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Abstract. Nowadays, ready-to-use libraries and code generation are
often used to streamline and speed up the software development pro-
cess. The resulting programs are thus a collection of different modules
that cooperate: proving their safety and reliability is increasingly com-
plex, requiring sound formal techniques, such as static program analysis.
However, while teaching static analysis to master’s or PhD students, the
predominant focus on theoretical concepts often leaves limited space for
students to engage with the practical aspects of implementing static anal-
yses and is limited to developing elementary ones. In this paper, we show
how the infrastructure offered by LiSA can be exploited to learn how to
implement advanced static analyses, such as string and relational numeri-
cal analyses, just focusing on their distinctive aspects. This would help to
narrow the gap between theoretical and practical contents in static anal-
ysis courses, bringing the learning experience beyond the rudimentary
implementation of static analyses to more sophisticated applications.

1 Introduction

Static analysis based on formal methods requires a non-trivial theoretical back-
ground and development skills. Traditional static analysis courses based on for-
mal methods at the master’s or doctoral level often give priority to mathematical-
theoretical concepts, leaving limited room for students to actively engage with
the practical aspects of implementing static analyses. Moreover, the design and
implementation of new static analyses require building an infrastructure provid-
ing several basic building blocks, depending on the mathematical theory used.
Therefore, developing even a toy static analyzer from scratch is a significant
effort that could discourage students and teachers.

The goal of this paper is to show how we can exploit LiSA[10,15] to reduce
practical and development efforts for the building of static analysis solutions
based on abstract interpretation [6,7], allowing students to put their hands on
more advanced static analyses based on formal methods, and providing ready-
to-use components to develop their custom implementations. In particular, we
choose to discuss and present two of the static analyses: the prefix abstract
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domain [5], and the pentagon abstract domain [12], showing how LiSA allows us
to focus just on the implementation of the peculiar aspects of a static analysis of
interest to come up with a complete and ready-to-run analysis. We then discuss
how we use LiSA to teach practical static analysis in a Computer Science master
course.

Paper Structure. Section2 provides an informal and high-level introduction to
static analysis by abstract interpretation. Section 3 describes the key components
of LiSA. Section 4 reports the implementation details in LiSA of two advanced
abstract domains, namely prefix abstract domain and pentagon abstract domain.
Section 5 discusses how we integrated LiSA in the master course we teach.
Finally, Sect.6 concludes and illustrates how we intend to use LiSA to improve
the teaching experience within static analysis courses.

2 Static Analysis by Abstract Interpretation

Static analysis is a technique used for inspecting program properties without
concretely executing the program. Examples of these properties may be whether
the program terminates, which program variables are constants, or whether a
program contains safety and security issues (e.g., buffer overflows [9], injection
vulnerabilities [21], data leaks [11]).

For static analysis to guarantee the presence (or absence) of code proper-
ties, bugs, and vulnerabilities, one must adopt an approach based on a formal
methods framework. Among these frameworks, a notable example is certainly
abstract interpretation [6,7]. Abstract interpretation is a theoretical framework
that provides a systematic way to correctly approximate program behaviors and
reason about some properties of the program of interest on such approxima-
tion. One of the fundamental concepts of abstract interpretation is the notion of
abstract domain, which provides an abstraction of the concrete program states
as a set of abstract values. The goal of an abstract domain, typically modeled
as a (complete) lattice [7], is to capture just the relevant aspects of program
behavior while discarding details irrelevant to the analysis of interest. Regard-
ing teaching, abstract interpretation principles require a non-trivial theoretical
background, such as the notions of lattices, domains, fix-point theorems, and
Galois connections [6]. Theoretical concepts thus tend to dominate the available
time for the course, allowing only a shallow (and often not practical) exploration
of simple abstractions.

The classic candidate to teach abstract domains is the sign domain 7], where
numerical variables are abstracted to capture their sign, i.e., positive (Pos), nega-
tive (Neg), or zero (Zero). It is often chosen for its simplicity and intuitiveness. In
particular, the sign abstract domain is depicted by its Hasse diagram reported in
Fig. 1a, where the partial order between abstract values, the least upper bound,
and the greatest lower bound are highlighted. For instance, Fig. 1b shows what
the sign analysis infers on a simple code fragment.

At line 1, variables a and b are abstracted to the abstract value Pos because
the concrete assigned values 5 and 7 are positive integer numbers. At line 3,
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T 1 a=5,b=17;
2 la > Pos, b+ Pos§
/ ‘ \ 3 x = a + b;
4  la > Pos, b+ Pos,z — Pos§
Pos Zero Neg 5 y = x % -2;
6 (a > Pos,b > Pos,z — Pos,y — Neg§
\ ‘ / 7T z =1y - 8;
n 8 (a > Pos, b+ Pos,z +— Pos,y — Neg,z +— T§
(a) Hasse diagram of signs. (b) The sign domain in action.

Fig. 1. The sign abstract domain.

in order to infer the correct sign of the variable x, it is necessary to define the
so-called abstract semantics of the assignment and the sum operator. In general,
once we have defined how our concrete values (e.g., integers) are abstracted into
an abstract domain (e.g., sign), it is also necessary to define the abstract seman-
tics of the operations in a program of interests, i.e., how each operator affects
the abstract states represented by the abstract domain. Back to our example,
the abstract semantics of the sign domain for the sum operator corresponds to
the classical sign rules (e.g., Pos+ Pos = Pos). Hence, the analysis infers that the
sign of x is Pos. At line 7, the abstract semantics of the minus operator between
two Pos abstract values returns the top abstract value T, and it assigns it to z,
meaning that the analysis is not able to determine the sign for z, because we
are reasoning on abstract values (e.g., signs) and not on the concrete ones (e.g.,
integers).

Non-relational and Relational Abstract Domains. The sign domain shown above
can be seen as ‘“the Hello World of static analysis”, being typically the first
(and most common) numerical domain to be used to introduce static analysis
by abstract interpretation, for instance, in master courses or PhD schools; this
abstract domain lends itself well for this being a non-relational abstract domain,
i.e., an abstract domain that does not explicitly model relationships between
different variables, treating each variable independently. In contrast, relational
abstract domains, such as pentagons [12], octagons [13,20] or convex polyhe-
dra [3,8], also capture relationships between different variables.

Generally speaking, relational abstract domains offer higher precision than
non-relational ones, but they are also more complex to define and require addi-
tional computational efforts to track and maintain the relationships between
program variables.

3 LiSA

LiSA is a modular framework for developing static analyzers based on the
abstract interpretation theory. LiSA was born as a tool for research purposes
(e.g., [16-18]). However, its modular infrastructure also enabled us to use it to
teach static analysis by abstract interpretation. The high-level analysis process
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Fig. 2. LiSA overall execution.

of LiSA is reported in Fig.2. LiSA analyzes control-flow graphs (CFGs) [1],
a representation that expresses the control structure of the code using graph
notation. In particular, LiSA uses a general design for CFGs, where statements
do not have predefined semantics; instead, users of the framework can define
custom statement instances implementing language-specific semantic functions,
enabling the analysis of a wide range of programming languages and the devel-
opment of multilanguage analyses. The analysis infrastructure is partitioned into
three main areas: call evaluation, memory modeling, and value analysis. Each
area corresponds to a configurable analysis component that operates agnostically
concerning how the others are implemented. The analysis begins in the Inter-
procedural Analysis, which executes a program-wide fixpoint by computing each
individual CFG’s fixpoint. Whenever a call is encountered, the computation of
its result is delegated back to the Interprocedural Analysis. Instead, non-calling
statements are decomposed into a sequence of atomic operations, called symbolic
expressions, each with precise semantics that the abstract domains can interpret.
Memory-dealing expressions are handled by the Heap Domain, tracking their
effect and rewriting them as abstract identifiers representing possible memory
locations. Finally, the Value Domain tracks properties about variables (either
program variables or abstract identifiers) and computes invariants for each pro-
gram point. At the end of the analysis, results can be inspected through Checks,
which are program visitors that can access the computed invariants and that can
use them to warnings about points in the program where, for example, a prop-
erty of interest holds. Code parsing logic and the definition of language-specific
statements are provided by Frontends, which can also provide implementations
for LiSA’s components. These constitute effective static analyzers for individual
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languages that can be combined to obtain multilanguage analyses. Several fron-
tends have already been implemented, with new ones in the works. This paper
and our courses use a frontend for IMP: a simple object-oriented language built
for testing and demonstration. IMP is feature-rich enough to let the students
practice with realistic static analysis without over-complicating the semantics
abstraction. The IMP frontend is shipped with LiSA.! Students can use the var-
ious implementations of each analysis component provided within LiSA, thus
focusing only on the one they are experimenting with.

Key Components for Implementing an Abstract Domain. In abstract interpre-
tation courses, students usually become familiar with non-relational numeric
domains, such as sign and interval [7]. We provide here the necessary notions
not only to implement those domains but also other non-relational ones possibly
dealing with non-numeric data, as well as relational one.

A (relational or non-relational) domain tracking values of variables must
implement the ValueDomain interface. This requires providing all of the lattice
operators of the domain (e.g., lub, partial order, widening) as well as seman-
tic transformers to be invoked during fixpoints to track the semantics of each
symbolic expression processed. ValueDomain implementers must provide, among
other ones, (i) an assign method, invoked to store the result of an expression
into a variable, and (ii) a smallStepSemantics method, invoked when the effect
of a non-assigning symbolic expression is to be evaluated. Such methods trans-
form the domain instance that receives the call into a new one according to the
received expression(s) effects.

When coding a non-relational domain, some aspects of the implementation
are independent of the domain itself. There is always a mapping from vari-
ables to instances of the domain’s values, lattice operators are defined through
functional lifting over such map, and the domain only evolves with assignments
after recursively evaluating the right-hand side to a domain’s value. To sim-
plify such implementation tasks, LiSA ships with a ValueDomain implementation
named ValueEnvironment, parametric to a NonRelationalValueDomain (NRVD
for short). Such domain (i) is effectively a map from variables to instances of the
NRVD, (ii) uses functional lifting for lattice operators, delegating to NRVD for the
values of the mapping, (ii) has a smallStepSemantics implementation that is
a no-op, (iii) has an assign implementation that evaluates the right-hand side
to an instance of the NRVD and maps it to the target variable. Thus, an NRVD is
mainly required to provide (i) lattice operator for individual values (e.g., between
signs, instead of the whole mapping), and (ii) an evaluation logic for expressions.
As the recursive visiting of a symbolic expression is independent of the NRVD of
choice, LiSA also ships a subclass of it called BaseNonRelationalValueDomain
(BNRVD for short) providing such logic. Implementers of BNRVD thus only have to
provide (other than lattice operators) the evaluation logic of individual expres-
sions given the value of their arguments.

! The IMp specification is available at https://lisa-analyzer.github.io/imp/.
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4 Analyses Implementation with LiSA

4.1 An Example String Analysis: the Prefix Domain

String analysis focuses on tracking program properties concerning strings. In
the context of string static analysis by abstract interpretation, several abstract
domains have been proposed, each with different properties of interest and
complexity: prefix, suffix, char inclusion, bricks, and string graph abstract
domains [5], automata- and regex-based abstractions [4,14,22], and relational
string analyses [2]|, are just a few examples. While LiSA implements most of
the aforementioned abstract domains, in the rest of this paper, we show the
teaching-related peculiar aspects of implementing the prefix abstract domain.?
As the name suggests, the prefix abstract domain is a non-relational abstraction
that keeps track of the prefix of string variables. Consider the following code
fragment to give a flavor of how the prefix domain works.

1 if (x == 2) {

2 s = "javaSE";

3 (s — javaSEx§

4 Y else {

5 s = "javascript";

6 (s — javascriptx§

7}

8 s+ javax§

Supposing that the variable x has a statically unknown value, the value of
the Boolean guard at line 1 is not determined, and to infer the prefix abstraction
for the variable s at line 8 (i.e., at the end of if-statement), both branches must
be taken into account by the analysis; the true-branch abstracts the value of s
to javaSEx, that is the (concrete) value of s starts with the string"javaSE".
Similarly, the false-branch abstracts the value of s to javascriptx. At line 8,
the analysis infers that the abstract value of s is javax by applying the prefix’s
least upper bound between the two abstract values.

Prefix Abstract Domain Implementation. In the following, we report the
implementation of the prefix abstract domain with LiSA.? In particular, thanks
to LiSA, one only needs to implement the peculiar parts of the abstract domain
to come up with a ready-to-use analysis. Concerning the prefix abstract domain,
the key points are that: (i) it must be a non-relational domain, (ii) it needs a
mechanism to keep track of abstract prefixes, and (iii) the lattice-related opera-
tors and abstract semantics must be implemented.

We can define the domain as a class called Prefix, implementing the BNRVD
interface (Fig.3). The class is characterized by the prefix field (Fig.3 at line 3)
to keep track of string prefix abstract values. The value of this field is set during
the construction of an abstract value element (Fig. 3 at line 5).

2 Full details about the definition and formalization of the prefix abstract domain can
be found at [5].

3 Full code available at https://github.com/lisa-analyzer /lisa/blob/master /lisa/lisa-
analyses/src/main/java/it /unive/lisa/analysis/string /Prefix.java.
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1 public class Prefix implements BaseNonRelationalValueDomain<Prefix>
2 A

3 private final String prefix;

4 /7 L]

5 public Prefix(String prefix) { this.prefix = prefix; }

6 /7 L]

7}

Fig. 3. Implementation of the class Prefix.

Concerning lattice-based operations such as least upper bound and par-
tial order operation, LiSA provides a base implementation for lattice abstract
domains called BaseLattice, also implemented by BNRVD, that provides a base
implementation for lattice operations refactoring behaviors that are common to
most of the non-relational abstract domains. For instance, the least upper bound
between the top (resp. bottom) element and any other abstract value, always
returns top (resp. the other abstract value). Since Prefix implements BNRVD (and
in turn BaseLattice), the least upper bound operator is implemented through
lubAux, reported in Fig.4, that can ignore cases where both this and other
are the same abstract value, or are equal to bottom or top (being handled in
BaseLattice). lubAux computes the longest common prefix between this and
other (Fig.4 at lines 3, where the definition of longestCommonPrefix is left
implicit). If the common prefix is not empty, a new prefix abstract element is
returned; otherwise, the top element is returned (Fig. 4 at line 4). Partial order
and the greatest lower bound can be implemented similarly.

1 @Override

2 public Prefix lubAux(Prefix other) {

3 String result = longestCommonPrefix(this.prefix, other.prefix);
4 return result.isEmpty() ? TOP : new Prefix(result.toString());
5 }

Fig. 4. Least upper bound operator of Prefix.

Finally, BNRVD provides callbacks for evaluating the abstract semantics, one
for each LiSA symbolic expression type. The following shows the abstract seman-
tics for non-null constant values and binary string domain-specific expressions.
To define the abstract semantics for string literals, we need to implement the
evalNonNullConstant method, reported in Fig.5, that returns a new prefix
abstract value a value if the constant is a string, or the top element for the
non-string constant values (e.g., integers).

Concerning binary string expressions, we instead implement the evalBinary-
Expression method, reported in Fig.6, that takes two abstract values left
and right and the binary operator op that applies to them. Among the LiSA
string symbolic expressions, the prefix abstract domain can infer a non-top pre-
fix abstract value only for string concatenation (Fig.6 at line 4). In contrast,
for all the others, it returns top. Specifically, the prefix abstract value of left
concatenated with right, returns left.
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@Override
public Prefix evalNonNullConstant (Constant constant) {
if (constant.getValue() instanceof String) {
String str = (String) constant.getValue();
if (!str.isEmpty()) { return new Prefix(str); }
}
return TOP;

}

0D U WN -

Fig. 5. Abstract semantic implementation of non-null constant values.

@0verride
public Prefix evalBinaryExpression(BinaryOperator op, Prefix left,
Prefix right) {
if (op instanceof StringConcat) { return left; }
return TOP;

DU WN

}

Fig. 6. Abstract semantic implementation of binary expressions.

4.2 An Example Relational Analyses: the Pentagon Domain

In Sect.2, we highlighted that relational analyses are usually more complex
abstractions to be designed and implemented. In terms of teaching, these may not
be trivial for students first approaching static analysis. Here, we detail the imple-
mentation in LiSA of the Pentagon abstract domain [12]. This weakly relational
numeric abstract domain is relatively simple compared to others but contains
all the basic notions to understand relational domains. The Pentagon domain
captures relations of the form z € [a,b] Az < y and consists of two sub-domains:
a non-relational interval abstraction (z € [a, b]) combined with a relational strict
upper bound domain (x < y). The two components are combined via (an abstrac-
tion of the) reduced product [7], corresponding to a Cartesian product where the
two domains mutually exchange information in order to refine each other.

{z +— [0, +00],y — [0, +00]§
if (x > y) {
{xz — [0, 4+o0],y — [0, +o0], z > y§
r=x-y
lz — [1,400],y — [0, 4+00], 7 — [0, 0],z > y§
assert (r >= 0)
{z — [1,400],y — [0, +o0], 7 — [0, +o0],z > y§

00~ O UL W N =

Fig. 7. Code fragment example taken from [12, Sect.6.2.1].

Let us consider the code fragment reported in Fig. 7, where variables x and
y are initially abstracted to [0, +00]. The interval abstract domain is not precise
enough to prove the assertion at line 6 (intuitively, the assignment of r at line
4 yields the interval [—oo, +o0]). Instead, the Pentagon abstract domain also
tracks strict relations between variables, as highlighted by the invariant related
to x and y at line 3. Thus, exploiting the information x > y, we can refine x —
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y, and in turn, the interval assigned to r, in [0, +o00];* this is enough to prove
the assertion at line 6.

Pentagon Abstract Domain Implementation. Here, we report part of the
implementation of the Pentagon abstract domain. The key points are that: (i)
it must be a relational domain, (ii) it needs a mechanism to manage the infor-
mation related to non-relational interval and strict upper bounds domains, (iii)
the lattice-related operators and abstract semantics must be implemented.

1 public class Pentagon implements ValueDomain< Pentagon>,
2 BaseLattice <Pentagon> {

3 private final ValueEnvironment<Interval> intervals;

4 private final ValueEnvironment <UpperBounds> upperBounds;
5 /7 L]

6

Fig. 8. Implementation of the class Pentagon.

Unlike the prefix domain implementation presented in Sect. 4.1, Pentagon is
a relational domain and cannot exploit the BNRVD interface. The class Pentagon
is reported in Fig.8, implementing both the ValueDomain and BaseLlattice
interfaces. The domain is characterized by the field interval, keeping track of
the interval of each variable, and the field upperBounds, keeping track of the
relations of the form x < y between two variables; the latter is implemented
as an environment mapping each variable to a set of variables: for instance,
z—{y,z} = z<yAz <z Wewill focus on how the two components of this
domain can interact and exchange information, omitting implementation details
of the components related to interval and upper bounds abstract domains.®

Being Pentagon a ValueDomain implementer, it must provide the imple-
mentation for the smallStepSemantics and assign methods. Concerning the
former, the implementation is as simple as relying on the smallStepSemantics
of the two sub-components of the domain, as reported in Fig.9 at lines 1-4.

More attention is needed to implement the assign method, reported in Fig. 9
at lines 6-25, where refinement of the two sub-components of the Pentagon
abstract domain may occur. The assign method takes an expression e that needs
to be assigned to an identifier id (line 6). Lines 7-8 perform the assignment on
the interval and the upper bounds abstractions calling their respective assign
methods. Next, we check if it is possible to refine the abstraction: here, we discuss
the refinement concerning assignments of the form id = x — y. If the assigned

4 Formal specification of the Pentagon’s abstract semantics for subtraction can be
found in [12].

5 Implementation of the interval and upper bound abstract domains can be found
at https://github.com/lisa-analyzer/lisa/blob/master/lisa/lisa-analyses/src/main/
java/it/unive/lisa/analysis/numeric/Interval.java and  https://github.com/lisa-
analyzer/lisa/blob/master/lisa/lisa-analyses/src/main/java/it /unive/lisa/analysis/
numeric/UpperBounds.java.


https://github.com/lisa-analyzer/lisa/blob/master/lisa/lisa-analyses/src/main/java/it/unive/lisa/analysis/numeric/Interval.java
https://github.com/lisa-analyzer/lisa/blob/master/lisa/lisa-analyses/src/main/java/it/unive/lisa/analysis/numeric/Interval.java
https://github.com/lisa-analyzer/lisa/blob/master/lisa/lisa-analyses/src/main/java/it/unive/lisa/analysis/numeric/UpperBounds.java
https://github.com/lisa-analyzer/lisa/blob/master/lisa/lisa-analyses/src/main/java/it/unive/lisa/analysis/numeric/UpperBounds.java
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1 public Pentagon smallStepSemantics(ValueExpression expression) {

2 return new Pentagon(intervals.smallStepSemantics(expression),

3 upperBounds.smallStepSemantics (expression));

4 )

5

6 public Pentagon assign(Identifier id, ValueExpression e) {

7 ValueEnvironment <UpperBounds > newBounds = upperBounds.assign(id, e);
8 ValueEnvironment <Interval> newIntvs = intervals.assign(id, e);

9 // refinement

10 if (e instanceof BinaryExpression) {

11 BinaryExpression be = (BinaryExpression) e;

12 if (be.getOperator () instanceof SubtractionOperator

13 && be.getLeft () instanceof Identifier

14 &% be.getRight () instanceof Identifier) {

15 // id = x -y

16 Identifier x = (Identifier) be.getLeft ();

17 Identifier y = (Identifier) be.getRight();

18 if (newBounds.getState(y).contains(x))

19 newIntvs = newIntvs.putState(id, newIntvs.getState(id).glb(
20 new Interval (MathNumber.ONE, MathNumber.PLUS_INFINITY)));
21 }

22 /7 L...]

23 ¥

24 return new Pentagon(newIntvs, newBounds).closure();

25 }

Fig. 9. Semantic transformers of Pentagon.

expression is in the form x — y (lines 12-14), it is possible to refine the interval
abstraction for variable id if the upper bounds domain knows that y < x. This
is checked at line 18, and if so, the interval for id is refined, restricting it to
[1,4+00], applying the greatest lower bound operator (lines 19-20). Finally, the
result is returned at line 33 after applying the transitive closure (left implicit)
on the abstract value.

4.3 Run LiSA

Once the desired abstract domain is developed, it is ready to analyze programs
with the following fragment.

Program p = IMPFrontend.processFile(filePath);
LiSAConfiguration conf = new DefaultConfiguration();
conf .workdir = "output";

conf.analysisGraphs = GraphType.DOT;
conf.abstractState = new SimpleAbstractState <>(

new MonolithicHeap(),

new Pentagon(),

new TypeEnvironment<>(new InferredTypes()));
new LiSA(conf).run(p);

OO Uk W~

Line 1 uses the IMP frontend to parse an IMP program, returning a LiSA
Program. Lines 2-8 build a LiSA configuration, setting the working directory,
how to dump the analysis results, and the desired static analysis; we choose
to use the SimpleAbstractState class, requiring a heap domain (monolithic
heap), a value domain (Pentagons) and a type domain (non-relational type
environment), that come with LiSA. Finally, line 9 runs the analysis, producing
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untyped petagons_tests::common_code_pattern_01(petagons_tests* this, untyped x, untyped y, untyped r)

: node border , single
&&(>=(x,0),>=(y,0)) | : entrypoint border black, single
! exitpoint border black, double -

: [-Inf, +Inf], {}, .
j(:[[-Il:lf, +Il:'lt2']{{}} : sequential edge black, solid

y: [-Inf, +Inf], {} : true edge  blue, dashed
: false edge red, dashed

v
>(x,y)

r: [-Inf, +Inf], {},
x: [0, +Inf], {},
y: [0, +Inf], {}

v
r=-(x,y)
r: [1, +Inf], {3},

x: [1, +Inf], {3},
y: [0, +Inf], (x)

l

assert >=(r, 0)
r: [1, +Inf], {},
x: [1,+Inf], {3,
y: [0, +Inf], (x)

Fig. 10. LiSA dump for the program reported in Fig. 7.

the graph reported in Fig.10 with the pentagon analysis results.® Note that
to run the Prefix analysis instead, it is sufficient to change line 7 to new
ValueEnvironment<>(new Prefix()).

5 Owur Teaching Experience with LiSA

LiSA has been used for the last four years for the practical part of the Computer
Science master course Software Correctness, Security and Reliability at Univer-
sity Ca’ Foscari of Venice. Every year, the course features 30 to 50 students with
a standard Computer Science background (in particular, set theory and object-
oriented programming are given as prerequisites). Students learn lattice theory
and abstract interpretation during the course, paired with practical experience
using LiSA.

Course Structure. During the first three years, students took part in three
lectures exclusively focused on LiSA: a first introductory lecture giving a full
overview of the structure and the analysis process (Sect. 3), a second one with
a focus on dataflow analyses, and a third one focusing on simple non-relational
numeric analyses [10]. The second and third lectures also featured a live coding
session, going through the relevant classes and interfaces and tackling the intri-
cacies of the implementations. After each coding session, students were assigned

5 For space limitations, we have omitted details about the heap and type analyses.
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coding tasks covering the topics seen during the lecture, with a one-week dead-
line. Students also had the opportunity to develop an additional analysis, follow-
ing a reference paper, as a final project for the course instead of taking the theo-
retical exam. The fourth year instead featured three more lectures on LiSA, each
including live coding: one on advanced non-relational numeric analysis (typically
the interval domain [7]), one on information flow analysis [19] and string analysis
(Sect. 4.1), and a final one on relational numeric analyses (Sect. 4.2). Tasks were
also given for these new lectures, and the theoretical exam was removed in favor
of a mandatory project on the usage of LiSA to analyze real-world programs.
The lectures were initially delivered through online classes (mandatory due to
Covid-19 restrictions) but moved to in-person lectures during the last two years.

Settings for Coding. Coding sessions and task implementations aimed at target-
ing increasingly challenging scenarios without overwhelming the students with
technical details or complex language features. Programs targeted were thus writ-
ten in IMP to (i) exploit the IMP-frontend provided by LiSA instead of defining
one from scratch, and (ii) have a simplified semantics to reason upon. More-
over, students used built-in components for the Interprocedural Analysis and the
Heap Domain, allowing them to focus specifically on the peculiar aspects of an
abstract domain while ignoring more complex and out-of-scope reasoning still
needed to make the analysis run.

Tasks and FExams Evaluation. Tasks and final exams were graded from 0 to 10,
assigning points for (i) the correct usage of LiSA as seen during classes, (ii) the
correctness of the implementation w.r.t. the formal definition of the domain,
and (iii) the correctness of the results produced over some simple yet expressive
code snippets. Grades for the third point were assigned automatically, while
the first two required manual inspection of the code submitted. Since the tasks
were mandatory, all students actively engaged in solving them. Each year, marks
gradually grew with each task, starting from an average of 6 out of 10 in the first
task to a 7.5 in the second one. For the fourth year, having three more lectures
proved beneficial: students reached an average of 8.8 marks on the fifth task. In
the first three years, the number of students choosing the practical project varied
between 10% to 40%, showing that most students were still hesitant to engage
in a more challenging analysis development. This was the key motivation for the
increase in practical lectures during the fourth year. At the time of writing, final
projects for the fourth year are still in progress, so we do not have reports on
the impact of such additional lectures on the students’ understanding of static
analysis.

Impact on Students’ Careers. During all four years, we registered an increase
in the number of students asking for a master’s thesis on static analysis w.r.t.
the number of requests in the previous editions of the course, with 2-3 stu-
dents per year. Moreover, in the last three years, we disseminated LiSA through
dedicated invited seminars inside other static analysis courses in two neighbor-
ing universities. Currently, the researchers and professors from such universities
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are proposing bachelor and master theses projects related to LiSA, leading to
additional eight students working with it, overall.

6 Conclusion

In this paper, we presented and described how LiSA can be exploited in a static
analysis course to put the student’s hands on two examples of advanced static
analyses: a string analysis and a relational numeric analysis.

The adoption of LiSA into our educational curriculum has already yielded sig-
nificant benefits in our previous courses on static analyses, allowing students to
engage in the implementation of sophisticated static analyses. Furthermore, the
ready-to-use components gave students a complete overview of all the essential
components necessary to build static analyses via abstract interpretation while
experimenting with the analyses they were tasked with. Additionally, LiSA also
helps students develop a deeper understanding of the more practical applications
of static analysis, especially during final course projects.

Given this success, noted by the positive feedback from the students, the
next semester will see a heavier emphasis on using LiSA in our courses to bridge
further the gap between theory and practice in static analysis education.
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