactly as in the first step, but applied to the bootstrapped data rather than original data. It was repeated 2560 237 

times, a large enough number to get robust results, using the same parent limit per node as the one found in 238 

the initial search. Arcs present in less than 50% of the globally optimal DAGs – estimated from the 239 

bootstrapped data – were considered not to be robust and removed  from the DAG generated in the first step. 240 

A threshold of 50% structural support is the usual cut-off in ABN analysis (4). For sensitivity analysis, the 241 

arcs coverage after 640 and 1280 simulations were compared. A most robust ABN model fully adjusted for 242 

over-fitting was identified at the end of this second step, equivalent to a multivariate GLM. The R package 243 

coda (47) was used to evaluate the mixing of MCMC chain. Both visual and statistical techniques have been 244 

used with the Gelman and Geweke diagnostics (48).  245 

In the third step of ABN analysis, the marginal posterior log odds ratio and 95% credible intervals 246 

were estimated for each parameter from the posterior distribution, expressed by the DAG identified at the 247 

second step. Being in a Bayesian statistics framework, the parameters were the maximum likelihood 248 

estimates (MLE) based on the joint posterior distribution. With ABN methodology it is possible to evaluate 249 

both “direct” and “indirect” relations present in the data. An arc between two variables in the final DAG 250 

model is referred to as a “direct” relationship, whereas an “indirect” relationship is defined as two arcs 251 

connecting two variables with an intermediate variable. For example, Figure 2 shows variables “Pomona” (= 252 

Pomona infection) and “Mask” (= wearing a facemask) being “indirectly” linked through the presence of 253 

work position (“Work1”, “Work2” and “Work3”) variables that are all “directly” linked to “Pomona”. 254 

In order to estimate the parameters of “directly” linked variables, a specific function (fitabn) of the R 255 

package ‘abn’ was used. With the latter, it is possible to compute the odds ratio at each node, connected with 256 

an arc in the final model. In order to estimate the parameters for associations between “indirectly” dependent 257 

variables and new infection with Pomona, a long MCMC (roughly 400000 independent iterations) was 258 

performed using JAGS, to simulate values from the joint posterior distribution across all variables (i.e. from 259 

the final DAG). Then the empirical odds ratios of interest were computed. Because of the joint nature of the 260 

model, these were marginal odds ratios across all variables in the data, hence implicitly included other 261 

variables effects. Fixing the values of some specific nodes across the network also allowed the estimation of 262 

adjusted odds ratios for previously estimated variables, resulting from the effect of fixing a selected outcome 263 
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of a variable and re-calculating the parameter of interest. This step described dependencies between PPE and 264 

new infection with Pomona given that a person was working in a specific work position.  265 

At the end of this third step, the marginal posterior odds ratio of the main variables in the analysis 266 

and their 95% credibility intervals were obtained. Data and R codes are available as Supplementary Material. 267 

 268 

Figure 1: Comparison of goodness of fits (log marginal likelihood) for different parent limits (number of 269 
covariates in each regression model at each node), resulting from the first step of model selection in Additive 270 
Bayesian Network (ABN) methodology, for data of new infection with Leptospira interrogans sv Pomona in 271 
abattoir workers processing sheep in New Zealand. 272 
 273 
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RESULTS 274 

The number of participating workers by abattoir ranged from 21-135 with a total of 384 workers (Table 1). 275 

The exploratory data analysis revealed the strongest correlation between the continuous variables “Age” and 276 

“Time” (c=0.61), the variables “Work3” and “Gender” (c=0.38) and “Work2” and “Mask” (c=0.33). The 277 

variable “Pomona”, with 36 positive cases, was mainly linked with variable “Work3” (c=0.2), for all the 278 

other variables there was a correlation coefficient < 0.15. A similar pattern in the data was reflected in the 279 

results from ABN analysis. 280 

 281 

Risk factors for new infection with Pomona analysed by GLM 282 

Statistically significant risk factors in the final GLM model were “Work position” and working in a specific 283 

abattoir (Table 2). Compared with the workers in the office, boning room or chillers (reference group), 284 

workers in the offal room had 20 times (95% CI 2.6-423.9, p=0.009), workers removing the intestines and 285 

kidneys, and meat inspectors had 29 times (95% CI 4.8-562.1; p=0.003), and workers stunning, pelting and 286 

working in the yards had 57 times (95% CI 9.5-1109.6; p<0.001) the odds of infection with Pomona. These 287 

associations were independent of working in a specific abattoir. Compared with “Abattoir 1/A1”, persons 288 

resampled at this abattoir (“Abattoir 1/A2”) had four times the odds of infection (95% CI 1.3-11.8; p=0.013) 289 

compared to the previous year irrespective of work position.  290 

Even though the variables “Home slaughter”, “Gender” and “Wearing glasses” were not statistically 291 

significant , they were left in the model as potential confounders, as they changed the work position OR by 292 

≥15% (Table 2). None of the other potential risk factors, confounders or interactions was significantly 293 

associated with new infection in GLM and did not improve the model fit.  294 

The SE changed by less than 5% with GEE and therefore adjustment for repeated sampling of the 295 

same worker in two subsequent years was not required.  296 

Model diagnostics indicated that the data fitted the logit-normal distribution. One outlier was 297 

identified, but its removal and collapsing work position categories zero and one did not change any of the 298 

significant model coefficients by more than 8% and hence, did not impact on the inferences. 299 

 300 

Association between variables analysed by ABN 301 

The resulting best fitting ABN comprised 30 arcs and a maximum number of seven parents, for the variable 302 
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“Gender”. The MCMC revealed a good mixing of the chain, with no evidence of non-convergence toward 303 

the stationary distribution resulting from the Gelman and Geweke diagnostics. After the bootstrap analysis, 304 

four of the arcs in the globally optimal DAG were only weakly supported. Therefore the number of arcs was 305 

reduced from 30 to 26. Identical results were obtained in the sensitivity analysis, where we started with 2560 306 

bootstraps, which was a large enough number to generate robust results, and then performed half (1280) and 307 

a quarter (640) of the bootstrap analyses, suggesting a robust conclusion. The final globally optimal additive 308 

Bayesian network model after adjustment for over-fitting is shown in Figure 2. The ABN models considered 309 

here are concerned only with statistical dependency, and arc direction in such networks has no 310 

epidemiological interpretation. Therefore, the graphical models are presented without arc direction. 311 

In the final ABN model shown in Figure 2, the only variables directly linked to Pomona infection 312 

were work positions. More specifically, people working in stunning, pelting and yards had the highest odds 313 

of infection, compared to those who were not working in this particular category, as the odds of infection 314 

with Pomona was 41.0 (95% CI 6.9-1044.1) times higher than in workers not working in these positions. 315 

Workers removing the intestines and kidneys and meat inspectors had 30.7 (95% CI 4.9 -788.4) times the 316 

odds of infection with Pomona compared to workers not working in these positions. Workers removing offal 317 

and pet food had 18.3 (95% CI 2.2 – 506.7) times the odds of infection with Pomona compared to workers 318 

not working in these positions (Table 2).  As illustrated in the final DAG, work positions were strongly inter-319 

dependent with PPE. The odds of Pomona infection was 7.0 (95% CI 3.5 – 14.0) times higher when wearing 320 

a facemask compared with not wearing a facemask, without adjusting for the effect of work position. The 321 

odds of Pomona infection was 3.03 (95% CI 1.9 – 4.8) times higher when wearing a facemask compared to 322 

not wearing a facemask for workers in offal and/or pet food, once adjusted for the effect of work position. 323 

Similar ORs were found for wearing a facemask and working in work position 2 and 3, as seen in Table 3 324 

and Figure 3. The odds of Pomona infection were 4.6 (95% CI 2.2 – 9.8) times as high when wearing normal 325 

or safety glasses compared with not wearing them. However, this value was halved when adjusting for the 326 

effect of work positions (Table 3). The odds ratios for the effect of wearing gloves were not statistically 327 

significant, as the confidence intervals included “one”. 328 
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Table 2: Odds ratios (OR) and confidence intervals (CI) of significant covariates and confounders in generalized 329 
linear modelling (GLM) (left) and DIRECTLY

1
 dependent covariates in Additive Bayesian Network analysis 330 

(ABN) (right) for new infection with Leptospira interrogans sv Pomona in abattoir workers processing sheep 331 
(n=384) in New Zealand. 332 

GLM
2
 covariates with categories ABN covariates with categories 

 OR 95% CI  OR 95% CI
7
 

Work position      

0 Boning, chillers, office ref  Omitted
6
   

1 Offal removal, pet food 20.2 2.6-423.9 Work position 1   

   0 Not working in offal removal, pet food   

   1 Working in offal removal, pet food 18.3
5
 2.2-506.7 

2 Intestines & kidney removal, 

meat inspection 

28.8 4.8-562.1 Work position 2   

 

  0 Not removing intestines or kidneys, not 

inspecting meat 

  

 

  1 Intestines or kidney removal, meat 

inspection 

30.7 4.9-788.4 

3 Yards, stunning, pelting 56.9 9.5-1109.6 Work position 3   

   

0 Not working in yards, not stunning or 

pelting   

   1 Working in yards, stunning or pelting 41.0 6.9-1044.2 

Abattoir    Indirectly dependent
   

1 (A1)
3
 ref     

1 (A2) 3.8 1.3-11.8    

2 1.1 0.1-6.2    

3 2.5 0.8-7.9    

4 0.4 0.1-1.4    

Wearing normal or safety 

glasses   Indirectly dependent
8
 

  

No ref     

Yes 1.3
4
 0.5-3.6    

Gender   Indirectly dependent   

Female ref     

Male 0.5
4
 0.2-1.4    

Slaughter of sheep, goats, 

pigs, beef & or deer at home
 
   Indirectly dependent 

  

No ref     

Yes 0.5
4
 0.1-1.3    

1
One arc between variables

 333 
2
The Log likelihood of the nested GLM model was -95.327 compared to the empty model with -119.474; 

 334 
3
Sheep Abattoir 1 (A1) is the same as sheep Abattoir 1 (A2), but sampled in a different year with 57 of 135 participants 335 

being resampled;
  336 

4
Statistically not significant, but kept in the model due to a confounding effect on the work position variable;

 337 
5
 The odds ratios are marginal, i.e., for work position 1, persons working in the offal removal or pet food area are 18.3 338 

times as likely to get infected, than everyone else not working in these positions, taking all the other variables into 339 
account;

 340 
6
Omitted due to over parametrization;

 341 
7
ABN methodology does not generate p-values because of the joint mathematical formulation; 342 

8
Odds ratio in Table 3 343 

 344 
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 345 
 346 
 347 
Figure 2:  Final globally optimal additive Bayesian Network (ABN) model, after adjustment for over-fitting, 348 
evaluating factors linked with the odds of new infection with Leptospira interrogans sv Pomona (“Pomona”) in 349 
sheep abattoir workers (n=384) in New Zealand. Directly dependent variables were various work positions 350 
(“Work1”, “Work2”, and “Work3”). Binary variables are shown as squares and continuous variables as ovals. 351 
Numbers represent odds ratios of significant directly dependent variables in ABN model, as reported in Table 2. 352 
Arc direction is omitted to not create confusion with the usual epidemiological DAGs, which imply causality and 353 
possible variables intervention, absent in ABN model where only statistical dependency are relevant. 354 
 355 
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Table 3: Associations between INDIRECTLY
1
 linked variables of new infection with Leptospira interrogans sv 356 

Pomona (Pomona) in abattoir workers processing sheep (n=384) in New Zealand and odds ratios (OR) and 95% 357 
credible intervals (95% CI) analysed by Additive Bayesian Network (ABN) 358 
 359 

 Indirectly associated variables  OR 95% CI 

Odds of Pomona infection when wearing a facemask in 

general and when working in various work positions 

  

Pomona|Mask
2
 7.0 3.5-14.0 

Pomona|Mask,Work1
3
 3.0 1.9-4.8 

Pomona|Mask,Work2 2.9 1.9-4.5 

Pomona|Mask,Work3 2.3 1.5-3.6 

Odds of Pomona infection when wearing safety or normal 

glasses in general and when working in various work 

positions 

 

 

Pomona|Glass 4.6 2.2-9.8 

Pomona|Glass, Work1 2.2 1.3-3.7 

Pomona|Glass, Work2 2.0
4
 0.9-4.7 

Pomona|Glass, Work3 1.4
4
 0.9-2.4 

Odds of Pomona infection when wearing gloves in general 

and when working in various work positions  

 

 

Pomona|Gloves 0.8
4
 0.4-1.6 

Pomona|Gloves, Work1 0.7
4
 0.6-1.3 

Pomona|Gloves, Work2 1.0
4
 0.6-1.7 

Pomona|Gloves, Work3 0.9
4
 0.6-1.4 

1 
More than one arc between the variables 360 

2
Interpretation: the probability of Pomona infection is seven times as likely when wearing a facemask than not wearing 361 

a facemask (=crude odds ratio); 362 
3
Interpretation: the probability of Pomona infection is three times as likely when wearing a facemask and working in 363 

work position 1 (offal room or pet food) than not wearing a facemask (=adjusted odds ratio);  364 
4
Statistically not significant; variable names are explained in Table 1. 365 
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 366 
 367 
Figure 3: Visual representation of the associations between the INDIRECTLY linked variables “Wearing gloves”, 368 
“Wearing a facemask” and “Wearing normal or safety glasses” (=PPE) and new infection with Leptospira 369 
interrogans sv Pomona (Pomona) in abattoir workers processing sheep (n=384) in New Zealand as reported in 370 
Table 3. Dashed lines represent crude associations between PPE and Pomona infection and solid lines represent 371 
for work position adjusted associations between PPE and Pomona infection. The numbers between two variables 372 
are the odds ratios and the numbers in square brackets the [95% credible intervals]. 373 
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DISCUSSION 374 

In the last four decades, four cross-sectional studies investigated Leptospira sero-prevalence in meat workers 375 

in NZ (49-52) estimating sero-prevalences against Pomona, Hardjo, and/or Leptospira borgpetersenii sv 376 

Tarassovi of being between 4.1% and 31%. One longitudinal study investigating risk factors for Leptospira 377 

incidence risk in abattoirs has been conducted recently (53). However, in the latter study, the Leptospira 378 

serovars contributing to “new infection” were the two serovars Hardjo and Pomona as a combined outcome. 379 

Since a study found that risk factors for Hardjo and Pomona infection in livestock varied substantially (30), 380 

and since Pomona was associated with the majority of new infections in workers in all abattoirs and with 381 

more signs of flu-like illness as opposed to Hardjo, we omitted Hardjo infection from our analysis outcome 382 

in this analysis. The analysis of risk factors for new infection with Pomona is therefore novel and has not 383 

been done in the former study (53).  384 

Had serovar Hardjo been associated with more than 13 new infections, we would have incorporated it in 385 

the analysis as a variable, as ABN could have demonstrated the dependencies between Hardjo, Pomona and 386 

all other variables, differentiating the roles of these two serovars in the risk factor scenario at sheep abattoirs 387 

for leptospirosis. However, given the few sero-positive cases, one third with respect to Pomona new 388 

infection, it would have resulted in a poorer model fit. Further, in GLM it would have been nonsensical to 389 

include Hardjo infection as a risk factor for Pomona infection in the outcome. Hence, an inclusion of Hardjo 390 

was not possible for comparing the two methods.  391 

The objective of the presented analysis was to identify risk factors for new infection with Pomona in 392 

sheep abattoir workers and to compare results from GLM with those from ABN. GLM and ABN confirmed 393 

the hypothesis that work position was the strongest risk factor for new infection with Pomona in sheep 394 

abattoir workers (Table 2). Hence, both methods appeared to be appropriate for identifying strong 395 

associations. ABN models are multidimensional multivariate regression models and analyse associations 396 

between all variables at the same time (4). Therefore, ABN and GLM are likely to identify the same risk 397 

factors when associations are strong and highly significant.  398 

While work position was a categorical variable with four levels in GLM, it consisted of three binary 399 

variables in ABN due to splitting the multicategorical variables into binary ones, resulting in different 400 

baseline data. The ORs for the association between Pomona infection and the work position variable(s) did 401 

not only vary because of a different analytical method in GLM and ABN, but also varied due to different 402 

- 66 - Paper I



 

baseline categories. In GLM the baseline category was working in boning, chillers, office, whereas in ABN 403 

the reference group was not being in the respective category (see Table 1). For example, in ABN working in 404 

yards, stunning or pelting versus working elsewhere resulted in an OR of 41, whereas in GLM working in 405 

yards, stunning or pelting versus working in the boning room and office gave an OR of 57 (Table 2). Since in 406 

GLM a highly exposed group was compared to with one with hardly any exposure to Pomona, the OR was 407 

higher than in ABN, where the baseline category included persons from various exposure levels. Despite the 408 

different baselines, the results are still comparable, being ABN a generalization of the usual GLM regression 409 

and as the aim of GLM and ABN was to identify the presence of statistical dependency and factors 410 

associated with Pomona infection. The work position variables in ABN (“Work1”, “Work2”, “Work3” in 411 

Figure 2) were all significantly related to Pomona infection (“Pomona”), as were the working position 412 

categories in GLM. The multivariate ABN can be viewed as a collection of multivariable models (GLM) 413 

along the arcs of the DAG, hence the parameter estimates are expected to be identical given the same 414 

explanatory variables. However, compared with the GLM, the ABN model is regarded as more flexible since 415 

each level of a categorical variable can potentially have different sets of dependencies to other variables, 416 

whereas GLM only associates independent variables with a single outcome. This flexibility was apparent 417 

with the variable ‘wearing gloves’ (“Gloves”), which was only connected to the removal of 418 

intestines/kidneys/meat inspection (“Work2”), suggesting that the risk attribution to wearing the PPE 419 

depended on work position. 420 

As already discussed by Dreyfus et al. (53), the highest odds of infection in workers at the beginning 421 

of the slaughter board may be explained by contact with contaminated droplets due to frequent urination of 422 

stunned sheep. The relatively high odds of infection during removal of kidneys and at meat inspection may 423 

be attributable to direct exposure of workers to Pomona residing in the genital-urinary system. Kidneys pass 424 

through the offal room, possibly explaining the odds of infection in that working area. Working in the boning 425 

room, chillers or in the office was associated with little or no exposure to urine with much lower odds of 426 

infection with Pomona.  427 

Wearing PPE at the work place (gloves, facemasks and glasses) were not statistically significantly 428 

associated with Pomona in GLM analysis. However, ABN suggested that such PPEs increased the odds of 429 

infection. This may be biologically plausible because workers wearing safety goggles or facemasks reported 430 

they sweat and presumably wipe their eyes with potentially contaminated hands more often than workers not 431 
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wearing them. Wearing glasses and/or a facemask increased the odds of infection at the slaughter board 432 

approximately two-fold. This is an important new finding by ABN, hence we recommend research to clarify 433 

whether this is actually true (e.g. by detecting Leptospira DNA in facemasks and glasses by PCR). Our 434 

findings about PPE should be interpreted with some caution, as there is a possibility of differential 435 

misclassification bias. When responding to questions about wearing PPE, participants may have overstated 436 

the use of PPE and not admitted non-compliance to the employment policy enforcing the use of PPE, despite 437 

a clear statement that interviews were confidential. This may have led to an overstatement of wearing PPE by 438 

meat workers in exposed work positions, reducing the chance of determining a protective effect of PPE in the 439 

analysis. Nevertheless, we believe that such bias were small because workers handling kidneys were, 440 

contrary to belief, less likely to sero-convert than workers at stunning/pelting. 441 

Hunting, farming or slaughter of animals at home were not associated with Pomona infection in the 442 

GLM and only indirectly linked to Pomona infection through three to four arcs in the ABN model. This is an 443 

indication that in this study population exposure to Pomona was more likely occurring in the abattoir than 444 

through contact with livestock at times off-work. This finding underlines the role of leptospirosis as an 445 

occupational hazard in sheep abattoirs in NZ. These findings were confirmed in the study on sero-446 

prevalence/incidence and risk factors by Dreyfus et al. (52, 53), but contrast with the findings of Heuer et al. 447 

(54), where home slaughter was found to be a risk factor for sero-prevalence of Hardjo or Pomona, where 448 

Hardjo titres were 5-fold more frequent than Pomona titres among workers of one abattoir (A1).  449 

An advantage of ABN is the illustration of the dependencies between all variables by the graphical 450 

model (Figure 2), compared with GLM which only shows the dependencies between risk factors and 451 

outcome (Pomona infection). Hence, the GLM only identified variables that were directly associated with 452 

Pomona infection, and was restricted to a limited model space ignoring indirect relationships. Conversely, 453 

ABN considered all variables jointly allowing arcs to be present between any variables. For example, ORs 454 

for the effect of wearing PPE on Pomona infection at certain work positions could be estimated (Table 3, 455 

Figure 3). The DAG illustrates that farming was dependent on slaughter of animals at home, which was 456 

associated with working at the yards, stunning and pelting (“Work1”). Hence, persons working in these 457 

positions were more likely to slaughter at home and farm. Hunting was associated with the variables “Age” 458 

and “Time”, meaning that older, long time workers were more likely to go hunting. The estimation of ORs 459 

indirectly linked to the potential outcome variable has, to the authors’ knowledge, not been presented before 460 
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in the literature. 461 

The Yule-Simpson paradox (55) states that taking a narrow univariate (single dependent 462 

variables/multivariable regression) approach to risk factor analysis will, in general, not give the same result 463 

as a joint and truly multivariate approach (4). In this study, ABN and GLM methodology did not produce 464 

exactly the same results: whereas work position was the only directly dependent variable upon new infection 465 

with Pomona in both ABN and GLM, the GLM found workers in Abattoir A2 to be at higher odds of 466 

infection than workers at A1. As shown in Figure 2, ABN suggested that the odds of infection in Abattoir A2 467 

(“Plant1”) was indirectly linked to the outcome “Pomona infection” through wearing normal or safety 468 

glasses and all three work positions. The results from the ABN method suggest that in Abattoir 1 (A2), 469 

Pomona infection occurred more often when using PPE, hence was associated with policy compliance at 470 

specific work positions. GLM had not detected these associations. Hence, while GLM only established a 471 

direct association between one abattoir and Pomona infection, ABN identified a network of inter-dependent 472 

factors linked to the outcome. Here ABN was more informative about potential causal pathways in the 473 

disease system than GLM (4). This potential advantage of the ABN method would specifically be useful for 474 

observational studies with large number of variables, where causal and time relationships are often unknown.  475 

The technical foundations of ABN modelling lie within the machine learning and data mining 476 

literature (42, 43, 56-58). The main obstacle of using this methodology in practice is that it can be 477 

computationally rather demanding: determining the best model for a given data set has been shown to be NP-478 

hard (59), the most difficult class of computational problem. This means that finding an optimal model must 479 

be done using heuristic search algorithms (42, 43, 56-58), rather than brute force computation. Hence, 480 

another limitation of ABN modelling is the restriction of the number of variables. To date, exact structure 481 

discovery with bootstrapping is only feasible for around 20 variables (44). Heuristic searches (43) and 482 

inexact order-based searches (58) for globally optimal DAGs offer an alternative, however they are less ideal 483 

approaches, because they are local techniques and not exact methods. In the future, advances in either 484 

technology or statistical methods will make larger computationally intensive analysis more feasible. An 485 

example could be that presented by (60). Moreover, another drawback of the current ABN methodology is 486 

the unfeasibility to take into account possible interactions. However, we checked possible effect 487 

modifications for the GLM model, as clarified in the previous sections, but they revealed to be not significant 488 
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and they did not improve the model fit. Therefore, although if this possible limitation is present, it does not 489 

harm our analysis and the two methodologies are still comparable due to absence of effect modifications. 490 

The credible intervals were wider in the ABN than in the GLM results. This is due to the model 491 

nature, where all the variables are taken into account due to the joint mathematical model formulation, 492 

despite the use of GLM techniques in the estimation process. In addition, the estimation of the ORs between 493 

undirected variables (e.g. Work|Mask) introduces more uncertainty. 494 

The stepwise algorithm used to select the best GLM model is not always recognized as the standard 495 

procedure for model selection (23). Nevertheless, in this context, the stepwise approach was appropriate, as 496 

the choice of the frequency of variables put into the model was based on hypotheses, formulated with 497 

knowledge from former studies (51, 53), with knowledge of infection pathways and the epidemiology of 498 

leptospirosis. 499 

One abattoir (“Abattoir 1”) was studied twice in two consecutive years and three abattoirs were 500 

studied in the second year once. Since only 14.8 % of workers were sampled repeatedly in “Abattoir 1” and 501 

since sero-conversion and anamnestic responses (= Pomona incidence) were measured, and not sero-502 

prevalence, clustering was expected to be at very low level. This was confirmed when we extended the GLM 503 

model with generalised estimating equations (GEEs) and the SE changed by less than 5%.  504 

Although the abattoirs were not fully representative of the whole of NZ, solely located in the west and 505 

east of the North Island, the animals originated from all areas of the North Island. Furthermore, as 506 

demonstrated in (52), the study population was recruited from almost 20% of the total sheep abattoir worker 507 

population.  508 

Since participation was voluntary, it was likely a sampling bias had been introduced. A parallel analysis 509 

revealed that workers from high exposed work positions were more likely to participate (61). But this did not 510 

affect the results from the multivariable logistic regression analysis where working area was included as a 511 

covariate. 512 

The MAT titre cut-off of 1:48 is appropriate to determine exposure to leptospires in humans, but is 513 

generally not recommended as a cut-off for diagnosing clinical disease (35, 62). Hence, a two-fold increase 514 

can determine new infection due to exposure to leptospires, but is not necessarily appropriate to diagnose 515 

clinical disease. The latter requires, by WHO definition, a single MAT antibody titre ≥800 or a four-fold 516 

increase in the convalescent blood sample. However, this definition has been challenged recently (30, 63), as 517 
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infection with certain serovars seem to lead to clinical disease with lower antibody responses. Seroconverting 518 

meat workers in this study had a two-fold risk of influenza-like symptoms compared to workers not 519 

seroconverting (25). Fang et al. (64) modelled the association between Leptospira sero-positivity and risk 520 

factors in meat workers of one sheep abattoir for different MAT cut-offs. While the percentage of sero-521 

positive meat workers reduced by approximately 40%, when choosing a MAT titre cut-off of 1:96 rather than 522 

1:48, the conclusions on risk factors did not change. In many countries a wide range of serologically related 523 

serovars is prevalent introducing the problem of cross reactivity in the MAT. However, the prevalence of six 524 

endemic serovars in NZ, which belong to different serogroups, should reduce the problem of cross reactivity 525 

(65). The MAT in the NZ context is therefore very specific and false positives should not represent a problem 526 

in this study context. In a study evaluating the MAT sensitivity and specificity of acute (MAT cut-off 1:100) 527 

and convalescent (MAT cut-off not mentioned) sera in an urban setting in Brazil (66), the MAT testing of 528 

convalescent sera had a sensitivity of 91% to 100% and specificity of 94% to 100%. If we assumed that the 529 

MAT in our study had a 91% sensitivity and 94% specificity, the tested incidence in meat plants was likely 530 

under-estimated. However, since we used a MAT titre cut-off of 1:48 and tested for the serovars Hardjobovis 531 

and Pomona, which are less likely to be encountered in a urban setting, where serovar Copenhageni is 532 

predominant (66), it is possible that the sensitivity and specificity of the MAT in NZ are not the same as in 533 

Brazil. 534 

In conclusion, this study demonstrated that workers were at highest odds of new infection when 535 

working at the beginning of the slaughter (stunning and hide removal), followed by those removing 536 

intestines, bladder and kidneys, and workers in the offal/pet food area. PPEs like facemasks and safety 537 

glasses did not show any indication of being protective (GLM). On the contrary, the ABN model suggested 538 

that such PPE increased the odds of infection, but this requires verification using other research 539 

methodology. Further, other means of protection might be considered, like vaccination of farmed livestock or 540 

slaughter procedure changes. ABN has an advantage over GLM due to its capacity to capture the natural 541 

complexity of data more effectively. In ABN, all relationships between variables are modelled, which 542 

appears to be more explanatory in view of the inter-dependencies between study variables in complex 543 

disease systems. This is due to its ability to estimate relationships between undirected variables, and more 544 

associations between variables can be explored, for example the association between wearing PPE and 545 

Pomona infection.  546 
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Abstract

Background: Euthanasia of pets has been described by veterinarians as “the best and the worst” of the profession.
The most commonly mentioned ethical dilemmas veterinarians face in small animal practice are: limited treatment
options due to financial constraints, euthanizing of healthy animals and owners wishing to continue treatment of
terminally ill animals. The aim of the study was to gain insight into the attitudes of Austrian veterinarians towards
euthanasia of small animals. This included assessing their agreement with euthanasia in exemplified case scenarios,
potentially predicted by demographic variables (e.g. gender, age, working in small animal practice, employment,
working in a team, numbers of performed euthanasia). Further describing the veterinarians’ agreement with a
number of different normative and descriptive statements, including coping strategies. A questionnaire with nine
euthanasia scenarios, 26 normative and descriptive statements, and demographic data were sent to all members of
the Austrian Chamber of Veterinary Surgeons (n = 2478).

Results: In total, 486 veterinarians answered sufficiently completely to enable analyses. Responses were first
explored descriptively before being formally analysed using linear regression and additive Bayesian networks – a
multivariate regression methodology – in order to identify joint relationships between the demographic variables,
the statements and each of the nine euthanasia scenarios. Mutual dependencies between the demographic
variables were found, i.e. female compared to male veterinarians worked mostly in small animal practice, and
working mostly in small animal practice was linked to performing more euthanasia per month.

Conclusions: Gender and age were found to be associated with views on euthanasia: female veterinarians and
veterinarians having worked for less years were more likely to disagree with euthanasia in at least some of the
convenience euthanasia scenarios. The number of veterinarians working together was found to be the variable with
the highest number of links to other variables, demographic as well as ethical statements. This highlights the role
of a team potentially providing support in stressful situations. The results are useful for a better understanding of
coping strategies for veterinarians with moral stress due to euthanasia of small animals.

Keywords: Euthanasia, Human-animal bond, Multivariate additive Bayesian networks modelling, Small animal
practice, Veterinary medical ethics
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Background
Euthanasia of pets has been described by veterinarians
as “the best and the worst” of the profession [1].
Although euthanasia presumably accounts for only less
than 1 % of all veterinary services in a typical small
animal practice [2], veterinarians face ethical dilemmas
in this context regularly and consider them stressful [3].
Performing euthanasia has been described as an occupa-
tional stressor and related to suicidal behaviour in veteri-
narians [4] and systematically reviewed [5]. Studies
indicate that suicidal thoughts seem to be higher among
young, female veterinarians working in small animal
practices [6, 7].
The most commonly mentioned ethical dilemmas in

small animal practice are: limited treatment options
due to financial constraints, euthanizing of healthy
animals and owners wishing to continue treatment of
terminally ill animals. Here, the principle to protect
animals’ lives on one hand and to reduce pain [8] on
the other can conflict in a strict sense. Moreover,
having responsibilities towards animal patients and
pet owners at the same time, raises further fundamen-
tal questions in veterinary medical ethics [9, 10] or in
other words: moral stress [11, 12].
Although ethics is included step-by-step in undergradu-

ate veterinary curricula at least in European countries, and
specific euthanasia guidelines such as the AVMA guidelines
exist [13] it has been stated that there is no such thing as a
common professional ethic within the veterinarian profes-
sion [14]. An approach such as the Principles of Biomedical
Ethics [15] in human medicine, which integrates important
ethical viewpoints is not in sight or applied in veterinary
medicine. Looking at the legal requirements in the German
speaking countries the situation becomes even more
complex. The Austrian (https://www.globalanimallaw.org/
database/national/austria/, accessed 28 October 2015)
and German (https://www.globalanimallaw.org/database/
national/germany/, accessed 28 October 2015) animal
protection laws refer to the responsibility for the animal
as a fellow creature or the concept of animal’s dignity in
Switzerland (https://www.globalanimallaw.org/database/
national/switzerland/, accessed 28 October 2015). Accord-
ing to the Austrian and German animal protection law it
is prohibited to kill an animal without a “good” – under-
stood as a justifying – reason.
Thus veterinarians are faced with the challenge to

clarify their ethos with regard to moral, legal, and soci-
etal responsibilities. This process takes place in a society
where divergent views on animals and their standing are
present and attitudes towards animals has significantly
changed in recent decades [16].
The aim of this study was to assess if demographic

variables such as work experience, gender or working
time spent in small animal practice influence the

veterinarians’ attitudes towards euthanasia. To get a
clearer picture of these attitudes, the level of agreement
with euthanasia in a number of different case scenarios
was utilised. The scenarios described situations with
conflicting views between owners and veterinarians: ei-
ther the owners requested euthanasia (“convenience eu-
thanasia”) or refused it in cases where euthanasia
seemed to be the appropriate measure from a veterinary
perspective. An additional aim was to assess the level of
agreement with a number of different normative and de-
scriptive statements in the context of small animal eu-
thanasia and their potential links to demographic
variables. The overall objective of this study was to es-
tablish a body of empirical knowledge describing norma-
tive and descriptive beliefs as well as underlying values
of Austrian veterinarians regarding euthanasia in small
animal practice. This included also insights into self-
reported coping strategies concerning euthanasia related
stress.

Methods
Questionnaire
The questionnaire utilised for the analysis comprised the
following three sections: A: 9 scenarios, B: ethical and / or
technical statements with 26 questions, C: demographic
data. Seven scenarios described situations in which the
person (animal owner) bringing an animal to the veterin-
ary practice either requested the animal to be euthanized
(n = 5) or refused euthanasia (n = 2). One scenario asked
about the necessity to inform the official veterinarian in
case of a terminally ill animal. One scenario asked about
the willingness of the veterinarian to take the decision for
or against euthanasia instead of the owners. For each
scenario and statement the respondent was asked to rank
agreement from 1 (rejection) to 9 (complete agreement).
Statements and scenarios are presented in Tables 2 and 3.
The questionnaire was prepared in German. A proto-
type version of the questionnaire was developed and
pre-tested by veterinarians. Their comments on clarity
and content were incorporated into a revised form. An
additional file shows the original questionnaire [see
Additional file 1].
The study population comprised all members (n = 2478)

of the Austrian Chamber of Veterinary Surgeons defined
using their e-mail distribution list. An electronic invitation
to participate was sent outlining the aims of the study and
assuring anonymity to the respondents. The questionnaire
was implemented with the software LimeSurvey version
2.0 [17] and a reminder was sent via email within a month
(November 2012). Since the study dealt with informa-
tion that was regarded critical, ethical approval was
explicitly asked for. According to the Ethics Commission of
the Medical University Vienna no formal ethical approval
was needed.
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Data analysis

a) Linear regression models

Multivariable regression models were utilized to iden-
tify significant associations between the outcome “agree-
ment with euthanasia” (in each of the different scenarios
separately) and the demographic variables. The outcome
variable ranged from total rejection to full agreement on
a 9-point scale. The demographic predictor variables
included: percentage of working time spent with small
animals (dichotomized into ≤ 60 % and > 60 %) (Small
animals %), working employed or self-employed (Em-
ployment), number of other veterinarians working in the
same practice (Nb vets), number of euthanasia per
month performed by the respondent (Nb eutha), num-
ber of times per year the respondent is asked to perform
euthanasia of a healthy animal (Request healthy eutha),
years working as a vet (Years) and gender (Gender).
Stepwise model selection (backward and forward) by
Akaike’s information criterion (AIC) was performed
using the MASS package [18] in the software R [19].
Only complete questionnaires with no missing values for
the chosen variables were utilised for the multivariable
analysis. We assumed that the response variable was
continuous as this facilitates much clearer and more
straightforward analyses. Given the large sample size and
that the categories in the questionnaire are points on an
underlying continuous scale from 1.0 (complete disagree-
ment) to 9.0 (complete agreement) this is a reasonable ap-
proach. For completeness the data was also analysed in an
analogous fashion using ordinal categories (proportional
odds logistic models) and these results can be found in
[Additional file 2].

b) Additive Bayesian networks (ABN)

A Bayesian network approach was used to analyze the
results of the questionnaires with the software package
abn [20]. In addition to the variables chosen for the
linear regression 11 statements were included. The main
reason to include only a subset of the 26 statements was
technical, allowing for an exact search which is only
possible for up to 20 variables. The 11 statements were
chosen to represent all important ethical aspects. ABN is
a well-established methodology for exploring complex
observational data [21–23]. Bayesian network models, and
specifically additive Bayesian networks (ABN), which we
utilize here, are simply multivariate extensions of usual
multivariable regression models, e.g. linear or generalized
linear models (GLM). In contrast to a GLM, an ABN
model does not require that we designate one variable in
the study as a single response variable with the remaining
variables all as predictors. Rather, an ABN allows all

variables to be potentially mutually dependent, which is
appropriate here as we have multiple response variables
(i.e. scenarios and statements) we wish to consider, in all
other respects it is a typical regression model. If the data
are sufficiently simple then the ABN results will collapse
to those using GLMs and so we lose nothing using this
extended approach, but may gain additional insight into
relationships which exist between all the different
variables in the questionnaire. The results of our ABN
analyses are presented as a graph, which is the usual pres-
entation (see Figures 1 to 9), and which shows how the
various different questionnaire responses are statistically
related. Determining an optimal ABN model for a
given data set is somewhat technical and full details
are given in the additional material [see Additional
file 3].

Results

a) Descriptive and linear regression analysis

Out of the 2478 contacted veterinarians, 764 returned
the questionnaire, 486 were fully or sufficiently completed
to enable analysis. In Table 1, the demographic variables
are summarized, separately for male and female veterinar-
ians. Based on median and the 25th and 75th percentiles,
the level of agreement with each of the 26 statements was
grouped into high or moderate agreement, ambivalent
and disagreement or strong disagreement (Table 2). The
level of agreement with euthanasia in terms of medians
and the 25th and 75th percentiles (IQR) is shown in Table 3.
Bar plots of the agreement with statements and with
euthanasia are presented in the additional material
[see Additional files 4 and 5].
For each of the nine different scenarios, linear regres-

sion models were utilised to assess if the predictor
variables (gender, years having worked as a veterinarian,
working mostly in small animals practice, type of em-
ployment, number of other veterinarians working in the
same practice, number of performed euthanasia per
month and number of requests per year to euthanize a
healthy animal) were significantly associated with the
response variable “agreement with euthanasia or else” in
each of the nine scenarios. The detailed results in-
cluding univariable models for all available data and
the complete questionnaire as well as the final multi-
variable models with 95 % confidence intervals for
the corresponding effects sizes are presented in the
additional material [see Additional file 6].
In summary, for the scenarios describing “convenience

euthanasia” gender was significantly associated with level
of agreement in three out of five scenarios. Female veteri-
narians were more likely to disagree with euthanasia in
the scenarios of the aggressive dog which had bitten a
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child even after specific training and therapy (F1), the
young dog which would need a costly and time-
demanding therapy (F3), and the rabbit owner who prefers
to buy a new animal instead of spending money on his
sick rabbit (F4). In the two remaining “convenience
euthanasia” scenarios, the number of years having worked
as a veterinarian was significantly associated with the level
of agreement with euthanasia. Here more experienced
veterinarians were more likely to agree with euthanasia.
These two scenarios comprised situations in which a
rabbit owner asks for euthanasia because of the wrong
coat colour not meeting breeding standards (F2), and an
old dog no longer fitting the living conditions of the
owner (F5). The percentage of time spent in small animal
practice was significantly associated with agreement to
euthanize in the scenarios of the young dog in need of a
costly and time-demanding therapy (F3), the rabbit owner
who prefers to buy a new animal (F4) and the old dog no
longer fitting to the owner’s living conditions (F5). In all
three scenarios, veterinarians working at least 60 % in
small animal practice were more likely to disagree with
euthanasia. The number of times being asked to euthanize
a healthy animal was significantly associated with agree-
ment in the following three scenarios: the aggressive dog
(F1), the young dog in need of a costly and time-
demanding therapy (F3) and the old dog no longer fitting
his owner’s living conditions (F5). Being asked more often
to euthanize a healthy animal, veterinarians were more
likely to disagree with euthanasia. With a higher num-
ber of monthly performed euthanasia, veterinarians

were more likely to agree with euthanasia in the
scenario of the old dog no longer fitting his owner’s
living conditions (F5).
Two other scenarios are related to situations in which

the owner or the person in charge of the animal refuses
humane euthanasia. In one scenario it is explicitly stated,
that from a veterinary perspective euthanasia is to be
recommended, whereas in the other scenario the pre-
sumed presence of lung metastases might suggest euthan-
asia. In both scenarios, the number of years having
worked as a veterinarian was significantly associated with
agreement to euthanize. In the scenario of the owner of a
severely ill Persian cat, having a very close relationship
with his cat and thus refusing euthanasia (F6), older veter-
inarians were more likely to disagree with euthanasia. In
contrast, in the scenario of a dog sitter refusing to take the
decision of euthanasia of an old dog with breathing prob-
lems and a history of malignancy when the owner cannot
be reached (F7), older veterinarians were more likely to
agree with euthanasia. In the scenario F8, a guinea pig
owner refuses euthanasia of his animal with a tumour and
wants to take it home instead. The question is raised if the
official veterinarian has to be informed. Only gender was
found to be significant with female veterinarians being
more likely to notify the official veterinarian. In a scenario
in which – on veterinary reasoning – no clear recommen-
dation in favour or against euthanasia was possible (F9),
the number of veterinarians working in the same practice,
gender, and number of years having worked as a veterinar-
ian, were found to be significantly associated with refusing

Table 1 Summary statistics of the demographic data (n = 486) presented separately for male and female veterinarians

Variables Female Male Missing
values

n = 251 n = 167 n = 68

mean 95 % CIb mean 95 % CI

“Years” Number of years having worked as a
veterinarian

12.4 [0;26.8] 22 [3.9;40.2] n = 65

Age in yearsa 40.6 [24.9;56.2] 50.5 [32.9;68.1] n = 68

proportion in % 95 % CIc proportion in % 95 % CI

“Small animals %“Working >60 % in small animal
practice

80 [74;84] 51 [43;59] n = 18

“Employment“Being self-employed 72 [65;77] 95 [90;98] n = 63

median [10th,90th] percentile median [10th,90th] percentile

“Nb vets” Number of other veterinarians working in
the same practice

1 [0;5] 1 [0;3] n = 74

“Nb eutha” Number of euthanasia per month
performed by respondent

3 [1;7] 3 [1;10] n = 92

“Request healthy eutha” Number of times per year
\respondent is asked to perform euthanasia of a
healthy animal

2 [1;8] 2 [0;10] n = 81

aAge was not considered in the statistical models
b95 % confidence interval corresponding to mean ± 1.96 standard deviation
c95 % Wald confidence interval
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to take the decision in the place of the owners. Veterinar-
ians working in a team and being female were more likely
to decline to take the decision. In contrast, older veteri-
narians were more likely willing to take the decision in
favour or against euthanasia if the owners are not willing
to decide.

b) Multivariate regression with additive Bayesian
networks

Demographic variables, statements and agreement with
scenarios
We now consider a more in-depth multivariate ana-
lysis where we examine each of the above scenarios in
turn and additionally include eleven selected norma-
tive and descriptive statements (see Table 2) in the
context of euthanasia in small animal practice, in
addition to the demographic variables. Our objective
here is to identify how and whether agreement with

Table 2 Veterinarian’s agreement with 26 normative and descriptive statements in the context of euthanasia in small animal
practice

Name Median (IQR)

High agreement

S14a It would be difficult for me to euthanize an animal against my conviction. 9 (9;9)

S17a Treating the owners in an understanding way is a central part of euthanasia. 9 (9;9)

S16 Treating the dead animal in a respectful way is an important part of euthanasia. 9 (8;9)

S11a Effective analgesia makes it easier for me to deal with the animal’s suffering. 9 (8;9)

S10 It is easier for me to deal with euthanasia if the procedure is carried out according to the best technical standards. 9 (8;9)

S1 It is easier for me to deal with the animal’s suffering if I know that I have done my best for its well-being. 9 (7;9)

S26a I see reflected euthanasia as a central part of my practice as a vet. 9 (7;9)

S5a Knowing that all veterinary medical, social and economic options have been considered makes it easier for me
to deal with euthanasia.

9 (7;9)

S3 It is easier for me to deal with euthanasia if the owner has been well informed. 9 (7;9)

Moderate Agreement

S21 It is easier for me to deal with euthanasia if I know that I have done my best for the animal’s well-being. 8 (7;9)

S12 It is easier for me to deal with the animal’s suffering if the owner has been well informed. 8 (5.75;9)

S13a It is easier for me to deal with euthanasia if the animal has lived a rich live until its death. 8 (5;9)

S9a Careful planning and the right moment make it easier for me to deal with euthanasia. 7 (5;9)

S2a It is easier for me to deal with euthanasia if I know that the animal would only have lived on for a short time. 7 (5;9)

S24a The animal’s advanced (high) age makes it easier for me to deal with euthanasia. 7 (5;8)

S22 I see euthanasia as an unavoidable evil in my responsibility. 7 (4;9)

Ambivalent

S4 It is easier for me to deal with euthanasia if the owner is satisfied about the way his animal has been euthanized. 5 (2;9)

S8a I am still not used to euthanizing animals. 5 (2;8)

S18 Retrospectively, it becomes easier for me to deal with euthanasia. 5 (2;7)

Disagreement

S15 It mostly causes more problems if the owners are present. 3 (1;6)

S7 It is easier for me to deal with euthanasia if the owners are present during the procedure. 3 (1;5)

S23 Knowing that my influence on the owner’s decision is limited makes it easier for me to deal with euthanasia. 3 (1;5)

Strong Disagreement

S20 Although I would reject euthanasia, I euthanize the animal because I am afraid that the owner will kill it himself. 2 (1;6)

S19 It is more difficult for me to euthanize an animal that does not have an owner (if all the other conditions are the same). 2 (1;5)

S6a It is easier for me to euthanize an animal if I see that the owner does not have a close relationship to his animal. 2 (1;5)

S25 Although I would reject euthanasia, I euthanize the animal because I am afraid that the owner will see another vet. 1 (1;1)

Medians and interquartile ranges (IQR) of the agreement (1 = “I do not agree at all” to 9=”I completely agree”) given by the responding veterinarians to normative
and descriptive statements in the context of euthanasia in small animal practice. Based on the results, the statements have been grouped arbitrarily into five
different levels of (dis-)agreement. The names correspond to the designations given in the plotted graphs
aThese statements have also been considered in the multivariate additive Bayesian networks modelling
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euthanasia in each of the scenarios is jointly related to
these statements and also demographics. The results
are presented as graphs, and the corresponding effects
sizes are presented in the additional material [see
Additional file 7]. In each graph an arc connecting two
variables means that these are directly (statistically)
related, a variable with no connecting arcs is statistical
independent from all other variables.
For F1 (Fig. 1), the aggressive dog, gender was no lon-

ger found to be associated with agreement of euthanasia
in the scenario of the biting dog. In contrast, gender was
found to be linked to percentage of time spent in small
animal practice and the number of other vets in the
same practice. Compared to males, females worked
more in small animal practice and with fewer colleagues.
Older veterinarians were more often self-employed and
worked with a lower number of colleagues. Being self-
employed or employed was also linked with the number

of other veterinarians working in the same practice.
Percentage of time spent in small animal practice was
linked directly to the number of performed euthanasia
and indirectly via this variable also with number of times
being asked to perform euthanasia of a healthy animal
and with the number of other veterinarians working in
the same practice. Thus spending more working time in
small animal practice and being part of a larger team is
associated with a higher number of performed euthan-
asia and more requests to euthanize a healthy animal,
but not with agreeing with euthanasia in this scenario.
For F2 (Fig. 2), the rabbit breeder, the demographic

variables are linked to each other in the same way and
none of the variables was linked to F2.
In F3 (Fig. 3), costly therapy for a young dog, still pre-

vailing a similar linking of the demographic variables,
gender was found to be associated with agreement of eu-
thanasia with females being more likely to disagree with

Table 3 Veterinarians agreement with euthanasia or else in nine different euthanasia scenarios in small animal practice

Scenarios Median (IQR)

“Convenience euthanasia”

F1 Aggressive dogA dog has twice bitten persons. It has attended training courses and animal psychologists have tried to educate it.
However, 2 days ago it severely injured a child that is now in hospital.

9[7;9]

F2 Rabbit breederA rabbit breeder wants to have some of her young animals euthanized because their coat colour does not meet
the breeding standards and she will not be successful at exhibitions with those animals.

1[1;1]

F3 Young dog costly therapyAn animal owner comes to your office with a young dog. This dog is severely ill, but therapy is possible.
This therapy would be time-consuming, but there are chances of success. The owner rejects the therapy because he has neither
enough time nor enough money. He wants you to euthanize the dog.

3[1;5]

F4 Rabbit costly therapyA rabbit owner comes to your office. The animal suffers from a treatable disease, but the therapy would
require some time and cost about 150 €. The owner does not want to spend the money on a therapy, but asks you to euthanize
the rabbit. He wants to buy a new rabbit for 40 €.

1[1;3]

F5 Dog not fitting living conditionsA dog owner comes to your office and wants you to euthanize her dog. She argues that the
15 year old dog does not fit to her living conditions anymore because she will travel with her family for some time and does not
want to bring a dog at this age to the animal shelter.

1[1;3]

“Owner’s refusal to euthanize”

F6 Persian catAn animal owner comes to your office with a severely ill Persian cat. You know that he has a very close relationship to
his cat and does not want to part with it. In your opinion, euthanasia would be reasonable, but the owner does not agree. You
reject any further treatment apart from analgesia.

7[5;9]

F7 Old sick dog without ownerA dog sitter comes to your office with a 17 year old dog that suffers from breathing problems. The
owners have left for a trekking tour 3 days ago and cannot be reached. You removed a malign tumour in this dog 6 months ago
and you are afraid that it has developed lung metastases. The dog sitter refuses to take a decision regarding euthanasia and
cannot tell you what the owners might want.

6[2;8]

“Notification”

F8 Guinea pig veterinary officerA guinea pig owner comes to your office because the guinea pig does not eat. You find a tumour of
nut size in the region of the abdomen. As the animal’s general condition is weak, you think that the prognosis is in Faust and
recommend euthanasia. The owner thinks that the animal’s condition is unproblematic and wants to take his pet home instead of
having it euthanized. You are obliged to inform the veterinary officer.

2[1;7]

“Responsibility”

F9 Dog veterinarian decisionA couple comes to your office with a dog of advanced age and asks: “What would you do if it was your
animal?” You think that it is a 50/50 situation and that the couple will follow your advice. Would you refuse to make a clear
recommendation and take the decision yourself?

7[5;9]

Medians and interquartile ranges (IQR) of the agreement for the different scenarios. For the scenarios F1 to F7, the veterinarians were asked to gauge their
agreement with euthanasia in this case from 1=”I reject euthanasia” to 9=”I fully agree with euthanasia”. In scenario F8 the question was about the necessity to
notify an official veterinarian with the answer options ranging from 1=”rejection” to 9=”agreement”. The answer options for scenario F9, asking about the
willingness to take a decision concerning euthanasia in the place of the owners, ranged from 1=”I would for sure make no recommendation” to 9=”I would surely
make a recommendation”
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euthanasia. Indirectly, either via gender or a statement,
the number of performed euthanasia, the request for eu-
thanizing a healthy animal as well as the number of
veterinarians per practice are linked with the agreement of
euthanasia in this scenario. Whereas agreeing with the
statements S5 “Knowing that all veterinary medical, social
and economic options have been considered makes it eas-
ier for me to deal with euthanasia“and S6 “It is easier for
me to euthanize an animal if I see that the owner does not

have a close relationship to his animal” were associated
with a higher agreement of euthanasia, agreement with
the statement S8 “I am still not used to euthanizing
animals” was linked with disagreement of euthanasia.
In F4 (Fig. 4), costly therapy of a rabbit, a similar pat-

tern of linking between the demographic variables was
found. Gender was found to be associated with agree-
ment of euthanasia in this scenario, with females being
less likely to agree with euthanasia.

Fig. 1 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F1 (aggressive
dog), seven demographic and eleven statements (n = 301). Squares denote variables which have been considered as binary, ovals as continuous and
diamond shapes as Poisson

Fig. 2 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F2 (rabbit
breeder), seven demographic and eleven statements (n = 307). Squares denote variables which have been considered as binary, ovals as
continuous and diamond shapes as Poisson
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In F5 (Fig. 5), a dog no longer fitting the owner’s living
conditions, next to the linking between the demographic
variables similar to the other scenarios, the level of
agreement with euthanasia was found to be directly
linked to an increasing number of years having worked
as a veterinarian, and to the number of monthly per-
formed euthanasia. It was indirectly linked to the demo-
graphic variables being employed or self-employed, the
number of other veterinarians in the same practice, the
number of times per year being asked to euthanize a
healthy animal and the percentage of time spent in small
animal practice.
For F6 (Fig. 6), the Persian cat, a similar pattern of the

linking between the demographic variables gender, work-
ing time spent in small animal practice, number of other
vets, and being employed or self-employed, is seen. The
number of performed euthanasia is linked to the number
of times being asked to euthanize a healthy animal. The
later variable is also linked indirectly with the number of
other veterinarians working in the same practice.

In F7 (Fig. 7), an old dog with an absent owner, besides
a linking of the demographic variables similar to the
other scenarios, agreement of euthanasia was found to
be linked to the number of other veterinarians in the
same practice, directly to the number of monthly per-
formed euthanasia and via this variable also with the
number of times being asked to euthanize a healthy ani-
mal and working mostly in small animal practice. Here
more veterinarians working in the same practice and a
higher number of performed euthanasia were associated
with an increased level of agreement. Indirectly agree-
ment with euthanasia was linked via the number of vet-
erinarians in the same practice with employment,
professional years and gender.
In F8 (Fig. 8), the guinea pig, similarly to the other

scenarios, the demographic variables were linked to each
other, but the agreement of informing the official veter-
inarian was not linked to any other variables.
In F9 (Fig. 9), asking about the willingness of the vet-

erinarian to take the decision for euthanasia instead of

Fig. 3 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F3 (young
dog costly therapy), seven demographic and eleven statements (n = 303). Squares denote variables which have been considered as binary, ovals
as continuous and diamond shapes as Poisson

Fig. 4 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F4 (rabbit
costly therapy), seven demographic and eleven statements (n = 306). Squares denote variables which have been considered as binary, ovals as
continuous and diamond shapes as Poisson
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the owner, the demographic variables being linked to
each other in a similar way compared to the other sce-
narios. The willingness to take a decision for or against
euthanasia was linked to the number of other veterinar-
ians working in the same practice, with more veterinar-
ians in the same practice being less likely to decide at
the place of the owners. Indirectly agreement of euthan-
asia was linked via the size of the team with the status of
being self-employed or employed, gender and the num-
ber of monthly performed euthanasia.

Agreement of statements with all other variables
In most of the graphs agreeing with the statement S8 “I
am still not used to euthanizing animals” was associated
with being asked to euthanize a healthy animal and the
higher number of veterinarians working in the same
practice. Additionally this statement was also found in
close proximity to S26 “I see considerate euthanasia as a
central part of my practice as a vet” and S5 “Knowing
that all veterinary medical, social and economic options
have been considered makes it easier for me to deal with

euthanasia”. The later statement was also found to be
several times linked to the number of veterinarians
working in the same practice and to S2 “It is easier for
me to deal with euthanasia if I know that the animal
would only have lived on for a short time”. In some
graphs, S2 was also found to be associated with S24
“The animal’s advanced (high) age makes it easier for me
to deal with euthanasia”. In some graphs at least some
of the four following statements were linked: S9 “Delib-
erate planning and the right moment make it easier for
me to deal with euthanasia”, S11 “Effective analgesia
makes it easier for me to deal with the animal’s suffer-
ing”, S13 “It is easier for me to deal with euthanasia if
the animal has lived a rich live until its death” and S17
“Treating the owners in an understanding way is a
central part of euthanasia”.
In conclusion, our multivariate results - given by the

graphs - compared to those from our earlier linear multi-
variable analyses - have identified fewer associations be-
tween outcome (agreement with the scenario) and the
demographic variables: for F1, F2, F6, and F8 no

Fig. 5 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F5 (dog not
fitting living conditions), seven demographic and eleven statements (n = 303). Squares denote variables which have been considered as binary,
ovals as continuous and diamond shapes as Poisson

Fig. 6 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F6 (Persian
cat), seven demographic and eleven statements (n = 295). Squares denote variables which have been considered as binary, ovals as continuous
and diamond shapes as Poisson

Hartnack et al. BMC Veterinary Research  (2016) 12:26 Page 9 of 14

Paper II - 89 -



association was found. For F3, F4, F5, F7 and F9 either a
direct association with gender and / or years spent as a
veterinarian or an association via the number of veterinar-
ians working in the same practice and the number of
monthly performed euthanasia or the number of times
per year being asked to euthanize a healthy animal was
found. Some of the ethical and technical statements were
found to be closely linked to each other and to some of
the demographic variables. The number of other veteri-
narians working in the same practice was the variable with
the highest number of links to other variables in all
graphs. Younger veterinarians worked more often in a
team and working in a team was associated with a higher
agreement of the statements S5 “Knowing that all veterin-
ary medical, social and economic options have been con-
sidered makes it easier for me to deal with euthanasia”
and S8 “I am still not used to euthanizing animals”.

Discussion
The aim of this study was to gather empirical knowledge
regarding the normative and descriptive beliefs and

underlying values of Austrian veterinarians regarding
euthanasia in small animal practice. A questionnaire
aiming at identifying agreement of veterinarians with
ethical and technical statements, and/or euthanasia in
case scenarios as well as significant associations with
demographic variables was sent to all members of the
Austrian Chamber of Veterinary Surgeons. Next to de-
scriptive statistics, data analysis was performed using
multivariable regression models and multivariate regres-
sion models (via Bayesian additive networks).
The importance of treating the owner of a euthanized

animal in an understanding way was recognized by the
veterinarians. This matches answers of bereaved owners
highly appreciating veterinarians for their emotional
support following pet death [24]. In former times, based
on anecdotal evidence cited in [25], the owners were
typically not present during euthanasia. Some decades
ago, it was even questioned if the stay of an owner
during euthanasia is beneficial or not [26]. In contrast,
in recent publications [25, 27, 28] the majority of the
owners is present. Accordingly, in our study the

Fig. 7 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F7 (old sick
dog without owner), seven demographic and eleven statements (n = 288). Squares denote variables which have been considered as binary, ovals
as continuous and diamond shapes as Poisson

Fig. 8 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F8 (guinea
pig veterinary officer), seven demographic and eleven statements (n = 303). Squares denote variables which have been considered as binary, ovals
as continuous and diamond shapes as Poisson
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presence of the owners during euthanasia was not per-
ceived as a problem.
Several ethical statements, referring to an implicit idea

of a “telos” or a completed life (S13, S24 and S2) [29]
were ranked with a moderate agreement. The reason
most often given by veterinarians in the context of
wanting to refuse euthanasia, but not doing so was “Fear
of what owners would otherwise do to the dog” [30]. In
contrast, the responding veterinarians strongly disagreed
with the statement S25 “Although I would reject euthan-
asia, I euthanize the animal because I am afraid that the
owner will see another vet”. A strong disagreement,
albeit to a lesser extent was also found for the statement
S20 “Although I would reject euthanasia, I euthanize
the animal because I am afraid that the owner will kill
it himself”.
The statements were chosen and formulated based on

the literature [11, 25, 29–33], but of course it is still pos-
sible that important moral aspects have not been covered
in our analysis.
In the frequentist multivariable approach, the outcome

of agreeing with euthanasia in all scenarios was found to
be linked to at least one of the two predictors gender
and years having worked as veterinarian. If significant,
female veterinarians and younger veterinarians were al-
ways found to be more likely to disagree with euthanasia
in the convenience euthanasia scenarios. In addition,
working mostly in small animal practice, being asked
more frequently to euthanize healthy animals and to a
lesser extent the number of performed euthanasia were
also found to be significant predictors for agreeing with

euthanasia in the convenience euthanasia scenarios.
Presumably, these variables are not independent, e.g.
working mostly in small animal practice is likely to lead
to a greater frequency of euthanasia performed on small
animals. Female veterinarians might also have a prefer-
ence for work in small animal practice, be on average
younger than male veterinarians and being employed in
a team. These mutual dependencies, e.g. confounding
and collinearity might lead to biased results. Additionally
the stepwise regression approach, although widely used,
may introduce overfitting [34]. Thus the results of the
frequentist regression models are presented, mainly for
comparison with other studies, but should be interpreted
with caution. In a multivariable approach it might be
impossible to disentangle the “true” effect of any pre-
dictor on the outcome. Here generalizing multivariable
regression to multivariate regression, allowing all vari-
ables being potentially statistically dependent, offers a
richer modelling framework.
The multivariate approach gives also insights into the

mutual dependencies between gender, working most of
the time in small animal practice, being employed, work-
ing in a team, performing euthanasia and being asked to
euthanize healthy animals. Albeit to a lesser extent
compared to the frequentist multivariable approach, in
the multivariate models gender and / or years were still
found to be linked to the agreement of convenience
euthanasia with female and younger veterinarians being
more likely to disagree. Interestingly, in the graphs, the
number of other vets working in the same practice was
found to be the variable which was most frequently

Fig. 9 Graph of the Bayesian model representing the globally optimal multivariate regression model (after bootstrapping) of scenario F9 (dog
veterinarian decision), seven demographic and eleven statements (n = 305). Squares denote variables which have been considered as binary, ovals
as continuous and diamond shapes as Poisson
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associated with a number of other variables, including
ethical statements. This highlights the role of a “team”
to provide mutual support and was also suggested in a
study focussing on beneficial services in addressing
euthanasia-related stress in shelter workers [35, 36].
Amongst others, relationships with colleagues were im-
portant sources for job satisfaction [37].
The scenario with the highest number of links to

demographic variables and statements was the scenario
F3 describing the situation of a young dog which would
need a costly therapy to recover. One reason for this
finding could be that this scenario is closer to the situa-
tions that veterinarians face in their daily routine com-
pared to scenarios like the rabbit breeder with the wrong
coat colour or the guinea pig. It could also be that in the
scenario of the rabbit breeder, no link to any other demo-
graphic or statement variable could be found because
nearly every respondent disagreed with euthanasia here.
The scenarios have been based on literature suggesting

the most common ethical dilemmas veterinarians are
financial limitations restricting treatment options, eu-
thanasia of healthy animals and clients wishing to
continue treatment of terminally ill animals [3, 14, 29,
30, 33]. By including dogs, cats, rabbits and guinea pigs
we aimed also to make the scenarios more realistic. Al-
though some of the scenarios had been tested in another
questionnaire addressing veterinarians and students of
veterinary medicine, agriculture and law in Switzerland
[38] and slightly modified for this questionnaire, it is
possible that these situations are not seen or are badly
worded, thus hampering the analysis and interpretation.
Amongst sources of ethical tension in veterinary

medicine [33] describe that veterinarians may consider
hamsters less morally relevant than dogs (or assume that
the owner does). Based on the observation that the
median of agreeing with euthanasia is lower for the
rabbit scenario (F4) compared to the dog scenario F3,
we conclude that there is no evidence that rabbits are
considered less morally relevant than dogs (F3) in simi-
lar scenarios when high costs for therapy might be a
reason for an owner to request euthanasia.
The analysis comprised a multivariate additive Bayesian

networks modelling approach (ABN) which is a rather
new technique. The classical ABN data formats consid-
ered datasets following a normal, binomial and Poisson
distribution, whereas the scenarios and statements of the
questionnaire are ordinal data.
The questionnaire comprised in total more than 50

questions. As it was time demanding, selection bias is pos-
sible with veterinarians being more sensitive about ethics
being more willing to complete the questionnaire. In line
with this, we cannot exclude, that the results might repre-
sent the attitudes of veterinarians being more sensitive
about euthanasia than the general veterinary population.

Additionally, bias might have been introduced due to
missing data. This might limit generalisability to the
larger population of Austrian veterinarians. We are still
confident that the results, especially the stated agree-
ments with descriptive and normative statements are
useful for a better understanding of coping strategies for
veterinarians with moral stress due to euthanasia of
small animals.

Conclusions
Agreement with euthanasia in specific case scenarios is
not homogeneous among veterinarians. The variability
in agreeing with convenience euthanasia can partly be
explained by demographic factors such as gender, age
and working mostly in small animal practice. Benefitting
from the multivariate ABN framework, in contrast to
classical multivariable models, it was possible to di-
sentangle and assess separately the effects of different
variables. Veterinarians which are female, which are
younger and / or which work mostly in small animal
practice are more likely to disagree with convenience
euthanasia. This adds to previous findings that female,
younger and veterinarians working in small or mixed
practice are at a higher risk of work-related stress and
suicidal thoughts demonstrating that differences due
gender, age and working practice are already present
in the attitudes towards euthanasia. The results of
this study underlines that euthanasia is not just a
professional task in order to avoid suffering on the
animals’ side. It rather implicates a complex situation
in which veterinarians’ attitude towards euthanasia is
potentially affected by e.g. age, gender and working
experience. The complexity of veterinarians’ decisions
to be taken in the context of euthanasia is further in-
creases by the challenge to justify responsibilities.
Moreover one important aspect seems to be the pres-
ence of colleagues at work - not only to discuss the
medical point of view but also to provide a mutual
support for several difficult experienced euthanasia
cases.
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Euthanasie in der Kleintierpraxis 

Umfrage zur Euthanasie in der Kleintiermedizin 

  

  

  

Liebe Kolleginnen und Kollegen aus der tierärztlichen Praxis, 

  

das Thema „Tötung von Tieren“ spielt in der gesellschaftlichen Wahrnehmung eine 

zunehmend wichtige Rolle. Der Wandel der Mensch-Tier-Beziehung konfrontiert die 

praktischen Tierärztinnen und Tierärzte im Berufsleben und stellt sie vor neue 

Herausforderungen. Sie haben in Ihrem Berufsleben professionelle Erfahrungen gemacht, die 

für angehende Tierärztinnen und Tierärzte von großem Wert sein können. Wir möchten mit 

dem folgenden Fragebogen ein Bild der Ansichten zum Thema „Tötung von Tieren“ der 

österreichischen Tierärzteschaft erstellen: Was sind die prägenden Einstellungen? Was macht 

die Euthanasie zu (k)einem Problem? Welche Tipps und Strategien sind Ihnen wichtig? 

Dieses interdisziplinäre Projekt wird gemeinsam im Rahmen einer Diplomarbeit von Svenja 

Springer unter der Leitung von Prof. Herwig Grimm (Messerli Forschungsinstitut) und Prof. 

Yves Moens (Veterinärmedizinische Universität Wien) in Kooperation mit Frau Dr. Sonja 

Hartnack (VetSuisse Zürich) durchgeführt. 

Ziel ist es, die Ergebnisse auch dafür zu verwenden, um die angehenden Tierärztinnen und 

Tierärzte besser auf den Berufsalltag vorzubereiten. Die Ergebnisse der Befragung werden 

Ihnen über die Homepage des Messerli Forschungsinstitutes zugänglich gemacht und in 

geeigneter Form publiziert. 

Das Ausfüllen des Fragebogens dauert ca. 15-25 Minuten. 

Ihre Angaben werden vertraulich behandelt und selbstverständlich anonymisiert ausgewertet. 

  

Diese Umfrage enthält 53 Fragen. 
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Fallbeispiele 

Im folgenden Abschnitt geht es um Ihre Einstellung zur Euthanasie. Wir stellen Ihnen 

verschiedene Fallbeispiele vor und bitten Sie, uns Ihre persönliche Sicht mitzuteilen. Zur 

Beantwortung der einzelnen Fragen finden Sie eine Skala von 1 bis 9. Dabei bedeutet 1, dass 

Sie die Euthanasie sicherlich ablehnen, und 9, dass Sie der Euthanasie sicherlich zustimmen.  

 

1 [F1] 

Ein Hund hat bereits zweimal eine Person gebissen. In Erziehungskursen und 

bei Tierpsychologen wurde versucht, ihn zu erziehen. Vor zwei Tagen aber hat 

er ein Kind so stark verletzt, dass es seither im Spital liegt.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  

 

 

2 [F2] 

Eine Kaninchenzüchterin möchte einige ihrer Jungtiere euthanasieren lassen, 

da die Fellfarbe nicht dem Zuchtstandard  entspricht und sie folglich keinen 

Erfolg auf Ausstellungen mit den Tieren haben wird.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  
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3 [F6] 

Ein Tierbesitzer kommt mit seiner schwerkranken Perserkatze zu Ihnen in die 

Ordination. Sie wissen, dass dieser eine sehr enge Bindung zu seiner Katze hat 

und sich nicht von ihr trennen möchte. Aus Ihrer Sicht wäre eine Euthanasie 

angezeigt, aber der Tierbesitzer ist nicht einverstanden. Sie lehnen jede 

weitere Therapie, ausser Schmerzbehandlung ab.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  

 

 

4 [F3] 

Ein Besitzer kommt mit einem jungen Hund in ihre Ordination. Dieser Hund 

ist schwerkrank, aber  therapierbar. Diese Therapie würde viel Zeit in 

Anspruch nehmen, aber Erfolgschancen bestehen. Der Tierbesitzer verneint 

die Therapie, da er keine Zeit und finanziellen Mittel hat, und möchte, dass 

Sie das Tier euthanasieren.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  
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5 [F4] 

Ein Kaninchenbesitzer kommt zu Ihnen in die Ordination. Das Tier hat eine 

gut therapierbare Krankheit, die jedoch eine gewisse Zeit in Anspruch nimmt 

und mit einem Kostenfaktor von ungefähr 150€ verbunden ist. Der Besitzer 

möchte das Geld für die entsprechende Therapie nicht ausgeben, das kranke 

Kaninchen einschläfern und sich für 40€ ein neues Kaninchen kaufen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  

 

 

6 [F7] 

In Ihre Ordination kommt eine Hundesitterin mit einem 17-jährigen Hund 

der an Atemproblemen leidet. Die Besitzer sind vor drei Tagen zu einer 

vierwöchigen Trekkingtour aufgebrochen und nicht erreichbar. Sie haben bei 

diesem Hund vor sechs Monaten ein malignen Tumor entfernt und befürchten 

nun, dass sich Lungenmetastasen entwickelt haben. Die Hundesitterin weigert 

sich, eine Entscheidung bezüglich Euthanasie zu treffen, und kann Ihnen auch 

keine Auskunft darüber geben, was die Besitzer vermutlich möchten.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  
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7 [F5] 

Eine Hundebesitzerin kommt mit dem Anliegen zu Ihnen in die Ordination, 

ihren Hund zu euthanasieren. Die Begründung lautet, dass ihr 15-jähriger 

Hund nicht mehr zu ihren Lebensumständen passt, da sie mit ihrer Familie 

für längere Zeit verreist und den Hund in diesem Alter nicht ins Tierheim 

abgegeben möchte.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = Euthanasie ablehnen; 9 = 

Euthanasie befürworten).  

 

 

8 [F8] 

Ein Meerschweinchenbesitzer kommt zu Ihnen in die Ordination. Das 

Meerschweinchen frisst nicht. Sie stellen bei der Untersuchung einen 

walnussgroßen Tumor im Bereich des Abdomens fest. Aufgrund des 

schlechten Allgemeinzustandes des Tieres, sind Sie der Meinung, dass die 

Prognose infaust ist und raten dem Besitzer zu einer Euthanasie. Der 

Tierbesitzer hält den Zustand seines Tieres für unproblematisch und möchte 

das Tier wieder mit nach Hause nehmen und es nicht euthanasieren lassen. 

Der Amtstierarzt muss davon in Kenntnis gesetzt werden. 

Hier möchten wir gerne von Ihnen wissen, ob Sie dem letzten Satz, dass "der 

Amtstierarzt in Kenntnis gesetzt werden muss", zustimmen oder nicht.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
Ablehnung 

1 
2 3 4 5 6 7 8 

Zustimmung 

9 

Ihre 

Einstellung 

zur 

Euthanasie 

         

Bitte kreuzen Sie die zutreffende Antwort auf der Skala an (1 = "Amtstierarzt in Kenntnis 

setzen" ablehnen; 9 = "Amtstierarzt in Kenntnis setzen" befürworten).  
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weitere Fallbeispiele 

Bei den beiden folgenden Fallbeispielen möchten wir Sie bitten, dass Sie uns mithilfe der 

Antwortskala antworten. 

9 [F9] 

Ein Ehepaar kommt mit einem Hund mit fortgeschrittener Arthrose zu Ihnen 

und fragt Sie: „Was würden Sie tun, wenn es Ihr Tier wäre?” Sie klären die 

Besitzer gewissenhaft auf. Sie sind der Meinung, dass es sich um eine 50/50-

Situation handelt und die Eheleute Ihrer Einschätzung folgen würden. 

Würden Sie sich weigern, eine eindeutige Empfehlung abzugeben und damit 

die Entscheidung zu übernehmen?  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
sicher keine 

Empfehlung 

abgeben 1 

2 3 4 5 6 7 8 

sicher 

Empfehlung 

abgeben 9 

Empfehlung 

abgeben?          

Bitte klicken Sie Ihre Antwort auf der Skala an (1 = ich würde keine Empfehlung abgeben, 9 

= ich würde eine Empfehlung abgeben). 

 

10 [F10] 

Ein Unfallhund kommt in Seitenlage mit schwersten inneren Verletzungen in 

Ihre Ordination. Die Besitzer sind sehr aufgebracht und besorgt um Ihr Tier. 

Sie stellen während der Untersuchung fest, dass der Hund aufgrund der 

Unfallverletzungen nicht mehr am Leben zu halten ist und schlagen den 

Besitzern eine Euthanasie vor. Die Besitzer entscheiden sich für die 

Euthanasie. Würden Sie hier, trotz des komatösen Zustands des Tieres, noch 

einen Venenkatheter legen für eine iv-Applikation des Euthanasiepräparates?  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
sicher 

Venenverweilkatheter 

legen 1 

2 3 4 5 6 7 8 

sicher keinen 

Venenverweilkatheter 

legen 9 

  
         

Bitte beantworten Sie diese Frage mithilfe der Antwortskala. Dabei bedeutet 1 = „Ich würde 

sicherlich einen Venenkatheter legen“ und 9 = „Ich würde sicherlich keinen Venenkatheter 

legen“. 
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Aussagen und Statements I 

In den folgenden drei Abschnitten finden Sie eine Reihe von Aussagen und Statements, die 

wir in der Literatur gefunden oder in Gesprächen mit Tierärzten und Tierärztinnen gehört 

haben. Einige der Aussagen beziehen sich ganz allgemein auf den Umgang mit der 

Euthanasie und Umstände, die den Umgang damit erleichtern oder erschweren. Andere 

Aussagen beziehen sich eher auf die praktische Gestaltung und Durchführung.   

Hier ist der erste Abschnitt. 

11 [S1] 

Das Wissen, mich für das Wohl des Tieres eingesetzt zu haben, macht es mir 

leichter, mit dem Leiden des Tieres umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 

 

 

12 [S2] 

Das Wissen, dass das Tier nur noch eine kurze Lebensspanne vor sich hatte, 

macht es mir leichter, mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 
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13 [S3] 

Die sorgfältige Aufklärung des Tierbesitzers macht es mir leichter, mit der 

Euthanasie 

umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 

 

 

14 [S4] 

Die Zufriedenheit des Kunden, bezüglich der Tötung seines Tieres, macht es 

mir leichter, mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 
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15 [S5] 

Das Wissen, dass alle veterinärmedizinischen, wie auch sozialen und 

ökonomischen Möglichkeiten bedacht wurden, macht es mir leichter, mit der 

Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 

 

 

16 [S6] 

Es fällt mir leichter, ein Tier zu euthanasieren, wenn ich sehe, dass die 

Tierbesitzer keine intensive Bindung  zum Tier haben.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 
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17 [S7] 

Wenn die Tierbesitzer bei der Euthanasie anwesend sind, erleichtert mir dies, 

mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 

 

 

18 [S8] 

Ich habe mich noch immer nicht daran gewöhnt, Tiere zu euthanasieren.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 
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19 [S9] 

Die sorgfältige Planung und die geschickte Wahl des Zeitpunktes machen es 

leichter, mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 

 

 

20 [S10] 

Die technisch einwandfreie Durchführung der Tötung des Tieres macht es mir 

leichter, mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und 

eine 9 = „Ich stimme völlig zu“. 
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Aussagen und Statements II 

Hier beginnt der zweite Abschnitt.  

21 [S11] 

Eine wirksame Schmerztherapie macht es mir leichter, mit dem Leiden des 

Tieres umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 

 

 

22 [S12] 

Die sorgfältige Aufklärung des Patientenbesitzers macht es mir leichter, mit 

dem Leiden des Tieres umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 
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23 [S13] 

Mein Wissen, dass das Tier bis zum Zeitpunkt der Euthanasie ein erfülltes 

Leben hatte, macht es mir leichter mit der Euthanasie umzugehen. 

   

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 

 

 

24 [S14] 

Belastend wäre es für mich, wenn ich gegen die eigene Überzeugung ein Tier 

euthanasiere.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 
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25 [S15] 

Die Anwesenheit des Tierbesitzers verursacht tendenziell mehr Probleme.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 

 

 

26 [S16] 

Der respektvolle Umgang mit dem toten Tier ist ein wichtiger Teil der 

Euthanasie.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 

 

 

 

 

 

 

- 110 - Paper II



27 [S17] 

Der verständnisvolle Umgang mit den Tierbesitzern ist ein zentraler 

Bestandteil der Euthanasie.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und 

eine 9 = "ich stimme völlig zu". 

 

 

28 [S18] 

Rückblickend fällt es mir zunehmend leichter, mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte klicken geben Sie Ihre Antwort mit durch Anklicken der entsprechenden Option auf der 

Skala an. Dabei bedeutet eine 1 = "ich stimme überhaupt nicht zu" und  

eine 9 = "ich stimme völlig zu". 
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Aussagen und Statements III 

Nun der dritte Abschnitt.  

 

29 [S19] 

Es fällt mir schwerer (unter sonst gleichen Bedingungen), ein besitzerloses 

Tier zu euthanasieren.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“. 

 

 

30 [S20] 

Obwohl ich eine Euthanasie eigentlich ablehnen würde, mache ich es dennoch, 

weil ich befürchte, dass der Tierbesitzer sein Tier eigenhändig töten würde.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  
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31 [S21] 

Das Wissen, mich für das Wohl des Tieres eingesetzt zu haben, macht es mir 

leichter, mit der Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  

 

 

 

32 [S22] 

Ich erlebe Euthanasie als unvermeidliches Übel meiner Verantwortung.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  

 

 

 

33 [S23] 

Die Einsicht, dass die Möglichkeiten meiner Einflussnahme auf die 

Entscheidung des Besitzers begrenzt sind, macht es mir leichter, mit der 

Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  
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34 [S24] 

Das fortgeschrittene (hohe) Alter des Tieres macht es mir leichter, mit der 

Euthanasie umzugehen.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  

 

 

 

35 [S25] 

Obwohl ich eine Euthanasie eigentlich ablehnen würde, mache ich es dennoch, 

weil ich befürchte, dass der Tierbesitzer in eine andere Ordination geht.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  

 

 

 

36 [S26] 

Ich sehe die wohlüberlegte Euthanasie als wesentlichen Bestandteil meiner 

tierärztlichen Tätigkeit.  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  
stimme 

überhaupt 

nicht zu 1 

2 3 4 5 6 7 8 

stimme 

völlig 

zu 9 

  
         

Bitte geben Sie Ihre Antwort durch Anklicken der entsprechenden Option auf der Skala. 

Dabei bedeutet eine 1 = „Ich stimme überhaupt nicht zu“ und eine 9 = „Ich stimme völlig zu“.  
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Allgemeine und demografische Fragen 

Im letzten Abschnitt haben wir noch ein paar demografische Fragen zu Ihnen, Ihrer 

beruflichen Tätigkeit und zur Euthanasie.  

37 [D1] 

Wie viel Arbeitszeit verbringen Sie mit der Behandlung von Kleintieren 

(Hund, Katze, Kaninchen und Meerschweinchen) in Ihrer Ordination?  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  < 20 % 20 - 40 % 41 - 60 % 61 - 80 % > 80 % 

  
     

 

 
     

38 [D2] 

Sind Sie selbstständig in Ihrem Beruf tätig oder arbeiten Sie im 

Angestelltenverhältnis in einer Ordination?  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  selbständig angestellt 

  
  

 

 
  

39 [D3] 

Wie viele Tierärzte und Tierärztinnen sind außer Ihnen in Ihrer Ordination 

beschäftigt?  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte gegen Sie hier die Anzahl der Tierärzte/Tierärztinnen an, die ebenfalls in Ihrer 

Ordination tätig sind.  
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40 [D4] 

Wie häufig werden in Ihrer Ordination Kleintiere durchschnittlich pro Monat 

euthanasiert?  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte geben Sie die durchschnittliche monatliche Anzahl der euthanasierten Kleintiere an.  

 

 

41 [D5] 

Wie häufig pro Monat euthanasieren Sie selber?  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte geben Sie hier an wie häufig Sie selber pro Monat euthanasieren.  

 

 

42 [D6] 

Wie häufig werden Sie jährlich schätzungsweise ersucht, ein (weitgehend) 

gesundes Tier zu euthanasieren?  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte geben Sie hier die Häufigkeit pro Jahr an.  

 

 

43 [D7] 

Wie häufig werden Sie jährlich schätzungsweise ersucht, einen gesunden 

„Kampfhund“ zu euthanasieren?  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte geben Sie hier die Häufigkeit pro Jahr an.  
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44 [D8] 

Wenn Tierhalter ein (weitgehend) gesundes Tier euthanasieren lassen 

möchten, welche sind die drei häufigsten genannten Gründe?  

Bitte geben Sie Ihre Antwort(en) hier ein: 

 1. häufigster Grund  

  

 2. häufigster Grund  

  

 3. häufigster Grund  

  

45 [D9] 

 Welches Euthanasiepräparat verwenden Sie in Ihrer Ordination für die 

Euthanasie von Kleintieren (Hund, Katze, Kaninchen, Meerschweinchen)? 

(Mehrfachantwort möglich)  

Bitte wählen Sie alle zutreffende Einträge aus und schreiben Sie einen Kommentar dazu: 

 Kombinationspräparate mit Embutramid  

  

 Derivate der Barbitursäure  

  

 Inhalationsanästhetika  

  

 Andere (bitte nennen)  
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46 [D10] 

Wie lange sind Sie bereits tierärztlich tätig?  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte geben Sie hier wieviele Jahre Sie bereits tierärztlich tätig sind.  

 

 

47 [D11] 

Bitte sagen Sie uns auch, wie alt Sie sind:  

Bitte geben Sie Ihre Antwort hier ein: 

   

Bitte geben Sie Ihr Alter in Jahren an.  

 

 

48 [D12] 

Bitte geben Sie hier Ihr Geschlecht an.  

Bitte wählen Sie nur eine der folgenden Antworten aus: 

 weiblich  

 männlich  

 

 

49 [D13] 

Was (oder wer) hat Sie am besten für Ihre beruflichen Aufgaben im Bereich 

der Euthanasie vorbereitet?  

Bitte geben Sie Ihre Antwort hier ein: 
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50 [D14] 

Was oder wer hilft Ihnen heute, um mit Euthanasien umzugehen?  

Bitte geben Sie Ihre Antwort hier ein: 

  

 

 

 

 

51 [D15] 

Würden Sie sich mehr Unterstützung hinsichtlich der Thematik Euthanasie 

wünschen, und wenn ja von wem?  

Bitte geben Sie Ihre Antwort hier ein: 

  

 

52 [D18] 

Würde Ihnen ein Kriterienkatalog zur Unterstützung in schwierigen 

Entscheidungssituationen bezüglich der Euthanasie helfen?  

Bitte wählen Sie die zutreffende Antwort für jeden Punkt aus: 

  Ja Unsicher Nein 

  
   

 

 
   

    

53 [D19] 

Gibt es weitere Kommentare zum Thema Euthanasie oder zum Fragebogen, 

die Sie uns mitteilen möchten?  

Bitte geben Sie Ihre Antwort hier ein: 
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Vielen Dank für das Ausfüllen des Fragebogens. 

  

Mit freundlichen Grüßen 

  

  

Svenja Springer, Sonja Hartnack und Herwig Grimm 

 

Bitte übermitteln bis 11.12.2012 – 00:00 

 

Übermittlung Ihres ausgefüllten Fragebogens: 

Vielen Dank für die Beantwortung des Fragebogens. 
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Supplementary section on proportional odds logistic regression  1 

Material and methods 2 

Multivariable proportional odds logistic regressions were utilized to assess potential 3 

significant associations between the outcome “agreement with euthanasia” in each of the 4 

different scenarios and demographic data. The outcome variable ranged from total rejection to 5 

full agreement on a 9-point scale. The demographic predictor variables included: percentage 6 

of working time spent with small animals (dichotomized into ≤ 60 % and > 60 %) (Small 7 

animals %), working employed or self-employed (Employment), number of other 8 

veterinarians working in the same practice (Nb vets), number of euthanasia per month 9 

performed by the respondent (Nb eutha), number of times per year the respondent is asked to 10 

perform euthanasia of a healthy animal (Request healthy eutha), years working as a vet 11 

(Years) and gender (Gender). Stepwise model selection (backward and forward) by Akaike’s 12 

information criterion (AIC) was performed using the MASS package [1] in R [2]. Only 13 

complete questionnaires were utilised for the analysis. The results of the multivariable 14 

proportional odds regression approach are presented as remaining predictors in the final 15 

models, p-values, proportional odds ratios and their corresponding confidence intervals.  16 

For the multivariable proportional odds regression approach, the predictors in the final 17 

models, p-values, proportional odds ratios (pOR) and their corresponding confidence intervals 18 

are presented. The interpretation of a pOR of two for example would be that for a one unit 19 

increase in the predictor variable, the odds the highest category in the outcome variable 20 

(would be 9 equal to “agree”), the agreement of euthanasia in a specific scenario, versus the 21 

other eight lower combined categories are two times higher, given that all other variables are 22 

held constant in the model. Likewise, for a one unit increase in the predictor variable, the odds 23 

of the combined two highest categories 8 and 9 versus the other combined categories 1 to 7 24 

are two times greater given that all other variables are held constant in the model and so on. 25 

Paper II - 121 -



Results 26 

Scenarios F1 to F5 could be titled “convenience euthanasia” meaning settings in which 27 

veterinarians are confronted with an owner requesting euthanasia which would be presumably 28 

against the veterinarian’s view.  29 

F1 describes a scenario about a dog which had already bitten humans twice, attended training 30 

courses after the incident and visited animal psychologists and severely injured a child 31 

afterwards. The final model included only gender (p<0.001) with female veterinarians having 32 

a pOR of 0.41 [0.23;0.72] compared to males, thus being more likely to disagree with 33 

euthanasia in this scenario.  34 

For F2, illustrates a scenario about a rabbit breeder asking for euthanasia of some of her 35 

young animals because of coat colour not meeting breeding standards thus excluding success 36 

at exhibitions. Here it was not possible to run proportional odds models, since almost all 37 

respondents rejected euthanasia in this scenario.  38 

F3 describes a scenario in which an owner asks for euthanasia of a young dog which is 39 

severely ill, but could possibly be cured with an appropriate, albeit costly and time-consuming 40 

therapy. For F3, three variables remained in the final model: percentage of time spent in small 41 

animal practice, the number of times per year the respondents is asked by an owner to 42 

euthanize a healthy animal and gender. Spending more than 60 % of working time in small 43 

animal practice (p=0.009) led to a decrease in agreement with euthanasia with a pOR of 0.49 44 

[0.28;0.83]. Being requested to euthanize a healthy animal with a p =0.052 and a pOR of 0.95 45 

[0.91;1] was associated with a tendency to reject euthanasia with more requests. Females were 46 

found to be more likely to disagree with euthanasia (p=0.005) with a pOR of 0.47 [0.28;0.78].  47 

In the scenario F4, a rabbit owner prefers to euthanize his animal, although the animal might 48 

be treated, and buy a new rabbit which would be cheaper. For F4, the final model included 49 
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three variables: the working time spent in small animal practice (p=0.12), being self-50 

employed or employed (p=0.04) with employed veterinarians being more likely to reject 51 

euthanasia with a pOR of 0.49 [0.24;0.95], and the number of euthanasia performed monthly 52 

by the respondent (p=0.07).  53 

F5 describes a scenario in which a dog owner wants her 15 year old dog to be euthanized 54 

because it no longer fits to her living conditions. She prefers to travel and does not want to 55 

bring her dog to the animal shelter at this age. In this scenario, six variables were present in 56 

the final model: percentage of time spent in small animal practice (p=0.002), number of 57 

euthanasia performed monthly by the respondent (p<0.001), number of times per year the 58 

respondent is asked to euthanize a healthy animal (p=0.03), years having worked as a 59 

veterinarian (p=0.001) and gender (p=0.13). Respondents spending more than 60 % of their 60 

working time in small animal practice were more likely to disagree with euthanasia with a 61 

pOR of 0.48 [0.25;0.9]. With an increasing number of self-performed euthanasia, respondents 62 

were more likely to agree with euthanasia with a pOR of 1.2 [1.1;1.3]. Being asked more 63 

often to euthanize a healthy animal, the respondents were more likely to disagree with 64 

euthanasia with a pOR of 0.93 [0.87;0.99].  65 

Scenarios F6 and F7 describe situations in which euthanasia might be recommended on 66 

veterinary reasoning, but the owner or person in charge refuses it. 67 

F6 describes a scenario in which an owner refuses euthanasia of a severely ill Persian cat, 68 

having a very close relationship with his cat. Here, the number of times per year the 69 

respondents is asked by an owner to euthanize an healthy animal was the sole variable based 70 

on AIC to be associated with the agreement of euthanasia, albeit a p-value of 0.12.  71 

In F7, a dog sitter refuses to take the decision of euthanasia of an old dog with breathing 72 

problems and a history of malignancy, and the owner cannot be reached. In this scenario, 73 
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solely the years having worked as veterinarians remained in the model (p<0.001) with more 74 

professional experience being more likely to agree with euthanasia with a pOR of 1.05 75 

[1.02;1.08].  76 

In the scenario F8, a guinea pig owner refuses euthanasia of his animal with a tumour and 77 

wants to take it home instead. The question is raised if the official veterinarian has to be 78 

informed. In the final model remained two variables: being self-employed or employed 79 

(p=0.016) and the number of times per year the respondent is asked to perform euthanasia of a 80 

healthy animal (p=0.13). Being employed was found to be more likely to agree with the 81 

statement that the official veterinarian should be informed with a pOR of 2.06 [1.14;3.72].  82 

F9 describes a scenario in which the owners urge the veterinarian to take the decision of 83 

euthanasia and the respondent is asked if she would reject the responsibility of taking a 84 

decision for or against euthanasia if on veterinary medical grounds both decisions could be 85 

justified. In the final model remained two variables: the number of other vets working in the 86 

same practice (p=0.016) and gender (p<0.001). Veterinarians working in a team and female 87 

veterinarians were less likely to take the decision at the owners’ place with a pOR of 0.92 88 

[0.87;0.98] and a pOR of 0.41 [0.24;0.67], respectively.  89 

In summary, for the “convenience euthanasia” scenarios, in three out of four scenarios 90 

spending more or most of the working time in small animal practice was found to be 91 

significantly associated with disagreeing with euthanasia. Gender was found in two out of 92 

four scenarios to be significantly associated with disagreeing with euthanasia. Type of 93 

employment or more specifically being employed instead of working self-employed was 94 

found in one scenario (F4) to be significantly associated with disagreeing with euthanasia. In 95 

one scenario (F5) the number of euthanasias performed by the respondent was found to be 96 

significantly associated with the agreement with more animals euthanized being associated 97 

with a higher agreement. In contrast, in the same scenario, the number of times the respondent 98 
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had been asked to euthanize a healthy animal was associated with disagreeing with 99 

euthanasia. For the two scenarios in which euthanasia is refused, solely the number of 100 

professional years was associated with agreement with more experienced veterinarians 101 

agreeing more with euthanasia. With regard to the perceived need to inform an official 102 

veterinarian, type of employment was found to be significantly associated with employed 103 

veterinarians being more likely to inform the official veterinarian. In a scenario in which – on 104 

veterinary reasoning – no clear recommendation in favour or against euthanasia was possible, 105 

solely gender (female) and the number of veterinarians working in the same practice was 106 

found to be significantly associated with declining to take the decision at the place of the 107 

owners. 108 

 109 

References 110 

1. Venables WN, Ripley BD. MASS: Modern Applied Statistics with S. New York: 111 

Springer; 2002. Available from: URL: http://www.stats.ox.ac.uk/pub/MASS4. Accessed 9 112 

Sept 2015. 113 

2. R Core Team. A language and environment for statistical: R Foundation for Statistical 114 

Computing; 2015. Available from: URL: http://www.R-project.org/. Accessed 9 Sept 115 

2015.  116 

Paper II - 125 -





Supplementary material and methods section on additive Bayesian networks (ABN) 1 

For the ABN analysis, first the optimal model in terms of the one with the highest marginal 2 

likelihood (model score) was determined by increasing subsequently the number of parents 3 

per node from one to nine. The marginal likelihood was considered as a goodness of fit metric 4 

including an implicit penalty for model complexity and was estimated using Laplace 5 

approximation at each node [1]. This process of identifying an optimal Bayesian graph is 6 

referred to in the literature as structure learning [2,3]. To allow for an exact search method 7 

approach [4] 19 variables (one scenario, seven demographic and eleven statements) were 8 

selected [5]. With respect to the structure a uniform prior was chosen assuming that all 9 

Bayesian graphical structures were equally plausible. Second in order to adjust for overfitting, 10 

bootstrapping with Markov chain Monte Carlo (MCMC) simulations in JAGS [6] were 11 

performed. Simulated datasets with an identical size as the original one were generated and an 12 

identical exact search was performed. At least 256 bootstraps were run for each of the nine 13 

scenarios with the demographic variables and eleven statements. Arcs or lines, representing 14 

associations between two nodes, present in less than 50% of the globally optimal Bayesian 15 

graph estimated from the bootstrap data were considered to be not robust enough and trimmed 16 

off from the Bayesian graph generated in the first step. A threshold of 50% structural support 17 

is the usual cut-off in Bayesian network analysis [7]. The analysis were performed using the 18 

software R [8] and the package abn [9]. The resulting networks or Bayesian graphs were 19 

visualized with GraphViz [10]. 20 

 21 

 22 

 23 

 24 
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Convenience euthanasia

F1

Aggressive dog

2.50% 50% 97.50%

small animal|gender 2.25 3.75 6.30

employment|years 0.06 0.12 0.21

nb vets|employment 5.86 7.26 9.02

nb vets|nb eutha 1.06 1.08 1.10

nb vets|years 0.71 0.79 0.89

nb vets|gender 0.48 0.59 0.72

nb vets|S5 1.22 1.35 1.50

nb vets|S8 1.12 1.21 1.30

nb eutha|small animal 1.25 1.43 1.64

Req healthy eutha|nb eutha 1.08 1.09 1.11

Req healthy eutha|S8 1.14 1.21 1.28

S2|S5 1.32 1.47 1.63

S5|S8 0.69 0.77 0.86

S5|S13 1.13 1.26 1.40

S11|small animal 1.27 1.59 1.99

S11|S9 1.17 1.30 1.45

S11|S17 1.12 1.24 1.38

S13|S11 1.15 1.28 1.43

S24|S2 1.36 1.51 1.67

S26|S5 1.29 1.43 1.60

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Convenience euthanasia

F2

Rabbit breeder

2.50% 50% 97.50%

small animal|gender 2.44 4.05 6.81

employment|years 0.06 0.12 0.21

nb vets|employment 6.12 7.55 9.35

nb vets|nb eutha 1.06 1.08 1.10

nb vets|years 0.71 0.80 0.90

nb vets|gender 0.47 0.58 0.71

nb vets|S5 1.22 1.35 1.50

nb vets|S8 1.11 1.20 1.29

nb eutha|small animal 1.41 1.63 1.88

nb eutha|gender 0.63 0.71 0.80

Req healthy eutha|nb eutha 1.08 1.10 1.11

Req healthy eutha|S8 1.12 1.19 1.27

S5|S2 1.33 1.48 1.64

S8|S26 0.70 0.78 0.87

S2|S24 1.35 1.50 1.66

S26|S5 1.29 1.43 1.59

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Convenience euthanasia

F3

Young dog costly therapy

2.50% 50% 97.50%

F3|gender 0.41 0.51 0.62

F3|S5 1.17 1.30 1.44

small animal|gender 2.29 3.81 6.42

employment|years 0.06 0.12 0.22

nb vets|employment 6.10 7.53 9.33

nb vets|nb eutha 1.06 1.08 1.10

nb vets|years 0.72 0.81 0.90

nb vets|gender 0.47 0.57 0.70

nb vets|S5 1.22 1.35 1.50

nb vets|S8 1.11 1.20 1.30

nb eutha|small animal 1.35 1.56 1.80

nb eutha|gender 0.64 0.72 0.81

Req healthy eutha|nb eutha 1.08 1.09 1.11

Req healthy eutha|S8 1.12 1.19 1.26

S5|S2 1.32 1.47 1.63

S6|F3 1.12 1.25 1.40

S8|F3 0.67 0.75 0.83

S11|small animal 1.30 1.63 2.03

S11|S9 1.18 1.31 1.45

S11|S17 1.12 1.24 1.38

S13|S11 1.15 1.29 1.44

S14|S11 1.10 1.23 1.37

S26|S5 1.29 1.43 1.60

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Convenience euthanasia

F4

Rabbit costly therapy

2.50% 50% 97.50%

F4|gender 0.45 0.56 0.70

small animal|gender 2.42 4.02 6.77

employment|years 0.06 0.12 0.21

nb vets|nb eutha 1.04 1.06 1.07

nb vets|S5 1.20 1.31 1.45

nb eutha|small animal 1.41 1.63 1.89

nb eutha|gender 0.63 0.71 0.80

Req healthy eutha|nb eutha 1.08 1.10 1.11

Req healthy eutha|S8 1.12 1.19 1.26

S8|S26 0.70 0.78 0.87

S11|small animal 1.25 1.57 1.98

S11|S9 1.19 1.32 1.47

S26|S5 1.29 1.43 1.59

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Convenience euthanasia

F5

Dog not fitting living conditions

2.50% 50% 97.50%

F5|years 1.22 1.36 1.51

small animal|gender 2.45 4.09 6.91

employment|years 0.06 0.11 0.20

nb vets|employment 5.82 7.21 8.95

nb vets|nb eutha 1.06 1.08 1.10

nb vets|years 0.69 0.78 0.87

nb vets|gender 0.46 0.57 0.69

nb vets|S5 1.24 1.38 1.54

nb vets|S8 1.10 1.19 1.29

nb eutha|F5 1.15 1.21 1.28

nb eutha|small animal 1.32 1.51 1.74

Req healthy eutha|nb eutha 1.08 1.09 1.11

Req healthy eutha|S8 1.13 1.20 1.27

S5|S2 1.33 1.47 1.64

S8|S26 0.69 0.77 0.86

S11|S9 1.20 1.34 1.49

S13|S11 1.16 1.29 1.44

S26|S5 1.29 1.43 1.59

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Owner's refusal to euthanize

F6

Persian cat

2.50% 50% 97.50%

small animal|gender 2.42 4.06 6.87

employment|years 0.07 0.13 0.22

nb vets|employment 5.76 7.08 8.71

nb vets|years 0.65 0.73 0.82

nb vets|gender 0.40 0.50 0.61

nb vets|S5 1.25 1.40 1.56

nb vets|S8 1.04 1.13 1.23

Req healthy eutha|nb eutha 1.08 1.09 1.10

Req healthy eutha|S8 1.10 1.17 1.25

S8|S26 0.68 0.76 0.85

S9|S11 1.17 1.30 1.45

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Owner's refusal to euthanize

F7

Old sick dog without owner

2.50% 50% 97.50%

small animal|gender 2.22 3.72 6.31

employment|years 0.07 0.13 0.22

nb vets|F7 1.16 1.26 1.37

nb vets|employment 6.13 7.65 9.57

nb vets|nb eutha 1.06 1.08 1.10

nb vets|years 0.66 0.74 0.83

nb vets|gender 0.50 0.62 0.77

nb vets|S5 1.23 1.37 1.53

nb vets|S8 1.13 1.22 1.33

nb vets|S13 0.78 0.85 0.92

nb eutha|F7 1.12 1.19 1.27

Req healthy eutha|nb eutha 1.08 1.09 1.10

Req healthy eutha|S8 1.12 1.19 1.27

S8|S5 0.68 0.76 0.85

S11|small animal 1.28 1.61 2.04

S11|S9 1.21 1.34 1.50

S26|S5 1.28 1.42 1.59

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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Notification

F8

Guinea pig veterinary officer

2.50% 50% 97.50%

small animal|gender 2.32 3.85 6.47

employment|years 0.06 0.12 0.21

nb vets|nb eutha 1.04 1.06 1.08

nb vets|S5 1.17 1.28 1.41

nb eutha|small animal 1.36 1.57 1.81

nb eutha|gender 0.63 0.71 0.81

Req healthy eutha|nb eutha 1.08 1.09 1.10

Req healthy eutha|S8 1.11 1.18 1.26

S5|S2 1.34 1.48 1.64

S8|S5 0.69 0.77 0.86

S11|small animal 1.29 1.62 2.03

S11|S9 1.19 1.33 1.48

S26|S5 1.29 1.43 1.60

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female

Paper II - 143 -



Responsability

F9

Dog veterinarian decision

2.50% 50% 97.50%

small animal|gender 2.32 3.85 6.47

employment|years 0.06 0.12 0.21

nb vets|F9 0.75 0.81 0.87

nb vets|employment 7.38 8.85 10.62

nb vets|nb eutha 1.07 1.09 1.11

nb vets|gender 0.51 0.61 0.75

nb vets|S5 1.21 1.33 1.47

nb vets|S8 1.13 1.22 1.32

nb eutha|small animal 1.25 1.43 1.64

Req healthy eutha|nb eutha 1.08 1.09 1.11

Req healthy eutha|S8 1.13 1.20 1.28

S5|S2 1.30 1.44 1.60

S8|S26 0.70 0.78 0.87

S11|small animal 1.25 1.58 1.98

S11|S9 1.18 1.32 1.46

S13|S11 1.17 1.30 1.45

S17|S13 1.14 1.28 1.42

S2|S24 1.34 1.49 1.65

S26|S5 1.28 1.42 1.58

Small animal % 1= <60 %, 2= 60-100 %

Employment 1= self, 2= employed

Gender 1= male, 2= female
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abn: an R package for modelling multivariate data using
additive Bayesian networks

Marta Pittavino, Fraser Lewis, Reinhard Furrer

Abstract

This vignette describes the R package abn which provides functionality for identifying statis-
tical dependencies in complex multivariate data using additive Bayesian network (ABN) models.
This methodology is ideally suited for both univariate - one response variable, and multiple ex-
planatory variables - and multivariate analysis, where in both cases all statistical dependencies
between all variables in the data are sought. ABN models comprise of directed acyclic graphs
(DAGs) where each node in the graph comprises a generalized linear model. Model search algo-
rithms are used to identify those DAG structures most supported by the data. Currently imple-
mented are models for data comprising of categorical, count and/or continuous variables. Further
relevant information about abn can be found at: www.r-bayesian-networks.org.

Keywords: Graphical models, additive models, structure learning, exact order based search, parametric
bootstrapping, JAGS, MCMC, parameter learning, heuristic search.

1. Introduction

Bayesian network (BN) modelling (Buntine 1991; Heckerman, Geiger, and Chickering 1995; Lau-
ritzen 1996; Jensen 2001) is a form of graphical modeling which attempts to separate out indirect from
direct association in complex multivariate data, a process typically referred to as structure discovery
in Friedman and Koller (2003). In the last decades, BN modelling has been widely used in biomedical
science/systems biology (Poon, Lewis, Pond, and Frost 2007a; Poon, Lewis, Frost, and Pond 2008;
Poon, Lewis, Pond, and Frost 2007b; Needham, Bradford, Bulpitt, and Westhead 2007; Dojer, Gam-
bin, Mizera, Wilczynski, and Tiuryn 2006; Jansen, Yu, Greenbaum, Kluger, Krogan, Chung, Emili,
Snyder, Greenblatt, and Gerstein 2003; Djebbari and Quackenbush 2008; Hodges, Dai, Xiang, Woolf,
Xi, and He 2010) to analyse multi-dimensional data. However, only in the last few years, ABN mod-
els have been applied to veterinary epidemiology field; thanks to their ability to generalize standard
regression methodologies. Unlike other widely used multivariate approaches where dimensionality is
reduced through exploiting linear combinations of random variables, such as in principal component
analysis, graphical modeling does not involve any such dimension reduction.

BN is a generic and well established data mining/machine learning methodology, which has been
demonstrated in other fields of study to be ideally suited to such analysis. They have been developed
for analysing multinomial, multivariate Gaussian or conditionally Gaussian networks (a mix categor-
ical and Gaussian variables), see Heckerman et al. (1995); Boettcher (2004); Geiger and Heckerman
(1994). Additive Bayesian network (ABN) models are a special type of Bayesian network (BN) mod-
els, where each node in the graph comprises a generalized linear model. As the latter, they consist
of statistical models which derive a directed acyclic graph (DAG) from empirical data, describing the
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dependency structure between random variables. All types of BN models comprise of two recipro-
cally dependent parts: a qualitative (the structure) and a quantitative (the model parameters) part. The
DAG is the graphical representation of the joint probability distribution of all random variables in the
data. The model parameters are represented by a local probability distribution for all the variables in
the network.

A number of libraries for fitting such BNs are available from CRAN. These types of BN have been
constructed to ensure conjugacy, that is, enable posterior distributions for the model parameters and
marginal likelihood to be calculated analytically. The purpose of abn is to provide a library of func-
tions for more flexible BNs which can also not rely on conjugacy, which opens up an extremely rich
modeling framework but at some considerable additional computational cost.

Currently abn includes functionality for fitting non-conjugate BN models which are multi-dimensional
analogues of combinations of Binomial (logistic) and Gaussian regression. It includes also model with
Poisson (log) distribution for count data and generalised linear models with random effects (with the
previous distributions).

The objective in BN modeling structure discovery is to perform a model search on the data to identify
an optimal model. Recall that BN models have a vast search space - super-exponential in the number of
nodes - and it is generally impossible to determine a globally optimal model. How best to summarize
a set of locally optimal networks with different structural features is an open question, and there
are a number of widely used and intuitively reasonable possibilities. For example, one option is to
conduct a series of heuristic searches and then simply select the best model found in Heckerman
et al. (1995); alternatively, a single summary network can be constructed using results across many
different searches (Hodges et al. 2010; Poon et al. 2007a). Otherwise, an exact search method, as the
one presented in Koivisto and Sood (2004) which perform an exhaustive search, can be used. There
are obvious pros and cons to either approaches and both are common in the literature and provide a
good first exploration of the data.

For a general non-technical review of BN modeling applied in biology see Needham et al. (2007).
While, a general introduction to BN modelling in veterinary epidemiology is provided by Lewis,
Brulisauer, and Gunn (2011). Further applications of BN to veterinary studies were described by Ward
and Lewis (2013); Wilson, Ribeiro, and Boinas (2013); Sanchez-Vazquez, Nielen, Edwards, Gunn,
and Lewis (2012). Graphical modelling techniques used to analyse epidemiological data were used by
Firestone, Lewis, Schemann, Ward, Toribio, and Dhand (2013); Firestone, Lewis, Schemann, Ward,
Toribio, Taylor, and Dhand (2014); Lewis and McCormick (2012); Lewis (2012); Lewis and Ward
(2013); Schemann, Lewis, Firestone, Ward, Toribio, Taylor, and Dhand (2013); Ludwig, Berthiaume,
Boerlin, Gow, Léger, and Lewis (2013); McCormick, Sanchez-Vazquez, and Lewis (2013) resulting
in dozens of publications, and references therein.

In this manual we first consider a series of examples illustrating how to fit different types of models and
run different searches and summary analysis to a (synthetic) data set comprising of 250 observations
from a joint distribution comprising of 17 categorical and 16 continuous variables which is included
as part of the abn library. This data set is a single realization from a network of the same structure as
that presented in Lewis et al. (2011), which is based on real data and sufficiently complex to provide
a realistic example of data mining using Bayesian Network modeling. Then, a fully explained Case
Study is provided, where all the important steps to conduct a data analysis using additive Bayesian
networks are illustrated. Another detailed introduction and further relevant case studies about abn can
be found at: www.r-bayesian-networks.org.
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2. Pigs Case Study
We present data on disease occurrence in pigs provided by the industry body the ‘British Pig Health
Scheme’ (BPHS). The main objective of BPHS is to improve the productivity of pig production in the
UK, and reducing disease occurrence is a significant part of this process. The data we consider here
comprise of a randomly chosen batch of 50 pigs from each of 500 randomly chosen pig producers in
the UK. These are ‘finishing pigs’, animals about to enter the human food chain at an abattoir. Each
animal is assessed for the presence of a range of different disease conditions by a specialist swine
veterinarian. We consider here the following nine disease conditions: enzootic-pneumonia (EPcat);
pleurisy (plbinary); milk spots (MS); hepatic scarring (HS); pericarditis (PC); peritonitis (PT); lung
abscess (Abscess); tail damage (TAIL); and papular dermatitis (PDcat). The presence of any of these
conditions results in an economic loss to the producer. Either directly due to the relevant infected part
of the animal being removed from the food chain, or indirectly in cases such as enzooticpneumonia,
which may potentially indicate poor herd health and efficiency losses on the farm. An additional
loss, though not directly monetary, is the presence of tail damage which may be suggestive of welfare
concerns, which may also be linked to sub-optimal production efficiency. Milk spots and hepatic
scarring result from infestation with Ascaris suum which is particularly important as this is a zoonotic
helminth parasite.

2.1. Deciding on a search method

As a very rough rule of thumb if there are less than 20 variables (and no random effects) then prob-
ably the most robust model search option is an exact search (as opposed to a heuristic) which will
identify a globally best DAG. Followed then by parametric bootstrapping in order to assess whether
the identified model contains excess structure (this is an adjustment for over-modelling). Although,
the parametric bootstrapping might require access to a cluster computer to make this computationally
feasible. This is arguably one of the most comprehensive and reliable statistical modelling approaches
for identifying an empirically justified best guess (DAG) at ‘nature’s true model’, the unknown mech-
anisms and processes which generated the study data.

Order Based Searches

It is generally not feasible to iterate over all possible DAG structures when dealing with more than a
handful of variables, hence the reliance on heuristic searches. It is also extremely difficult to construct
efficient Monte Carlo Markov chain samplers across BN structures. A solution to this was proposed
in Friedman and Koller (2003) where rather than sample across DAGs, it was proposed to sample
across node orderings. A node order is simply the set of integers 1 through n, where n is the number
of variables in the data. A DAG is consistent with an ordering if for each node in the order its parents
come before it. For example a DAG with only an arc from 1→2 is consistent with ordering 1, 2, 3, 4
as the parent 1 comes before 2, but a DAG with an arc from 2→1 is not consistent with this ordering.
In effect, each order is a collection of DAGs, and note that each DAG may be consistent with multiple
orders, i.e. the empty DAG is consistent with every possible ordering. This introduces bias, in that
averaging across orders need not give the same results as averaging across DAGs, if the latter were
possible. This is relevant when estimating posterior probabilities of individual structural features, and
is baised towards more parsimonious features as they are consistent with more orders. Note that this
bias does not apply to maximising across orders, as in finding most probable structures (see later). The
big advantage of searching across orders is that there are n! different orders compared to a reasonably
tight upper bound of 2(

n
2) for different DAGs.
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There are (at least) two approaches for searching across orders. The first is to construct a Markov
chain which samples from the posterior distribution of all orders, and is the approach presented in
Friedman and Koller (2003). Alternatively, in Koivisto and Sood (2004) an exact method is proposed
which rather than sample across orders, performs an exhaustive search. This has the advantage that
it can also be used to find the globally optimal DAG of the data - the most probable structure - as
well as posterior probabilities for structural features, such as individual arcs. The drawback is that
this exact approach is only feasible with smaller number of variables e.g. up to 12 or 13 when dealing
with additive models. For the code provided in abn this exact approach is readily feasible up to 20
variables using typical desktop computing, and potentially up to 25 variable with access to a shared
memory cluster computer.

Most Probable Structure

Using the exact order based method due to Koivisto and Sood (2004) it is also possible to identify the
DAG with globally best network score. Identification of a most probable structure is split into two
parts. Firstly we calculate a cache of individual node scores, for example using buildscorecache.
Next, an exhaustive order based structural search is carried out using the function mostprobable
which relies on the information in the node cache.

As in the heuristic searches it is possible to ban or retain certain arcs, for example when splitting
multinomial variables. This is done in the node cache computation step. There are two different
structural priors implemented in this search, the first in the uniform prior where all structures (all
parent combinations) are equally likely. This is the default prior.choice=1 in mostprobable
and the other functions. Also implemented is the prior used in Koivisto and Sood (2004) where all
parent combinations of equal cardinality are equally weighted, this is prior.choice=2. The latter
does give the same prior weight to a parent combination with no parents and a parent combination
comprising off all possible parents (since there is only one choice of each, n − 1 choose 0 and n-
1 choose n − 1). This may not be desirable but is included as a prior for completness. Note that
the order based search is exact in the sense that it will identify a DAG who score is equal to the
best possible score if it was possible to exhaustive search across all DAGs. For example, if using
prior.choice=1 then the network found should have a score greater than or equal to that found
using the previously described heuristic searches. The structure found need not be unique in that
others may exist with the same globally optimal score, the order based search is only guaranteed to
find one such structure.

To calculate the most probable structure we again use buildscorecache() to calculate a cache
of individual node scores. Next, the function mostprobable() does the actual exhaustive order
based search, and works for both conjugate and additive models since as with calculating the pos-
terior probabilities this step only involves structural searching and is not concerned with the precise
parameterisation of each BN model.

2.2. Preparing the data

There are two main things which need to be checked in the data before it can be used with any of the
abn model fitting functions.

• All records with missing variables must be either removed or else the values completed. There
are a range of libraries available from CRAN for completing missing values using approaches
such as multiple imputation. Ideally, marginalising over the missing values is preferable (as

- 150 - Paper III



Marta Pittavino, Fraser Lewis, Reinhard Furrer 5

opposed completing them as this then results in essentially dealing with models of models), but
this is far from trivial here and not yet (and may never be) implemented in abn. To remove all
records with one or more missing values then code similar to the following probably suffices:

> library( abn) # Load the library
> mydat <- pigs.vienna[,-11] # Get data, drop batch variable
> mydat[ complete.cases(mydat),]

N.b. this is not actually needed with pigs.vienna.

• All variables which are to be treated as binary must be coerced to factors. To coerce an existing
variable into a factor then:

> mydat[,1] <- as.factor(mydat[,1])

coerces the first variable in data.frame pigs.vienna. The levels (labels of the factor) can be
anything provided there are only two and a “success" here is take to be the second level. For
example, the second value in the vector returned by:

> levels( mydat[,1])

To include additional variables in the modeling, for example interaction terms or polynomials, then
these must be created manually and included into the data.frame just like any other variable.

2.3. Initial searches for a optimal model

Below is some R code which will perform an exact search. We want to find the DAG with the best
goodness of fit (network score - log marginal likelihood) and ideally we would search for this without
any apriori complexity limit (max number of parents). However, this may be both not computation-
ally feasible and also highly inefficient. For example, with 25000 observation is it really realistic to
consider models with up to 9 covariates per node.

One approach is to start off with an apriori limit of one parent per node, find the best DAG, and then
repeat an identical search process (again using functions buildscorecache and mostprobably) with a
parent limit of 2. And so on, stopping when the maximal DAG found no longer changes when the com-
plexity limit is relaxed (increased). The parent limits max.par are not inserted, in the code below,
the max.par command can vary from one to an higher parent limits. These initial searches can be
easily automatized, in the library subdirectory system.file(’bootstrapping_example’,
package=’abn’) is possible to find a script file initsearch.bash that performs the initial
search explained before in an automated way, increasing progressively the number of parents, from 1
to 5 (for this specific example). The run time for the mostprobable function increases very consider-
ably with the number of parents.

> ban <- matrix( rep(0,dim(mydat)[2]^2),ncol=dim(mydat)[2])

The ban and retain matrix must have the names set:

> colnames( ban) <- rownames(ban) <- names(mydat)
> retain <- matrix( rep(0,dim(mydat)[2]^2),ncol=dim(mydat)[2])
> colnames( retain) <- rownames(retain) <- names(mydat)
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Setup the distribution list for each node:

> mydists <- list( PC="binomial", PT="binomial", MS="binomial",
+ HS="binomial", TAIL="binomial",
+ Abscess="binomial", Pyaemia="binomial",
+ EPcat="binomial", PDcat="binomial",
+ plbinary="binomial")

Build a cache of all the local computations:

> mycache <- buildscorecache( data.df=mydat,
+ data.dists=mydists, dag.banned=ban,
+ dag.retained=retain, max.parents=max.par)

Run the actual exact search:

> mp.dag <- mostprobable( score.cache=mycache)
> fabn <- fitabn( dag.m=mp.dag,data.df=mydat,
+ data.dists=mydists)
> datadir <- tempdir()

Save the results obtained:

> save( mycache, mp.dag, fabn, file=
+ paste(datadir,"mp",max.par,".RData",sep=""))

2.4. Results from the initial search

Searches across parent limits 1 through 5 were run and we now examine the results. What we are
looking for is simply the model with the best score (the largest, the least negative, mlik value), check-
ing that this does not improve when more parents are permitted. This then says we have found a DAG
with maximal goodness of fit. What we find (below) is that the goodness of fit does not improve when
we increase the parent limit beyond 3.

The code necessary to analyze the results from the script file and to visualize the resulting DAG, in a
linux environment, is the following:

> load( "RData/Rout1.RData")
> ml1 <- fabn$mlik;
> tographviz( dag.m=mp.dag,data.df=mydat,data.dists=mydists,
+ outfile="DAG_cycle.dot")
> system( "dot -Tpdf -o DAG_cycle.pdf DAG_cycle.dot")
> system( "evince DAG_cycle.pdf&")

List of resulting marginal likelihood from the initial search:

> mp.mlik <- c( -44711.62,-44685.53,-44684.64,-44684.64,-44684.64)
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Figure 1: Comparison of goodness of fits for different parent limits

The actual DAG corresponding to the maximum marginal likelihood: mp.mlik= −44684.64 is in
Fig. 2.

2.5. Adjustment for overfitting: parametric bootstrapping using MCMC

We have identified a DAG which has the best (maximum) possible goodness of fit according to the
log marginal likelihood. This is the standard goodness of fit metric in Bayesian modelling (Mackay
1992), and includes an implicit penalty for model complexity. While it is sometimes not always
apparent from the technical literature, the log marginal likelihood can easily (and sometimes vastly)
overfit with smaller data sets. Of course the difficulty is identifying what constitutes ‘small’ here. In
other words using the log marginal likelihood alone (or indeed any of the other usual metrics such as
AIC or BIC) is likely to identify structural features, which, if the experiment/study was repeated many
times, would likely only be recovered in a tiny faction of instances. Therefore, these features could
not be considered robust. Overfitting is an ever present issue in model selection procedures, particular
is common approaches such as stepwise regression searches, see Babyak (2004).

A well established approach for addressing overfitting is to use parametric bootstrapping (Friedman,
Goldszmidt, and Wyner 1999). The basic idea is very simple. We take our chosen model and then
simulate data sets from this, the same size as the original observed data, and see how often the different
structural features are recovered. For example, is it reasonable for our data set of 434 observations
to support a complexity of 29 arcs? Parametric bootstrapping is arguably one of the most defensible
solutions for addressing overfitting, although it is likely the most computationally demanding, as for
each simulated (bootstrap) data set we need to repeat the same exact model search as used with the
original data. And we may need to repeat this analysis hundreds (or more) times to get robust results.

Performing parametric bootstrapping is easy enough to code up if done in small manageable chunks.
Here we provide a step-by-step guide along with necessary sample code.

2.6. Software needed

We have a DAG model and MCMC software such as JAGS and WinBUGS are designed for simulating
from exactly such models. So all we need to do is implement our DAG model, e.g. in Fig. 2, in the
appropriate JAGS (or WinBUGS) syntax (which are very similar). Here I am going to use JAGS,
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PC

plbinary

PT

MS

PDcat

HS

TAIL

Pyaemia

Abscess

EPcat

Figure 2: Globally optimal DAG, found with a maximum number of 3 or more parents.
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developed by Plummer (2003), in preference to WinBUGS or OpenBUGS for no other reason than
that is what I am most familiar with, and JAGS is relatively straightforward to install (compile from
source) on a cluster. Binary versions of JAGS are also available for most common platforms (Linux,
Windows, OS X). To implement our DAG in JAGS we need write a model definition file (a BUG
file) which contains the structure of the dependencies in the model. We also need to provide in
here the probability distributions for each and every parameter in the model. Note that in Bayesian
modelling the parameter estimates will not generally conform to any standard probability distribution
(e.g. Gaussian) unless we are in the very special case of having conjugate priors. The marginal
parameter distributions required can be estimated using the fitabn function and then fed into the
model definition. We next demonstrate one way of doing this which is to use empirical distributions,
in effect we provide JAGS with a discrete distribution over a fine grid which approximates whatever
shape of density we need to sample from.

2.7. Generating marginal densities

The function fitabn has functionality to estimate the marginal posterior density for each parameter
in the model. The parameters can be estimated one at a time by manually giving a grid (e.g. the x
values where we want to evaluate f(x)) or else all together. In the latter case a very simple algorithm
will try and work out where to estimate the density. This can work better sometimes and others,
although it seems to work fine here for most variables. In order to use these distributions with JAGS
we must evaluate the density over an equally spaced grid as otherwise the approach used in JAGS will
not sample correctly. The basic command needed here is:

> marg.f <- fitabn( dag.m=mydag,data.df=mydat,data.dists=mydists,
+ compute.fixed=TRUE,n.grid=1000)

We should not simply assume that the marginals have been estimated accurately, and they should each
be checked using some common sense. Generally speaking, estimating the goodness of fit (mlik) for
a DAG comprising of GLM nodes is very reliable. This marginalises out all parameters in the model.
Estimating marginal posterior densities for individual parameters, however, can run into trouble as this
presupposes that the data contains sufficient information to accurately estimate the "shape" (density)
for every individual parameter in the model. This is a stronger requirement than simply being able
to estimate an overall goodness of fit metric. If a relatively large number of arcs have been chosen
for a node with relatively few observations (i.e. “success” in a binary node) then this may not be
possible, or at least the results are likely to be suspect. Exactly such issues - overfitting - are why we
are performing the parametric bootstrapping in the first place but they can also pose some difficulties
before getting to this stage.

It is essential to first visually check the marginal densities estimated from fitabn. Something like
the following will create one pdf file where each page is a separate plot of a marginal posterior density.

> library( Cairo) # Available from CRAN
> CairoPDF( "MargPlots_PigsData.pdf")
> for( i in 1:length(marg.f$marginals)){
+ cat( "processing marginals for node:",
+ nom1 <- names( marg.f$marginals)[i],"\n")
+ cur.node <- marg.f$marginals[i]
+ # Get the marginal for current node, this is a matrix [x,f(x)]
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+ cur.node <- cur.node[[1]]
+ # This is always [[1]] for models without random effects
+ for( j in 1:length(cur.node)){
+ cat( "processing parameter:",nom2<- names(cur.node)[j],"\n")
+ cur.param <- cur.node[[j]]
+ plot( cur.param,type="l",main=paste(nom1,":",nom2))}}
> dev.off()

These plots (available in system.file(’bootstrapping_example’,package=’abn’))
suggests that the all the marginal estimates looks fine. Moreover, we can now perform an additional
common sense check on their reliability. A probability density must integrate to unity (the area under
the curve is equal to one). The densities here are estimated numerically and so we would not expect
to get exactly one (n.b. no internal standarization is done so we can check this), but if the numerical
estimation has worked reliably then we would expect this to be close (e.g. 0.99, 1.01) to on.

Figure 3: Approximated area under marginal densities

From Fig. 3 it is obvious that everything went fine in the marginal density estimation. To check the
area we used the following code, which has as final output a file called pigs_post_params.R
which contains all the information JAGS needs to sample from the marginal posterior distributions.

> marnew <- marg.f$marginals[[1]]
> for( i in 2: length(marg.f$marginals)){
+ marnew <- c(marnew, marg.f$marginals[[i]])}

A straightforward question is: how reliable are the marginals? If the numerical routines work well
then the area under the density function should be close to unity.

> myarea <- rep( NA,length( marnew))
> names( myarea) <- names( marnew)
> for( i in 1:length(marnew)){
+ tmp <- spline(marnew[[i]])
+ # Spline just helps make the estimation smoother
+ myarea[i] <- sum(diff(tmp$x)*tmp$y[-1])}
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> # Just width x height of rectangles
> cbind( myarea)

Now visualise myarea as a plot, the colours need to be adjusted:

> library( Cairo)
> mycols <- rep("green",length(marnew))
> mycols[1:2] <- "red"; # PC
> mycols[3] <- "orange"; # PT
> mycols[4:5] <- "yellow"; # MS
> mycols[6:7] <- "blue"; # HS
> mycols[8:9] <- "lightblue"; # TAIL
> mycols[10] <- "mistyrose"; # Abscess
> mycols[11:12] <- "green"; # Pyaemia, lightcyan
> mycols[13:14] <- "lavender"; # EPcat
> mycols[15:18] <- "cornsilk"; # PDcat
> mycols[19:22] <- "brown" ; # plbinary
> CairoPNG( "Area_PigsData.png",pointsize=10,width=720,height=640)
> par( las=2, mar=c(8.1,4.1,4.1,2.1))
> barplot( myarea,ylab="Area under Density",ylim=c(0,2), col=mycols)
> dev.off()

Now we create the data in the right format ready for going to JAGS:

> print( names(marnew))
> # want to bind all the marginals the same nodes into a matrix
> m <- marnew;
> # PT -> PC, 1 parent, 2 params;
> PC.p <- cbind( m[["PC|(Intercept)"]], m[["PC|PT"]])
> # PC --> NO PARENTS, 1 params;
> PT.p <- cbind( m[["PT|(Intercept)"]])
> # HS -> MS, 1 parent, 2 params;
> MS.p <- cbind( m[["MS|(Intercept)"]], m[["MS|HS"]])
> # EPcat -> HS, 1 parent, 2 params;
> HS.p <- cbind( m[["HS|(Intercept)"]], m[["HS|EPcat"]])
> # PDcat -> TAIL, 1 parent, 2 params;
> TAIL.p <- cbind( m[["TAIL|(Intercept)"]], m[["TAIL|PDcat"]])
> # Abscess --> NO PARENTS, 1 param;
> Abscess.p <- cbind( m[["Abscess|(Intercept)"]])
> # TAIL -> Pyaemia, 1 parent, 2 params;
> Pyaemia.p <- cbind(m[["Pyaemia|(Intercept)"]],m[["Pyaemia|TAIL"]])
> # plbinary -> EPcat, 1 parent, 2 params;
> EPcat.p <- cbind( m[["EPcat|(Intercept)"]], m[["EPcat|plbinary"]])
> # MS, EPcat, plbinary --> PDcat, 3 parents, 4 params;
> PDcat.p <- cbind( m[["PDcat|(Intercept)"]], m[["PDcat|MS"]],
+ m[["PDcat|EPcat"]], m[["PDcat|plbinary"]])
> # PC, PT, Abscess --> plbinary, 3 parents, 4 params;
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> plbinary.p <- cbind(m[["plbinary|(Intercept)"]],m[["plbinary|PC"]],
+ m[["plbinary|PT"]], m[["plbinary|Abscess"]])
> dump( c( "PC.p","PT.p","MS.p","HS.p","TAIL.p","Abscess.p",
+ "Pyaemia.p","EPcat.p","PDcat.p","plbinary.p"),
+ file=paste('Jags/',"pigs_post_params.R",sep=""))

2.8. Building BUG model

Once we have the posterior distributions the next step is to actually create the DAG in JAGS. This
involves creating a BUG file, a file which contains a definition of our DAG (from Fig. 2) in terms
which can be understood by JAGS. This can easily be done by hand, if rather tedious, and should
be checked carefully for errors (which JAGS will prompt about in any case). The BUG file is here.
This file is fairly heavily commented (it might look complicated but most of it is just copy and paste
with minor edit) - the syntax is similar to R - and should be fairly self explanatory. Note that un-
like a more usual use of WinBUGS or JAGS we have no data here, we are simply providing JAGS
with a set of marginal probability distributions and how they are inter-dependent, and we want it
to then generate realisations from the appropriate joint probability distribution. The next step is to
tell JAGS to perform this simulation, i.e. generate a single bootstrap data set of size n = 25000
observations based on the assumption that the DAG is Fig. 2 is our true model. The BUG file
can be found in system.file(’bootstrapping_example’,package=’abn’) in the file
pigs_model.bug.

2.9. A single bootstrap analysis

To run JAGS we use four separate files: i) the BUG model definition file (model.bug); ii) a file
pigs_post_params.R which contains the marginal distributions referred to in the BUG file; iii)
a script which runs the MCMC simulation jags_pigs_script.R; and finally iv) a file which sets
of random number seed (inits.R - the value in this must be changed to use different streams of
random numbers). These four files are contained in this tarball. To run this example extract all the
files into one directory and then at the command line type ‘jags jags_pigs_script.R’. In
terms of the MCMC component, a burn-in of 100000 is used but as there are no data here this takes
no time to run and is likely of little use and could be shorted (it is just included to allow JAGS any
internal adaptations or diagnostics that it might need to do). The actual MCMC is then run for 250000
iterations with a thin of 10, which gives 25000 observations for each variable - the same size as the
original data. The number of MCMC steps and thin is a little arbitrary and this could be run for longer
with a bigger thin, but for this data looking at autocorrelation plots for the Gaussian variables there
appears no evidence of correlation at a thin of 10 and so this seems sufficient here.

The next step is to automate a single run, e.g. generate a single bootstrap sample and then perform an
exact search on this, just as was done for the original data. This file performs a single such analysis in
R - just drop this into the same directory as the four JAGS file above. For ease we also call the JAGS
script from inside R which might require some messing about with the PATH variable on Windows
(e.g. if you open up a cmd prompt then you should be able to type "jags" without needed to give a full
path). The output from this is given below and "results" is a single matrix (DAG) which is saved in an
R workspace called boot1run.RData.

Get the pigs data, drop batch variable

> orig.data <- pigs.vienna[,-11]
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Now create a single bootstrap sample:

> system("jags jags_pigs_script.R")

Read in boot data and convert to data.frame in same format as the original data, e.g. coerce to factors,
using the appropriate R package coda, described in Plummer, Best, Cowles, and Vines (2006):

> library( coda)
> boot.data <- read.coda("out1chain1.txt","out1index.txt")
> boot.data <- as.data.frame(boot.data)
> for( j in 1:dim(orig.data)[2]){if(is.factor(orig.data[,j]))
+ { boot.data[,j]<- as.factor(boot.data[,j])
+ levels(boot.data[,j])<- levels(orig.data[,j])}}

Now we have the boot.data in identical format as the original:

> ban <- matrix( rep(0,dim(orig.data)[2]^2),
+ ncol=dim(orig.data)[2])
> colnames( ban) <- rownames(ban) <- names(orig.data)
> retain <- matrix( rep(0,dim(orig.data)[2]^2),
+ ncol=dim(orig.data)[2])
> colnames( retain) <- rownames(retain) <- names(orig.data)
> mydists <- list( PC="binomial", PT="binomial", MS="binomial",
+ HS="binomial", TAIL="binomial",
+ Abscess="binomial", Pyaemia="binomial",
+ EPcat="binomial", PDcat="binomial",
+ plbinary="binomial")

Set the parent limits to 3, equal to the original data:

> max.par <- 3;

Build a cache on bootstrap data:

> boot1.cache <- buildscorecache( data.df=boot.data,
+ data.dists=mydists, max.parents=max.par,
+ dag.banned=ban, dag.retained=retain)

Run mostprobable search on the bootstrap data:

> boot1.mp <- mostprobable( score.cache=boot1.cache)
> datadir <- tempdir()
> save( boot1.mp,file=paste( datadir,"boot1run.RData",sep=''))

Once this works on your local machine it is then a case of trying to automate this in the most efficient
way, for example for use on a cluster. The crucial thing here is that the random number seed used
each time (in the file inits.R) must be changed for each bootstrap simulation otherwise an identical
bootstrap data set will be produced!
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2.10. Ways to summarise results from parametric bootstrapping

The globally optimal DAG, Fig. 2, has 12 arcs. It way be that some of these are due to over-
modelling which means they will be recovered in relatively few bootstrap analyses. 10240 bootstrap
analyses were conducted (on a cluster) and all the R files, MPI wrapper, and also the actual results
(in R workspaces) can be found in the folder system.file(’bootstrapping_example’,
package=’abn’).

The first step is to explore the bootstrap results. Of some interest is how many of the arcs were
recovered during each of the bootstrap “simulations”. This is given in Fig. 4. We can see right away
that not all the arcs in the original DAG (Fig. 2 - with 12 arcs) were recovered - even just once. This
provides overwhelming evidence that the original exact search has indeed overfitted to the original
data. Not at all surprising given the relatively small sample size. We must therefore trim off some
of the complexity - arcs - from the original DAG in order to justify that our chosen DAG is a robust
estimate of the underlying system which generated the observed data.

A parametric bootstrapping approach was suggested in Friedman et al. (1999) which uses simulation
to assess whether a chosen model comprises more complexity than could reasonably be justified given
the size of the observed data set. Using Markov chain Monte Carlo simulation via JAGS (open source
software), 10240 independent (assumed by inspecting autocorrelations from the MCMC output) data
sets of the same size as the original data were generated from our chosen model in i). For each of
these bootstrap data sets an identical exact order-based search as in i) was conducted.

Figure 4: Number of arcs recovered in bootstrapping

There are a number of different options in terms of trimming/pruning arcs. One common option
which apes the use of majority consensus trees in phylogenetics trees are just special cases of DAGs,
is to remove all arcs which were not recovered in at least a majority (50%) of the bootstrap results.
Fig. 5 shows the frequency at which each arc was recovered, the maximum value possible being 10240
(100% support). Collating results across these 10240 searches we find that only 14% of the globally
optimal DAGs found comprised 12 or more arcs. Approximately 68% of DAGs had 11 or more arcs -
therefore a robust model of the original data has no more than 11 arcs. Almost identical results were
obtained using a random selection of 5012 searches suggesting that sufficient bootstrap samples had
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been performed. The usual cut-off for structural support of features (arcs) is 50% in BN modeling
(Poon et al. 2007a,b, 2008; Lycett, Ward, Lewis, Poon, Pond, and Brown 2009; Lewis et al. 2011),
and is analogous to the widespread use of majority consensus trees in phylogenetics. We therefore
conclude that our chosen model in i) with 11 arcs is robust. This is perhaps not surprising given we
have a large data set of 25K observations.

Figure 5: Frequencies at which each arc in the original DAG was recovered during bootstrapping

Note that this 50% is not in any way comparable with the usual 95% points used in parameter estima-
tion as these are entirely different concepts (an explanation for this can be found here).

Another option, other than choosing a different level of support (which is entirely up to the researcher),
is to consider an undirected network. That is, include all arcs if there support - considering both di-
rections - exceeds 50%. This is justifiable due to likelihood equivalence which means that - generally
speaking - the data cannot discriminate between different arc directions (see here for an explanation)
and therefore considering arcs recovered in only one direction may be overly conservative. Again,
this decision is likely problem specific. For example, from a purely statistical perspective being con-
servative is generally a good thing, but from the scientists point of view this may then remove most of
the more interesting results from the study. Obviously a balance is required.

In this data it turns out that removing all arcs with have less than 50% support gives an identical
pruned network as if we were to consider both arc directions jointly. In generally this need not be the
case. Fig. 6 shows out optimal DAG after removing these arcs. This is our optimal model of the data.

All the code for analysing the results from the bootstrap analyses can be found here:

> mydata <- pigs.vienna[,-11]
> N <- 10240;
> # Write out manually, clearer than using rep()
> mydag <- matrix(c(
+ # PC PT MS HS TAIL Abscess Pyaemia EPcat PDcat plbinary
+ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
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+ 0, 0, 1, 0, 0, 0, 0, 1, 0, 1,
+ 1, 1, 0, 0, 0, 1, 0, 0, 0, 0),
+ byrow=TRUE,ncol=10)
> colnames(mydag) <- rownames(mydag) <- names(mydata)
> sum( mydag) # 12 arcs, as in original model, Figure 2
> mydists <- list( PC="binomial", PT="binomial", MS="binomial",
+ HS="binomial", TAIL="binomial",
+ Abscess="binomial", Pyaemia="binomial",
+ EPcat="binomial", PDcat="binomial",
+ plbinary="binomial")
> # Use fitabn to check mydag is correct (no typos mlik = -44684.64)
> print( fitabn(dag.m=mydag,data.df=mydata,data.dists=mydists)$mlik)
> bestdag <- mydag

PC

plbinary

PT

MS

HS

TAIL

Abscess

Pyaemia

EPcat PDcat

Figure 6: Optimal DAG after removal of arcs supported at less than 50% in bootstrapping. Contains 8 Arcs.

The next command reads all files with mp[number].RData and create a list of results:

> boot.dags <- list()
> these <- grep("mp10Kboot\\d+.RData", dir())
> num <- 1
> for( i in dir()[these]){# Load each file
+ load(i) # Provides dags, a list
+ tmp <- dags[which(unlist(lapply(dags,sum))>0)]
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+ # Get valid entries in dags but as a list
+ for( j in 1:length(tmp)){
+ # For each entry copy into boot.dags, and increment counter
+ boot.dags[[num]]<- tmp[[j]]; num <- num+1 }
+ rm( dags)
+ }

It is always good practice, have a look at mlik values for the bootstraps viz a viz the original:

> if( FALSE){
+ scores <- rep(0,length(boot.dags))
+ for(i in 1:length(boot.dags)){
+ scores[i] <- fitabn(dag.m=boot.dags[[i]],data.df=mydata,
+ data.dists=mydists)$mlik
+ }
+ scores.b <- scores[-which(scores< -N)]
+ orig.score <- fitabn(dag.m=bestdag,data.df=mydata,
+ data.dists=mydists)$mlik
+ plot(density(scores.b,from=min(scores.b),to=max(scores.b)))
+ abline(v=orig.score,lwd=2,col="blue")
+ }

We now trim all arcs from the boot results which do not occur in the Master DAG - bestdag - since we
know these are due to overfitting:

> boot.dags.trim <- boot.dags
> for( i in 1:length(boot.dags)){
+ boot.dags.trim[[i]] <- boot.dags.trim[[i]]*bestdag }
> arc.freq <- lapply(boot.dags.trim,sum)
> arc.freq <- table(unlist(arc.freq))
> library( Cairo)
> CairoPNG("PigsFreqBootRes.png",pointsize=10,width=720,height=700)
> par(las=1, mar=c(6.1,6.1,4.1,2.1))
> barplot( arc.freq,ylab="",xlab="",col="skyblue",
+ names.arg=names(arc.freq), ylim=c(0,2500))
> par( las=1)
> mtext( "Number of arcs in bootstrap DAG",1,line=3,cex=1.5)
> par( las=3)
> mtext( "Frequency out of 10240",2,line=4,cex=1.5)
> dev.off()
> total.dag <- matrix(rep(0,dim(bestdag)[2]^2),ncol=dim(bestdag)[2])
> colnames(total.dag) <- rownames(total.dag)<- colnames(bestdag)
> # Get the support for each arc, total.dag:
> for( i in 1:length(boot.dags)){
+ if(sum(boot.dags[[i]])>0){total.dag <- total.dag+boot.dags[[i]]}}
> total.dag <- total.dag*bestdag # We only want arcs in the best DAG
> total.dag
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The frequencies at which each arc in the original DAG was recovered during bootstrapping.

We get the majority consensus (directed DAG):

> f <- function(val,limit){ if(val<limit){return(0)}
+ else {return(1)}}
> bestdag.trim <- apply( total.dag,c(1,2),FUN=f,limit=N/2)

We get the majority consensus (undirected DAG), but with arcs in the most supported direction:

> bestdag.trim.nodir <- bestdag
> bestdag.trim.nodir[,] <- 0 # Set zero
> child <- NULL; parent <- NULL
> for( i in 1:dim(total.dag)[1]){
+ for( j in 1:dim(total.dag)[2]){
+ if(i>j){ # Get most supported direction
+ if(total.dag[i,j]>total.dag[j,i]){
+ m.i <- i; m.j <- j;}
+ else {m.i <- j; m.j <- i;}
+ # Does arc quality - exceed threshold of support
+ if(total.dag[i,j]+total.dag[j,i]>N/2){
+ # We want this as more than 5000
+ bestdag.trim.nodir[m.i,m.j] <- 1}}}}
> tographviz( dag.m=bestdag.trim,data.df=mydata,
+ data.dists=mydists, outfile="postbootpigs.dot")
> system( "dot -Tpdf -o postbootpigs.pdf postbootpigs.dot")
> system( "evince postbootpigs.pdf&")
> save( bestdag.trim,file=paste("bestdagpigs_trim.RData",sep=''))

2.11. Estimating marginals from the final DAG

Once we have identified our optimal DAG then it is usual to want to examine the parameters in this
model, e.g. in Fig. 7. These are our results, the effects of the various variables in our study. This
process is very similar to when estimating the marginals for the bootstrapping but should now be
easier since we should have removed any difficulties due to over-fitting. The posterior density plots
for the final DAG can be found in the pdf called Pigs_PostBootPlots.pdf. These all look fine.
An outlook on the parameters can be done based on the variable plbinary.

The R code for creating the marginals and quantiles can be found below:

> mydata <- pigs.vienna[,-11]
> mydists <- list( PC="binomial", PT="binomial", MS="binomial",
+ HS="binomial", TAIL="binomial",
+ Abscess="binomial", Pyaemia="binomial",
+ EPcat="binomial", PDcat="binomial",
+ plbinary="binomial")
> marg.f <- fitabn(dag.m=bestdag.trim,data.df=mydata,
+ data.dists=mydists,compute.fixed=TRUE,
+ n.grid=1000)
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Figure 7: Marginal posterior density based in the node plbinary

> library( Cairo)
> CairoPDF("Pigs_PostBootPlots.pdf")
> for( i in 1:length(marg.f$marginals)){
+ cat( "processing marginals for node:",
+ nom1 <- names(marg.f$marginals)[i],"\n")
+ cur.node <- marg.f$marginals[i]
+ # Get marginal for current node, this is a matrix [x,f(x)]
+ cur.node <- cur.node[[1]]
+ # This is always [[1]] for models without random effects
+ for( j in 1:length(cur.node)){
+ cat("processing parameter:",
+ nom2 <- names(cur.node)[j],"\n")
+ cur.param <- cur.node[[j]]
+ plot( cur.param,type="l",main=paste(nom1,":",nom2))}}
> dev.off()
> marnew <- marg.f$marginals[[1]]
> for(i in 2: length(marg.f$marginals)){
+ marnew <- c(marnew, marg.f$marginals[[i]])}
> margs <- marnew;
> mymat <- matrix(rep(NA,length(margs)*3),ncol=3)
> rownames(mymat) <- names(margs)
> colnames(mymat) <- c("2.5%","50%","97.5%")
> ignore.me <- union(grep("\\(Int",names(margs)),
+ grep("prec",names(margs)))

These are not effect parameters, but background constants and precisions:
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Odds Ratio
2.5% 50% 97.5%

PC|(Intercept) 0.03 0.03 0.03
PC|PT 17.71 26.44 39.21
PT|(Intercept) 0.00 0.00 0.00
MS|(Intercept) 0.06 0.06 0.07
MS|HS 0.20 0.30 0.44
HS|(Intercept) 0.06 0.06 0.06
TAIL|(Intercept) 0.00 0.00 0.00
TAIL|PDcat 2.61 4.32 6.78
Abscess|(Intercept) 0.00 0.01 0.01
Pyaemia|(Intercept) 0.00 0.00 0.00
EPcat|(Intercept) 0.36 0.37 0.38
EPcat|plbinary 1.97 2.14 2.31
PDCat|(Intercept) 0.04 0.04 0.04
PDcat|plbinary 1.78 2.08 2.41
plbinary|(Intercept) 0.10 0.11 0.11
PC|(Intercept) 12.92 15.12 17.71
PC|(Intercept) 2.72 4.36 6.97
PC|(Intercept) 6.23 8.71 12.17

Table 1: Marginal posterior quantiles for each parameter. The red lines indicate point estimates bigger than 1,
corresponding to risk factor. While the blue line refers to estimates smaller than 1, indicating protective factor.

> comment <- rep("",length(margs))
> for(i in 1:length(margs)){
+ tmp <- margs[[i]]
+ tmp2 <- cumsum(tmp[,2])/sum(tmp[,2])
+ mymat[i,] <- c(tmp[which(tmp2>0.025)[1]-1,1],
+ tmp[which(tmp2>0.5)[1],1],
+ tmp[which(tmp2>0.975)[1],1])
+ myvec <- mymat[i,]
+ if( !(i%in%ignore.me) && (myvec[1]<0 && myvec[3]>0)){
+ comment[i] <- "not sig. at 5%"}
+ # Truncate for printing
+ mymat[i,] <- as.numeric(formatC(mymat[i,],digits=3,format="f"))}
> cbind( mymat)

The code above produce the table of percentiles that can be found in Table 1.

All of the effect parameters, that is, ignoring the intercept terms (which is just a background constant)
and the precision parameters - have 95% confidence (or credible) intervals which do not cross the
origin. Note this is not guaranteed to happen this criteria was not part of the model selection process,
and all the parameters in the model have been justified using mlik and bootstrapping. But having such
marginal intervals can make presenting the results possibly easier to a skeptical audience.
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2.12. Pigs Case Study Conclusion

Based on the results presented in the previous section, it possible to draw a conclusion of the study.
From Table 1, we can notice that, a part from HS, which has a protective effect on MS, all others
parameters have a risk effect on possible disease outcome. Our final optimal ABN model of this
disease system suggests that the presence of Pyaemia is independent from other conditions. Moreover,
the remaining diseases split into two separate connected components.

Some interesting biological questions, resulting from ABN model, can be related to the similarity of
causal pathways between these two groups of diseases and to the common causes shared within each
of these groups.

The principal reasons because ABN models should be used are linked to their ability of generalization
of the usual GLM to multiple dependent variables: fully multi-dimensional models. Specifically,
results from ABN analyses can be used as a basis for developing new biological questions about
factors potentially affecting disease’s presence, and inform the design of future targeted studies.

3. An additional example
In the next subsections we illustrate how to fit an ABN model to different kinds of data, starting with
the introdcution of the data we are going to deal with. The main purpose of BN structure discovery
is to estimate the joint dependency structure of the random variables in the available data, and this
is achieved by heuristically searching for optimal models and comparing their goodness of fit using
Bayes factors. It is assumed that all structures are equally supported in the absence of any data - an
uniformative prior on structures - and so comparing Bayes factors collapses to comparing the marginal
likelihoods which is done on a log scale. The log marginal likelihood for a BN is typically referred to
as the network score.

3.1. Simulated Data Example var33

Figure 1 shows the structure of the distribution which generated the data set var33 included with
abn. This diagram was created using the tographviz() function of abn (see later examples)
which translates the matrix which defines a network - a directed acyclic graph - into a text file of
suitable format for processing in Graphviz, where this processing was done outside of R. Graphviz is
freely available and operates on most platforms and can be downloaded from www.graphviz.org, there
is also an R package which interfaces to Graphviz available from the Bioconductor project (requires
an installation of Graphviz).

3.2. Fitting an additive BN model to categorical data

An additive BN model for categorical data can be constructed by considering each individual variable
as a logistic regression of the other variables in the data, and hence the network model comprises
of many combinations of local logistic regressions (Rijmen 2008). The parameters in this model
are the additive terms in a usual logistic regression and independent Gaussian priors are assumed
for each covariate. Note that the variables here must all be binary, and so all multinomial variables
need to be split into separate binary factors (and added to the original data.frame) in order to form
the network model. This is analogous to forming the design matrix in a conventional additive model
analysis. Similarly, interaction terms can be added by including appropriate additional columns in the
data.frame. In these models the log marginal likelihood (network score) is estimated using Laplace
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Figure 8: Directed acyclic graph representation of the joint probability distribution which generated data set
var33 which is included with abn. The square nodes are categorical (binary) and the oval nodes continuous
variables.

approximations at each node. Hyperparameters for the means and variances in the Gaussian priors are
fixed at zero and 1000 respectively, and other values can be given explicitly in the call to fitabn but
this is not recommended without good reason.

To fit an additive model use fitabn(data.df,dag.m,data.dists, ...). In the following
code we fit first the independence model with no arcs and then the same dependence model as above.
Turning on verbose=TRUE simply gives the individual log marginal likelihoods for each node (n.b.
the numbering is that used internally and simply denotes the variables in the data.frame from left to
right).

The following code fits a network to the subset of the variables from var33 which are categorical. In
this data these are all binary. Note that all categorical variables should be set as factors.

> library( abn)
> bin.nodes <- c( 1,3,4,6,9,10,11,12,15,18,19,20,21,26,27,28,32)
> var33.cat <- var33[,bin.nodes] #Categorical nodes only
> dag33 <- matrix( 0, 17, 17)
> colnames( dag33) <- rownames( dag33) <- names( var33.cat)#Set names

Move back to independence model:

> dag33["v11","v12"] <- 0; dag33["v11","v10"]<- 0; dag33["v4","v3"]<- 0;

Setup the distribution list for each categorical node:
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> mydists.cat <- list( v1 ="binomial", v3 = "binomial",
+ v4 = "binomial", v6 = "binomial", v9 = "binomial",
+ v10 = "binomial", v11 = "binomial", v12 = "binomial",
+ v15 = "binomial", v18 = "binomial", v19 = "binomial",
+ v20 = "binomial", v21 = "binomial", v26 = "binomial",
+ v27 = "binomial", v28 = "binomial", v32 = "binomial")
> ind.mod.cat <- fitabn( data.df=var33.cat, dag.m=dag33,
+ data.dists=mydists.cat, verbose=FALSE)

It is possible to change to verbose=TRUE if one want to check how change the score for each
individual node.

The network score for a model with conditional independencies is:

> ind.mod.cat$mlik

[1] -2856.948

The structure of the network definition matrix is where each row is a “child” and each column is its
“parents”, where a 1 denotes a parent (or arc) is present. Now lets fit a model with some conditional
dependencies, for example where v11 is conditionally dependent upon v12 and v10, and v4 is
conditionally dependent upon v3.

Now fit the model with some conditional dependencies:

> dag33["v11","v12"] <- 1;
> dag33["v11","v10"] <- 1;
> dag33["v4","v3"] <- 1;
> dep.mod.cat <- fitabn( data.df=var33.cat, dag.m=dag33,
+ data.dists=mydists.cat, verbose=FALSE)

The network score for a model with conditional dependencies is:

> dep.mod.cat$mlik

[1] -2850.081

The network score is considerably improved and therefore suggests support for these new structural
features. To produce a visual description of the model then we can export to graphviz as follows:

> tographviz( dag=dag33, data.df=var33.cat, data.dists=mydists.cat,
+ outfile="mydagcat.dot", directed=TRUE) #Create file

mydagcat.dot can then be processed with graphviz unix shell typing: "dot -Tpdf mydagcat.dot -o
mydagcat.pdf" or using gedit if on Windows.

In tographviz() the data.df argument is used to determine whether the variable is a factor or
not, where factors are displayed as squares and non-factors as ovals. To use the full range of visual
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Figure 9: Directed acyclic graph dag33 created using tographviz() and Graphviz

Graphviz options simply use the file created by tographviz() as a starting point and manually
edit this in a text editor before running through dot or one of the other Graphviz layout processors.

3.3. Fitting an additive BN model to continuous data

We now consider analogous models to those in Section 3.2 but where the network comprises of Gaus-
sian linear regressions rather than logistic regressions. The structure of these models again assumes
independent Gaussian priors for each of the coefficients in the additive components for the mean re-
sponse at each node (with hyper means = 0 and hyper variances = 1000). The Gaussian response
distribution is parameterized in terms of precision (1/σ2), and independent Gamma priors are used
with shape=0.001 and scale=1/0.001 (where these are as defined in the rgamma help page). By
default, each variable in the data.frame is standardised to a mean of zero and standard deviation of
one, this has no effect on the identification of dependencies between variables. We start droping the
categorical nodes:

> var33.cts <- var33[,-bin.nodes]
> dag33 <- matrix( 0, 16, 16)
> colnames( dag33) <- rownames( dag33) <- names( var33.cts)

Setup the distribution list for each continuous node:

> mydists.cts <- list( v2 = "gaussian", v5 = "gaussian",
+ v7 = "gaussian", v8 = "gaussian", v13 = "gaussian",
+ v14 = "gaussian", v16 = "gaussian", v17 = "gaussian",
+ v22 = "gaussian", v23 = "gaussian", v24 = "gaussian",
+ v25 = "gaussian", v29 = "gaussian", v30 = "gaussian",
+ v31 = "gaussian", v33 = "gaussian")

Now fit the model defined in dag33 - full independence

> ind.mod.cts <- fitabn( data.df=var33.cts, dag.m=dag33,
+ data.dists=mydists.cts, verbose=FALSE)

We use as default priors, a Gaussian density with 0 mean and variance 1000. While for the precision,
inverse of variance, we use a Gamma density of hyperparameters 0.001 and 1/0.001. This is the
network score (goodness of fit, log marginal likelihood):

> ind.mod.cts$mlik
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[1] -5949.52

Now fit a model with conditional dependencies, for example let v33 depend on v31, and v24 depend
on v23, and v14 depend on v13.

> dag33["v33","v31"] <- 1;
> dag33["v24","v23"] <- 1;
> dag33["v14","v13"] <- 1;
> dep.mod.cts <- fitabn( data.df=var33.cts, dag.m=dag33,
+ data.dists=mydists.cts, verbose=FALSE)

The network score for a model with conditional independence is:

> dep.mod.cts$mlik

[1] -5704.547

> tographviz( dag=dag33, data.df=var33.cts, data.dists=mydists.cts,
+ outfile="mydagcts.dot", directed=TRUE) #Create file

mydagcat.dot can then be processed with graphviz unix shell typing: "dot -Tpdf mydagcat.dot -o
mydagcat.pdf" or using gedit if on Windows.

v2 v5 v7 v8 v13

v14

v16 v17 v22 v23

v24

v25 v29 v30 v31

v33

Figure 10: Directed acyclic graph dag33 for continuous variables only created using tographviz() and
Graphviz

3.4. Fitting an additive BN model to mixed data

To conclude the fitting of a single pre-specified model to data, e.g. based on expert opinion, we
consider an additive BN model which comprises both binary and Gaussian nodes and this comprises
of a combination of Binomial (logistic) and Gaussian linear models. Again fitabn() is used and
the code is almost identical to the previous examples.

> dag33 <- matrix( 0, 33, 33)
> colnames( dag33) <- rownames( dag33)<- names( var33)

Setup distribution list for each mixed node:

> mydists.mix <- list( v1 = "binomial", v2 = "gaussian",
+ v3 = "binomial", v4 = "binomial", v5 = "gaussian",
+ v6 = "binomial", v7 = "gaussian", v8 = "gaussian",
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+ v9 = "binomial", v10 = "binomial", v11 = "binomial",
+ v12 = "binomial", v13 = "gaussian", v14 = "gaussian",
+ v15 = "binomial", v16 = "gaussian", v17 = "gaussian",
+ v18 = "binomial", v19 = "binomial", v20 = "binomial",
+ v21 = "binomial", v22 = "gaussian", v23 = "gaussian",
+ v24 = "gaussian", v25 = "gaussian", v26 = "binomial",
+ v27 = "binomial", v28 = "binomial", v29 = "gaussian",
+ v30 = "gaussian", v31 = "gaussian", v32 = "binomial",
+ v33 = "gaussian")

Now fit the model defined in dag33, full independence:

> ind.mod <- fitabn( data.df=var33, dag.m=dag33,
+ data.dists=mydists.mix, verbose=FALSE)

The network score with no conditional dependencies is:

> ind.mod$mlik

[1] -8806.468

We now fit a BN model which has the same structure as the joint distribution used to generate the data
and later create a visual graph of this model. We then define a model with many independencies:

> dag33[2,1] <- 1;
> dag33[4,3] <- 1;
> dag33[6,4] <- 1; dag33[6,7] <- 1;
> dag33[5,6] <- 1;
> dag33[7,8] <- 1;
> dag33[8,9] <- 1;
> dag33[9,10] <- 1;
> dag33[11,10] <- 1; dag33[11,12] <- 1; dag33[11,19] <- 1;
> dag33[14,13] <- 1;
> dag33[17,16] <- 1;dag33[17,20] <- 1;
> dag33[15,14] <- 1; dag33[15,21] <- 1;
> dag33[18,20] <- 1;
> dag33[19,20] <- 1;
> dag33[21,20] <- 1;
> dag33[22,21] <- 1;
> dag33[23,21] <- 1;
> dag33[24,23] <- 1;
> dag33[25,23] <- 1; dag33[25,26] <- 1;
> dag33[26,20] <- 1;
> dag33[33,31] <- 1;
> dag33[33,31] <- 1;
> dag33[32,21] <- 1; dag33[32,31] <- 1; dag33[32,29] <- 1;
> dag33[30,29] <- 1;
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> dag33[28,27] <- 1; dag33[28,29] <- 1; dag33[28,31] <- 1;
> dep.mod <- fitabn( data.df=var33, dag.m=dag33,
+ data.dists=mydists.mix, verbose=FALSE)

The network score for a model with conditional independence is:

> dep.mod$mlik

[1] -8019.887

> tographviz( dag=dag33, data.df=var33, data.dists=mydists.mix,
+ outfile="mydag_all.dot", directed=TRUE)#Create file
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Figure 11: Directed acyclic graph dag33 for mixed continuous and discrete variables

3.5. Model fitting validation

In order to validate the additive models for mixed binary and Gaussian models, estimates of the
posterior distributions for the model parameters using Laplace approximations were compared with
those estimated using Markov chain Monte Carlo. These were always in very close agreement for
the range of models and data examined. This is an indirect validation of the Laplace estimate of the
network score, e.g. if the posterior densities match closely then this implies that the denominator (the
marginal likelihood - network score) must also be accurately estimated, as a “gold standard” estimate
of the network score is generally unavailable for such non-conjugate models.
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4. Further insights into searching strategy

The key objective of the abn library is to enable estimation of statistical dependencies in data com-
prising of multiple variables - that is, find a DAG which is robust and representative of the dependency
structure of the (unknown) stochastic system which generated the observed data. The challenge here
is that with such a vast model space it is impossible to enumerate over all possible DAGs, and there
may be very many different DAGs with similar goodness of fit. In the next sections we first consider
searching for additive (non-conjugate) models.

4.1. Single search for optimal additive BN model from categorical data

To run a single search heuristic use search.hillclimber(). This commences from a randomly
created DAG which is constructed by randomly adding arcs to an empty network until all possible arcs
have been tried. The function search.hillclimber() then searches stepwise from the initial
random network for an improved structure, where three stepwise operations are possible: i) add an arc;
ii) remove and arc; or iii) reverse and arc. The stepwise search is subject to a number of conditions,
firstly only moves that do not generate a cycle are permitted, secondly, a parent limit is imposed which
fixes the maximum number of parents which each child node can have (arcs go from parent to child),
and thirdly it is possible to ban or retain arcs. If provided, banned.m is a matrix which defines arcs
that are not allowed to be considered in the search process (or in the creation of the initial random
network). Similarly, retain.m includes arcs which must always be included in any model. It is also
possible to specific an explicit starting matrix, start.m and if using a retain matrix then start.m
should contain at least all those arcs present in retain.m. Note that only very rudimentary checking
is done to make sure that the ban, retain and start networks - if user supplied - are not contradictory.

To improve the computational performance of search.hillclimber() a cache of all possible
goodness of fit must be built in advance, using the function buildscorecache(). Rather than
re-calculate the score for each individual node in the network (the overall network score is the product
of all the scores for the individual nodes) the score for each unique node found during the search is
stored in the cache created by the function buildscorecache().

> bin.nodes <- c( 1,3,4,6,9,10,11,12,15,18,19,20,21,26,27,28,32)
> var33.cat <- var33[,bin.nodes] #Categorical nodes only
> dag33 <- matrix( 0, 17, 17)
> colnames(dag33) <- rownames(dag33) <- names(var33.cat)#Set names

Create banned and retain empty DAGs:

> banned.cat <- matrix( 0, 17, 17)
> colnames(banned.cat) <- rownames(banned.cat) <- names(var33.cat)
> retain.cat <- matrix( 0, 17, 17)
> colnames(retain.cat) <- rownames(retain.cat) <- names(var33.cat)

Setup distribution list for each categorical node:

> mydists.cat <- list( v1 = "binomial", v3 = "binomial",
+ v4 = "binomial", v6 = "binomial", v9 = "binomial",
+ v10 = "binomial", v11 = "binomial", v12 = "binomial",
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+ v15 = "binomial", v18 = "binomial", v19 = "binomial",
+ v20 = "binomial", v21 = "binomial", v26 = "binomial",
+ v27 = "binomial", v28 = "binomial", v32 = "binomial")

Build cache of all the local computations this information is needed later when running a model
search:

> mycache.cat <- buildscorecache( data.df=var33.cat,
+ data.dists=mydists.cat, dag.banned=banned.cat,
+ dag.retained=retain.cat, max.parents=1)

Running a single search heuristic for an additive BN uses search.hillclimber(). It uses a
parameter prior specifications (as detailed above). Several additional arguments are available which
relate to the numerical routines used in the Laplace approximation to calculate the network score. The
defaults appear to work reasonably well in practice and if it is not possible to calculate a robust value
for this approximation in any model, for example due to a singular design matrix at one or more nodes,
then the model is simply assigned a log network score of −∞ which effectively removes it from the
model search.

Run a single search heuristic for an additive BN:

> heur.res.cat <- search.hillclimber( score.cache=mycache.cat,
+ num.searches=1, seed=0, verbose=FALSE,
+ trace=FALSE, timing.on=FALSE)

Setting trace=TRUE, the majority consensus network is plotted as the searches progress.

4.2. Single search for optimal additive BN model for continuous data

As above but for a network of Gaussian nodes.

> var33.cts <- var33[,-bin.nodes] #Drop categorical nodes
> dag33 <- matrix( 0, 16, 16)
> colnames(dag33) <- rownames(dag33) <- names(var33.cts) #Set names
> banned.cts <- matrix( 0, 16, 16)
> colnames(banned.cts) <- rownames(banned.cts) <- names(var33.cts)
> retain.cts <- matrix( 0, 16, 16)
> colnames(retain.cts) <- rownames(retain.cts) <- names(var33.cts)

Setup distribution list for each continuous node:

> mydists.cts <- list( v2 = "gaussian", v5 = "gaussian",
+ v7 = "gaussian", v8 = "gaussian", v13 = "gaussian",
+ v14 = "gaussian", v16 = "gaussian", v17 = "gaussian",
+ v22 = "gaussian", v23 = "gaussian", v24 = "gaussian",
+ v25 = "gaussian", v29 = "gaussian", v30 = "gaussian",
+ v31 = "gaussian", v33 = "gaussian")

Build cache of all local computations, information needed later when running a model search:
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> mycache.cts<- buildscorecache( data.df=var33.cts,
+ data.dists=mydists.cts, dag.banned=banned.cts,
+ dag.retained=retain.cts, max.parents=1)

Run a single search heuristic for an additive BN:

> heur.res.cts<- search.hillclimber( score.cache=mycache.cts,
+ num.searches=1, seed=0, verbose=FALSE,
+ trace=FALSE, timing.on=FALSE)

Setting trace=TRUE, the majority consensus network is plotted as the searches progress.

4.3. Single search for optimal additive BN model for mixed data

Model searching for mixed data is again very similar to the previous examples. Note that in this ex-
ample the parameter priors are specified explicitly (although those given are the same as the defaults).
The +1 in the hyperparameter specification is because a constant term is included in the additive
formulation for each node.

> dag33 <- matrix( 0, 33, 33)
> colnames(dag33) <- rownames(dag33) <- names(var33)#Set names

Create empty DAGs:

> banned.mix <- matrix( 0, 33, 33)
> colnames(banned.mix) <- rownames(banned.mix) <- names(var33)
> retain.mix<- matrix( 0, 33, 33)
> colnames(retain.mix) <- rownames(retain.mix) <- names(var33)

Setup distribution list for mixed node:

> mydists.mix <- list( v1 = "binomial", v2 = "gaussian",
+ v3 = "binomial", v4 = "binomial", v5 = "gaussian",
+ v6 = "binomial", v7 = "gaussian", v8 = "gaussian",
+ v9 = "binomial", v10 = "binomial", v11 = "binomial",
+ v12 = "binomial", v13 = "gaussian", v14 = "gaussian",
+ v15 = "binomial", v16 = "gaussian", v17 = "gaussian",
+ v18 = "binomial", v19 = "binomial", v20 = "binomial",
+ v21 = "binomial", v22 = "gaussian", v23 = "gaussian",
+ v24 = "gaussian", v25 = "gaussian", v26 = "binomial",
+ v27 = "binomial", v28 = "binomial", v29 = "gaussian",
+ v30 = "gaussian", v31 = "gaussian", v32 = "binomial",
+ v33 = "gaussian")

Build cache of all local computations, information needed later when running a model search:

> mycache.mix <- buildscorecache( data.df=var33,
+ data.dists=mydists.mix, dag.banned=banned.mix,
+ dag.retained=retain.mix, max.parents=1)
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Run a single search heuristic for an additive BN:

> heur.res.mix <- search.hillclimber( score.cache=mycache.mix,
+ num.searches=1, seed=0, verbose=FALSE,
+ trace=FALSE, timing.on=FALSE)

Setting trace=TRUE, the majority consensus network is plotted as the searches progress.

4.4. Multiple Search Strategies

To estimate a robust additive BN for a given dataset is it necessary to run many searches and then
summarize the results of these searches. The function search.hillclimber()
with num.searches>1 run multiple searches. It is necessary to use a single joint node cache over
all searches, using the function buildscorecache.

Conceptually it may seem more efficient to use one global node cache to allow node information to be
shared between different searches, however, in practice as the search space is so vast for some prob-
lems this can result in extremely slow searches. As the cache becomes larger it can take much more
time to search it (and it may need to be searched a very large number of times) than to simply perform
the appropriate numerical computation. Profiling using the google performance tool google-pprof
suggests that more than 80% of the computation time may be taken up by lookups. When starting
searches from different random places in the model space the number of individual node structures in
common between any two searches, relative to the total number of different node structures searched
over can be very small meaning a common node cache is inefficient. This may not be the case when
starting networks are relatively similar.

To help with performance monitoring it is possible to turn on timings using timing.on=TRUE
which then outputs the number of seconds of CPU time each individual search takes (using standard
libc functions declared in time.h).

> dag33 <- matrix( 0, 33, 33)
> colnames(dag33) <- rownames(dag33) <- names(var33) #Set names

Create empty DAGs:

> banned.mix <- matrix( 0, 33, 33)
> colnames(banned.mix)<- rownames(banned.mix)<- names(var33)
> retain.mix <- matrix( 0, 33, 33)
> colnames(retain.mix) <- rownames(retain.mix)<- names(var33)

Setup distribution list for mixed node:

> mydists.mix <- list( v1 = "binomial", v2 = "gaussian",
+ v3 = "binomial", v4 = "binomial", v5 = "gaussian",
+ v6 = "binomial" , v7 = "gaussian", v8 = "gaussian",
+ v9 = "binomial", v10 = "binomial", v11 = "binomial",
+ v12 = "binomial", v13 = "gaussian", v14 = "gaussian",
+ v15 = "binomial", v16 = "gaussian", v17 = "gaussian",
+ v18 = "binomial", v19 = "binomial", v20 = "binomial",
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+ v21 = "binomial", v22 = "gaussian", v23 = "gaussian",
+ v24 = "gaussian", v25 = "gaussian", v26 = "binomial",
+ v27 = "binomial", v28 = "binomial", v29 = "gaussian",
+ v30 = "gaussian", v31 = "gaussian", v32 = "binomial",
+ v33 = "gaussian")
> n.searches <- 10

The number 10 is an example only, it must be much larger in practice. Set the parent limits:

> max.par <- 1

We set only one parent, because the search with buildscorecache() take some minutes. Now
we build the cache:

> mycache.mix <- buildscorecache( data.df=var33, data.dists=mydists.mix,
+ dag.banned=banned.mix, dag.retained=retain.mix, max.parents=max.par)

Repeat but this time have the majority consensus network plotted as the searches progress:

> myres.mlp <- search.hillclimber(score.cache=mycache.mix,
+ num.searches=n.searches, seed=0, verbose=FALSE,
+ trace=FALSE, timing.on=FALSE)

4.5. Creating a Summary Network: Majority Consensus

Having run many heuristic searches, then the next challenge is to summarise these results to allow
for ready identification of the joint dependencies most supported by the data. One common, and very
simple approach is to produce a single robust BN model of the data mimicing the approach used in
phylogenetics to create majority consensus trees. A majority consensus DAG is constructed from all
the arcs present in at least 50% of the locally optimal DAGs found in the search heuristics. This creates
a single summary network. Combining results from different runs of search.hillclimber()
or search.hillclimber() is straightforward, although note that it is necessary to check for
duplicate random starting networks, as while highly unlikely this is theoretically possible. The fol-
lowing code provides a simple way to produce a majority consensus network and Figure 12 shows the
resulting network - note that this is an example only and many thousands of searches may need to be
conducted to achieve robust results. One simple ad-hoc method for assessing how many searches are
needed is to run a number of searches and split the results into two (random) groups, and calculate
the majority consensus network within each group. If these are the same then it suggests that suffi-
cient searches have been run. To plot the majority consensus network use the result of the function
search.hillclimber, see below for some example.

> tographviz( dag= myres.mlp$consensus, data.df=var33,
+ data.dists=mydists.mix, outfile="dagcon.dot") #Create file

dagcon.dot can then be processed with graphviz un a unix shell typing: "dot -Tpdf dagcon.dot -o
dagcon.pdf" or using gedit if on Windows.
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Figure 12: Example majority consensus network (from the results of only 10 searches)

4.6. Creating a Summary Network: Pruning

Rather than use the majority consensus network as the most appropriate model of the data, an alter-
native approach is to choose the single best model found during a large number of searches. To deter-
mine sufficient heuristic searches have been run to provide reasonable coverage of all the features of
the model landscape, then again checking for a stable majority consensus network as in Section 4.5,
seems a sensible approach. Once the best overall DAG has been identified then the next task is to
check this model for over-fitting. Unlike with the majority consensus network, which effective “av-
erages” over many different competing models and therefore should generally comprise only robust
structural features, choosing the DAG from a single model search is far more likely to contain some
spurious features. When dealing with smaller data sets, say, of several hundred observations then
this is extremely likely, as can easily be demonstrated using simulated data. A simple assessment of
overfitting can be made by comparing the number of arcs in the majority consensus network with the
number of arcs in the best fitting model. We have found that in larger data sets the majority consensus
and best fitting model can be almost identical, while in smaller data sets the best fitting models may
have many more arcs - suggesting a degree of overfitting.

An advantage of choosing a DAG from an individual search is that unlike averaging over lots of
different structures, as in the construction of a majority consensus network, the model chosen here
has a structure which was actually found during a search across the model landscape. In contrast,
the majority consensus network is a derived model which may never have been found chosen during
even an exhaustive search, indeed it may even comprise of contradictory features as is a usual risk
in averaging over different explanations (models) of data. In addition, a majority consensus network
need also not be acyclic, although in practice this can be easily corrected by reversing one or more
arcs to produce an appropriate DAG.

A simple compromise between the risk of over-fitting in choosing the single highest scoring DAG, and
the risk of inappropriately averaging across different distinct data generating processes, is to prune the
highest scoring DAG using the majority consensus model. In short, an element by element multiply
of the highest scoring DAG and the majority consensus DAG, which gives a new DAG which only
contains the structural features in both models.
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5. Summary

The abn library provides a range of Bayesian network models to assist with identifying statistical
dependencies in complex data, in particular models which are multidimensional analogues of gener-
alised linear models. This process is typically referred to as structure learning, or structure discovery,
and is computational extremely challenging. Heuristics are the only options for data comprising of
larger numbers of variables. As with all model selection, over-modelling is an everpresent danger and
using either: i) summary models comprising of structural features present in many locally optimal
models or else; ii) using parametric bootstrapping to determine the robustness of the features in a sin-
gle locally optimal model are likely essential to provide robust results. An alternative presented was
exact order based searches, in particular finding the globally most probable structure. This approach
is appealing as it is exact, but despite collapsing DAGs into orderings for larger scale problems it
may not be feasible. For further in-depth analysis about abn refer to the website: www.r-bayesian-
networks.org.
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Additive Bayesian network: ABN

Bayesian network analysis is a form of probabilistic modeling which derives from
empirical data a directed acyclic graph (DAG) describing the dependency structure
between random variables. An ABN consists of a DAG where each node in the graph
comprises a generalized linear model (GLM).
ABNs can be applied in areas such as epidemiological and medical analysis.
Model search algorithms are used to identify those DAG structures most supported
by the data. This process is typically referred to as structure learning and is compu-
tational extremely challenging. We propose new functions to do find a good ABN.

Main steps to perform data analysis using abn:

1. Load the data and prepare them for searching procedure
2a. Find the best fitting ABN structure using an exact search: mostprobable
2b. Find a fitting ABN structure using a heuristic search: search.hillclimber
3. Fit an ABN to data and estimate the posterior densities in ABN: fitabn
4. Parameter interpretation and conclusions

1. Load the data and prepare them for searching procedure

Load the data, included as part of abn R package, comprising of 10’000 observa-
tions from 10 variables:
> library( abn)
> mydat <- ex1.dag.data #see ?ex1.dag.data

Setup distribution list for each node, e.g. each variable, in the data set where:
• b: binomial,
• g: Gaussian,
• p: Poisson.
> mydists <- list( b1="binomial",p1="poisson",
+ g1="gaussian",b2="binomial",
+ p2="poisson",b3="binomial",
+ g2="gaussian",b4="binomial",
+ b5="binomial",g3="gaussian")

Set two matrices, ban and ret, refering to the arcs that can not be and which are
forced to be present in the model.
Here we impose no constraints. Column and row names must be set:

> ban <- matrix( 0, nrow=10, ncol=10)
> colnames( ban) <- rownames( ban) <- names( mydat)

> ret <- matrix( 0, nrow=10, ncol=10)
> colnames( ret) <- rownames( ret) <- names( mydat)

Limited number of parents present in the model:
> max.par <- 4

The function buildscorecache builds a cache of goodness of fit, using default
Gaussian uninformative parameter prior and uniform structural prior:
> mycache <- buildscorecache( data.df=mydat,
+ dag.banned=ban, data.dists=mydists,
+ dag.retained=ret, max.parents=max.par)

2a. Find the best fitting ABN structure using an exact search

The function mostprobable finds the globally best DAG.
The exact approach is only feasible with a small number of variables, up to 20:
> best.dag <- mostprobable( score.cache=mycache)

The function tographviz creates a text file suitable for plotting with graphviz:
> tographviz( dag.m=best.dag,data.df=mydat,
+ data.dists=mydists,outfile="BestDag.dot")

b1

p2 b3

p1

g2

g1

b4 b5

g3

b2

Best DAG
using exact
search

2b. Find a fitting ABN structure using a heuristic search

Heuristics are the only options for data set larger than 20 variables.
The function search.hillclimber repeats the search locally and plots the ma-
jority consensus network as the searches progress:

> heur.res <- search.hillclimber( score.cache=mycache,
+ num.searches=1000, trace=TRUE,
+ verbose=FALSE, timing.on=FALSE)

b1

p2 b3b4

p1

g2

b5

g1

g3

b2

"Majority consensus"
DAG from 1000
heuristic searches.
Differences with best
DAG are highlighted
with colours

3. Fit an ABN to data and estimate the posterior densities

The function fitabn uses Laplace approximations to estimate the marginal poste-
rior density for each parameter in the model.
We fit the model to calculate its goodness of fit, log marginal likelihood:
> myres.bestdag <- fitabn( dag.m=best.dag,data.df=mydat,
+ data.dists=mydists)

The parameters can be estimated one at a time by manually giving a grid. We plot
the marginal posterior densities for node b3 with three parents, the covariates b1, b2
and g1, as in the model:

logit{P (b3 = 1)} = βb3,0 + βb3,1 · b1 + βb3,2 · b2 + βb3,3 · g1

Marginal posterior
densities for intercept
and covariates b1, b2
and g1 in node b3

4. Parameter interpretation and conclusions

The log odds ratio here is highly significantly different from 0. All of the effect
parameters, have 95% credible intervals which do not cross the origin. This is not
guaranteed to happen because no constraint was included in the model searching
process, all parameters in the model have been justified using marginal likelihood.

The R package abn provides functionality for identifying statistical dependencies in
complex data using ABN models, which are multidimensional analogues of GLMs.
The key distinction between GLM techniques and ABN analysis is that the latter tries
not only to identify statistically associated variables, but also to separate them into
those directly and indirectly dependent. In conclusion, data analysis using ABNs
have the potential to offer new insights into complex epidemiological systems.
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Abstract. This paper addresses the parameter learning process of an additive
Bayesian network (ABN) model for binary data. When an additive parametriza-
tion for Bayesian networks is used, the marginal likelihood (ABN network score)
computation is the major objective. In this paper, we introduce a novel conjugate
prior distribution for ABN that belongs to a flexible family of conjugate priors
called the Diaconis−Ylvisaker conjugate priors. We show that the suggested prior
is a generalization of the Dirichlet prior. Moreover, we prove that this prior satis-
fies the desirable independence assumptions for a parameter prior in DAG models.
Hence, it helps to address the goodness of fit calculation. The resulting ABN net-
work score is equal to the Gaussian ordinary hypergeometric function. However,
it can be approximated using the Laplace method. We then present a method
for selecting the hyperparameter priors in order to have the score equivalence
property satisfied. Finally, the priors, the derived methods and the usefulness are
illustrated by means of an example of a binary variable network.

MSC 2010 subject classifications: Primary 62C10, 62F15; secondary 62J12,
62P10, 62C12, 92C42.

Keywords: conjugacy, graphical models, marginal likelihood, hypergeometric
function, Laplace approximation, score equivalence.

1 Introduction

Additive Bayesian network (ABN) models are types of graphical models that extend
the usual multinomial logistic regression to multiple dependent variables through the
representation of joint probability distribution. ABNs are a special type of Bayesian
network (BN) models in that each node in the graph comprises a generalized linear
model. With regard to the latter, they consist of statistical models that derive a di-
rected acyclic graph (DAG) from empirical data, describing the dependency structure
of random variables. All types of BN models consist of two reciprocally dependent parts,
namely qualitative (the structure) and quantitative (the model parameters) parts. The
DAG is the graphical representation of the joint probability distribution of all random
variables in the data. The model parameters are represented by a local probability dis-
tribution for all the variables in the network. All the techinical details of BN and ABN
models, together with the learning process, are presented in Sections 2 and 3.

In the last few decades, BN modelling has been widely used in biomedical science
and in systems biology Poon et al. (2007a, 2008, 2007b); Needham et al. (2007); Dojer
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et al. (2006); Jansen et al. (2003); Djebbari and Quackenbush (2008); Hodges et al.
(2010) to analyse multi-dimensional data. However, it is only in the last few years
that ABN models have been applied to the veterinary epidemiology field as a result of
their ability to generalize standard regression methodologies. A general introduction to
BN modelling in veterinary epidemiology is provided by Lewis et al. (2011). Further
applications of BN to veterinary studies were described by Ward and Lewis (2013);
Wilson et al. (2013); Sanchez-Vazquez et al. (2012). Graphical modelling techniques
used to analyse epidemiological data were used by Firestone et al. (2013, 2014); Lewis
and McCormick (2012); Lewis (2012); Lewis and Ward (2013); Schemann et al. (2013);
Ludwig et al. (2013); McCormick et al. (2013), resulting in dozens of publications, and
references therein.

The result of fitting an ABN to a data set is translated into optimizing the likelihood
of observing the data under the studied model: the marginal likelihood (ABN network
score). The marginal likelihood computation is the major objective when dealing with
ABN models. The ABN network score is an integral over all the parameters that can be
interpreted as the probability that we could generate the data set if we were to select
the parameters for the structure randomly according to the parameter prior. To date,
we are only aware of approximation and numerical techniques, such as that of Laplace
(Tierney and Kadane, 1986) and the Newton method to compute the ABN network
score (Lewis, 2012). The crucial part in this computation is the choice of the parameter
prior. So far, only (uninformative) Gaussian priors, with a mean of zero and a large
precision, have been taken into account. Unfortunately, this leads to very high costs in
terms of computation time due to the difficulty of the integral evaluation.

In this paper, in order to simplify the marginal likelihood computation, in Section 4
we introduce a novel conjugate prior distribution for ABN that belongs to a flexible
family of conjugate priors called the Diaconis−Ylvisaker conjugate prior (Diaconis and
Ylvisaker, 1979). Moreover, this prior is also a special case of the classical Zellner’s
g-prior (Zellner, 1986), as shown in Sabanés Bové and Held (2011). We show that the
suggested prior is a generalization of the Dirichlet density. We then ensure that the
desirable independence assumptions are fulfilled (each node can be considered sepa-
rately), as this is crucial in a parameter prior for DAG models, and in order to gain
strong simplifications in the integral computation.

The advantages brought about by the conjugacy and the prior’s independence prop-
erties are discussed and exploited in Section 5. The resulting ABN network score can
be represented as the 2F1 ordinary Gaussian hypergeometric functions. As is tradition-
ally done in the Bayesian literature (e.g. Bernardo and Smith, 2000), it can be also
approximated using the Laplace method. We illustrate the difference between the re-
sults found using the Laplace approximatio via some graphical examples. The posterior
density, resulting from the choice of the prior, the derived methods and their usefulness
are illustrated by the example of a network of binary variables.

Finally, we provide some concluding remarks about possible improvements and lim-
itations of the developed methodology in Section 6. In particular, we mention a sim-
plification of the 2F1 hypergeometric function, represented by its link with the Beta
Truncated function. We suggest some possible extensions of the additive models via
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other distributions, that are always part of the exponential family and the generalized
linear models. Proofs and technical results are presented in the appendix.

In the supplementary material, we prove that the introduced prior satisfies the likeli-
hood equivalence property (data should not help to discriminate between network struc-
tures that represent the same assertions of conditional independence), and we present
a method for selecting the hyperparameter priors in order to have the score equivalence
property satisfied between two models that are likelihood equivalent. The ‘equivalence’
part has not been placed in the appendix because it is a corollary of the results found,
and to reduce the number of pages.

2 From Bayesian to additive Bayesian networks

A Bayesian network is a form of graphical model that derives a directed acyclic graph
from empirical data, describing the dependency structure between random variables. It
provides a compact representation of the joint probability distribution using a combina-
tion of graph (the qualitative part) and probability (the quantitative part) theory. The
technical foundations of BN modelling lie within the machine learning and data mining
literature (Cooper and Herskovits, 1992; Friedman et al., 1997; Friedman and Koller,
2003; Jensen, 2001; Boettcher, 2004; Heckerman et al., 1995).

More precisely, a BN model B for a set of random variables X = {X1, . . . , Xn}
consists of:

• A directed acyclic graph (DAG) structure S = (V ,E ), where V is a finite set
of vertices or nodes and E is a finite set of directed edges between the vertices.
A DAG is acyclic; hence, the edges in E do not form directed cycles. A random
variable Xj corresponds to each node j ∈ V = {1, . . . , n} in the graph. We do not
distinguish between a variable Xj and the corresponding node j.

• A set of parents for a node j is denoted by Paj . A vertex j is said to be a parent
of a node k if the edge set E contains an edge from j to k. Pj indicates the total
number of parents for a node j : dim(Paj) = Pj .

• A set of local probability distributions for all variables in the network called θB.
Each node j, with parent set Paj , is parametrized by a local probability distribu-
tion: P (Xj |Paj).

Edges represent both marginal and conditional dependencies. The main role of the
network structure is to express the conditional independence relationships among the
variables in the model through graphical separation, thus specifying the factorization
of the global probability distribution:

P (X ) =
n∏

j=1

P (Xj |Paj). (2.1)
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X X

X

X X

1 2
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4 5

Figure 1: A Bayesian network model B for five random variables.

P (X1, X2, X3, X4, X5) =
P (X1)P (X2)
P (X3|Pa3 = {X1, X2})
P (X4|Pa4 = {X3})P (X5|Pa5 = {X3})

We denote a BN model, B, for a set of random variables, X , by a pair B = (S,θB).
The DAG defines the structure S, and θB the parametrization of the model B. In order
to specify a B for X , we must therefore specify a DAG structure and a set of local
probability distributions.

Figure 1 shows an example of B for five random variables; the joint probability
distribution can be factorized into five factors, one for each random variable conditioned
on its parents: P (X1, X2, X3, X4, X5) = P (X1)P (X2)P (X3|Pa3 = {X1, X2})
P (X4|Pa4 = {X3})P (X5|Pa5 = {X3}).

2.1 Additive Bayesian networks

In order to introduce an additive Bayesian Network (ABN) model A, some further
notation is needed.

Let Sj be the number of states of the variable Xj , and s = {1, . . . , Sj} the corre-
sponding set of indexes. Let Cj =

∏
p:Xp∈Paj

Sp be the number of configurations of Paj
and c = {1, . . . , Cj} indicates the corresponding set of indexes for the different parents
configurations of Paj . Let Xj = s indicate the possible observations for Xj . Hence, let
P (Xj = s|Paj = c) be the probability that Xj = s, given the c-th parent configuration
of Paj , denoted by the multinomial parameter θjcs. Therefore, the following notation
is used:

θjc =

Sj⋃

s=1

{θjcs},

θj =

Cj⋃

c=1

{θjc},
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θB =
n⋃

j=1

{θj}.

This means that θjc denotes the set of local probability distributions associated with
a node j, its parent configuration c and node states s. θj denotes the set of all pa-
rameters associated with a node j and its parent configuration c. θB denotes the set of
local probability distributions for all variables in the Bayesian network B. All the local
probability distributions are unrestricted, discrete distributions with P (Xj = s|Paj =

c) ≥ 0 ∀j ∈ V. Then
∑Sj

s=1 θjcs = 1 and 0 ≤ θjcs ≤ 1.

Using this parametrization, the joint probability distribution factorizes into:

P (X |θB,S) =
n∏

j=1

P (Xj |Paj = c,θjc).

It is now possible to introduce an ABN model A. In this work, we are going to refer
to additive Bayesian networks with the abbreviation ABN and the notation A used
interchangeably.

An additive Bayesian network A consists of a Bayesian network B that generalizes
the multinomial logistic regression model M (Rijmen, 2008). The multinomial logistic
regression model M can be integrated into a Bayesian network B by modelling each
conditional probability table P (Xj |Paj) = θjcs of a particular Bayesian network B via
a multinomial logistic regression model, where Xj is progressively the outcome variable,
and the design matrix Z ij is constructed from Paj .

An additive Bayesian network model A without restrictions on the conditional pro-
bability tables is obtained by constructing Z ij from Paj as follows. For each possible
configuration c on Paj , c = 1, . . . , Cj , a dummy variable is defined. For each observa-
tion i, the covariate vector z ij = (zij1, . . . , zijCj

)T is defined as an indicator vector with
zijc = 1 if the configuration c is observed, and zijc = 0 if not. The (Sj − 1)× (Sj − 1)Cj
design matrix Z ij is constructed from z ij and βj = (βj11, . . . , βjcs, . . . , βjCj(Sj−1))

T , of
dimension (Sj − 1)Cj × 1, is the coefficients vector for the additive parameters. Then,
the expression for the linear predictor for each observation i is instantiated by:

ηij =




ηij1
...

ηij(Sj−1)


 = Z ijβj =




zTij 0 0

0
. . . 0

0 0 zTij







βj11

...
βjCj(Sj−1)


 .

The corresponding conditional probabilities are obtained by applying the inverse of the
link function to the linear predictor.

Therefore, we denote an additive Bayesian network model A for a set of random
variables X by a pair A = (S,βA) = (S, h(θB)), where h(θB) = logit(θB) = βA. The
main difference between a B and aA is the re-parametrization of the θB parameters, seen
as a function of the additive parameters βA. From the definition of the additive Bayesian
network model A, a ‘transformed’ notation can be used to indicate the parameters in
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6 Conjugate Priors for ABNs

an A resulting from the logit link transformation function, with a similar meaning to
that of a B model:

βA = logit(θB) = h(θB) =
n⋃

j=1

{βj},

βj =

Cj⋃

c=1

{βjc},

βjc =

Sj⋃

s=1

{βjcs}.

In this work, we are interested in specifying networks for random variables X that
follow a Bernoulli distribution, as specified in Dai et al. (2013). Therefore, we are going
to work with networks containing variables with only two states: binary variables. Hence,
a special case of the multinomial logistic regression model is treated, namely the binary
logistic regression model. Therefore, in this specific discrete Bernoulli case, we have Sj =
2 and Cj =

∏
p:Xp∈Paj

Sp = 2Pj as the number of configurations of Paj . In particular,

each conditional probability table P (Xj = 1|Paj) = θjc1 from a B is modelled via a
binary logistic regression model. Hence, we get:

θjc1 =
eZ ijβj

1 + eZ ijβj
=

eβjc1

1 + eβjc1
⇒ βjc1 = h(θjc1) = logit(θjc1) = log

(
θjc1

1− θjc1

)
.

The main novelty for an additive Bayesian network is the change of focus from a
parametrization expressed in terms of θjcs to a corresponding one represented in terms
of βjcs. It is a one-to-one transformation from the θB to the βA parameters. From now
on, we are going to work with the additive parameters and model A = (S,βA) instead
of using the standard Bayesian network notation B = (S,θB). It will be clarified and
used, only if necessary.

3 Learning an additive Bayesian network model

In the Bayesian network literature, Boettcher (2004); Buntine (1991); Friedman and
Koller (2003); Heckerman (1998); Heckerman et al. (1995), the parameter estimation
and the model selection process are known as learning : 1) parameter learning : specifying
the local probability distributions (model parameters βA); and 2) structure learning :
specifying the DAG structure S. Hence, when constructing an additive Bayesian network
model A, two steps need to be considered. Being in a Bayesian framework, given a data
set D, we have:

P (A|D) = P (βA,S|D)︸ ︷︷ ︸
model learning

= P (βA|S,D)︸ ︷︷ ︸
parameter learning

· P (S|D).︸ ︷︷ ︸
structure learning

Both the learning procedures are relevant and necessary in order to understand the
final model. They are interconnected and dependent on each other. Even though, the
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major aim in this work is the choice of the parameter prior and its properties, mainly
linked to parameter learning, both the procedures will be clarified. First, the struc-
ture learning process is explained. The principal score functions, and related searching
strategies to look for the best model, are presented. The parameter learning process is
then presented via a list of key assumptions that helps to simplify the most demanding
computations.

3.1 Learning the Structure

In this section, the main score functions, used for some searching methods to learn the
structure of an ABN network, are presented. Finally, the specific ABN network score
and its related difficulties in the computation are described.

Learning the Structure of Bayesian networks

The aim of this section is to introduce the process of learning the structure of an ABN,
similar to that in Jensen (2001).

Consider having a data set D from an ABN A1 over the set of variables X . The
task is now to find a Bayesian network A2 from the data set D that is close to A1. In
theory, this can be done by performing parameter learning for all possible structures, and
then selecting as candidates those models for that the distribution of A2 is close to the
sample distribution. Unfortunately, by following this simplified approach, computational
problems and issues with feasibility arise. Moreover, in Chickering (1996); Chickering
et al. (2004) are presented one of the latest in a series of results that show that the task
of learning Bayesian network structures is NP-hard.

Therefore, another searching strategy needs to be followed. The first method for
the automated learning of a BN was the method that learned tree-structured models
(Chow and Liu, 1968). At present, there are two different types of methods for learning
the structure of a BN: constraint-based and score-based. The first establishes a set of
conditional independence statements holding for the data, and uses this set to build
a network with graphical separation properties corresponding to the conditional inde-
pendence properties determined. The second creates some candidate BNs, calculates a
score for each candidate, and returns the network with the highest score. Cowell (2001)
has shown that, according to often quoted assumptions, constraint-based learning and
score-based learning are equivalent.

In the next section score-based methods are presented, because of their link with
the score function, which is a crucial element in this work.

Score-based learning methods

When performing structural learning, the aim is to look for a BN structure that can
represent the data set sufficiently well without being overly complex.

Score-based methods assign a number (a score) to each BN structure. The score
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8 Conjugate Priors for ABNs

reflects the ‘usefulness’ of the structure, in other words, how likely it is that the structure
could have been used to generate the data set at hand. The task of score-based learning
can then be considered to be a search problem: looking for the model structure with
the highest score.

Therefore, a BN can be learned from a data set by performing a search of all the
DAGs and selecting the one with the highest score. Hence, in order to specify a score-
based learning algorithm entirely, two components are needed: a score function and a
search procedure.

The search procedure and the equivalent class search are presented in the supple-
mentary material, while we introduce the Bayesian score functions below.

Bayesian score functions

A good score function should, at least have the following two properties: (a) a bal-
ance between the accuracy and the complexity of the structure; and (b) it should be
computationally tractable to evaluate.

Moreover, a desirable property for a score function is the decomposability, that occurs
if it can be expressed as a sum of local scores, one for each node in the data D:

score (D,S) =
n∑

j=1

score (Xj ,Paj ,D) .

An example of a good Bayesian score function, that contains both a term measuring
how well the data fits the model and a term that controls model complexity, is the
Bayesian Information Criterion (BIC) (Bernardo and Smith, 2000).

The marginal likelihood is the classical Bayesian approach for measuring the fitness
of a candidate BN structure, S. Specifically, we have:

P (S|D) =
P (S)P (D|S)

P (D)
, (3.1)

where P (D)
−1

is the normalization constant, and is considered a constant because it
does not depend on S. From (3.1), it is easy to see that, in order to score a structure
based on its posterior probability given the data, we need two terms, namely the prior
probability for the structures P (S) and the marginal likelihood of the structure given the
data P (D|S). Generally, the prior probability distribution for the structures is chosen
in order to be relatively easy to calculate (it is usually assumed that all structures are
equally supported, leading to an uninformative structure prior) or with appropriate
studies Scutari (2013). Therefore, the main computational problem is the calculation of
the marginal likelihood which is needed to deal with the parameters of the model βA:

P (D|S) =

∫

βA

P (D|S,βA)π (βA|S) dβA, (3.2)
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where π (βA|S) is the prior probability distribution over the parameters, conditioned
on S. The integral in the above equation is over all the parameters and over all the
possible Bayesian networks with the same structure, but with different conditional pro-
bability distributions. Intuitively, the marginal likelihood can therefore be interpreted
as the probability that the data D could be generated if the parameters for S were
selected randomly according to the parameter prior π (βA|S).

As specified above, the difficult part in the calculation of P (D|S) is the evaluation of
the integral in (3.2). Fortunately, it has been shown by Cooper and Herskovits (1992);
Heckerman et al. (1995) that, for a standard Bayesian network model B, the evaluation
of this integral can be reduced to a simple counting problem, that can be executed in
polynomial time based on three crucial assumptions for the data set D (A1 to A3) and
five regarding the parameters (A4 to A8), that are later clarified in the Learning the
Parameters section. The first 3 assumptions are important to guarantee that we are
working with data that are fully representative of a BN, because their completeness
and independence facilitate the factorization of each entry. In particular, we have:

A1. The data set D is a faithful sample of a Bayesian network.

A2. Observations in the data setD are independent, given the Bayesian network model.

A3. The data set D is complete.

We work with a fully observed data set D = {x1·, . . . , xm·}, where each xi· is a set of
simultaneous values of the set of variables X = {X1, . . . , Xn}. The data set D is an
m×n matrix, where the n columns are associated with the random variables in X and
the m rows are the related realizations. Hence, we consider a data set D that fulfils
assumptions A2 and A3.

In the literature, it has been shown that the BIC score of a model is an asymptotic
approximation of the marginal likelihood of that model, and it is equivalent to the min-
imum description length proposed by Rissanen (1987), and adopted as a decomposable
consistent score for Bayesian networks by Lam and Bacchus (1994) and Friedman and
Goldszmidt (1998). A Bayesian metric for scoring models was proposed by Cooper and
Herskovits (1992), where a search algorithm that performs a greedy search conditioned
on a linear ordering of the variables (known as the K2 algorithm) was also suggested.
Finally, Friedman and Koller (2003) provided a method for calculating the posterior
probability of the absence or presence of individual arcs in the generating net given the
data.

The score function for ABN

The marginal likelihood has been introduced previously. In this subsection, we describe
how it is adapted for ABN models. As a result of the decomposability property of the
score function, the total network score, the marginal likelihood for an ABN model, can
be written as P (D|S) =

∏n
j=1 P (Dj |S). In a binary logistic additive Bayesian network
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model A, the network score for node j is given by:

P (Dj |S) =

∫

βj

m∏

i=1

(
ez

T
ijβj

1 + ez
T
ijβj

)xij
(

1

1 + ez
T
ijβj

)1−xij

π(βj |S)dβj , (3.3)

where Dj are the observed data at node j, and consist of tuples of [xij , z
T
ij ]. The pa-

rameter vector at node j is represented by βj , and has the same length as the possible
parent configuration: dim(βj) = Cj . The prior at node j is indicated by π(βj |S), and
is the unknown quantity that we characterize.

The main difficulty in moving towards an additive model is the computation of the
marginal likelihood. In fact, additive Bayesian network models A require considerably
more computational time than do standard Bayesian network models B because, thus
far, no work that aims to simplify the integral has been developed (3.3) in a similar
framework to that of Cooper and Herskovits (1992); Heckerman et al. (1995); Geiger
and Heckerman (1994); Boettcher (2004).

We aim to show that a simplified expression for (3.3), based on assumptions A1 to
A3 and A4 to A8, listed below, can be also obtained for an ABN model. In order to
achieve this goal, a crucial role is played by the prior π (βA|S), that has to be chosen
properly and accurately.

We are going now to explain how the parameters estimation is conducted in the
context of standard Bayesian networks and then describe and characterize our results
in the two upcoming Sections 4 and 5.

3.2 Learning the Parameters

In this section, we assume that the structure of a BN model over the variables X is
known, but that the estimates for the conditional probabilities are not known. Hence,
the specification of the parameters in the distributions is considered, and the aim is to
estimate the parameters of the model: the conditional probabilities.

The first assumption is related to the parameter distribution, called the Multinomial
sample:

A4. The parameters define a Multinomial distribution for each variable Xj and for
each configuration of the parents.

When working in a multivariate framework with more than one variable involved, we
look at the relationship of the parameters for all the variables in the network. In or-
der to ensure that the parameters can be learned independently we will satisfy two
independence properties in order to ensure that all the mathematical properties that
enable the computation of the integral (3.3) are met. These properties were introduced
by Spiegelhalter and Lauritzen (1990), and later expanded by Heckerman et al. (1995).
They are denoted by global and local parameter independence. The former means that
the parameters for the various variables are independent that, in practice, means that
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it is possible to modify the tables for the variables independently. The latter means
that the parameters are independent for each configuration of the discrete parents. In
practice, this means that by having two different configurations, Pa1

j and Pa2
j , the

uncertainties on P
(
Xj |Pa1

j

)
and on P

(
Xj |Pa2

j

)
are independent, and it is possible to

modify the parameters for the two distributions independently. If the parameters satisfy
the aforementioned independence property, then we have:

A5. Global parameter independence : π(βA|S) =
∏n
j=1 π(βj |S).

A6. Local parameter independence : π(βj |S) =
∏Cj

c=1 π(βjc|S), j = 1, . . . , n.

The next assumption is related to the choice of the prior. Specific distributions guar-
antee a close form expression for the posterior, helping with the computation of (3.3):

A7. The prior distribution of the parameters is a Dirichlet distribution.

Another important assumption is the parameter modularity :

A8. If a node Xj has the same parents in two structures S1 and S2 (PaS1j = PaS2j ),
then P (βjc|S1) = P (βjc|S2), c = 1, . . . , Cj .

This means that each discrete distribution has the property whereby, if the joint pro-
bability distribution P (X ) can be factorized according to a structure S, it can also be
factorized according to all other structures that represent the same set of conditional
independencies as S.

These five assumptions (A4 to A8), together with A1 to A3, complete the eight
points that allow reducing the computation of the integral (3.3) to a counting problem.

The parameters are learned using the principle of maximum likelihood ; see Held and
Sabanés Bové (2014); Jensen (2001).

4 The suitable additive conjugate prior

In this section, we introduce a novel prior distribution for ABN, that belongs to a flexible
family of conjugate priors called the Diaconis-Ylvisaker conjugate priors (Diaconis and
Ylvisaker, 1979). We show that the suggested prior is a generalization of the Dirichlet
distribution for the additive parameters in an ABN model, similar to that in Massam
et al. (2009). Moreover, we prove that this prior satisfies the desirable independence
assumptions for a parameter prior in DAG models. Likelihood equivalence, as shown
in the supplementary material and important to obtain a score equivalent function, is
also satisfied. All these properties help to address the goodness of fit calculation and
the posterior parameter estimation.

In our work, we want to choose an appropriate prior for the models in object, in order
to avoid the Lindley paradox (Lindley, 1957). Specifically, the principal idea we decided
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12 Conjugate Priors for ABNs

to follow was to choose a conjugate prior for ABN models. Therefore, the computation of
the network score should be easier, as a result of the conjugacy property, that simplifies
the resulting product in equation (3.3). Moreover, the choice of a conjugate prior leads
to an analytic form solution for the posterior mode β∗1 as shown later, without the
necessity of a numerical solution approximation via the Newton method, as has been
done to date.

Starting from the Diaconis-Ylvisaker flexible family of conjugate priors Diaconis and
Ylvisaker (1979), Chen and Ibrahim (2003) generalized the result to conjugate priors
for generalized linear models (GLMs). We started from the suggested prior in Chen and
Ibrahim (2003), and adapted this finding to an ABN model. An ABN model consists
of a DAG in which each node in the graph comprises a GLM; hence, the conjugacy
with regard to a distribution belonging to the exponential family, and in particular to
a GLM, was a good compromise.

So far, we are aware of work in which only an improper, informative Gaussian prior
for the additive parameters has been considered, see, e.g., Lewis (2012). Therefore, we
want to present an alternative to this kind of complex model in order to gain some theo-
retical results and to improve the computation of the marginal likelihood. The following
proposition shows how it is possible to generalize the prior Dirichlet density, used in BN
model B, with a suitable prior useful for the additive parameters present in an ABN
model A. A model that does not impose any restriction on the conditional probabilities
is called a complete model, which we work to address our aims.

Proposition 1. For any complete Bayesian network structure S in a domain X, for
binary variables, if the prior density π(θB) is Dirichlet:

π(θB) = c
n∏

j=1

Cj∏

c=1

2∏

s=1

[θjcs]
δjcs−1. (4.1)

then the prior density π(βA) for a complete additive Bayesian network model A is
a result of the integration of the multinomial logistic regression model M; hence the
application of the ‘logit transformation’ to each parameter of the Bayesian network B:

θjcs =
eβjcs

1 + eβjcs
= h−1(βjcs) takes the following expression:

π(βA) ∝
n∏

j=1

Cj∏

c=1

(
eβjc1

1 + eβjc1

)δjc1 (
1

1 + eβjc1

)δjc2
=

n∏

j=1

Cj∏

c=1

(
eβjc1

)δjc1

(1 + eβjc1)
∑

s δjcs
. (4.2)

The proof of the proposition can be found in the appendix.

Proposition 2. Let A be any complete additive Bayesian network model in a domain X.

The Jacobian for the transformation from θB to βA: JθB
h→βA , is:

JθB
h→βA =

n∏

j=1

Cj∏

c=1

θjc1(1− θjc1) =
n∏

j=1

Cj∏

c=1

[
h−1(βjc1)

dβjc1

]
=

n∏

j=1

Cj∏

c=1

eβjc1

(1 + eβjc1)2
. (4.3)
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The proof of the proposition can be also found in the appendix.

With this proposition, we introduce the ‘suitable’ conjugate prior and we show how
it can be linked to the generalized prior for the additive parameters (4.2) presented
previously.

Proposition 3. The generalized prior found in (4.2) can be linked to the Diaconis and
Ylvisaker (1979) conjugate priors for GLMs, introduced by Chen and Ibrahim (2003):

π(βA) ∝
n∏

j=1

exp

{
m∑

i=1

aj

(
bijz

T
ijβj − log(1 + ez

T
ijβj )

)}
. (4.4)

Proof. Starting with the expression (4.2), we show how it can be reduced to the
form (4.4):

π(βA) ∝
n∏

j=1

Cj∏

c=1

(
eβjc1

)δjc1

(1 + eβjc1)
∑

s δjcs

=
n∏

j=1

exp




∑

s

δjcs


 δjc1∑

s δjcs

Cj∑

c=1

βjc1 −
Cj∏

c=1

log(1 + eβjc1)





 .

The sum of all the possible parent combinations is nothing else than the sum of all the
observations in the design matrix; hence, we get:

π(βA) ∝
m∏

i=1

n∏

j=1

exp

{∑

s

δjcs

(
δjc1∑
s δjcs

zTijβj − log(1 + ez
T
ijβj )

)}

=
n∏

j=1

exp

{
m∑

i=1

∑

s

δjcs

(
δjc1∑
s δjcs

zTijβj − log(1 + ez
T
ijβj )

)}
(4.5)

=
n∏

j=1

exp

{
m∑

i=1

aj

(
bijz

T
ijβj − log(1 + ez

T
ijβj )

)}
. (4.6)

Here, we let aj and bij be aj =

Cj⋃

c=1

(∑

s

δjcs

)
and bij =

Cj⋃

c=1

( δjc1∑
s δjcs

)
,∀i.

This proposition shows how the prior (4.5) can be adapted for the ABN models.

GLM models are a particular class of regression models, in which the outcome vari-
able belongs to a distribution from the exponential family. The prior (4.4) is conjugate
for GLM. We then indicate its distribution using E , for the link with the exponential
family:

βA ∼ E(aA; bA). (4.7)
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14 Conjugate Priors for ABNs

Figure 2: Bivariate representation, based on contour lines, of prior (4.4). The data
consist of 434 observations, with 95 positive counts for β111, 56 positive counts for β211,
124 positive counts for β311 and 202 positive counts for β411. On the left, the bivariate
prior for the variables (β111, β211) is shown for the hyperparameters choice: (aβ111β211 =
1/10, bβ1β2 = 1/5). On the right, the bivariate prior for the variables (β311, β411) is
shown, for the hyper-parameters choice: (aβ311β411

= 5/2, bβ311β411
= 9/10).

aA =

n⋃

j=1

aj ; aj =

Cj⋃

c=1

ajc. (4.8)

bA =
n⋃

j=1

bj ; bj = (b1j , . . . , bmj)
T ; ∀i bij =

Cj⋃

c=1

bjc. (4.9)

The two prior hyperparameters aj and bij have the following meaning:

- aj > 0 ∀j is seen as a prior sample size, that controls the dispersion;

- 0 < bij < 1 ∀i, j can be seen as the marginal mean of Xj , that affects the prior
mode, and plays a role in the symmetry.

A bivariate representation of the prior (4.4) can be found in Figure 2, based on a subset
of the ex5.dag.data data from the R-package abn (Lewis et al., 2015).

In order to show the prior’s suitability for additive Bayesian network models, we
continue to list its important properties.

4.1 Conjugacy and main simplifying assumptions

We proceed with the characterization of our prior, showing that it is conjugate with
respect to the multivariate Bernoulli likelihood.
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Proposition 4. The prior (4.4) is conjugate with respect to the multivariate Bernoulli
likelihood. The posterior distribution takes the following form:

π(βA|D) ∝
n∏

j=1

exp

{
m∑

i=1

{aj + 1}
({

ajbj + xij
aj + 1

}
zTijβj − log(1 + ez

T
ijβj )

)}
. (4.10)

Specifically, we see that (4.10) belong to an E distribution:

(βA|D) ∼ E
(
aA|D; bA|D

)
= E

(
aA + 1;

aAbA + xij
aA + 1

)
. (4.11)

Proof. The result follows from a straightforward multiplication of the multivariate

Bernoulli likelihood for node j: Lj =
m∏

i=1

(
ez

T
ijβj

1 + ez
T
ijβj

)xij (
1

1 + ez
T
ijβj

)1−xij

, and the

prior in (4.4), followed by recognition of the resulting posterior in (4.10).

This result is a generalization, in a multivariate framework, of the one found in Chen
and Ibrahim (2003), Theorem 2.2.

In order to characterize the prior specific to additive Bayesian networks A properly,
we showed that the prior (4.4) satisfies the six main assumptions for standard Bayesian
network models B, as presented in Heckerman et al. (1995); Geiger and Heckerman
(2002):

A4. Multinomial sample

This point indicates that the parameters follow a multinomial distribution. It is
fulfilled because the Bernoulli distribution is a special case of the multinomial one.
βA is a one-to-one transformation of the multinomial parameters θB.

Parameter independence

The prior can be factorized across the nodes present in the domain, as well as
across all the possible parent combinations. From the previous expressions (4.2)
and (4.4), it is possible to see this factorization easily. Hence, we get both:

A5. Global independence: π(βA|S) =
n∏

j=1

π(βj |S).

A6 Local independence: j = 1, . . . , n, π(βj |S) =

Cj∏

c=1

π(βjc|S).

An important consequence of parameter independence is that, for each configura-
tion of the discrete parents, we can update the parameters in the local distributions
independently. This also means that if we have local conjugacy, i.e., the distribu-
tions of βjcs belong to a conjugate family, because of parameter independence,
we then have global conjugacy, i.e., P (βA), the joint distribution of βA belongs
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16 Conjugate Priors for ABNs

to a conjugate family. With this we can show that parameter independence is a
conjugate property, meaning that, as a result of the parameter independence and
the conjugacy property, we also have a posterior independence property.

A7. Dirichlet

This assumption is linked to the distribution of the prior, which should belong to
a Dirichlet distribution. With the Prop. 1, we showed that our prior is a general-
ization of the Dirichlet distribution. Hence, this property is satisfied.

A8. Prior modularity

Given that the two network structures S1 and S2 are related to the two models A1

and A2 such that both are feasible (P (S1) > 0 and P (S2) > 0), if a variable Xj

has the same parents in A1 and A2, then it also has the same prior, specifically:

π(βjc|S1) = π(βjc|S2), c = 1, . . . , Cj .

This last assumption is additional to the 6 previously stated, because it is relevant
only if one is interested in score equivalent networks.

A9 Likelihood equivalence

Given two additive network models A1 and A2 such that both are possible
(P (A2) > 0 and P (A2) > 0), if A1 and A1 are equivalent, then they have the
same likelihood. This assumption is shown in the supplementary material.

5 Marginal likelihood computation

In the following section, the advantages brought about by the new prior and its prop-
erty (conjugacy) are described. The issue related to the computation of the marginal
likelihood and its related easy form of expression will be explained. Starting from the
simplest scenario of an orphan node case, all the details are explained in order to arrive
at a generalized form for an arbitrary number of parents.

As explained in the previous sections, the main difficulty in moving towards an ad-
ditive parametrization is the computation of the network score, the marginal likelihood.
So far, we are only aware of work Lewis (2012) using the Laplace approximation to
calculate the marginal likelihood.

As a result of the conjugacy property of the prior (4.4), obtaining the resulting
product inside the integrand of the network score is straightforward. However, the nor-
malizing constant, obtained by the computation of the integral (3.2) is not trivial to
obtain. Later, we will exploit different scenarios to achieve the easiest results.

Choosing the prior (4.4), the marginal likelihood at each node j becomes:

P (Dj |S) =

∫ +∞

−∞

m∏

i=1

(
ez

T
ijβj

1 + ez
T
ijβj

)xij
(

1

1 + ez
T
ijβj

)1−xij

(
ez

T
ijβj

)ajbij
(

1 + ez
T
ijβj

)aj dβj . (5.1)
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From the above expression, we have the data set Dj , the parameter vector βj , the design
matrix Zij and the related prior hyperparameters aj and bij described previously.

5.1 Orphan node case analytic form solution

We start with the simplest case of no parents for the related node j: the ‘orphan node’
case. For ease of notation, we denote j = 1 as the orphan node with which we are

dealing. Specifically, we have x1+ =

∑
i:X1,i=1X1,i

m ≤ 1 and z i1 = 1, bi1 = b1 ∀i. Due
to the absence of parents, we have β1 = β111; therefore, we indicate β1 with β1 to
simplify the notation because it is in a univariate case. For this one-dimensional case,
the posterior density for the orphan node 1 is:

π(β1|D) ∝
m∏

i=1

(
ez

T
i1β1

1 + ez
T
i1β1

)xi1
(

1

1 + ez
T
i1β1

)1−xi1

(
ez

T
i1β1

)a1bi1
(

1 + ez
T
i1β1

)a1

=
m∏

i=1

(
eβ1
)a1b1+xi1

(1 + eβ1)
a1+1 =

eβ1m(a1b1+x1+)

(1 + eβ1)
m(a1+1)

. (5.2)

⇒ β1|D ∼ E1
(
a1 + 1;

a1b1 + xi1
a1 + 1

)
.

Let the posterior hyperparameters be α1,1 := m(a1b1 + x1+) and γ1,1 := m(a1 + 1);
hence, the resulting ABN marginal likelihood for the orphan node 1, linked to (5.2), is:

P (D1|S) ∝
∫ +∞

−∞

eβ1m(a1b1+x1+)

(1 + eβ1)
m(a1+1)

dβ1 =

∫ +∞

−∞

eβ1·α1,1

(1 + eβ1)
γ1,1 dβ1. (5.3)

From Abramowitz and Stegun (1992); Gradshteyn and Ryzhik (1965), (5.3) reduces to:

P (D1|S) ∝ 2F1(γ1,1, γ1,1 − α1,1, 1 + γ1,1 − α1,1,−1)

γ1,1 − α1,1
+

2F1(γ1,1, α1,1, 1 + α1,1,−1)

α1,1
.

(5.4)

where 2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, is the hypergeometric function.

A requirement for the integral convergence is α1,1 < γ1,1, which holds because
ma1b1 +mx1+ < ma1 +m, since 0 < b1 < 1 and x1+ ≤ 1.

5.2 Orphan node case Laplace approximation

In the literature by Bernardo and Smith (2000); Sabanés Bové and Held (2011); Lewis
(2012); Held and Sabanés Bové (2014), the integral (5.3) has been computed using
the Laplace approximation method. Therefore, the results of the integral (5.4) are also
calculated and compared using this technique.
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We define h(β1) = h(β1) = − 1
m{α1,1 · β1 − γ1,1 · log(1 + eβ1)} = − 1

m log{L(β1) ·
π(β1)} = − 1

m{l(β1)+log{π(β1)}}, where l(β1) = logL(β1) is the log-likelihood function.
We then have:

P̃ (D1|S) ∝
∫ +∞

−∞
exp(−m · h(β1))dβ1 = exp(−m · h(β∗1))

√
2π

mk
, (5.5)

where β∗1 is the maximum of h(β) and k =
d2h(β∗1)

dβ2
denotes the curvature of h(β). Using

the previous definition of the function h(β1), we obtain the following results based on
the Laplace approximation method:

dh(β1)

dβ1
= − 1

m

(
α1,1 − γ1,1

eβ1

1 + eβ1

)
;

dh(β∗1)

dβ1
= 0⇒ β∗1 = log

( α1,1

γ1,1 − α1,1

)
. (5.6)

k−1 =
(d2h(β∗1)

dβ2
1

)−1

=
m

γ1,1

(1 + eβ
∗
1 )2

eβ
∗
1

=
1

1 + a1

(1 + eβ
∗
1 )2

eβ
∗
1

= (1 + a1)−1θ−1
111θ

−1
112.

(5.7)

Therefore (5.5), based on the results (5.6), (5.7), becomes:

P̃ (D1|S) = exp
(
−m · h(β∗1)

)√ 2π

mk
∝
α
α1,1−1/2
1,1

γ
γ1,1−1/2
1,1

(γ1,1 − α1,1)γ1,1−α1,1−1/2. (5.8)

The choice of a conjugate prior leads to an analytic form solution for the posterior
mode β∗1 as (5.6), without the requirement for a numerical solution approximation via
the Newton method, as has been done to date.

Generally speaking, the posterior density is determined as π(β|D) ∝ el(β)π(β).

Letting l̄m(β) = l(β)
m =

1

m

m∑

1

log f(Xi|β), the law of large numbers yields that for

m → ∞, l̄m(β) = Eβ{log f(X|β)} = −H(β), H(β) is the entropy of the density
f(·|β). Thus, the variation in the posterior density π(β|D) will be dominated by the
contribution from the likelihood function for sufficiently large m. Expanding l(β) around

the maximum likelihood estimate β̂ yields:

π(β|D) ∝ em·l̄m(β̂)π(β̂)e−(β−β̂)T Im(β̂)(β−β̂)/2 ∝ e−(β−β̂)T Im(β̂)(β−β̂)/2, (5.9)

where Im(β̂) = m · I(β̂) is the observed Fisher information matrix, so for large m, the
posterior distribution of β|D is approximately:

β|D ∼ Nn(β̂, Im(β̂)−1) = Nn(β̂, I(β̂)−1/m). (5.10)

A more accurate approximation is obtained by expanding around the posterior mode β∗,
as we did when looking for the maximum of the function h(β), yielding approximately:

β|D ∼ Nn(β∗, Im(β∗)−1) = Nn(β∗, I(β∗)−1/m), (5.11)
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0.004
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π(β1 D) - π
˜
(β1 D)

Figure 3: Difference between π(β1|D) and π̃(β1|D), for α1,1 = 10 and γ1,1 = 20, corre-
sponding to data values m = 10 and x1+ = 5, with hyperparameters a1 = 1 and b1 = 1

2 .

for large m.

Hence, from (5.11), we can see that, generally speaking, the posterior π(β|D) can
be approximated, for sufficiently large m, to a Gaussian distribution with a mean of β∗

and a covariance matrix of Im(β∗)−1. This result is a generalization for the posterior of
a theorem present in Chen and Ibrahim (2003). Thus, we have that (5.2), for sufficiently
large m, using the notation (5.7), becomes:

β1|D ∼ N (β∗1 , (m · k)−1) = N
(

log
[( γ1,1

α1,1
− 1
)−1]

, α−1
1,1 ·

(
1− α1,1

γ1,1

)−1)
. (5.12)

The approximation error of the Laplace method is in the order of O(m−1). However,
we can check this result using further graphical controls.

In order to evaluate how good the approximation is graphically, we plot the difference
between the ‘original’ posterior (5.2) and the ‘approximated’ one (5.12), as in Figure 3.
From Figure 3, we can see that the difference is null at the posterior mode β∗1 point
around that the second-order Taylor expansion has been developed, while the difference
increases within roughly two standard deviations.

Moreover, we plot the committed error, indicated via E1(α1,1, γ1,1), as the difference
between the ‘exact’ (5.4) and the ‘approximated’ (5.8) value of the marginal likelihood.

The resulting plot, on a log10 scale of E1(α1,1, γ1,1) for α1,1 ∈ (0, 50) and γ1,1 ∈ (1, 50)
can be found in Figure 4. From Figure 4, we can see that the error E1(α1,1, γ1,1) reaches
the smallest value when α1,1 = 4/5 · γ1,1; while E1(α1,1, γ1,1) becomes larger when
α1,1 = 0 or α1,1 = γ1,1, corresponding to the limits of the feasibility condition for the
convergence of the integral (5.3).
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Figure 4: log10(E1(α1,1, γ1,1)) for α1,1 ∈ (0, 50) and γ1,1 ∈ (1, 50).

5.3 Generalized node case, analytic and approximated results

The results obtained for an orphan node case can be generalized for all the other possible
combinations of parent cases for an ABN model.

Let us consider the resulting ABN marginal likelihood for a general node j from
(4.11), (4.10) and (5.4); thus, we get:

P (Dj |S) =

∫ +∞

−∞

m∏

i=1

(
ez

T
ijβj

)ajbj+xij

(
1 + ez

T
ijβj

)aj+1 dβj =

∫ +∞

−∞

Cj∏

c=1

eβjc1·αj,c

(1 + eβjc1)γj,c
dβjc1 (5.13)

=

Cj∏

c=1

[
2F1(γj,c, γj,c − αj,c, 1 + γj,c − αj,c,−1)

γj,c − αj,c
+

2F1(γj,c, αj,c, 1 + αj,c,−1)

αj,c

]
.

(5.14)

The main requirement for the integral convergence is αj,c < γj,c ∀j, c, which always
holds due to the data structure. In fact, αj,c = Pajc+ · aj · bj + Xjc+ and γj,c =
Pajc+ · (aj + 1), where Pajc+ represents the sum of all the parent configurations c
for node j and Xjc+ indicates the sum of all Xj = 1 that corresponds to the parent
configurations c, because Xjc+ ≤ Pajc+ and 0 < bj < 1⇒ αj,c < γj,c ∀j, c. Moreover,
the results from the Laplace approximation can also be generalized for a general node j:

β∗j = β∗jc1 = log
( αj,c
γj,c − αj,c

)
. (5.15)
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k−1
j = mCj

Cj∏

c=1

1

γj,c

(1 + eβ
∗
jc1)2

eβ
∗
jc1

. (5.16)

If we consider node j = 3 in Figure 1 which has two parents (Pj = 2), and we express
the additive transformed parameters βjcs in terms of the parameters φj,p−1, linked to
the marginal effect of each covariate Xp, we get:

βjcs =

c∑

p=1

[
φj,p−1 +

min(c,Pj+1)∑

p=2, p/Xp−1∈Paj

φj,p−1Xp−1 +

c∑

p=Pj+2

φj,p−1

]
. (5.17)

P (D3|S) =

∞∫

−∞

eβ311·α3,1 eβ321·α3,2 eβ331·α3,3 eβ341·α3,4

(1 + eβ311)γ3,1 (1 + eβ321)γ3,2 (1 + eβ331)γ3,3 (1 + eβ341)γ3,4
dβ3 =

∞∫

−∞

eφ3,0·α3,1 e(φ3,0+φ3,1)·α3,2 e(φ3,0+φ3,2)·α3,3 e(φ3,0+φ3,1+φ3,2+φ3,3)·α3,4

(1 + eφ3,0)γ3,1(1 + eφ3,0+φ3,1)γ3,2(1 + eφ3,0+φ3,2)γ3,3(1 + eφ3,0+φ3,1+φ3,2+φ3,3)γ3,4
dβ3 =

∞∫

−∞

eφ3,0·λ3,0 eφ3,1·λ3,1 eφ3,2·λ3,2 eφ3,3·λ3,3

(1 + eφ3,0)ω3,0(1 + eφ3,0+φ3,1)ω3,1(1 + eφ3,0+φ3,2)ω3,2(1 + eφ3,0+φ3,1+φ3,2+φ3,3)ω3,3
dβ3.

It is then straightforward to see the relationship of λj,c−1 and ωj,c−1 coefficients for
the ‘marginal’ parameters φj,c−1 with the one between αj,c and γj,c coefficients for the
additive transformed parameters βjcs. Therefore, we get:





λ3,0 = α3,1 + α3,2 + α3,3 + α3,4,
λ3,1 = α3,2 + α3,4,
λ3,2 = α3,3 + α3,4,
λ3,3 = α3,4.

⇒





α3,1 = λ3,0 − λ3,1 − λ3,2 + λ3,3,
α3,2 = λ3,1 − λ3,3,
α3,3 = λ3,2 − λ3,3,
α3,4 = λ3,3.

(5.18)

As a result of the expression for the φj,c−1 in terms of βjcs and the related equation
for the coefficients, we can derive the results (5.15) and (5.16) in terms of φj,c−1 in a
straightforward way by applying the equations (5.18).

5.4 Comparison with previous parameter priors for ABN models

A possible question that can arise is why a new choice of parameter prior is needed and is
useful for ABN models. Some suggestions have already been proposed and implemented
in R (R Core Development Team, 2015), in the R-package abn (Lewis et al., 2015) for
the additive Bayesian network models. The main issue is that the prior selected in the
R-package abn is an uninformative Gaussian prior with a zero mean and a large variance
for each of the regression parameters across all parts of the model. Unfortunately, this
specification of the parameter prior leads to some problems when cases of complete data
separation occur. Moreover, the choice of a prior that is too simple and uninformative
may not give appropriate results, as stated by Lindley’s paradox Lindley (1957).
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In order to demonstrate the aforementioned issue, we compared the posterior den-
sities resulting from the prior chosen in the R-package abn to the conjugate prior in-
troduced previously. We used a subset of the ex5.dag.data data set present in the
R-package abn, from that we selected the binary variables {b1,b2,b3,b4,b5,b6}.
Without conducting a model search, we focused on the parameter-learning step, start-
ing with a given additive Bayesian network structure, AE , as illustrated in Figure 5,
followed by checking and drawing the related posterior density.

b3 b2

b4

b5

b1

b6

Figure 5: Example of ABN model AE with data set ex5.dag.data from R-package abn

b1\b3 0 1
0 308 124
1 2 0

b4\b6 0 1
0 348 56
1 30 0

Table 1: Summary statistics for the data couple combination (b1, b3) left and (b4, b6)
right.

The explanatory model is linked to the data structure in which two cases of complete
data separation occur, as can be seen in Table 1. We then fitted the modelAE to the data
and plotted the resulting posterior density. In Figure 6, it is straightforward to see that
the choice of an uninformative Gaussian prior with a zero mean and a large variance,
as used in the R-package abn, leads to strange features (right skewness and unexpected
tail behaviour around the 0), while this does not happen for posterior density resulting
from the prior conjugate choice.

Comparing the two densities, we can see how the posterior densities resulting from
the prior conjugate choice (4.4) reach their peaks at the MLE estimates, while this does
not occur for the posterior densities resulting from the R-package abn. Moreover, due
to the complete case separation situation, the tails and the skewness of the posterior
densities from the R-package abn are a signal of the main problem arising from this
choice of prior. The abn posterior densities do not even integrate to one, a necessary
requirement for a function in order to be a density.

A plausible justification for the improvement of the posterior density when using
our suggested conjugate prior is connected to the prior’s dependency on its parent
variables. The introduced parameter prior is highly dependent on the design matrix
which, in terms of Bayesian network models, is represented by the influence of the
parents variables Paj . From the summary statistics in Table 1, it is easy to observe
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Figure 6: Comparison between the posteriors of ABN models using the R-package abn
and the conjugate prior (4.4). On the left, the marginal posterior density for node b1
is shown with hyperparameters (ab1, bb1) = (5/4, 1/5), while on the right, the marginal
posterior density for node b4 is shown with hyperparameters (ab4, bb4) = (7/2, 1/7).

that Pab12+ =
∑m
i=1 b3i = 124 and, similarly, Pab62+ =

∑m
i=1 b6i = 56. As indicated

in (5.13), the role of the parents Pajc+ for the coefficients αj,c and γj,c specification
plays an important part. Hence, it helps to improve and resolve the situation of complete
data separation.

Moreover, the introduced conjugate prior (4.4) is linked to the classical Zellner’s g-
prior (Zellner, 1986), as shown in (cf. Sabanés Bové and Held, 2011, Section 2.1, formula
(5)), proposed for the regression coefficients as a ‘reference informative prior’. Hence, as
a result of his ‘informative’ property and connection with the g-prior, the dependence on
the design matrix and parent variables is more evident, which leads to a better posterior
density quality.

Also if we use abn implementation without an uninformative prior, we will encounter
issues related to the marginal likelihood computation, because numerical and approxi-
mated methods are used in the R-package in order to compute the network score.

6 Discussion and conclusions

In this work, a conjugate prior for additive Bayesian networks models has been pro-
posed. The consequences of this choice have been analysed, starting from the resulting
posterior distribution in order to arrive at the computation of the marginal likelihood.
Crucial assumptions of the prior have been examined, and their fulfilment has been
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demonstrated. An easy expression represented by the 2F1 hypergeometric function has
been found for the ABN marginal likelihood. These achievements were possible because
of the appropriate choice of the parameter prior, which has led to easier computations.
This result has been compared to the usual Laplace approximation approach in order
to check the differences between the two results. Recently published research, Nadara-
jah (2015), has shown that the 2F1 hypergeometric function can be further simplified
via a Truncated Beta Function, implying that an even simpler result is still possible.
Moreover, the assumption of likelihood equivalence and the possibility of having a score
equivalent network for equivalent classes have been explored and developed.

The main contribution of our work is linked to opening a door to the additive
Bayesian network literature that compares these modern models in terms of Bayesian
model selection (i.e. the specification of parameter priors and the computation of the
resulting posterior model probabilities via the marginal likelihoods) with the classical
Bayesian network models that have been developed for a longer period. This is also the
first attempt to create a link between the application and the theory. So far, the additive
Bayesian networks have mainly been used in an applied statistics framework, such as
the veterinary epidemiologist field, without going into too much detail concerning the
underlying theory. Mainly due to the meticulous notation, this is the first time that a
fully described parametrization has been elucidated and a simplification of the ABN
marginal likelihood has been found.

In this framework, further developments can be done to improve additive Bayesian
networks for both discrete (i.e. multinomial, Poisson) and continuous (i.e. Gaussian)
distributions. Another improvement is in terms of application, as a possible implemen-
tation of the newly introduced parameter prior in appropriate software dealing with
additive Bayesian networks, such as the R package abn, can be a good starting point
to promote and use the newly introduced methodology. It would represent nothing less
than the continuation of the connection between theory and practice, albeit with a
newly developed method.

Appendix A: Proofs

Proof of Proposition 1. Let S be any complete additive Bayesian network structure in
a domain X . We use the change of variable formula:

π(βA) = πθB(h−1(βA)) · JθB
h→βA . (A.1)

The Jacobian of interest, JθB
h→βA , as given by Proposition 2.

πθB(h−1(βA)) =

n∏

j=1

Cj∏

c=1

(
eβjc1

1 + eβjc1

)δjc1−1(
1

1 + eβjc1

)δjc2−1

(A.2)

=
n∏

j=1

Cj∏

c=1

Sj∏

s=1

(
eβjc1

1 + eβjc1

)δjcs−1(
1

1 + eβjc1

)δjcs−1

.
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Multiplying the equation (A.2) by the Jacobian given by Proposition 2, and adjusting
and collecting the respective hyperparameters δjcs of the Dirichlet density appropriately,
we obtain equation (4.2).

Proof of Proposition 2. We proceed by induction using Jn to denote the Jacobian

JθB
h→βA for the n-variable case. For the following proof, a special notation βj|Paj

is
used, equivalent to βjc, in order to place more emphasis on the related parents con-
figurations. For n = 1, the orphan node case, Pa1 = ∅, the theorem holds trivially,
because:

Jθ1
h→β1 =

eβ111

(1 + eβ111)2
=

eβ1|Pa1

(1 + eβ1|Pa1 )2
.

For the induction step, let us assume that the complete Bayesian network structure has
variable ordering X1, . . . , Xn+1.

First, a change of variables from β1,...,n+1 to β1,...,n ∪ βn+1|1,...,n is performed. By
definition, β1,...,n+1 = β1,...,n · βn+1|1,...,n. Thus, the Jacobian matrix consists of (n+ 1)
block matrices. There is one block for each of the j variables in the domain. The block
matrix dimension depends on the number of possible parents configurations for each
node j; each matrix then has dimension Cj .

Each block consists of a lower triangular matrix. The (n+1)th block has the following
form of size Cn+1:




eβn+111

(
1 + eβn+111

)2
eβn+111

(
1 + eβn+111

)2
eβn+121

(
1 + eβn+121

)2
...

...
...

...
...

...
...

eβn+111

(
1 + eβn+111

)2
eβn+121

(
1 + eβn+121

)2 . . .
eβn+1(Cn+1−1)1

(
1 + eβn+1(Cn+1−1)1

)2
eβn+1Cn+11

(
1 + eβn+1Cn+11

)2




.

The determinant of this block matrix is the Jacobian (JBn+1) given below:

JBn+1 =
eβn+111

(
1 + eβn+111

)2
eβn+121

(
1 + eβn+121

)2 . . .
eβn+1(Cn+1−1)1

(
1 + eβn+1(Cn+1−1)1

)2
eβn+1Cn+11

(
1 + eβn+1Cn+11

)2

=

Cn+1∏

c=1

eβn+1c1

(
1 + eβn+1c1

)2 =

Cn+1∏

c=1

eβn+1|Pan+1

(
1 + eβn+1|Pan+1

)2 . (A.3)

Next, we change variables from β1,...,n to β1 ∪β2|1 ∪ · · · ∪βn|1,...,n−1, that is equivalent
to β1|Pa1

∪β2|Pa2
∪ · · · ∪βn|Pan

. For simplicity, we have Pa1 = ∅,Pa2 = 1, . . . ,Pan =
{1, . . . , n − 1}. Using the Jacobian Jn obtained from the induction hypothesis, the
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combined Jacobian for the transformation from β1,...,n+1 to β1 ∪ · · · ∪ βn+1|1,...,n is

Jn+1 = JBn+1Jn. Consequently, we have:

Jn+1 =

Cn+1∏

c=1

eβn+1c1

(1 + eβn+1c1)2
·
n∏

j=1

Cj∏

c=1

eβjc1

(1 + eβjc1)2

=

Cn+1∏

c=1

eβn+1|Pan+1

(1 + eβn+1|Pan+1 )2
·
n∏

j=1

Cj∏

c=1

eβj|Paj

(1 + e
βj|Paj

)2
=
n+1∏

j=1

Cj∏

c=1

eβj|Paj

(1 + eβj|Paj )2

=
n+1∏

j=1

Cj∏

c=1

eβjc1

(1 + eβjc1)2
=

n∏

j=1

Cj∏

c=1

[
h−1(βjc1)

dβjc1

]
=

n∏

j=1

Cj∏

c=1

θjc1(1− θjc1).

Supplementary Material

Likelihood and score equivalence (http://www.some-url-address.org/dowload/0000.zip).
The supplementary material contains all the proofs for and descriptions of the likelihood
equivalence of a multivariate Bernoulli likelihood using an additive parametrization.
Moreover, it contains the score equivalence proof, together with a suitable choice for
the hyperparameters, for two equivalent additive Bayesian networks.
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This supplementary material contains further insights into additive Bayesian networks
with all the proofs and descriptions for the likelihood equivalence of a multivariate
Bernoulli likelihood, using an additive parametrization. Moreover, it contains the score
equivalence proof for two equivalent binary additive Bayesian networks.

In Section 1, further descriptions of additive Bayesian networks, with a fully ex-
planatory example, are provided. In Example 1, a simple example of the proof of the
generalization of Dirichlet density for additive Bayesian networks is shown. In Section 2,
the process of learning an additive Bayesian network structure is presented in more de-
tail, with an explanation of the greedy search algorithm and their relationship with a
greedy equivalent search algorithm. In Section 3, the notion of the likelihood equivalence
property is introduced and demonstrated. In Section 4, a proof of the score equivalence,
in the specific case of additive Bayesian networks for binary data, is presented.

1 Further insights into additive Bayesian networks

In particular, when considering the specific subset in Figure 1 in the original manuscript
consisting of node X3 with parent nodes X1 and X2, suppose that X3 can take two
possible values, (S3 = 2), and has two parents (X1 and X2), each of which has two
possible categories. The expression for the linear predictor for each observation i is then
represented by:

ηi3 = ( ηi31 ) = Z i3β3 = zTi3β3 =
[
z i31 · · · z i34

]



β311

β321

β331

β341


 .

There are as many logistic regression parameters as there are free probability parameters
(2 × 2 × 1 = 4). For any of the 4 possible configurations of Paj , one different logistic
regression parameter is selected each time by pre-multiplying βj with Z ij , one for the
response category s, s = Sj−1 = 2−1 = 1, to which it corresponds the positive variable
state Xj = x1

j = 1. Each P(Xj = s|Paj) = θjs, in particular P(Xj = 1|Paj) = θj1,
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2 Conjugate Priors for ABNs

from a B is modelled with aM. The corresponding conditional probabilities are obtained
as before by applying the inverse of the link function to the linear predictor:

ηj1 = logit(θj1) = h(θj1) : multinomial link function,

⇒ θj1 =
eηj1

1 + eηj1
=

eZ ijβj

1 + eZ ijβj
=

ez
T
ijβj

1 + ez
T
ijβj

=
eβjc1

1 + eβjc1
.

Moreover, in order to better understand this parametrization, a specific example is
described. The structure shown in Figure 1 in the original manuscript is considered;
the related additive Bayesian network model is called AI and leads to the additive
parameters:

βAI
= {β1,β2,β3,β4,β5, },

For j = {1, 2}, βj = {βj1} = {βj11 ∪ βj12},
β3 = {β31,β32,β33,β34},
β31 = {β311 ∪ β312} , β32 = {β321 ∪ β322},β33 = {β331 ∪ β332} , β34 = {β341 ∪ β342},
For j = {4, 5}, βj = {βj1,βj2} = {βj11 ∪ βj12, βj21 ∪ βj22}.

Specifically, the following reparametrization occurs, proceeding with a description
of the node that follows an increase in parent’s orders:

Forj = {1, 2}, βj11 = h(θ111) = log

(
θ111

1− θ111

)
, θ111 = p(X1 =1||Pa1 =1=∅,θ11),

j = {4, 5}, βj11 = h(θj11) = log

(
θj11

1− θj11

)
, θj11 = p(Xj=1||Paj=1={X3 =0},θj1),

j = {4, 5}, βj21 = h(θj21) = log

(
θj21

1− θj21

)
, θj21 = p(Xj=1||Paj=2={X3 =1},θj2).

For node j = 3 further explanation is provided because two parents are involved,

implying more parents configuration that require carefulness:

β311 = h(θ311) = log

(
θ311

1− θ311

)
, θ311 = p(X3 = 1||Pa3 = 1 = {X1 = 0, X2 = 0},θ31),

β321 = h(θ321) = log

(
θ321

1− θ321

)
, θ321 = p(X3 = 1||Pa3 = 2 = {X1 = 1, X2 = 0},θ32),

β331 = h(θ331) = log

(
θ331

1− θ331

)
, θ331 = p(X3 = 1||Pa3 = 3 = {X1 = 0, X2 = 1},θ33),

β341 = h(θ341) = log

(
θ341

1− θ341

)
, θ341 = p(X3 = 1||Pa3 = 4 = {X1 = 1, X2 = 1},θ34).

Example 1. In order to better understand the essence of the proposition regarding the
generalization of the Dirichlet density presented in the paper, a simple example with 2
random variables is provided.
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For n = 2, considering the complete hypothesized additive Bayesian network struc-
ture model S = A1, where A1 = {X1 → X3}, a subset example of Figure 1 in the
original manuscript.

From the change of variable formula and considering S = A1, we get:

π(βA1
) =

n∏

j=1

πθj (h−1(βj)) · Jθj
h→βj =

n∏

j=1

π(βj |A1) =

2∏

j=1

π(βj |A1).

π(β1) = πθ1(h−1(β1)) · Jθ1
h→β1 = π(β1|A1) = π(β11|A1)

=
exp(β111)δ111−1

(1 + exp(β111))δ111+δ112−2

exp(β111)

(1 + exp(β111))2
=

exp(β111)δ111

(1 + exp(β111))δ111+δ112

= exp

[
(δ111 + δ112)

{(
δ111

δ111 + δ112

)
β111 − log(1 + eβ111)

}]
.

π(β3) = πθ3
(h−1(β3)) · Jθ3

h→β3 = π(β3|A1) = π(β31|A1) · π(β32|A1)

=
exp(β311)δ311−1

(1 + exp(β311))δ311+δ312−2

eβ311

(1 + eβ311)2

· exp(β321)δ321−1

(1 + exp(β321))δ321+δ322−2

eβ321

(1 + eβ321)2

=
exp(β311)δ311

(1 + exp(β311))δ311+δ312
· exp(β321)δ321

(1 + exp(β321))δ321+δ322

= exp

[
(δ311 + δ312)

{(
δ311

δ311 + δ312

)
(β311)− log(1 + eβ311)

}]

· exp

[
(δ321 + δ322)

{(
δ321

δ321 + δ322

)
(β321)− log(1 + eβ321)

}]
.

2 Learning a Bayesian network

Unfortunately, by following this simplified approach, three fundamental problems for
learning Bayesian networks can arise:

1. The space of all Bayesian network structures is extremely large. It has been shown
that the number of different structures, f (n), grows more than exponentially in
the number n of nodes, as represented by:

f (n) =
n∑

j=1

(−1)
j+1 n!

(n− j)!n!
2j(n−j)f (n− 1) . (2.1)

2. When searching through the network structures, it is likely that the result will be
several equally good candidate structures. Since a Bayesian network can represent
any distribution across the set of variables over a complete graph, several candi-
dates may appear; this implies that a Bayesian network over a complete graph
cannot be the correct answer.

imsart-ba ver. 2014/10/16 file: ABN_Conjugate_Priors_SupplementaryMaterial.tex date: April 26, 2016

Paper IV - 219 -



4 Conjugate Priors for ABNs

3. There is also the problem of overfitting: a complete graph can represent the sam-
ple distribution exactly, but D could have been sampled from a sparse network.
Alternatively, the selected model may be so close to the sample distribution that
it also covers the smallest deviances in the distribution of the original model A1.

2.1 Search Procedures

Given a score function, the task is to find the highest-scoring Bayesian network structure
in the set of all possible network structures. In other words, the task of structural
learning is reduced to a searching problem.

Researchers have developed heuristic search strategies that move around in the
search space by iteratively performing small changes to the current structure. Specifi-
cally, these search methods usually work directly in the space of the Bayesian network
structures; hence, each point in this search space corresponds to a particular DAG struc-
ture, and search operators need to be defined. Search operators are used to move from
one structure to another, and to determine the neighbourhood of a DAG, namely those
DAGs that can be reached in one step from the current DAG. The operators consist of

- arc addition: insert a single arc between two nonadjacent nodes;

- arc deletion: remove a single arc between two nodes;

- arc reversal : reverse the direction of a single arc.

The notation op (S, E) represents the result of performing the edge operation E on the
structure S; in other words op (S, E) is a DAG that differs from S in terms of one
edge only. One important property of these operators is that they only result in local
changes to the current structure, i.e. if an arc between Xi and Xj is inserted or deleted,
then only the family of Xj is changed, while if an arc between Xi and Xj is reversed,
the families of both Xi and Xj are changed. This property is tightly connected to the
decomposability of a score function.

If we insert an edge from Xi into Xj , only the local score for Xj will change; thus,
when evaluating whether such a move is beneficial, we need only to compute the score
difference (or gain) ∆ (Xi → Xj) = score (Xj ,Paj ∪ {Xi} ,D)− score (Xj ,Paj ,D) . Of
all the possible searching procedures, a simple heuristic approach is the greedy search. In
the next subsection, the principal steps of a greedy search algorithm will be explained.

2.2 Greedy search

The greedy search algorithm chooses some initial structures (usually an empty struc-
ture, a randomly chosen structure or a prior structure specified by the user), and then
calculates the gain for each legal arc operation; by legal, it is meant that the resulting
graph must be acyclic. Specifically, a greedy search algorithm consists of the following
steps:

1. Let S be an initial structure.
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2. Repeat

(a) Calculate ∆ (E) for each legal operation E:

- Let ∆∗ = maxE ∆ (E) and E∗ = argmaxE ∆ (E).

(b) If ∆∗ > 0, then

- Set S = op (S,E∗).

3. Until ∆∗ ≤ 0.

Note that, in the previous algorithm, if the parents of two nodes do not change from
one iteration to another, the gain ∆ (Xi → Xj) of any edge operation involving these
two nodes will remain unchanged. This gain can therefore be cached for subsequent
iterations, so that the calculations can be reused. These properties are important con-
sequences of the decomposition property of the score function.

However, the limitation of heuristic search algorithms is that it does not guarantee
the finding of an optimal global structure, but only of a local optimal structure. Vari-
ous solutions have been proposed, and an example is the greedy search algorithm with
multiple restarts; in other words, after a local maximum is found, the search is reinitial-
ized with a random structure. After this first attempt, the reinitialization is repeated
for a fixed number of iterations, and the best structure found, via the entire process is
selected. Conversely, a valid alternative solution is to use an exact algorithm (Koivisto
and Sood, 2004; Lewis et al., 2015), in which an optimal global structure is found via a
reduction in the number of variables that need to be considered.

2.3 Equivalence class search and score equivalence

It can sometimes be advantageous to define the search space using a more abstract rep-
resentation than that of DAGs. An example is a procedure called the greedy equivalence
search. The search is based on the observation that data alone cannot be used to dis-
criminate among network structures that represent the same assertions of conditional
independence. We start to define this particular form of structures.

Definition 1. Two DAG network structures, S1 and S2 are equivalent if they represent
the same independence constraints.

To better understand the previous definition, an example is provided. Let S1 and
S2 indicate two DAG network structures, as represented in Figure 1. They are equiv-
alent DAGs because the same independence relations are represented: P (X1, X2) =
P (X1)P (X2|X1) = P (X2)P (X1|X2). This equivalence is referred to in Heckerman et al.
(1995) as Likelihood Equivalence, which implies that, if S1 and S2 are independent equiv-
alent networks that are related to two BN models (B1 and B2), they have the same joint
likelihood P (X |θB1

,S1) = P (X |θB2
,S2).

The equivalence relation is reflexive, symmetric, and transitive; hence, the relation-
ship defines a collection of equivalence classes.
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X X
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Figure 1: S1 andS2, two equivalent DAG structures.

Definition 2. A score function that assigns the same score to equivalent structures is
said to be score equivalent.

This definition means that it is not possible to distinguish between different DAGs
in an equivalence class from observations alone. Hence, fitting each DAG to the same
dataset should give the same likelihood of observing the data in each model: equivalent
score function.

BIC represents an example of a score equivalent function. Heckerman et al. (1995)
considered the specification of prior information, such as that of equivalent network
structures (Chickering, 1995), is given the same score. This was the first example of an
equivalent Bayesian score function. In this work, a parameter prior that leads to Score
Equivalence for ABN models is introduced.

This property means that, if we have found a particular structure using a score
equivalent function, we could just as well select any other structure that is equivalent
to the one identified.

In order to move around in the space of equivalence classes, where each point in
the search space corresponds to an equivalence class, it is possible to identify some
search operators, that are a bit more complex than the ones used in DAG spaces,
due to the nature of the search space. These operators define the neighbourhood for
an equivalence class, which is the set of structures reachable by a single change to the
current structure or to one of its equivalents. An upper neighbourhood is one consisting of
equivalence classes with fewer dependence statements, and a lower neighbourhood is one
with more dependence statements. All the neighbourhoods are based on the definition
of equivalence classes in terms of independence statements.

The two neighbourhoods are defined as the equivalence classes that can be obtained
by either adding or deleting a single arc from a DAG in the current equivalence class.

Based on this specification of the search space, the Greedy Equivalence Search
Algorithm consists of two steps:

1. Start with the equivalence class without dependencies among the variables, and
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perform a greedy search upwards until a local maximum is reached.

2. Starting from the equivalence class just identified, perform a greedy search down-
wards until a local maximum is reached.

If the database is sufficiently large, the resulting equivalence class is guaranteed to
include the Bayesian network from which the data were generated.

In the context of equivalent structures, greedy search procedures have been proposed
by Chickering (2002); Chickering and Meek (2002), and are guaranteed to identify the
correct structure when the amount of data becomes large. On the other hand, in the
work of Heckerman et al. (1995); Geiger and Heckerman (1994); Boettcher (2004) it is
shown for the discrete, the Gaussian and the conditional Gaussian case, respectively,
that when a specific choice of the parameter priors is made, the marginal likelihood
is the same for equivalent network structures, leading to an Equivalent Network Score
scenario: P (D|S1) = P (D|S2).

Finally, it should be emphasized that, even though another specification of the search
space has been made, the general complexity problem present in DAG spaces has un-
fortunately not been solved: the number of equivalence classes also grows super expo-
nentially in line with the number of variables.

3 Likelihood equivalence

We proceed with the characterization of our prior, showing that the Likelihood Equiv-
alence, another important property, is satisfied. As the name suggests, this property is
linked to the likelihood, and it prevents data from helping to identify network structures
that represent the same assertions of conditional independence. In order to show that
the likelihood equivalence still holds when an additive parametrization is used, we follow
the description of the multivariate Bernoulli likelihood presented in Dai et al. (2013).

Specifically, we focus on the two additive Bayesian network structures A1 andA2

represented in Figure 1 above. We characterize all the possible contingency table com-
binations associated with the bivariate Bernoulli likelihood of this specific case, in order
to show the Likelihood Equivalence

If we consider the bivariate Bernoulli random vector (X1, X2), which takes values
from (0, 0), (0, 1), (1, 0) and (1, 1) in the Cartesian product space {0, 1}2 = {0, 1}×{0, 1}
and denote pij = P (X1 = i,X2 = j), i, j = 0, 1,, its probability density function can be
written as

P (X = x) =p(x1, x2)

=px1x2
11 p

x1(1−x2)
10 p

(1−x1)x2

01 p
(1−x1)(1−x2)
00 (3.1)

= exp

{
log(p00) + x1 log

(p10

p00

)
+ x2 log

(p01

p00

)
+ x1x2 log

(p11p00

p10p01

)}
.
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There are 4 possible configurations in total, depending on the two binary variables
and their two possible states:

p11 p10

p01 p00

where the side condition p00 +p10 +p01 +p11 = 1 holds to ensure it is a valid probability
density function.

To simplify the notation, the natural parameters fs from general parameters are
defined in Dai et al. (2013) as follows:

f1 = log
(p10

p00

)
,

f2 = log
(p01

p00

)
,

f12 = log
(p11p00

p10p01

)
.

Moreover, we introduce another notation to further simply the computation:

e1 = exp(f1) =
p10

p00
,

e2 = exp(f2) =
p01

p00
,

e12 = exp(f12) =
p11p00

p10p01
.

It is then easy to verify the inverse of the above formula:

p11 =
exp(f1 + f2 + f12)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
=

e1 · e2 · e12

1 + e1 + e2 + e1 · e2 · e12
, (3.2)

p01 =
exp(f2)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
=

e2

1 + e1 + e2 + e1 · e2 · e12
, (3.3)

p10 =
exp(f1)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
=

e1

1 + e1 + e2 + e1 · e2 · e12
, (3.4)

p00 =
1

1 + exp(f1) + exp(f2) + exp(f1 + f2 + f12)
=

1

1 + e1 + e2 + e1 · e2 · e12
. (3.5)

Using the above description of the additive parameters, we can show the Likelihood
Equivalence property for all 4 aforementioned probability cases, as seen in Table 2.

From Table 2, we get the Likelihood Equivalence property:

pA1
11 = θ1θ2|1 = θ2θ1|2 = pA2

11 ,

pA1
01 = θ1̄θ2|1̄ = θ2θ1̄|2 = pA2

01 ,
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pA1
10 = θ1θ2̄|1 = θ2̄θ1|2̄ = pA2

10 ,

pA1
00 = θ1̄θ2̄|1̄ = θ2̄θ1̄|2̄ = pA2

00 .

4 Score equivalence

In this section, we show that, with the ABN marginal likelihood resulting from the
choice of the newly introduced conjugate prior, it is possible to have the score equiv-
alence property satisfied, under a suitable choice of the prior hyperparameters. Under
appropriate conditions, it is feasible to get the same Network Score for two additive
Bayesian network structures belonging to the same Equivalence Class.

Proposition 1. Given two equivalent network structures A1 and A2, as shown in Fig-
ure 1, that satisfy the Likelihood Equivalence property, the resulting network scores
P (D|A1) and P (D|A2) are equivalent if, and only if, the sum of the positive case for the
orphan node variables is the same in each model (i.e. XA1

11+ = XA2
21+), and if the prior

hyperparameters are chosen in the following way:

(aA, bA) =





aA1
1 = aA2

2 ,

aA1
2 = aA2

1 ,

bA1
1 = bA2

2 ,

bA1
2 = bA2

1 .

(4.1)

Proof. In order to show this theorem, we have to verify both of the implications.

If the two network score are equivalent, P (D|A1) = P (D|A2), we have:

P (D|A1)

=
2∏

j=1

Cj∏

c=1

2F1(γA1
j,c , γ

A1
j,c − αA1

j,c , 1 + γA1
j,c − αA1

j,c ,−1)

γA1
j,c − αA1

j,c

+
2F1(γA1

j,c , α
A1
j,c , 1 + αA1

j,c ,−1)

αA1
j,c

=
2F1(γA1

1,1 , γ
A1
1,1 − αA1

1,1, 1 + γA1
1,1 − αA1

1,1,−1)

γA1
1,1 − αA1

1,1

+
2F1(γA1

1,1 , α
A1
1,1, 1 + αA1

1,1,−1)

αA1
1,1

· 2F1(γA1
2,1 , γ

A1
2,1 − αA1

2,1, 1 + γA1
2,1 − αA1

2,1,−1)

γA1
2,1 − αA1

2,1

+
2F1(γA1

2,1 , α
A1
2,1, 1 + αA1

2,1,−1)

αA1
2,1

· 2F1(γA1
2,2 , γ

A1
2,2 − αA1

2,2, 1 + γA1
2,2 − αA1

2,2,−1)

γA1
2,2 − αA1

2,2

+
2F1(γA1

2,2 , α
A1
2,2, 1 + αA1

2,2,−1)

αA1
2,2

=
2F1(γA2

1,1 , γ
A2
1,1 − αA2

1,1, 1 + γA2
1,1 − αA2

1,1,−1)

γA2
1,1 − αA2

1,1

+
2F1(γA2

1,1 , α
A2
1,1, 1 + αA2

1,1,−1)

αA2
1,1

· 2F1(γA2
1,2 , γ

A2
1,2 − αA2

1,2, 1 + γA2
1,2 − αA1

1,2,−1)

γA2
1,2 − αA2

1,2

+
2F1(γA2

1,2 , α
A2
1,2, 1 + αA2

1,2,−1)

αA2
1,2

· 2F1(γA2
2,1 , γ

A2
2,1 − αA2

2,1, 1 + γA2
2,1 − αA2

2,1,−1)

γA2
2,2 − αA2

2,2

+
2F1(γA2

2,1 , α
A2
2,1, 1 + αA2

2,1,−1)

αA2
2,1
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=
1∏

j=2

Cj∏

c=1

2F1(γA2
j,c , γ

A2
j,c − αA2

j,c , 1 + γA2
j,c − αA2

j,c ,−1)

γA2
j,c − αA2

j,c

+
2F1(γA2

j,c , α
A2
j,c , 1 + αA2

j,c ,−1)

αA2
j,c

=P (D|A2).

This implies that:





αA1
1,1 = αA2

2,1,

γA1
1,1 = γA2

2,1 ,

αA1
2,1 = αA2

1,1,

γA1
2,1 = γA2

1,1 ,

αA1
2,2 = αA2

1,2,

γA1
2,2 = γA2

1,2 .

⇒





PaA1
11+ · aA1

1 · bA1
1 +XA1

11+ = PaA2
21+ · aA2

2 · bA2
2 +XA2

21+,

PaA1
11+ · (aA1

1 + 1) = PaA2
21+ · (aA2

2 + 1),

PaA1
21+ · aA1

2 · bA1
2 +XA1

21+ = PaA2
11+ · aA2

1 · bA2
1 +XA2

11+,

PaA1
21+ · (aA1

2 + 1) = PaA2
11+ · (aA2

1 + 1),

PaA1
22+ · aA1

2 · bA1
2 +XA1

22+ = PaA2
12+ · aA2

1 · bA2
1 +XA2

12+,

PaA1
22+ · (aA1

2 + 1) = PaA2
12+ · (aA2

1 + 1).

⇔





bA1
1 = bA2

2 ∧XA1
11+ = XA2

21+,

aA1
1 = aA2

2 ,

bA1
2 = bA2

1 ,

aA1
2 = aA2

1 ,

bA1
2 = bA2

1 ,

aA1
2 = aA2

1 .

It is important to notice that the condition PaA1
11+ = PaA2

21+ is always satisfied for the

modularity property, while PaA1
21+ = XA1

11− = m−XA1
11+ = m−XA2

21+ = XA2
21− = PaA2

11+

holds as a result of the condition XA1
11+ = XA2

21+ and is also complementary to PaA1
22+ =

PaA2
12+. Instead, XA1

21+ = XA2
11+ and XA1

22+ = XA2
12+ is valid due to the data structure.

In the same line as the previous reasoning, it is easy to see that, if the following
conditions are fulfilled





bA1
1 = bA2

2 ∧XA1
11+ = XA2

21+,

aA1
1 = aA2

2 ,

bA1
2 = bA2

1 ,

aA1
2 = aA2

1 ,

bA1
2 = bA2

1 ,

aA1
2 = aA2

1 .

then P (D|A1) = P (D|A2), and the Score Network equivalence is satisfied.

To better understand the previous proof, we provide a short example.

Example 2. Considering two equivalent network structures A1 = {X1 → X2} and
A2 = {X2 → X1}, in Figure 1, and supposing we observed three (= m) cases: C1 =
{1, 1}, C2 = {1, 0}, C3 = {0, 1}. Let j = 1(2) refer to variable X1(X2), and let c = 1(2)
denote the false (true) state of the parent variable; + refers to the sum of the variable
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state Xj = 1, while − refers to the sum of the variable state Xj = 0. Thus, for the
network structure A1, we have the sufficient statistics:





XA1
11+ = Pa22+ = 2,

XA1
11− = Pa21+ = 1,

XA1
21+ = 1,

XA1
21− = 0,

XA1
22+ = 1,

XA1
22− = 1.

Choosing the prior hyperparameters for A1, following condition (4.1) as aA1
1 = 2, bA1

1 =
0.6, aA1

2 = 1 and bA1
2 = 0.5, and using the formula (5.13) from the original manuscript,

we get the Network Score P (D|A1) = 0.00119154.

For the network structure A2, we then have the sufficient statistics:





XA2
22+ = Pa12+ = 2,

XA2
22− = Pa11+ = 1,

XA2
11+ = 1,

XA2
11− = 0,

XA2
12+ = 1, XA2

12− = 1.

Choosing the prior hyperparameters for A2, following condition (4.1) as aA2
2 =

2, bA2
2 = 0.6, aA2

1 = 1 and bA2
1 = 0.5, and using the formula (5.13) from the original

manuscript, we get the Network Score P (D|A2) = 0.00119154.

We introduced an ABN metric with this property, which is Score Equivalent, and it
could be called an ‘Additive Bayesian networks equivalent scoring metric’ ABNe metric.
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First model Second model

pA1
11 = θ1θ2|1 =

exp(β
A1
111)

1+exp(β
A1
111)
· exp(β

A1
221)

1+exp(β
A1
221)

=
e1+e1·e2·e12

1+e2

1 + e1+e1·e2·e12

1+e2

· e2 · e12

1 + e2 · e12

=
(e1e2e12)(1 + e2e12)

(1 + e1 + e2 + e1e2e12)(1 + e2e12)

=
e1 · e2 · e12

1 + e1 + e2 + e1 · e2 · e12
= (3.2),

pA2
11 = θ2θ1|2 =

exp(β
A2
211)

1+exp(β
A2
211)
· exp(β

A2
121)

1+exp(β
A2
121)

=
e2+e1·e2·e12

1+e1

1 + e2+e1·e2·e12

1+e1

· e1 · e12

1 + e1 · e12

=
(e1e2e12)(1 + e1e12)

(1 + e1 + e2 + e1e2e12)(1 + e1e12)

=
e1 · e2 · e12

1 + e1 + e2 + e1 · e2 · e12
= (3.2),

pA1
01 = θ1̄θ2|1̄ = 1

1+exp(β
A1
111)
· exp(β

A1
211)

1+exp(β
A1
211)

=
e2

1 + e2 + e2+e1·e2·e12

1+e2
+

e1e2+e1e22e12

1+e2

=
e2

(1+e2)(1+e1+e2+e1e2e12)(1+e2e12)
(1+e2)

=
e2

1 + e1 + e2 + e1 · e2 · e12
= (3.3),

pA2
01 = θ2θ1̄|2 =

exp(β
A2
211)

1+exp(β
A2
211)
· 1

1+exp(β
A2
121)

=
e2+e1·e2·e12

1+e1

1 + e2+e1·e2·e12

1+e1
+ e1e12 +

e1e2e12+e21e2e
2
12

1+e1

=
e2(1 + e1e12)

(1 + e1 + e2 + e1e2e12)(1 + e1e12)

=
e2

1 + e1 + e2 + e1 · e2 · e12
= (3.3).

pA1
10 = θ1θ2̄|1 =

exp(β
A1
111)

1+exp(β
A1
111)
· 1

1+exp(β
A1
221)

=
e1+e1·e2·e12

1+e2

1 + e1+e1·e2·e12

1+e2
+e2e12+

e1e2e12+e1e2
2e2

12
1+e2

=
e1(1 + e2e12)

(1 + e1 + e2 + e1e2e12)(1 + e2e12)

=
e1

1 + e1 + e2 + e1 · e2 · e12
= (3.4),

pA2
10 = θ2̄θ1|2̄ = 1

1+exp(β
A2
211)
· exp(β

A2
111)

1+exp(β
A2
111)

= e1

1+e1+
e2+e1·e2·e12

1+e1
+

e1e2+e2
1e2e12

1+e1

= e1
(1+e1)(1+e1+e2+e1e2e12)(1+e2e12)

(1+e1)

= e1
1+e1+e2+e1·e2·e12

= (3.4),

pA1
00 = θ1̄θ2̄|1̄ = 1

1+exp(β
A1
111)
· 1

1+exp(β
A1
211)

=
1

1 + e2 + e1+e1·e2·e12

1+e2
+

e1e2+e1e22e12

1+e2

=
1

(1+e2)(1+e1+e2+e1e2e12)
(1+e2)

=
1

1 + e1 + e2 + e1e2e12
= (3.5),

pA2
00 = θ2̄θ1̄|2̄ = 1

1+exp(β
A2
211)
· 1

1+exp(β
A2
111)

=
1

1 + e2+e1·e2·e12

1+e1
+ e1 +

e1e2+e21e2e
2
12

1+e1

=
e2(1 + e1e12)

(1 + e1 + e2 + e1e2e12)(1 + e1)

=
1

1 + e1 + e2 + e1e2e12
= (3.5).

Table 2: Likelihood equivalence list.
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