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Abstract
The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising
from semi-discretized PDEs is studied. An approach based on the State-dependent
Riccati Equation (SDRE) is presented for H2 and H∞ control problems. Depend-
ing on the nonlinearity and the dimension of the resulting problem, offline, online,
and hybrid offline-online alternatives to the SDRE synthesis are proposed. The
hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov
equations, effectively enabling the computation of suboptimal feedback controls
for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zel-
dovich, and viscous Burgers’ PDEs are presented, providing a thorough experimental
assessment of the proposed methodology.

Keywords Stabilization of PDEs · State-dependent Riccati equations · Algebraic
Riccati Equations · Lyapunov equations · Numerical approximation

Mathematics Subject Classification (2010) 49M41 · 65L80 · 93B36 · 93B52

Communicated by: Peter Benner

� Dante Kalise
dkaliseb@ic.ac.uk

Alessandro Alla
alessandro.alla@unive.it

Valeria Simoncini
valeria.simoncini@unibo.it

1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia,
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1 Introduction

Feedback control laws are ubiquitous in modern science and engineering and can
be found in autonomous vehicles, fluid flow control, and network dynamics, among
many others. A distinctive feature of feedback laws is their ability to compensate
external perturbations in real time. While an offline training phase is often affordable,
an operational feedback law must be able to provide a control signal at a rate that
is determined by the underlying time scales of the physical system to be controlled.
This requirement poses a formidable computational constraint for the synthesis of
feedback controls which require an online optimization procedure.

A natural approach to generate an optimal feedback law for real-time control is
to follow a dynamic programming approach. Here, we solve a nonlinear Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE) for the value function of
the optimal control problem under study. This is done in an offline phase, and once
the value function has been computed, a feedback law is obtained as by-product.
Once online, the cost of implementing an HJB-based control in real time, assuming
the current state of the system is available, is reduced to the evaluation of a nonlin-
ear feedback map. Unfortunately, the dynamic programming approach is not suitable
for systems described by large-scale dynamics, as the computational complexity of
approximating the associated high-dimensional HJB PDEs goes beyond the reach
of traditional computational methods. Only very recently, the use of effective com-
putational approaches such as sparse grids [21, 33], tree structure algorithms [2],
polynomial approximation [4, 30, 31] tensor decomposition methods [20, 23, 41, 51],
and representation formulas [14, 15] have addressed the solution of high-dimensional
HJB PDEs. Recent works making use of deep learning [19, 26, 28, 32, 36, 39, 40]
anticipate that the synthesis of optimal feedback laws for large-scale dynamics can
be a viable path in the near future.

An alternative to the dynamic programming approach is the use of a Nonlinear
Model Predictive Control (NMPC) framework [24]. Here, an optimal open-loop con-
trol law is computed at every sampling instant of the dynamics. However, the control
action is optimized over a prediction horizon, which is sufficiently large to guarantee
asymptotic stability of the closed-loop, but short enough to ensure a computing time
that is compatible with the rate at which the control law is called. The NMPC frame-
work embodies the trade-off between optimality and real-time computability. It has
been shown [25] that the NMPC corresponds to a relaxation of the dynamic program-
ming approach, in the sense that the NMPC law is suboptimal with respect to the
optimal stabilizing feedback law provided by the dynamic programming approach,
although its suboptimality can be controlled by increasing the prediction horizon.

There exists a third synthesis alternative, which incorporates elements from both
dynamic programming and NMPC, known as the State-Dependent Riccati Equa-
tion (SDRE) approach [8, 17, 18]. The SDRE method originates from the dynamic
programming and the HJB PDE associated to infinite horizon optimal stabilization,
however, it circumvents its solution by reformulating the feedback synthesis as the
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sequential solution of state-dependent Algebraic Riccati Equations (ARE), which are
updated online along a trajectory. The SDRE feedback is implemented similarly as
in NMPC, but the online solution of an optimization problem is replaced by a nonlin-
ear matrix equation. Alternatives to the online formulation include the use of neural
networks [1, 52] in supervised learning, and reformulating the SDRE synthesis as an
optimization problem [29]. However, in this work we will focus on addressing the
SDRE synthesis from a numerical linear algebra perspective. The efficient solution
of matrix equations arising in feedback control has been subject of extensive research
over the last decades, leading to the design of solvers which can effectively be applied
to large-scale dynamics such as those arising in the control of systems governed by
PDEs (see, e.g., [3, 10–12, 46, 48]), and agent-based models [27]. Moreover, under
certain stabilizability conditions, this feedback law generates a locally asymptotically
stable closed-loop and approximates the optimal feedback law from the HJB PDE.

The purpose of the present work is to study the design of SDRE feedback laws
for the control of nonlinear PDEs, including nonlinear reaction and transport terms.
This is a class of problems that are inherently large-scale, and where the presence
of nonlinearities renders linear controllers underperformant. In this framework, the
use of dynamic programming or NMPC methods is often prohibitively expensive, as
for instance, in feedback control for multi-dimensional PDEs. Here instead, we pro-
pose and assess different alternatives for control design based on the SDRE approach
which can be effectively implemented for two- and three-dimensional PDEs. The
methodology studied in this paper is based on the parametrization of the SDRE syn-
thesis proposed in [5, 7]. In these works, different SDRE feedback laws are developed
based on the representation of the nonlinear terms in the system dynamics. This is
particularly relevant to PDE dynamics, as unlike the nonlinear ODE world, there
exists a clear taxonomy of physically meaningful nonlinearities. In some particu-
lar cases, the SDRE approach is reduced to a series of offline computations, and a
real-time controller only requires a nonlinear feedback evaluation. We explore the
limitations of such a parametrization. In the more general case, the SDRE synthesis
requires the sequential solution of AREs at a high rate, a task that can is demand-
ing for large-scale dynamics. Here, we propose a variant requiring the solution of a
Lyapunov equation instead, thus mitigating the computational cost associated to the
online synthesis.

The paper is structured as follows. In Section 2 and its subsections we review the
H2/H∞ optimal feedback synthesis problem. In Section 3 and its subsections we
present the suboptimal approximation to these feedback laws by means of the SDRE
approach, including offline, online, and hybrid offline-online implementations, illus-
trated with an application to the control of the Sine-Gordon equation. Section 4
discusses numerical linear algebra aspects of the solution of the Algebraic Riccati
and Lyapunov equations which constitute the core building blocks of the SDRE feed-
back synthesis. Finally, in Section 5 we perform a computational assessment of the
proposed methodology on the two-dimensional degenerate Zeldovich and viscous
Burgers PDEs.
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2 Optimal feedback synthesis for nonlinear dynamics

In this section we revisit the use of dynamic programming and Hamilton-Jacobi-
Bellman/Isaacs PDEs for the computation of optimal feedback controls for nonlinear
dynamics. We begin by stating the problem of optimal feedback stabilization via H2
synthesis (see, e.g., [6, 31]), to then focus on robustness under perturbation in the
framework ofH∞ control (see, e.g., [30, 49, 50]).

2.1 TheH2 synthesis and the Hamilton-Jacobi-Bellman PDE

We consider the following infinite horizon optimal control problem:

min
u(·)∈U

J (u(·); x) :=
∞∫

0

(
‖y(t)‖2Q + ‖u(t)‖2R

)
dt

subject to the nonlinear dynamical constraint

ẏ(t) = f (y(t)) + g(y(t))u(t) , y(0) = x, (1)

where y(t) = (y1(t), . . . , yd(t))� ∈ R
d denotes the state of the system, and the

control signal u(·) belongs to U := L∞(R+;Rm). The running cost is given by
‖y‖2Q := y�Qy with Q ∈ R

d×d , Q � 0, and ‖u‖2R = u�Ru with R ∈ R
m×m, R �

0. We assume the system dynamics f (y) : R
d → R

d to be such that f (0) = 0,
and the control operator g(y) : R

d → R
d×m to be C1(Rd). This formulation of

the H2 synthesis corresponds to the asymptotic stabilization of nonlinear dynamics
towards the origin. By the application of the Dynamic Programming Principle, it is
well-known that the optimal value function

V (x) = inf
u(·)∈U

J (u(·); x)

characterizing the solution of this infinite horizon control problem is the unique
viscosity solution of the Hamilton-Jacobi-Bellman equation

min
u∈Rm

{∇V (x)�(f (x) + g(x)u) + ‖x‖2Q + ‖u‖2R} = 0 , V (0) = 0 . (2)

The explicit minimizer u∗ of eq. (2) is given by

u∗(x) = −1

2
R−1g(x)�∇V (x) . (3)

By inserting (3) into (2), we obtain the HJB equation

∇V (x)�f (x) − 1

4
∇V (x)�g(x)R−1g(x)�∇V (x) + x�Qx = 0 , (HJB)

to be understood in the classical sense. We recall that under the additional linearity
assumptions f (x) = Ax with A ∈ R

d×d and g(x) = B ∈ R
d×m, the value function

is known to be a quadratic form, V (x) = x�Πx, with Π ∈ R
d×d positive definite,

and eq. (HJB) becomes an Algebraic Riccati Equation for Π

A�Π + ΠA − ΠBR−1B�Π + Q = 0 . (ARE)
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Solving for V (x) in eq. (HJB) globally in R
d allows an online synthesis of the opti-

mal feedback law (3) by evaluating the gradient ∇V (x) and g(x) at the current state
x. This leads to an inherently robust control law in the sense that if the state of the
system is perturbed to x′ = x + δx, there still exists a stabilizing feedback action
departing from the perturbed state, namely, u∗(x′). However, this control design
neglects the modelling of the disturbance/uncertainties affecting the dynamics, with
no general stabilization guarantees. We overcome this limitation by formulating an
H∞ synthesis, which we describe in the following.

2.2 TheH∞ problem and the Hamilton-Jacobi-Isaacs PDE

We extend the previous formulation by considering a nonlinear dynamical system of
the form

ẏ(t) = f (y(t)) + g(y(t))u(t) + h(y(t))w(t) , y(0) = x , (4)

where an additional disturbance signal w(·) ∈ W , with W = L2(R+;Rp) enters
the system through h(y) : Rd → R

d×p. We assume that y = 0 is an equilibrium
of the system for u = w = 0. The H∞ control objective is to achieve both internal
stability of the closed-loop dynamics and disturbance attenuation through the design
of a feedback law u = u(y) such that for a given γ > 0, and for all T ≥ 0 and
w ∈ L2([0, T [,Rp), the inequality

T∫

0

(
‖y‖2Q + ‖u(t)‖2R

)
dt ≤ γ 2

T∫

0

‖w(t)‖2P dt (5)

holds. Here, P ∈ R
p×p, P � 0 , and y is the solution to (4). The parameter γ plays

a crucial role in H∞ control design. We say that the control system (4) has L2-gain
not greater than γ , if (5) holds. Finding the smallest γ ∗ for which this inequality is
verified, also known as the H∞-norm of the system, is a challenging problem in its
own right. The simplest yet computationally expensive method to find theH∞-norm
of a system is through a bisection algorithm, as described in [13]. Applying dynamic
programming techniques leads to a characterization of the value function for this
problem in terms of the solution of a Hamilton-Jacobi-Isaacs PDE

min
u∈Rm

max
w∈Rp

{∇V (x)�(f (x)+g(x)u+h(x)w)+‖x‖2Q +‖u‖2R −γ 2‖w‖2P } = 0 , (6)

valid for all γ ≥ γ ∗. The unconstrained minimizer and maximizer of (6), u∗
γ and w∗

γ

respectively, are explicitly computed as

u∗
γ (x) = − 1

2R
−1g(x)�∇Vγ (x) , (7)

w∗
γ (x) = 1

2γ 2 P
−1h(x)�∇Vγ (x) , (8)

where Vγ (x) solves the Hamilton-Jacobi-Isaacs equation

∇Vγ (x)�f (x) + 1

4
∇Vγ (x)�S(x)∇Vγ (x) + x�Qx = 0 , (HJI)
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with

S(x) = 1

γ 2
h(x)P −1h(x)� − g(x)R−1g(x)�, (9)

and Vγ (0) = 0. For an initial condition which is not a steady state we have

�∫

0

(
‖y‖ + ‖u(t)‖2R

)
dt ≤ γ 2

�∫

0

‖w(t)‖2P dt + Vγ (x), (10)

see, e.g., [45, Theorem 16]. When there is no confusion, we denote Vγ (x) by V .
Note that if the disturbance attenuation is neglected by taking γ → ∞, we recover
the solution of (HJB) instead. Moreover, under the linearity assumptions f (x) = Ax

with A ∈ R
d×d , g(x) = B ∈ R

d×m, and h(x) = H ∈ R
d×p, the value function is a

quadratic form Vγ (x) = x�Πx, where Π ∈ R
d×d is positive definite, and eq. (HJI)

becomes the following Algebraic Riccati Equation for Π

A�Π + ΠA − Π

(
BR−1B� − 1

2γ 2
HP −1H�

)
Π + Q = 0 , (ARE∞)

solving the H∞ problem for full state feedback. In the following section we discuss
the construction of computational methods to synthesize nonlinear feedback laws
inspired by the solution of HJB/HJBI PDEs.

3 Sub-optimal feedback control laws

Despite the extensive parametrization of the control problem, eqns. (HJB) and (HJI)
remain first-order, stationary nonlinear PDEs whose numerical approximation is a
challenging task. These nonlinear PDEs are cast over Rd , where d relates to the
dimension of the state space of the dynamics, which can be arbitrarily large. In par-
ticular, if the system dynamics correspond to nonlinear PDEs, the direct solution
of the resulting infinite-dimensional eqns. (HJB) and (HJI) remains an open com-
putational problem. We explore different alternatives to circumvent the solution of
high-dimensional HJB PDEs by resorting to the sequential solution of the Algebraic
Riccati Equations (ARE) and (ARE∞) respectively, providing a tractable alternative
for feedback synthesis in large-scale nonlinear dynamics. The different techniques
we propose trade the optimality associated to the HJB-based control for computabil-
ity, and hence will be referred to as suboptimal feedback laws. More precisely, the
proposed controls are obtained by prescribing a quadratic ansatz and neglecting terms
in the corresponding HJB/HJBI PDE, so the resulting feedback laws are suboptimal
in the sense they stem from the gradient of a function which is not the value function
of the control problem.

For the sake of simplicity, we focus on theH∞ synthesis. TheH2 feedback follows
directly choosing h(x(t)) := 0 in (4).
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3.1 Linear-Quadratic Regulator (LQR) control law

The simplest suboptimal control law for nonlinear systems uses the optimal feed-
back law for the linear-quadratic control problem arising from linearization around
an equilibrium, which we assume to be x = 0. For γ > γ ∗, we solve eq. (ARE∞)
with Aij = ∂fi (x)

∂xj
|x=0, B = g(0), and H = h(0). From the solution Π , we obtain

the linear feedback law
u(x) = −R−1B�Πx . (11)

Such a feedback law, applied to the original nonlinear system, can only guarantee
stabilization in a neighborhood around the origin.

3.2 State-Dependent Riccati Equation (SDRE)

If we express the system dynamics through a space-dependent representation of the
form

ẋ = A(x)x + B(x)u(t) + H(x)ω(t) , (12)

we can synthesize a suboptimal feedback law inherited from (HJI) by following an
approach known as the State-dependent Riccati Equation (SDRE). This method has
been thoroughly analyzed in the literature, see, e.g., [5, 8, 16], and despite being
purely formal, it is extremely effective for stabilizing nonlinear dynamics. Consider
dynamics of the form (12), where the optimal feedback synthesis is given by solving
the HJBI PDE (HJI). Since the value function associated to this PDE is a positive
function, with no loss of generality, we can prescribe an ansatz of the form Vγ (x) =
x�Π(x)x, with Π(x) ∈ R

n×n a matrix-valued operator. Inserting this ansatz into
(HJI) would lead to an equivalent formulation of the HJBI PDE in terms of Π(x),
similarly as in the LQR setting. However, the gradient term

∇Vγ (x) = 2Π(x)x + ϕ(x) , (13)

where ϕ(x) is a n-dimensional vector-valued function such that

ϕk(x) =
n∑

i,j=1

xixj

∂Π(nx)i,j

∂xk

,

offers no simplification of the HJB formulation due to the ϕ(x) term. Instead, the
SDRE formulation approximates

∇Vγ (x) ≈ 2Π(x)x ,

which, inserted into (HJI), leads to the state-dependent ARE

A�(x)Π(x) + Π(x)A(x) − Π(x)S(x)Π(x) + Q = 0 , (14)

where

S(x) = B(x)R−1B�(x) − 1

2γ 2
H(x)P −1H(x)� .

Solving this equation yields a state-dependent Riccati operator Π(x), from where we
obtain a nonlinear feedback law given by

u(x) := −R−1B�(x)Π(x)x . (15)
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This feedback law is locally asymptotically stabilizing and suboptimal due to the
value function gradient approximation (13), which is only suitable in a neighbor-
hood of the origin. The extension of the SDRE methodology beyond the smallness
condition have been studied in [8].

It is important to observe that the operator (14) admits an analytical solution only
in a limited number of cases. More importantly, even if this solution is computed for
every state x, the closed-loop differs from the optimal feedback obtained from solv-
ing (HJI), as the SDRE approach assumes that the value function is always locally
approximated as V (x) = x�Π(x)x. From an optimal control perspective the SDRE
can be interpreted as a model predictive control loop where at a given instant, the
dynamics (A(x), B(x), H(x)) are frozen at the current state and an LQR feedback is
numerically approximated. The procedure is illustrated in Algorithm 1. The result-
ing feedback is naturally different from the optimal nonlinear feedback law, and will
remain different regardless of how fast the SDRE feedback is updated along a trajec-
tory. The latter is also observed in [29], where it is shown that a direct derivation of
the SDRE approach departing from the HJB PDE would lead to additional terms in
(12). Notwithstanding, it is possible to show local asymptotic stability for the SDRE
feedback. We recall the following result [5] concerning asymptotic stability of the
SDRE closed-loop in the H2 case.

Proposition 1 Assume a nonlinear system

ẋ(t) = f (x(t)) + B(x(t))u(t) , (16)

where f (·) is C1 for ‖x‖ ≤ δ, and B(·) is continuous. If f is parametrized in the
form f (x) = A(x)x, and the pair (A(x), B(x)) is stabilizable for every x in a non-
empty neighborhood of the origin. Then, the closed-loop dynamics generated by the
feedback law (15) are locally asymptotically stable.

Algorithm 1 SDRE-MPC loop.

Assuming the stabilizability hypothesis above, the main bottleneck in the imple-
mentation of Algorithm 1 is the high rate of calls to an ARE solver for (14). Moreover,
these ARE calls are expected to be sufficiently fast for real-time feedback control.
This is a demanding computational task for the type of large-scale dynamics arising in
optimal control of PDEs. In the following, we discuss two variations the SDRE-MPC
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algorithm which mitigate this limitation by resorting to offline and more efficient
online computations.

3.3 Offline approximation of the SDRE

A first alternative for more efficient SDRE computations was proposed in [7],
inspired by a power series argument first discussed in [53]. Assuming that the state
operator A(x) can be decomposed into A(x) = A0 +f1(x)A1 , where A0 and A1 are
constant matrices and f (x) is a scalar function, B(x) = B and H(x) = H , then the
Riccati operator Π(x) solving (14) is approximated by

Π(x) =
∞∑

n=0

(f1(x))nLn ,

where the matrices Ln ∈ R
d×d solve

L0A0 + A�
0 L0 − L0SL0 + Q = 0 , (17)

L1 (A0 − SL0) +
(
A�
0 − L0S

)
L1 + L0A1 + A�

1 L0 = 0 , (18)

Ln (A0 − SL0) +
(
A�
0 − L0S

)
Ln + Qn = 0 , (19)

Qn := Ln−1A1 + A�
1 Ln−1 −

n−1∑
k=1

LkSLn−k .

After solving a single ARE and N Lyapunov equations, an N-order approximation
of Π(x) yields the feedback

uN(x) = −R−1B�
(

N∑
n=0

(f1(x))nLn

)
x (20)

Unfortunately, the reduction above is only possible for a scalar nonlinearity. If the
nonlinearity that can be expressed as

A(x) = A0 +
r∑

j=1

fj (x)Aj , (21)

where Aj ∈ Rd×d and the state dependence is restricted to r scalar functions fj (x) :
Rd → R, then a first-order approximation of Π(x) is given by

Π(x) ≈ Π̃(x) = Π0 +
r∑

j=1

Πjfj (x) (22)

where Π0 solves (ARE∞) for A0 and the remaining Πj satisfy the Lyapunov
equations

ΠjC0 + C�
0 Πj + Qj = 0 , j = 1, . . . , r , (23)

with C0 = A0−SΠ0, and Qj = Π0Aj +AjΠ0. The resulting feedback law is given
by

u(x) = −R−1B�Π̃(x)x . (24)
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Overall, this approach requires the computation of the ARE associated to A0
in addition to r Lyapunov equations whose solution is fully parallelizable. Its
implementation is summarized below.

Algorithm 2 Offline SDRE.

An offline-online SDRE approach Although the previous approach is a valid vari-
ant to circumvent the online solution of Riccati equations at a high rate, it becomes
unfeasible in cases where both d and r are large, as it requires the solution of r Lya-
punov (23) and storage of the solution matrix with d2 entries each. Such a large-scale
setting arises naturally in feedback control of dynamics from semidiscretization of
nonlinear PDEs and agent-based models. We present a variant of the offline SDRE
approach which circumvents this limitation by resorting to an online phase requiring
the solution of a single Lyapunov equation per step.

Let us define the quantity W(x) =
r∑

j=1
Πjfj (x). Multiplying each equation in

(23) by its corresponding fj (x), it follows that W(x) satisfies the Lyapunov equation

W(x)C0 + C�
0 W(x) +

r∑
j=1

Qjfj (x) = 0. (25)

Therefore, the feedback law can be expressed as

u(x) = −R−1B�
⎛
⎝Π0 +

r∑
j=1

Πjfj (x)

⎞
⎠ x = −R−1B� (Π0 + W(x)) x. (26)

The feedback law (26) can be computed by solving an offline Riccati equation for
Π0 and an online Lyapunov equation for W(x); see Section 4 for a discussion on
the computational costs of the two approaches. The offline-online SDRE approach is
summarized in Algorithm 3 below.

Remark 1 The approximation of the state space solution x(tk+1) at time tk+1 can
be performed with both explicit or implicit time-stepping schemes. In both cases,
the feedback gain remains frozen at K(x(tn)). In our simulations we have used an
implicit scheme due to the stiffness of our problem.
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Algorithm 3 Offline-online SDRE.

3.4 A preliminary test: the damped Sine-Gordon equation

We present a preliminary assessment of the effectiveness of Algorithms 1 and
3 for the H2 case. In Section 5 we will focus on large-scale, two-dimensional
PDEs and H∞ control. Given a domain Ω ⊂ R, we consider the control of the
damped Sine-Gordon equation (see, e.g., [44]) with homogeneous Dirichlet boundary
conditions over Ω × R

+
0 :

∂ttX(ξ, t) = −α∂tX(ξ, t) + ∂ξξX(ξ, t) − β sinX(ξ, t) + χωc(ξ)u(t)

X(ξ, t) = 0 ξ ∈ ∂Ω, t > 0 ,

X(ξ, 0) = x0(ξ) , ξ ∈ Ω ,

∂tX(ξ, 0) = x1(ξ) , ξ ∈ Ω ,

(27)

where the control variable u(t) acts through an indicator function χωc(ξ) supported
over ωc ⊂ Ω . The cost functional to be minimized is given by:

J (u(·);X(·, 0)) :=
∞∫

0

z∑
i=1

1

|ωoi
|

(∫
ωoi

X(ξ, t) dξ

)2

+ R |u(t)|2 dt (28)

where ωo := ∪z
i=1ωoi

⊂ Ω represents a collection of local patches where we average
the state. Defining y(t) = (X(·, t), Ẋ(·, t))�, we write the dynamics as a first-order
abstract evolution system

ẏ(t) = Ay(t) + f (y(t)) + Bu(t) ,

where

A =
[
0 I

∂2ξξ −αI

]
, f (y(t)) =

[
0

−β sin(X(·, t))
]

, Bu(t) =
[

0
χωc(ξ)u(t)

]
. (29)

We approximate the operators above using a finite difference discretization in
space. Given the domain Ω = [ξL, ξR], we construct the uniform grid ξi =
ξL + (i − 1)
ξ with 
ξ = (ξR − ξL)/(d − 1). With X(ξ, t) representing the con-
tinuous state of the PDE, we define the discrete states Xi(t) := X(ξi, t), where
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the ξi’s correspond to spatial discretization nodes, and the discrete augmented state
Y (t) = (X1(t), . . . , Xd(t), Ẋ1(t), . . . , Ẋd(t))�. The discrete operators read

Ad =
[
0d×d Id
−
d αId

]
, Bu(t) =

[
0d×1

{χωc(ξi)}di=1

]
u(t) , (30)

where Id is the d × d identity matrix, and 
d is the discrete Laplace opera-

tor,1 
d := 
ξ−2tridiag([ 1 −2 1 ], d) ∈ R
d×d . The quantity

∑z
i=1

1

|ωoi
|(∫

ωoi
X(ξ, t) dξ

)2
in (28) is approximated by X(t)�QX(t) where Q = C�C ∈

R
d×d and

C� = 
ξ

[
{χωo1

(ξi)}di=1

|ωo1 |
, . . . ,

{χωoz
(ξi)}di=1

|ωoz |

]
∈ R

d×z .

To express the nonlinearity in a semilinear form consistent with (12) we define

f̃ (Y (t)) = −β

⎛
⎝

0d×1{
sin(Xi(t))

Xi(t)

}d

i=1

⎞
⎠ Y (t) . (31)

In our test we consider the following values for the given parameters, Ω =
[−10, 10], t ∈ [0, 10], α = 0.05, β = 2, ωc = [−1, 1], and

X(ξ, 0) = 0, ∂tX(ξ, 0) = 8

3
sech

(
2

3ξ

)
.

In the cost functional (28) we set R = 1, ωo(x) = [−2.5, −1.5] ∪ [1.5, 2.5] and
z = 2. In this test we take d = 402 nodes in the finite difference discretization.
Time-stepping is performed with an implicit Euler method with a time step of 0.1.
The small size Riccati and Lyapunov equations are solved using the Matlab func-
tions icare and lyap, respectively. Controlled dynamics with different feedback
controls are shown in Fig. 1. The presence of the damping term α∂tX(ξ, t) gen-
erates a stable trajectory for both the uncontrolled and LQR-controlled dynamics
using the linearized feedback (11). However, we still observe differences in the state
and control variables with respect to the SDRE controllers, SDRE-MPC and SDRE
offline-online, described in Algorithms 1 and 3, respectively. The accumulated run-
ning costs in Fig. 1 (top-left) indicate that the SDRE-MPC implementation achieves
the best closed-loop performance, followed by SDRE offline-online, both outper-
forming linearized LQR and uncontrolled trajectories. However, the main difference
between the SDRE-MPC and SDRE offline-online closed-loops is related to com-
putational time. The SDRE-MPC solver requires the solution of multiple AREs in
sequence, taking a total of 23 minutes of CPU time for this test, whereas the online
solution of Lyapunov equations of the SDRE offline-online implementation reduces
this computation time to 45 seconds. A deeper study on the methods performance in
the large-scale setting will be reported on in Section 5, while implementation aspects

1The notation tridiag([ a b c ], d) stands for a tridiagonal d × d matrix having the constant values
b ∈ R on the main diagonal, a ∈ R on the lower diagonal and c ∈ R on the upper diagonal.
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Fig. 1 Section 3.4. Damped sine-Gordon equation, controlled trajectories. Top: accumulated running cost
with differentH2-control (left) and corresponding control inputs (right). Middle: trajectories, uncontrolled
(left), and linearized (right). Bottom: trajectories, H2-controlled solution with SDRE-MPC Algorithm 1
(left), and H2-controlled solution with SDRE offline-online Algorithm 3 (right)

associated with the solution of these algebraic equations are discussed in the next
section.

4 Solving large-scale Algebraic Riccati/Lyapunov equations

The time steps discussed in Section 3.2 all use matrices that stem from the solution of
algebraic matrix equations, and more precisely the (quadratic) Riccati and the (linear)
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Lyapunov equations. The past few years have seen a dramatic improvement in the
effectiveness of numerical solution strategies for solving these equations in the large-
scale setting. For a survey in the linear case we refer the reader to the recent article
[46], while for the algebraic Riccati equation we point the reader to, e.g., [9, 12, 47].

In our derivation we found projection methods to be able to adapt particularly
well to the considered setting, with a similar reduction framework for both linear
and quadratic problems; other approaches are reviewed for instance in [11, 46]. We
emphasize that all considered methods require that the zero order term in the matrix
equation, e.g., matrix Q in the Riccati (14), be low rank.

The general idea consists of first determining an approximation space Kk that can
be naturally expanded if needed, and then seeking an approximate solution in this
space, by imposing a Galerkin condition on the matrix residual for computing the
projected approximate solution.

Let Vk be such thatKk = range(Vk), with Vk having orthonormal columns. Recall-
ing that in both the Riccati and Lyapunov equations the solution matrix is symmetric,
the approximate solution can be written as VkYV�

k .
Consider the Riccati (14) for a fixed x = x(t∗), so that we set A(x(t∗)) = A∗

and B(x(t∗)) = B∗. Let R = A�∗ VkYXV�
k + VkYXV�

k A∗ − VkYXV�
k B∗VkYXV�

k +
Q. Imposing the Galerkin condition on R means that the residual matrix R be
orthogonal to the approximation space, in the matrix sense, that is

V�
k RVk = 0 ⇔ V�

k A�∗ VkYX +YXV�
k A∗Vk −YX(V�

k B∗Vk)YX +V�
k QVk = 0,

(32)
where the orthogonality of the columns of Vk was used. If Vk has small dimensions,
the reduced Riccati matrix equation on the right also has small dimensions and can be
solved by a “dense” method to determine YX; see, e.g., [12]. The cost of solving the
reduced quadratic equation with coefficient matrices of size k̂ is at least 63k̂3 floating
point operations with an invariant subspace approach [37]. Note that the large matrix
VkYXV�

k is never constructed explicitly, since it would be dense even for sparse data.
Analogously, for the Lyapunov equation in (25), we can write W ≈ VkYV�

k for
some Y = YW to be determined. Let Q∗ = ∑

k Qkfk(x(t∗)). As before, letting
R̃ = C�

0 VkYV�
k + VkYV�

k C0 + Q∗, the Galerkin condition leads to

V�
k R̃Vk = 0 ⇔ (V�

k C�
0 Vk)Y + YV�

k C0Vk + V�
k Q∗Vk = 0.

This reduced Lyapunov equation can be solved by means of a “dense” method at a
cost of about 15 k̂3 floating point operations for coefficient matrices of size k̂, if the
real Schur decomposition is employed; see, e.g., [46]. Note that the computational
cost is significantly lower than that of solving the reduced Riccati equation with
matrices of the same size.

4.1 On the selection of the approximation space

Choices as approximation space explored in the literature include polynomial and
rational Krylov subspaces [46]. They both enjoy the property of being nested as they
enlarge, that is Kk ⊆ Kk+1 where k is associated with the space dimension. Rational
Krylov subspaces have emerged as the key choice because they are able to deliver
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accurate approximate solutions with a relatively small space dimension, compared
with polynomial spaces. Given a starting tall matrix V0 and an invertible stable coef-
ficient matrix A∗, we have used two distinct rational spaces: the Extended Krylov
subspace,

EKk = range([V0, A
−1∗ V0, A∗V0, A

−2∗ V0, A
2∗V0, . . . , A

k−1∗ V0, A
−k∗ V0]),

which only involves matrix-vector products and solves with A∗, and the (fully)
Rational Krylov subspace,

RKk = range([V0, (A∗ − σ2I )−1V0, . . . ,

k∏
j=2

(A∗ − σj I )−1V0]).

where σj can be computed a-priori or adaptively. In both cases, the space is expanded
iteratively, one block of vectors at the time, and systems with A∗ or with (A∗ − σj I )

are solved by fast sparse methods. For A∗ real valued and stable, the σj ’s are selected
to be in C

+, so that A∗ − σj I is nonsingular. The actual choice of the shifts is a
key step and a rich literature is available, yielding theoretically grounded effective
strategies; see, e.g., the discussion in [46].

In our implementation we used the Extended Krylov subspace for solving the
Lyapunov equation in Algorithm 3, which has several advantages, such as the compu-
tation of the sparse Cholesky factorization of A0 once for all. On the other hand, we
used the Rational Krylov subspace for the Riccati equation, which has been shown
to be largely superior over the Extended Krylov on this quadratic equation, in spite
of requiring the solution of a different (shifted) sparse coefficient matrix at each iter-
ation [11, 47]. Nonetheless, in Section 4.2 we report an alternative approach that
makes the Extended Krylov subspace competitive again for the Riccati problem with
A0 symmetric. Except for the operations associated with the reduced problems, the
computational costs per iteration of the Riccati and Lyapunov equation solvers are
very similar, if the same approximation space is used.

Although we refer to the specialized literature for the algorithmic details,2 we
would like to include some important implementation details that are specific to our
setting. In particular, the matrix C0 employed in Algorithm 3 is given by C0 = A0 −(
BR−1B� − 1

2γ 2 HP −1H�
)

Π0, which is not easily invertible if explicitly written,

since it is dense in general. Note that A0 is in general sparse, as it stems from the
discretization of a partial differential operator. We can write

C0 = A0 −
(
[B, H ]G[B, H ]�

)
Π0, with G =

(
R−1 0
0 − 1

2γ 2 P
−1

)
.

Using the classical Sherman-Morrison-Woodbury formula, the product C−1
0 V for

some tall matrix V can be obtained as

W := C−1
0 V = A−1

0 V − A−1
0 [B, H ]G−1

1 [B, H ]�Π0A
−1
0 V,

2See www.dm.unibo.it/∼simoncin/software for some related software.
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with G1 = I +G[B, H ]�Π0A
−1
0 [B, H ], which is assumed to be nonsingular. There-

fore, C−1
0 V can be obtained by first solving sparse linear systems with A0, and then

using matrix-matrix products. More precisely, the following steps are performed:

– Solve A0W1 = V

– Solve A0W2 = [B, H ]
– Compute G1 = I + G[B, H ]�Π0W2
– Compute W = W1 − W2(G−1

1 ([B, H ]�Π0W1) )

We also recall that Π0, the solution to the initial Riccati equation, is stored in
factored form, and this should be taken into account when computing matrix-matrix
products with Π0.

While trying to employ the Rational Krylov space, we found that the structure
of C0 made the selection of optimal shifts {σj } particularly challenging, resulting
in a less effective performance of the method. Hence, our preference went for the
Extended Krylov space above, with the above enhancement associated with solves
with C0.

4.2 Feedbackmatrix oriented implementation

In Algorithm 1 the Riccati equation needs to be solved at each time step tn. How-
ever, its solution Π(xn) is only used to compute the feedback matrix K(xn) :=
−R−1B�Π(xn). Hence, it would be desirable to be able to immediately compute
K(xn) without first computing Π(xn). This approach has been explored in the Ric-
cati equation literature but also for other problems based on Krylov subspaces, see,
e.g., [35, 43].

In this section, in the case where the matrix A(xn) is symmetric, we describe
the implementation of one of the projection methods described above, that is able
to directly compute K(xn) without computing Π(xn) (in factored form), and more
importantly, without storing and computing the whole approximation basis. The lat-
ter feature is particularly important for large-scale problems, for which dealing with
the orthogonal approximation basis represents one of the major computational and
memory costs. To the best of our knowledge, this variant of the Riccati solver is new,
while it is currently explored in [42] for related control problems and the rational
Krylov space.

Here we consider the Extended Krylov subspace. For A(xn) symmetric, the
orthonormal basis of EKk can be constructed by explicitly orthogonalizing only with
respect to the previous two basis blocks. Hence, only two previous blocks of vectors
need to be stored in memory, and require explicit orthogonalization when the new
block of vectors is added to the basis [43]. This is also typical of polynomial Krylov
subspaces constructed for symmetric matrices, giving rise to the classical Lanczos
three-term recurrence [35].

With this procedure, in the reduced (32) the matrices Ak := V�
k A∗Vk , Bk := V�

k B

and Qk := V�
k QVk are computed as k grows by updating the new terms at each

iteration, and the solution YX can be obtained without the whole matrix Vk being
available. Note that the stopping criterion does not require the computation of the
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whole residual matrix, so that also in the standard solver the full matrix VkYXV�
k is

never explicitly accessed.
However, to be able to compute

K = −RB�VkYXV�
k = −RB�

k YXV�
k ,

the basis Vk appearing on the right still seems to be required. As already done in
the literature, this problem can be overcome by a so-called “two-step” procedure: at
completion, once the final YX is available, the basis Vk is computed again one block at
the time, and the corresponding terms in the product YXV�

k are updated. Since A(xn)

is already factorized and the orthogonalization coefficients are already available (they
correspond to the non-zero entries of Ak), then the overall computational cost is
feasible; we refer the reader to [43] and its references for additional details for the
two-step procedure employed for different purposes.

5 Large-scale nonlinear dynamical systems

In this section we present a numerical assessment of the proposed methodology
applied to the synthesis of feedback control for two-dimensional nonlinear PDEs.
The first test is a nonlinear diffusion-reaction equation, known as the degener-
ate Zeldovich equation, where the origin is an unstable equilibrium and traditional
linearization-based controllers fail under certain configurations. The second test stud-
ies the viscous Burgers’ equation with a forcing term. We discretize the control
problem in space using finite differences, similarly as in Section 3.4. Controlled tra-
jectories are integrated in time using an implicit Euler method, which is accelerated
using a Jacobian–Free Newton Krylov method (see, e.g., [34]). The goal of all our
tests is the optimal and robust stabilization of the dynamics to the origin, encoded in
the optimization of the following cost:

J (u(·), w(·);X(·, 0)) :=
∞∫

0

z∑
i=1

1

|ωoi
|

(∫
ωoi

X(ξ, t) dξ

)2

+ R|u(t)|2 − γ 2P |w(t)|2 dt .

(33)

This expression is similar to (28), but includes theH∞ term −γ 2P |w(t)|2.
The reported numerical simulations were performed on a MacBook Pro with CPU

Intel Core i7-6, 2,6GHz and 16GB RAM, using Matlab [38].
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5.1 Case study 1: the degenerate Zeldovich equation

We consider the control of a Zeldovich-type equation arising in combustion theory
[22] over Ω × R

+
0 , with Ω ⊂ R

2 and Neumann boundary conditions:

∂tX(ξ, t) = ε
X(ξ, t) + νX(ξ, t) + μ(X2(ξ, t) − X3(ξ, t))

+ χωc(ξ)u(t) + χωd
(ξ)w(t)

∂ξX(ξ, t) = 0 , ξ ∈ ∂Ω, t > 0 ,

X(ξ, 0) = x0(ξ) , ξ ∈ Ω .

(34)

The scalar control and disturbance act, respectively, through functions χωc(ξ) and
χωd

(ξ) with support ωc, ωd ⊂ Ω . The uncontrolled dynamics have three equilibrium

points: X ≡ 0, X ≡ 1
2

(
1 ±

√
1 + ν

μ

)
. Our goal is to stabilize the system to X ≡ 0,

which is an unstable equilibrium point. A first step towards the application of the
proposed framework is the space discretization of the system dynamics, leading to
a finite-dimensional state-space representation. Following the setting presented in
Section 3.4, using a finite difference discretization leads to

Ẋ(t) = ε
dX(t)+νX(t)+μX(t)◦X(t)◦ (1d×1 − X(t))+Bu(t)+Hw(t) , (35)

where the discrete state X(t) = (X1(t), . . . , Xd(t))� ∈ R
d corresponds to the

approximation of X(ξ, t) at the grid points and the symbol ◦ denotes the Hadamard
or component-wise product. The matrix 
d ∈ R

d×d is the finite difference approxi-
mation of the Neumann Laplacian and the matrices B, H ∈ R

d are the discretization
of the indicator functions supported over ωc and ωd , respectively. The discretization
of (33) follows similarly as in Section 3.4. Once the finite-dimensional state-space
representation is obtained, we proceed to express the system in semilinear form (21)
and implement the proposed algorithms. To set Algorithms 1 and 3, from (35) we
define

A(X) := ε
d + νId + μdiag(X(t) − X(t) ◦ X(t)),

where diag(v) denotes a diagonal matrix with the components of the vector v on
the main diagonal, and decompose A(X) as

A0 = ε
d+νId , [Aj ]k,l = δk,j δl,j , fj (X) = μ(Xj−X2
j ), j = 1 . . . , d,

where 
d is the two-dimensional discrete Laplacian and δi,j denotes the Kronecker
delta. In this test we set

Ω = [0, 1] × [0, 1], ε = 0.2, ν = 0.1, μ = 10, R = 0.05,

and the initial condition x(ξ, 0) = sin(ξ1) sin(ξ2), on a discretized space grid of
nξ1 × nξ2 nodes with nξ1 = nξ2 = 101 (d = 10201). For the matrices B, H and C

we considered a collection of patches depicted in Fig. 2, and given by

ωd(ξ) = [0.1, 0.3]2∪[0.7, 0.9]2∪ ([0.1, 0.3] × [0.7, 0.9])∪ ([0.7, 0.9] × [0.1, 0.3]) ,
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Fig. 2 Locations of the inputs
ωc(ξ) = ωd(ξ) (black) and
outputs ωo(ξ) (blue) in the
region Ω for the degenerate
Zeldovich equation

0 0.1 0.3 0.4 0.6 0.7 0.9 1

0.1

0.3

0.4

0.6

0.7

0.9

1

ωc(ξ) = ωd(ξ), and

ωo(ξ) = ([0.1, 0.3] × [0.4, 0.6]) ∪ ([0.4, 0.6] × [0.1, 0.3])
∪ ([0.4, 0.3] × [0.7, 0.9]) ∪ ([0.7, 0.9] × [0.4, 0.6]) .

In the following, we analyze results for the H2 and H∞ controls, i.e., γ = 0 and
γ �= 0, respectively, in (33).

Test 1 Experiments for H2-control. We start by presenting results for H2-control,
i.e., P ≡ 0 in (33) and H ≡ 0 in (35). In Fig. 3 we show a snapshot of the con-
trolled trajectories at t = 3, a horizon sufficiently large for the dynamics to approach
a stationary regime. In the top-left panel the uncontrolled problem reaches the sta-
ble equilibrium X ≈ 1.02. In the top-right panel we show the results of the LQR
control computed by linearizing (35) around the origin, which also fails to stabilize
around the unstable equilibrium X ≡ 0 for the configuration studied. The con-
trolled solutions with Algorithms 1 and 3 are shown at the bottom of the same figure:
both algorithms reach the desired configuration. The corresponding control input is
shown in the top-right panel of Fig. 4. We observe that the LQR control has a com-
pletely different behaviour with respect to the control computed by Algorithm 1 or
Algorithm 3.

The performance results of the different controlled trajectories is presented in
Fig. 4 where we show the evaluation of the cumulative cost functional in the top-left
panel. As expected, Algorithm 1 provides the best closed-loop performance among
the proposed algorithms. However, in terms of efficiency Algorithm 3 is faster than
Algorithm 1 when increasing the dimension of the problem as shown in the bottom-
left panel of Fig. 4. When the dimension d increases (x-axis in the plot), the cost
functional converges to 1.4 for Algorithm 1 and to 1.6 for Algorithm 3. Both methods
are able to stabilize the problem.
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Fig. 3 Test 1: state of the system (34) at time t = 3. Top: uncontrolled solution (left), H2-solution with
LQR control (right). Bottom:H2-controlled solution with Algorithm 1 (left),H2-controlled solution with
Algorithm 3 (right)

Test 2 Experiments forH∞-control.We next show the results of the optimal solution
under disturbances with the following configuration:

P = 1, γ = 0.5, w1(t) = 0.1 sin(40t), w2(t) = 0.1 sin(2t).

We omit reporting the behaviour of the LQR-based control as it fails to stabilize
the dynamics. To compare the proposed approaches we compute the H2– and H∞–
controls with the same disturbance using both Algorithms 1 and 3. The results
are presented in Figs. 5 and 6. In every test case, the SDRE-based methodolo-
gies effectively stabilize the perturbed dynamics to a small neighborhood around
X ≡ 0.

A quantitative study is proposed in Fig. 7 where we show the evaluation of the
cumulative H2 cost functional for both disturbances in the left panels. As expected,
Algorithm 1 with H∞-control exhibits the best performance, closely followed by
Algorithm 3. The middle panels of Fig. 7 show the different control inputs, which
reflect the observed differences in closed-loop performance and in the right panels
we show the evaluation of the cumulative cost

∫ 3
0 u(s)T Ru(s).

Test 3 On the use of a feedback matrix oriented implementation
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Fig. 4 Test 1. Top: Cumulative cost functional (left) with H2-control and corresponding control inputs
(right). Bottom: CPU time for Algorithms 1 and 3 (left), and convergence of the cost functional with
respect to the dimension of the problem d (x-axis) (right)

To conclude the first case study we provide a numerical example where we syn-
thesize the feedback operator K(x) = −R−1B�Π(x) directly, circumventing the
computation of Π(x), as explained in Section 4.2. For this test we introduce the
following changes: Ω = [0, 1] × [0, 1], ε = 0.1, ν = 0, μ = 8, and initial con-
dition x0(ξ) = sin(ξ1) sin(ξ2), on a discretized space grid of nξ1 × nξ2 nodes with
nξ1 = nξ2 = 101. We replace Neumann boundary conditions with zero Dirichlet
boundary conditions. For this test, we only consider the H2-control case since many
considerations are similar to the previous part of this section. We use Algorithm 1
with the Extended Krylov subspace as in Section 4.2 and compare the performances
of Algorithm 1 using the Rational Krylov subspaces and Extended Krylov subspaces.

Figure 8 reports the solution at time t = 3. In the top-left panel the uncontrolled
state grows in time. In the top-right panel we show the results of the LQR control
computed by linearizing (35) around the desired configuration. The control steers the
solution to the origin at a very slow rate. The controlled solution with Algorithm 1
using an Extended Krylov subspace and Algorithm 3 are shown at the bottom of the
same figure. Both algorithms reach the desired configuration.
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Fig. 5 Test 2: state of the system at time t = 3 with H2- and H∞-controls and disturbance w(t) =
0.1 sin(2t). Top: H2-control using Algorithm 1 (left) and Algorithm 3 (right). Bottom: H∞-control using
Algorithm 1 (left) and Algorithm 3 (right)

The performance of the different feedback synthesis methods is presented in
Fig. 9. Here we show the evaluation of the cumulative cost functional in the top-left
panel. For completeness we provide the control inputs on the top-right panel. We
compare the performance of Algorithm 1 using Rational Krylov (RK) and Extended
Krylov (EKSM) subspaces as the problem dimension increases. Specifically, we
recall that the Extended Krylov subspace computes directly the gain matrix. As
expected, Algorithm 1 provides the best closed-loop performance among the pro-
posed algorithms. We observe that the LQR algorithm also stabilizes the problem
after t = 4 as shown by the control input in the top-right panel of Fig. 9 but with a
higher cost (see top panel of Fig. 9. In terms of CPU time Algorithm 3 is faster than
Algorithm 1 when increasing the problem dimension d as shown in the bottom-left
panel of Fig. 9. When the problem dimension d increases, the cost functional con-
verges to 1.45 for Algorithm 1 and to 1.6 for Algorithm 3. The two different Krylov
subspace methods in Algorithm 1 lead exactly to the same solution. In the plot leg-
end we refer to Algorithm 1 RK for Rational Krylov subspaces and to Algorithm 1
EKSM for Extended Krylov subspaces.

Test 4 Mesh independence behavior.
To conclude this subsection we provide a numerical assessment of the convergence

of our method in a PDE control framework. We consider a one-dimensional version
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Fig. 6 Test 2: Solutions at time t = 3 with H2 and H∞-control and disturbance w(t) = 0.1 sin(40t).
Top: H2-control using Algorithm 1 (left) and Algorithm 3 (right). Bottom: H∞-control using Algorithm
1 (left) and Algorithm 3 (right)
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Fig. 7 Test 2: evaluation of the cumulative cost functionalH2 (left), control inputs (middle) and evaluation
of the cumulative cost for the control (right) for w(t) = 0.1 sin(2t) (top) and w(t) = 0.1 sin(40t) (bottom)
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Fig. 8 Test 3: controlled trajectories (34) at time t = 3 with zero Dirichlet boundary conditions. Top:
Uncontrolled solution (left), LQR control (right). Bottom: H2-controlled solution with Algorithm 1 with
Extended Krylov subspaces (left),H2-controlled solution with Algorithm 3 (right)

of Test 1 with

Ω = [0, 1], y0(x) = sin(πx), ωd(ξ) = [0.1, 0.3]∪[0.7, 0.9], ωo(ξ)= [0.4, 0.6].
We study the convergence of the control for increasing dimension d = 80× 2k , with
k = 0, . . . , 6 of the problem and we set fine time discretization grid with 
t =
0.0125. We measure convergence with respect to the spatial discretization through
the following quantity

δd = ‖u2d+1(t) − ud+1(t)‖∞, d = 80 × 2k , k = 0, . . . , 6 ,

where ud(t) is the control corresponding to the problem of dimension d. This quan-
tity measures the difference in the infinity norm between two control configurations.
We expect that this value goes to zero as the dimension of the problem increases.
This can be seen in the top-left panel of Fig. 10. The trend is decreasing. Further-
more, we show the control outputs for Algorithms 1 and 3 in the bottom panels of
Fig. 10, respectively. In both cases, it is clear that the control is converging to the
same configuration.

To further study the role of the mesh towards the control of the PDE we
have also tested the control obtained for a discretized problem of dimension d =
1280 and plugged into a finer discretizations of the PDE of dimension d =
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Fig. 9 Test 3: cumulative functional (top-left) withH2-control and corresponding control input (top-right).
Evaluation of the cost functional with respect to the dimension of the problem d (x-axis) (bottom-right)
and CPU time (bottom-left) for both Algorithm 1 using Rational Krylov subspaces and Extended Krylov
subspaces and Algorithm 3

{2560, 5120, 10240}. We can observe in the top-right panel of Fig. 10, through the
evaluation of the cost functional, that if the dimension d is large enough, the con-
trol is able to stabilize the problem with finer discretizations for both Algorithms 1
and 3.

5.2 Case study 2: the viscous Burgers equation with exponential forcing term

The second experiment deals with the control of a viscous Burgers equation with
exponential forcing term over Ω × R

+
0 , with Ω ⊂ R

2 and Dirichlet boundary
conditions:

∂tX(ξ, t) = ε
X(ξ, t) − X(ξ, t) · ∇X(ξ, t) + 1.5X(ξ, t)e−0.1X(ξ,t)

+ χωc(ξ)u(t) + χωd
(ξ)w(t)

X(ξ, t) = 0 , ξ ∈ ∂Ω,

X(ξ, 0) = x0(ξ) , ξ ∈ Ω .

(36)
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Fig. 10 Test 4. Top: Plot of the quantity δi (left), cost functional increasing the dimension of the problem
with a fixed control with a coarse configuration (right). Bottom: control outputs for Algorithm 1 (left) and
Algorithm 3 (right)

In this case, the scalar control and disturbance act, respectively, through the indicator
function χωc(ξ), χωd

(ξ) with ωc, ωd ⊂ Ω . A finite difference discretization of the
space of the system dynamics leads to a state-space representation of the form

Ẋ(t) = 
dX(t) − X(t) ◦ (DX(t) + 1.5e−0.1X(t)) + Bu(t) + Hw(t) , (37)

where the matrices 
d, D ∈ R
d×d and B, H ∈ R

d are finite-dimensional approx-
imations of the Laplacian, gradient, control and disturbance operators, respectively,
and the exponential term is understood component-wise. In particular, D is obtained
using a backward finite difference discretization

D := −
ξ−1(Bnξ2
⊗ Inξ1

+ Inξ2
⊗ Bnξ1

) ,

where Bn := tridiag([ −1 1 0 ], n), and ⊗ denotes the Kronecker product. We
proceed to express the semi-discretized dynamics in semilinear form. For this, we
define

A(X) := ε
d − D̃(X) + diag(1.5e−0.1X(t)) , [D̃(X)]k,l = Dk,lXk ,
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Fig. 11 Test 5: controlled dynamics (36) at time t = 3. Top: uncontrolled solution (left),H2-solution with
LQR control (right). Bottom:H2-controlled solution with Algorithm 1 (left),H2-controlled solution with
Algorithm 3 (right). The controllers stabilize the dynamics to X ≡ 0 at a different rate

and then

A0 = ε
d, [Aj ]k,l = Dj,lδk,l, fj (X) = Xj , j = 1, . . . , d ,[
Aj

]
k,l

= δk,j−dδl,j−d, fj (X) = 1.5e−0.1Xj−d , j = d + 1, . . . , 2d .

For our numerical experiments we set Ω = [0, 1] × [0, 1], ε = 0.1, R = 0.05,
and initial condition x0(ξ) = sin(ξ1) sin(ξ2), on a discretized space grid of nξ1 × nξ2

nodes with nξ1 = nξ2 = 101 (d = 10201). The matrices B and C are defined as in
the previous study case (see Fig. 2). In the following we discuss the results for H2
and H∞ control, i.e., P = 0 and P �= 0, respectively, in (33).

Test 5 Experiments forH2-control.
The trajectories of the controlled system problem with P = 0 in (33) are shown

in Fig. 11. The uncontrolled solution tends to move towards the top-right corner of
Ω . All algorithms tend to control the solution to zero for large time, but at a different
rate.

The control inputs are then shown in the top-right of Fig. 12. Algorithm 1 has the
largest control input, leading to the smallest cumulative cost functional as shown in
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Fig. 12 Test 5. Top: evaluation of the cumulative cost functional withH2-control (left) and control inputs
(right). Bottom: cost functional for dynamics of increasing dimension for different algorithms (left) and
CPU time for both Algorithms 1 and 3 (right)

the top-left panel of Fig. 12. We also observe that the values of the cost functional are
very similar for Algorithms 1 and 3. This is also confirmed for different discretization
of increasing dimensions as shown in the bottom-left panel of Fig. 12. However, the
time needed for Algorithm 3 to compute the solution is lower than for Algorithm 1
as depicted in the bottom-right panel of Fig. 12.

Test 6 Experiments forH∞-control.
Finally, we discuss the results for P = 1, γ = 0.1 and disturbance w(t) =

{0.1 sin(2t)} in (36). The results presented in Fig. 13 are in line with our first case
study. In this example, Algorithm 1 stabilizes the solution faster. Since it is diffi-
cult to visualize differences in the controlled state variables, we provide a qualitative
analysis through Fig. 13. We show the evaluation of the cost functional (33) on the
left panel and the control inputs on the right panel. Again, we find that Algorithm 1
with γ �= 0 has the lowest values for the cost functional.
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Fig. 13 Test 6: evaluation of the cost functional H2 (left), control input(middle) and evaluation of the
cumulative cost for the control (right) for w(t) = 0.1 sin(2t)

6 Conclusions and future work

In this work we have discussed different alternatives for the synthesis of feed-
back laws for stabilizing nonlinear PDEs. In particular, we have studied the use of
state-dependent Riccati equation methods, both for H2 and H∞ synthesis. Imple-
menting an SDRE feedback law requires expressing the dynamics in semilinear form
and the solution of algebraic Riccati equations at an arbitrarily high rate. This is
a stringent limitation in PDE control, where high-dimensional dynamics naturally
emerge from space discretization. Hence, we study offline and offline-online syn-
thesis alternatives which circumvent or mitigate the computational effort required
in the SDRE synthesis. Most notably, we have proposed an offline-online method
which replaces the sequential solution of algebraic Riccati equations by Lyapunov
equations. Through extensive computational experiments, including two-dimensional
nonlinear PDEs, we have assessed that the SDRE offline-online method provides a
reasonable approximation of purely online SDRE synthesis, yielding similar perfor-
mance results at a reduced computational cost. Moreover, the nonlinearities arising
in nonlinear reaction and nonlinear advection PDE models can be easily represented
within the semilinearization framework required by SDRE methods. In conclusion,
SDRE-based feedback laws constitute a reasonable alternative for suboptimal feed-
back synthesis for large-scale, but well structured, nonlinear dynamical systems.
Future research directions include the study of the SDRE methodology for high-
dimensional systems arising from interacting particle systems, and the interplay with
deep learning techniques to lower the computational burden associated to a real-time
implementation.
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21. Garcke, J., Kröner, A.: Suboptimal feedback control of PDEs by solving HJB equations on adaptive
sparse grids. J. Sci. Comput. 70(1), 1–28 (2017)

22. Gilding, B.H., Kersner, R.: Travelling Waves in Nonlinear Diffusion-convection Reaction. Progress
in Nonlinear Differential Equations and their Applications, vol. 60. Basel, Birkhäuser (2004)
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25. Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE
Trans. Automat. Control 53(9), 2100–2111 (2008)

26. Han, J., Jentzen, A.E.W.: Solving high-dimensional partial differential equations using deep learning.
Proc. Natl. Acad. Sci. USA 115(34), 8505–8510 (2018)

27. Herty, M., Kalise, D.: Suboptimal nonlinear feedback control laws for collective dynamics. In: 2018
IEEE 14th International Conference on Control and Automation (ICCA), pp. 556–561 (2018)

28. Ito, K., Reisinger, C., Zhang, Y.: A neural network-based policy iteration algorithm with global h2-
superlinear convergence for stochastic games on domains. Found. Comput. Math. 21, 331–374 (2021)

29. Jones, A., Astolfi, A.: On the solution of optimal control problems using parameterized state-
dependent Riccati equations. In: 2020 59th IEEE Conference on Decision and Control (CDC),
pp. 1098–1103 (2020)

30. Kalise, D., Kundu, S., Kunisch, K.: Robust feedback control of nonlinear PDEs by numerical approx-
imation of high-dimensional Hamilton-Jacobi-Isaacs equations. SIAM J. Appl. Dyn. Syst. 19(2),
1496–1524 (2020)

31. Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman
equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput.
40(2), A629–A652 (2018)

32. Kang, W., Gong, Q., Nakamura-Zimmerer, T.: Algorithms of data generation for deep learning and
feedback design: A survey. Physica D: Nonlin. Phenom. 425, 132955 (2021)

33. Kang, W., Wilcox, L.C.: Mitigating the curse of dimensionality: Sparse grid characteristics method
for optimal feedback control and HJB equations. Comput. Optim. Appl. 68(2), 289–315 (2017)

34. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: A survey of approaches and
applications. J. Comput. Phys. 193(2), 357–397 (2004)

35. Kressner, D.: Memory-efficient Krylov subspace techniques for solving large-scale Lyapunov equa-
tions. In: IEEE International Symposium on Computer-Aided Control Systems, pp. 613–618. San
Antonio (2008)

36. Kunisch, K., Walter, D.: Semiglobal optimal feedback stabilization of autonomous systems via deep
neural network approximation. ESAIM:COCV, 27 (2021)

37. Laub, A.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Control
24(6), 913–921 (1979)

38. The MathWorks, Inc.: MATLAB 7 r2017b edn (2017)
39. Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-dimensional

Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput. 43(2), A1221–A1247 (2021)
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