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We study the second best in a single unit sale to two bidders. This is the allocation
that maximizes the expected social surplus subject to the bidders’ incentive compatible
constraints when the first best is not implementable. We prove that Maskin’s (1992) result
that any first best allocation that is deterministic and monotone can be implemented with
the English auction carries over to the second best.
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1. Introduction

Suppose that an oil tract is put up for sale between two wildcatters. The first one, the incumbent, has a high marginal
cost and a low fixed cost, whereas the second one, the entrant, has a low marginal cost and a high fixed cost. In this case, it
may be efficient to allocate the good to the incumbent if there is little oil and to the entrant if there is much oil. However,
Maskin (1992) has shown that this allocation, i.e. the first best, is not implementable2 when the amount of oil is private
information of the incumbent. A similar problem may arise in an auction with an insider and an outsider. What is then
the socially optimal allocation subject to implementability, i.e. the second best? Can it be implemented with a “realistic”
mechanism?
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Maskin (1992) has shown that for the case of only two bidders, and if value functions verify a mild monotonicity
condition, any first best allocation that is deterministic and monotone3,4 can be implemented with the English auction. We
show that this result also holds true for the second best. In fact, we derive this result from the more general claim that the
English auction implements the deterministic and monotone allocation that gives the greatest expected surplus when there
are only two bidders.

Restricting to monotone allocations is natural if one is interested in the English auction since only such allocations
can be implemented as a monotone equilibrium of the English auction. The restriction to deterministic allocations only
eliminates equilibria in mixed strategies and equilibria with ties. It is unclear how these could improve efficiency. Besides,
both restrictions are without loss of generality for the natural case in which values are additively separable and private
types stochastically independent. Our motivating examples verify these assumptions.

To grasp the intuition of our result consider the wildcatter example. Since the incumbent knows the amount of oil, she
knows her value. Hence, she has a unique weakly dominant strategy as in a private value auction: to stay active until her
value is reached. If the incumbent plays this strategy, the entrant’s payoff when winning is equal to the difference between
her value and the incumbent’s, i.e. it is equal to the change in social surplus. Thus, the entrant’s best reply maximizes not
only her expected profits but also social welfare, i.e. the private interest of the entrant is aligned with the social one. In
our analysis, we use the local optimality conditions of the second best problem to show how an adaptation of this intuition
applies more generally.

The above example also illustrates that the strategic analysis of the English auction when the first best is not imple-
mentable is more complex than otherwise. Since the entrant’s value is greater than the incumbent’s if and only if the latter
is large enough, the entrant makes a loss if she wins at a low price but a profit if she wins at a high price. Her best
response must trade off these expected losses and gains. It may be possible that the entrant finds it profitable to remain in
the auction at prices at which she makes a loss when the incumbent quits, i.e. there may be ex post regret in equilibrium.

Ex post regret implies that the equilibrium is not an ex post equilibrium. This is a common feature of second best
efficient equilibria of the English auction. It is easy to see why. If the first best is not implementable, the second best
allocation maximizes total expected surplus trading-off inefficient allocations with the weights given by the bidders’ beliefs.
In general, this means that the second best allocation varies with the bidders’ beliefs and, consequently, any equilibrium
that implements it must also vary with them. Generally, this is incompatible with ex post equilibria. An alternative is a more
sophisticated auction mechanism whose rules vary with the bidders’ beliefs. This, however, is less appealing as emphasized
by Wilson’s critique.

The rest of the paper is organized as follows. The related literature is in Section 2. We define the formal set-up in
Section 3. Section 4 contains several definitions and Section 5 some motivating examples in which the first best is not
implementable. We study the English auction in Section 6. Section 7 concludes and Appendix A contains the most involved
proofs.

2. Related literature

Most of the papers that study the set of auction mechanisms that maximize the expected social surplus subject to the
buyers’ incentive compatibility constraints differ from ours in that they assume conditions that guarantee that the incentive
compatibility constraints are not binding. This is for instance the case of Vickrey (1961), Krishna and Perry (1998), and
Williams (1999), and most of the analysis of Maskin (1992, 2000), and Dasgupta and Maskin (2000).

Maskin (1992, 2000), Dasgupta and Maskin (2000), Eso and Maskin (2000), and Jehiel and Moldovanu (2001) also con-
sider the case in which the first best is not implementable. Their results, however, hinge on the assumption that bidders
have multidimensional private information. They argue that in this case an implementable allocation cannot depend on
the type beyond a particular one-dimensional reduction. The first best is usually not implementable because it requires
conditioning on more information than this one-dimensional reduction. Eso and Maskin (2000) define in this set-up the
constraint efficient allocation. This is the allocation that maximizes expected social surplus when we can only condition the
allocation on the former one-dimensional reduction.5

Another related branch of the literature, Maskin (1992), Krishna (2003), Birulin and Izmalkov (2009), Izmalkov (2003),
and Dubra et al. (2009), analyzes whether there is an equilibrium of the English auction that allocates the good efficiently
when the efficient allocation is implementable.

On the technical side, our analysis of the case of independent types and additively separable value functions is related
to the ironing technique introduced by Mussa and Rosen (1978) and Myerson (1981). In a recent paper, Boone and Goeree

3 For a formal definition of deterministic and monotone allocations see our Section 4. Informally, an allocation is deterministic if it does not involve
lotteries and it is monotone if the ex post probability of allocating the good to a bidder does not go down as we increase her type keeping constant the
rival’s type.

4 This result is stated in terms of an almost equivalent single crossing condition.
5 Although we assume a one-dimensional type space, we show in the working paper version of this paper, Hernando-Veciana and Michelucci (2008),

that some of our results may be used in the efficiency analysis based on the one-dimensional reduced types. In a more general version of our example
in Section 5.2, it is generally the case that the one-dimensional reduction does not verify the conditions required for implementability of the constraint
efficient allocation.
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(2009) have used the ironing technique in an environment closely related to our motivating example in Section 5.2. Their
focus, as in Myerson (1981), is on revenue maximization rather than on efficiency.

The problem of second best efficiency has also received attention in the context of two parties that bargain with asym-
metric information, see Myerson and Satterthwaite (1983). The difference is that in their set-up withdrawing the individual
rationality constraints always makes the first best implementable, whereas this is not the case in our set-up. In fact, we
consider the usual auction environment in which the individual rationality constraints can be trivially met and it is only the
incentive compatibility constraints that may be binding.

3. The model

One unit of an indivisible good is put up for sale to a set of two bidders {1,2}. Let s = (s1, s2) be a vector that it is equal
to the realization of a random variable with distribution F and with a strictly positive bounded density f in a bounded
support S ≡ S1 × S2 ⊂ R

2. We denote each marginal distributions of F (on the sets Si ’s) by Fi and its density by f i . Bidder
i observes privately si and gets a von Neumann–Morgenstern utility vi(s) − P if she gets the good for sale at price P , and
utility −P if Bidder j, j �= i, gets the good and i pays a price P . We assume that vi is non-negative, bounded, measurable
and strictly increasing in si , for any i.6

Let an allocation be a measurable function p : S → [0,1]2, such that p1(s) + p2(s) = 1 for any s ∈ S , where pi(s) denotes
the probability that the good is allocated to i when the vector of types is s ∈ S . Note that we do not allow for the possibility
that the good remains unsold. This is a common assumption in the papers that study the efficiency of the English auction,
for instance Maskin (2000), Krishna (2003), Birulin and Izmalkov (2009), and Dubra et al. (2009).7,8

We also make another common assumption, that vi(s) is increasing. It is well known that an assumption of this sort is
necessary for the English auction to implement the first best. That a similar condition is also necessary for the second best
is a consequence of the fact that the strategies that implement it share with the strategies that implement the first best
that each bidder bids her value conditional on his type and on the other bidder’s type being pivotal for the allocation.9

4. Definitions

Definition. We say that an allocation p is first best when ∀s ∈ S , pi(s) > 0 only if:

vi(s) � v j(s), j �= i.

We are interested in the set of allocations that can be implemented. By the revelation principle, there is no loss of
generality in restricting to direct mechanisms. A direct mechanism is a pair of measurable functions (p, x), where p is an
allocation and x : S → R

2 a payment function. In the direct mechanism (p, x), each bidder announces a type, and pi(s)
denotes the probability that i gets the good and xi(s) her payment to the auctioneer when the vector of announced types
is s ∈ S .

The expected utility of Bidder i with type si who reports s′
i when the other bidder reports truthfully is equal to10:

Ui
(
si, s′

i

) ≡
∫
S j

(
vi(si, s j)pi

(
s′

i, s j
) − xi

(
s′

i, s j
))

f j(s j |si)ds j,

where j �= i and f j(s j |si) denotes the density of the distribution of s j conditional on the realization of Bidder i’s type being
equal to si .

Thus, we say that an allocation p is implementable if there exists a direct mechanism (p, x) that satisfies the following
Bayesian incentive compatible constraint11:

Ui(si, si) = sup
s′i∈Si

{
Ui

(
si, s′

i

)}
,

for all si ∈ Si and i ∈ {1,2}.

6 We say that a function g : D ⊆ R
n → R

n is increasing if for any x, y ∈ D , x > y implies g(x) � g(y), and strictly increasing if x > y implies g(x) > g(y).
7 This assumption is without loss of generality if the seller’s value is sufficiently small relative to the buyer’s valuations. Indeed, our assumption that

retaining the good is not an option for the seller can be interpreted as if retaining the good for the seller has minus infinity value. To some extend, this
may be the case for some government auctions where not selling is not option.

8 In fact, there is usually no combination of entry fees and reserve prices that enables the English auction to implement the efficient allocation when
this allocation requires that the good remains unsold for some realizations of the bidders’ types.

9 We cannot directly relax our assumption as in Krishna (2003), Birulin and Izmalkov (2009), or Dubra et al. (2009). The reason is that their alternative
assumptions require assuming continuity of the value functions, which conflicts with our motivating example in Section 5.2.
10 With some abuse of notation, we denote by pi(si , s j), xi(si , s j) and vi(si , s j) the functions pi , xi and vi , respectively, evaluated at (si , s j) if i < j and

at (s j , si) otherwise.
11 We do not impose individual rationality constraints because they are trivially satisfied in our set-up.
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Requiring Bayesian incentive compatibility constraints is consistent with the fact that we consider Bayesian Nash equi-
libria of the English auction. This departs from the alternative approach used in the related literature that employs ex post
equilibrium and ex post incentive compatible constraints. This departure, as explained in the Introduction, is motivated by
our focus on an auction whose details are not fine tuned to the bidders’ beliefs.

Definition. We say that an implementable allocation p is second best efficient, if it maximizes the expected social surplus:∫
S

∑
i=1,2

vi(s)pi(s) f (s)ds,

among the implementable allocations.

Since we assume preferences quasilinear in money, second best efficiency is equivalent to Holmström and Myerson’s
(1983) concept of ex ante incentive efficiency.

Certainly, the set of second best allocations includes the first best allocation when the efficient allocation is imple-
mentable.

Our interest in the English auction, see our discussion in the Introduction, justifies to concentrate on second best alloca-
tions that are deterministic and monotone in the following sense: an allocation is deterministic if it takes values in the set
{0,1}2, and it is monotone if pi(s) is increasing in si for any i. We also say that an allocation is monotone in i when pi(s) is
increasing in si . This last definition is useful to state some of our results in particular Proposition 2.

Monotone allocations have been extensively studied by the related literature because monotonicity is equivalent to
ex post implementability, see Chung and Ely (2002). In this sense, we can see our restriction to monotone allocations
as a refinement of Bayesian implementation. Besides, we show in the next proposition that our restriction is without loss
of generality under some reasonable assumptions that, for instance, are verified by our motivating examples in Section 5.

Proposition 1. There exists a deterministic and monotone allocation that it is second best efficient when bidders’ types are stochasti-
cally independent and the value functions are additively separable.12

Proof. See the proof in Appendix A. �
The proof of Proposition 1 contains a characterization of the second best efficient allocations that we use in the analysis

of Example 1 in Section 6.

5. Motivating examples

In this section, we discuss two simple examples that illustrate realistic set-ups in which the first best is typically not
implementable. The first set-up is the sale of a license to operate in a market in which one bidder, the incumbent, has
private information about the market size and another bidder, the entrant, has a lower marginal cost than the incumbent
but a higher fixed cost. This model extends the intuitions of the wildcatters’ example in the Introduction. The second set-up
is the auction of an item with private and common values in which the common value is private information of only one
bidder, the insider. The two examples verify Myerson’s (1981) assumptions, and thus his Lemma 2 implies that the first
best allocation is not implementable if the corresponding interim probabilities of getting the object are not increasing in
the bidder’s type.

5.1. An auction with an incumbent

The object for sale is a license to supply in exclusivity a market with a demand function Q (P ) = s1(1 − P ). Bidders are
firms that can supply the market. Firm 1, the incumbent, has zero set-up costs and a constant marginal cost c1. Firm 2, the
entrant, has a constant marginal cost c and an idiosyncratic set-up cost that we denote by −s2, thus a higher s2 means a
lower fixed cost. Each si is equal to the realization of an independent random variable with distribution function Fi and a
density. Its realization is Bidder i’s private information. All the other elements of the model are common knowledge.

The profits of the incumbent with type s1 if awarded the license are equal to s1
(1−c1)2

4 . Similarly, the profits of an

entrant with type s2 are equal to s1
(1−c)2

4 + s2. Thus, it is first best to give the license to the incumbent if and only if

s1
(1−c1)2

4 � s1
(1−c)2

4 + s2. We also assume that s2 < 0 in all the support and c < c1 < 1, so that, as in the example of the
Introduction, the incumbent has the lowest fixed cost, but the highest marginal cost. This assumption implies that it is
first best to allocate to Bidder 1 if and only if s1, i.e. the market size, is sufficiently small. It is easy to see that under
some appropriate assumptions on the support of the distributions Fi , the first best allocation is not implementable because
Bidder 1’s interim probability of getting the object strictly decreases at some point when we increase Bidder 1’s type.

12 This is vi(s) = vi
i(si) + v j

i (s j) for some vi
i : Si → R and v j

i : S j → R.
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5.2. An auction with an insider

The object for sale is a painting that may be from a well-known (and priced) artist. Bidder i puts a value on the painting
of τi +ρ if the painting is original and a value of τi , otherwise. We assume that each τi is equal to an independent draw of a
random variable with a distribution function Gi and a density in the support [t, t]. We assume that τi is private information
of Bidder i. Bidder 1, the insider, is an expert art dealer that knows whether the painting is original. Bidder 2, the outsider,
only knows the ex ante probability that the picture is original, α ∈ (0,1).

We also assume that t < ρ + t . This assumption means that Bidder 1’s multidimensional type can be mapped into a
one-dimensional type, s1 = τ1 + ρ , without losing information.13 Note that s1 � ρ + t indicates that the painting is original.
Bidder 2’s type s2 is equal to τ2. Thus, the outsider’s value is equal to s2 +ρ1(s1 � ρ + t).14 For any vector of the outsiders’
types, it is efficient to allocate to the insider if s1 = t , while it is not if s1 = t + ρ . This means that the first best allocation
is not implementable because Bidder 1’s interim probability of getting the object strictly decreases when s1 increases from
t to t + ρ .

6. The English auction

In this section, we analyze the English auction described by Milgrom and Weber (1982) and show that any second best
allocation that it is deterministic and monotone can be induced as the outcome of an equilibrium of the English auction,
i.e. can be implemented with the English auction. Note that since we assume that there are only two bidders, the English
auction is strategically equivalent to a second price auction.

In what follows, we assume Si = [0,1] to simplify the notation. A deterministic and monotone allocation in j is char-
acterized a.e. with a function of pivotal types ψ j : [0,1] → [0,1] that maps each type of Bidder i into the corresponding
type of Bidder j that is pivotal for the allocation. The allocations that maximize the expected social surplus amongst the
allocations that are deterministic and monotone in j are characterized by the functions of pivotal types ψ j that solve:

max
ψ j

1∫
0

ψ j(si)∫
0

(
vi(s) − v j(s)

)
f (s)ds j dsi . (1)

This problem maximizes the net increase in expected social surplus when adopting the allocation characterized by ψ j rather
than an allocation that always allocates to Bidder j.

We start with the case in which one bidder knows her value and hence has a unique weakly dominant strategy, to bid
her value.

Proposition 2. Suppose v1(s) is constant in s2 . The undominated equilibria of the English auction implement a.e. the allocations that
solve Eq. (1) for j = 1 and i = 2. Consequently, any second best allocation that is deterministic and monotone in 1 can be implemented
a.e. with the English auction.

Proof. We assume that Bidder 1 plays her unique weakly dominant strategy, to bid her value, and study Bidder 2’s best
response. A strategy of Bidder 2 is a function that maps each type of Bidder 2 into a bid. Since Bidder 1’s strategy is strictly
increasing, Bidder 2’s strategy determines a function of pivotal types that maps each type of Bidder 2 into the maximum
type of Bidder 1 for which Bidder 2 wins the auction. Thus, the expected utility that Bidder 2 gets with a strategy that has
an associated function of pivotal types ψ1 : [0,1] → [0,1] is equal to:

1∫
0

ψ1(s2)∫
0

(
v2(s) − v1(s)

)
f (s)ds1 ds2,

since whenever Bidder 2 wins the auction, she pays Bidder 1’s bid, i.e. Bidder 1’s value. A best response of Bidder 2 picks a
function ψ1 that maximizes this expression as desired. �

Intuitively, since Bidder 1 bids her true value, Bidder 2’s utility when she wins is equal to the increase in expected
social surplus from changing the allocation from Bidder 1 to Bidder 2. Thus, Bidder 2’s incentives are aligned with the
social incentives. Since Bidder 1 plays a strictly increasing bid function, then a pure strategy of Bidder 2 can only pick an
allocation that is deterministic and monotone in 1.

For the more general case, we focus on deterministic and monotone allocations. Any such allocation is characterized
a.e. by an increasing function of pivotal types. The allocations that maximize the expected social surplus amongst the

13 Our results can be extended to the case ρ + t � t , but it requires a framework with multidimensional types. See also footnote 5.
14 1(X) is an indicator function that takes value 1 when the condition X is verified and zero otherwise.
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Fig. 1. The bid functions (b∗
1,b∗

2) for Example 1.

deterministic and monotone allocations are characterized by the functions of pivotal types that solves Eq. (1) subject to
the constraint that the function of pivotal types is increasing. For any such allocation p∗ , we define the bid functions
b∗

1(s1) ≡ v1(s1,ψ
∗
2 (s1)) and b∗

2(s2) ≡ v2(ψ
∗
1 (s2), s2), where ψ∗

1 and ψ∗
2 are the functions of pivotal types that describe p∗

a.e.

Proposition 3. Suppose f is affiliated.15 Then, (b∗
1,b∗

2) is an equilibrium of the English auction that implements p∗ a.e. Consequently,
any second best allocation that is deterministic and monotone can be implemented a.e. with the English auction.

Proof. See the proof in Appendix A. �
The main argument of the proof16 uses that the local optimality conditions of the problem that ψ∗

j solves imply that

vi(si,ψ
∗
j (si)) � v j(si,ψ

∗
j (si)) at any point si in which ψ∗

j is strictly increasing either to the left or to the right.17 This implies
that b∗

i (s′
i) > b∗

j (s′
j) for any (s′

i, s′
j) in the interior of the set of types for which p∗ allocates to Bidder i. This is because there

always exists a point si such that (s′
i,ψ

∗
j (s′

i)) > (si,ψ
∗
j (si)) > (ψ∗

i (s′
j), s′

j) and at which ψ∗
j is strictly increasing either to

the left or to the right. Finally, to understand why (b∗
1,b∗

2) is an equilibrium note that when Bidder j plays b∗
j , Bidder i’s

expected utility when she wins is equal to vi(s) − b∗
j (s j). This is greater (less) than the social incentives to allocate to

Bidder i rather than to Bidder j, vi(s) − v j(s), if si � ψ∗
i (s j) (resp. si < ψ∗

i (s j)). Thus, Bidder i’s incentives to get the good
are greater (less) than the social incentives to allocate to Bidder i if the second best p∗ allocates the good to Bidder i
(resp. Bidder j). This explains why Bidder i does not have incentives to deviate since p∗ maximizes expected social surplus
subject to monotonicity of the allocation and affiliation guarantees that Bidder i does not lose by restricting to an increasing
best response.

To illustrate the equilibrium, consider the following example that has all the qualitative features of the model in Sec-
tion 5.2.

Example 1. v1(s) = 2s1 and v2(s) = s2 + 1(s1 � 1/2), where bidders’ private types are drawn independently according to a
distribution function uniform in the support [0,1].

In this example, the second best efficient allocation is characterized18 by a function of pivotal types ψ∗
1 (s2) =

1
2 (s2 + 1(s2 � 1/2)), and our proposed equilibrium strategies are: b∗

1(s1) = 2s1 and b∗
2(s2) = s2 + 1(s2 � 1/2). We plot

both bid functions in Fig. 1.
Bidder 1 submits her unique weakly dominant bid, her value, whereas Bidder 2 bids her value conditional on the event

that she ties with Bidder 1. Bidder 2 has a discontinuity at s2 = 1/2, it jumps from 1/2 to 3/2. It is easy to see that when
Bidder 2 has a type of 1/2 and wins at a price p between 1/2 and 1, she incurs in a loss, whereas when the price is
between 1 and 3/2, she gets a profit. Losses and profits compensate so that Bidder 2 with type 1/2 is indifferent between
bidding 1/2 and bidding 3/2.

Note that the structure of this equilibrium is more involved than the more standard case in which the first best is
implementable. The difference is that, as we explained in the previous paragraph, Bidder 2 may win the auction at prices at

15 See Milgrom and Weber (1982) for a definition of affiliation.
16 For illustrative purposes, we assume in our intuitive description that the functions involved are continuous.
17 We say that an increasing function ψ : D ⊂ R → R is strictly increasing to the left (resp., to the right) at a point s ∈ D , when ψ(s̃) < ψ(s) for any s̃ < s

in D (resp. ψ(s̃) > ψ(s) for any s̃ > s in D).
18 To see why, we refer to the characterization of the second best in the proof of Proposition 1. To apply this characterization note that t1(s1) = 2s1 −

1(s1 � 1/2) and t2(s2) = s2 in the example, and hence, t̂1(s1) = 2s1 if s1 ∈ [0,1/4], t̂1(s1) = 1/2 if s1 ∈ (1/4,3/4), t̂1(s1) = 2s1 − 1 if s1 ∈ [3/4,1]; and
t̂2(s2) = s2.
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which she makes a loss, i.e. there may be ex post regret. This is a common feature of the equilibria under the assumptions
of Proposition 2 when the first best allocates to Bidder 1 and the second best to Bidder 2. To see why, note that the first best
allocates to the bidder with larger value and Bidder 2 pays a price equal to Bidder 1’s value when she wins in equilibrium.
This result, however, does not generalize to the case in which Bidder 1’s value function is not constant in s2. There are
equilibria that implement the second best that display ex post regret and equilibria that implement the second best that do
not display ex post regret.19

7. Conclusions

In this paper we have discussed the efficiency properties of the English auction when the first best is not implementable
and there are two bidders. The English auction implements the second best allocation at least for the relevant case in which
the second best is deterministic and monotone. Implementing the second best outside this case seems much harder as it
may require the use of either non-monotonic strategies or other mechanisms with more sophisticated strategy spaces.

Our result does not generalize to the case of more than two bidders. This was well known in the case in which the first
best is implementable, see for instance Maskin (1992). The conditions provided by Krishna (2003), Birulin and Izmalkov
(2009), and Dubra et al. (2009) to guarantee that the first best can be implemented with the English auction with more
than two bidders do not easily generalize to the second best, as we show in the working paper. One additional difficulty
here is that the equilibrium of the English auction that implements the second best with two bidders typically implies ex
post regret. This means that the modifications of the English auction proposed by Perry and Reny (2002, 2005) and Izmalkov
(2003) to solve the problems of the first best does not work for the second best.

We think that a profitable venue of future research is how to modify the English auction for the case of more than two
bidders to recover second best efficiency, at least for the natural examples we have considered here. We find this project
specially appealing given the connection between the English auction and the Vickrey auction.

Appendix A. Proofs

A.1. Proof of Proposition 1

Recall the functions vi
i and v j

i in footnote 12 and denote in this proof ti(si) ≡ vi
i(si) − vi

j(si) and qi(si) ≡ vi
j(si), j �= i. To

simplify the notation, we normalize the marginal distributions Fi ’s to be uniform in the interval [0,1].20

Let Ti(si) ≡ ∫ si
0 ti(s̃i)ds̃i for all i ∈ n and si ∈ [0,1], and let T̂ i(si) : [0,1] → R be the convex hull of the function Ti (i.e.

the highest convex function on [0,1] such that T̂ i(si) � Ti(si) for all si ∈ [0,1]).21

As a convex function T̂ i is differentiable except at countably many points, and its derivative is an increasing function.
We define t̂i : [0,1] → R to be the differential of T̂ i completed by right-continuity in the interior and by continuity at the
boundaries.

The second best maximizes:∫
[0,1]2

∑
i=1,2

(
ti(si) +

∑
j=1,2

q j(s j)

)
pi(s)ds, (2)

subject to p implementable. The objective function is equal to22:

∫
[0,1]2

∑
i=1,2

(
t̂i(si) +

∑
j=1,2

q j(s j)

)
pi(s)ds +

∑
i=1,2

1∫
0

(
T̂ i(si) − Ti(si)

)
dQ i(si, p), (3)

where

Q i(si, p) ≡
1∫

0

pi(si, s j)ds j .

19 In general, multiplicity of equilibria is more a concern here than in the usual framework where the single crossing holds. It may be shown that in the
example vi(s) = si + 2s j there are two asymmetric equilibria that implement the second best while the symmetric equilibrium is not second best efficient.
Besides, there is no natural refinement that singles out an equilibrium.
20 This normalization was already noted by Lehmann (1988). We can always construct it by defining a new vector of signals s̃i ≡ Fi(si) and value functions
ṽ i(s̃) ≡ t̃i(s̃i) + ∑

i=1,2 q̃ j(s̃ j) where t̃i(s̃i) ≡ ti(F −1
i (s̃i)), q̃ j(s̃ j) ≡ q j(F −1

j (s̃ j)), for F −1(z) ≡ min{si ∈ [s, s]: F (s) � z}. To see why, the marginal distribution

of each s̃i is uniform on [0,1] note that the probability of {s̃i � z} for z ∈ [0,1] is equal to the probability of {Fi(si) � z}, which is equal to the probability
of {si � F −1

i (z)} and thus, it is equal to Fi(F −1
i (z)) = z.

21 For a formal definition see Myerson (1981).
22 We denote by

∫
E ϕ(x)dF (x) the Lebesgue–Stieltjes integral of ϕ with respect to F in E . In particular, for any implementable allocation p, we denote by∫

S ϕ(si)dQ i(si , p) the Lebesgue–Stieltjes integral of ϕ with respect to Q i(·,p) in Si .
i
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To see why, note that:

∫
[0,1]2

(
ti(si) − t̂i(si)

)
pi(s)ds =

1∫
0

(
ti(si) − t̂i(si)

)
Q i(si, p)dsi

=
1∫

0

Q i(si, p)dTi(si) −
1∫

0

Q i(si, p)dT̂ i(si)

=
1∫

0

(
T̂ i(si) − Ti(si)

)
dQ i(si, p),

where we have used integration by parts (see Hewitt, 1960) and the fact that T̂ i(0) = Ti(0) and T̂ i(1) = Ti(1), see Section 6
in Myerson (1981), in the last step.

It is easy to see that an allocation maximizes the first integral in Eq. (3) if and only it satisfies (i) p∗
i (s) > 0 only if

t̂i(si) � t̂ j(s j), j �= i a.e. Moreover, since Q i(., p) is increasing for any p implementable by Lemma 2 in Myerson (1981), and
T̂ i(si) � Ti(si), see Section 6 in Myerson (1981), an implementable allocation maximizes the second integral if and only if it
satisfies Q i(., p∗) is constant in any open interval in which T̂ i(si) < Ti(si).

A deterministic and monotone allocation that verifies (i) and (ii) is:

pi(s) =
{

1 if i = min{ j: t̂ j(s j) = maxl t̂l(sl)},
0 otherwise,

for all i ∈ {1,2}. �
A.2. Proof of Proposition 3

The proof follows from four claims that we prove below. The first and third claim are auxiliary results, the second claim
is that the strategies (b∗

1,b∗
2) induce the allocation p∗ , and the fourth that (b∗

1,b∗
2) is an equilibrium.

Claim 1. ψ∗
j verifies that:

lim vi
(
sn

i ,ψ
∗
j

(
sn

i

))
� lim v j

(
sn

i ,ψ
∗
j

(
sn

i

))
,

for any decreasing sequence {sn
i } that tends to a point ŝi ∈ [0,1) at which ψ∗

j is strictly increasing either to the left or to the right.

Proof. To prove the claim, it is sufficient to show that for any ŝ′
i ∈ (ŝi,1]:

ŝ′i∫
ŝi

(
vi

(
si,ψ

∗
j (si)

) − v j
(
si,ψ

∗
j (si)

))
f (s)dsi � 0.

To prove so, note that the optimality of ψ∗
j implies that for any increasing function ψ̂ j : [0,1] → [0,1]:

1∫
0

ψ∗
j (si)∫

0

(
vi(s) − v j(s)

)
f (s)ds j dsi �

1∫
0

ψ̂ j(si)∫
0

(
vi(s) − v j(s)

)
f (s)ds j dsi .

Consider first the case in which ψ∗
j is strictly increasing to the right at ŝi . Since ψ∗

j is increasing, for any ŝi, ŝ′
i and ε > 0,

the function

ψ̂ j(si) ≡
{

max{ψ∗
j (si) − ε,ψ∗

j (ŝi)} if si ∈ [ŝi, ŝ′
i],

ψ∗
j (si) otherwise,

is also increasing and we can apply the above inequality. After some simple algebraic manipulations, we get

ŝ′i∫
ŝi

ψ∗
j (si)∫

ψ∗(si)−ε

(
vi(s) − v j(s)

)
f (s)ds j dsi −

ŝ′i∫
ŝi

max{ψ∗
j (si)−ε,ψ∗

j (ŝi)}∫
ψ∗(si)−ε

(
vi(s) − v j(s)

)
f (s)ds j dsi � 0. (4)
j j
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To derive our sufficient condition we divide this inequality by ε > 0 and apply to each of the two integrals the following
two results respectively:

lim
ε→0

∫ ψ∗
j (si)

ψ∗
j (si)−ε

(vi(s) − v j(s)) f (s)ds j

ε
= (

vi
(
si,ψ

∗
j (si)

) − v j
(
si,ψ

∗
j (si)

))
f
(
si,ψ

∗
j (si)

)
,

for almost all si ∈ (ŝi, ŝ′
i) and,

lim
ε→0

∫ max{ψ∗
j (si)−ε,ψ∗

j (ŝi)}
ψ∗

j (si)−ε
(vi(s) − v j(s)) f (s)ds j

ε
= 0,

for any si ∈ (ŝi, ŝ′
i). The first limit can be proved using that for any given si , vi(si, s j) and v j(si, s j) are both continuous

in s j a.e., a consequence of their monotonicity. The second limit can be proved using that the integrand is bounded and

limε→0
max{0,ψ∗

j (ŝi)−ψ∗
j (si)+ε}

ε = 0 for any si ∈ (ŝi, ŝ′
i) since ψ∗

j is locally strictly increasing to the right at ŝi .
The case in which ψ∗

j is strictly increasing to the left at ŝi has a similar analysis but using the function

ψ̂ j(si) ≡

⎧⎪⎨
⎪⎩

min{ψ∗
j (si),ψ

∗
j (ŝi) − ε} if si < ŝi,

ψ∗
j (ŝi) − ε si ∈ [ŝi, ŝ′

i],
ψ∗

j (si) otherwise,

instead. �
Claim 2. The good is allocated according to p∗ a.e. when bidders play (b∗

1,b∗
2). In particular, for any s in the interior of the set of types

for which p∗ allocates to i ∈ {1,2}, it is verified that b∗
i (si) > b∗

j (s j), j �= i.

Proof. To prove the claim, it is sufficient to show that for any s that verifies the conditions of the proposition there exists
a (ŝi, ŝ j) and a sequence {sn

i } such that23:

vi
(
si,ψ

∗
j (si)

)
> lim vi

(
sn

i ,ψ
∗
j

(
sn

i

))
� lim v j

(
sn

i ,ψ
∗
j

(
sn

i

))
� v j(ŝi, ŝ j) � v j

(
ψ∗

i (s j), s j
)
. (5)

Any s that verifies the conditions of the proposition also verifies that both (ψ∗
i (s j), s j) and (si,ψ

∗
j (si)) belong to the fron-

tier of the set of types for which p∗ allocates to Bidder i. Since the allocation p∗ is deterministic and monotone, then
(si,ψ

∗
j (si)) > (ψ∗

i (s j), s j) and there exists a (ŝi, ŝ j) such that: (i) it belongs to the frontier of the former set, (ii) it verifies
that (si,ψ

∗
j (si)) � (ŝi, ŝ j) � (ψ∗

i (s j), s j), and (iii) it is such that ψ∗
j is locally strictly increasing either to the right or the left

at ŝi . (ii) implies the last inequality in Eq. (5). (i) and (ii) imply that for any strictly decreasing sequence {sn
i } that starts at

si and has limit ŝi , it is verified that (si,ψ
∗
j (si)) > (sn

i ,ψ
∗
j (sn

i )) � (ŝi, ŝ j). This implies the first and the third inequalities in
Eq. (5). Finally, (iii) and Claim 1 implies the second inequality of Eq. (5). �
Claim 3. If f is affiliated, there is a selection of

arg max
ψ

ψ∫
0

(
v2(s1, s2) − v1

(
s1,ψ

∗
2 (s1)

))
f (s1, s2)ds1

increasing in s2 .

Proof. To prove the claim, it is sufficient to show that for any s′
2 > s2:

ψ∫
ψ̃

(
v2(s1, s2) − v1

(
s1,ψ

∗
2 (s1)

))
f (s1, s2)ds1 � 0, ∀ψ̃ � ψ,

implies that

ψ∫
ψ̃

(
v2

(
s1, s′

2

) − v1
(
s1,ψ

∗
2 (s1)

))
f
(
s1, s′

2

)
ds1 � 0, ∀ψ̃ � ψ.

23 We denote (s1, s2) < (ŝ1, ŝ2) when s1 < ŝ1 and s2 < ŝ2; and (s1, s2) � (ŝ1, ŝ2) when s1 � ŝ1 and s2 � ŝ2 and (s1, s2) �= (ŝ1, ŝ2).
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Since v2 is increasing in s2, a sufficient condition (after some straightforward transformations) is that:

ψ∫
ψ̃

(
v2(s1, s2) − v1

(
s1,ψ

∗
2 (s1)

))
f (s1|s2)ds1 � 0, ∀ψ̃ � ψ,

implies that

ψ∫
ψ̃

(
v2(s1, s2) − v1

(
s1,ψ

∗
2 (s1)

))
f (s1|s2)

f (s1|s′
2)

f (s1|s2)
ds1 � 0, ∀ψ̃ � ψ.

Since affiliation implies that
f (s1|s′2)

f (s1|s2)
is increasing in s1, the last condition can be derived from the more general claim

that for any J (s1) increasing and non-negative:

ψ∫
ψ̃

A(s1)ds1 � 0, ∀ψ̃ � ψ,

implies that

ψ∫
ψ̃

A(s1) J (s1)ds1 � 0, ∀ψ̃ � ψ.

Integration by parts on the left-hand side of the last equation means that it is equal to

J (ψ̃)

ψ∫
ψ̃

A(s1)ds1 +
ψ∫

ψ̃

ψ∫
s1

A(s̃1)ds̃1 d J (s1),

which is non-negative for any ψ̃ � ψ as desired, when

ψ∫
ψ̃

A(s1)ds1 � 0, ∀ψ̃ � ψ. �

Claim 4. (b∗
1,b∗

2) is a Bayesian Nash equilibrium of the English auction.

Proof. Suppose that Bidder 1 plays the proposed strategy and consider Bidder 2’s expected payoff when she plays an
arbitrary strategy. In this case, Bidder 2 pays a price equal to Bidder 1’s bid, i.e. v1(s1,ψ

∗
2 (s1)), if she wins. As in the proof

of Proposition 2, the expected payoff of any strategy of Bidder 2 can be characterized with the corresponding function of
pivotal types of Bidder 1 ψ̂1 : [0,1] → [0,1]:

1∫
0

ψ̂1(s2)∫
0

(
v2(s1, s2) − v1

(
s1,ψ

∗
2 (s1)

))
f (s)ds1 ds2. (6)

Since (b∗
1,b∗

2) induce the allocation p∗ a.e. by Claim 2, b∗
2 picks ψ̂1 = ψ∗

1 a.e. in the above problem. Thus, to prove that

Bidder 2 does not have incentives to deviate, we have to show that ψ̂1 = ψ∗
1 maximizes Eq. (6). Claim 3 implies that there

is no loss in adding the constraint that ψ̂1 is increasing to this problem.
The integral in Eq. (6) is equal to the sum of two integrals:

1∫
0

ψ̂1(s2)∫
0

(
v2(s1, s2) − v1(s1, s2)

)
f (s)ds1 ds2 (7)

and
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1∫
0

ψ̂1(s2)∫
0

(
v1(s1, s2) − v1

(
s1,ψ

∗
2 (s1)

))
f (s)ds1 ds2. (8)

The function ψ∗
1 maximizes the first integral subject to ψ̂1 increasing by definition, see Eq. (1) for j = 1 and i = 2. It also

maximizes the second integral because the interior of the set {(s1, s2): s2 � ψ∗
2 (s1)} is equal to the interior of the set

{(s1, s2): s1 � ψ∗
1 (s2)}. Thus, ψ̂1 = ψ∗

1 maximizes Eq. (6) subject to ψ̂1 increasing as desired. �
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