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Abstract

Programming languages are at the foundation of computer science, as
they provide abstractions that allow the expression of the logic of a pro-
gram independent from the underlying hardware architecture. In par-
ticular scenarios, it can be convenient to employ Domain-Specific Lan-
guages, which are capable of providing an even higher level of abstraction
to solve problems which are common in specific domains. Examples of
such domains are database programming, text editing, 3D graphics, and
game development. The use of a domain-specific language for the de-
velopment of particular classes of software may drastically increase the
development speed and the maintainability of the code, in comparison
with the use of a general-purpose programming language. While the idea
of having a domain-specific language for a particular domain may be ap-
pealing, implementing such a language tends to come at a heavy cost: as
it is common to all programming languages, domain-specific languages
require a compiler which translates their programs into executable code.
Implementing a compiler tends to be an expensive and time-consuming
task, which may very well be a burden which overshadows the advantages
of having a domain-specific language.

To ease the process of developing compilers, a special class of compil-
ers called “meta-compilers” has been created. Meta-compilers have the
advantage of requiring only the definition of a language in order to gener-
ate executable code for a program written in that language, thus skipping
the arduous task of writing a hard-coded compiler for the new language.
A disadvantage of meta-compilers is that they tend to generate slow ex-
ecutables, so they are usually only employed for rapid prototyping of a
new language. The main aim of this thesis is to create a meta-compiler
which does not suffer from the disadvantage of inefficiency. It presents a
meta-compiler called “Metacasanova”, which eases the development cost
of a compiler while simultaneously generating efficient executable code.

The thesis starts by analysing the recurring patterns of implementing
a compiler, to define a series of requirements for Metacasanova. It then
explains the architecture of the meta-compiler and provides examples of
its usage by implementing a small imperative language called C--, fol-
lowed by the reimplementation of a particular, existing domain-specific



language, namely Casanova, which has been created for use in game de-
velopment. The thesis presents a novel way to optimize the performance
of generated code by means of functors; it demonstrates the effect of this
optimization by comparing the efficiency of Casanova code generated with
and without it. Finally, the thesis demonstrates the advantages of hav-
ing a meta-compiler like Metacasanova, by using Metacasanova to extend
the semantics of Casanova to allow the definition of multiplayer online
games.
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Chapter 1

Introduction

About the use of language: it
is impossible to sharpen a
pencil with a blunt axe. It is
equally vain to try to do it
with ten blunt axes instead.

Edsger Dijkstra

The number of programming languages available on the market has
dramatically increased during the last years. The tiobe index [3], a rank-
ing of programming languages based on their popularity, lists 50 program-
ming languages for 2018. This number is only a small glimpse of the real
amount, since it does not take into account several languages dedicated
to specific applications. This growth has brought a further need for new
compilers that are able to translate programs written in those languages
into executable code. The goal of this work is to investigate how the devel-
opment speed of a compiler can be boosted by employing meta-compilers,
programs that generalize the task performed by a normal compiler. In
particular the goal of this research is creating a meta-compiler that sig-
nificantly reduces the amount of code needed to define a language and its
compilation steps, while maintaining acceptable performance.

This chapter introduces the issue of expressing the solution of prob-
lems in terms of algorithms in Section 1.1. Then we proceed by defining
how the semi-formal definition of an algorithm must be translated into
code executable by a processor (Section 1.2). In this section we discuss
the advantages and disadvantages of using different kinds of program-
ming languages with respect to their affinity with the specific hardware
architecture and the scope of the domain they target. In Section 1.3
we explain the reason behind compilers and we explain why building a
compiler is a time-consuming task. In Section 1.4 we introduce the idea
of meta-compilers as a further step into generalizing the task of compil-
ers. In this section we also explain the requirements, benefits, and the

1



2 CHAPTER 1. INTRODUCTION

relevance as a scientific topic. Finally in Section 1.5 we formulate the
problem statement and the research questions that this work will answer.

1.1 Algorithms and problems

Since the ancient age, there has always been the need of describing the
sequence of activities needed to perform a specific task [17], to which
we refer with the name of Algorithm. The allegedly most ancient known
example of this dates back to the Ancient Greek, when Hero invented
an algorithm to perform the factorization and the approximation of the
square root, discovered also by other civilizations [15, 98] . Regardless
of the specific details of each algorithm, one needs to use some kind of
language to define the sequence of steps to perform. In the past people
used natural language to describe such steps but, with the advent of
the computer era, the choice of the language has been strictly connected
with the possibility of its implementation. Natural languages are not
suitable for the implementation, as they are known to be verbose and
ambiguous [31, 91]. For this reason, several kind of formal solutions have
been employed, which are described below.

Flow charts

A flow chart is a diagram where the steps of an algorithm are defined
by using boxes of different kinds, connected by arrows to define their
ordering in the sequence. The boxes are rectangular-shaped if they define
an activity (or processing step), while they are diamond-shaped if they
define a decision. A rectangle with rounded corners denotes the initial
step. An example of a flow chart describing how to sum the numbers in
a sequence is described in Figure 1.1.

Pseudocode

Pseudocode is a semi-formal language that might contain also statements
expressed in natural language and omits system specific code like opening
file writers, printing messages on the standard output, or even some data
structure declaration and initialization. It is intended mainly for human
reading rather than machine reading. The pseudocode to sum a sequence
of numbers is shown in Algorithm 1.1.

Advantages and disadvantages

Using flow charts or pseudo-code has the advantage of being able to define
an algorithm in a way which is very close to the abstractions employed
when using natural language: a flow chart combines both the use of natu-
ral language and a visual interface to describe an algorithm, pseudo-code
allows to employ several abstractions and even define some steps in terms
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Figure 1.1: Flow chart for the sum of a sequence of numbers

Algorithm 1.1 Pseudocode to perform the sum of a sequence of integer
numbers

function SumIntegers(l list of integers)
sum← 0
for all x in l do

sum← sum+ x
end for
return sum

end function
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of natural language. The drawback of these two formal representations is
that, when it comes to the implementation, the definition of the algorithm
must be translated by hand into code that the hardware is able to exe-
cute. This could be done by implementing the algorithm in a low-level or
high-level programming language. This process affects at different levels
how the logic of the algorithm is presented, as explained further.

1.2 Programming languages

A programming language is a formal language that is used to define in-
structions that a machine, usually a computer, must perform in order to
produce a result through computation [35, 79, 82]. There is a wide tax-
onomy used to classify programming languages depending on their use
[58, 80, 81], but all can be grouped according to two main characteristics:
the level of abstraction, or how close to the specific targeted hardware
they are, and the domain, which defines the range of applicability of a
programming language. In the following sections we give an exhaustive
explanation of the aforementioned characteristics.

1.2.1 Low-level programming languages

A low-level programming language is a programming language that pro-
vides little to no abstraction from the hardware architecture of a proces-
sor. This means that it is strongly connected with the instruction set of
the targeted machine, the set of instructions a processor is able to execute.
These languages are divided into two sub-categories: first-generation and
second-generation languages:

First-generation languages

Machine code falls into the category of first-generation languages. In this
category we find all those languages that do not require code transforma-
tions to be executed by the processor. These languages were used mainly
during the dawn of computer age and are rarely employed by program-
mers nowadays. Machine code is made of stream of binary data, that
represents the instruction codes and their arguments [52, 95]. Usually
this stream of data is treated by programmers in hexadecimal format,
which is then remapped into binary code. The programs written in ma-
chine code were once loaded into the processor through a front panel,
a controller that allowed the display and alteration of the registers and
memory (see Figure 1.2). An example of machine code for a program
that computes the sum of a sequence of integer numbers can be seen in
Listing 1.1.
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Figure 1.2: Front panel of IBM 1620

1 00075 c7 45 b8 00 00
2 00 00
3 0007c eb 09
4 0007e 8b 45 b8
5 00081 83 c0 01
6 00084 89 45 b8
7 00087 83 7d b8 0a
8 0008b 7d 0f
9 0008d 8b 45 b8

10 00090 8b 4d c4
11 00093 03 4c 85 d0
12 00097 89 4d c4
13 0009a eb e2

Listing 1.1: x86 Machine code to compute the sum of a sequence of numbers

Second-generation languages

The languages in this category provides an abstraction layer over the
machine code by expressing processor instructions with mnemonic names
both for the instruction code and the arguments. For example, the arith-
metic sum instruction add is the mnemonic name for the instruction code
0x00 in x86 processors. Among these languages we find Assembly, that is
mapped with an Assembler to machine code. The Assembler can load di-
rectly the code or link different object files to generate a single executable
by using a linker. An example of assembly x86 code corresponding to the
machine code in Listing 1.1 can be found in Listing 1.2. You can see that
the code in the machine code 00081 83 c0 01 at line 5 has been replaced
by its mnemonic representation in Assembly as add eax, 1.



6 CHAPTER 1. INTRODUCTION

1 mov DWORD PTR _i$1[ebp], 0
2 jmp SHORT $LN4@main
3 $LN2@main:
4 mov eax , DWORD PTR _i$1[ebp]
5 add eax , 1
6 mov DWORD PTR _i$1[ebp], eax
7 $LN4@main:
8 cmp DWORD PTR _i$1[ebp], 10 ; 0000000 aH
9 jge SHORT $LN3@main

10 mov eax , DWORD PTR _i$1[ebp]
11 mov ecx , DWORD PTR _sum$[ebp]
12 add ecx , DWORD PTR _numbers$[ebp+eax*4]
13 mov DWORD PTR _sum$[ebp], ecx
14 jmp SHORT $LN2@main

Listing 1.2: Assembly x86 code to compute the sum of a sequence of numbers

Advantages and disadvantages

Writing a program in low-level programming languages might produce
programs that are generally more efficient than their high-level coun-
terparts, as ad-hoc optimizations are possible. The high-performance,
however, comes at great costs: (i) the programmer must be an expert
on the underlying architecture and of the specific instruction set of the
processor, (ii) the program loses portability because the low-level code
is tightly bound to the specific hardware architecture it targets, (iii) the
logic and readability of the program is hidden among the details of the
instruction set itself, and (iv) developing a program in assembly requires
a considerable effort in terms of time and debugging [44]: assembly lacks
any abstraction from the concrete hardware architecture, such as a type
system, that partially ensures the correctness of the program or high-level
constructs that allow to manipulate the execution of the program.

1.2.2 High-level programming languages

A high-level programming language is a programming language that offers
a high level of abstraction from the specific hardware architecture of the
machine. Unlike machine code (and in some way also assembly), high-
level languages are not directly executable by the processor and they
require some kind of translation process into machine code. The level of
abstraction offered by the language defines how high level the language
is. Several categories of high-level programming language exist, but the
main one are described below.

Imperative programming languages

Imperative programming languages model the computation as a sequence
of statements that alter the state of the program (usually the memory
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state). A program in such languages consists then of a sequence of com-
mands. Notable examples are FORTRAN, C, and PASCAL. An example
of the program used in Listing 1.1 and 1.2 written in C can be seen in
Listing 1.3. Line 5 to 9 corresponds to the Assembly code in Listing 1.2.

1 int main()
2 {
3 int numbers [10] = { 1, 6, 8, -2, 4, 3, 0, 1, 10, -5 };
4 int sum = 0;
5 for (int i = 0; i < 10; i++)
6 {
7 sum += numbers[i];
8 }
9 printf ("%d\n", sum);

10 }

Listing 1.3: C code to compute the sum of a sequence of numbers

Declarative programming languages

Declarative programming languages are antithetical to those based on
imperative programming, as they model computation as an evaluation of
expressions and not as a sequence of commands to execute. Declarative
programming languages are called as such when they are side-effects free
or referentially transparent. The definition of referential transparency
varies [90], but it is usually explained with the substitution principle,
which states that a language is referentially transparent if any expression
can be replaced by its value without altering the behaviour of the program
[77]. For instance, the following sentences in natural language are both
true

Cicero = Tullius

’’Cicero ‘‘ contains six letters

but they are not referentially transparent, since replacing the last name
with the middle name falsifies the second sentence.

A similar situation in programming languages is met when considering
variable assignments: the statement

x = x + 5

is not referentially transparent. Let us assume this statement appears
twice in a program and that at the beginning x = 0. Clearly the expression
x + 5 results in the value 5 the first time, but the second time the same
statement is executed the expression has value 10. Thus replacing all the
occurrences of x + 5 with 5 is wrong, which is why imperative languages
are not referentially transparent. A more rigorous definition of referential
transparency can be found in [99].
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Declarative programming languages are often compared to imperative
programming languages by stating that declarative programming defines
what to compute and not how to compute it. This family of languages
include functional programming, logic programming, and database query
languages. Notable examples are F#, Haskell, Prolog, SQL, and Linq
(which is a query language embedded in C#). Listing 1.4 shows the
code to perform the sum of a sequence of integer numbers in F# with
a recursive function. Higher-order functions, such as fold, allow even
to capture the same recursive pattern into a single function as shown in
Listing 1.5. Both implementations are referentially transparent.

let rec sumList l =
match l with
| [] -> 0
| x :: xs -> x + (sumList xs)

Listing 1.4: Recursive F# code to compute the sum of a sequence of numbers

let sumList l = l |> List.fold (+) 0

Listing 1.5: F# code to compute the sum of a sequence of numbers using
higher-order functions

1.2.3 General-purpose vs Domain-specific languages

General-purpose languages are defined as languages that can be used
across different application domains and lack abstractions that specifi-
cally target elements of a single domain. Example of these are languages
such as C, C++, C#, and Java. Although several applications are still be-
ing developed by using general-purpose programming languages, in some
contexts it is more convenient to rely on domain-specific languages, be-
cause they offer abstractions relative to the problem domain that are
unavailable in general-purpose languages [104, 106]. Notable examples of
the use of domain-specific languages are listed below.

Graphics programming

Rendering a scene in a 3D space is often performed by relying on ded-
icated hardware. Modern graphics processors rely on shaders to create
various effects that are rendered in the 3D scene. Shaders are written
in domain-specific languages, such as GLSL or HLSL [54, 72, 73], that
offer abstractions to compute operations at GPU level that are often used
in computer graphics, such as vertices and pixel transformations, matrix
multiplications, and interpolation of textures. Listing 1.6 shows the code
to implement light reflections in HLSL. At line 4 you can, for example,
see the use of matrix multiplication provided as a language abstraction
in HLSL.
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1 VertexShaderOutput VertexShaderSpecularFunction(
VertexShaderInput input , float3 Normal : NORMAL)

2 {
3 VertexShaderOutput output;
4 float4 worldPosition = mul(input.Position , World);
5 float4 viewPosition = mul(worldPosition , View);
6 output.Position = mul(viewPosition , Projection);
7 float3 normal = normalize(mul(Normal , World));
8 output.Normal = normal;
9 output.View = normalize(float4(EyePosition ,1.0f) -

worldPosition);
10 return output;
11 }

Listing 1.6: HLSL code to compute the light reflection

Game programming

Computer games are a field where domain-specific languages are widely
employed, as they contain complex behaviours that often require special
constructs to model timing event-based primitives, or to execute tasks in
parallel. These behaviours cannot be modelled, for performance reasons,
by using threads. Therefore, in the past, domain-specific languages which
provide these abstractions have been implemented [23, 41, 45, 53]. In
Listing 1.7 an example of the SQF domain-specific language for the game
ArmA2 is shown. This language offers abstractions to wait for a specific
amount of time, to wait for a condition, and to spawn scripts that run
in parallel to the callee, that you can respectively see at lines 18, 12, and
10.

1 "colorCorrections" ppEffectAdjust [1, pi , 0, [0.0, 0.0,
0.0, 0.0], [0.05 , 0.18, 0.45, 0.5], [0.5, 0.5, 0.5,
0.0]];

2 "colorCorrections" ppEffectCommit 0;
3 "colorCorrections" ppEffectEnable true;
4
5 thanatos switchMove "AmovPpneMstpSrasWrflDnon ";
6 [[],( position tower) nearestObject 6540 ,[[" USMC_Soldier",

west]],4,true ,[]] execVM "patrolBuilding.sqf";
7 playMusic "Intro";
8
9 titleCut ["", "BLACK FADED", 999];

10 [] Spawn
11 {
12 waitUntil {!( isNil "BIS_fnc_init ")};
13 [
14 localize "STR_TITLE_LOCATION" ,
15 localize "STR_TITLE_PERSON",
16 str(date select 1) + "." + str(date select 2) + "." +

str(date select 0)
17 ] spawn BIS_fnc_infoText;
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18 sleep 3;
19 "dynamicBlur" ppEffectEnable true;
20 "dynamicBlur" ppEffectAdjust [6];
21 "dynamicBlur" ppEffectCommit 0;
22 "dynamicBlur" ppEffectAdjust [0.0];
23 "dynamicBlur" ppEffectCommit 7;
24 titleCut ["", "BLACK IN", 5];
25 };

Listing 1.7: ArmA 2 scripting language

Shell scripting languages

Shell scripting languages, such as the Unix Shell script, are used to manip-
ulate files or user input in different ways. They generally offer abstractions
to the operating system interface in the form of dedicated commands.
Listing 1.8 shows an example of a program written in Unix shell script
to convert an image from JPG to PNG format. At line 3 you can see the
use of the statement echo to display a message in the standard output.

1 for jpg; do
2 png="${jpg%.jpg}.png"
3 echo converting "$jpg" ...
4 if convert "$jpg" jpg.to.png ; then
5 mv jpg.to.png "$png"
6 else
7 echo ’jpg2png: error: failed output saved in "jpg.to.

png".’ >&2
8 exit 1
9 fi

10 done
11 echo all conversions successful
12 exit 0

Listing 1.8: Unix shell code

Advantages and disadvantages

High-level programming languages offer a variety of abstractions over the
specific hardware the program targets. The obvious advantage of this is
that the programmer does not need to be an expert on the underlying
hardware architecture or instruction set. A further advantage is that the
available abstractions are closer to the semi-formal description of the un-
derlying algorithm as pseudo-code. This produces two desirable effects:
(i) the readability of the program is increased as the available abstrac-
tions are closer to the natural language than the equivalent machine code,
and (ii) that being able to mimic the semi-formal version of an algorithm,
which is generally how the algorithm is presented and on which its cor-
rectness is proven, grants a higher degree of correctness in the specific
implementation.
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The use of a high-level programming language might, in general, not
achieve the same high-performance as writing the same program with a
low-level programming language [29], but modern code-generation opti-
mization techniques can generally mitigate this gap [10, 110].

The portability of a high-level programming language depends on the
architecture of the underlying compiler, thus some languages are portable
and the same code can be run on different machines (for example Java),
while others might require to be compiled to target a specific architecture
(for example C++).

1.3 Compilers

A compiler is a program that transforms source code defined in a program-
ming language into another computer language, which usually is object
code but can also be code in a high-level programming language [9, 11].
Writing a compiler is a necessary step to implementing a high-level pro-
gramming language. Indeed, a high-level programming language, unlike
low-level ones, are not executable directly by the processor and need to
be translated into machine code, as stated in Section 1.2.1 and 1.2.2.

The first complete compiler was developed by IBM for the FORTRAN
language and required 18 person-years for its development [14]. This
clearly shows that writing a compiler is a hard and time-consuming task.

A compiler is a complex piece of software made of several components
that implement a step in the translation process. The translation process
performed by a compiler involves the following steps:

1. syntactical analysis: In this phase the compiler checks that the
program is written according to the grammar rules of the language.
In this phase the compiler must be able to recognize the syntagms of
the language (the “words”) and also check if the program conforms
to the syntax rules of the language through a grammar specification.

2. type checking: In this phase the compiler checks that a syntactically
correct program performs operations conform to a defined type sys-
tem. A type system is a set of rules that assign properties called
types to the constructs of a computer program [89]. The use of
a type system drastically reduces the chance of having bugs in a
computer program [28] . This phase can be performed at compile
time (static typing) or the generated code could contain the code
to perform the type checking at runtime (dynamic typing).

3. code generation: In this phase the compiler takes the syntactically
and type-correct program and performs the translation step. At this
point an equivalent program in a target language will be generated.
The target language can be object code, another high-level pro-
gramming language, or even a bytecode that can be interpreted by
a virtual machine.
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All the previous steps are always the same regardless of the language
the compiler translates from and they are not part of the creative aspect
of the language design [24]. Approaches to automating the construction
of the syntactical analyser are well known in literature [69, 83, 84], to
the point that several lexer/parser generators are available for program-
mers, for example all those belonging to the yacc family such as yacc

for C/C++, fsyacc for F#, cup for Java, and Happy for Haskell. On the
other hand, developers lack a set of tools to automate the implementation
of the last two steps, namely the type checking and the code generation.

For this reason, when implementing a compiler, the formal type sys-
tem definition and the operational semantics, which is tightly connected
to the code generation and defines how the constructs of the language
behave, must be translated into the abstractions provided by the host
language in which the compiler will be implemented. Other than be-
ing a time-consuming activity itself, this causes that (i) the logic of the
type system and operational semantics is lost inside the abstraction of
the host-language, and (ii) it is difficult to extend the language with new
features.

1.4 Meta-compilers

In Section 1.3 we described how the steps involved in designing and im-
plementing a compiler do not require creativity and are always the same,
regardless of the language the compiler is built for. The first step, namely
the syntactical analysis, can be automated by using one of the several lex-
er/parser generators available, but the implementation of a type checker
and a code generator still relies on a manual implementation. This is
where meta-compilers come into play: a meta-compiler is a program that
takes the source code of another program written in a specific language
and the language definition itself, and generates executable code. The
language definition is written in a programming language, referred to as
meta-language, which should provide the abstractions necessary to define
the syntax, type system, and operational semantics of the language, in
order to implement all the steps above.

1.4.1 Requirements

As stated in Section 1.4, a meta-compiler should provide a meta-language
that is able to define the syntax, type system, and operational semantics
of a programming language. In Section 1.3 we discussed how methods to
automate the implementation of syntactical analyser are already known
in scientific literature. For this reason, in this work, we will focus ex-
clusively on automating the implementation of the type system and of
the operational semantics. Given this focus, we formulate the following
requirements:
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• The meta-language should provide abstractions to define the con-
structs of the language. This includes the possibility of defining
control structures, operators with any form of prefix or infix no-
tation, and the priority of the constructs that is used when evalu-
ating their behaviour. Furthermore, it must be possible to define
the equivalence of language constructs. For instance, an integer
constant might be considered both a value and a basic arithmetic
expression.

• The meta-language must be able to mimic as close as possible the
formal definition of a programming language. This will bring the
following benefits: (i) Implementing the language in the meta-
compiler will just involve re-writing almost one-to-one the type sys-
tem or the semantics of the language with little or no change; (ii)
the correctness and soundness [28, 74] of the language formal defini-
tion will be directly reflected in the implementation of the language;
indeed if a meta-program allows to mimic directly the type system
and semantics of the language their correctness is transferred also in
the implementation, while this might not be trivial when translat-
ing them in the abstractions of a high-level programming language;
(iii) any extension of the language definition can be just added as
an additional rule in the type system or the semantics.

• The meta-compiler must be able to embed libraries from exter-
nal languages, so that they can be used to implement specific be-
haviours such as networking transmission or specific data structure
usage.

1.4.2 Benefits

Programming languages usually are released with a minimal (but suffi-
cient to be Turing-complete) set of features, and later extended in func-
tionality in successive versions. This process tends to be slow and often
significant improvements or additions are only seen years after the first
release. For example, Java was released in 1996 and lacked an impor-
tant feature such as Generics until 2004, when J2SE 5.0 was released.
Furthermore, Java and C++ lacked constructs from functional program-
ming, which is becoming more and more popular with the years [100],
such as lambda abstractions until 2016, while a similar language like C#
3.0 was released with such capability in 2008. The slow rate of change of
programming languages is due to the fact that every abstraction added
to the language must be reflected in all the modules of its compiler: the
grammar must be extended to support new syntactical rules, the type
checking of the new constructs must be added, and the appropriate code
generation must be implemented. Given the complexity of compilers,
this process requires a huge amount of work, and it is often obstructed



14 CHAPTER 1. INTRODUCTION

by the low flexiblity of the compiler as piece of software. Using a meta-
compiler would speed up the extension of an existing language because
it would require only to change on paper the type system and the oper-
ational semantics, and then add the new definitions to their counterpart
written in the meta-language. This process is easier because the meta-
language should mimic as close as possible their behaviour. Moreover,
backward compatibility is automatically granted because an older pro-
gram will simply use the extended language version to be compiled by
the meta-compiler.

To this we add the fact that, in general, for the same reasons, the de-
velopment of a new programming language is generally faster when using
a meta-compiler. This could be beneficial to the development of a high
variety of domain-specific languages. Indeed, such languages are often
employed in situations where the developers have little or no resources
to develop a fully-fledged hard-coded compiler by hand. For instance, it
is desirable for game developers to focus on aspects that are strictly tied
to the game itself, for example the development of an efficient graphics
engine or to improve the game logic. At the same time they would need
a domain-specific language to express some behaviours typical of games,
things that could be achieved by using a meta-compiler rather than on a
hand-made implementation.

1.4.3 Scientific relevance

Meta-compilers have been researched since the 1960’s [93] and several
implementations have been proposed [25, 27, 61, 86, 105]. In general
meta-compilers perform poorly compared to hard-coded compilers be-
cause they add the additional layer of abstraction of the meta-language.
Moreover, a specific implementation of a compiler opens up the possi-
bility of implementing language-specific optimizations during the code
generation phase. Meta-compilers have been used in a wide range of ap-
plications, such as source code analysis and manipulation and physical
simulations [56], but no use up to our knowledge was made in the field of
domain-specific languages for games. Since games are pieces of software
that are very demanding in terms of performance, we think that it could
be of interest to investigate the applicability of meta-compilers in the
scope of domain-specific languages for games and the development speed
up introduced by the use of such a tool. In this work we present Metaca-
sanova, a meta-compiler based on natural semantics that was born from
the intent of easing the development of the domain-specific language for
game development Casanova, and we analyse the benefit of using it for a
re-implementation and extension of Casanova.
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1.5 Problem statement

In Section 1.2 we showed the advantages of using high-level programming
languages when implementing an algorithm. Among such languages, it
is sometimes desirable to employ domain-specific languages that offer ab-
stractions relative to a specific application domain (Section 1.2.3). In
Section 1.3 we described the need of a compiler for such languages, and
that developing one is a time-consuming activity despite the process be-
ing, in great part, non-creative. In Section 1.4 we introduced the role of
meta-compilers to speed up the process of developing a compiler and we
listed the requirements and the benefits that one should have. In Section
1.4.3 we explained why we believe that meta-compilers are a relevant sci-
entific topic if coupled with the problem of of developing domain-specific
languages in response to the their increasing need. We can now formulate
our problem statement:

Problem statement: To what extent does a meta-compiler benefit the
development of a domain-specific language for game development?

The first parameter we need to evaluate in order to answer this question
is the size of the code reduction needed to implement the domain-specific
language. At this purpose, the following research question arises:

Research question 1: To what extent can a meta-compiler reduce
the amount of code required to create a compiler for a domain-specific
language for game development?

The second parameter we need to evaluate is the possible performance
loss caused by introducing the abstraction layer provided by the meta-
compiler. This leads to the following research question:

Research question 2: How much is the performance loss introduced
by the meta-compiler with respect to an implementation written in a lan-
guage compiled with a traditional compiler and is this loss acceptable when
considering game development?

In case of a performance loss, we need to identify the cause of this perfor-
mance loss and if an improvement is possible. This leads to the following
research question:

Research question 3: What is the cause of the performance degrada-
tion when employing a meta-compiler and how can this be improved?
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1.6 Thesis structure

This thesis describes the architecture of Metacasanova, a meta-compiler
whose meta-language is based on operational semantics, and a possible
optimization for such meta-compiler. It also shows its the capabilities
by implementing a small imperative language and re-implementing the
existing domain-specific language for games Casanova 2, extending it
with abstractions to express network operations for multiplayer games.

In Chapter 2 we provide background information in order to under-
stand the choices made for this work. The chapter presents the state of
the art in designing and implementing compilers and existing research on
meta-compilers.

In Chapter 3 we present the architecture of Metacasanova by exten-
sively describing the implementation of all its modules.

In Chapter 4 we show how to use Metacasanova to implement two
languages: a small imperative language, and Casanova 2, a language for
game development. At the end of the chapter we provide an evaluation
of the performance of the two languages and their implementation length
with respect to existing compilers, thus answering to Research Question
1 and 2.

In Chapter 5 we discuss the performance loss of the implementation
of the presented languages and we propose an extension of Metacasanova
that aims to improve the performance of the generated code.

In Chapter 6 we show how to use functors to improve the performance
of Casanova implemented in Metacasanova, comparing this approach and
the one presented in Chapter 4 with respect to the execution time of a
sample in Casanova, thus answering Research Question 3.

In Chapter 7 we propose an extension of Casanova 2 for multiplayer
game development. We first provide its hard-coded compiler solution and
then we show how to extend the implementation in the meta-compiler to
include the same extension. In this chapter we evaluate the performance
of a multiplayer game implemented in Casanova with this extension with
respect to the same game implemented in C#, and we measure the effort
of realising such extension in the hard-coded compiler of Casanova ver-
sus the implementation with Metacasanova, thus further backing up the
results about the implementation length obtained in Chapter 4.

In Chapter 8 we discuss the result and answer the research questions.



Chapter 2

Background

Trying to outsmart a
compiler defeats much of the
purpose of using one.

Kernighan and Plauger - The
Elements of Programming

Style.

This chapter provides background information on compiler construc-
tion and the existing knowledge on meta-compiles. The goal of this chap-
ter is dual: (i) it provides the reader with sufficient information to under-
stand the implementation choices done when developing Metacasanova,
and (ii) outlines the complexity of the process of designing and imple-
menting a compiler, thus giving further motivation to this research work.

In Section 2.1 we outline the general architecture of a compiler by
giving a short descriptions of all its components and how they work. In
Section 2.2 we give a detailed explanation about regular expressions nec-
essary to define the “words” of a language, and the lexer, showing how
to implement one. In Section 2.3 we introduce the notion of context-free
grammars and we show how to implement a parser able to process the
grammatical rules of such grammar. In this chapter we present a parser
generator for the language F# that has been used for the implementa-
tion of Metacasanova, and then show an alternative to standard parsers
in functional programming languages. We then explain how a type sys-
tem and semantics of a language is expressed, and finally we introduce
the concept of metaprogramming and we show examples using metapro-
gramming in the abstractions provided by a general purpose language
(C++), and with existing dedicated metacompilers. As a side note, we
want to point out that definitions below are mainly reformulations of
what is presented in [11] and [9].

17
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2.1 Architectural overview of a compiler

Compilers are software that read as input a program written in a program-
ming language, called source language, and translate it into an equiva-
lent program expressed with another programming language, called target
language. Usually the target language is machine code, but this is not
mandatory. A special kind of compilers are interpreters, that directly ex-
ecute the program written in the source language rather than translating
it into a target language. Some languages, like Java, use a hybrid ap-
proach, that is they compile the program into an intermediate language
that is later interpreted by a virtual machine. Another approach involves
the translation into a target high-level language.

Although the architecture of a compiler may slightly vary depending
on the specific implementation, the translation process usually consists
of the following steps:

1. Lexical analysis: this phase is performed by a module called lexer
that is able to process the text and identify the syntactical elements
of the language, called tokens.

2. Syntactical analysis: this phase is performed by a module called
parser, that checks whether the program written in the source lan-
guage is compliant to the formal syntax of the language. The parser
is tightly coupled with the lexer, as it needs to identify the tokens of
the language to correctly process the syntax rules. The parser out-
puts a representation of the program, called Abstract Syntax Tree,
for later use.

3. Type checking: this phase is performed by the type checker that
uses the rules defined by a type system to assign a property to
the elements of the language called type. The types are used to
determine whether the abstractions of the language, in a program
that is syntactically correct, are used in a meaningful way.

4. Code generation: the code generation phase requires to choose
one or more target languages to emit. In the latter case, the code
generator must have a modular structure to allow to interchange
the output language. For this reason this step is usually preceded
by an intermediate code generation step, that converts the source
program into an intermediate representation close to the target lan-
guage. This phase can later be followed by different kinds of code
optimization phases.

In what follows we extensively describe each module that was sum-
marized above.
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2.2 Lexer

As stated above, the lexer task is to recognize the words or tokens of the
source language. In order to perform this task the token structure must
be expressed in a formal way. Below we present such formalization and
we describe the algorithm that actually recognizes the token.

Let us consider a finite alphabet Σ, a language is a set of strings,
intended as sequences of characters in Σ.

Definition 2.1. A string in a language L in the alphabet Σ is a tuple of
characters a ∈ Σn.

A notable difference between languages in this context and human-
spoken languages is that, in the former, we do not associate a meaning
to the words but we are only interested to define which words are part
of the language and which are not. Regular expressions are a convenient
formalization to define the structure of sets of strings:

Definition 2.2. The following are the possible ways to define regular
expressions [11]:

• Empty: The regular expression ε is a language containing only the
empty string.
• Symbol: ∀a ∈ Σ, a is a string containing the character a.
• Alternation: Given two regular expressions M and N , a string in

the language of M |N , called alternation, is the sets of strings in the
language of M or N .
• Concatenation: Given two regular expressions M and N , a string

in the language of M · N is the language of strings α · β such as
α ∈M and α ∈ N .
• Repetition: Given a regular expression M , its Kleene Closure M∗ is

formed by the concatenation of zero or more strings in the language
M .

The regular expressions defined in Definition 2.2 can be combined to
define tokens in a language.

Regular expressions can be processed by using a finite state automa-
ton. Informally a finite state automaton is made of a finite set of states, an
alphabet Σ of which it is able to process the symbols, and a set of symbol-
labelled edges that connect two states and define how to transition from
one state to another. Automata can be divided into two categorise: non-
deterministic finite state automata (NFA) and deterministic finite state
automata (DFA). Formally we have the following definitions:

Definition 2.3. A non-deterministic finite state automaton (NFA) is
made of:

• A finite set of states S.
• An alphabet Σ of input symbols.
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• A state s0 ∈ S that is the starting state of the automaton.
• A set of states F ⊂ S called final or accepting states.
• A set of transitions T ⊆ S × (Σ ∪ {ε})× S.

Definition 2.4. A deterministic finite state automaton (DFA) is a NFA
where the transition is a function, i.e.

τ : S × Σ→ S
τ(si, c) = sj

and @ τ(s, ci), τ(s, cj) | ci = cj ∀i, j.

Informally, in NFA’s there might be two transitions from the same
state that can process the same symbol, while in DFA’s for the same
state there exists one and only one transition able to process a symbol
and no transition processes the empty string. Regular expressions can
be converted in NFA by using translation rules. The formalization of the
algorithm can be found in [68], here we just show an informal overview
for brevity.

2.2.1 Finite state automata for regular expressions

In this section we present an informal overview of the translation rules
for regular expressions into NFA’s, and an algorithm to convert an NFA
into a DFA.

Conversion for Symbols A regular expression containing just one
symbol a ∈ Σ can be converted by creating a transition τ(si, a) = sj .

Conversion for concatenation The conversion for concatenation is
recursive: the base case of the recursion is the symbol conversion. The
conversion of a concatenation of n symbols a1a2, ..., an is obtained by
adding a transition from the last state of the conversion for the first n−1
symbols into a new state through a transition processing the n-th symbol,
τ(sn−1, an) = sn.

Conversion for alternation The alternation M |N is obtained by cre-
ating an automata with a ε-transition into a new state, that we call sε.
From sε we recursively generate the automata for both M and N . Both
automata can finally reach the same state through an ε-transition.

Conversion for Kleene closure The Kleene Closure M∗ is obtained
by initially creating an ε-transition into a state sε. sε can recursively
transition to the automaton for M , which in turn transitions through an
ε-transition to sε.
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Conversion for M+ The regular expression M+ contains the concate-
nation of one or more strings in M . This can be translated by translating
M ·M∗.

Conversion for M? The regular expression M? is a shortcut for M |ε,
thus it can be translated by using the conversion rule for the alternation.

2.2.2 Conversion of a NFA into a DFA

As stated in Section 2.2, a NFA might have, for the same state, a set
of transitions that process the same symbol (including the empty string
since ε-transitions are allowed). This means that a NFA must be able to
guess which transition to follow when trying to process a token. This is
not efficient to implement in a computer, thus it is better to use a DFA
where there can be only one way of processing a symbol for a given state.
An algorithm to automate such conversion exists and is presented in [9].
Another possible approach is an algorithm to directly convert regular
expressions into DFA’s, as shown in [8]. Below we present the algorithm
to convert NFA’s into DFA’s.

The informal idea behind the algorithm is the following: since a DFA
cannot contain ε-transitions or transitions from one state into another
containing the same symbols, we have to construct an automaton that
skips the ε-transitions and pre-calculates the calculation of the sets of
states in advance. In order to do so, we need to be able to compute
the closure of a set of states. Informally the closure of a set of states
S is the sates that can be reached by one of the states of S through an
ε-transition. The formal definition is given below:

Definition 2.5. The closure C(S) of a set of states S is defined as

• C(S) = S ∪

(⋃
s∈T

τ(s, ε)

)
• if ∃ C′(S) | C(S) ⊆ C′(S)⇒ C′(S) = C(S).

Algorithm 2.1 Closure of S

T ← S
repeat

T ′ ← T
T ← ∪

(⋃
s∈T ′ τ(s, ε)

)
until T = T ′

Algorithm 2.1 computes the closure of a set of states. Note that the
algorithm termination is granted because we are considering finite-state
automata.
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At this point we can build the set of all possible states reachable by
consuming a specific character. We call this set edge of a set of states d.

Definition 2.6. Let d be a set of states, then the edge of d is defined as

E(d, c) = C

(⋃
s∈d

τ(s, c)

)
Now we can use the closure and edge to build the DFA from a NFA.

Algorithm 2.2 NFA into DFA conversion

states[0]← ∅
states[1]← C(s1)
p← 1
j ← 0
while j ≤ p do

for all c ∈ Σ do
e← E(states[j], c)
if ∃ i ≤ p | e = states[i] then

trans[j, c]← i
else

p← p+ 1
states[p]← e
trans[j, c]← p

end if
end for
j ← j + 1

end while

Algorithm 2.2 performs the conversion into a DFA but we need to adjust
it in order to mark the final states of the automaton. A state d is final in
the DFA if it is final if any of the states in state[d] is final. In addition to
marking final states, we must also keep track of what token is produced
in that final state.

2.3 Parser

Regular expressions are a concise declarative way to define the lexical
structure of the terms of a language, but they are insufficient to describe
its syntax, i.e. how to combine tokens together to make “sentences” [9,
11]. For example, trying to define an arithmetic expression with chained
sums would lead to the following (recursive) regular expression:

expr = "(" expr "+" expr ")" | digits

Now we would need to replace the regular expression with itself, thus
obtaining
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expr = "(" "(" expr "+" expr ")" | digits "+" "(" expr
"+" expr ")" | digits ")" | digits

It is easy to see that this substitution would never end, as the regular
expression keeps growing at each replacement.

A compiler uses the parser module to check the syntactical structure
of a program. As we will see more in depth below, the parser is tightly
coupled with the lexer, which is used by it to recognize tokens. In order
to present the structure of the parser, it is first necessary to introduce
context-free grammars.

As before we consider a language as a set of tuples of characters taken
from a finite alphabet Σ. Informally, a context-free grammar is a set of
productions of the form symbol → symbol1 symbol2 ...symboln, where
the left argument can be replaced by the sequence of symbols contained
in the right argument. Some productions are terminal, meaning that
they cannot be replaced any longer, while the others are non-terminal.
Terminal symbols can only appear on the right side, while non-terminals
can appear on both sides. Formally a context free grammar is defined as
follows

Definition 2.7. A context-free grammar is made of the following ele-
ments:

• A set of non-terminal symbols N .
• A finite set of terminal symbols Σ, called alphabet.
• A non-terminal symbol S ∈ N called starting symbol.
• A set of productions P in the form N → (N ∪ Σ)∗.

Note that Definition 2.7 allows context-free grammars to process also
regular expressions, thus context-free grammars are more expressive than
regular expressions. In what follows we assume that the terminal symbols
are treated as tokens with regular expressions that can be processed by
a lexer, but in general a context-free grammar does not require a lexer
DFA to process terminal symbols.

In order to check if a sentence is valid in the grammar defined for
a language, we perform a process called derivation: starting from the
symbol S of the grammar, we recursively replace non-terminal symbols
with the right side of their production. The derivation can be done in
different ways: we can start expanding the leftmost non-terminal in the
production or the rightmost one. The result of the derivation usually
generates a data structure called parse tree or abstract syntax tree, which
connects a non-terminal symbol to the symbols obtained through the
derivation; the leaves of the tree are terminal symbols.
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2.3.1 LR(k) parsers

Simple grammars can be parsed by using left-to-right parse, leftmost-
derivation, k-tokens lookahead (alse called LL(k) parsers), meaning that
the parser processes a symbol by performing a derivation starting from
the leftmost symbol of the production, and looking at the first k tokens
of a string of the language. The weakness of this technique is that the
parser must predict which production to use only knowing the first k
tokens of the right side of the production. For instance, consider the two
expression

(15 ∗ 3 + 4)− 6
(15 ∗ 3 + 4)

and the grammar

S → E eof
E → E + T
E → E − T
E → T ∗ F
E → T/F
E → T
T → F
F → id
F → num
F → (E)

In the first case the parser should use the production E → E − T while
in the second it should use the production E → T . This grammar cannot
be parsed by a LL(k) parser because it is not possible to decide which of
the two productions must be used just by looking at the first k leftmost
tokens. Indeed expressions of that form could have arbitrary length and
the lookahead is, in general, insufficient. In general LL(k) grammars are
context-free, but not all context-free grammars are LL(k), so such a parser
is unable to parse all context-free grammars.

A more powerful parser is the left-to-right parse, rightmost-derivation,
k-tokens lookahead or LR(k). This parse maintains a stack and an input
(which is the sentence to parse). The first k tokens of the input are the
lookahead. The parser uses the stack and the lookahead to perform two
different actions:

• Shift : The parser moves the first input token to the top of the stack.

• Reduce: The parser chooses a grammar production Ni → s1 s2 ...sj
and pop sj , sj−1, ..., s1 from the top of the stack. It then pushes Ni
at the top of the stack.

The parser uses a DFA to know when to apply a shift action or a reduce
action. The DFA is insufficient to process the input, as DFA’s are not
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capable of processing context-free grammars, but it is applied to the stack.
The DFA contains edges labelled by the symbols that can appear in the
stack, while states contain one of the following actions:

• sn: shift the symbol and go to state n.
• gn: go to state n.
• rk: reduce using the production k in the grammar.
• a: accept, i.e. shift the end-of-file symbol.
• error: invalid state, meaning that the sentence is invalid in the

grammar.

The automaton is usually represented with a tabular structure, which is
called parsing table. The element pi,s in the table represents the transition
from state i when the symbol at the top of the stack is s.

In order to generate the parsing table (or equivalently the DFA for
the parser) we need two support functions, one to generate the possible
states the automaton can reach by using grammar productions, and one
to generate the actions to advance past the current state. We introduce
an additional notation to represent the situation where the parser has
reached a certain position while deriving a production.

Definition 2.8. An item is any production in the form N → α.Xβ,
meaning that the parser is at the position indicated by the dot where X
is a grammar symbol.

At this point we are able to define the Closure function, that adds
more items to a set of items when the dot is before a non-terminal symbol,
which is shown in Algorithm 2.3. Note that, for brevity, we present the
version to generate a LR(0) parser, for a LR(1) parser a minor adjustment
must be made.

Algorithm 2.3 Closure function for a LR(0) parser

function Closure(I)
repeat

for all N → α.Xβ ∈ I do
for all X → γ do

I ← I ∪ {X → .γ}
end for

end for
until I ′ 6= I
return I

end function

The algorithm starts with an initial set of items I and adds all gram-
mar productions that contain X as left argument as items with the dot
at the beginning of their right argument, meaning that the symbols of
the production must still be completely parsed.
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Now we need a function that, given a set of items, is able to advance
the state of the parser past the symbol X. This is shown in Algorithm
2.4.

Algorithm 2.4 Goto function for a LR(0) parser

function Goto(I,X)
J ← ∅
for all N → α.Xβ ∈ I do

J ← J ∪ {N → αX.β}
end for
return Closure(J)

end function

The algorithm starts with a set of items and a symbol X and creates
a new set of items where the parser position has been moved past the
symbol X. It then compute the closure of this new set of items a returns
it.

We can now proceed to define the algorithm to generate the LR(0)
parser, which is shown in Algorithm 2.5. The initial state is made of
all the productions where the left side is the starting symbol, which is
equivalent to compute the closure of S′ → .S eof . It then proceeds to
expand the set of states and the set of actions to perform. Note that we
never compute GOTO(I, eof) but we simply generate an accept action.
Now, for all actions in E where X is a terminal, we generate a shift
action at position (I,X), for all actions where X is non-terminal we put
a goto action at position (I,X), and finally for a state containing an item
Nk → γ. (the parser is at the end of the production) we generate a rk
action at (I, Y ) for every token Y .

In general parsing tables can be very large, for this reason it is usually
wise to implement a variant of LR(k) parsers called LALR(k) parsers,
where all states that contain the same actions but different lookaheads
are merged into one, thus reducing the size of the parsing table. LR(1)
and LALR(1) parsers are very common, since most of the programming
languages can be defined by a LR(1) grammar. For instance, the popular
family of parser generators Yacc produces LALR(1) parsers.

2.3.2 Parser generators

The process of creating a parser can be automated by using a Parser
Generator. A Parser generator is a programming language that accepts
the definition of the grammar of a language and generates a parser (and
a lexer) for it. As programming languages generally have a LALR(1)
grammar [11], most of parser generators produce a LALR(1) parser. Since
in this research work we used F# as a development language, in this
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Algorithm 2.5 LR(0) parser generation

T ← Closure({S′ → .S eof})
E ← ∅
repeat

T ′ ← T
E′ ← E
for all I ∈ T do

for all N → α.Xβ ∈ I do
J ← Goto(I,X)
T ← T ∪ {J}
E ← E ∪ {I X−→ J}

end for
end for

until E′ = E and T ′ = T

section we present the F# lexer and parser generators, belonging to the
Yacc generator family, known ans FsLex and FsYacc.

Definition of a lexer in FsLex

FsLex allows to define the tokens with the regular expression syntax.
Each FsLex program begins with a header, where the programmer can
specify auxiliary modules and functions to use in the lexer. After the
header, it is possible to specify relevant regular expressions that are used
by the lexer to analyse the tokens with the standard let-binding syntax
of F# [70]. The right argument of this binding is a regular expression,
which can be composed with the combinators for regular expressions seen
in Section 2.2.1. For example the following regular expression can define
the syntax for variable names in a programming language:

let simpleId = [’a’-’z’ ’A’-’Z’] [’a’-’z’ ’A’-’Z’ ’_’
’0’-’9’]+

Regular expression bindings can be used as alias in the lexer definition.
A lexer definition is identified by the keyword rule for the binding. The
right side of a lexer definition contains a call to the function parse, which
tries to execute one of the rules specified below to parse a token. Each
lexer rule generates a result which is a token data structure. Token data
structures are specified at parser level (see below). For instance, the
following is a lexer able to recognize comparison operators:

rule comparisonOperators = parse
| "=" { Parser.EQUAL }
| ">" { Parser.GT }
| ">=" { Parser.GEQ }
| "<" { Parser.LT }
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| "<=" { Parser.LEQ }
| "<>" { Parser.NEQ }

Note that, in order to provide useful information about the lexing
phase, we might need to access, for instance, the position of the lexer (for
error reporting), or to get the string read by the lexer (for example to
generate literals when reading numbers or strings). This information is
provided by the lexer buffer, which is a data structure generated automat-
ically by the parser generator. For example, if the token needs to store
its row and column position in the file for error reporting, the definition
above can be changed in this way (note the use of the header to define
the function range):

{
module Lexer

let range (lexbuf : LexBuffer <_>) = lexbuf.EndPos.Line
+ 1, lexbuf.EndPos.Column

}

rule comparisonOperators = parse
| ">" { Parser.GT (range lexbuf) }
| ">=" { Parser.GEQ (range lexbuf) }
| "<" { Parser.LT (range lexbuf) }
| "<=" { Parser.LEQ (range lexbuf) }
| "<>" { Parser.NEQ (range lexbuf) }

Another useful feature of FsLex is the capability of defining recursive
lexers. Let us consider the case of skipping multi-line comments: usu-
ally such comments are delimited by a start and end symbol, and the
comments spread across multiple lines. For example in C++/Java/C# a
multi-line comment is delimited by the symbols /* */. The lexer must
detect the left delimiter of the multi-line comment, and then keep skip-
ping all the symbols until it detects the right delimiter. This means that
the lexer must call itself multiple times, using different lexing rules: one
to detect the left delimiter, one to handle new lines or characters inside
the comment, and one to detect the right delimiter. Furthermore, after
handling the comment, the lexer must go back to processing the program
normally. The following code shows how to implement such lexer:

{
module Lexer

let newline (lexbuf : LexBuffer <_>) = lexbuf.EndPos <-
lexbuf.EndPos.NextLine

let range (lexbuf : LexBuffer <_>) = lexbuf.EndPos.Line
+ 1, lexbuf.EndPos.Column

}
let newline = (’\n’ | ’\r’ ’\n’)

rule comment = parse
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| "*/" { programTokens lexbuf }
| newline { newline lexbuf; comment lexbuf }
| _ { comment lexbuf }

and programTokens = parse
| "/*" { comment lexbuf }
...
//other token definitions

Note that programTokens calls comment when it detects the left delim-
iter of a multi-line comment. comment keeps calling itself until the right
delimiter is detected, where it jumps back to programTokens.

Definition of a parser in FsYacc

FsYacc allows to define the grammar of a language in terms of produc-
tions of a context free grammar. As for the lexer, the parser definition
starts with a header where the programmer can specify custom code and
modules to use. The grammar defines terminal symbols as tokens, iden-
tified by the keyword %token. A token specified the name to be used in
the grammar productions, and a series of type parameters that are used
to store data in a token. For example, the following tokens might be used
in a parser for arithmetic expressions:

%token PLUS MINUS MUL DIV LPAR RPAR
%token <double > NUMBER

Whenever a terminal symbol is encountered during the parsing phase, the
parser calls the lexer to generate the data structure for the token. The
lexer tries to match the string provided by the parser by using one of its
rule and, if it succeeds, it returns the appropriate token data structure.
In this part of the grammar we must also specify the starting symbol.
This symbol is defined through the keyword %start. Since usually we
want to generate an abstract syntax tree for the grammar (which must
be manually defined), we can specify a return type generated by the parser
with the keyword %type. For an arithmetic expression this would be, for
instance

%start start
%type <Expr > start

In this section it is also possible to define the operators associativity
and precedence, through the keywords %left, %right, and %nonassoc.
Terms defined in the same associativity line have the same precedence,
and the precedence is ordered according to the line number, so if a term
associativity is defined below another, it has higher precedence.

After the terminal symbol definitions, the grammar must specify pro-
ductions. A production is defined in the following way:
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productionName:
| rule_1 { action_1 }
| rule_2 { action_2 }
...
| rule_n { action_n }

Each action defines the code that the parser executes when that rule is
matched. Usually this part is used to build the nodes of the syntax tree,
but there is no restriction in what the action can perform, as long as it
is valid F# code. It is possible to access the result of evaluating a term
in the production by using an index preceded by the symbol %, where
%1 refers to the first term in the right hand-side of the production. For
example this code might be used to parse an arithmetic expression:

%{
open AST

%}

%token PLUS MINUS MUL DIV LPAR RPAR EOF
%token <float > NUMBER

%left PLUS MINUS
%left MUL DIV

%start start
%type <Expr > start

start : Expression EOF { %1 }

Expression:
| NUMBER { Number %1 }
| Expression PLUS Expression { Plus (%1 ,%3) }
| Expression MINUS Expression { Minus (%1 ,%3) }
| Expression MUL Expression { Mul (%1 ,%3) }
| Expression DIV Expression { Div (%1 ,%3) }
| LPAR Expression RPAR { Nested (%2) }

module AST

type Expression =
| Number of float
| Plus of Expression * Expression
| Minus of Expression * Expression
| Mul of Expression * Expression
| Div of Expression * Expression
| Nested of Expression

2.3.3 Monadic parsers

Monadic parsing is an alternative to traditional parsers, such as LR(k)
and LALR(k) presented above. Monadic parsers have inferior perfor-
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mance with respect to LR(k) and LALR(k) [51] parsers but they are ex-
tensible, i.e. they do not rely on a limited set of combinators to describe
the grammar of a language as for parser generators. Monadic parsers
were extensively explained in [51, 108], here we present a variation that
can deal also with error handling. Before explaining how to implement a
monadic parser, we introduce the concept of Monad:

Definition 2.9. A Monad is a triplet made of the following elements:

• A type constructor M .
• A unary operation Return :: a→M a.
• A binary operation Bind :: M a → (a → M b) → M b. The bind

can also be written by using the symbol >>=.

where both operations satisfy the following properties:

• a >>= Return ≡ a.
• (a >>= f) >>= g ≡ a >>= (λx.fx >>= g).

In other words, a monad is a functional design pattern that consists of
a data container that provides two operations: one that takes an element
whose type is compatible with the element of the container, and returns
an instantiation of the container itself, and the other that defines a trans-
formation between two data containers. Monads are a concept borrowed
by functional programming language that comes from the much wider
concept from category theory [13, 19, 20, 88], whose usage is shown for
example in [78, 87, 107, 108]. We now proceed to define a parser monad
by defining (i) the type constructor for the parser, (ii) the unary opera-
tor, (iii) the binary operator, and (iv) parser combinators as an example
of the extensibility of the parser monad. Note that below we provide an
implementation in F#, which does not have type classes as Haskell, so
the parser monad does not use any type argument and directly defines
the operators for this specific instance of monad.

Parser type constructor and monadic operations

A parser is defined in literature as a function that takes as input a text and
returns a list of pairs made of the parsing result and the rest of the text
to process. The parsing result is usually the syntax tree generated by the
parser. The result is a list because the same syntactical structure might be
processed in different ways. By convention, an empty list denotes a parser
failure. Here we propose a variation of this traditional implementation in
order to provide a better error report.

In this alternative implementation, the parser is a function that takes
as input the text to process, a parsing context that might hold auxiliary
information necessary for the parsing, the current position of the parser
in the text, and returns either a tuple containing the parsing result, the
text left to process, an updated context, and the updated position, or an
error in case of a parser failure.
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type Parser <’a, ’ctxt > = { Parse : List <char > -> ’ctxt ->
Position -> Either <’a * List <char > * ’ctxt *

Position , Error >}

static member Make(p:List <char > -> ’ctxt -> Position ->
Either <’a * List <char > * ’ctxt * Position , Error >) :
Parser <’a,’ctxt > = { Parse = p }

The return operation should take as input a generic value of type ’a

and return a Parser<’a,’ctxt>. The return simply creates the parser
function for the given input:

member this.Return(x:’a) : Parser <’a,’ctxt > =
(fun buf ctxt pos -> First(x, buf , ctxt , pos)) |>

Parser.Make

According to the Definition 2.9, the bind operator must take as input
a Parser<’a>, a function ’a -> Parser<’b> and return Parser<’b>. The
bind generates a function that runs the input parser on the text. The
result of the input parser can, according to its definition, contain a parsing
result or an error in case of failure. The function generated by the bind
must be able to handle these two situations: in case of a correct result the
function creates a new parser using the parsing result and runs it on the
remaining portion of the text, while in case of an error it simply outputs
the error. In this way, when parsing fails, the error will be propagated
ahead.

member this.Bind(p:Parser <’a,’ctxt >, k:’a->Parser <’b,’
ctxt >) : Parser <’b,’ctxt > =

(fun buf ctxt pos ->
let all_res = p.Parse buf ctxt pos
match all_res with
| First p1res ->

let res , restBuf , ctxt ’, pos ’ = p1res
(k res).Parse restBuf ctxt ’ pos ’

| Second err -> Second err ) |> Parser.Make

Parser combinators

With the parser monad implemented above, we can implement several
parser combinators that can be used to define the grammar of a lan-
guage. Here we show only a small glimpse of the possible combinators
that can be implemented.

The first parser combinator that we present is the choice. The choice
takes as input two parsers and runs the first. If the first parser succeeds
than its result is returned, otherwise the second is run. If it succeeds its
result is return, otherwise the whole parser outputs an error. This com-
binator is useful, for instance, when there might be two possible choices



2.3. PARSER 33

for a token in a statement. For instance, in both Java and C# is possible
to exchange the order of the access modifier and the static modifier in
the method declaration, thus both public static or static public are
valid combinations. This combinator would try to parse the declaration
in the first way, and if it fails it will try also the second option. Of course
if the syntax of both combinations is wrong the parser will fail completely.
The code for the combinator is shown below:

static member (++) (p1:Parser <’a,’ctxt >, p2:Parser <’a,’
ctxt >) : Parser <’a,’ctxt > =

(fun buf ctxt p ->
match p1.Parse buf ctxt p with
| Second err1 ->

match p2.Parse buf ctxt p with
| Second err2 -> Second err2
| p2res -> p2res

| p1res -> p1res) |> Parser.Make

A useful variation of this combinator, is the one that executes two parsers
with different generic types and returns a Either data type, containing
either the result of the first or the second.

static member (+) (p1:Parser <’a,’ctxt >, p2:Parser <’b,’
ctxt >) : Parser <Either <’a,’b>,’ctxt > =

(fun buf ctxt p ->
match p1.Parse buf ctxt p with
| Second err1 ->

match p2.Parse buf ctxt p with
| Second err2 -> Second(err2)
| First p2res ->

let res ,restBuf ,ctxt ’,pos = p2res
First(Second res , restBuf , ctxt ’, pos)

| First p1res ->
let res , restBuf , ctxt ’, pos = p1res
First(( First res), restBuf , ctxt ’, pos)) |> Parser

.Make

Other combinators are possible, but for brevity we have only shown two.
It should appear clear how this approach is completely extensible with
no limitations. Any combinator would take as input two parsers and
define the type of the resulting parser. The implementation will contain
the logic to combine two parsers together. For example, another parser
combinator is the application of zero or more times of the same parser.

To complete this discussion, we now show how to parse a specific
character and a keyword. The parser for a character takes as input the
text to process and the character to match. If the input text is empty
of course the parser immediately fails because no character will ever be
matched. Otherwise if the first character of the text matches the one
provided then we return the matched character as result and the rest of
the text to process, otherwise we output an error. The function also takes
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care of updating the position of the parser accordingly and to skip line
breaks.

let character(c:char) : Parser <char , ’ctxt > =
(fun buf ctxt (pos:Position) ->
match buf : List <char > with
| x::cs when x = c ->

let pos ’ =
if x = ’\n’ then

pos.NextLine
else

pos.NextCol
First( c, cs , ctxt , pos ’)

| _ ->
Second (Error(pos , sprintf "Expected character %A"

c))) |> Parser.Make

The word parser takes as input the text to process and the word to
match. It then applies the character parser to the word until it has all
been processed. In the code below the syntax let! x = y is a syntactical
sugar for y >>= fun x -> ... in the fashion of Haskell do notation.

let rec word (w:List <char >) : Parser <List <char >, ’ctxt > =
p{

match w with
| x::xs ->

let! c = character x
let! cs = word xs
return c::cs

| [] ->
return []

}

2.4 Type systems and type checking

Being able to verify the correctness of a program is a crucial aspect of
programming. When dealing with low-level languages, it is generally dif-
ficult to verify and grant the correctness of a program since a language
such as assembly does not provide abstractions for the purpose. Modern
high-level programming languages, on the other hand, generally provide
a way to type their constructs. A type system is a syntactic method that
assigns a property called type to the constructs of a programming lan-
guage, in order to prove that a program does not have certain unwanted
behaviours [89]. Type systems are generally expressed in the form of
inference rules [28, 89], made of a set of premises, that must be veri-
fied in order to assign to the language construct the type defined in the
conclusion. An inference rule is a logical rule in the form:
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premise1

premise2

...
premisen

conclusion

where all the premises must be true in order to evaluate the conclusion.
Usually the type rules make use of a typing environment, which is an asso-
ciation between language constructs and types. For example the following
rule defines the typing of an if-then-else and a while-do statement in
an imperative language.

Γ ` c : bool Γ ` t Γ ` e
Γ ` if c then t else e

Γ ` c : bool Γ ` w
Γ ` while c do w

In these rules Γ is the environment. The type rule first evaluates the
premises, which means that if the condition of the if-then-else has type
bool and the evaluation of the then and else block succeeds, then the
whole if-then-else is correctly typed. Analogously, for the while-do,
if the condition has type bool and the evaluation of the while block is
correctly typed, then the whole while-do is correctly typed. Note that
control structures code blocks are usually not given a type, rather they
are considered correct if all their statements are correctly typed. An
equivalent way of expressing this is using a special type called unit for
constructs that do not return a value. This expedient is widely used
in hybrid functional programming languages such as F# or CamL. The
equivalent rules for the construct above would be:

Γ ` c : bool Γ ` t : unit Γ ` e : unit

Γ ` if c then t else e : unit

Γ ` c : bool Γ ` w : unit

Γ ` while c do w : unit

Typing a construct of the language requires to evaluate its corre-
sponding typing rule. Unlike for parsers, there exist no tools capable of
automatically generating a type checker given the type rules definition,
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thus the behaviour of each type rule must be implemented in the host
language in which the compiler is defined. Independently of the cho-
sen language, the behaviour will always be the following : (i) evaluate
a premise, (ii) if the evaluation of the premise fails then the construct
fails the type check and an error is returned, (iii) repeat step 1 and 2
until all the premises have been evaluated, and (iv) assign the type to
the construct that is defined in the rule conclusion.

During this process the compiler generates a data structure called
symbol table, which contains information about the type checking process
and maintains the type environment.

At the end of the type check, the program is correct with respect
to types. At this point, depending on the chosen target language, the
compiler might discard or keep the information about the typing process.
Usually when targeting a high-level programming language, the informa-
tion about the types is kept because they are necessary during the code
generation process in order to, for instance, generate the proper variable
declaration statements. On the other hand, when targeting a low-level
untyped programming language, such as assembly, the type information
can be discarded.

2.5 Semantics and code generation

Semantics define how the language abstractions behave and can be ex-
pressed in different ways, for example with a term-rewriting system [62],
reduction semantics [42] or with the operational semantics [46]. Below
we provide a description of these three possible representations for the
semantics:

Term-rewriting semantics Term-rewriting semantics define a set of
rewriting rules that take as input a construct of the language and define
how to rewrite it into another form. The rewriting process usually ends
when a rewrite rule is replaced by itself. For example the if-then-else

statements and while-do statements can be rewritten with these rules
(the ; symbol denotes a sequence of statements):

if true then t else e ; k → t;k
if false then t else e ; k → e;k
while (c = true) do w ; k → w ; while (c) do w ; k
while (c = false) do w; k → k

Reduction semantics Reduction semantics use a reduction context,
which is a program or a fragment of program with a hole (denoted by the
symbol �) as placeholder to mark where the next computational step is
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taking place. For example the if-then-else and while-do statements
semantics can be represented in the following way1:

if � then s1 else s2 ; k
if true then t else e → t
if false then t else e → e
while � do w
while true do w → w ; while � do w
while false do w → skip

Operational semantics Operational semantics define the behaviour
of language constructs in terms of logical rules similar to those used for
type systems. For instance, the if-then-else and while-do semantics
are expressed as

〈c〉 ⇒ true

〈if c then T else E ; k〉 ⇒ T ; k

〈c〉 ⇒ false

〈if c then T else E ; k〉 ⇒ E ; k

〈c〉 ⇒ true

〈while c do L ; k〉 ⇒ L ; while c do L ; k

〈c〉 ⇒ false

〈while c do L ; k〉 ⇒ k

Regardless of the formal representation chosen for the semantics, this
must be encoded in the abstractions of the target language during the
code generation phase. When choosing a high-level target language en-
coding the operational semantics of a similar high-level language might
be trivial, but generating for instance the code for a functional program-
ming language into an imperative language might prove difficult. For this
reason, the code generation step might be preceded by an intermediate
code generation step. The intermediate language is usually a simple pro-
gramming language close to the target language. Notable examples of
this are the three-address code [9], and the intermediate language used in
the Glasgow Haskell Compiler [50] and Utrecht Haskell Compiler [39].

1skip is a statement that simply skips to the next statement in a sequence of
statements
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2.6 Metaprogramming and metacompilers

This section aims to provide the reader with sufficient information to
understand the concept of metaprogramming. In this section we ex-
plain what metaprogramming is and present existing metacompilation
approaches existing in scientific literature. We start by defining what
metaprogramming is and we present techniques of metaprogramming in
existing programming languages. We then proceed by presenting how
different existing metacompilers work.

Metaprogramming is the process of writing computer programs with
the ability to treat programs as their data [34]. Metaprogramming takes
as input a program written in a meta-language to define a programming
language called object language, a program written in the object language,
and outputs executable code able to run the program. Metaprogramming
can be achieved in two different ways: (i) by using opportune language
abstractions provided by a general-purpose programming language, or (ii)
using a dedicated metacompiler. In what follows we provide examples in
both areas.

2.6.1 Template metaprogramming

Template metaprogramming uses class templates to operate on numbers
and types as data. In this section we provide examples in C++ tem-
plates, but other languages allow template metaprogramming, with no-
table examples being Lisp macros and Haskell templates [96]. The tem-
plate language uses template recursion as loop construct and template
specialization as decisional construct.

To better understand how this works, we will implement the factorial
function with templates. It is well known that, by definition, the factorial
of 0 is 1, while the factorial of a number n is n multiplied by the factorial
of n − 1. Our template meta-program will thus contain two templates:
one for the base case of the recursion and one for the recursive step.
The base case of the recursion uses template specialization to stop the
computation and immediately return 1:

template <>
struct Factorial <0>
{

enum { RET = 1 };
};

This template contains an enumeration type whose only value is 1.
The recursive step will take as input a generic template parameter and
recursively call the template definition.

template <int n>
struct Factorial
{
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enum { RET = Factorial <n - 1>::RET * n }
};

When the Factorial template is instantiated with a value different from
0, the non-specialized version is used by the C++ compiler. The enumer-
ation case RET then gets the value of RET for the same template instan-
tiated for n - 1 and multiplied by n. The generation of templates and
their enumeration cases will stop when the template instantiation will be
invoked with Factorial<0>, which will use the specialized version. Note
the use of the scope resolution operator to access the value of the enumer-
ation case. This template can be used instantiating the template with an
integer constant, for instance:

int main()
{

cout << Factorial <5>::RET << endl;
}

Note that template instantiation is performed at compile-time, so the
result of the factorial is actually inlined by the compiler every time the
template is instantiated.

A more interesting example is about how to define recursive data
structures. Let us consider the implementation of lists in a functional
programming language:

type List <’a> =
| Empty
| Cons of ’a * List <’a>

where the list [3,4,5,6] can be built as Cons(3,Cons

(4,Cons(5,Cons(6,Empty)))). This list representation can be defined
with template metaprogramming by defining a template specialization
for the empty list, and a non-specialized template for a non-empty list.

struct NIL
{

typedef NIL Head;
typedef NIL Tail;

};

template <class T, class Tail_ = NIL >
struct Cons
{

typedef T Head;
typedef Tail_ Tail;

};

Note that the assignment in the template definition specifies an optional
template parameter, in the same way as optional method arguments.

Now let us try to define a function to calculate the length of an arbi-
trary list. This function will have as a base case the empty list, for which
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it returns 0, otherwise it returns 1 plus the length of the tail. Again this
can be implemented with a specialized template and a non-specialized
template.

template <class List >
struct Length
{

static const unsigned int RET = Length <List::Tail >:: RET
+ 1;

};

template <>
struct Length <NIL >
{

static const unsigned int RET = 0;
};

The first template recursively class the Length template with the type
of the tail of the list, extracts the RET field and adds 1. The second
template is a specialization created with the NIL type and immediately
sets the field RET to 0.

In order to test this function we must create a template for a data
type (which is a meta-data) that we want to store in the list. In this
example we show how to test the function for a list of integers. First of
all we must create a template for an integer:

template <int n>
struct Int
{

static const int Value = n;
};

This is necessary in order to be able to store the values of the list elements.
At this point, the list can be created by calling Cons and passing the Int

data type as argument. Length can then be used with the type of the list
that has been created and then we can access its RET field.

typedef Cons <Int <3>, Cons <Int <4>, Cons <Int <5>, Cons <Int
<6>>>>> testList;

cout << Length <testList >:: RET << endl;

Template metaprogramming complexity can grow exponentially, for
example when we want to get the values of the list elements, to the point
that a simple function as nth requires several templates. We omit the
details here, but the reader can find additional information in Appendix
A.

2.6.2 Metacompilers

Metacompilers are a special class of compilers used to implement other
compilers. A metacompiler takes as input the definition of the syntax,
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semantics, and possibly the type system of the object language, a pro-
gram written in the object language, and outputs executable code for it.
Metacompilers are written either in a general purpose programming lan-
guage or in their own meta-language through the process of self-hosting.
Self-hosting compilation requires to write a prototypical version of the
compiler in another language or an interpreter for it and then use it to
compiler the implementation of a subsequent version. In this section we
present four existing meta-compilers: (i) META-II for historical reasons
to show that research on meta-compilation had actually been made in
early 1970’s but the capability of early meta-compilers were limited, (ii)
RML that is based on natural semantics and, for some aspects, simi-
lar to Metacasanova, the meta-compiler that we describe in this work,
(iii)Stratego, a meta-compiler that is based on term-rewriting semantics,
to show an alternative approach to meta-compilers based on natural se-
mantics, and (iv) Rascal a meta-programming language used for source
code analysis and transformation as well as for Domain-Specific language
implementation.

META-II

META-II is one of the earliest metacompilers and, for this reason, quite
limited in its capabilities. META-II allows to express the syntax of the
object language and actions for the code generation. A meta-program in
META-II is made of grammatical symbols, meta-variables, and equations
that define the terms of the grammar. A symbol is written as a string
surrounded by quotes and beginning with a period, a meta-variable is a
string starting with a alphabetical character and followed by an arbitrary
amount of alphanumerical characters, and an equation is a sequence of
consecutive symbols or ids to indicate concatenation. Alternation is de-
fined with the symbol /, which can be used together with the keyword
.EMPTY to define alternation. For instance

BOOLEAN = ’.TRUE ’ / ’.FALSE ’

defines boolean literals. The meta-language is able to recognize built-
in symbols such as identifiers, denoted with .ID, strings represented by
.STRING, and numbers represented by .NUMBER. These are to be in-
tended as identifiers, strings, and numbers in the object language. For
example the family of expressions:

A
A + B
A + B * C
(A + B) * C

can be encoded by the following equations in META-II

EX3 = .ID / ’(’ EX1 ’)’,
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EX2 = EX3 (’*’ EX2 / .EMPTY),
EX1 = EX2 (’+’ EX1 / .EMPTY)

Sequences (as in the Kleene closure for regular expressions) can be ex-
pressed using the symbol $. For example

SEQA = $ ’A’,

represents a sequence containing the letter A. META-II allows to asso-
ciate actions to equations for the code generation. Each action generates
assembly code for an interpreter called META-II machine, which is able
to execute it. The action of code generation is marked with the keyword
.OUT, for instance

EX3 = .ID .OUT(’LD ’ *) / ’(’ EX1 ’)’

generates the literal output and the special symbol found in EX3.
META-II is a self-hosting compiler, i.e. it is implemented in META-II

itself.

RML

RML [86] (Relational Meta-Language) uses a meta-language based on
operational semantics. A program in RML consists of data definitions in a
syntax similar to CamL variants [75] or F# discriminated unions [71], and
relations containing axioms and inference rules. An axiom is an inference
rule without premises, while an inference rule generates an output if the
premises correctly evaluate. For example the following snippet defines
the data type for an arithmetic expression and a symbol table for the
evaluation.

datatype Expr =
| INT of int
| VAR of string
| ADD of Expr * Expr

type Env = (string * int) list

Axioms and inference rules are grouped together into a relation. For
example, the following relation can be used to evaluate an arithmetic
expression:

relation eval =
axiom eval(env , INT i) => i

rule
lookup(env , x) => i
---------------------
eval(env , VAR x) => i

rule
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eval (env , left) => i1 &
eval (env , right) => i2
i1 + i1 => v
---------------------------------
eval (env , ADD(left ,right)) => v

During the code generation phase, each relation is translated into a first-
order logic representation, which consists of a series of match structures
that check the structure of the arguments. For example the rule above
would be translated into:2

(and (match [(arg1 env)
(arg2 ADD(left ,right))]))

(and (call eval [env left] [result1 ]))
(and match [result1 i1])
(and (call eval [env right] [result2 ]))
(and match [result2 i2])
(and call [i1 + i2] [result3 ])
(and match [result3 v])
(return v)

This code is later translated into a continuation-passing style form, which
is later generated as C code. The compiler performs heavy optimization
on tail calls generated code through the use of a technique called dis-
patching switches.

Stratego

Stratego [27] is a metacompiler that uses a term-rewriting semantics as
meta-language to define its programs. A stratego program consists of a
series of terms in the form

t := c(t1, t2, ..., tn)

where c is a constructor that accepts n other terms as arguments. The
syntax of Stratego has been enriched with additional syntax to handle
“traditional” data structures, such as string, integer, float, constants,
and lists:

pt := s | i | |f | [t1, t2, ..., tn] | (t1, t2, ..., tn) | c(t1, t2, ..., tn)

Terms can be extended with a list of annotations that are terms them-
selves:

t := pt | pt {t1, t2, ..., tn}
Stratego requires that the meta-program specifies the signature of term
constructors. For example simple arithmetic expressions can be defined
as

2We use a prefix notation in Lisp style
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signature
sorts Id Expr
constructors

Var : Id -> Exp
Plus : Exp * Exp -> Exp

Note that Stratego is an untyped language, so types are not statically
checked and the compiler only checks that constructors are declared and
have the correct arity.

Rewrite rules define how terms are evaluated, for example the fol-
lowing is a rewrite rule to evaluate a binary operator in an arithmetic
expression:

EvalBinOp : Plus(Int(i), Int(j)) -> Int(k) where k := <
add >(i, j)

Note that rewrite rules support conditionals, i.e. in the rule above we are
able to specify that k is the result of adding the numbers i and j given
as arguments.

Stratego compiler is a self-hosting compiler, meaning that the Stratego
meta-language is defined in the meta-language itself. A first version of
Stratego was written in SML, which was then re-used to compile a further
iteration written in Stratego. Stratego compiles programs to C, where the
code generation transformations were expressed in Stratego itself.

Rascal

Rascal [26, 61] is a meta-language born with the main goal of simplifying
the task of implementing soure-code analysis and transformation tools.
It has also been used to develop domain-specific languages as show in
[21]. It features a static type system that integrates both the analysis
and transformation domain and where nodes of the AST are fully typed.
The type system of Rascal is quite rich: it features functions as first-class
values [94] in both defined and anonymous forms. It supports parametric
polymorphism, algebraic data types, and several built-in data structures
such as sets, lists, and relationships.

As said above, AST nodes are typed as well, and can be implemented
through algebraic data types. For example, we could define a statement
as follows:

data Statement =
| Assignment(Id name , Expr expression)
| If(Expr condition , list [Statement] _then ,

list [Statement] _else)
| While (Expr condition , list [Statement] body)

Notice that it is possible to give names to the single components of al-
gebraic data types. In Rascal it is possible to define the syntax of the
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language in the meta-language itself. The syntax is defined by grammar
productions that are identified by the keyword syntax. The main dif-
ference with traditional parser generators, such as Yacc, is that, in each
production we add constructor names to algebraic data types to link the
syntax definition to the corresponding node in the AST that will be gen-
erated. For instance, the production for the example above can be defined
as follows:

syntax Statement =
| Assignment: Id var ":=" Expression expression
| If: "if" Expression condition "then"

{Statement ";"}* _then "else" {Statement ";"}* _else
"end"

| While: "while" Expression condition "do" {Statement
";"}* "end"

In Rascal it is possible to generate the target code by writing functions
that use string templates to format the target code for a high-level pro-
gramming language, as shown in [21]. This phase might be preceded by a
code transformation step. Rascal library allows also to compile and run
Java byte code directly from Rascal itself.

2.7 Differences with Metacasanova

In this section we describe the main differences between Metacasanova,
the meta-compiler described in this thesis work, and the meta-compilers
presented in this chapter.

Differences with META-II

META-II allows to define the syntax and the steps to perform for the
code generation whenever the syntax is matched. Its meta-language is
untyped, which means that the meta-compiler does not check for mal-
formed AST nodes. On the the other hand, in Metacasanova the syntac-
tical elements of the meta-program are statically typed. Furthermore, as
we will show in Chapter 5, the type system of a language implemented in
Metacasanova can be embedded in that of its meta-language. In this way
the type checker of Casanova can, at the same time, verify the correctness
of the meta-program to define a programming language and a program
written in it.

Differences with RML

RML and Metacasanova use the same formal specification for the meta-
program: the operational semantics. RML expresses the syntax of the
implemented language as discriminated unions similar to those of CamL.
Metacasanova can at the same time provide the option to define syntacti-
cal elements as operators with custom ariety, providing better readability.



46 CHAPTER 2. BACKGROUND

Moreover, RML does not feature a system of higher-kinded modules that
allows to embed the type system of a programming language in the type
system of the meta-language itself. Finally, the target code of RML is C,
while Metacasanova targets C# so that its generated code can be plugged
in popular game engines, such as Monogame or Unity.

Differences with Stratego

Stratego meta-language is based on term-rewriting semantics in contrast
with Metacasanova, which uses operational semantics. Another main dif-
ference is that Stratego is untyped while Metacasanova is typed. Stratego
offers the capability of defining the grammar rules of the language, while
Metacasanova lacks a way of defining the syntax in terms of grammar
productions.

Differences with Rascal

Rascal meta-language is oriented towards the imperative paradigm, al-
though it supports immutability as well, while operational semantics
grants, by construction, referential transparency. Metacasanova and Ras-
cal both statically type meta-programs. As shown in [21], the type check-
ing and code generation requires to explicitly define functions that per-
form the necessary steps. In Metacasanova we provide language abstrac-
tions to express the type checking and code generation of a programming
language based on operational semantics. This has the benefit of cap-
turing recurring patterns in hard-coded implementations of the compiler
at language level. As Stratego, Rascal offers powerful tools to define the
syntax of a programming language and its transformation to the AST, a
feature that Metacasanova lacks. Moreover, Rascal features abstractions
to define code transformations, which Metacasanova lacks as well due to
the fact that it has been designed mainly for the development of DSL’s
and not also for code transformation techniques and code analysis like
Rascal.

2.8 Summary

In this chapter we presented the fundamental topics necessary to under-
stand this thesis work. We started by defining the general architecture of
a compiler and then we proceeded to show how to implement its single
components. We explained how to use regular expressions to define the
syntactical elements of a language and how to build a lexer for them. We
explained how grammars are described and how to implement a Parser
with different techniques (Parser generators based on LR(k) grammars
and Monadic Parsers). We explained how to define a type system for a
language and how to express its operational semantics. We concluded by
presenting examples of existing meta-compilers and we compared them to
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Metacasanova, the meta-compiler that we describe in this thesis work. In
the next chapter we present the detailed architecture of Metacasanova.
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Chapter 3

Metacasanova

Typing is no substitute for
thinking

Dartmouth Basic manual,
1964

This chapter aims to provide the reader with additional motivation for
employing meta-compilers and details of the Metacasanova compiler ar-
chitecture. We begin by showing that the activity of building a compiler
presents recurring patterns, in particular during the process of implement-
ing the formalization of the language type system and semantics with the
language abstractions provided by a general-purpose programming lan-
guage. Based on our observations, we proceed to outline the requirements
of Metacasanova and give an informal overview of the structure of a meta-
program. Moreover, we provide a formalization of its semantics moving
on to the explanation of its working principles and the involved compila-
tion stages . We then present in detail all the stages of the compilation of
a meta-program written in the Metacasanova meta-compiler: (i) the Me-
tacasanova grammar and parser focusing also on the subsequent parsing
post-processing phase and how the post-processor re-processes the gener-
ated AST, (ii) the type checking of a meta-program and in what cases it
fails, and (iii) the code generation into the abstractions of the C# target
code.

3.1 Repetitive steps in compiler development

In Chapter 2 we gave on overview of the necessary steps involved in de-
veloping a compiler. We showed that the lexing/parsing phase is simple
enough to be automated using a lexer/parser generator. Such software
takes as input the grammar and the definitions of regular expressions
to define the tokens of the language and produces output code contain-
ing that is able to parse a program written in a programming language

49
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defined by that grammar. However, the steps involved in the following
phases, namely the type checking and operational semantics implementa-
tion follow a recurring pattern, but in general the behaviour of the type
system and the code generation reflecting the behaviour of the opera-
tional semantics must be hard-coded in the host language in which the
compiler is being implemented. Below we present two examples to show
how these behaviours can be implemented in two different general purpose
programming languages and show that both follow the same pattern.

3.1.1 Hard-coded implementation of type rules

As shown in Section 2.4, type rules can be expressed in the form of logical
rules. Let us consider the type rules for the if-then-else and while-do

statements presented in Section 2.4 in the version that assigns the type
unit to the code blocks for convenience. In a programming language that
supports discriminated unions as a language abstraction (like Haskell or
F#), the syntactical element in the abstract syntax tree of the language
can be expressed as

type Statement =
| If of Expr * List <Statement > * List <Statement >
| While of Expr * List <Statement >
... //other statements

The type checking of the if statement requires checking the condition
has type bool and that both code blocks have type unit (or void). The
type checking of the while-do is analogous, except that only one code
block is used. We can then define a function eval that, given the envi-
ronment (here we call it symbol table) and a statement as input, returns
the type given by the rule or an error if all type rules for that statement
fail to correctly evaluate. For the if-then-else the implementation is
the following:

let rec evalStmt (symbolTable : SymbolTable) (stmt :
Statement) : Type =

match stmt with
... //other statements
| If (condition ,_then ,_else) ->

let conditionType = evalExpr symbolTable condition
let thenType = evalStmt symbolTable _then
let elseType = evalStmt symbolTable _else
if conditionType <> Boolean then

failwith "Invalid condition type"
elif thenType <> Unit then

failwith "The type of then must be unit"
elif elseType <> Unit then

failwith "The type of else must be unit"
else

Unit
... //other statements
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The function first executes pattern matching on the statement to identify
the correct inference rule to use during the typing. It then proceeds to
evaluate the premises (type of the condition and of the statement blocks)
and to check their result. If all premises evaluate successfully the type
contained in the conclusion is returned. Note that the function evalExpr

is a function able to evaluate the type rule for expressions and return
their type. The implementation of the while-do follows the same logic:

let rec evalStmt (symbolTable : SymbolTable) (stmt :
Statement) : Type =

match stmt with
... //other statements
| While (condition ,_do) ->

let conditionType = evalExpr symbolTable condition
let doType = evalStmt symbolTable stmt
if conditionType <> Boolean then

failwith "Invalid condition type"
elif doType <> Unit then

failwith "The type of the do block must be unit"
else

Unit
... //other statements

In languages that do not provide abstractions such as discriminated
unions, the type of the data structure used for statements must exploit
polymorphism to implement the logic of the code above. A statement
will be represented as an interface exhibiting the behaviour of a visitor
pattern:

public interface Statement
{

Type Visit(StatementVisitor visitor);
}

public interface StatementVisitor
{

... //other statements
Type OnIf(Expression condition , List <Statement > _then ,

List <Statement > _else);
Type OnWhile(Expression condition , List <Statement > _do)

;
... //other statements

}

The behaviour of the inference rule for the if-then-else statement is
modelled by a class implementing the StatementVisitor interface. This
class contains a method OnIf that implements the behaviour of the type
rule itself.

public class StatementEvaluator : StatementVisitor
{

... // evaluation of other statements
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public Type OnIf(Expression condition , List <Statement >
_then , List <Statement > _else)

{
Type conditionType = condition.visit(new

ExpressionEvaluator ());
Type thenType = _then.Visit(new StatementEvaluator ())

;
Type elseType = _else.Visit(new StatementEvaluator ())

;
if (! conditionType.Equals(new Boolean ()))
{

throw new TypeException (" Invalid condition type");
}
else if (! thenType.Equals(new Unit()))
{

throw new TypeException ("The type of then must be
unit");

}
else if (! elseType.Equals(new Unit()))
{

throw new TypeException ("The type of else must be
unit");

}
else
{

return new Unit();
}

}

... // evaluation of other statements
}

public class If : Statement
{

Expression Condition;
List <Statement > Then;
List <Statement > Else;

public Type Visit(StatementVisitor visitor)
{

return visitor.OnIf(this.Condition , this.Then , this.
Else)

}
}

Analogously for the while-do we have

public class StatementEvaluator : StatementVisitor
{

... // evaluation of other statements
public Type OnWhile(Expression condition , List <

Statement > _do)
{

Type conditionType = condition.Visit(new
ExpressionEvaluator ());
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Type doType = _do.Visit(new StatementEvaluator ());
if (! conditionType.Equals(new Boolean ()))
{

throw new TypeException (" Invalid condition type");
}
else if (! doType.Equals(new Unit()))
{

throw new TypeException ("The type of do must be
unit");

}
else
{

return new Unit();
}

}
... // evaluation of other statements

}

public class While : Statement
{

Expression Condition;
List <Statement > Do;

public Type Visit(StatementVisitor visitor)
{

return visitor.OnWhile(this.Condition , this.Do);
}

}

Generalization

In general, for a node of the abstract syntax tree (AST) α (like Statements)
containing syntactical structures σi constructed with a certain number of
arguments of type εσi1 , ..., εσim (such as the condition or the statement
block in a control structure), the general representation of a hard-coded
type rule in a language with discriminated unions is obtained by creating
a union type α having a case σi with arguments εσij for each syntactical

element.

type α =
|σ1 of τσ11 ∗ ... ∗ τσ1m
...
|σn of τσn1

∗ ... ∗ τσnm

Evaluating the inference rule through an evaluation function requires
first to find out which must be applied by matching the pattern of the
syntactical structure from the node of the AST. Later, we need to evaluate
each of the premises with the appropriate evaluation function: if the
result of each evaluation is what the rule expects (for instance, that the
condition has type boolean in the if-then-else) then we return the
result of the evaluation rule contained in the right part of the conclusion.
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Let us consider a conclusion σj(εσj1 ... εσjm ) (where each ε is one
of the arguments used to construct the case of the discriminate union)
with a result of the evaluation ρσj a set of premises π1, ..., πk that are
evaluated through an evaluation function ϕπi , i = 1, ..., k returning a
result ρπi . Let us assume that ρ′πi is the expected result for the premise
evaluated through ϕπi . As usual, Γ defines the environment (symbol
table). The type rule that we are trying to execute will thus have the
following structure:

Γ ` ϕπ1π1 : ρ′π1

...
Γ ` ϕπiπi : ρ′πi
...
Γ ` ϕπkπk : ρ′πk

Γ ` σj(εσj1 , ..., εσjm ) : ρσj

Given the considerations above, the code necessary for the evaluation
will be the following:

let rec ϕσj Γ σ =

match σ with
... //other pattern matching expressions for other

rules
| σj(εσj1 , ..., εσjm ) ->

let ρπ1 = ϕπ1 Γ π1

.

.

.
let ρπi = ϕπi Γ πi
.
.
.
let ρπk = ϕπk Γ πk
if ρ1 <> ρ′1 then

failwith "Type error"
.
.
.
elif ρi <> ρ′i then

failwith "Type error"
.
.
.
elif ρm <> ρ′m then

failwith "Type error"
else
ρσj
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... //other pattern matching expressions for other
rules

Each evaluation function is recursive because a premise might need
to run the same evaluation function (see the example of the statements
above). The function contains a pattern matching that selects the correct
inference rule to be used for that syntactical structure. For example, in
the case of the statements, it will try to match all the possible syntactical
structures for the statements and select the correct one for the input;
for instance, if we are running the rule for the if-then-else then the
pattern matching will select the match case for if-then-else. Note that
σ will surely be matched by one of the match cases because at this point
we have a correctly generated AST after the parsing phase.

Each premise runs the appropriate evaluation function and returns a
result. This result is compared with the one expected by the inference
rule, and if the comparison fails the function reports a type error. If all
comparisons succeed, then the result of the conclusion is returned.

In a language that does not provide discriminated unions and pattern
matching the generalization is more complex: the abstract syntax tree
element must be represented by an interface containing the signature of a
method Visit used to perform an operation on a specific (polymorphic)
syntactical structure. We also require the interface for the visitor pattern
with the signature of the functions to run for each polymorphic instance
of Statement. In this version we assume that the type of the result of
the evaluation function for σj returns a type τρσj (which in the previous
version could be omitted thanks to the type inference typical of functional
programming languages):

public interface α
{

public τσj Visit(Visitor visitor)

}

public interface Visitor <T>
{

T ϕσj (τΓ Γ, τσj1 εσj1 , ..., τσjm εσjm );

... //other statements
}

Then we have to implement the visitor for the type rule for statements
and a class for a specific statement:

public class Evaluator : Visitor <τρσj >

{
... // evaluation of other statements
public τρσj ϕσj (τΓ Γ, τσj1 εσj1 , ..., τσjm εσjm )

{
τρφ1 ρπ1 = ϕπ1 (Γ, π1);

.
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.

.
τρφi

ρπi = ϕπi (Γ, πi);

.

.

.
τρφk

ρπk = ϕπk (Γ, πk)

if (!ρπ1 .Equals(ρ
′
π1

))
throw new TypeError ("Type error");

.

.

.
else if (!ρπi .Equals(ρ

′
πi

))
throw new TypeError ("Type Error");

.

.

.
else if (!ρπk .Equals(ρ

′
πk

))
throw new TypeError ("Type Error");

else
return new ρσj ();

}
... // evaluation of other statements

}

public σj : α
{
τσj1 εσj1 ;

...
τσjm εσjm ;

public τρσj Visit(Visitor <τρσj > visitor)

{
return visitor.ϕσj (εσj1 , ..., εσjm );

}
}

A general pseudo-code representation of the rule evaluation is shown
in Algorithm 3.1.

A graphical representation of the rule evaluation can be found in Fig-
ure 3.1.

3.1.2 Hard-coded implementation of Semantics

As shown in Section 2.5, there are multiple ways to express the semantics
of a programming language. In this work we choose to make use of the
operational semantics representation to have a uniform way of expressing
both the type system and the semantics of a language. Let us consider
again the semantics rule for if-then-else and while-do presented in
Section 2.5. The operational semantics can be implemented generating
the code in the object language that emulates the behaviour of the se-
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Algorithm 3.1 Pseudocode of rule evaluation

function Evaluate rule(R inference rule , I input of the rule )
if not R.Conclusion matches I then

return error
end if
for all p in R.Premises do

p′ ← textbf evaluate p
if not p.Result matches p then

return error
end if

end for
return R.Result

end function

Figure 3.1: Diagram of rule evaluation: on the left side the structure of an
inference rule, on the right side its evaluation expressed as a flow chart. The
components of the rule are coloured to match the parts in which they are used
in the flow chart.
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mantics rule, in the same fashion of a type rule. This process might first
pass through an intermediate language, closer to the target language. In
the case of an interpreter, the behaviour of the semantics must be im-
plemented using the abstractions available in the host language. As an
example, we show a possible implementation of the semantics of the two
statements mentioned above in an interpreter both in a functional pro-
gramming language and in an object-oriented language, as for the type
rule.

For convenience, let us make a separate rule for the semantics of a se-
quence of statements from the specific semantics of the control structure.
Also, we introduce the statement skip that performs no operation

〈skip; ks〉 ⇒ 〈ks〉

〈k〉 ⇒ k′

〈k; ks〉 ⇒ 〈k′; ks〉

〈c〉 ⇒ true

〈if c then T else E〉 ⇒ T

〈c〉 ⇒ false

〈if c then T else E〉 ⇒ E

〈c〉 ⇒ true

〈while c do L〉 ⇒ L ; while c do L

〈c〉 ⇒ false

〈while c do L〉 ⇒ skip

As for the type rules, we assume that the data type representing
a statement is implemented by a discriminate union. The evaluation
function first performs the pattern matching on the argument to select
the correct rule to execute, in the same fashion of the type rule, but
instead of analysing the types this time executes the specific behaviour
of the statement, as specified by the semantics rule. For inference rules
above we use the following code:

let rec interpretStmt (symbolTable : SymbolTable) (stmt :
Statement) : Statement =

match stmt with
... //other statements semantics
| Sequence(Skip ,ks) -> interpretStmt symbolTable ks
| Sequence(k,ks) ->

let k’ = interpretStmt symbolTable k
interpretStmt symbolTable Sequence(k’,ks)

| If (cond ,_then ,_else) ->
let condEvaluation = interpretExpr symbolTable cond
if condEvaluation = True then
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_then
else

_else
| While (cond ,_do) ->

let condEvaluation = interpretExpr symbolTable cond
if condEvaluation = true then

Sequence(_do ,While(cond ,_do))
else

Skip
... //other statements semantics

As for the type evaluation, we assume that interpretExpr is another
function that is able to process expressions and return their value.

The function matches the kind of statement that we want to exe-
cute. In the case of a sequence of statements starting with a skip, we
simply return the interpretation of the remaining part of the sequence
(we indeed skip to the next statement), otherwise we have to run the
first statement and then recursively evaluate the sequence formed by the
result of the execution of the statement and the rest of the statements.
This is needed, for instance, to correctly evaluate the body of a control
structure. The body of each match case is responsible of emulating the
intended behaviour described in the semantics of the control structure:
the if returns the correct block to execute depending on the boolean
value of the condition, instead the while returns either its body followed
by the same while loop when the condition is true, otherwise skip to
jump past the loop.

In the case of an object-oriented language, it is necessary to add a
new implementation of the visitor pattern implementing the behaviour of
the semantics for each statement:

public class StatementInterpreter : StatementVisitor
{

... //other statements semantics
public Statement OnSequence(SymbolTable symbolTable ,

Sequence seq)
{

Statement k = seq.Head;
Statement ks = seq.Tail;
if (k.Equals(Skip))

return ks.Visit(new StatementInterpreter ());
else
{

Statement k1 = k.Visit(new StatementInterpreter ());
Statement seq1 = new Sequence(k1 ,ks)
return seq1.Visit(new StatementInterpreter ());

}
}
public Statement OnIf(Expression cond , Statement _then ,

Statement _else)
{

Value condValue = cond.Visit(new
ExpressionInterpreter ());
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if (condValue.Equals(new True()))
return _then;

else
return _else;

}
public Statement OnWhile(Expression cond , Statement _do

)
{

Value condValue = cond.Visit(new
ExpressionInterpreter ());

if (condValue.Equals(new True()))
return new Sequence(_do ,new While(cond ,_do))

else
return new Skip();

}
... //other statement semantics

}

A further remark is that, for the sake of simplicity, here the interpre-
tation only returns a new statement to execute obtained by processing
the current statement, but in a real application it should also return a
data structure representing the state of the program.

At this point it is possible to observe that this pattern can be gen-
eralized as well in a way analogous to that used for type rules for both
implementations, which we omit for brevity.

3.1.3 Discussion

In Section 3.1.1 and 3.1.2 we have shown two implementations, one func-
tional and one object-oriented, of type rules and semantics in a possible
hard-coded compiler. We have also shown that the pattern can be gen-
eralized in both versions. Indeed, their behaviour must be hard-coded in
the language chosen for the compiler implementation, regardless of the
fact that the pattern is constantly repeated in every rule. This pattern
can be captured in a meta-language that is able to process the type sys-
tem and operational semantics definition of the language and generates
the code in the target language necessary to execute the behaviour of the
rules. In the following sections we describe the meta-language for Meta-
casanova, a meta-compiler that is able to read a program written in terms
of type system/operational semantics rules defining a programming lan-
guage, a program written in that language, and output executable code
that mimics the behaviour of the semantics. The goal of this language
is relieving the programmer from writing boiler-plate code when imple-
menting a compiler for a (Domain-Specific) language.

3.2 Metacasanova overview

In this section we present the general idea behind Metacasanova. We start
by defining the requirements of Metacasanova, then we proceed to give a
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general overview of the language, and finally we formalize the semantics
of the language.

3.2.1 Requirements of Metacasanova

In order to relieve programmers of manually defining the behaviour de-
scribed in Section 3.1.1 and 3.1.2 in the back-end of the compiler, we
propose the following features for Metacasanova:

• It must be possible to define custom operators (or functions) and
data containers. This is needed to define the syntactic structures of
the language we are defining.

• It must be typed: each syntactic structure can be associated to a
specific type in order to be able to detect meaningless terms (such
as adding a string to an integer) and notify the error to the user.

• It must be possible to have polymorphic syntactical structures. This
is useful to define equivalent “roles” in the language for the same
syntactical structure; for instance we can say that an integer literal
is both a Value and an Arithmetic expression.

• It must natively support the evaluation of semantics rules, as those
shown above. This will allow the programmer to faithfully imple-
ment the formal definition of the language expressed as logical rules.

We can see that these specifications are compatible with the definition
of meta-compiler, as the software takes as input a language definition
written in the meta-language, a program for that language, and outputs
runnable code that mimics the code that a hard-coded compiler would
output.

3.2.2 Program structure

In this section we give an informal idea of how a Metacasanova program
is organized. A program in meta-casanova contains the language defini-
tion and the rules to evaluate its semantics and/or type system. Further
ahead this idea is expanded with additional details when we present the
implementation details of the parser.

A Metacasanova program is mainly organized in three parts:

1. Data and function declarations: in this part it is possible to specify
data structures, that define the syntactic constructs of the language,
and functions used to evaluate terms of the language through rules.

2. Subtype declarations: in this part it is possible to specify sub-typing
by stating that a type T1 is a subtype of another type T2.
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3. Rule definitions: in this part the programmer defines the type or
semantics rules necessary to describe the type system or behaviour
of the abstractions of the programming language.

A data structure or function declaration specifies the types of the
arguments to construct the data structure or to pass to the function,
their name, and the type of the data structure or the function itself

Data Expr -> "+" -> Expr : Expr

Note that Metacasanova allows you to specify any kind of notation for
data types in the language syntax, depending on the order of definition of
the argument types and the constructor name. In the previous example
we used an infix notation. The equivalent prefix and postfix notations
would be:

Data "+" -> Expr -> Expr : Expr
Data Expr -> Expr -> "+" : Expr

Optionally, it is possible to specify a precedence priority and the asso-
ciativity. For example, the following code specifies that the multiplication
has a higher precedence over the sum and that both are left-associative.

Data Expr -> "+" -> Expr : Expr Priority 0 <|
Data Expr -> "*" -> Expr : Expr Priority 1 <|

A function definition is similar to a data definition but it also has a return
type. For instance the following is the evaluation function definition for
the arithmetic expression above:

Func "eval" -> Expr : Value

Subtyping is defined through the keyword is, which specifies that a type
T1 can be used in place of another type T2. For example the following
code specifies that a data structure of type Value, such as a list, can be
used also as an expression of type Expr.

Data "$l" -> List : Value
Value is Expr

Metacasanova also allows to embed C# code into the language by
using double angular brackets. This code can be used to embed .NET
types when defining data or functions, or to run C# code in the rules.
For example in the following snippet we define a floating point data which
encapsulates a floating point number of .NET to be used for arithmetic
computations:

Data "$f" -> <<float >> : Value
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Note that this might be handy for domain-specific languages that need
to be used in conjunction with external libraries or frameworks support-
ing .NET. For example, the domain-specific language Casanova, which
we are going to re-implement in Metacasanova in Chapter 4, works in
conjunction with game engines such as Monogame or Unity.

A rule in Metacasanova may contain a sequence of premises and a
conclusion. The rule is executed if the input matches the pattern of
the conclusion and all the premises return a result that matches the one
specified in their rightmost part. In the following snippet we have the
rule to evaluate the sum of two floating point numbers:

eval a => $f c
eval b => $f d
<<c + d>> => res
------------------------
eval (a + b) => $f res

Note that if one of the two expressions does not return a floating point
value, then the entire rule evaluation fails. Also note that we can em-
bed C# code to perform the actual arithmetic operation. Metacasanova
selects a rule by means of pattern matching (in order of declaration of
rules) on the function arguments. This means that both of the following
rules will be valid candidates to evaluate the sum of two expressions:

...
---------------
eval expr => res

...
----------------
eval (a + b) => res

A more exhaustive explanation of the syntax of Metacasanova is given in
Section 3.4, while an overview of the general shape of a program can be
found in Figure 3.2.
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Figure 3.2: Structure of a program in Metacasanova

3.2.3 Formalization

In what follows we assume that the pattern matching of the function
arguments in a rule succeeds, otherwise a rule will fail to return a result.
The informal semantics of the rule evaluation in Metacasanova is the
following:

R1 A rule with no clauses or function calls always returns a result.
R2 A rule returns a result if all the clauses evaluate to true and all the

function calls in the premise return a result.
R3 A rule fails if at least one clause evaluates to false or one of the

function calls fails (returning no results).

We will express the semantics, as usual, in the form of logical rules, where
the conclusion is obtained when all the premises are true. In what follows
we consider a set of rules defined in the Metacasanova language R. Each
rule has a set of function calls F and a set of clauses (boolean expressions)
C. We use the notation fr to express the application of the function f
through the rule r. We will define the semantics by using the notation
〈expr〉 to mark the evaluation of an expression, for example 〈fr〉 means
evaluating the application of f through r. The following is the formal
semantics of the rule evaluation in Metacasanova, based on the informal
behaviour defined above:
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R1:

C = ∅
F = ∅

〈fr〉 ⇒ {x}

R2:

∀ci ∈ C , 〈ci〉 ⇒ true
∀fj ∈ F , ∃rk ∈ R | 〈frkj 〉 ⇒ {xrk}

〈fr〉 ⇒ {xr}

R3(a):
∃ci ∈ C | 〈ci〉 ⇒ false

〈fr〉 ⇒ ∅

R3(b)
∀rk ∈ R ,∃fj ∈ F | 〈frkj 〉 ⇒ ∅

〈fr〉 ⇒ ∅

Note that, in the context of the premise result, we use either a set
containing one element or the empty set symbol to denote that the eval-
uation might succeed and return a result or fail and return no result. R1
says that, when both C and F are empty (we do not have any clauses or
function calls), the rule in Metacasanova returns a result. R2 says that,
if all the clauses in C evaluates to true and, for all the function calls in
F we can find a rule that returns a result (all the function applications
return a result for at least one rule of the program), then the current rule
returns a result. R3(a) and R3(b) specify when a rule fails to return a
result: this happens when at least one of the clauses in C evaluates to
false, or when one of the function applications does not return a result
for any of the rules defined in the program.

3.3 Architectural overview

In this section we provide a general overview of the architecture of Me-
tacasanova compiler.

The compiler has a modular structure: in the front-end we find the the
lexer/parser and a parser post-processing module. The latter is required
because not all information necessary to build all the elements of the
AST is immediately available during the parsing phase. For instance,
some data structures store the file name that is being compiled and the
name of the current module, but this information is available only after
the parsing itself.

The generated AST is passed to the type checker to check the type
correctness. Note that the type checker of the metacompiler checks the
meta-types, i.e. the types defined in the meta-program, and not the
types of the terms of the language that is being implemented in Meta-
casanova. For instance, if one were to re-implement the language C in
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Metacasanova, the type checker of Metacasanova would be able to type
check the elements of the language definition written in Metacasanova
(i.e the meta-program), but not a program written in C, which can be
checked only by writing a type checker in the meta-program itself. This
module checks the correctness of the declarations and the terms used in
rules. The type checker outputs a data structure containing information
about the types of the declarations and terms used in rules (in short a
typed program definition).

The output of the AST is passed to the code generator that uses
information about the types to correctly generate the target code. This
is needed because Metacasanova generates C# code, which is a typed
high-level language that requires information about the types to define
variables, methods, and classes representing the elements of the meta-
program.

Note that also, with this implementation choice, it is possible to sup-
port different high-level programming languages, both typed and un-
typed: the only component that changes will be the generation of the
behaviour of the rules in the abstractions provided by the different tar-
get languages. A possible improvement of this architecture is generating
a common intermediate language that is later translated into the target
code, but this falls outside the scope of this work.

3.4 Parsing

In this section we explain in detail the grammar of Metacasanova and
we present the architecture of its parser. A full description of the Me-
tacasanova grammar in BNF can be found in Appendix B. The parser
has been built in FsYacc (see Section 2.3.2) and completed by a post-
processing module that executes some required transformation on the
generated AST that are not convenient to perform during the parsing
phase. As explained informally in Section 3.2, a Metacasanova program
is made of four main sections: (i) a part containing inclusion directives,
(ii) a part containing the declarations of the meta-data stracutures and
evaluation functions used in the program, (iii) a part containing subtype
definitions, and (iv) a part containing evaluation rules that define the
behaviour of the meta-program. The definition of the first part is triv-
ial, because it is just a sequence of directives starting with the keyword
include and followed by a file name. We will instead describe in detail
the other parts.

3.4.1 Declarations

Declarations contain function or data declarations. A meta-data struc-
ture is a meta-language representation of an abstraction of the language
implemented in the metacompiler and contains both syntactical and struc-
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tural information. For example, an arithmetic operator in a programming
language can be represented as a meta-data structure containing both its
symbol and the values of its arguments. Meta-data structures can be
recursive, i.e. it is possible to have arguments that are instances of the
same meta-data structure. This is done in order to allow recursive data
structures such as lists. A meta-data structure declaration begins with
the keyword Data and is followed by a series of arguments, which are sep-
arated by arrows, that can be both type names and strings representing
the name of the meta-data. It is possible to declare an infix or suffix
operator by placing its name after the first position of the arguments.
For instance, the following code defines a sum operator for arithmetic
expressions with an infix notation.

Data Expr -> "+" -> Expr : Expr

Type names are identifiers that begin with an alphabetic character
followed by one or more alphanumeric characters or underscores. The
regular expression defining this syntax is expressed as

ID ::= [’a’-’z’ ’A’-’Z’] [’a’-’z’ ’A’-’Z’ ’_’ ’0’-’9’]+

Type names can also contain external code enclosed by double angular
brackets (<< and >>) to make use of external types such as .NET primitive
types (int, float, etc.). The operator names offer a rather high level of
customization, since they can be expressed as strings that may contain
any symbol usually allowed in strings in programming languages.

The arguments are followed by a type name defining the type of the
meta-data structure. Optionally it is possible to specify a priority and the
associativity, otherwise the default priority will be -1 and the operator
will be left-associative.

Function declarations have the same structure except they begin with
the keyword Func instead.

Both data and function declarations may define generic arguments.
In order to specify generic arguments, they must be enclosed between
square brackets after the declaration keyword. For instance the following
code defines a data structure representing a tuple

Data[a,b] a -> "," -> b : Tuple[a,b]

Finally, each declaration must end with a line break. Line breaks are
used in Metacasanova to separate different language elements, as in this
case.

The grammar production used to describe the syntax of declarations
is the following:

declaration:
| FUNC genericSeq typeOrNameDeclarations COLON

typeDeclaration priority associativity newLineSeq {
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Func(processParsedArgs $3 $5 (fst $1) (snd $1) $2 $6 $7)
}

| DATA genericSeq typeOrNameDeclarations COLON
typeDeclaration priority associativity newLineSeq {

Data(processParsedArgs $3 $5 (fst $1) (snd $1) $2 $6 $7)
}

Since type names and data or function names can appear in any order,
the parser generates a support polymorphic data structure in F#.

type TypeDeclOrName =
| Type of TypeDecl
| Name of string

This data structure is later transformed by the parser post-processor
in a symbol declaration. A symbol declaration contains all the information
about a declaration, including the data or function name, the types of the
arguments, the priority, and the generic types. This information is later
exploited by the type checker to verify the consistency of the declarations
and type check the rest of the program.

Subtype declarations

Subtyping has been presented as a separate part of the program but it
has a tight relationship with the declarations. A subtype definition has
the form

T1 is T2

where T1 and T2 are two meta-type names. They are used to specify
that meta-type T1 is a subtype of the meta-type T2 and can replace any
argument of type T2 while constructing meta-data structures or calling
functions. The grammar rule that defines a subtype declaration is

ID IS ID newLineSeq

where ID is the same regular expression used for type names. Again
successive subtype declarations should be separated by one or more line
breaks. The grammar production generates a list of pairs in the AST
containing the types involved in the subtyping. This data structure will be
processed at a later stage by the type checker to generate an equivalence
table.

3.4.2 Rules

Rules in Metacasanova are the language elements used to define the be-
haviour of the meta-program. A rule consists of a set of premises followed
by a conclusion. Premises and conclusion are separated by a fraction line.
Premises and conclusion are made of a left part consisting of a sequence
of arguments, and a right part that can contain either a variable or a
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sequence of arguments. We call the left part of this syntactical structure
the function call, while the right part is the result. Premises differ from
the conclusion as, besides function calls, they can also contain bindings
and clauses. Bindings are simply ways to rename values in the premises in
the fashion of bindings in functional languages, while clauses are boolean
predicates. Moreover, premises can also contain .NET code to be directly
emitted, which can contain any C# code. The syntax of emitted code is
the same as that of a normal premise, except the function call is replaced
by the code to emit enclosed in double angular brackets. The following
is the grammar production defining a premise1:

premise:
| emit premises { $1 :: $2 }
| functionCall premises { $1 :: $2 }
| ID BIND arg newLineSeq premises { (Bind({ Namespace =

""; Name = fst $1 },Position.Create(snd $1 ,""),$3))
:: $5 }

| arg comparisonOp arg newLineSeq premises { (Conditional
($1 ,$2,$3)) :: $5 }

| { [] }

functionCall:
| argSeq ARROW argSeq newLineSeq { FunctionCall($1 ,$3) }

Note that premises are optional (axioms do not have any premise in a
logical rule), so an empty list is returned when none is given. Note that
the namespace required for variables, such as in the binding, is left empty
because at this point the namespace of the program is not available yet.
The namespace will be later filled in by the parser post-processor. Also
note that, in this stage, we do not check if each function call actually con-
tains a function name, and we simply parse a premise (and a conclusion)
as a sequence of arguments, that could be function or data names, vari-
ables, literals, or nested expressions. Nested expressions are expressions
enclosed in brackets and are themselves sequences of arguments. The
actual check that premises and conclusions contain a function name is
performed by the type checker, because to correctly identify the function
name a complete symbol table, unavailable in this moment, is required.
A conclusion has the same syntax as a function call:

conclusion:
| argSeq ARROW argSeq newLineSeq { ValueOutput($1,$3) }

The parser generates a data structure for a rule containing a repre-
sentation of the premises and the conclusion:

• function call : A function call is simply a pair of list of arguments,
where the left element is the call itself, while the right element is
the result.

1 BIND is the symbol :=



70 CHAPTER 3. METACASANOVA

• emit : Emitted code contains the code in string format and the
variable it is assigned to (used to save the result of expressions or
function calls).

• bind : Bindings contain the variable name used for the binding and
its argument, which can be a literal, the constructor of a meta-data
structure, or another variable.

• conditional : Conditionals are boolean expressions that may contain
comparison operators. Their representation stores their left and
right argument and the comparison operator.

3.4.3 Parser post-processor

The parser post-processor is responsible for integrating in the AST all
the information that is not directly available during the parsing phase. It
is also responsible for re-arranging the terms appearing in the data and
function declarations, and those appearing in function calls. Its main
functions are the following: (i) insert the namespace and file informa-
tion in the elements of the AST, (ii) rearrange the terms parsed from a
declaration in a symbol declaration data structure, and (iii) parenthesize
the function call terms according to their priority and associativity and
rearrange them in a prefix notation.

The first task is trivial as it requires just to traverse the syntax tree
and insert the namespace in all the nodes that should store its value.
The process scans the AST starting from the root and recursively adding
the namespace and file name into all the nodes that must contain such
information until a leaf is reached. Below we explain in detail the other
how to accomplish the other two tasks.

Building the declaration data structure

As anticipated in Section 3.4.1, the name of the data or function and
the types of its arguments can appear in any order. For convenience, the
AST stores a data structure called symbol declaration that separates all
the information about a declaration for further use, which is made of the
following components:

• The name of the data or function.
• The type of the arguments of the data or function.
• The return type of the declaration: in the case of a data declaration

this defines the type of the meta-data structure itself, while in a
function declaration this defines the type of the result returned by
the function.
• The operator arguments order, which can be prefix, infix, or suffix.
• The priority of the operator.
• The associativity of the operator.
• Possible generic arguments.
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• The arity (number of arguments) to the left and right of the operator
symbol.

When the parser processes the arguments of a declaration, it creates a
list of terms that can be either a type declaration or a name assigned to the
meta-data or function in string format. The different arguments must be
recognized and stored appropriately in the symbol declaration. In order to
do so, the post-processor scans the arguments. If the argument is a string,
then it places it as a first element of a pair, otherwise it places the type
declaration in a list of declarations. Algorithm 3.2 shows the details of
this process. Note that it might be possible that the programmer commits
the mistake of defining more than one name for the declaration, since we
are still checking the syntax of the program. Thus the algorithm checks
that the result of the function does not already contain a declaration
name as, if it does, it means that a name argument has already been
encountered while scanning the list.

The symbol declaration needs also to store the order of the declaration,
its left and right arity, and the type of the declaration.

For the declaration order we have three options:

1. The first element of the parsed arguments is the declaration name.
The declaration is then prefix.

2. The last element of the parsed arguments is the declaration name.
The declaration is suffix.

3. If both 1 and 2 are false, then the name is in the middle and the
declaration is infix.

Finding the left and right arity of an operator can be done simply by
splitting the list of arguments in correspondence of the declaration name
and then counting the elements of the two lists obtained by the split.

Finally, the post-processor must build the type of the declaration.
Types in Metacasanova are represented in a way similar to typed lambda
calculus [18, 30]: if a declaration as type arguments T1, T2, ..., Tn, then its
type representation is given as T1 → T2 → ...→ Tn. This will allow at a
later stage the type checking of partial function applications. The post-
processor scans the arguments list and recursively adds the element to a
data structure representing an arrow type. The arrow type contains two
elements corresponding to the elements to the left and right of the arrow.
It is possible to build a chain of arrow types by recursively adding an arrow
type as right argument of another arrow. For instance, to represent the
type A→ B → C we use.

Arrow(A,Arrow(B,Arrow(C)))

The algorithm to build the type arrow simply scans the argument list
and recursively add the current argument to the left of an arrow type and
the result of the recursive call to the remaining part of the list as its right
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part. This process is shown in Algorithm 3.3. Note that in Metacasanova
a declaration might contain no type arguments (only the name), thus
we return an empty type as placeholder. If a declaration contains only
one type argument then there is no need to build an arrow type and the
type argument itself is returned. This is also used as a base case for the
recursive build of an arrow type.

Algorithm 3.2 Arguments construction in a symbol declaration

function argSeparation(A list of arguments returned by the parser)
name← ""

D ← ∅
for all a ∈ A do

if a is a string then
if name 6= "" then

error: duplicate function name
else

name← a
end if

else
D ← D ∪ {a}

end if
end for
return (name,D)

end function

Algorithm 3.3 Type construction in a symbol declaration

function buildDeclarationType(A list of arguments returned by
the parser)

if A = ∅ then
return Empty

else if A = {x} then
return x

else
h← head(A)
t← tail(A)
r ← buildDeclarationType(t)
return h→ r

end if
end function
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Parenthesization of function calls

As explained above, Metacasanova allows the declaration of functions
and data types expressed with any notation (prefix, suffix, or infix) and
with arbitrary associativity and precedence. Furthermore, this is possible
regardless of the number of arguments that the data type or the func-
tion call uses. Parsing operators according to precedence is a well-known
problem that must be solved in order to avoid ambiguity in the language
grammar. For instance, the expression 3 + 5 / 4 can generate two dif-
ferent parse trees: (3 + 5) / 4 or 3 + (5 / 4). This ambiguity can be
solved by setting the division operator to have a higher precedence over
the sum operator, as in traditional arithmetic.

The first attempt to solve this problem was Dijkstra’s Shunting-Yard
algorithm [40] that takes an expression containing operators and a pri-
ority table and returns the same expression in Reverse Polish Notation.
This approach was later generalised by operator-precedence parsing which
is available in all LALR(1) parser generators. Unfortunately, these ap-
proaches deal with binary operators, and are unsuitable for operators of
arbitrary arity. Moreover, parse generators such as Yacc allow to define a
set of pre-defined language operators but do not allow to specify “custom”
operators to extend the language with. A notable effort in parsing mix-
fix operators (i.e. operators with an arbitrary position in an expression)
using precedence graphs has been done in [36].

In this work we use an AST-transformation technique that changes a
function call expressed as a sequence of arguments into a parenthesized
version based on defined priorities and associativity. A function call, as
defined in Section 3.4.2, can be the left part of a premise or a conclu-
sion, and is parsed as a sequence of arguments. Each argument can be
represented in the following way:

• A literal.
• An identifier, that can start with an alphabetic character (simple

id), or a symbol (such as %, #, &, @, ...) followed by a sequence
of alphanumeric characters.
• A nested expression, which is any sequence of arguments enclosed

between brackets (such as (5 + x)).

We now give the definition of parenthesization of an argument se-
quence. In what follows we use the term symbol to indicate the name of
functions or meta-data structure used in an argument sequence.

Definition 3.1. An argument sequence is parenthesized if all its argu-
ments are (i) literals, (ii) identifiers, or (iii) a nested expressions con-
taining a parenthesized argument sequence, and the nesting depth of a
symbol is directly proportional to its priority (i.e. the highest-precedence
operator is at maximum nesting depth).
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Symbol Priority Left arity Right arity Associativity

% 2 1 2 Left

$ 1 0 3 Left

-> 0 1 1 Left

Table 3.1: Precedence relation for Listing 3.1

For instance, given the precedence relation in Table 3.1, the following
argument sequence is parenthesized

x -> ($ a1 (b1 % b2 b3) a2)

Listing 3.1: Example of parenthesization

The algorithm takes as input a precedence table with the structure
of Table 3.1 and the argument sequence to parenthesize, and returns the
parenthesized argument sequence. We adopt a recursive approach to the
parenthesization problem, whose base case is that the sequence contains
only identifiers and literals. Note that a sequence that contains a nested
expression is in general not parenthesized because the sequence enclosed
in brackets has not been parenthesized yet.

At this point we have two different possibilities for an argument se-
quence: (i) the sequence contains no symbol, or (ii) the sequence contains
one ore more symbols.

Parenthesization of sequences with no symbols When there are
no symbols in the sequence of arguments, each argument can be a literal
or identifier corresponding to no definition, or a nested expression. In
the first case the argument is automatically parenthesized according to
Definition 3.1. In the second case we must recursively parenthesize the
sequence contained in the nested expression. If the result of this paren-
thesization is a single nested expression, than we take its content and
store it into a single nested expression, to avoid redundant nesting paren-
theses of the form ((...(a1 a2, ..., an)...)). If the result is a series
of arguments than we just place it inside a nested expression, obtaining
something of the form (a1 a2 (b1 b2 ...) a3 (c1 c2 ...) ...). It
might be possible that the recursive algorithm tries to parenthesize a se-
quence containing no arguments (see the details of the algorithm below).
In this case the algorithm simply returns an empty sequence.

Parenthesization of sequences with symbols Dealing with sequences
containing symbols is more complex, since we must parenthesize them
keeping into account the symbols priorities and associativity. According
to Definition 3.1, in a parenthesized sequence the operator with the lowest
priority must be at the top of the sequence nesting. The idea is then that
at the current depth we should find the symbol with the lowest priority
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and a series of parenthesizations containing sequences with symbols of
higher priority. The algorithm extracts the symbol in the sequence with
the lowest priority and the positions in the sequence where it appears.
Note that the same symbol might appear more than once. If the symbol
associativity is left then we consider its rightmost occurrence in the se-
quence, otherwise its leftmost one. Now we split the sequence in two parts
using this occurrence as separator and we recursively try to parenthesize
these two parts. For instance, let us consider again the Precedence Table
3.1 and the following sequence of arguments

x -> $ a1 b1 % b2 b3 a2

The algorithm will select the symbol -> as a separator, as it is the symbol
with the lowest priority (there is only one occurrence, thus we neglect the
part that selects the appropriate occurrence). It will then recursively
parenthesize the sequences x and $ a1 b1 % b2 b3 a2. At this point
we have two parenthesizations of the left and right part: {l1, l2, ..., ln}
and {r1, r2, ..., rm} respectively for the left and right sequence. Assuming
that the left arity of the current symbol is al and the right one is ar, then
the parenthesization of the current operator will contain the elements
{ln−al+1, ..., ln} and {r1, ..., rar}. Assuming that the current symbol is σ,
we now consider three cases:

1. The symbol uses a prefix notation: in this case the parenthesization
will not contain any elements from {ln−al+1, ..., ln}, thus the final
parenthesization will be {l1, l2, ..., ln (σ, r1, ..., rar ) rar+1, ..., rm}.

2. The symbol uses an infix notation: in this case the parenthesization
will contain elements from both {ln−al+1, ..., ln} and {r1, ..., rar}.
The final parenthesization will be

l1, ..., ln−al (ln−al+1, ..., ln, σ, r1, ..., rar ) rar+1, ..., rm

3. The symbol uses a suffix notation: in this case the parenthesiza-
tion will not contain any elements from {r1, ..., rar} and the final
parenthesization will be l1, ..., ln−al (ln−al+1, ..., ln, σ) r1, ..., rm.

In order to clarify this process, let us consider again the argument
sequence

x -> $ a1 b1 % b2 b3 a2

and let us apply the algorithm to it (again using the Priority Table 3.1).
The algorithm will test the whole sequence looking for symbols, and of
course will find one. We then fall in the second part of the algorithm.
The symbol with the lowest priority is ->, so the algorithm will recur-
sively parenthesize x and $ a1 b1 % b2 b3 a2. The left one is a base
case of the recursion since the sequence contains only one identifier that
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is not a symbol, thus its parenthesization is the sequence itself. The right
one contains other symbols so we have to recursively apply the algorithm.
The operator with the lowest priority is now $. The symbol is the first
element of the sequence, thus the left subsequence obtained by the par-
titioning phase is empty (and the result of its parenthesization an empty
sequence as well). The right subsequence is a1 b1 % b2 b3 a2. In this
sequence there is only one symbol, which is %, thus the algorithm will
try to parenthesize a1 b1 and b2 b3 a2. Their parenthesization is trivial
and returns the sequences themselves. At this point we have to consider
the arity of %, which accepts one left argument and two right arguments.
The algorithm will then enclose between brackets b1 % b2 b3. The full
parenthesization leads then to a1 (b1 % b2 b3) a2. At this point this
result is used to build the parenthesization of $. This symbol accepts
three right arguments (and no left argument), so the parenthesization
will be ($ a1 (b1 % b2 b3) a2) . Finally we have to use the result to
build the parenthesization of %. This symbol accepts one left argument
and one right argument. The parenthesization of its left subsequence was
x, while its right parenthesization is ($ a1 (b1 % b2 b3) a2) , thus the
final parenthesization will be (x -> ($ a1 (b1 % b2 b3) a2)). At this
point, the outer parenthesization can be removed for better readability.
The details of the algorithm are shown in Algorithm 3.4.

3.5 Type checking

The type checker of Metacasanova is responsible for two tasks: (i) check-
ing that the declarations are correctly formed and (ii) checking that the
premises and conclusions of rules respect the meta-types defined in the
declarations. We will now proceed to explain in detail how the two pro-
cesses are implemented in the metacompiler.

3.5.1 Checking declarations

Checking declarations requires to check the consistency of meta-type dec-
larations in each one of the function or data declarations. Note that,
from now on, we will refer to meta-types simply as types for simplicity.
Also we assume that, at this point, we have already built the symbol ta-
ble for the meta-program containing all the symbol declarations with the
complete information about the declaration itself. A type declaration in
Metacasanova can have five different forms:

• Zero: A place-holder type used for function or meta-data that do
not use any arguments.

• External: Used for embedded types from .NET.

• Unsafe: Unsafe type is a place-holder for external function calls,
i.e. function defined in an external embedded language.
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Algorithm 3.4 Parenthesization of a sequence of arguments. The oper-
ators :: and @ are respectively prepend and append on a list. With the
notation 〈S〉 we denote a sequence S enclosed by parentheses.

function parenthesize(S symbols in the sequence, A arguments sequence)
if A = ∅ then

return A
else

if S 6= ∅ then
let s′ be the symbol with lowest priority in S
let I be the set of indices at which s′ occurs in S.
l← ∅
r ← ∅
if s′ is left-associative then

I′ ← last(I)
l, r ← splitAt(I′)
r ← tail(r)

else
I′ ← first(I)
l, r ← splitAt(I′)
r ← tail(r)

end if
let lsym be the symbols in l
let rsym be the symbols in r
lpar ← parenthesize(lsym,l)
rpar ← parenthesize(rsym,r)
let larity be left arity of s′

let rarity be right arity of s′

largs, plargs← splitAt(|largs| − larity)
rargs, prargs← splitAt(rarity)
if larity + rarity > 0 then

if s′ is prefix then
e← s′ :: prargs

else if s′ is suffix then
e← plargs @ s′

elses′ is infix
e← plargs @ s′ @ prargs

end if
return largs @ 〈e〉 @ rargs

else
return largs @ s′ @ rargs

end if
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else
p← ∅
for all a ∈ A do

if a = 〈e〉 then
let S′ be symbols in e
p′ ← parenthesize(S′) e
if p′ = 〈e′〉 then

p← p @ e′

else
p← p @ 〈p′〉

end if
else

p← p @ {a}
end if

end for
end if

end if
end function

• Argument: A type argument is a simple type identifier followed by
an optional list of generic arguments used for generic types. For
example the type Tuple[a,b] is a type argument whose identifier
is Tuple and whose generic arguments are a and b.

• Arrow: An arrow type has the form T1 -> T2 -> ... -> Tn and
is used to represent the type of the arguments used when calling a
function or when constructing a meta-data. For example the func-
tion declaration Func Num -> "+" -> Num : Num has the Arrow
type Num -> Num. Note that the symbol declaration, for conve-
nience, stores two different type declarations: the arguments types
separated from the function returned type or the meta-data type
and a full type that combines the type of the arguments and the
returned type or data type into a single arrow. For example, for
the function above, its full type would be Num -> Num -> Num.

The algorithm to check the type declarations behaves differently de-
pending on the form of the type declaration. For Zero, External, or Unsafe
type declarations the check always succeeds. For Arrow the algorithm re-
cursively checks the left and right part of the arrow. In the case of an
Argument we have two sub-cases: (i) the argument is an identifier with
no generic arguments, or (ii) the argument is an identifier followed by a
number of generic arguments. The first case is simple, as it is enough to
check whether the type is defined in the symbol table or not. If the type
cannot be found in the symbol table then it is undefined and an error is
returned. In the case of a type with generic arguments we must check
that the number of provided generics matches the number required for the
generic type; then we must check if the provided generic arguments have
a correct form. A generic argument can be an identifier or again a type
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accepting other generic arguments. This is the case, for instance, of a
type declaration such as Tuple[List[int],Tuple[a,List[float]]]. In
the case of a simple generic identifier we must only check that the generic
identifier is in the scope of the declaration. For instance the declaration

Func[a,b] "foo" -> a -> b : b

would be a valid declaration since the generic identifiers are in the scope
of the declaration, while

Func[a,b] "foo" -> a -> b : c

would be invalid if c is not a data type defined in the meta-program. In
the case of nested types the algorithm must recursively check again that
the type exists and that the generic arguments are valid. The procedure
details are described in Algorithm 3.5.

Algorithm 3.5 Type checking of a symbol declaration

function checkDeclaration(S symbol table, G declared generic ar-
guments, d type declaration)

if d = Empty or d = Zero then
return

else
let G′ be the generics required for d
if G′ 6= ∅ then

if |G′| 6= |G| then
error: invalid amount of generic arguments

else
for all g ∈ G′ do

checkDeclaration(S,G,g)
end for

end if
else

if d ∈ S or d ∈ G then
return

else
error: undefined type

end if
end if

end if
end function

3.5.2 Checking rules

Type checking a rule requires type checking its conclusion and all of the
premises. In what follows we assume that the parser post-processor has
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already parenthesized and normalized all the function calls, so that every
function call is parenthesized according to symbol priority and associa-
tivity and that the symbol name is in the first position of an argument
sequence. Moreover, we use the following definition relative to meta-data
arguments:

Definition 3.2. An argument is said to be an explicit data argument
when it is an expression constructing a meta-data.

For example, in the following meta-program

Data Expr -> "+" -> Expr : Expr
Func "eval" -> Expr -> Environment : Value
...

eval a env -> a’
eval b env -> b’
<<a’ + b’>> -> v
------------------
eval (a + b) env -> v

Listing 3.2: Example of an explicit data argument in Metacasanova

the first argument of eval in the conclusion is an explicit data argument.
Moreover we use the following definition to define the compatibility of
two types.

Definition 3.3. Let T be the set of types defined in a meta-program
and E = {(ti, tj) | t1 ∈ T ∧ t2 ∈ T} the set of subtype declarations,
then we say that the type t1 is compatible with t2 if either t1 = t2 or
∃(ti, tj) ∈ E | t1 = ti ∧ t2 = tj .

Checking the conclusion

A conclusion must always contain a function call. In order to type-check
the function call correctly, we must check that (i) the arity of the function
is respected, i.e. that the arguments are not more than what the function
expects (the type system of Metacasanova supports partial function ap-
plication, so it is allowed to pass fewer arguments), and (ii) that the type
of each argument is compatible with what provided in the declaration.
Moreover, since a conclusion might contain explicit data arguments, we
have to recursively add all the variables contained in the explicit data
arguments to the local variables of the current function, as they could
be used in the premises. As an example, refer to Listing 3.2, where the
variables a and b are defined in the argument of eval and later used in
the premises. Checking the arity of the function is trivial: it is sufficient
to compare the length of the given argument sequence with the length of
the arguments provided in the declaration. If the length of the argument
sequence is greater than the arguments defined in the declaration then
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an error is returned. Checking type compatibility is more complex and
the details are explained below.

The right hand-side of a conclusion might contain a variable or an
explicit data argument. In both cases its type checking must be delayed
until all premises are processed because a variable appearing in one of
them might be used. For example, in Listing 3.2, variable v is used in
the right hand-side of the conclusion and defined in the result of the last
premise.

Checking a premise

A premise, as explained in Section 3.4.2, can be (i) a function call, (ii) a
binding, or (iii) a clause.

In the case of a function call we have to type check the arguments of
the function call in the same fashion of the conclusion but with a slight
difference: when encountering a variable this must not be added to the
local variable set but rather looked up in it. If the lookup fails then
the variable is undefined and cannot be used. The same happens when
checking the arguments of explicit data arguments. If the call is correctly
typed, then we must check its result. The result of a call can be either
a variable or an explicit data argument. In the first case the variable is
added to the local variables and its type set to the return type of the func-
tion. In the case of an explicit data argument then all the arguments that
are variable are added to the local variables with the appropriate type
read from the meta-data structure declaration and, in case of a nested
explicit data argument, the procedure is recursively applied.

A binding is correctly typed if its right argument is correctly typed. The
right argument can be a variable or an explicit data argument so we ap-
ply the same method that we used to check variables and explicit data
arguments in function calls. If this test succeeds then the left argument
of the binding, which is always a variable, is added to the local variables
with the type of the right argument.

A clause is correctly typed if the types of the arguments used in the
comparison operator are compatible with respect to the operator itself
and if they are themselves correctly typed. For example, for the equality
comparison, we must ensure that both arguments are correctly typed.
As always, if external types are involved, the test automatically succeeds
because nothing can be known at this point about the compatibility of
the provided types. Of course the test fails if we use a comparison oper-
ator combining external types with types defined in the meta-program,
because they will always be incompatible.
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Checking a single argument

When checking the type of an argument we have to consider several cases
depending on what kind of argument we are inspecting. The reader can
find the details of each case below. Note that we will never consider
external types as their type checking is delegated to the external code
compiler that is used when compiling the generated code, so their type
checking in the Metacasanova type checker is always successful.

Checking literals If the argument is a literal then we have to consider
three sub-cases:

1. The expected type is generic. In this case, since we are providing
explicitly a literal, the generic can be assigned the specific type of
the literal.

2. The expected type is non-generic. In this case we have to check if the
type of the literal is compatible with the expected type. This only
happens if the expected type is one of the native types supported
by Metacasanova.

3. The expected type is a meta-data structure requiring generic argu-
ments. In this case the type is always incorrect, since a literal is
always incompatible with meta-data.

Checking identifiers When we have an identifier as argument, this
might be either a symbol for a meta-data structure taking no arguments,
or simply a variable. In the first case we simply check that the type of the
meta-data structure is compatible with the expected type. In the second
case the result depends on whether we are type checking a conclusion or
a premise. If we are checking a conclusion, then the variable must be
added to the local variables in the scope of the rule, otherwise we must
look up the local variables to check if it was previously defined. If the
lookup fails then the variable is undefined and an error is returned.

Checking nested expressions Checking a nested expression requires,
in the first place, to recursively type check the arguments used in the
nested expression. If this check succeeds than we must also ensure that
the type of the meta-data structure that we are analysing is compatible
with the expected type.

Checking the type compatibility According to Definition 3.3, a type
is compatible with another if they are equal or if, in the symbol table,
there exists a specified equivalence between the first type and the second.
We have thus to distinguish two cases: (i) check if the types are equal
and, if this fails, (ii) check if the provided type is paired with the expected
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type in an equivalence table. For the following considerations refer to the
type structure defined in Section 3.5.1.

Testing type equality Checking type must consider three options:
(i) the type is a simple identifier, (ii) the type is an Arrow type , and
(iii) the type is External, Unsafe or Zero.

In case (i) we must compare two Type Arguments t1 and t2 other wise
the test fails immediately. In this case it is enough to simply check that
t1 = t2.

In case (ii) we must compare two Arrow types otherwise the test fails
immediately. Let us assume that we have T ::= t1 → t2 → ... → tn and
U ::= u1 → u2 → ... → um, then we check if t1 = t2 and recursively
apply the type equality test on t2 → ... → tn and um → ... → um. Note
that if n 6= m at some point the test will fail because we will compare a
Type Argument with an Arrow Type, which will always fail.

In case (iii) the test succeeds if one of the types (either the provided
one or the expected one) is external or unsafe; it also succeeds if both
types are Zero types.

Testing type compatibility Compatibility might succeed in only
two cases: (i) when testing two Argument Types, and when testing two
Arrow Types; in all other cases the test fails immediately. In what follows
we write t1 ≡ t2 to say that t1 is compatible with t2.

In case (i) we have to check if the provided type is paired with the ex-
pected type in a subtype map stored in the symbol table. If the lookup
in the map is unsuccessful then an error is returned.

In case (ii) again we consider T ::= t1 → t2 → ... → tn and U ::=
u1 → u2 → ... → um. This time we check if t1 ≡ t2 and then we recur-
sively check the equivalence of t2 → ...→ tn with um → ...→ um. Again,
the equivalence test fails if n 6= m because we will end up comparing an
Argument Type with an Arrow Type.

3.6 Code generation

Metacasanova uses C# as target language and generates code compat-
ible with any library compiled in the .NET framework. In this phase
we must (i) generate the appropriate abstractions in C# to represent
meta-data structures and their subtyping, and (ii) generate the code to
implement the semantics of the rule evaluation, as described in Section
3.2.3. Note that the modularity of the architecture of the Metacasanova
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meta-compiler is flexible enough to replace the C# code generation with
another language of choice, provided that the proper code generation
functions are re-written for the new target language.

3.6.1 Meta-data structures code generation

The type of each data structure is generated as an interface in C#. Each
data structure defined in Metacasanova is mapped to a class in C#
that implements such interface. The class contains as many fields as the
number of arguments the data structure contains. Each field is given an
automatic name argC where C is the index of the argument in the data
structure definition. The data structure symbols used in the definition
might be pre-processed and replaced in order to avoid illegal characters
in the C# class definition. The class contains an additional field that
stores the original name of the data structure before the replacement is
performed, used for its “pretty print”. For example the data structure.

Data "$i" -> int : Value

will be generated as

public interface Value { }

public class __opDollari : Value
{

public string __name = "$i";
public int __arg0;

5
public override string ToString ()
{
return "(" + __name + " " + __arg0 + ")";
}

}

3.6.2 Code generation for rules

Each rule contains a set of premises that in general call different functions
to produce a result, and a conclusion that contains the function evaluated
by the current rule and the result it produces. The code generation for
the rules follows the steps below:

1. Generate a data structure for each function defined in the meta-
program.

2. For each function f extract all the rules whose conclusion contains
f .

3. Create a switch statement with a case for each rule that is able to
execute the function (the function is in its conclusion).
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4. In the case block of each rule, define the local variables defined in
the rule.

5. Apply pattern matching to the arguments of the function contained
in the conclusion of the rule. If it fails, jump immediately to the
next case (rule).

6. Store the values passed to the function call into the appropriate
local variables.

7. Run each premise by instantiating the class for the function used
by it and copying the values into the input arguments.

8. Check if the premise outputs a result and, in the case of an ex-
plicit data structure argument, check the pattern matching. If the
premise result is empty or the pattern matching fails for all the
possible executions of the premise then jump to the next case.

9. Generate the result for the current rule execution.

In what follows, we use as an example the code generation for the fol-
lowing rule (which computes the sum of two integer expressions in a
programming language):

eval a -> $i c
eval b -> $i d
<< c + d >> -> e
----------------
eval (a + b) -> $i e

From now on we will refer to an argument as explicit data argument
when its structure appears explicitly in the conclusion or in one of the
premises, as in the case of a + b in the example above.

Data structure for the function

As first step the meta-compiler generates a class for each function defined
in the meta-program. This class contains one field for each argument the
function accepts. It also contains a field to store the possible result of its
evaluation. This field is a struct generated by the meta-compiler defined
as follows:

public struct __MetaCnvResult <T> { public T Value; public
bool HasValue; }

The result contains a boolean to mark if the rule actually returned a
result or failed, and a value which contains the result in case of success.

For example, the function

Func eval -> Expr : Value
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will be generated as

public class eval
{

public Expr __arg0;
public __MetaCnvResult <Value > __res;
...

}

Rule execution

The class defines a method Run that performs the actual code execution.
The meta-compiler retrieves all the rules whose conclusion contains a call
to the current function, which define all the possible ways the function
can be evaluated. It then creates a switch structure where each case

represents each rule that might execute that function. The result of the
rule is also initialized here (the struct will contain a default value and
the boolean flag will be set to false). Each case defines a set of local
variables, that are the variables used within the scope of that rule.

Local variables definitions and pattern matching of the conclu-
sion

At the beginning of each case, the meta-compiler defines the local vari-
ables initialized with their respective default values. It also generates
then the code necessary for the pattern-matching of the conclusion ar-
guments. Since variables always pass the pattern-matching, the code is
generated only for arguments explicitly defining a data structure (see the
examples about arithmetic operators in Section 3.2.2) and literals. If the
pattern matching fails then the execution jumps to the next case (rule).
For instance, the code for the following conclusion

...
-------------
eval (a + b) -> $i e

is generated as follows

case 0:
{

Expr a = default(Expr);
Expr b = default(Expr);
int c = default(int);
int d = default(int);
int e = default(int);
if (!( __arg0 is __opPlus)) goto case 1;
...

}
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Note that an explicit data argument, such in the example above, might
contain other nested explicit data arguments, so the pattern-matching is
recursively performed on the data structure arguments themselves.

Copying the input values into the local variables

When each function is called by a premise, the local values are stored into
the class fields of the function defined in Section 3.6.2. These values must
be copied to the local variables defined in the case block representing
the rule. Particular care must be taken when one argument is an explicit
data argument. In that case, we must copy, one by one, the content of the
data argument into the local variables bound in the pattern matching.
For example, in the rule above, we must separately copy the content of
the first and second parameter of the explicit data argument into the
local variables a and b. The generated code for this step, applied to the
example above, will be:

__opPlus __tmp0 = (__opPlus)__arg0;
a = __tmp0.__arg0;
b = __tmp0.__arg1;

Note that the type conversion from the polymorphic type Expr into
opPlus is now safe because we have already checked during the pattern
matching that we actually have opPlus.

Generation of premises

Before evaluating each premise, we must instantiate the class for the
function that they are invoking. The input arguments of the function
call must be copied into the fields of the instantiated object. If one of the
arguments is an explicit data argument, then it must be instantiated and
its arguments should be initialized, and then the whole data argument
must be assigned to the respective function field. After this step, it is
possible to invoke the Run method of the function to start its execution.
The first premise of the example above then becomes (the generation of
the second is analogous):

eval a -> $i c

eval __tmp1 = new eval();
__tmp1.__arg0 = a;
__tmp1.Run();

Checking the premise result

After the execution of the function called by a premise, we must check if
a rule was able to correctly evaluate it. In order to do so, we must check
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that the result field of the function object contains a value, and if not the
rule fails and we jump to the next case (rule), which is performed in the
following way:

if (!( __tmp1.__res.HasValue)) goto case 1;

If the premise was successfully evaluated by one rule, then we must
check the structure of the result, which leads to the following three situ-
ations:

1. The result is bound to a variable.

2. The result is constrained to be a literal.

3. The result is an explicit data argument.

In the first case, as already explained above, the pattern matching
always succeeds, so no check is needed. In the second case, it is enough
to check the value of the literal. In the last case, all the arguments of the
data argument must be checked to see if they match the expected result.
In general this process is recursive, as the arguments could be themselves
other explicit data arguments. If the result passes the check, then the
result is copied into the local variables, in a fashion similar to the one
performed for the function premise. For instance, for the premise

eval a -> $i c

the meta-compiler generates the following code to check the result

if (!( __tmp1.__res.Value is __opDollari)) goto case 1;
__MetaCnvResult <Value > __tmp2 = __tmp1.__res;
__opDollari __tmp3 = (__opDollari)__tmp2.Value;
c = __tmp3.__arg0;

Generation of the result

When all premises correctly output the expected result, the rule can
output the final result. In order to do that, the generated code must
copy the right part of the conclusion (the result) into the res variable
of the function class. If the right part of the conclusion is, again, an
explicit data argument, then the data object must first be instantiated
and then copied into the result. For example the result of the rule above
is generated as follows:

res = c + d;
__opDollari __tmp7 = new __opDollari ();
__tmp7.__arg0 = res;
__res.HasValue = true;
__res.Value = __tmp7;
break;
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After this step, the rule evaluation successfully returns a result.
This implementation choice is due to the fact that we plan to support

partial function applications, thus, when a function is partially applied,
there is the need to store the values of the arguments that were partially
given. This could still be implemented with static methods and lambdas
in C#, but not all programming languages natively support lambda ab-
stractions, so we chose to have a set-up that allows us to change the target
language without dramatically altering the logic of code generation.

3.7 Summary

In this chapter we presented the detailed architecture of the Metacasa-
nova meta-compiler. We started by showing that the process of imple-
menting a compiler exhibits recurring patterns that are always the same
independently of the implemented language. We show how to hard-code
in different programming languages examples of type and semantics rules
for a programming language and then we showed that this process dif-
fers only in how we encode these rules int the abstractions of the chosen
language, and not in their working logic. Based on these observations,
we then defined a list of requirements for Metacasanova. We then pro-
ceeded to illustrate the various components of the meta-compiler itself:
the parser, the type checker, and the code generator. In the next chapter
we will show two examples of languages implemented in Metacasanova:
C--, which is a small imperative language, and Casanova, which is a
Domain-Specific Language for game development.
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Chapter 4

Language Design in Metacasanova

A language that doesn’t
affect the way you think
about programming is not
worth knowing.

Alan J. Perlis

In this chapter we show how to implement languages in Metacasa-
nova. The first language that we implement is a small imperative lan-
guage called C--. Although tiny, this language contains many common
features typical of imperative languages such as control structures, pro-
gram states, variable scoping, and type annotations. We then proceed to
re-implement the semantics of Casanova, a DSL for game development,
in Metacasanova, similar to the work shown also in [37]. Finally, we eval-
uate the length of the language implementation in Metacasanova against
a hard-coded implementation of the same language in a general-purpose
programming language, and the runtime performance of programs written
in the meta-compiled version against Python.

4.1 The C-- language

In this section we present the implementation of a small imperative lan-
guage called C--. Note that, although the name might suggest this, we
do not claim any resemblance with the C programming language, as it
lacks several features such as pointer arithmetic, arrays, and functions.

C-- allows the use of four built-in values: integers, strings, boolean
values, and floating-point numbers in double precision. The language
provides three kinds of control structures: if-then-else, while-do, and for
loops with the same semantics as usual for imperative languages. The
language supports variable scoping and shadowing.

91
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The memory is represented using a dictionary that pairs variable
names with their value. In what follows we omit the details of the lookup
of entries in the dictionary for brevity. Suffice to say that the meta-
program makes use of the ImmutableDictionary data structure available
in .NET. Also note that C-- defines scopes for variables, so that if a vari-
able is declared inside the scope of a code block in a control structure,
that is usable only within the scope itself.

The core of the meta-program is made of the evaluation of both ex-
pressions and statements. We proceed below to present the details of
both kinds of evaluations.

4.1.1 Expression Semantics

As explained above C-- supports boolean, string, integer, and floating-
point values. These are represented through the following meta-data
structures in the meta-program.

Data "$i" -> <<int >> : Value Priority 300
Data "$d" -> <<double >> : Value Priority 300
Data "$s" -> <<string >> : Value Priority 300
Data "$b" -> <<bool >> : Value Priority 300

Note that we are using the .NET data types to represent the actual values
stored in the meta-data structures. We also define the following subtype,
since values are atomic cases of expressions and can be used as such:

Value is Expr

Expressions can also contain variables, thus we need a meta-data struc-
ture to represent them as well.

Data "$" -> <<string >> : Id Priority 300

Variables can be used as atomic expressions as well, so we need an addi-
tional subtype

Id is Expr

We now define a data structure to represent the state of the program. The
state is simply a map where the key is a variable name and the stored
element a valid value in C--. In the declaration we will define the meta-
type SymbolTable, and from now on we will refer use the term “symbol
table” as a synonym of “state”.

Data "$m" << ImmutableDictionary <Id, Value > >> :
SymbolTable

Since we want to allow variable scoping, the state of the program is not
represented by a single map, but by a list of maps. Each time the program
enters a different scope context, an empty map is added to this list, and
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removed when the program exits the scope. This process will be further
explained below. We define a meta-data structure to represent this list
of states (note that the operator for the construction of the list is infix).

Data SymbolTable -> "::" -> TableList : TableList
Data "[]" -> TableList

We can now proceed to define a meta-data structure to represent the
operations for expressions. First we define the arithmetic operators in
the language:

Data Expr -> "+" -> Expr : Expr
Data Expr -> "-" -> Expr : Expr
Data Expr -> "*" -> Expr : Expr
Data Expr -> "/" -> Expr : Expr

then we can define operators for boolean expressions:

Data Expr -> "&&" -> Expr : Expr
Data Expr -> "||" -> Expr : Expr
Data "!" -> Expr : Expr

and finally comparison operators:

Data Expr -> "equals" -> Expr : Expr
Data Expr -> "neq" -> Expr: Expr
Data Expr -> "ls" -> Expr : Expr
Data Expr -> "leq" -> Expr : Expr
Data Expr -> "grt" -> Expr : Expr
Data Expr -> "geq" -> Expr : Expr

We now have to define the function that evaluates an expression
through rules in the program. This function takes as input the list of
symbol tables (needed to read possible variables), an expression, and re-
turns the value after computing the expression.

Func "evalExpr" -> TableList -> Expr : Value

Now we have to proceed to define the rules to compute the actual eval-
uation of an expression. Clearly the base cases of the evaluation are the
atomic values, where we immediately return the value itself.

-----------------------------
evalExpr tables ($i v) -> ($i v)

-----------------------------
evalExpr tables ($d v) -> ($d v)

-----------------------------
evalExpr tables ($s v) -> ($s v)

-----------------------------
evalExpr tables ($b v) -> ($b v)
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Evaluating variables is more complex: we have to look at the table
currently in the head of the list of tables (which is the one relative to
the current scope). If we do not find the required variable we have to
recursively look it up in the tail of the list, since we could have an arbitrary
number of nested scopes. When the variable is found we return its value.
This behaviour is implemented by the following code:

symbols contains ($name) -> Yes
symbols lookup ($name) -> val
-------------------------------------------
evalExpr (symbols :: tables) ($name) -> val

symbols contains ($name) -> No
evalExpr tables ($name) -> val
-------------------------------------------
evalExpr (symbols :: tables) ($name) -> val

We proceed now to define the evaluation of arithmetic operators. We
show only the example of the sum for brevity, the other rules differ only in
the operator. Evaluating the arithmetic expression requires to recursively
call evalExpr on the right and left argument. These recursive calls will
eventually return two values that are the result of the two evaluations.
After we obtain these values, we can compute their sum and return it as
result.

evalExpr tables expr1 -> ($i val1)
evalExpr tables expr2 -> ($i val2)
<<val1 + val2 >> -> v
---------------------------------------
evalExpr tables expr1 + expr2 -> ($i v)

Note that we have used .NET external code in the third premise to com-
pute the result of the arithmetic operation. Evaluating arithmetic oper-
ations involving floating-point expressions can be done in an analogous
way, except in the premises we expect to have the meta-data structure
for floating-point values as result of evalExpr:

evalExpr tables expr1 -> ($d val1)
evalExpr tables expr2 -> ($d val2)
<<val1 + val2 >> -> v
---------------------------------------
evalExpr tables expr1 + expr2 -> ($d v)

The same can be said for the string concatenation. The evaluation of
boolean expression is analogous: we show again only the evaluation for
AND as the other rules are analogous:

evalExpr tables expr1 -> ($b val1)
evalExpr tables expr2 -> ($b val2)
<<val1 && val2 >> -> b
----------------------------------
evalExpr tables expr1 && expr2 -> b
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Again we rely on external code to compute the actual boolean value. As
for the comparison operators, we can use a clause in the premise to avoid
using external code in the following way:

evalEpxr tables expr1 -> val1
evalExpr tables expr2 -> val2
val1 == val2
-----------------------------------------------
evalExpr tables (expr1 equals expr2) -> $b true

evalEpxr tables expr1 -> val1
evalExpr tables expr2 -> val2
val1 != val2
------------------------------------------------
evalExpr tables (expr1 equals expr2) -> $b false

The first rule checks that the values computed by evaluating the left and
right argument of the equality comparison are the same. If this happens
then the rule returns a meta-data structure containing the boolean rep-
resentation of true. Otherwise the first rule fails and the second one is
executed. This one will return a boolean representation of false when
the values are different.

For inequality operators we must rely on external code for the com-
putation is Metacasanova only allows equality comparisons in clauses:

evalExpr tables expr1 -> ($i val1)
evalExpr tables expr2 -> ($i val2)
<< val1 < val2 >> -> boolResult
---------------------------------------------------
evalExpr tables (expr1 ls expr2) -> ($b boolResult)

The evaluation of the other comparison operators is implemented through
analogous rules, which differ only in the operators.

4.1.2 Statement Semantics

Statement evaluation requires the definition of a different function, eval,
that processes each statement and returns the result of the statement
evaluation and the updated state. Note that, even if the evaluation of
statements does not always change the state, in general we have to assume
that this will happen.

The function eval takes as input a statement to process and the cur-
rent state (list of symbol tables), and returns the updated list of symbol
tables

Func "eval" -> TableList -> Stmt : TableList

We now proceed to define the meta-data structures necessary to rep-
resent the statements of the language: C-- supports (i) variable declara-
tions, (ii) variable assignment, (iii) if-then-else, (iv) while loops, and (v)
for loops.
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Variable declarations follow the same structure of standard C, that is
a type name followed by an identifier. Thus, the corresponding meta-data
structure can be defined as:

"variable" -> Type -> Id : Stmt

Analogously, variable assignment follows the C convention and uses the
= symbol.

Id -> "=" -> Expr : Stmt

The control structure if-then-else does not follow the standard C rep-
resentation, rather we use the keywords then and else to delimit its
code blocks. Note that nothing prevents us from implementing the con-
ventional C syntax, but we prefer this “lightweight” representation. The
keywords then and else are meta-data structures that take no arguments
and do not have any functional utility other than syntactical mark-ups.

Data "then" : Then
Data "else" : Else
Data "if" -> Expr -> Then -> Stmt -> Else -> Stmt : Stmt

Analogously we can define the meta-data structure for While and For

Data "do" : Do
Data "while" -> Expr -> Do -> Stmt : Stmt
Data "for" -> Expr -> Expr -> Epxr -> Do -> Stmt : Stmt

Up to this point we are able to define single statements in the language,
but we need a way to concatenate a sequence of statements to form code
blocks, in the fashion of C. This is done by introducing an additional
meta-data structure, which is the ”;” symbol. For convenience, we also
introduce a nop statement, which does not do anything, but it will be
useful to express the semantics of statements evaluation.

Data Stmt -> ";" -> StmtList : StmtList
Data "nop" -> :Stmt

StmtList is Stmt

We now proceed to define the semantics of statement evaluation.

Evaluating a Sequence of Statements

The evaluation of a sequence of statements require to evaluate the first
statement in a sequence and then recursively evaluate the rest of the
sequence. The recursive evaluation returns the final program state. The
base case of the recursion is met when the sequence contains only nop. In
this case we terminate the evaluation and return the unchanged program
state.
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--------------------------
eval tables nop -> tables

eval tables a -> tables ’
eval table ’ b -> res
---------------------------
eval tables (a;b) -> res

Variable Declarations and Assignments

Evaluating a variable declaration simply adds the variable to the symbol
table of the current scope. Note that we allow variable shadowing, so it
is possible to redefine the same symbol in different scopes.

symbols defineVariable id -> symbols ’
-------------------------------------
eval (symbols nextTable tables) (variable t id) ->

symbols ’ nextTable tables

This rule is executed whenever the processed statement matches the struc-
ture of a variable declaration statement. The premise adds the symbol to
the symbol table of the current scope (we omit the details for brevity),
and returns an updated symbol table. The list of symbol tables is rebuilt
to include the updated table and returned as result.

Variable assignment is more complex, since the variable we are trying
to use might not be in the symbol table of the current scope. We must
then define two lookups functions, that behave differently depending on
whether the variable is in the symbol table in the head of the symbol
table list or not. We declare the function updateTable that performs this
lookup and updates the table list accordingly.

Func "updateTables" -> TableList -> TableList -> Id ->
Expr : EvaluationResult

In the case that the variable is in the symbol table in the head of the list
of tables we have the following rule:

symbols contains id -> Yes
evalExpr vars expr -> val
symbols add id val -> symbols ’
-------------------------------
updateTables vars (symbols :: tables) id expr -> symbols ’

:: tables

The first premise checks if the symbol is contained in the table in the
head of the list. If the answer is Yes (a meta-data structure returned by
the function contains, not described here again for brevity), then the
second premise proceeds to evaluate the expression in the right hand-
side of the assignment. The third premise adds the value obtained as
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result of the second premise to the current symbol table and returns the
modified table. The new table is then placed in the head of the table
list and the whole list is returned. Note that, at this point, all the tables
in the list remain unchanged except the one that was in the head. Note
that updateTables carries two copies of the list of tables. One of them
is passed to eval because the right-hand side of the assignment might
contain other variables. The process of looking up the left hand-side
variable pops symbol tables from the head of list (see next rule) but the
original list of tables is necessary when assigning the values of variables
located in inner scopes. For instance, consider the following program in
C--:

int x;
...
if (x > 0) then

int y;
y = 4
x = y;

else
x = x - 1;

Listing 4.1: C-- sample program

assume that before the if-then-else x > 0. The program will enter the
then block and declare y. In the current state we have to symbol tables,
one for the scope of the if-then-else and one for the outer scope. When
assigning y to x the symbol table tries to look up x in the table of the
current scope and fails. This will pop the head of the list of tables (which
is the table of if-then-else) and recursively look in the tail. During the
second attempt x is retrieved but now we do not have the symbol table
where y is defined anymore to evaluate the right hand-side. We thus need
the original list of tables to be able to retrieve y. In general, if we call
dl the depth of scoping of the left hand-side and dr the depth of scoping
of the right hand-side, the process pops the table of the right hand-side
whenever dl > dr and this is when we need the original list of tables to
retrieve the value of the right hand-side.

If the variable is not contained in the head of the list, i.e. it has not
been declared in the current scope, we have the following rule:

symbols contains id -> No
updateTables vars tables id expr -> tables ’
----------------------------------------------
updateTables vars (symbols :: tables) id expr -> symbols

:: tables ’

The first premise tries to lookup the variable in the symbol table of the
current scope and does not find it. Thus we recursively call updateTables
with the tail of the list. The recursive call will eventually find the variable
in one of the symbol tables associated with outer scopes. This process
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will produce an updated list of tables that is returned as a new tail for
the current list.

At this point, the rule for the evaluation of the variable assignment
simply class the updateTables function in its premise:

updateTables tables tables id expr -> res
----------------------------------------
eval tables (id = expr) -> res

Conditionals

Evaluating if-then-else requires two rules, depending on the result of
the evaluation of its condition. The following rule implements the seman-
tics when the condition is false:

evalExpr tables condition -> $b true
emptyDictionary -> table
eval (table :: tables) thenBlock -> table ’ :: tables ’’
-------------------------------------------
eval tables (if condition then thenBlock else elseBlock)

-> tables ’’

The first premise evaluates the condition of the control structures
and succeeds if the result is a meta-data structure containing the boolean
value true. The second premise uses an utility function to initialize an
empty symbol table. This is required to define a new table for the scope
of the conditional. The third premise evaluates the statements contained
in the then block after pushing the symbol table for the current scope in
the list of symbol tables. This process will eventually produce a new list
of symbol tables. The result returns only the tail of this list, since when
we exit the scope of the conditional we must pop its symbol tables.

For instance, consider again the program in Listing 4.1 and again
assume that x > 0. After executing the then block, the state of the
program is made of the symbol tables shown in Table 4.1. After exiting
the then block, variable y exits the scope, thus we have to pop the symbol
table for the current scope. However, the symbol table of the outer scope
has been changed because x got the value of y. Thus the evaluation
returns the list containing this updated table. In general, the process
should consider that an arbitrary number of symbol tables for each outer
scope has been changed, thus we return this updated list.

The rule that evaluates conditionals when the condition is false is
analogous, except this time we evaluate the else block:

evalExpr tables condition -> $b false
emptyDictionary -> table
eval (table :: tables) elseBlock -> table ’ :: tables ’’
--------------------------------------------
eval tables (if condition then thenBlock else elseBlock)

-> tables ’’
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Variable Value

x undefined

Variable Value

y 4

Variable Value

x 4

Table 4.1: Symbol table at the beginning and after the execution of the pro-
gram in Listing 4.1 with x > 0

While Loops

Evaluating the while loops require to check its condition first. When the
condition is false we simply skip the loop without changing the state. The
rule to implement this behaviour is thus straightforward:

evalExpr tables condition -> $b false
--------------------------------------------
eval tables (while condition do block) -> tables

The semantics when the condition is true is more complex:

evalExpr tables condition -> $b true
emptyDictionary -> table
eval (table :: tables) block -> table ’ :: tables ’’
eval tables ’’ (while condition do block) -> res
---------------------------------------------------
eval tables (while condition do block) -> res

The first premise succeeds when the evaluation of the condition returns
a true boolean value in C--. Analogously to what we did for conditionals,
we initialize an empty symbol table for the current scope and we push it
into the list of symbol tables. We then evaluate the body of the loop. This
process will, in general, produce an updated list of symbol tables. Again
we pop the symbol table for the current scope because we are exiting the
loop. We then evaluate again the whole loop to test its condition again.

For Loops

For loops follow the C convention and are made of four parts: (i) an
initialization, (ii) a condition (ii), (iii) a step, and (iv) a block of code.
The initialization is evaluated once before entering the loop, the condition
is tested before each iteration of the loop, and the step is evaluated at
the end of each iteration. In order to implement this behaviour we make
use of an additional support function called loopFor:

Func "loopFor" -> TableList -> Expr -> Stmt -> Stmt :
TableList

The evaluation of the for-loop evaluates the initialization in its premise.
It then calls loopFor after the initialization has been evaluated. Again



4.1. THE C-- LANGUAGE 101

the initialization might define additional variables that enter the scope of
the loop, so the updated table of the current scope is pushed into the list
of symbol tables. Note that possible variables defined in the initialization
part of the loop might be used after the loop itself, according to the
semantics of C, so we have to insert them into the symbol table of the
current scope and not the one of the loop itself.

eval tables init => tables ’
loopFor tables ’ condition step block => res
-------------------------------------------------------
eval tables (for init condition step do block) => res

The rules for loopFor are two, since we must consider the case when
the condition is false and the one where it is true. When the condition
is false the loop is completely skipped, thus we simply return the current
state without any changes, in the same fashion of the while-loop:

evalExpr tables condition -> $b false
--------------------------------------
loopFor tables condition step block -> tables

When the condition is true, we create as usual a symbol table for the
scope of the loop and we push it into the list of symbol tables. The third
premise evaluates the block of the loop returning an updated list of tables.
As usual we pop the table of the scope of the loop and we evaluate the
step. This again might change the list of symbol tables. We then run
again the loop with the updated list of tables.

evalExpr tables condition -> $b true
emptyDictionary -> table
eval (table :: tables) block -> table ’ :: tables ’’
eval tables ’’ step -> tables3
loopFor tables3 condition step expr -> res
-------------------------------------------------
loopFor tables condition step block -> res

4.1.3 Type Checker

Type checking can be performed by using a representation of the type
system of C-- in terms of rules, in the same fashion of the semantics.
In this section we explain the details of how each language construct is
type-checked according to its type rule. We begin by defining an alter-
native version of the symbol table defined in Section 4.1.1 that contains
a mapping between variable names and types:

Data "$m" << ImmutableDictionary <Id , Type > >> : TypeTable

and a constructor for the meta-data representing a sequence of type ta-
bles.
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Data TypeTable -> "::" -> TypeTableList : TypeTableList
Data "[]" : TypeTable

We now start by defining the meta-data structures for the types in C--:

Data "t_int" : Type
Data "t_double" : Type
Data "t_string" : Type
Data "t_bool" : Type
Data "t_unit" : Type

We also defined a special meta-data representing a type error to correctly
report errors if the program contains invalid types:

Data "error" -> <<string >> : Type

Typing expressions

We now proceed to define the type rules for expressions. We initially need
to define a function to use in the conclusion of a type rule that is able to
evaluate type of an expression:

Func "typeExpr" -> TypeTableList -> Expr : Type

The axioms of expression typing are those that return the type of a
literal. In this case the rule immediately returns the type associated to
the specific literal.

-----------------------------
typeExpr tables ($i v) -> t_int

-----------------------------
typeExpr tables ($d v) -> t_double

-----------------------------
typeExpr tables ($s v) -> t_string

-----------------------------
typeExpr tables ($b v) -> t_bool

Type checking variables require to perform a lookup for the variable name
in the list of type tables that we carry along during the typing process.
The variable could be in the table associated with the current scope or
in the table of an outer scope. Therefore, we start by first looking in the
table of the current scope, and if we do not find the variable we recursively
look it up in the subsequent table. If we traverse the whole list of tables
without finding the variable, then it means that the program contains an
undefined variable and an appropriate error notifying the problem should
be returned.
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-------------------------------------
typeExpr [] ($ name) -> error <<"Undefined variable :" +

name >>

types contains ($ name) -> Yes
types lookup ($ name) -> varType
------------------------------------------------
typeExpr (types :: tables) ($ name) -> varType

types contains ($ name) -> No
typeExpr tables ($ name) -> error msg
------------------------------------------
typeExpr (types :: tables) ($ name) -> error msg

types contains ($ name) -> No
typeExpr tables ($ name) -> varType
------------------------------------------
typeExpr (types :: tables) ($ name) -> varType

Note that we had to include a rule in whose premise we check whether
the recursive lookup returned an error. If this is the case the entire rule
returns the error message rather than the type of the variable.

Type-checking expression operators require to perform the following
steps:

1. Type-check the left and right argument.
2. Check that the types obtained at the previous step are compatible

with the operator definition.
3. Return the type of the operator.

The process fails when the type-checking of one of the two expressions
fails or when the types are incompatible with the operator definition.
For brevity we only present the case of the sum, the rules for the other
operators are analogous:

typeExpr tables expr1 -> error msg
----------------------------------
typeExpr tables expr1 + expr2 -> error msg

typeExpr tables expr2 -> error msg
----------------------------------
typeExpr tables expr1 + expr2 -> error msg

typeExpr tables expr1 -> t_int
typeExpr tables expr2 -> t_int
--------------------------------------
typeExpr tables expr1 + expr2 -> t_int

typeExpr tables expr1 -> t_double
typeExpr tables expr2 -> t_double
--------------------------------------
typeExpr tables expr1 + expr2 -> t_double
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typeExpr tables expr1 -> t_string
typeExpr tables expr2 -> t_string
--------------------------------------
typeExpr tables expr1 + expr2 -> t_string

-----------------------------------
typeExpr tables expr ->

error << "Incompatible types given to operator +" >>

Note that the last rule is executed only if all the previous failed, so when
the recursive check did not fail or when the returned types were incom-
patible with the sum operator.

Typing a sequence of statements

Typing a sequence of statements requires to type check the first statement
in the sequence and then recursively type check the remaining statements
in the sequence. We also need a different type-checking function that is
able to process statements and meta-data structure for its result.

Data TypeTableList -> "," -> Type : TypeResult
Func "typeStmt" -> TypeTableList -> Stmt : TypeResult

This function in general returns an updated list of type tables and a
type, since variable declarations might change them. We use t unit for
the type of statements, which is a place holder for language constructs
that just change the state of the program.

The base case of the recursion is when the sequence contains only nop,
which returns immediately the same type tables.

------------------------------------
typeStmt tables nop -> tables ,t_unit

Type-checking a sequence of statements initially checks the first state-
ment. This might return an updated list of tables. Then it recursively
checks the other statements with the result of the first step and returns
the final type tables. If either of the process returns an error we just
propagate the error.

typeStmt tables a -> tables ’,error msg
------------------------------------------
typeStmt tables (a;b) -> tables ’,error msg

typeStmt tables a -> tables ’,t_unit
typeStmt tables ’ b -> finalTables ,error msg
----------------------------------------------
typeStmt tables (a;b) -> finalTables ,error msg

typeStmt tables a -> tables ’
typeStmt tables b -> finalTables ,t_unit
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--------------------------------
typeStmt tables (a;b) -> finalTables ,t_unit

Note that we are sure that the final rule succeeds because the type-
checking of a statement always returns unit if the type-checking succeeds,
according to the type rules of the language; this is further explained in
the sections below.

Typing variable declarations and assignments

When we encounter a variable declaration we have to add the variable
name and its type to the table of the current scope, unless the variable
is already defined in the current scope, in which case we return an error.
We must also prevent the declaration of variable with type unit, because
that is a reserved type for statements. This is implemented with the
following rules:

-----------------------------------
typeStmt types (variable t_unit id) -> [],error << "The

type unit cannot be used as a variable type" >>

types contains id -> Yes
------------------------------------
typeStmt (types :: tables) (variable t ($ name)) -> [],

error << "Variable " + name " already defined" >>

types add id t -> types ’
------------------------------------------
typeStmt (types :: tables) (variable t id) -> types ’ ::

tables

In the case of a variable assignment, the type checker must first look
up in the type tables for the variable type. If the variable cannot be found
then an error is returned because the program is trying to use an unde-
fined variable. Otherwise we check the type of the right expression, and
if it is compatible with the type of the variable then the declaration suc-
ceeds. Note that the process of checking the right side of the assignment
might fail and, in this case, we have to propagate the error.

-------------------------------
typeStmt [] (($ name) = expr) -> [],error << "Variable "

+ name + " undefined" >>

typeExpr tables expr -> error msg
-------------------------------------------
typeStmt tables (id = expr) -> [],error msg

types contains id -> No
typeStmt tables (id = expr) -> res
-------------------------------------
typeStmt (types :: tables) (id = expr) -> res
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types getValue id -> tvar
typeExpr (types :: tables) expr -> te
tvar <> te
-------------------------------------
typeStmt (types :: tables) (($ name) = expr) -> [],error

<< "Trying to assign an incompatible value to " +
name >>

types getValue id -> tvar
---------------------------------------------
typeStmt (types :: tables) (id = expr) -> (types ::

tables),tvar

Typing conditionals

Type-checking if-then-else requires to first check the type of the ex-
pression provided as condition. This process might fail and in this case
we propagate the returned error. If the type checking of the expression
succeeds but the returned type is not boolean, we have to return an error
as well. Otherwise we can proceed to type-check the body of then and
else. This process can again fail and we must again propagate a possi-
ble error. If no errors are returned after this step we return a possible
updated list of type tables and the type unit.

typeExpr tables condition -> error msg
---------------------------------
typeStmt tables (if condition then thenBlock else

elseBlock) ->
[],error msg

emptyDictionary -> table
typeStmt (table :: tables) thenBlock -> t,error msg
---------------------------------
typeStmt tables (if condition then thenBlock else

elseBlock) ->
[],error msg

emptyDictionary -> table
typeStmt (table :: tables) elseBlock -> t,error msg
---------------------------------
typeStmt tables (if condition then thenBlock else

elseBlock) ->
[],error msg

typeExpr tables condition -> tc
tc <> t_bool
---------------------------------
typeStmt tables (if condition then thenBlock else

elseBlock) ->
[],error << "The condition of an if -then -else must be

boolean" >>
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---------------------------------
typeStmt tables (if condition then thenBlock else

elseBlock) ->
t_unit ,tables

Note that the last rule does not type check again the code blocks of
if-then-else because the only statement that can change a type table
is a variable declaration, but after we exit the scope of the block the
local declarations are removed. At this point we are sure that the type-
checking of the blocks has succeeded, otherwise we would have triggered
one of the rules above returning an error, thus we can immediately return
the result.

Typing while-loops

Type-Checking a while loop is similar to the procedure of evaluating a
conditional statement. We must first check that the provided condition is
boolean. This might fail either because type-checking the condition itself
returns an error or because the type of the expression is not boolean.
After this step we have to check the body of the loop, which might fail as
well. If no error is reported then we can safely return the correct result.

evalExpr tables condition -> error msg
------------------------------------------------
typeStmt tables (while condition do block) -> [],error

msg

evalExpr tables condition -> tc
tc <> t_bool
------------------------------------------------
typeStmt tables (while condition do block) ->

[],error << "The condition of a while loop must be
boolean" >>

evalExpr tables condition -> tc
emptyDictionary -> table
typeStmt (table :: tables) condition -> t,error msg
-----------------------------------------------------
typeStmt tables (while condition do block) -> [],error

msg

-------------------------------------------
typeStmt tables (while condition do block) -> tables ,

t_unit

Again note that the last rules can immediately return the result because
we know that, at this point, we cannot have any error and we do not need
to keep the type table of the scope of the code block.
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Typing for loops

Type-checking a for loop requires to first type-check the initialization.
This might fail and we must propagate the error. We must then type-
check the condition and the step. This process can fail either because of
an error in the condition or in the statement in the step, or because the
condition is not boolean. If it succeeds we then proceed to type-check the
body of the loop.

typeStmt tables init -> t,error msg
-----------------------------------------------
typeStmt tables (for init condition step do block) -> [],

error msg

typeExpr tables condition -> error msg
---------------------------------------------------
typeStmt tables (for init condition step do block) -> [],

error msg

typeExpr tables condition -> tc
tc <> t_bool
---------------------------------------------------
typeStmt tables (for init condition step do block) ->

[],error << "The condition of a for loop must be
boolean" >>

typeExpr tables condition -> tc
tc <> t_bool
---------------------------------------------------
typeStmt tables (for init condition step do block) ->

[],error << "The condition of a for loop must be
boolean" >>

emptyDictionary -> table
typeStmt (table :: tables) step -> t,error msg
-----------------------------------------------------
typeStmt tables (for init condition step do block) -> [],

error msg

emptyDictionary -> table
typeStmt (table :: tables) block -> t,error msg
-----------------------------------------------------
typeStmt tables (for init condition step do block) -> [],

error msg

-----------------------------------------------------
typeStmt tables (for init condition step do block) ->

tables ,t_unit
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4.1.4 Discussion

In this section we have presented a small imperative language called C--
that supports variable scoping, a decisional control structure, and two dif-
ferent iterative control structures (while and for loops). We have shown
how to define its semantics in term of Metacasanova rules and, in the
same fashion, how to define its type system and build a type checker.
Although being a complete language rather complex on its own, C-- lacks
some features like functions that programmers would expect. Although
it would not be hard to extend this language with these additional fea-
tures, in the next section we opt to introduce an existing domain-specific
language for game development called Casanova. This language presents
interesting and unusual language features, such as the possibility to use
built-in control structures that interrupt the flow of parts of its programs,
thus we believe it would be a better example to show the capabilities of
Metacasanova in terms of language design.

4.2 The Casanova language

In the previous section we have shown how to implement a small im-
perative language using Metacasanova. In this section we show the im-
plementation in Metacasanova of Casanova, a Domain-Specific Language
for game development. We first give an informal explanation about how
the language works and then we show an implementation of the language
semantics.

4.2.1 The structure of a Casanova program

In this section we give an informal overview of a program in Casanova,
leaving aside for brevity many of the details about the language itself,
which can be found in [4, 5, 6, 7].

A program in Casanova is structured as a tree of entities that represent
the dynamic elements of a game, where the root entity is special and called
world. For instance, the following code snippet shows an entity depicting
a movable character:

entity Character = {
Position : Vector2
Velocity : Vector2

...

Create(p : Vector2) = {
Position = new Vector2 (3.0f, 5.0f)
Velocity = Vector2.zero

}
}
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An entity is similar to a class in an object-oriented programming lan-
guage, containing fields and a constructor. However, the difference lies in
how the language implements the dynamic behaviour of an entity: each
entity defines a set of rules that describe the temporal evolution of an
entity instance. A rule operates on a set of fields of an entity called do-
main, and it is allowed changed only the values of the fields in its domain.
A rule can write in a field of the domain only through a dedicated state-
ment called yield. On the other hand, reading fields outside the domain
is always possible. Each rule in an entity is run periodically up to a maxi-
mum refresh rate, which is usually set to 60Hz. One update cycle is called
frame. Each rule is automatically passed two special identifiers, this and
dt, where the former is a reference to the current instance of the entity
and the latter the time elapsed between the last and the current frame.

Rules have mechanics similar to threads: they can be paused for a
specific amount of time or until a certain condition is met. Furthermore,
every time the rule executes a yield statement (thus changing the values
of the fields in the entity) or its body has been completely evaluated, it is
suspended until the next frame. Casanova also features interruptible con-
trol structures, such as if-then-else, while-do, and list comprehensions
in a syntax similar to SQL or Linq (from-where-select).

The Casanova compiler generates the code to simulate the rule suspen-
sion and restart in the form of states machines. In the following section
we show how to implement the same behaviour in the form of natural
semantics in Metacasanova by using continuation-passing style.

4.2.2 Casanova semantics in Metacasanova

The memory in is represented using three maps, where the key is the
variable/field name, and the value is the value stored in the variable/field.
The first dictionary represents the global memory (the fields of the world

entity or Game State), the second dictionary represents the current entity
fields, and the third the variable bindings local to each rule.

The core of the entity update is the tick function. This function
evaluates in order each rule in the entity by calling the evalRule function.
This function executes the body of the rule and returns a result depending
on the set of statements that has been evaluated. This result is used by
tick to update the memory and rebuild the rule body to be evaluated
at the next frame. The result of tick is a State containing the rules
updated so far, and the updated entity and global fields. Since a rule
must be restarted after the whole body has been evaluated, we need to
store a list containing the original rules, which will be restored when
evaluation returns Done. At each step the function recursively calls itself
by passing the remaining part of original rules (the rules which body
was not altered by the evaluation of the statements) and modified rules
(which body has been altered by the evaluation of the statements) to be
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evaluated. The function stops when all the rules have been evaluated,
and this happens when both the original and the modified rule lists are
empty.

Interruption is achieved by using Continuation passing style: the ex-
ecution of a sequence of statements is seen as a sequence of steps that
returns the result of the execution and the remaining code to be executed.
Every time a statement is executed we rebuild a new rule whose body
contains the continuation which will be evaluated next. For example,
consider the following rule:

rule X,Y =
while X > 0 do

wait 1.0f
yield X - 1,Y + 1

The code is executed atomically until the wait statement (assuming that
the while condition is true). At that point we rebuild a new rule con-
taining the code to execute at the next iteration:

rule X,Y =
wait (1.0f - dt)
yield X - 1, Y + 1
while X > 0 do

wait 1.0f
yield X - 1,Y + 1

Note that while is placed at the end of the continuation because it must
be re-evaluated after the first iteration is complete, and that we have de-
creased the waiting time by dt (the time elapsed between one frame and
the previous one). This is analogous to the semantics of while imple-
mented in Section 4.1.2. We now proceed to describe the implementation
of Casanova semantics in detail. In what follows we assume that we al-
ready have evaluation rules for expressions and for the symbol table as
shown for C--, which we will not repeat for brevity.

4.2.3 Rule update

As explained in Section 4.2.2, the rule update is implemented through a
tick function that executes all the statements of the rule until an inter-
ruption statement (i.e. a statement that might pause the rule execution)
is met. Thus, the possible results returned by the tick function are the
following: (i) Suspend contains a wait statement with the updated timer,
the continuation, and a data structure called Context which contains the
updated local variables, the entity fields, and the global fields. The func-
tion rebuilds a rule which body is the sequence of statements contained
by the Suspend data structure. (ii) Resume is returned when the rule
must resume after the last waited frame. In order not to skip a frame
we must still re-evaluate the rule at the next frame and not immediately
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Figure 4.1: Possible results of the tick function

(see the semantics of the wait statement). In this case the argument of
Resume is only the remaining statements to be executed. (iii) Yield stops
evaluation for one frame. This is summarized in Figure 4.1. We use the
continuation to store the rule body that has yet to be evaluated. The
function definition is thus the following:

Data "rule" -> List[<<string >>] -> stmt -> stmt -> <<
ImmutableDictionary <string , Value > >> -> <<float >> :
Rule

Data "Done" -> ctxt : ExecutionResult
Data "Suspend" -> stmt -> ctxt : ExecutionResult
Data "Yield" -> stmt -> List[Value] -> ctxt :

ExecutionResult
Data "Resume" -> stmt -> ctxt : ExecutionResult
Data "Atomic" -> stmt -> ctxt : ExecutionResult
Func "tick" -> List[Rule] -> List[Rule] ->

<<ImmutableDictionary <string , Value > >> -> <<
ImmutableDictionary <string , Value > >> -> <<float >>
: GameState

Note that in the implementation we use a generic meta-data structure
List instantiated with the meta-type Rule. A rule is a meta-data struc-
ture containing a list of strings representing the domain, a sequence of
statements representing the rule body, a second sequence of statement
representing the continuation (i.e. the statements to be evaluated in the
next frame), a symbol table of local variables, and the frame time differ-
ence.

As stated above, the tick function stops when all the rules have been
evaluated, thus when both lists of rules are empty. In this case we return
the unchanged state of the program:
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--------------------------------------------
tick nil nil fields globals dt -> (State nil fields

globals)

When the rule evaluation returns Resume, we build a rule containing
the code to execute at the next frame, when the rule restarts, an empty
continuation, because the current one has been moved into the body of
the new rule, and the updated symbol table, since generally the rule
evaluation might define some local variables. We then recursively update
the remaining rules, and finally we build a new state with the rule that
has to been resumed and all the other updated rules, that are stored in
the state returned by the recursive call. Note that we will present the
detail of evalRule further ahead.

evalRule (rule dom body k locals delta) fields globals ->
Resume cont (Context newLocals newFields newGlobals)

r := rule dom cont nop newLocals dt
tick originals rs newFields newGlobals dt -> (State

updatedRules updatedFields updatedGlobals)
st := State (r:: updatedRules) updatedFields

updatedGlobals
------------------------------------------------------
tick (original :: originals) ((rule dom body k locals delta

)::rs) fields globals dt -> st

For instance, consider the rule in Listing 4.2 and assume that dt = 1.0.

rule X =
wait 1.0f
yield X + 1

Listing 4.2: Rule example with interruption

After evaluating the wait statement, the rule evaluation would return
Resume containing the following continuation:

cont = yield X + 1

The new rule that will be generated is therefore

rule X =
yield X + 1

In the case of Yield the procedure is analogous, since yield pauses the
rule execution for one frame and thus the continuation must be used to
rebuild a new rule with the continuation in its body.

evalRule (rule dom body k locals delta) fields globals ->
Yield cont values (Context newLocals newFields

newGlobals)
r := rule dom cont nop newLocals dt
tick originals rs newFields newGlobals dt -> (State

updatedRules updatedFields updatedGlobals)
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st := State (r:: updatedRules) updatedFields
updatedGlobals

------------------------------------------------------
tick (original :: originals) ((rule dom body k locals delta

)::rs) fields globals dt -> st

For instance, let us consider again the rule

rule X =
yield X + 1

Its evaluation will generate a rule with an empty body, such as

rule X = nop

When the rule evaluation returns Done, it means that the rule statements
have been completely evaluated. In this case the rule must pause for
one frame. It is also necessary to rebuild the body of the rule as it was
before its execution started. Indeed, during the execution, the rule body
is “broken” when evaluating the body because the executed statements
are thrown away during the recursive calls. In the previous examples we
have seen this process in action (see Listing 4.2). As we can see in the
meta-language rule below, this time we build a new set of rules by placing
the rule in its original state.

evalRule r fields globals -> Done (Context newLocals
newFields newGlobals)

tick originals rs newFields newGlobals dt -> (State
updatedRules updatedFields updatedGlobals)

st := State (original :: updatedRules) updatedFields
updatedGlobals

---------------------------------------------
tick (original :: originals) (r::rs) fields globals dt ->

st

Finally, when the rule evaluation returns Suspend, we obtain the updated
state of the wait statement (when the timer is updated) and a contin-
uation. In this case we rebuild a rule whose body contains the updated
wait statement and the continuation.

evalRule (rule dom body k locals delta) fields globals ->
Suspend (s;cont) (Context newLocals newFields

newGlobals)
r := rule dom s cont newLocals dt
tick originals rs newFields newGlobals dt -> (State

updatedRules updatedFields updatedGlobals)
st := State (r:: updatedRules) updatedFields

updatedGlobals
------------------------------------------------------
tick (original :: originals) ((rule dom body k locals delta

)::rs) fields globals dt -> st
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Figure 4.2: Cases of rule update

For instance, consider again the rule in Snippet 4.2 but this time with dt

= 0.5. The rule update this time returns Suspend (because the timer has
not elapsed yet) with:

s = wait 0.5f
cont = yield X + 1

thus the new rule will look like:

rule X =
wait 0.5f
yield X + 1

A summary of this process can be seen in Figure 4.2.

4.2.4 Rule evaluation

The function evalRule takes as input a rule and the symbol tables for
the current entity and the world and returns an execution result, as seen
in Section 4.2.3.

Func "evalRule" -> Rule -> <<ImmutableDictionary <string ,
Value > >> -> <<ImmutableDictionary <string , Value > >>
: ExecutionResult

Semantics rules having evalRule in their conclusion call in one of their
premises the function eval s. This function is able to process a sequence
of statements and return a result depending on the current statement be-
ing executed. When eval s returns Done, Suspend, or Resume, evalRule
simply forwards the result to tick as it is. On the other hand, eval s
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Figure 4.3: Rule update in Metacasanova

can also return Yield and an additional result called Atomic. This kind
of result represents a statement that does not pause the rule execution.
Atomic statements are evaluated within the current frame until an inter-
ruption statement or the end of the rule is reached.

In the case of Yield, the function must update the fields of the entity
before returning the result to tick, as shown below:

eval_s b k (Context locals fields globals) dt -> Yield ks
values context

updateFields dom values context -> updatedContext
-----------------------------------------
evalRule (rule dom b k locals dt) fields globals -> Yield

ks values updatedContext

We omit the implementation details of updateFields for brevity; suffice
to say that this function evaluates the expressions contained in yield and
writes their values in the symbol table.

In the case of Atomic, the rule must immediately be re-evaluated in
the current frame. This is obtained by recursively calling evalRule again
with the current rule whose body has been replaced by the continuation
returned by Atomic (which is simply the remaining code in the rule body).

eval_s b k (Context locals fields globals) dt -> Atomic z
(Context newLocals newFields newGlobals)

evalRule (rule dom z nop newLocals dt) newFields
newGlobals -> res

-----------------------------------------
evalRule (rule dom b k locals dt) fields globals -> res

A schematic representation of the interaction between tick and
evalStatement can be seen in Figure 4.3.
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4.2.5 Statement evaluation

Statement evaluation is implemented through the function eval s. This
function takes as input a sequence of statements or a single statement
and returns a different result depending on the statement semantics. This
function takes as input the current body of the rule, its continuation and
the context of the program made by the symbol tables of world, the
current entity, and the local variables of the rule.

Func "eval_s" -> stmt -> stmt -> ctxt -> <<float >> :
ExecutionResult

The base case of eval s is when the body of the rule is empty and there
is no continuation. This is the case when the whole rule body has been
executed and thus we have to return Done.

-------------------------------
eval_s nop nop ctxt dt -> Done ctxt

When the rule body is non-empty, then we must extract the first state-
ment in the statement sequence. We then combine the remaining body
of the rule with the current continuation into a single statement sequence
by using the function addStmt. This function has two cases: (i) both
the remaining body of the rule and the continuation are empty, or (ii)
the body of the rule is non-empty. The first case happens when we are
executing the last statement in the rule body. In this case we generate an
empty continuation containing nop. In the second case we simply com-
bine the remaining body of the rule and the continuation into a single
statement sequence.

a != nop
---------------------
addStmt a b -> a;b

-------------------
addStmt nop nop -> nop

Note that the case where only b is nop cannot be generated, because
executing a statement will always generate a non-empty continuation,
unless it is the last statement of the rule to be executed. This case is
captured by eval s (as shown above), which will return Done. When Done

is forwarded as result to tick, the body of the rule will be regenerated by
replacing it with the initial code of the rule (we reset the rule) as shown
in Section 4.2.3.

After the new continuation has been generated, we recursively call
eval s by giving it as input the first statement in the rule body.

addStmt b k -> cont
eval_s a cont ctxt dt -> res
-------------------------------
eval_s (a;b) k ctxt dt -> res
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We now proceed to show how the semantics of the statements is im-
plemented

Interruptible statements

Interruptible statements are statements that can pause the execution of
a rule: wait and yield. As briefly pointed out before, yield returns as
result a meta-data structure Yield containing the continuation of the rule
to resume at the next frame, the values to write in the domain fields, and
the current program context (the symbol tables). Since the arguments of
yield can be expressions, its semantics must evaluate them one by one
and return their values.

-------------------------
evalYield nil ctxt -> nil

eval expr ctxt -> v
evalYield exprs ctxt -> vs
-------------------------------------------
evalYield (expr :: exprs) ctxt -> v :: vs

evalYield exprs ctxt -> values
------------------------------------------------------
eval_s (yield exprs) k ctxt dt -> Yield k values ctxt

The statement wait in Casanova has double semantics: one waits for
a timer to elapse and the other until a certain condition is met. In
Metacasanova we do not have overloading, thus we are forced to use a
different name to model both cases of its semantics. We use wait for the
timed and when for the conditional version of the statement.

For the timed version we have two cases: (i) the timer has elapsed
and we can resume the execution of the rule at the next frame, or (ii) the
timer is still running, thus we have to suspend the rule. In the first case
we return Resume containing the current continuation of the rule body.
In the other case we have to suspend the rule, thus we return Suspend

where the continuation contains wait, whose timer has been updated by
removing dt, concatenated to the current continuation of the rule.

eval expr ctxt -> ($f t)
t > dt
<<t - dt>> -> t’
----------------------------------
eval_s (wait expr) k ctxt dt -> Suspend (wait $f t’);k

ctxt

eval expr ctxt -> ($f t)
t <= dt
----------------------------------
eval_s (wait expr) k ctxt dt -> Resume k ctxt



4.2. THE CASANOVA LANGUAGE 119

The implementation of when is analogous: if the condition is not met
then we simply return Suspend where the continuation contains when con-
catenated with the previous continuation. Otherwise we return Resume

containing the current continuation.

eval expr ctxt -> ($b true)
---------------------------------------------
eval_s (when expr) k ctxt dt -> Atomic k ctxt

eval expr ctxt -> ($b false)
------------------------------------------
eval_s (when expr) k ctxt dt -> Suspend (when expr);k

ctxt

Control strucutres

Casanova supports a conditional control structure (if-then-else), and
two iterative control structures (while-do and for-do). The only differ-
ence with the usual semantics of control structures lies in for-do, which
is like that of Python and F# as it takes as input a variable that is used
to iterate through the elements of a list.

The implementation of the control structures is similar to that of C--
with the difference that their body can be interrupted as well. At this
purpose, the semantics rules must generate an appropriate continuation
that will be handled by tick. The conditional control structure checks if
the condition is true or false to select the appropriate code block to exe-
cute. After that it returns an Atomic result containing the concatenation
of the selected code block with the current continuation of the rule. This
is because the evaluation of the condition is an atomic process, i.e. must
not pause the execution of the rule. The first statement of the selected
code block will be executed immediately after.

eval cond ctxt -> $b true
---------------------------------------------
eval_s (if cond then b else c) k ctxt dt -> Atomic b;k

ctxt

eval cond ctxt -> $b false
---------------------------------------------
eval_s (if cond then b else c) k ctxt dt -> Atomic c;k

ctxt

while-do follows the same behaviour described in C--, thus if the con-
dition is false we simply skip the loop, otherwise we execute the body
followed by the same loop. This time we must encapsulate the code built
after the evaluation of the condition in an Atomic result, because the
body must be immediately evaluated after checking the condition, as for
conditionals.
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eval cond ctxt -> $b true
----------------------------------------------
eval_s (while cond b) k ctxt dt -> Atomic b;(( while cond

b);k) ctxt

eval cond ctxt -> $b false
----------------------------------------------
eval_s (while cond b) k ctxt dt -> Atomic k ctxt

The semantics of for-do loop are quite different than what we had defined
for C--. The loop defines a variable that is used to iterate each element
of a list. The list can be given directly or be an expression that returns
a list. Thus, we have to first add to the local variables the one defined
in the loop, then evaluate the expression for the list, and finally evaluate
the body of the loop itself. Note that lists here are considered lists in the
Casanova language and not lists of Metacasanova (thus they are values
in Casanova and not meta-data structures).

eval expr ctxt -> ($l nil)
------------------------------------------
eval_s (for v in expr b) k ctxt dt -> Atomic k ctxt

eval expr (Context locals e w) -> ($l (x :: xs))
locals add var x -> updatedLocals
------------------------------------------
eval_s (for ($ var) in expr b) k (Context locals e w) dt

-> Atomic b;((for ($ var) in ($l xs) b);k) (Context
updatedLocals e w)

The base case of the evaluation is when the list is empty. In this case
we simply return Atomic containing the current continuation because the
loop can be skipped. The recursive case is when the list is non-empty:
in this case we first evaluate the expression of the list, then we add the
variable defined in the loop to the local variables, assigning it the value
of the head of the list. We finally return an Atomic that contains a
continuation where the body of the loop is concatenated to the loop itself
and the current continuation. Atomic will also contain a program context
where the locals now contain the new variable defined in the loop.

Note that, for simplicity, we do not have code block scoping like in
C--. This feature can be implemented by replacing the local symbol table
with a list of tables as previously shown in Section 4.1.1.

4.3 Evaluation

In this section we compare the runtime performance of a program written
for C-- and Casanova implemented in Metacasanova with their equiva-
lent implementation in Python. Moreover, we evaluate the length of the
language definition in Metacasanova with respect to their hard-coded
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implementation. In total we ran one test for several executions of a pro-
gram written in C-- against the same implementation in Python, and five
tests for a program in the meta-compiled version of Casanova against the
Python implementation by varying the entity number. The details of the
setup are described below.

4.3.1 Experimental Set-up

We evaluated C-- and the meta-compiled Casanova runtime performance
against an equivalent implementation of equivalent programs in Python.
C-- was tested running a program to compute the factorial, while we
implemented a program in Metacasanova where some entities patrol an
area according to pre-defined checkpoints. In the case of Casanova, this
language was chosen based on its use in game development: Python has
been used extensively in several games such as Civlization IV [43] and
World in Conflict [66] because of the native support for coroutines that
allow to implement a behaviour similar to that of Casanova rules. In the
case of C--, we still use Python because, as we discuss further ahead, the
behaviour of this language is much more similar to that of a dynamic
language (the name was chosen mainly because of a lack of creativity
from the author than because of its similarity with C). As for the code
length, we compare the length of the semantics definition of C-- with a
hard-coded implementation, while we compare the definition of Casanova
in Metacasanova with respect to its hard-coded compiler written in F#.

For Casanova we use a program where a Casanova entity patrols a
set of checkpoints. When the entity reaches the position of a checkpoint
it will move to the next one. The same code has been re-implemented
in Python using coroutines to simulate the interruption mechanism of
rule statements that is built-in in Casanova. The code generated by the
version of Casanova implemented in Metacasanova was imported in a
C# program for Monogame but tested in isolation to actually measure
only the running time of the logic, which would otherwise be influenced
by the rendering time and the overhead of Monogame itself. We run
the Casanova program and the Python version with a variable number
of entities (that will be updated) ranging from 100 to 250. For each
execution we measure the time taken to update them all for each frame,
and we average this time on the number of total frames. As for the code
length of the language definition, we measure the length of the language
specification in Metacasanova and we compare it with the relative parts
of code in the hard-coded version of the compiler.

This code has also been tested by including it in a Monogame project.
The program code generated with the Metacompiler updates the logic of
the entities that are drawn using the Monogame framework. In this way
the logic of the game is written in the meta-compiled version of Casanova
and the external framework is used only for the graphical part. This
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has the advantage that the same code can be re-used in another game
engine that is able to run .NET code (for instance Unity). A schematic
representation of the integration with Monogame is shown in Figure 4.4

4.3.2 Performance

From Table 4.3 we see that the implementation of Casanova 2.0 language
in Metacasanova is almost 5 times shorter in terms of lines of code than
the hard-coded implementation of the Casanova compiler written in F#,
while the C-- implementation is 11 times shorter (Table 4.4). We believe it
is worthy noticing that structures with complex behaviours, such as wait
or when, require hundreds of lines of codes with a standard approach
(the code lines to define the behaviour of the structure plus the support
code to correctly generate the state machine), while in the meta-compiler
we just need tens of lines of codes to implement the same behaviour.
Moreover we want to point out that the previous Casanova compiler was
written in a functional programming language: these languages tend to
be more synthetic than imperative languages, so the difference with the
same compiler implemented in languages such as C/C++ might be even
greater.

The readability with respect to the hard-coded compiler code is also
improved: we managed to implement the behaviour of synchronization
and timing primitives almost imitating one to one the formal semantics
of the language definition. In the hard-coded compiler implementation
for Casanova 2.0 the semantics are lost in the code for generating finite
state machines. Just for comparison, Figure 4.5 shows the code from
the Casanova hard-coded compiler to generate part of the state machine
necessary to simulate the behaviour of the timed version of wait (the
code generation of when has about the same size).

The performance results are shown in Table 4.2. We see that the
generated code has performance on the same order of Python, although 3
times slower. This gap is accentuated in the case of C--, which is 50 times
slower than Python, because in the case of a simple imperative program,
where the use of virtual tables for polymorphic types (as coroutines) is
limited, the speed of Python greatly increases.

4.3.3 Discussion

Even though the size of the code required to implement the language
has been drastically reduced (almost 1/5 shorter), performance dropped
dramatically. The problem lies in the fact that, in order to implement
a memory model, in the current version of Casanova we must rely on
dynamic access to a symbol table at runtime. Indeed, when we define a
new variable or read its value, the semantics contain a rule defining the
insertion or the lookup of the variable. Metacasanova generates the code
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Figure 4.4: Integration of meta-compiled Casanova in Monogame
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Figure 4.5: Code generation of wait in the Casanova compiler
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Meta-compiled Casanova

Entity # Average update time (s) Frame rate

100 0.00349 286.53

250 0.00911 109.77

500 0.01716 58.275

750 0.02597 38.506

1000 0.03527 28.353

Python

Entity # Average update time (s) Frame rate

100 0.00132 756.37

250 0.00342 292.05

500 0.00678 147.54

750 0.01087 91.988

1000 0.01408 71.002

Table 4.2: Patrol sample evaluation

Meta-compiled Casanova

Module Code lines

Data structures and function definitions 40

Query Evaluation 16

While loop 4

For loop 5

If-then-else 4

When 4

Wait 6

Yield 10

Additional rules for Casanova program evaluation 40

Additional rules for basic expression evaluation 201

Total: 300

Casanova 2.0 compiler

Module Code lines

While loop 10

For-loop and query evaluation 44

If-Then-Else 15

When 11

Wait 24

Yield 29

Additional structures for rule evaluation 63

Structures for state machine generations 754

Code generation 530

Total: 1480

Table 4.3: meta-compiler vs standard compiler
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Statement Metacasanova C#

if-then-else 4 103

while 7 73

For 11 81

C-- Python

1.26ms 2.36 · 10−2ms

Table 4.4: Code length implementation of C-- and run-time performance

able to run those rules, but the memory operations are thus executed at
runtime as dictionary operations.

In order to encode a symbol table in the meta-compiler in the current
implementation (used for example to store the variables defined in the
local scope of a control structure or to model a class/record data struc-
ture), we are left with two options: (i) define a custom data structure
made of a list of pairs, containing the field/variable name as a string and
its value, in the following way

Data "table" -> List[Tuple[string , Value ]] : SymbolTable

or (ii) use a dictionary data structure coming from .NET, such as
ImmutableDictionary 1, which was the implementation choice for Ca-
sanova. In both cases, the behaviour of the language implemented in
Metacasanova will be that of a dynamic language, because whenever the
value of a variable or class field must be read, the evaluation rule must
look up the symbol table at run time to retrieve the value.

The same applies to type checking: in Section 4.1.3 we showed the
type rules that check the types of a C-- program. In statically-typed
languages, type checking is usually performed at compile time and not
at runtime. However, in this case Metacasanova will again generate the
code to run the type rules, but the actual execution is performed when
the program is run, thus the behaviour of C-- is more similar to that of a
dynamic language rather than a static language (and its performance as
well).

This issue is caused by the fact that, in the current state of Metacasa-
nova, the meta-type system is unaware of the type system of the language
that is being implemented in the meta-compiler. This means that, as it is,
the meta-language is unable to define a statically-typed language. This is
not a problem limited to Metacasanova but to all meta-compilers having
a meta-type system that does not allow embedding of the object language
type system.

The same applies for the lookup: the access to symbol tables needs
not to be dynamic because the symbol table does not grow when the

1For a motivation about the choice of the dictionary implementation we point the
reader to Section 5.7
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program runs, thus the access to a specific variable could be directly
inlined in the code. For example, if we want to access variable x, which
is the third entry of the symbol table, we will always perform the same
lookup. Thus, this lookup could be simply inlined as an access to the
third element of the symbol table. An analogous situation happens for
Casanova entities: their structure does not change at runtime, so if we
access, for instance, a field of an entity and that is the third one, then we
always perform a lookup on the third element of the symbol table, and
this can be inlined directly as well.

4.4 Summary

In this chapter we showed two examples of how to use Metacasanova to
implement programming languages. We started by showing how to imple-
ment a small imperative language called C--. We showed an implementa-
tion of its semantics and then of its type system. Later we re-implemented
the Casanova language, a DSL for game development. We showed how
to implement the semantics of interruptible code, which in Casanova had
been implemented with state machines, by using continuation-passing
style. Metacasanova implementation of Casanova results to be 5 times
shorter than that of the hard-coded compiler for Casanova written in F#.
In the case of C-- the gap in terms of lines of code is even larger, being
the code for its semantics 11 times shorter than a hard-coded implemen-
tation. However, the code performance drops dramatically: testing the
meta-compiled version of Casanova against Python results in its code be-
ing 3 times slower (although on the same order of magnitude), while the
C-- code is even 50 times slower. The cause of this is that, even thought
these languages could be statically-typed, the rule evaluation performs
the lookup of variables and types at runtime. This cannot be changed
with the Metacasanova language abstractions presented so far because
the meta-type system of Metacasanova is unaware of the types of the
embedded language (i.e. the language that is being implemented in Me-
tacasanova). In the next chapter we will show a language extension for
Metacasanova that relies on Functors to embed the type system of lan-
guages implemented in Metacasanova in its type system, and to inline
the access to variables at compile time.
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Chapter 5

Metacasanova Optimization

First you learn the value of
abstraction, then you learn
the cost of abstraction, then
you’re ready to engineer.

Kent Beck

In Chapter 3 and 4 we have presented the Metacasanova metacompiler
and its meta-language and shown how to implement with it a small im-
perative language, C--, and a DSL for game development, Casanova. The
performance analysis showed that, although the development effort for
the language compilers was greatly reduced by using Metacasanova, this
has come at the cost of performance. The performance decay is due to the
fact that the meta-type system of Metacasanova is unaware of the type
system of C-- or Casanova. This requires all the type checking and access
to data structures to be performed at runtime, thus making a statically-
typed language exhibit the behaviour and performance of dynamically
typed languages. In this chapter we propose a language extension [38] for
Metacasanova that is designed to overcome the problem of performance
decay and dynamic checks. In this context we use the term embedded
language to refer to a language that is being implemented in Metacasa-
nova and embedded program for a program implemented in an embedded
language.

5.1 Language extension idea

The experimental results from Chapter 4 showed that the performance of
Metacasanova is strongly affected by the dynamic type checks and symbol
table access at runtime. This is necessary because Metacasanova gener-
ates the code necessary to evaluate the semantics of accessing the value
of a variable in the symbol table that mimics the behaviour of rules in

129
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natural semantics, but such evaluation is performed at runtime. However
the runtime evaluation is necessary only because of the limitations of the
language presented so far, as Metacasanova is not able to build a symbol
table while compiling the meta-program. This should not be the case
since

1. The symbol table of a statically-typed language does not grow at
runtime because it is built during the compilation.

2. The position of an entry for a variable in the symbol table does not
change during the program execution, thus every time we perform
an access to the same variable, we access the very same element in
the symbol table.

Analogously, type checking in a statically-typed language is performed
at compilation time rather than at runtime, which happens in dynamic
languages such as Python. Metacasanova is forced to do runtime type
checking because, at compilation time, the metacompiler only checks for
the meta-types, i.e. the types of the language abstractions defined in
the meta-language, but not for the program structures of the embedded
program itself. This would require to be able to embed the type system
of the embedded language into the meta-type system of Metacasanova.
In this way the type checker of Metacasanova would be able to check at
the same time the types of both the meta-program and of the embedded
program.

To better clarify what stated so far we show in the following section
an example of what happens when accessing the field of a Casanova entity
with the implementation given in Chapter 4. We then proceed to show
the idea of a possible solution to overcome the performance decay.

5.1.1 Field access in Casanova

As we showed in Section 4.2.2, an entity in Casanova embedded in Meta-
casanova is represented via a map where the key is the field name and the
value is the value currently stored in the field. This representation is very
similar to that of records or classes. Let us consider the following entity
representing a physical body consisting of a Position and a Velocity in
a 2D space:

type PhysicalBody = {
Position : Vector2
Velocity : Vector2

}

and the following rules for PhysicalBody

rule Position = Position + Velocity * dt

rule Position =
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Field Value

Position 10

Velocity 10

Table 5.1: Meta-representation of the physical body

Field Value
⇒ Position 10,10

Velocity 10,0

Field Value
Position 10,10

⇒ Velocity 10,0

Field Value
⇒ Position 11,10

Velocity 10,0

Table 5.2: Memory access in the first rule of the Physical Body. We assume
dt = 0.1 and Velocity = (10,0)

if Position.X > 500f then
yield new Vector2 (500f,Position.Y)

elif Position.X < 0f then
yield new Vector2 (0f,Position.Y)

elif Position.Y < 0f then
yield new Vector2(Position.X,0f)

elif Position.Y > 500f then
yield new Vector2(Position.X,500f)

The first rule simply updates the position using the Euler approxima-
tion of the differential equation for the velocity

v(t) =
ds(t)

dt

while the second rule ensures that the physical body does not exit a
specific area, which could represent the playable area in a 2D game.

Assuming that the physical body is in position (10, 10), it is repre-
sented in Metacasanova via a map as shown in Table 5.1.
The Metacasanova semantics rule that evaluates the first Casanova rule
will evaluate the expression in its body by accessing respectively the field
Position and Velocity to compute the expression value. It then stores
the expression value in Position as shown in Table 5.2.

As for the second rule, assuming that Position.Y > 500f, the rule
will access Position three times: (i) to evaluate the expression in the
conditional, (ii) to read Position.Y when instantiating a new vector,
and (iii) to write the new vector in Position. This situation is shown in
Table
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Field Value

⇒ Position 501 ,10
Velocity 10,10

Field Value

⇒ Position 501, 10
Velocity 10,10

Field Value
⇒ Position 500,10

Velocity 10,10

Table 5.3: Memory access in the second rule of the Physical Body. We assume
Position.X = 501

It should now appear clear that every time we need to read or write
Position we access the first element of the table, while for Velocity

we always access the second. In the following snippet we provide an
alternative version of the code for the Casanova rules above that shows
what really happens in Casanova embedded in Metacasanova :

rule Position = PhysicalBodyTable [0] + PhysicalBodyTable
[1] * dt

rule Position =
if PhysicalBodyTable [0].X > 500f then

yield new Vector2 (500f,PhysicalBodyTable [0].Y)
elif PhysicalBodyTable [0].X < 0f then

yield new Vector2 (0f,PhysicalBodyTable [0].Y)
elif PhysicalBodyTable [0].Y < 0f then

yield new Vector2(PhysicalBodyTable [0].X,0f)
elif PhysicalBodyTable [0].Y > 500f then

yield new Vector2(PhysicalBodyTable [0].X,500f)

Let us now assume that the program provides an invalid value for the
update of Position:

rule Position = "(10 ,10)"

What would happen in embedded Casanova is that the type checker eval-
uates the type of the expression in the rule body, obtaining string. This
type is then compared with that of Position, which is Vector2, and
at this point an error would be reported. Again, this would require at
runtime to access the first element of a symbol table containing type in-
formation about the entity fields. Note that all these lookups are not
array accesses but rather dictionary accesses.
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5.1.2 Inlining the entity fields

From the example above we can notice that, when the program runs,
the symbol table used to represent a Casanova entity does not change,
nor its entries change position. This means that every time we read or
write the same field we perform the same access in the table. In the
implementation provided in Section 4.2.2 this access requires the execu-
tion of a Metacasanova rule that is able to traverse the dictionary used
for the entity symbol table and return the stored value. The traverse is
performed every time, regardless of the fact that the field we are trying
to access is indeed the same. Moreover, as it was also stated in Section
4.3, we are looking at the very optimistic scenario where we make use of
external .NET dictionaries to actually model the entity. If one had to
rely solely on language abstractions defined in Metacasanova the symbol
table should be modelled as a list of pairs containing field names, rep-
resented as strings, and meta-data structures representing values in the
embedded language, introducing even a greater overhead. The physical
body modelled in such way would then look like

[(" Position " ,(10,10)) ,("Velocity ",(10,0)]

Accessing Position would then be performed by a Metacasanova rule
that looks for the correct field name and stops when the field in this tuple
has been reached:

name = fieldName
----------------------------------
getField name ((fieldName ,value) :: t) -> value

name <> fieldName
getField name t -> v
----------------------------------
getField name ((fieldName ,value) :: t) -> v

However the traversal of the tuple would always be the same when looking
for a specific field, namely for Position the first Metacasanova rule will
always be executed, while for Velocity the first time the second rule will
be executed, which in turn recursively evaluates the remaining part of the
list. The recursive call will then trigger the first rule at the second step.
That being said, since the table does not grow and the access patterns are
always the same, we could represent an entity as a nested tuple of pairs,
in the fashion of Church encoding [60, 89], and inline in the code fst

PhysicalBodyTable for Position and fst(snd PhysicalBodyTable) for
Velocity whenever we require to access the respective fields, without
repeating the same traversal every time. In this way the entity would
look like:

PhysicalBodyTable = (" Position " ,(10,10)) ,((" Velocity
",(10,0)) ,())
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and thus fst PhysicalBodyTable (access to Position) would return
("Position",(10,10)) and fst(snd PhysicalBodyTable) (access to
Velocity) would return ("Velocity",(10,0)).

In the following sections we present the language extension required
to allow this form of inlining and we show their usage implementing the
example above.

5.2 Modules and Functors

In order to implement the idea about inlining symbol table access and
embed the type system of a language inside Metacasanova type system we
extend the language with functors and modules. Functors are a concept
borrowed from category theory that here are used in a more narrow sense.
Formally a category is defined as follows [13, 76, 88]:

Definition 5.1. A category C is made of

• A collection of objects.
• A collection of arrows or morphisms between objects. Each mor-

phism starts from a source object and ends into a target object.
• For every triplet of objects, there exists a composition operation
◦, such that, given the morphisms f : a → b and g : b → c then
g ◦ f : a→ c.

• The composition operation is associative, i.e. f ◦(g◦h) = (f ◦g)◦h.
• For each object x There exists a morphism 1x : x → x, called

identity, such that for every morphism f : a→ x and g : x→ b we
have that f ◦ 1x = f and g ◦ 1x = g.

Functors are mapping between two categories defined as follows:

Definition 5.2. Given two categories C1 and C2, a functor F from C1 to
C2 is a mapping such that:

• Each object x of C1 is mapped to an object F(x) of C2.

• Each morphism f : a → b of C1 is mapped to a morphism F(f) :
F(a)→ F(b) such that

– F(1x) = 1F(x).

– For all morphism f : a → b and g : b → c of C1 we have that
F(g ◦ f) = F(g) ◦ F(f).

Informally, functors are transformations between categories that preserve
the identity and the associativity properties. In the scope of program-
ming languages the term functor is used with a more narrow sense: they
usually define transformations between types. These transformations are
functors (actually endofunctors since they transform elements of the cat-
egory of types in elements of the same category) at all effects but not all
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functors from category theory coincide with functors in a programming
language. Popular programming languages that provide functors in this
sense are Haskell with Type Classes [55, 59, 67, 101, 109] and Caml with
Modules [64, 85, 111]. Functors in Metacasanova are no different: they
define transformations between types. Modules are simply collections of
function and functor declarations grouped together under the same name
that can be used as types themselves.

5.2.1 Language Extension

Modules in Metacasanova can be defined through the keyword Module

followed by a module name and series of construction parameters that
are used to create an instance of the module. Constructions parameters
have a form similar to parameters in normal functions with the difference
that, besides specifying the type, we can also specify an identifier for that
parameter. The special symbol * (kind) can be used if any type is suitable
for that specific argument. Elements of a module can be accessed with
the . access operator.

Module "M" => ma1 : t1 => ma2 : t2 => ... => ma_k : tk :
M {

Func "f1" -> ...
Func "f2" -> ...
Func "f_k" -> ...

...
}

Functors are defined similarly to function but using the double arrow
instead of the single arrow:

Functor "foo" a1 => a2 => ... => an : T

Moreover, since the result of calling a functor is a type, functors can be
used wherever a type annotation is required, for example in the declara-
tion of a function

Func "bar" b1 -> b2 -> ... -> (foo a1 a2 ... an) -> ... :
U

Functors are evaluated through rules whose behaviour is identical to those
used to evaluate functions. The difference lies in the fact that results of
functors are evaluated at compile time rather than runtime. Functors
results are evaluated by an interpreter that mimics the semantics of rules
in natural semantics, in the fashion of the semantics used in the code
generation explained in Section 3.6. Since the evaluation is performed
at compile time, all the values passed to a functor call must be known
when compiling the meta-program. This means that the arguments of a
functor call can be either types or constants. When an evaluation rule
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Figure 5.1: Compiler architecture with functor interpreter

for a functor is called, this is run through the interpreter and a module
instance is returned as result. Figure 5.1 shows the steps performed by
the new compiler architecture to include functors interpretation. Functors
can be called both in the premises of rules for functors and for rules that
evaluate regular functions. In the latter case, the premise will simply
instantiate the module that can then be used within the rule itself. This
process is shown in Figure 5.2: the functor call is processed by selecting
the possible candidate rules to execute it, in the same fashion of what is
done for regular functions. At this point the interpreter runs the rules
and the result of the first one that succeeds is taken. The result of such
rule is a module instantiation. The module instantiation is bound to the
variable contained in the result of the premise. From that point on, the
module instance can be referred by the caller rule.

In the following sections we show how to implement the mechanism
of inlining for the record getter and setter described in Section 5.1 that
makes use of the compile-time interpretation of functors.

5.3 Record implementation with modules

In Section 5.1.2 we showed how Casanova entities can be expressed, at
meta-language level, as a tuple of field names and values. We also showed
that getters and setters always perform the same steps when looking up
for the same field because the entity structure does not change at runtime.
In this section we proceed to give an functor-based implementation of
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Figure 5.2: Functor processing

Casanova entities. We refer to this implementation as “Record”, since
a Casanova entity is simply a record from the point of view of the data
representation. Moreover, since this solution works in general for any
data structure that is isomorphic to a record. From now on we also use,
as example, the physical body entity described in Section 5.1.1.

A module for records simply contains a functor that returns the type
of the record. This functor, in general, can return any type since the type
of the record can be “customized” and depends on the specific definition
given by the programmer (thus it cannot be known beforehand). For this
reason we use kind as return type for this functor. The functor itself is
parameterless since nothing is required to generate the type of a record.

Module "Record" : Record {
Functor "RecordType" : * }

The data representation of the record will be a tuple as shown in
Section 5.1.2. For this purpose, we need two functors that are able to
represent the type of a record in a recursive way with one being the type
of an empty record (a record with no fields) and another a record field
followed by the rest of the record representation. The functor for the
empty record simply returns the type of the record module, while the
functor to represent a record field takes as input a string, representing
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the name of the field, kind because a record field can have any type, and
a Record which represents all the other fields coming after the current
one.

Functor "EmptyRecord" : Record
Functor "RecordField" => string => * => Record : Record

After declaring the functors necessary to build a record, we proceed to
define their implementation in the form of rules. The functor for an empty
record simply generates a module containing a function cons, that is the
constructor for the record, that simply returns unit (because an empty
record does not contain any field). Consistently, the functor RecordType

implemented by the module will simply return unit as type. Note that
a module instantiation must implement at least all the declarations of
the module (like for an interface), but can add other declarations and
implementations that are not shared by all the module instantiations.
For example cons for an empty record is different than the one for a
non-empty one.

-------------------
EmptyRecord => Record {

Func "cons" : unit

------------------
RecordType => unit

------------------
cons -> ()

}

A record field must be constructed through a functor that takes the
field name, the type of the field, and the type of the rest of the record.
This functor will construct the type of a record as a Tuple, where the
first element is the type of the current field and the second the type
of the rest of the record. The constructor of the record field will be a
function that takes as input an argument of the type of the current field,
a tuple representing the remaining part of the record and returns a tuple
combining the current field and the rest of the record.

------------------
RecordField name type r = Record {

Func "cons" -> type -> r.RecordType : RecordType

---------------------------------------
RecordType => Tuple[type ,r.RecordType]

-------------------
cons x xs -> (x,xs)}



5.3. RECORD IMPLEMENTATION WITH MODULES 139

Consider now the physical body representation given above. We show
how to use the functors we have just defined to build an instance of a
physical body. First of all we defined a functor PhysicalBodyType that
returns a Record.

Functor "PhysicalBodyType" : Record

The final representation of the type that should be returned by
PhysicalBodyType is Tuple[Vector2,Tuple[Vector2,unit]] because the
field Position and Velocity have type Vector2. Note that Vector2 can
be trivially implemented in Metacasanova as a tuple containing two float-
ing point values. Here we use this type assuming that has already been
defined above. The same applies to unit, which can be defined as a
meta-data with no arguments.

The rule to evaluate PhysicalBodyType will call in its premises
EmptyRecord and RecordField to generate the type of the tuple appro-
priately:

EmptyRecord => empty
RecordField "Velocity" Vector2 empty => velocity
RecordField "Position" Vector2 velocity => body
----------------------------
PhysicalBodyType => body

Let us now analyse in detail what the premises generate: the first
premise will generate an instance of EmptyRecord and bind it to the
variable empty. The instance of this module is parameterless and thus
will always be the same every time the functor is invoked. The second
premise will instantiate RecordField by using the string "Velocity" as
field name, Vector2 as field type, and empty as argument for the re-
maining part of the record (there is no other field after Velocity in the
physical body). The instantiation of RecordField produces a rule for
the functor RecordType. According to the definition above this functor
generates Tuple[type,r.RecordType]. By replacing the argument values
provided in the premise, we have

type := Vector2
r := empty := EmptyRecord

Thus r.RecordType uses the functor RecordType in the instance of
EmptyRecord which returns the type unit (the call can be seen as
empty.RecordType). Thus r.RecordType can be replaced with unit,
thus leading to Tuple[Vector2, unit]. Thus the rule for the functor
RecordType generated in the module returned by the second premise will
be:

-----------------------
RecordType => Tuple[Vector2 ,unit]
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By replacing the argument variables with the values provided in the
second premises we can also get the declaration and rule for cons. By
replacing again type and r.RecordType as done before, we have that the
declaration for cons in the current instance of the module becomes:

Func "cons" -> Vector2 -> unit: Tuple[Vector2 ,unit]

while the corresponding rule will be generated as

--------------------
cons x xs -> (x,xs)

The complete module instance will then look like:

velocity := Record {
Func "cons" -> Vector2 -> unit: Tuple[Vector2 ,unit]

-----------------------
RecordType => Tuple[Vector2 ,unit]

--------------------
cons x xs -> (x,xs)

}

The third premise calls RecordField with

name := "Position"
type := Vector2
r := velocity

Now in the definition of the RecordField module again the functor
RecordType returns Tuple[type,r.RecordType]. Now r.RecordType can
be rewritten as velocity.RecordType that returns (see the instantiation
of velocity above) Tuple[Vector2,unit]. Thus RecordType for the field
Position will be instantiated as

-----------------------
RecordType => Tuple[Vector2 ,Tuple[Vector2 ,unit]]

Analogously the declaration of cons will be instantiated as

Func "cons" -> Vector2 -> Tuple[Vector2 ,unit]: Tuple[
Vector2 ,Tuple[Vector2 ,unit]]

while its rule is the same of the second premise. The full module instance
will then be

body := Record {
Func "cons" -> Vector2 -> Tuple[Vector2 ,unit]: Tuple[

Vector2 ,Tuple[Vector2 ,unit]]

-----------------------
RecordType => Tuple[Vector2 ,Tuple[Vector2 ,unit]
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--------------------
cons x xs -> (x,xs)

}

which is returned by the functor PhysicalBodyType. In order to build an
instance of the physical body, we define a function that returns a value
of type PhysicalBodyType. which in turn is simply Tuple[Vector2,

Tuple[Vector2,unit]):

Func "PhysicalBody" : PhysicalBodyType.RecordType

-----------------------
PhysicalBody -> PhysicalBodyType.cons ((10.0 ,10.0)

,((10.0 ,0.0) ,()))

The rule creates a physical body in position (10, 10) moving at velocity
(10, 0).

One of the main arguments in favour of using functors was that they
should allow to embed the type system of the embedded language in
the meta-type system of Metacasanova. This means that, at compile
time, the meta-compiler should be able to detect a physical body that is
constructed in the wrong way. Let us then assume that we define another
function to build a physical body where the programmer uses a scalar for
the velocity instead of a vector:

Func "WrongPhysicalBody" : PhysicalBodyType.RecordType

-------------------------------------
WrongPhysicalBody -> PhysicalBodyType.cons ((10.0 ,10.0)

,(10.0 ,()))

What happens is that PhysicalBodyType.RecordType is equal to
Tuple[Vector2,Tuple[Vector2,unit]]. At this point the type checker
of Metacasanova will successfully match the first element of the tuple re-
turned by the rule, which is correctly provided as a value of type Vector2,
but will fail to check the second, which is double where it expects a
Vector2. This check happens statically, rather than dynamically at run-
time as was the case with the implementation based on dictionaries in
Section 4.2.2.

5.4 Getting Values from Record Fields

Getting a value from a record field requires defining a module Getter

containing a functor GetField that returns the type of the field that we
need to get. This type will be used as the return type of the function get

that is able to get that specific field. This function is also contained in
this module and takes as argument the record from which we are getting
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the value and returns, as said above, the value of the field. The module
Getter is built using the name of the field that is able to read and the
record to read from.

Module "Getter" => (name : string) => (r : Record) :
Getter { ... }

The functor GetType returns kind because in general the type of the
field of a record is arbitrary. The function get uses in its declaration
the functor RecordType to determine the type of the record to use and
GetType to determine the type of the field to read. The complete module
will look like

Module "Getter" => (name : string) => (r : Record) :
Getter {

Functor "GetType" : *
Func "get" -> (r.RecordType) : GetType

}

The getter has two implementations of the rule that instantiates the
Getter module: one is used when the current field in the module tu-
ple is the one we are trying to read, and the other that is able to build
the correct getter if the field is in the remaining part of the record. The
first happens when the name of the current field is the same as the field
name provided as argument of the functor GetField. In this case we have
the following rule for the functor:

Functor "GetField" => string => Record : Getter

name = fieldName
thisRecord := RecordField name type r
--------------------------------------
GetField fieldName (RecordField name type r) => Getter

fieldName thisRecord {

---------------
GetType => type

---------------
get (x,xs) -> x

}

Listing 5.1: Getting a field (case 1)

The functor GetType simply returns the type of the current record field,
because it is the correct field to read, and get returns the first element
of the record tuple, which represents the value stored in the field itself.

When the field we are trying to read is not the one we are currently
examining in the record tuple, we must build a getter functor that is able
to recursively get the field from the remaining part of the record. At
this purpose, we have to extend the Getter with an additional functor
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GetAnotherField that returns a module instance capable of reading the
value from the correct field in the remaining part of the record and its
type. The implementation of the rule for this case is the following:

name <> fieldName
thisRecord := RecordField name type r
-------------------------------------
GetField fieldName (RecordField name type r) => Getter

fieldName type thisRecord {
Functor "GetAnotherField" : Getter

GetField fieldName r => otherGetter
------------------------------
GetAnotherField => otherGetter

GetAnotherField => g
---------------------
GetType => g.GetType

GetAnotherField => getter
getter.get xs -> v
------------------
get (x,xs) -> v

}
}

Listing 5.2: Getting a field (case 2)

The rule for the functor GetAnotherField simply calls recursively the rule
for GetField with the remaining part of the record. If the next field is the
correct one then this time we will use the rule in Listing 5.1, otherwise
the rule in Listing 5.2 will be re-applied until the correct field is reached.
The functor GetType simply calls GetAnotherField to obtain the module
instance necessary to get the field from the rest of the record, and then
calls the functor GetType from that instance. Finally, the function get

will again use GetAnotherField and then call the get function from the
getter returned by GetAnotherField with the remaining part of the record
tuple. This function call will return the desired value that will be used
also as result of the current get.

Let us now consider again the physical body implemented with func-
tors in Section 5.3 and let us assume that we want to get the value of
the field Position. We define a function getPos that takes as input a
physical body and returns Vector2. This function will use GetField in
its premises to generate the getter for Position and will then call the get

function from the generated module instance.

Func "getPos" : Vector2

GetField "Position" PhysicalBodyType => getter
PhysicalBody -> body
getter.get body -> p
-----------------
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getPos -> p

Listing 5.3: Getter for the Position field

Note that in the code above we are using the functor PhysicalBodyType

and the function PhysicalBody defined in Section 5.3. Now let us analyse
step-by-step what happens when we call getPos. The first premise will
call the functor GetField with

fieldName := "Position"
r := PhysicalBodyType := RecordField "Position" Vector2 (

RecordField "Velocity" Vector2 EmptyRecord)

At this point the rule for GetField will deconstruct RecordField in its
conclusion by means of pattern matching and set

name := "Position"
type := Vector2
r := RecordField "Velocity" Vector2 EmptyRecord

Since name = fieldName we fall in the case in Listing 5.1. Thus we
instantiate the module Getter by setting the construction arguments to

name := "Position"
r := RecordField "Position" Vector2 (RecordField "

Velocity" Vector2 EmptyRecord)

In this module instance the functor GetType returns type := Vector2

and get returns the first element of the record tuple. At this point, the
third premise will call get from this module instance by passing the record
tuple ((10.0,10.0),((10.0,0.0),())), which in turn returns correctly
(10.0,10.0).

Now let us assume that we want to retrieve the value of ”Velocity”
instead. We define an analogous function getVel as follows

Func "getVel" : Vector2

GetField "Velocity" PhysicalBodyType => getter
PhysicalBody -> body
getter.get body -> v
-----------------
getVel -> v

This time the functor GetField is called with

fieldName := "Velocity"
r := PhysicalBodyType := RecordField "Position" Vector2 (

RecordField "Velocity" Vector2 EmptyRecord)

thus the rule in case 2 is triggered. This rule will generate an instance of
Getter
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fieldName := "Velocity"
type := Vector2
r := RecordField "Velocity" Vector2 EmptyRecord

This rule will generate a module containing the auxiliary functor
GetAnotherField that is capable to retrieve the correct field in the re-
maining part of the record. The rule that processes GetAnotherField

will call, in its premise, GetField with

fieldName := "Velocity"
r := RecordField "Velocity" Vector2 EmptyRecord

Since now the name of the field of the getter coincides with the name
of the field in RecordField, this premise will now trigger the rule in
Listing 5.2 that in turn generates an instance of GetField containing the
following:

Func "get" -> Tuple[Vector2 ,unit] : Vector2

-------------------
GetType => Vector2

----------------
get (x,xs) -> x

Listing 5.4: Getter for Velocity generated by GetAnotherField

This module instance will be the one returned by the rule of
GetAnotherField. The rule of the functor GetType for Velocity will
use GetAnotherField to retrieve the correct field type using the module
instance generated in Listing 5.4 and return it (which is Vector2). The
rule for the function get will use GetAnotherField to call the the get

function from Listing 5.4 passing the second element of the record tuple
as argument and returns the result of this function call.

Note that the module instantiation will be again performed at compile
time, thus the only operations performed at runtime are the calls to the
get functions contained in the module instantiations.

5.5 Setting Values of Record Fields

The setter module is analogous to the getter, except that this time the
module must generate a function that, in addition to the record, takes
as input the value to write in the field. This function returns a modified
copy of the record tuple where the value associated to the field has been
changed. For this purpose we need a module containing a functor SetType
that returns the type of the field to set. This functor will be used to build
the declaration of a function set that is able to set the specified field.
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Module "Setter" => (name : string) => (r : Record) :
Setter {

Functor "SetType" : *
Func "set" -> r.RecordType -> SetType : r.RecordType

}

The declaration of the function set uses r.RecordType to define the
type of the record argument, SetType to define the type of the field to
set, necessary for the argument containing the value to set, and returns
r.RecordType, which is the modified version of the record.

Analogously to the getter, we need a functor that instantiates Setter
and has two different implementations of the instantiation rule: one where
the field of the current element of the record tuple coincides with the one
we want to set, and the other where the field is different and that is able
to build a setter for the remaining part of the record tuple.

Functor "SetField" => string => Record : Setter

The first case is implemented as follows:

name = fieldName
thisRecord := RecordField name type r
------------------------------
SetField fieldName (RecordField name type r) => Setter

fieldName thisRecord {

----------------
SetType => type

----------------------
set (x,xs) v -> (v,xs)

}

Listing 5.5: Setting a field (case 1)

The function SetType simply returns the type of the field in the current
RecordField, while the rule for set replaces the first value in the record
tuple with the new value. The second rule is implemented as follows

name <> fieldName
thisRecord := RecordField name type r
-------------------------------------
SetField fieldName (RecordField name type r) => Setter

fieldName thisRecord {
Functor "SetAnotherField" : Setter

SetField fieldName r => setter
-------------------------------
SetAnotherField => setter

SetAnotherField => s
-------------------------
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SetType => s.SetType

SetAnotherField => setter
setter.set xs v -> xs ’
----------------------
set (x,xs) v -> (x,xs ’)

}

Listing 5.6: Setting a field (case 2)

The functor SetAnotherField is an auxiliary functor that recursively calls
SetField with the remaining part of the record. Eventually SetField will
trigger the rule in Listing 5.5 when the correct field is encountered. This
auxiliary functor is then used in SetType to retrieve the correct type of
the record field and in the function set to call the correct set function for
the field. The set function in the setter generated by SetAnotherField

returns a modified version of the record that is replaced in the tuple.
Let us now consider again the physical body and assume that we want

to define a setter for Position. Again we define a function setPos for
the field:

Func "setPos" -> Vector2 : PhysicalBodyType

SetField "Position" PhysicalBodyType => setter
PhysicalBody -> body
setter.set body -> body ’
-----------------------
setPos v -> body ’

Again we are using the functor PhysicalBodyType and the function
PhysicalBody defined in Section 5.3. The first premise of this rule will
call SetField with

fieldName := "Position"
name := "Position"
type := Vector2
r := RecordField "Velocity" Vector2 EmptyRecord

which, in turn, instantiates Setter with

name := "Position"
r := RecordField "Position" Vector2 (RecordField "

Velocity" Vector2 EmptyRecord)

In this module instance r.RecordType will be
Tuple[Vector2,Tuple[Vector2,unit]] and SetType returns Vector2.
The whole instance will look like

Func "set" -> Tuple[Vector2 ,Tuple[Vector2 ,unit]] ->
Vector2 : Tuple[Vector2 ,Tupe[Vector2 ,unit]]

------------------
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SetType => Vector2

----------------------
set (x,xs) v -> (v,xs)

Now let us assume that we want to build a setter for Velocity. We have
to define a function setVel as follows

Func "setVel" -> Vector2 : PhysicalBodyType

SetField "Velocity" PhysicalBodyType => setter
PhysicalBody -> body
setter.set v -> body ’
-------------------------
setVel v -> body ’

The first premise of this rule will now invoke SetField with

fieldName := "Velocity"
name := "Position"
type := Vector2
r := RecordField "Velocity" Vector2 EmptyRecord

which will trigger the rule in Listing 5.6 instead. This will create an
instance of Setter containing the auxiliary functor SetAnotherField.
The rule for this functor will call in turn SetField with

fieldName := "Velocity"
name := "Velocity"
type := Vector2
r := EmptyRecord

that will generate a different instance of Setter, this time using the rule in
Listing 5.5. The auxiliary setter will contain a functor SetType returning
Vector2 and a function set that inserts the value for Velocity in the
record tuple. The set in the auxiliary setter will be used in the setter of
Velocity to obtain the modified copy of the record containing the new
value. Again all the modules are generated at compile time, thus the only
operations performed at runtime are the calls to the set functions of the
field setter and eventual auxiliary modules.

5.6 Handling errors in getters and setters

In Section 5.4 and 5.5 we explained how to use functors to implement
getters and setters for the fields of a record. The explanation however
did not take into account possible mistakes that could be committed
during the definition of setters and getters for a specific record.

A possible mistake that could arise in the process of defining getters
and setters would be to provide an incompatible type for the get function
of a field. For instance, let us assume that we define getPos as
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Func "wrongGetPos" : double

GetField "Position" PhysicalBodyType => getter
PhysicalBody -> body
getter.get body -> v
-----------------
wrongGetPos -> v

As explained above the getter module will contain a function get that
returns a Vector2, because that is the type of the field Position. In the
process of building the module, this type is automatically retrieved from
the definition of PhysicalBodyType. At this point the meta-compiler
would report an error message because this wrong definition of getPos

returns double but get returns a Vector2. Note that, as previously
explained in Section 5.3, this is possible because functors are able to
embed the type system of the embedded language into the Metacasanova
type system.

Another possible mistake is accessing a field that is not defined for the
record. For instance, let us assume that someone tries to build a getter for
a field that does not exist in physical body, namely a field Acceleration.
As usual we would define a function for the getter such as

Func "getAcc" : Vector2

GetField "Acceleration" PhysicalBodyType => getter
PhysicalBody -> body
getter.get body -> v
---------------
getAcc -> v

The first premise of this rule will call the functor GetField with

fieldName := "Acceleration"
name := "Position"
type := Vector2
r := RecordField "Velocity" Vector2 EmptyRecord

As seen above, this rule will generate an auxiliary module by recursively
call GetField with

fieldName := "Acceleration"
name := "Velocity"
type := Vector2
r : = EmptyRecord

but at this point, since again fieldName 6= name we will recursively call
GetField. At this point we will fail to run a suitable rule for the functor,
since the only two versions we have so far are able to process RecordField
and not EmptyRecord, thus the pattern matching in the conclusion would
fail. The meta-compiler will in any case fail to generate code, since the
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functor evaluation will fail and thus the whole code generation, but this
approach is not “clean”, since the meta-compiler will report a generic
error regarding the rule execution failure. An alternative to this, is to
include a case for the rule that processes EmptyRecord. A getter for an
EmptyRecord returns () and GetType returns the type unit. This rule
can be implemented as follows:

fieldName <> name
thisRecord := RecordField name type EmptyRecord
-------------------------------
GetField fieldName (RecordField name type EmptyRecord) =>

Getter fieldName thisRecord {

----------------
GetType => unit

----------------
get (x,xs) -> ()

}

In this way the first premise of the rule of getAcc would generate a
getter that takes a physical body and returns unit. When the rule calls
this getter and returns unit, this will be incompatible with the return
type of getAcc that should be a Vector2. The same can be done for
setAcc, that is we extend the rule for SetField with an additional case:

fieldName <> name
thisRecord := RecordField name type EmptyRecord
--------------------------
SetField fieldName (RecordField name type EmptyRecord) =>

Setter fieldName thisRecord {

----------------
SetType => unit

----------------------
set (x,xs) v -> (x,xs)

}

In this way, when invoking set in the premise setAcc the compiler will
signal a type error because at some point it will try to use the set for
the EmptyRecord with Vector2. Another alternative, which goes beyond
the scope of this chapter, would be to allow rules in meta-casanova to
output custom compilation errors. In this way we could write the very
same rule case done above but this time we would return a compilation
error message reporting that the field does not exist.
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5.7 Evaluation

In the previous sections we presented an extension to the meta-language
of Metacasanova that allows to embed the type system of an embedded
language, whose definition is implemented in Metacasanova, in the meta-
type system of Metacasanova. We claimed that this would improve the
runtime performance of a program written in the embedded language be-
cause we could get rid of all the dynamic checks and accesses to meta-data
structures used to implement data structures in the embedded language,
such as records. In this section we present the experimental evaluation
that should produce the evidence to back up this claim. We proceed to
describe the experimental set-up and then we comment the results.

5.7.1 Experimental Set-up

In this experiment we use the implementation of records with functors
described in this chapter and we compare its runtime performance with its
dynamic counter part, i.e. the implementation that uses dictionaries, that
was used to implement the Casanova memory model in Section 4.2.2. The
sample measures the run-time of both the functor implementation and the
implementation with dynamic tables. We run the test by varying both
the number of record instances and the number of fields per record. The
test is run with a sample of 10000, 100000, and 1000000 record instances
and with a number of fields from 1 to 10. We neglect to consider different
field types, as the performance of look-up operations is not affected by
the type of the fields themselves.

5.7.2 Results

In Table 5.4, we can see that the optimization using Functors leads to
a performance increase on average of about 11 times, with peaks of 30
times. The gain increases with the number of fields, thus the implemen-
tation with functors is particularly effective for records with high number
of fields. This is due to the fact that the runtime complexity of a dy-
namic table depends on the number of entries stored in it (which would
be the fields in our case) and thus, when the fields are few, this number
is very close to the complexity of the functorial implementation, which
is constant. When the number of fields increases, the performance of the
functorial implementation remains the same while the dynamic table one
worsens visibly. The constant complexity of the functorial implementa-
tion is due to the fact that the meta-compiler builds the functions of a
getter or setter module instance, used to look up a specific field or set its
value, at compile time by generating the appropriate module instances
with the functors. The get and set functions described above can either
immediately get or set the value of the field and return the result of this
operation, or call the getter or setter of an auxiliary module instance that
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is able to read or write the appropriate field. The only overhead is the
overhead of chaining calls to Metacasanova functions, thus the overhead
of creating and executing the code that implements the rule behaviour
described in Section 3.6.

Figure 5.3 shows a chart of the overall performance of the two tech-
niques (the data points are taken from Table 5.4). The horizontal axis
contains the number of fields per record, while the vertical axis contains
the number of records that are being updated. We can see that the per-
formance of the dynamic table degrades considerably when increasing the
number of fields, and that the higher the number of records is, the steeper
the curve is. On the other hand, the performance of the implementation
with functors is almost constant, regardless of the number of fields or
records that are being updated. Moreover, note that the performance of
the dynamic table is improved by the fact that we are using a dictionary
implemented in .NET. If the symbol table were represented as a meta-
data structure in the language, the performance would be even worse,
since it would have to be encoded as a list of pairs with the field name
and its value, and its manipulation would be affected by the evaluation
rules that should implement this behaviour. Furthermore, the dynamic
lookup should be done also to ensure that the types of the record fields
are used consistently (which is not accounted for here, for example to pre-
vent that a record is constructed with incompatible values for its fields),
while this check is done at compile time with functors, thus drastically
improving the performance.

Dynamic Table implementation Choice

After both these considerations and those presented in Chapter 4.3 a
legitimate doubt could be uttered about the choice of the implementation
of the dynamic tables. We mentioned multiple times that we chose to
use a tree-based implementation of the dictionary, but a valid objection
could be that one could use a HashTable whose complexity is O(1). This
assumption cannot be applied to this case for the following reasons:

• The hash table access operations have a complexity of O(1) when
the number of entries stored in it is very big. Indeed the definition
of big-oh states that f(n) = O(g(n)) if

∃c ∈ R : lim
n→∞

f(n)

g(n)
= c

thus it makes sense to talk in term of complexity only if the size
of the table is very large. It is very unlikely that a record will
contain a large number of fields. In this scenario, the performance
of a hash table decays because the running time is affected by the
computation of the hash function for every access and the resize of
the table performed to decrease the load factor in order to minimize
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Figure 5.3: Execution time of the different memory models

the number of collisions [33]. In the case of records, where the
amount of fields and thus of entries in the table is limited, the
performance of the tree implementation and the hash table are on
the same order of magnitude.

• Metacasanova is a referentially transparent language, as all data
structures are immutable. Referential transparency is a desirable
property to have because it helps in the verification of the correct-
ness of programs [65, 103] and prevents side-effects. Hash tables
have high performance only when mutability is allowed, but im-
plementing an immutable hash table requires to recreate the whole
table inserting all the entries again by re-hashing them. This does
not happen in trees, where we do not need to recreate the whole
tree but only the sub-tree that is affected by the manipulation of
the data structure.
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FIELDS Functors (ms) Dynamic Table (ms) Gain

1 1.00E-05 5.00E-06 0.50

2 9.00E-06 1.30E-05 1.44

3 9.00E-06 2.70E-05 3.00

4 9.00E-06 4.50E-05 5.00

5 9.00E-06 7.00E-05 7.78

6 9.00E-06 9.90E-05 11.00

7 9.00E-06 1.33E-04 14.78

8 9.00E-06 1.75E-04 19.44

9 9.00E-06 2.20E-04 24.44

10 9.00E-06 2.70E-04 30.00

Average gain 11.74

FIELDS Functors (ms) Dynamic Table (ms) Gain

1 9.60E-05 6.30E-05 0.66

2 9.40E-05 1.59E-04 1.69

3 9.50E-05 3.04E-04 3.20

4 9.60E-05 5.03E-04 5.24

5 9.60E-05 7.52E-04 7.83

6 9.60E-05 1.05E-03 10.95

7 9.70E-05 1.41E-03 14.57

8 9.80E-05 1.82E-03 18.59

9 9.90E-05 2.29E-03 23.17

10 1.00E-04 2.81E-03 28.05

Average gain 11.39

FIELDS Functors (ms) Dynamic Table (ms) Gain

1 9.47E-04 7.29E-04 0.77

2 9.51E-04 1.78E-03 1.87

3 9.50E-04 3.33E-03 3.51

4 9.60E-04 5.43E-03 5.66

5 9.65E-04 8.03E-03 8.32

6 9.71E-04 1.11E-02 11.44

7 9.75E-04 1.47E-02 15.12

8 9.82E-04 1.89E-02 19.28

9 9.92E-04 2.37E-02 23.86

10 1.00E-03 2.87E-02 28.62

Average gain 11.84

Table 5.4: Running time with the functor optimization and the dynamic table
with 10000, 100000, and 1000000 records.
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5.8 Summary

In this chapter we addressed the problem described in Section 4.3 about
the performance of the generated code and the forced dynamic behaviour
of languages implemented in Metacasanova. We started by informally
state that this issue was due to the fact that it was not possible to embed
the type system of a language in the meta-type system of Metacasanova,
and this caused all the dynamic lookups and accesses at runtime. This
issue can be avoided by using a meta-language abstraction that allows
both to define the type system of the embedded language in terms of the
meta-type system of Metacasanova and to generate the code for the ac-
cesses to the data structures of the embedded language at compile time.
For this purpose, we proposed a language extension that provides such
abstraction in terms of modules and functors. We then proceeded to pro-
vide an example of their usage in the context of record getters and setters
for their fields. We then measured the performance gain by comparing
the implementation with functors with the one using dynamic tables that
was employed for the Casanova language implementation shown in Sec-
tion 4.2.2. The results show that the performance of operations on records
in the case of functors is up to 30 times faster than the dynamic table
implementation. We have also shown that the performance of such op-
erations in the case of functors is constant with respect to the number
of fields to update, while the performance of the dynamic table drasti-
cally worsens when the number of fields in a record increases. In the next
chapter we will show a further example of use of functors to re-implement
Casanova semantics and extend the language with abstractions to express
the networking behaviour for multiplayer games.
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Chapter 6

Language Design with Functors

A monad is just a monoid in
the category of endofunctors,
what’s the problem?

James Iry

In Chapter 4 we showed an implementation in Metacasanova of Casa-
nova, a domain-specific language for game development and we discussed
the reason of the poor performance of that implementation. In Chapter 5
we extended Metacasanova with functors and modules to allow to embed
the type system of an embedded language 1 in the meta-compiler to over-
come the problem of dynamic lookups at runtime. We then showed an
implementation of records with modules and functors that significantly
improved the performance of memory accesses, as shown in Section 5.7. In
this chapter we show how this language extension can be used to improve
the performance of the implementation in Metacasanova of the domain-
specific language for game development Casanova. In what follows we
start by describing how entities are updated in Casanova to make their
dynamics evolve with respect to time. We then proceed to discuss how
functors can be used to describe the semantics of entity updates in Ca-
sanova, and we further refine it to support the semantics of interruption
of Casanova rules. We conclude with an evaluation about the perfor-
mance gain achieved by using this implementation over the previous one
presented in Chapter 4

6.1 Casanova entity update

In Section 4.2.2 we described the memory representation of a Casanova
entity in Metacasanova and how the rules of an entity are updated. What

1See the introduction of Chapter 5 for a definition of this term
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was skipped for brevity was a description of how the system behind Casa-
nova updates the entities of a Casanova program. As briefly described in
Section 4.2, the structure of a program in Casanova is a tree, whose root
is a special entity called World. The world entity can contain fields that
are instances of other entities as well, thus creating an additional level
in the program tree. This is, of course, allowed also for regular entities,
thus the height of the tree is arbitrary. Each entity might contain a set of
rules that describe its dynamic behaviour with respect to time, thus they
are updated by considering the time difference between the current and
the previous update (frames). Updating a rule is enforced by traversing
the entity tree, thus when the field of an entity is an entity itself, the
system will first update the entity instance contained in the field and
then update the current entity. Casanova also natively supports lists and
tuples as valid data types, and this requires to handle their update as
well: a tuple or a list might themselves contain instances of entities that
must be updated accordingly. In the case of a list of entities, we must
run the update on each element, while in the case of a tuple we must
examine each element and check whether it requires an update or not.
This process is called update traversal and might become very complex,
as lists and tuples can be combined together in infinite many ways, thus
the process recursively calls the proper update depending on the type of
the field.

For instance, let us consider a simulation consisting of an arbitrary
number of physical bodies, in the fashion of what was used in Section
5.1.1. The world entity will contain a list of physical bodies that are
updated during the simulation. The Casanova code that described such
a simulation is the following:

worldEntity World {
PhysicalBodies : [PhysicalBody]

}

entity PhysicalBody {
Position : Tuple <float ,float >
Velocity : Tuple <float ,float >
Acceleration : Tuple <float ,float >

rule Position = Position + Velocity * dt
rule Velocity = Velocity + Acceleration * dt

}

In this simulation, the update starts from World. This entity contains
only one field, which is a list of physical bodies. Since PhysicalBody is
an entity, the update must be run individually for each element of the
list. The world contains no rules, thus after updating its only field we
complete its update. At this point the update of each of the physical
body examines each fields. All fields are represented as a point in a
2D space with a tuple containing two floating-point values. The update
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Figure 6.1: Entity update for the simulation of physical bodies

will examine each value of the tuple and find that they do not require
any update (again because the only language abstractions that exhibit
dynamic behaviours are entities). The update will then move on to run
the rules that will update the content of Position and Velocity. The
update process is sketched in Figure 6.1 and can thus be seen as a process
that consists of the following steps:

1. An entity update that traverses all the fields and rules of the entity
and calls the appropriate updater.

2. A field update that updates (or not) the field depending on its type.
The fields that will be updated have type List, Tuple, or Entity.

6.2 Update in Metacasanova

The update mechanism described in Section 6.1 can of course be inte-
grated in the implementation of Casanova described in Chapter 4. In
order to do so, we should dynamically look into the dictionary repre-
senting the entity fields at each update, extract the field and perform an
update according to the following cases:

• If the field is a list, then we must examine each element and choose
for each one whether it needs to be updated or not. This is done by
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recursively applying these cases (being a dynamic check we have to
perform this check for each element).

• If the field is a tuple, then we behave as above.
• If the field is an entity, then we must run an update on it.
• In all the other cases the field is not updated.

The cases above are translated into four rules in Metacasanova. The first
three will use pattern-matching to decide whether the examined field is
a list, a tuple, or an entity. The fourth one is a default rule that simply
returns the field as it is. Moreover, each entity should store a list of rules
that are updated as well, where all the get and set operations require
dynamic lookups in the symbol table of the entity.

Repeating the traversal of the entity tree at each update at runtime
is unnecessary since

• The structure of a Casanova entity cannot change at runtime. Its
fields and field types will always remain the same.

• The fields affected by an entity rule and the rules of an entity do
not change during the program execution.

This means that, by exploiting modules and functors, we are able to
specify the structure of the update at compile time and generate directly
the function that performs the update at runtime, in the same fashion
as what has been done for the record setter and getter. In the following
sections we will describe extensively the implementation of the update
using modules and functors in Metacasanova that generates at compile
time the functions necessary to perform the update of a Casanova pro-
gram. Note that we will refer to the implementation of records given in
Section 5.3.

6.3 Updater Modules

As explained above, Casanova needs to recursively update fields that are
lists, tuples, or entity instances. For this purpose, we define a module that
represents an updatable element in the Casanova language. The module
constructor takes as only argument the type of the element to update.
This module contains a function update that is able to update a value
of this particular type and uses an additional parameter dt that contains
the time difference between the current and the previous update. The
function returns the updated value of the element. It also contains an
utility functor to return the type of the element.

Module "ElementUpdater" => (elementType : *) :
ElementUpdater {

Functor "GetType" : *
Func "update" -> elementType -> float : elementType

}
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The updater for a field is a module constructed by providing the record
of the fields, its name as a string, and contains: (i) an utility functor
that returns the record used in the field updater, and (ii) an update
function that takes as input an instance of the record, dt, and returns
the updated value of the field. We also define an external utility functor
GetFieldType that can retrieve the type of a record field given the record
it belongs to and its name. The rule for the functor calls the field getter
and its GetType functor to retrieve the type of the field. This functor is
used by the module constructor to correctly generate the return type of
the update function.

Functor "GetFieldType" => Record => string : *

GetField r name => getter
getter.GetType => type
---------------------------
GetFieldType r name => type

Module "FieldUpdater" => (r : Record) => (name : string)
: FieldUpdater {

Functor "GetRecord" : Record
Func "update" -> r.RecordType -> float : (GetFieldType

r name)
}

Finally, the updater for a record is a module constructed by providing
the record itself and contains: (i) an utility functor that returns the type
of the record, and (ii) a function update that takes the instance of the
record, dt, and returns an updated instance of the record.

Module "RecordUpdater" => (r : Record) : RecordUpdater {
Functor "RecordType" : *
Func "update" -> r.RecordType -> float : r.RecordType

}

6.4 Updatable elements

As explained above, the elements for which the update is needed can
be lists, tuples, or entity instances. For this reason we have to create
separately three different instances of the module ElementUpdater each
one dedicated to updating one of those updatable elements. The first
updatable element that we consider is an entity instance. The module to
update such updatable element uses a RecordUpdater to define how the
entity instance should be updated. Updating a field containing an entity
instance requires the application of the specific record updater for that
entity, which in turn returns the updated instance of the entity itself.
Thus the declaration for the functor that constructs the proper instance
of the module for the entity updater is the following:
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Functor "UpdateEntity" => RecordUpdater : ElementUpdater

The rule for this functor extracts in its premise the type of the record
by calling the utility functor RecordType in the record updater passed
as parameter to UpdateEntity. The update function uses the record
updater to recursively update the entity instance in its premise and then
returns the result of this update.

recordUpdater.RecordType => recordType
--------------------------
UpdateEntity recordUpdater => ElementUpdater recordType {

----------------------
GetType => recordType

recordUpdater.update entity dt -> entity ’
------------------------------
update entity dt -> entity ’

}

The second updatable element is the list. An updater for a list must take
the updater for its elements. Since a list contains elements of the same
type, only one updater is required to instantiate its updater module. The
functor UpdateList used to generate this module takes one argument
which is an ElementUpdater. This is done because the elements of a list
could be themselves other lists, entities, or tuples, so we must be able
to use their updaters as arguments for this function. The declaration for
this functor is thus:

Functor "UpdateList" => ElementUpdater : ElementUpdater

The rule for UpdateList extracts in its premise the type of the elements of
the list by calling the functor GetType in the element updater provided as
input. It then instantiates an ElementUpdater with the type List using
as argument for the generic type the type of the element extracted in its
premise. The update function for the list is recursive: its base case is the
empty list, for which it simply returns an empty list. For a non-empty
list the rule for this function uses the element updater in its premise to
update the head of the list and then recursively calls the update of the
list on the tail to update the remaining part.

updater.GetType => elementType
---------------------------------
UpdateList updater => ElementUpdater List[elementType] {

-----------------
GetType => List[elementType]

--------------------
update nil dt -> nil
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updater.update x dt -> x’
update xs dt -> xs’
-------------------
update (x :: xs) dt -> (x’ :: xs ’)

}

The updater for tuples is built by defining a functor that takes as in-
put two element updaters, one for the current element of the tuple,
and one for the second one. Note that it is possible to recursively pro-
vide a tuple updater as a second updater to support the update of tu-
ples containing more than two elements. For example, the updater for
Tuple[PhysicalBody,Tuple[PhysicalBody,PhysicalBody]] would require
the passing of an entity updater and recursively a tuple updater. The
declaration of this fuctor is thus:

Functor "UpdateTuple" => ElementUpdater => ElementUpdater
: ElementUpdater

The rule for UpdateTuple uses in its premises GetType from the first
updater and the second updater to obtain the types of the first and second
element of the tuple. It then instantiates ElementUpdater with the tuple
type called with the type of the first and second element as arguments for
the generics. The update function runs the update of the first updater
on the first element of the tuple and the second updater on the second
element.

updater.GetType => firstType
nextUpdater.GetType => nextType
---------------------------------------------
UpdateTuple updater nextUpdater => ElementUpdater Tuple[

firstType ,nextType] {

-------------------
GetType => Tuple[firstType ,nextType]

updater.update x dt -> x’
nextUpdater.update x’ dt -> xs’
----------------------
update (x,xs) dt -> (x’,xs ’)

}

Finally, we need a ZeroUpdate that is required for fields whose values
do not change with respect to time, namely all those that do not fall in
the three categories above. The functor ZeroUpdate takes as input any
type and builds an ElementUpdater with that type. The rule for update

simply returns the value of the field as it is.

Functor "ZeroUpdate" => * : ElementUpdater

-----------------------
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ZeroUpdate type => ElementUpdater type {

----------------
GetType => type

----------------
update v dt -> v

}

6.5 Updatable Fields and Records

The field updater is instantiated by a functor that takes as input an
element updater, a record containing the field, and the name of the field
to update. Its declaration is the following:

Functor "UpdateField" => ElementUpdater => Record =>
string : FieldUpdater

The rule for the update function creates in its premises a field getter
through the record and the field name passed as input. It then call the
function get of the getter with the record instance taken as input to get
the value of the field. It then uses the update function from the element
updater taken as input from the functor to update the field.

----------------------------------------
UpdateField elementUpdater r name => FieldUpdater r name

{

---------------
GetRecord => r

GetField r name => getter
getter.get rec -> field
elementUpdater.update field dt -> field ’
-----------------------------
update rec dt -> field ’

}

The record updater is built by a functor Update that takes as input a
field updater, a record updater to update the next part of the record, and
returns an instance of the RecordUpdater module. The rule that evaluates
the functor extracts the record from the field updater in its premise and
passes it to the module constructor for the record updater. The rule for
update generates a setter for the field by using the record and the field
name. It then calls the field updater passing the record instance and dt

as input. This premise will return the updated value for the field. The
following premise uses the set function from the previously generated
setter to update the record with the new value of the field. After this
step it calls the update function of the record updater passed as function
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argument, which is recursively able to update the remaining part of the
record. The result of this update is then returned as final result. Both
the functor declaration and the rule for it are provided below

Functor "Update" => FieldUpdater => RecordUpdater :
RecordUpdater

fieldUpdater.GetRecord => r
---------------------------
Update fieldUpdater nextUpdater => RecordUpdater r {

r.RecordType => recordType
------------------------
RecordType => recordType

SetField r name => setter
fieldUpdater.update rec dt -> v
setter.set rec v -> rec ’
nextUpdater.update rec ’ dt -> updatedRecord
----------------------------
update rec dt -> updatedRecord

}

Note that it is possible to provide different field updaters for the same
field, as it is possible that, besides the standard Casanova traversal, one
wants to define a custom way of updating the field through a Casanova
rule.

In order to stop this otherwise infinite recursive process, we must also
generate a record updater that simply returns the record as it is. We
build such updater through the functor NoUpdate. This functor takes as
input a record and instantiates its updater with it. The updater contains
a rule for the update function that simply returns the record as it is. The
implementation for this updater is provided below:

Functor "NoUpdate" => Record : RecordUpdater

---------------------
NoUpdate r => RecordUpdater r {

r.RecordType => recordType
----------------------
RecordType => recordType

----------------
update r dt -> r

}

Finally, rules can be implemented as a field updater that is instantiated
by a functor taking as input the record and the field name. The update

function will contain the specific code that the rule will perform. In the
following section we will provide the implementation of the physical body
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simulation and show how to use functors to generate the field updater for
rules.

6.6 Physical Body Simulation with Functors

In this section we present the implementation with functors of the sim-
ulation in Casanova presented in Section 6.1. The simulation consists
of a set of bodies that moves according to their physical properties. As
previously done in Section 5.3, we create a functor that builds the record
module instance for the physical body:

Functor "PhysicalBodyType" : Record

RecordField "Acceleration" Tuple[float ,float] EmptyRecord
=> acceleration

RecordField "Velocity" Tuple[float ,float] acceleration =>
velocity

RecordField "Position" Tuple[float ,float] velocity =>
body

---------------------------
PhysicalBodyType => body

At this point, we define the updaters for the physical body fields. Its
fields consist of a tuple with two floating point values. Since floating-
point values do not require to be updated in Casanova, we create an
updater for the floating-point numbers by using the ZeroUpdate functor
that instantiates ElementUpdater with an update function that simply
returns the input value.

Functor "FloatUpdater" : ElementUpdater

ZeroUpdate float => zero
--------------------------
FloatUpdater => zero

ZeroUpdate calls ElementUpdater with elementType := float. The in-
stance of this module will then contain the following functor rule and
function declaration2.

Func "update" -> float -> float : float

-----------------
GetType => float

At this point we can define the element updater for the Tuple that con-
tains the floating point values. This time we use the functor UpdateTuple
to instantiate the ElementUpdater module by passing twice FloatUpdater
to it. When we do so, we have that (see the definition of the rule for this
functor):

2Note that the evaluation rules in a functor are always the same for each instance
of a module, so from now on we omit them for brevity
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updater := FloatUpdater
nextUpdater := FloatUpdater
firstType := updater.GetType := float
nextType := nextUpdater.GetType = float

Thus ElementUpdater will be called with elementType :=

Tuple[float,float]. This module instance will then contain the follow-
ing functor rule and function declaration:

Func "update" -> Tuple[float ,float] -> float : Tuple[
float ,float]

-----------------------------
GetType => Tuple[float ,float]

We now build the field updaters for the two Casanova rules of the physical
body. In order to do so, we define two functors that build their field
updaters:

Functor "PositionRule" : FieldUpdater
Functor "VelocityRule" : FieldUpdater

PositionRule will instantiate FieldUpdater in the following evaluation
rule:

--------------------------------
PositionRule => FieldUpdater PhysicalBodyType "Position"

{

---------------------
GetRecord => PhysicalBodyType

getPos body -> (xp ,yp)
getVel body -> (xv ,yv)
<<xp + xv * dt>> -> xp ’
<<yp + yv * dt>> -> yv ’
---------------------------
update body dt -> (xp ’,yp ’)

}

Note that getPos and getVel are functions able to retrieve respectively
the position and velocity from a physical body, analogously to what was
done in Section 5.4. The update function uses these two functions in
its premises to retrieve the value of the position and velocity and then
updates the position according to the differential equation described in
Section 5.1.1. The update for the velocity field is done analogously:

--------------------------------
VelocityRule => FieldUpdater PhysicalBodyType "Velocity"

{

--------------------



168 CHAPTER 6. LANGUAGE DESIGN WITH FUNCTORS

GetRecord => PhysicalBodyType

getVel body -> (xv ,yv)
getAcc body -> (xa ,ya)
<< xv + xa * dt >> -> xv ’
<< yv + ya * dt >> -> yv ’
---------------------------
update body dt -> (xv ’,yv ’)

}

We now have all the necessary tools to create the whole updater for a
physical body. This updater is built by calling UpdateTuple to generate
the updater for the tuple element representing the vector. This updater
is used in all three field updaters for the physical body. We also use
PositionRule and VelocityRule to create the correct updater for the
two rules of the physical body.

UpdateTuple FloatUpdater FloatUpdater => vectorUpdater
UpdateField vectorUpdater PhysicalBodyType "Position" =>

posUpdate
UpdateField vectorUpdater PhysicalBodyType "Velocity" =>

velUpdate
UpdateField vectorUpdater PhysicalBodyType "Acceleration"

=> accUpdate
NoUpdate PhysicalBodyType => zero
Update VelocityRule zero => velRule
Update PositionRule velRule => posRule
Update accUpdate posRule => accFieldUpdate
Update velUpdate accFieldUpdate => velFieldUpdate
Update posUpdate velFieldUpdate => bodyUpdater
--------------------------
BodyUpdater => bodyUpdater

The first premise of this functor rule creates the updater for the vector.
From premise 2 to premise 4 we create the updater for the three fields
of the physical body. Premise 5 calls NoUpdate to build the module that
terminates the update of the record. From Premise 6 on we build the
record updaters necessary to update all the fields and rules of the physical
body and then we assemble them together. Let us now consider the
following physical body instance

(1.0 ,1.0) ,((0,0,0.0) ,((3.0 ,3.0) ,()))

and let us see what happens when we call the update function of the
BodyUpdater. The function will invoke the tuple updater which returns
the tuple as it is, set the field to this value (which does not change), and
recursively call update from the next updater. The following two updaters
are the same, so the effect is identical. The updater for the position rule
will instead run the update code of the module instance generated by
the rule functor and update the field of the record accordingly. This
will generate a record instance containing the field with the updated
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value. This new record instance is then recursively passed to the next
update call where the update of the module instance generated by the
rule functor for velocity is invoked. The updated record is then returned
in an analogous way. At this point the update of the module instance
generated by NoUpdate is called, which simply returns the record as it is.

We now repeat the same process to define the world entity. We thus
define a functor to build the record for the world, which contains a single
field that is a list of physical bodies.

Functor "WorldType" : Record

RecordField "PhysicalBodies" List[PhysicalBodyType]
EmptyRecord => world

---------------------------------
WorldType => world

The updater for the world simply uses the BodyUpdater functor gener-
ated above to build a record instance that contains the update function
for a physical body. It then builds a list updater passing as argument
BodyUpdater (note that this is correct as this functor accepts a record
updater as parameter).

Functor "WorldUpdater" : RecordUpdater

UpdateEntity BodyUpdater => bodyUpdater
UpdateList bodyUpdater => listUpdater
UpdateField listUpdater WorldType "PhysicalBodies" =>

fieldUpdater
NoUpdate WorldType => zero
Update fieldUpdater zero => worldUpdater
--------------------------------------
WorldUpdater => worldUpdater

The rule for the functor creates in its first premise an entity updater by
passing the updater for the physical body. This updater allows to update
each element in the list of physical bodies stored in the world entity.
The second premise creates an updater for the whole list by passing the
entity updater created at the previous step. This updater instantiates a
module that is able to traverse the whole list and update each element by
means of the entity updater. The third premise creates a field updater
for PhysicalBodies by using the list updater, and the fourth creates as
usual a NoUpdate to stop the update process. Finally, the last premise
assembles the two field updaters into a record updater for the world entity.
At this point, in order to update the world entity, it is enough to call this
functor and access the update function for the world record.

We think it is worthy of note that all the updaters presented so far are
built at compile time and that the only component that will be generated
in the target code is the update function. This means that we get rid
of all the dynamic lookups, described in Section 6.2 in the entity field to
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inspect the type of the field itself and decide whether or not we require
to perform the recursive update process on it. The update traversal with
functors is instead generated at compile time, thus the structure of the
update is pre-computed during the compilation step, and its execution
delegated at runtime. This is possible because the structure of the update
does not change with the execution of the program.

6.7 Interruptible rules with functors

With what shown so far, we can implement the update traversal of the
fields of a Casanova entity and we can implement Casanova rules as up-
daters that act on the fields of an entity. However, we have not described
yet how to implement the mechanism of rule interruption described in
Section 4.2.4. For this purpose, we have to refactor the implementation
of the updaters seen so far: we assume that now the record field of a
Casanova entity contains not only the value but a list of statements that
represent the continuation of its rule, which represents the code left to
execute after the rule is paused. The continuation will have type stmt,
where stmt is a meta-data structure representing a statement in Casa-
nova like shown in Section 4.2.4. The reader should take into account
that we can compose a sequence of statements through the ; operator
introduced in the same section. The field updater must be refactored as
well: its update function now does not only return the updated field value
but also the continuation of the rule:

Module "FieldUpdater" => (r : Record) => (name : string)
: FieldUpdater {

Functor "GetRecord" : Record
Func "update" -> r.RecordType -> float : Tuple [(

GetFieldType r name),stmt]
}

In this way we are correctly able to generate the declaration of the up-
date function depending on the type of the field and, at the same time,
to store the updated continuation of the rule. We now define a new func-
tor called Coroutine that generates an instance of a field updater. The
instantiation of the module should also contain a function tick that is
able to correctly process the continuation of the rule and, when its body
has been fully evaluated, to restart from the beginning. It should also
contain a definition of the evaluation rules of all the Casanova statements
introduced in Section 4.2.4. For brevity here we show only how to re-
implement wait and yield, all the others can be adjusted analogously to
those. The following is the declaration of the Coroutine functor:

Functor "Coroutine" => Record => string => stmt :
FieldUpdater

----------------------------
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Coroutine r name stmts => FieldUpdater r name {
...
// see the implementation below

}

This functor takes the record and the name of the fields the rule is up-
dating, as well as a list of statements that represents the body of the
coroutine and produces a field updater enriched with the utility func-
tions mentioned above (remember that a module instance must contain
the implementation of at least all the declarations provided in the module
declaration). From now on we provide the snippets of the implementa-
tions in the module in isolation, but the reader should keep in mind that
they are defined within the scope of the module instance.

The first function that we implement is update. This function is
almost identical to the version described in Section 6.6, but this time the
getter of the field will return both the value and the continuation of the
rule built so far. We then call a tick function (see below) that is able to
process the continuation of the rule. This function in general produces
a pair containing the updated field value (when we encounter a yield

statement) and the new continuation produced by the current execution
of the rule. Note that the implementation of update is correctly able to
return a pair because it has been redefined above in the new version of
FieldUpdater.

GetField r name => getter
getter.get body -> (v,k)
tick entity k dt -> (v’,k’)
-------------------------
update entity dt -> (v’,k’)

The tick function takes a record instance as input, a list of statements,
and dt and returns the pair of value and continuation produced by the
evaluation of the rule body. The function calls eval s that is similar to
the homonym function presented in Section 4.2.4, with the difference that
it now returns a pair of value field and list of statements compatible with
the required result.

Func "tick" -> r.RecordType -> List[stmt] -> float :
Tuple[r.RecordType ,List[stmt]]

Func "eval_s" -> r.RecordType -> stmt -> float : Tuple[r.
RecordType ,stmt]

eval_s entity stmts dt -> res
--------------------------
tick entity nop dt -> res

eval_s entity statements dt -> (v,( atomic;k))
tick entity k dt -> res
-----------------------------------
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tick entity statements dt -> res

eval_s entity statements dt -> res
-----------------------
tick entity statements dt -> res

The function tick comes in three versions: the first one is executed when
the rule has completed its execution and the body of the original rule
should be rebuilt. In this case the function simply calls eval s with the
statements provided as argument of the functor Coroutine. The second
one is when we evaluate an atomic statement: for this purpose we intro-
duce a placeholder statement atomic that is returned in the continuation
after an atomic statement has been evaluated. This case forces tick to be
immediately re-evaluated without interrupting the rule execution. The
third case happens when the rule evaluation has previously produced a
continuation. In this case we pass the continuation instead of the original
body of the rule to eval s.

The function eval s is very similar to its old counterpart, but this time
it returns the pair of value and continuation resulting from the evaluation
of the first statement in the current rule continuation. In the case of an
empty continuation (the only statement is nop) then we return an empty
continuation. The field of the value is unchanged so we use its getter to
retrieve the value an return it in the result.

GetField r name => getter
getter.get entity -> (v,cont)
-------------------------------
eval_s entity nop dt -> (v,nop)

We now proceed to describe how wait and yield behave. wait as
usual simply checks whether the timer has elapsed. If that is the case,
then it returns the continuation preceded by an atomic statement to force
the immediate re-evaluation in tick. Otherwise it updates the timer by
subtracting dt seconds and builds another wait statement that is placed
in the continuation. In both cases the statement returns the current value
of the field the rule is updating because it is untouched in the semantics
of wait.

t <= 0.0
GetField r name => getter
getter.get entity -> (v,cont)
---------------------------------------------
eval_s entity (wait t;k) dt => (v,( atomic;k))

t > 0.0
GetField r name => getter
getter.get entity -> (v,cont)
<<t - dt>> -> t’
---------------------------------------------
eval_s entity (wait t;k) dt => (v,(wait t’;k))
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Note that the correct getter is generated at compile time, so the overhead
of accessing the field value is minimal as shown in Section 5.7. The
statement when behaves in the very same way, except that this time

Finally yield simply evaluates the expression whose value is used to
set the field and then returns it in the result of the evaluation. Note that
we use the function eval already described in the first implementation
of Casanova in Metacasanova. The behaviour of this function is exactly
the same, except that now, if we need to retrieve the value of a specific
field for the computation of the expression result, we can use the GetField
functor to build the appropriate getter and thus improve the performance.
Also note that the statement evaluation does not set the field itself, but
as seen before it delegates this operation to the record updater. This is
because the result of calling the setter on a record returns the updated
record instance and not a value compatible with the field. Note also that
the evaluation of yield does not produce atomic like for wait because
according to Casanova semantics the yield stops the rule execution for
one frame.

eval entity expr -> v
--------------------------------
eval_s (yield expr;k) dt -> (v,k)

It is worthy of note that, having placed the semantics of Casanova in a
module instantiation, the language is able to build ad-hoc semantics for
each specific field that we need to update through the rule. In other words,
calling the coroutine functor with a specific field produces a different
version of the language semantics at compile time, where the statements
that need to access the value of the field contain directly the getter of that
field generated at run-time. This allows us to incorporate the benefits of
the record lookup optimization described in Chapter 5 in the language
semantics.

The final modification that we need to implement is on the record
updater. The record updater now receives the pair of field value and
rule continuation that must be stored in the field after its update. The
updater uses the new generated pair to update both the field value and
its rule continuation. This continuation will be used at the next update
to evaluate the remaining part of the rule

fieldUpdater.GetRecord => r
---------------------------
Update fieldUpdater nextUpdater => RecordUpdater r {

r.RecordType => recordType
------------------------
RecordType => recordType

SetField r name => setter
fieldUpdater.update rec dt -> (v,k)
setter.set rec (v,k) -> rec ’
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nextUpdater.update rec ’ dt -> updatedRecord
----------------------------
update rec dt -> updatedRecord

}

6.7.1 Multiple rules updating the Same Field and Local
variables

To conclude this section we want to point out that, in the implementation
of interruptible rules described above, we implicitly make the assumption
that only one rule is updating each field of the record. Indeed the rule
continuation is saved in the field itself, thus if multiple rules are affecting
the same field we would need to store their continuations separately, which
is not possible in the current implementation. A naive approach would be
to allow to store a list of statements, one for each rule acting on that field,
where each element is the continuation of a specific rule. This approach
affects the performance because we would need to iterate the whole list
every time we need to update a rule. Since the number of rules updating
a field does not change at run time, we can instead use a record to store
their continuations whose structure is provided at compile time. In this
way it will be possible to retrieve the continuation of a rule just by using
a getter that is generated at compile time. Here we just briefly sketch the
implementation. A schematic representation of the implementation can
also be seen in Figure 6.2.

A field of the entity record must be adapted now to contain not only
the field value, but a record instance used to store the continuations of the
Casanova rules affecting that field. Since a record requires a name for each
field, we can expand the coroutine functor to take a string representing
an identifier for each rule and the continuation record itself:

Functor "Coroutine" => string => Record => Record =>
string => stmt : FieldUpdater

---------------------------
Coroutine ruleId continuation r name => FieldUpdater r

name {
...

}

Now the first string in the declaration of the functor represents the rule
identifier, while the other arguments have the same semantics (record
and field of the record the rule can modify). When a Casanova statement
requires to store the continuation it can use ruleId to build the setter
for the record field of the continuation record. It then calls the function
set from the setter module instance to save the continuation of each rule.
In this way every rule acting on the record is able to store separately its
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Figure 6.2: Schematic representation of the implementation of the interrupt-
ible rules
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Figure 6.3: Schematic representation of the implementation of interruptible
rules with local bindings

continuation in the continuation record. As an example, we provide below
the evaluation rule for the wait statement that updates the continuation
in this implementation:

t > 0.0
GetField r name => getter
getter.get entity -> (v,cont)
SetField cont ruleId => continuationSetter
continuationSetter.set (wait(t - dt);k) -> cont ’
---------------------------------------------
eval_s entity (wait t;k) dt => (v,cont ’)

Another aspect that has not been considered yet is how to define variables
local to the rule (local bindings). Since the set of local bindings is known
at compile time, we can modify the continuation record to store not only
the continuation itself, but also the state of the local bindings as record
of bindings. In this way an element of the continuation record, that we
can now call rule state, stores not only the statements of the rule left to
evaluate but also the state of the local bindings. When we need to read
the value of a binding or update it, we can again use a getter or setter
by accessing the rule state and getting or setting the appropriate field for
the binding from the binding record. A schematic representation of this
implementation can be seen in Figure 6.3.

As final remark, we point out that the use of records to store the
rule continuations and local bindings show how the record optimization
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introduced in Chapter 5 can also be adapted to implement a generic
symbol table to store various information regarding the language elements
that are needed during the execution of the generated code, thus making
this approach extremely flexible for different situations.

6.8 Evaluation

In the previous sections we showed how to use functors to implement the
entity update traversal of the domain-specific language for game develop-
ment Casanova. Based on the preliminary analysis performed in Chapter
5, we claimed that using functors would improve the performance of the
implementation of Casanova in Metacasanova given in Chapter 4 by, at
the same time, inlining the access to the entity fields and pre-building the
traversal for the Casanova program at compile time, instead of dynami-
cally accessing the fields from a dictionary and inspecting their type to
perform the update traversal at every update. In this section we show the
experimental results that show the performance of this implementation
in comparison to the first dynamic implementation presented in Chapter
4.

6.8.1 Experimental Setup

For this evaluation we have implemented the physical body simulation
that was presented in the previous sections. The simulation has been run
for 10000 frames, which roughly correspond to 3 minutes assuming an
average update rate of 60 frames/second, with a number of physical bodies
ranging from 100 to 1000. Each physical body is randomly generated, that
is, its initial position, velocity, and acceleration is randomly generated.
We measured the time at the beginning and at the end of the execution
of the whole simulation and we averaged the total time by the number
of frames the simulation has been running for. We then compared the
result with what obtained for the implementation shown in Chapter 4.

6.8.2 Results

In Table 6.1 we can see that the update time is in the order of millisec-
onds or one tenth of milliseconds where the dynamic implementation was
in the order of one hundredth of seconds with 1000 entities. This cor-
responds roughly to a frame rate of 939 frames/second for the functor
implementation versus 28 frames/second. The performance gain ranges
from a maximum of 55.397 to a minimum of 33.117 times with an avarage
gain of 42.508 times. This comes at no surprise, since in Section 5.7 we
tested the gain of accessing record fields with the functor implementation
compared to the dynamic tables, and we had an average gain of roughly
11 times. The gap with the dynamic implementation here is even greater
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Language implementation Entity number Update time

Functors

100 0.000063
250 0.000173
500 0.000428
750 0.000777
1000 0.001065

Dynamic

100 0.00349
250 0.00911
500 0.01716
750 0.02597
1000 0.03527

Entity number Performance Gain

100 55.397
250 52.659
500 40.093
750 33.423
1000 33.117

Average gain 42.938

Table 6.1: Update time for one frame of the functor implementation of Ca-
sanova and the dynamic implementation shown in Chapter 4. The time is
measured in seconds

because, to the cost of accessing dynamic tables at runtime to retrieve
the values of the entity fields, we have to add the performance loss of
performing the update traversal and the rule execution dynamically. Fig-
ure 6.4 shows a chart where the horizontal axis represents the number of
entities in the simulation, while the horizontal axis represents the average
frame update time with that number of entities in seconds.

To conclude, we want to point out that this evaluation is a worst-
case scenario, since the implementation shown in this Chapter makes
use exclusively of Metacasanova meta-data structures to represent the
values of the entity fields while the simulation shown in Chapter 4 uses
Vector2 from the Monogame library. This means that this simulation
has an additional overhead due to accessing the components of a tuple
via pattern matching, and due to the use of value types versus reference
types. The performance shown here could be improved by using Vector2

from an external library instead of Tuple[float, float] to store the
position, velocity, and acceleration of a physical body.
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Figure 6.4: Execution time of Casanova implemented with functors vs the
dynamic implementation

6.9 Summary

In this chapter we proposed a new implementation of the semantics of
Casanova based on the language extension with functors and modules
presented in Chapter 5. We showed that functors and modules are expres-
sive enough to implement the logic of the entity update in Casanova and
at the same time to allow rule interruption. At the same time, functors
grant static typing and the inlining of ad-hoc update functions depend-
ing on the structure of the entity we need to update. This improvement
increases the performance of this new implementation of Casanova on
average by roughly 42 times. This improvement makes the implementa-
tion of Casanova suitable for game development, as the generated code is
now able to process at more than 900 frames/second versus the 28 of the
previous implementation.
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Chapter 7

Networking in Casanova

The Internet is not just one
thing, it’s a collection of
things - of numerous
communications networks
that all speak the same
digital language.

Jim Clark

In Chapter 6 we presented an implementation of the semantics of Ca-
sanova by using the language extension of Metacasanova with functors
and modules. This new implementation improved the performance of the
language re-implemented in Metacasanova of 42 times with respect to
the previous implementation described in Chapter 4. In this chapter we
further extend Casanova with language primitives to describe the net-
work mechanism for an online multiplayer game. We start this chapter
by introducing the problem of developing an online multiplayer game and
the existing approaches. We then propose a language extension for Ca-
sanova to integrate primitives to support network data synchronization
that should aid the developer of online multiplayer games, which has also
been presented in [47]. We then show that the new implementation of
Casanova in Metacasanova presented in Chapter 6 can be extended to
include the new networking semantics. In the result we analyse the per-
formance of Casanova with the networking extension when compiled by
its hard-coded compiler in F# with respect to the same sample imple-
mented in C#. Moreover we compare the effort in terms of lines of codes
necessary to implement the network semantics in the hard-coded version
of the compiler and in Metacasanova.

181
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7.1 Multi-player Support in Games

Adding multi-player support to games is a highly desirable feature. By
letting players interact with each other, new forms of gameplay, coopera-
tion, and competition emerge without requiring any additional design of
game mechanics [49]. This allows a game to remain fresh and playable,
even after the single player content has been exhausted. For example,
consider any modern AAA (AAA refers to games with the highest de-
velopment budgets[112]) game such as Halo 4. Within months after its
initial release, most players have exhausted the single player, narrative-
driven campaign. Nevertheless the game remains heavily in use thanks
to multiplayer modes, which in effect extended the life of the game signif-
icantly. This phenomenon is even more evident in games such as World
of Warcraft or EVE, where multiplayer is the only modality of play and
there is no single-player experience.

Challenges Multi-player support in games is a very expensive piece of
software to build. Multiplayer games are under strong pressure to have
very good performance [32]. Performance is both expressed in terms of
CPU time and in bandwidth used. Also, games need to be very robust
with respect to transmission delays, packets lost, or even clients discon-
nected. To make matters worse, players often behave erratically. It is
widespread practice among players to leave a competitive game as soon
as their defeat is apparent (a phenomenon so common to even have its
own name: “rage quitting” [57]), or to try to abuse the game and its
technical flaws to gain advantages or to disrupt the experience of others.

Networking code reuse is quite low across titles and projects. This
stems from the fact that the requirements of every game vary significantly:
from turn-based games that only need to synchronize the game world
every few seconds, and where latency is not a big issue, to first-person-
shooter games where prediction mechanisms are needed to ensure the
smooth movement of synchronized entities, to real-time strategy games
where thousands of units on the screen all need to be synchronized across
game instances [97]. In short, previous effort is substantially inaccessible
for new titles.

Encapsulation suffers from this ad-hoc nature of the implementation
of the networking layer in multiplayer games. Indeed managing the in-
formation about game updates over a network requires each game entity
to interface the game logic code with network connection and socket ob-
jects, data transmission method calls such as “send” and “receive”, and
support data structures to manage traffic and track the status of com-
mon protocols. This happens because each game entity must provide the
following functionality in order to work in a multiplayer game:

• Update the logic in the fashion of a singleplayer counterpart.
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• Choose what data is necessary to send over the network and create
the message containing this information.

• Choose what data can be lost and what data must always be re-
ceived by the other clients.

• Periodically check if incoming messages contain information that
needs to be read and to perform specific updates.

Combining these requirements together within the same entity breaks
encapsulation because the entity’s logic gets mixed with spurious details
of the networking implementation. Maintenance then becomes very hard,
as every change in the game logic must also be reflected in the networking
implementation.

Existing approaches Networking in games is usually built with ei-
ther very low-level or very high-level mechanisms. Very low-level mecha-
nisms are based on manually sending streams of bytes and serializing only
the essential bits of the game world, usually incrementally, on unreliable
channels (UDP). This coding process is highly expensive because of the
difficulties of manually implementing such a low-level protocol. Debug-
ging subtle protocol mismatches, transmission errors, etc. will take lots of
development resources. Low-level mechanisms must also be very robust,
making the task even harder.

An alternate approach is to use high-level protocols such as RDP,
reflection-based serialization, frameworks (such as Pastry, netty.io), etc.
can also be used. These methods greatly simplify networking code, but
are rarely used in complex games and scenarios. The requirements of
performance mean that many high-level protocols or mechanisms provide
insufficient efficiency, either because they are too slow computationally
(especially when they rely on reflection or events) or because they trans-
mit too much data across the network.

7.2 Motivation for a Language-based Solution

To avoid the problems of both existing approaches, we propose a mid-
dle ground. We observe that networking fundamental abstractions upon
which the actual code and protocols are built do not vary substantially
between games, even though the code that needs to be written to imple-
ment them does. The similarity comes from the fact that the ways to
serialize, synchronize, and predict the behaviour of entities are relatively
standard and described according to a limited series of general ideas. The
difference, on the other hand, stems from the fact that low-level proto-
cols need to be adapted to the specific structure of the game world and
the data structures that make it up. Until now, common primitives have
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not been syntactically and semantically captured inside existing domain-
specific languages for game development [22]. Using the right level of
abstraction, these general patterns of networking can be captured, while
leaving full customization power in the hand of the developer (to apply
such primitives to any kind of game).

7.3 Related work

In the following we discuss some existing networking tools used in game
development and we highlight some issues that arise from their use.

The Real time framework (RTF) RTF [48] is a middleware built
for C++ to relieve the programmer from dealing with data compression.
It is more flexible than solutions based on game engines or hand-made
implementations, since it automates the process of data transmission.
Moreover, it supports distributed server management. Unfortunately,
this solution has several flaws:

• All entities must inherit from the class Local and the semantics
of the position is pre-determined, often clashing with rendering or
physics.

• Platform independence requires that the programmer uses RTF
primitive types.

• Data transmission automation requires that all game entities inherit
the class Serializable.

• Being a middleware, RTF is not aware of what games are going to
use it for (every game comes with different data structures). Thus,
the developer is tasked to include in his code also logic to update
the RTF layer, in order to keep the game updated over the network.

Network scripting language (NSL) NSL [92] provides a language
extension based on a send-receive mechanism. Moreover it provides a
built-in client side prediction (a feature missing in existing highly con-
current and distributed languages such as Stackless Python [102] and
Erlang [12]), which is periodically corrected by the server.

Unreal Engine/Unity Engine Unreal Engine [2] and Unity Engine
[1] are commercial game engines supporting networking. Both Unity and
Unreal Engine use a client-server approach. In Unreal Engine, the server
contains the “true” game state, and the clients contain a “dirty” copy,
which is validated periodically. It is possible to define entities (actors
in Unreal Engine jargon) that are replicated on the clients. Whenever
a replicated actor changes on the server, this change is also reflected on
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the clients. Additional customization can be achieved through Remote
procedure calls (RPCs) of three kinds.

• The function is called on the server and executed on the client.
This is used for game elements that do not affect gameplay, such as
creating a particle effect when a weapon is fired.

• The function is called on the client and executed on the server.
This is useful for events that affect the other clients and should be
validated by the server.

• The function is executed in multi-cast, meaning that the server calls
the function and that it is executed on both the server and all the
clients.

The Unity Engine uses a similar approach based on networking com-
ponents, synchronized at every frame, and RPC’s to define custom syn-
chronization events.

Unfortunately, customization comes at the cost of the level of detail
that developers must face. Using RPC’s require a deep knowledge of the
engine and writing lots of code.

In this section we introduce a small example that addresses the re-
quirements of designing a multiplayer game. We then present an archi-
tecture that aims to fulfil these requirements.

7.4 The master/slave network architecture

We chose to implement the networking layer in Casanova by using a peer-
to-peer architecture for the following reasons:

• Server-client architectures are more reliable but suitable only for
specific genres of games (mostly Shooter games), while other genres,
such as Real-time strategy games and Online Role Playing Games,
use P2P architectures.

• By using a P2P architecture, we do not have to write a separate
logic for an authoritative game server, which has to validate the
actions of clients.

Casanova will provide a generic tracking server, which is run sepa-
rately from the main program. The tracking server is a thin service that
connects players participating in a single game, and helps with forwarding
the network traffic through NATs (Network Address Translation).

Each client maintains a local copy of the world entity and has direct
control over a single portion of it. Instances belonging to such as portion
are seen as master by this client, who is always allowed to directly change
the state of the master instances without having to validate this state
change by synchronizing with other clients through the network.
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Each client also maintains a portion of the world that is not directly
under his control. Instances belonging to such as portion are seen as
slave by this client, who is only allowed to predict the local state of the
instances and, whenever he receives an update from their masters, must
correct this prediction according to the data contained in the received
messages. The slave part of the world is thus maintained passively by
the client: the only active part is predicting the evolution of the entity
dynamics and correcting it whenever it receives an update by its master.

For this purpose, we extend the syntax of Casanova rules by allowing
them to be marked with the modifiers master and slave. These rules
are executed respectively on master and slave entities. Note that it is
still possible not to mark a rule with these modifiers, which means that
the rule is always executed independently of the fact that the entity is
either master or slave on that particular client. We also allow to mark a
rule as connecting and connected. These rules are triggered only once
respectively when a new client connects and when the clients detect a
new connection.

Casanova also provides primitives to send (reliably or unreliably) and
receive data. A schematic representation of this architecture can be seen
in Figure 7.2.

Figure 7.1: Representation of the game world in a networking scenario

(a) Unknown correct
game state when P3
joins the game.

(b) Networking game
state seen from the
point of view of P1.
P2 is partially synchro-
nized, P4 is fully syn-
chronized, and P3 is a
new client that is late
and is still sending its
data

Note that the aim of this architecture is to provide language-level
primitives to describe the networking logic. This means that the com-
piler will be able to generate code compatible with the low-level network
libraries that provide transmission functions over the network channel
without having to change Casanova code in the program. In our imple-
mentation, we chose the .NET library Lidgren, which is widely used also
in commercial game engines such as Unity3D and MonoGame, but noth-
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Figure 7.2: master/slave architecture

ing prevents the compiler to be expanded in order to target other similar
libraries for other languages, such as jgroups [16].

7.5 Case study

Let us consider a simple shooter game where each player controls a space
ship. Players can move forward, backward, and rotate the ship to change
direction. Moreover, they can use the ship lasers to shoot other players. If
a laser hits an enemy ship, we increase the player’s score. Designing such
a game requires to address the following issues, depicted by the schematic
representation in Figure 7.1:

1. Each player must maintain a local version of the game state (world).
In order to avoid to flood the network with messages, all the copies
are not fully synchronized at each frame, thus they are slightly
different and each client knows the latest version of only part of the
copy.

2. A player connecting to an existing game must be able to receive
the latest update of the game state and send the new ship he will
control to existing players in the game.

3. A player already connected to the game must detect a new connec-
tion and send his master portion of the game state.

4. Each player must be able to control only one ship at a time. This
means that the part of the game logic that processes the input and
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modifies the spatial data of the ship (position and rotation) should
only be executed on the ship controlled by the player and not on
the local copies of other players’ ships. This means that each player
sees as master only one ship instance.

5. Each player must send the updated state of the ship he controls
to the other players after executing the local update. To achieve
better performance over the network, the data is not sent at every
update, but with a lower frequency.

6. Each player must receive the updated state of slave ships controlled
by other players. In this phase, we must take into account that, as
explained above, not every update is sent, so the player should
“predict” what will happen during the game frames in which he
does not receive an update.

7.6 Implementation

Each of the scenarios described above requires specific language exten-
sions. These extensions identify connection, ownership (master/slave),
and various send and receive primitives. In this section, we introduce
each primitive by using a multiplayer game example. We now give an
implementation of the shooter game presented above, using the extended
version of Casanova with network primitives. The world contains a list
of ships controlled by each player.

world Shooter = {
Ships : [Ship]
...

}

Each Ship contains a position, a rotation, a collection of shot projec-
tiles, and the score.

entity Ship = {
Position : Vector2
Rotation : float32
Projectiles : [Projectile]
Score : int
...

}

Each Projectile contains its position and velocity.

entity Projectile = {
Position : Vector2
Velocity : Vector2
...

}
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Connection

When a player connects, we must consider two different situations: (i)
a player is already in the game and must send the current game state
to the connecting players, and (ii) the player who is connecting needs to
send the ship he will instantiate and control (its initial state). Both the
players in the game and the connecting one must receive the game states
that are sent. For this purpose we introduce two additional modifiers,
connecting and connected, that can be added to rule declarations to
mark their role in the multiplayer logic.

Connecting A rule marked with connecting is executed once when
a player joins the game for the first time. In our example, the player
should send his initial state (the created ship) to the other players. We
use the primitive send reliable because we must be sure that eventually
all players will be notified of the ship creation.

world Shooter = {
...
rule connecting Ships =
yield send_reliable Ships

}

Connected A rule marked with connected is run whenever a new
player joins the game by all existing players. When this occurs, each
player sends its ship. The system will take care to send only the ship
controlled locally by the player itself for each player. The rule will use
the send reliable primitive for the same reason explained in the previ-
ous point.

world Shooter = {
...
rule connected Ships =
yield send_reliable Ships

}

Note that even if the code is the same, the semantics of the two rules
are different. The first one is executed by the player joining the game, who
locally instantiates its Ship and must send its list of Ships (containing
only the local instance) to the other players. The second one is executed
by all existing players who must share with the joining player the list of
existing ships.

Master updates

As explained above, each client manages a series of local game objects
(called master objects) that are under its direct control. The other clients
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read passively any update done on those instances and update their re-
mote copy (slave objects) accordingly. We mark rules affecting the be-
haviour of master objects as master. In our example, the following sit-
uations are run as master: (i) synchronizing the ships among players,
(ii) updating the ship and projectiles spatial data, and (iii) creating and
destroying projectiles.

1. Each player is tasked to maintain the list of Ships in the world. This
requires to receive the updated list from other players and to store
the new value in a master rule. Indeed the world is a special case of
an entity that is shared among players, and not directly owned by
somebody. Each ship contained in that list and received from other
players will be treated appropriately as slaves, while the only one
owned by the current player will be under his direct control. In this
rule we use let!, which is an operator that waits until the argument
expression returns a result and then binds it to the variable. The
symbol @ stands for list concatenation. The rule uses receive many,
which receives and collects the list of sent ships by the other players.

world Shooter = {
...
rule master Ships =
let! ships = receive_many ()
yield Ships @ ships

}

2. The master version of the ship update reads the input of the player
and moves (or rotates) the ship if the appropriate key is pressed.
Note that this part must be executed only on a master object, be-
cause we want to allow each player to control only the ship he owns
and instantiates at the beginning of the game. Below we show just
the rule to move forward; the other movement and rotation rules are
analogous. We use an unreliable send (in the code we are using send

and not send reliable as done previously) because it is acceptable
to lose an update of the position during a certain frame: shortly
after, there will be a new update. Casanova allows the programmer
to choose whether to use reliable or unreliable transmissions in the
code.

entity Ship = {
...
rule master Position =

wait world.Input.IsKeyDown(Keys.W)
let vp = new Vector2(Math.Cos(Rotation),
Math.Sin(Rotation)) * 300.0f
let p = Position + vp * dt
yield send p

}
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We do the same for projectiles, except the projectile position is
continuously updated and synchronized over the network without
having to wait that a key is pressed.

3. Creating a new projectile happens when the player shoots. A ship
keeps track of the projectiles it has shot so far, and adds a new one
to the list of the existing projectiles. The updated list is sent to
all players with the new instance of the projectile (which is added
as a new head of the list with the operator ::). Here it is better
to specify the semantics of the yield in conjunction with the use
of networking primitives. A yield requires that the written value
is type-compatible with the domain of the rule. Thus, when used
with a send primitive, we must pass a list as argument. The system
will ensure, for performance reasons, that the generated code only
sends items which are newly added to the list. These semantics
are defined like this for two main reasons: (i) when sending the
new projectiles we must also update the list in local (and given the
immutability of Casanova we must replace the existing one), and
(ii) because in this way the programmer can focus on the logic of the
game as if it were a single-player game without worrying of network-
specific details. Note that the last wait forces the player to release
the key before shooting again (semi-automatic fire). Removing that
check would spawn multiple projectiles consecutively, which is not
a wanted behaviour.

entity Ship = {
...
rule master Projectiles =
wait world.Input.IsKeyDown(Keys.Space)
let vp = new Vector2(Math.Cos(Rotation),
Math.Sin(Rotation)) * 500.0f
let projs = new Projectile(Position , vp) ::

Projectiles
yield send_reliable projs
wait not world.Input.IsKeyDown(Keys.Space)
}

Filtering the colliding projectiles and updating the score is run as
a master rule. The rule computes the set difference between the
ship projectiles and the colliding projectiles and updates the list
of projectiles, sending them through the network as well. Even in
this case, the network layer sends only the information about the
projectiles to remove. Note that the score is managed by each player
locally, as it does not require to be synchronized (we do not print
the other players’ scores. Doing so would indeed require to also
send the score).

entity Ship = {
...
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rule master Projectiles , Score =
let collidingProjs =
[for p in Projectiles do

let ships =
[for s in Ships do

where
s <> this and
Vector2.Distance(p.Position ,s.Position)

< 100.0f
select s]

where ships.Count > 0
select p]

let newProjectiles = Projectiles -
collidingProjs

yield send_reliable newProjectiles ,
Score + collidingProjs.Count

}

Managing remote instances

The game objects that were not instantiated by a client, but received
from another client, are slave objects and must be synchronized differ-
ently than master objects. For this purpose, a rule can be marked as
slave. In our example, we use slave rules in the following situations: (i)
synchronizing other players’ ships and projectiles spatial data, and (ii)
projectiles instantiated by other players.

1. Every remote projectile and ship is synchronized locally by a rule,
which tries to receive a message containing updated spatial data.
Below we provide the code to update the position of the ship; the
synchronization of other spatial data is analogous.

entity Ship = {
...
rule slave Position = yield receive ()

}

2. When a projectile is instantiated remotely, we have to receive it
and add it to the list of projectiles. We use receive many because
the new projectiles are added to a list. This case also supports the
situation where a ship could shoot multiple projectiles at the same
time.

entity Ship = {
...
rule slave Projectiles =
let! projs = receive_many ()
yield projs @ Projectiles

}
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In this scenario we have to discuss the atomicity of these transmis-
sions: in the context of network games, reliability is often sacrificed for
better network performance, so most of the data transmissions are unre-
liable (like in the case of the ship position). This means that we have no
guarantee that the message will be received. Several issues can arise from
this situation: for example, if a client fails to receive the position of the
ship, then it might miss a collision with a projectile. Out-of-sync errors
might happen during a multiplayer game, and their effect is a well-known
issue in several shooter games where players affected by high latency or
packet loss see in their view of the game a hit on the player when this
is not seen by the other players who did not receive the information re-
garding this event. Ensuring that all the data transmissions are reliable
might on the other hand affect network performance to the point that
the game would become unplayable because of the network overload.

Casanova allows the programmer to decide whether the transmission
should be reliable or not and experiment with the effect of a reliable
transmission versus an unreliable one that does not overload the network.
For example, the updated list of projectiles, after a collision, is always
sent in a reliable way. This is acceptable because collisions are not so
frequent. This is not true for the ship position, since movements are very
frequent and mostly happen at every frame, thus it is something that is
not necessary to be sent reliably at every frame.

7.7 Networking Primitives with Functors

In the Chapter 6 we described in detail how to implement the logic of
the Casanova update traversal with functors in Metacasanova. We also
further extended its first implementation with interruptible rules. In this
section we show a sketch of how to use functors to implement the network-
ing primitives introduced in Casanova in Section 7.6. In what follows we
assume that the data transfer primitives are defined in an external library
that we assume it is given, since the same applies to the implementation
presented in Section 7.6, and the send and receive primitives simply gen-
erate calls to this library.

7.7.1 Network Record

In order to implement the logic of master/slave entities we need to store
additional information in a Casanova entity to know if its instance has
been created locally (thus being master). At this purpose we use a functor
NetworkRecord to create an instance of a record module to store this
information. This functor takes as input a record representing a Casanova
entity and builds a new record instance by adding a boolean field used to
store the ownership status.

Functor "NetworkRecord" => Record : Record



194 CHAPTER 7. NETWORKING IN CASANOVA

RecordField "__isLocal" bool r => r’
--------------------------------------
NetworkRecord r => networkRecord

7.7.2 Connection

In order to implement the semantics of a connecting rule we have to mod-
ify the field (we rely on the implementation with the record seen in Figure
6.2) to store not only the rule continuation but also its connection state.
Note that, with this change, we have to change the return type of tick

as well, because now the field is a triplet and not a pair. We also define a
functor ConnectingCoroutine that instantiate a field updater sharing the
same implementation that we generate from a normal coroutine, except
for the logic of the function update.

Functor "ConnectingCoroutine" => string => Record =>
Record => string => stmt : FieldUpdater

This time update has three evaluation rules. The first one creates a
getter to retrieve the current field. It then calls the getter generated at
the previous step to read the value of the connection status stored in the
field. The following clause performs a check on the connection status. If
the value is true then the clause fails and thus the rest of the premises is
not executed because the whole evaluation rule fails and we skip to the
next evaluation rule. If the value is false then we run the code of the
rule. At this point if the continuation after the rule update is empty then
the connecting rule has terminated its execution and we set to true the
connection status.

----------------------------------
ConnectingCoroutine ruleName continuation r field stmts

=> FieldUpdater r field {
...

GetField r field => getter
GetField continuation ruleName => contGetter
getter.get entity -> (v,(connected ,cont))
connected = false
tick entity k dt -> (v’,(c’,k’))
contGetter.get k’ -> nop
--------------------------
update entity dt -> (v’,(true ,k’))

...
}

The second evaluation rule differs from the first only in the fact that it
is executed when the Casanova rule returns a non-empty continuation.
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In this case we do not set the connection status to true because the
connecting rule has not terminated its execution yet.

----------------------------------
ConnectingCoroutine ruleName continuation r field stmts

=> FieldUpdater r field {
...

GetField r field => getter
GetField continuation ruleName => contGetter
getter.get entity -> (v,(connected ,cont))
connected = false
tick entity k dt -> (v’,(c’,k’))
--------------------------
update entity dt -> (v’,(c’,k’))

...
}

The third and final case of the evaluation rule is when the connection
status has already been set to true; this means that the Casanova rule
has already been evaluated completely during a previous update and does
not need to be executed again.

----------------------------------
ConnectingCoroutine ruleName continuation r field stmts

=> FieldUpdater r field {
...

GetField r field => getter
getter.get entity -> (v,(connected ,continuation))
connected = true
getter.get entity -> (v,k)
------------------------
update entity dt -> (v,k)

...

}

In the case of a connected rule, we need to be able to detect a new
connection. This can be done in different ways: one possible solution is
that when a client sends its data during the connecting phase, it sends
also information about the connection. This step is handled at low level
by the connection primitives. A Casanova rule marked as connected

starts with a wait statement that checks if a new client has connected
to the system. For the remaining part the rule behaves like a normal
coroutine. Of course when the rule body has been completely evaluated,
then it stops again until a new client connects, since the whole body will
be reconstructed and thus also the wait statement
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7.7.3 Local and Remote Entities

The behaviour of master and slave rules can be modelled through dedi-
cated functors that generate different instances for the field updater, in
the same fashion as the connecting rule. We thus define two new func-
tors MasterCoroutine and SlaveCoroutine. MasterCoroutine generates
a field updater that has two different evaluation rules for update. The
first one builds a getter for the field isLocal. It then uses it to read its
value from the current entity and uses a clause to check whether the en-
tity is local. At this point, if the entity is not local, the whole evaluation
rule fails and the next one is run. Otherwise the Casanova rule body is
run and the field updated accordingly to its specific code.

Functor "MasterCoroutine" => string => Record => Record
=> string => stmt : FieldUpdater

----------------------------------------
MasterCoroutine ruleName continuation r field stmts =>

FieldUpdater r field {
...

GetField r "__isLocal" => localGetter
localGetter.get entity -> (isLocal ,(c,k))
isLocal = true
tick entity k dt -> (v’,(c’,k’))
------------------------------
update entity dt -> (v’,(c’,k’))

...

The second evaluation rule is used when the entity is not local. In this
case the semantics of a master rule is simply not to be executed. In order
to emulate this behaviour we simply return the content of the field as it
is (including all the information on the Casanova rule state).

----------------------------------------
MasterCoroutine ruleName continuation r field stmts =>

FieldUpdater r field {
...

GetField r "__isLocal" => localGetter
GetField r field => getter
localGetter.get entity -> (isLocal ,(c,k))
isLocal = false
getter.get entity -> (v,(c,k))
------------------------------
update entity dt -> (v,(c,k))

...
}

The SlaveCoroutine functor behaves in an analogous way: it generates
two evaluation rules for update that are complementary to those of the
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MasterCoroutine. In this case the Casanova rule is updated only if the
field isLocal is false. If this is not the case the second evaluation rule
is triggered and it returns simply the field as it is.

----------------------------------------
SlaveCoroutine ruleName continuation r field stmts =>

FieldUpdater r field {
...

GetField r "__isLocal" => localGetter
localGetter.get entity -> (isLocal ,(c,k))
isLocal = false
tick entity k dt -> (v’,(c’,k’))
------------------------------
update entity dt -> (v’,(c’,k’))

GetField r "__isLocal" => localGetter
GetField r field => getter
localGetter.get entity -> (isLocal ,(c,k))
isLocal = true
getter.get entity -> (v,(c,k))
------------------------------
update entity dt -> (v,(c,k))

...
}

As a final note we want to point out that, since now the semantics of
Casanova are encapsulated into the FieldUpdater instance generated by
the Coroutine functor, by introducing different kinds of functors able
to build the field updaters for coroutines we would need to duplicate
the code of the semantics in the field updater modules instantiated by
each functor. This is, of course, not a good a practice and the issue can
be circumvented by creating an additional module, which we can call
CasanovaSemantics, that contains the semantics of all the statements of
Casanova. This module is instantiated in each field updater for coroutines
by an utility functor defined internally to each field updater. When we
need to refer to the semantics of a specific Casanova statement we simply
call this functor to generate an instance of the module containing it and
then we use it to access the particular evaluation rule that we require for
the statement.

7.8 Evaluation

In this section we evaluate the performance of Casanova with the new net-
working extension A comparison between the implementation of a game
in Casanova and an implementation of the same game in C# will be
shown and discussed in terms of run-time performance and code com-
plexity. We then measure the effort of implementing the semantics of the
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Platform Language Performance

Monogame
Casanova 0.0098 ms

C# 0.0147 ms

Unity3D
Casanova 0.0085 ms

C# 0.1642 ms

Table 7.1: Running time comparison

Language Lines

Casanova 126

C# 1257

Table 7.2: Code lines comparison for a multiplayer game

networking primitives in terms of code lines in the hard-coded version of
the Casanova compiler and the implementation in Metacasanova.

7.8.1 Experimental setup

In order to get a systematic evaluation of the proposed approach to en-
capsulation, a generic game is considered, in which a group of entities are
spawned every K seconds and stay inactive for a random amount of time,
between 5 and 10 seconds. Then they are activated and start moving
for a randomly determined amount of time, between 4 and 8 seconds.
Finally, they are destroyed, by triggering a condition in the entities. For
the evaluation, additional conditions are added (with different timers), in
order to make the simulation dynamics more articulated and “heavy” in
terms of amount of code to run.

In this experiment, we compare the code generated by the Casanova
hard-coded compiler and an idiomatic implementation in the C# lan-
guage (a commonly-used language for building games). We also ran the
games with two different front ends, namely Unity3D and MonoGame,
both using .NET. For each test we measure the time (in milliseconds)
that the game takes to fully complete a game iteration (i.e., updating all
the entities in the game).

7.8.2 Performance Evaluation

Table 7.1 shows the performance results. As we can see, in both cases,
the performance of our optimized Casanova code is higher than the one
of non-optimized implementation, and the idiomatic C# implementation.
Using Unity3D, the optimized code is one order of magnitude faster than
the non-optimized code. Using MonoGame, the optimization is faster but
on the same order of magnitude. The difference is due to the implemen-
tation of the underlying frameworks.
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Language component Implementation version Lines

Update traversal
F# compiler 1313
Metacasanova 111

Statement semantics
F# compiler 1480
Metacasanova 300

Total code
F# compiler 2793
Metacasanova 411

Table 7.3: Code length comparison between the F# hard-coded compiler of
Casanova and its implementation in Metacasanova

7.8.3 Code Size

Table 7.2 shows the code length for each implementation. Casanova game
code needs about onte tenth of the lines of code compared to the idiomatic
C# implementation for a multiplayer game. The intermediate code that
the Casanova hard-coded compiler creates (which is C# code) is con-
siderably longer due to the presence of support data structures. With
increasing code complexity, we may expect the original Casanova code to
remain compact, while the generated code will increase rapidly in size,
with additional data structures and associated logic code.

7.8.4 Compiler Implementation Code Size

Table 7.3 shows a comparison between the code length of the implemen-
tation of a language component of Casanova in both the F# hard-coded
compiler and the implementation in Metacasanova. The semantics of the
update traversal, including the networking, in Metacasanova results to
be about 13 times shorter than the corresponding implementation in the
hard-coded compiler. In the table we have listed for completeness also
the code length required to implement the semantics of the statement
available in Casanova from Chapter 4. In total the code length of the
implementation in Casanova results to be almost 7 times shorter than its
counterpart in the hard-coded compiler.

7.9 Summary

In this chapter we have presented an extension for the domain-specific
language for game development Casanova that introduces abstractions
to define the synchronization mechanisms for a multiplayer online game.
We have then shown the implementation of the same Semantics in Meta-
casanova by using the entity traversal update with functors presented in
Chapter 6. We have evaluated the performance of Casanova with the new
networking language extension by comparing the code length and speed
of a game implemented in Casanova and C#. We also measured the effort
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of adding this new feature to Casanova by using the hard-coded compiler
and Metacasanova. In the next chapter we conclude this dissertation by
answering the research questions proposed in Chapter 1 and we draw our
conclusions.



Chapter 8

Discussion and Conclusion

This chapter provides an answer to the problem statement and research
questions presented in Section 1.5. The goal of the first research question
is measuring the benefits of using a Metacompiler in terms of development
speed when used to implement a domain-specific language for game devel-
opment with respect to the implementation measured in code length. The
goal of the second research question is aimed to determine the trade-off
between a manual implementation of the language and an implementa-
tion with Metacasanova. The goal of the third research question is to
identify reasons for this trade-off and propose an optimization to reduce
it. The last part of this chapter answers the problem statement, provides
an overview of future work and adds final remarks for this thesis.

8.1 Answer to research questions

The three research questions stated in Section 1.5 are now answered in
Sections 8.1.1, 8.1.2, and 8.1.3 respectively.

8.1.1 Ease of development

The first research question reads:

Research question 1: To what extent can a meta-compiler reduce the
amount of code required to create a compiler for a domain-specific lan-
guage for game development?

The answer to this research question is derived from the results shown
in Chapter 4. In this chapter we re-implemented the language semantics
of two languages: a toy imperative language called C-- and the domain-
specific language for game development Casanova. In Section 4.3 we
showed how the use of Metacasanova reduces the effort in term of code
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writing for the compiler of Casanova as the code required for the defini-
tion of the language semantics is roughly 5 times shorter in Metacasanova
than the hard-coded version of the compiler written in F#. We obtained
even better results with the implementation of the semantics of C-- that is
roughly 10 times shorter than its hard-coded counterpart. This improve-
ment is due to the fact that, in Metacasanova, it is possible to express
the semantics of the language by mimicking almost directly the definition
of Casanova written in natural semantics. Thus, in addition to the ben-
efit in term of code length necessary to define the language semantics of
Casanova, this reflects almost directly its formal definition, while in the
hard-coded version the logic of the semantics is hidden in the implemen-
tation details of the host language used to build the hard-coded version of
the compiler. This result has been further backed up also by the results
obtained when implementing the networking semantics of Casanova in
Chapter 7, where we obtained a code size reduction of about 13 times.

8.1.2 Performance trade-off

The second research question reads:

Research question 2: How much is the performance loss introduced
by the meta-compiler with respect to an implementation written in a lan-
guage compiled with a traditional compiler and is this loss acceptable when
considering game development?

The answer to this research question can also be found in Chapter 4.
In Section 4.3 and 4.3.3 we compared the running time of a sample writ-
ten in Casanova implemented in Metacasanova with respect to the same
sample implemented in Python, which is a programming language used
to script the game logic in several games. The running time of Casanova
results to be 3 times slower than the same implementation in Python in
a simulation with 1000 entities. This performance loss does not make
this version of Casanova suitable for game development as such num-
ber of entities can normally be present during the execution of a game.
Usually a target value for the frame rate of a game is in the order of
60 frames/second, while the simulation in Casanova runs at roughly 28
frames/second. To this we add the fact that we are running the game
logic separately from the rendering phase, which introduces additional
overhead. The same simulation in Python runs at about 70 frames/sec-
ond. At this point we can observe that Metacasanova is suitable for
the fast prototyping of a domain-specific language for game development
(because of the code length reduction) but not for its use.
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8.1.3 Optimization

The third research question reads:

Research question 3: What is the cause of the performance degra-
dation when employing a meta-compiler and how can this be improved?

In Chapter 5 Sections 5.1, 5.1.1, and 5.1.2 we identified the main cause
of performance loss in the dynamic lookups that the language must per-
form at run time to retrieve the values of the entity fields and variables
from the meta-data structures used to represent the memory model of
a Casanova program. Thus, even if Casanova is a statically-typed lan-
guage, in its meta-compiled version it exhibits dynamic behaviours. The
reason of this is that Metacasanova, with the features presented up to
Chapter 4, cannot embed the type system of a language implemented
in it in its own type system, thus the typing rules of Casanova must be
implemented in terms of rules in natural semantics that are evaluated
at runtime. The same applies to the representation of Casanova entities:
even if their structure is known at compile-time and does not dynamically
change at runtime, the access to the data-structure used to encode them
must be a lookup performed at runtime, while, if this could be known by
Metacasanova during the compilation phase, the code for these accesses
could be inlined, thus improving the runtime performance.

In order to overcome this problem we proposed in Section 5.2 a lan-
guage extension for Metacasanova introducing functors and modules in
the meta-language. One use of this language extension is the ability of
embedding the type system of a language implemented in Metacasanova
(embedded language) in the very same type system of Metacasanova itself.
In this way the type checker of Metacasanova is, at the same time, able
to statically type check both the abstractions of the meta-language and
those of the embedded language itself. This has a dual benefit: (i) the
typing of a program written in an language embedded in Metacasanova
can always be performed statically by the type checker of Metacasanova,
and (ii), in presence of data structures that do not change their struc-
ture at runtime, it is possible to inline the access to their components at
compilation time.

In Section 5.3 we provided a proof of such capabilities by giving an
implementation of records using functors and modules to, at the same
time, define the type of a record in term of the meta-type system of
Metacasanova and to build getters and setters for its fields by inlining the
calls to functions that are directly able to access or modify the requested
field. In Section 5.7 we compared the access to this record implementation
with its dynamic counterpart used to model Casanova entities in Chapter
4 obtaining performance 11 times faster with the functor implementation.
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In Chapter 6 we show how to use functors and modules to implement
the semantics of updating the entities of a Casanova program by starting
from the observation that its structure is known at compile time and thus
the update will always follow the same pattern. It is thus possible to build
the functions necessary to update a specific Casanova program at compile
time with Metacasanova, getting rid of all the dynamic checks needed to
perform the same activity in the implementation provided in Chapter 4.
The Casanova performance implemented in this way is 42 times faster on
average than its previous implementation without functors.

We can thus conclude that this optimization leads to a performance
improvement that makes a domain-specific language for games imple-
mented in Metacasanova have acceptable performance, as now the frame
rate of a Casanova program with 1000 entities is roughly 900 frames/sec-
ond, against the previous version that ran at 28 frames/second.

8.2 Answer to the problem statement

The problem statement reads:

Problem statement: To what extent does a meta-compiler benefit the
development of a domain-specific language for game development?

Our goal in this thesis was to reduce the effort of developing a com-
piler for a domain-specific language for game development and, at the
same time, evaluate the feasibility of such approach performance-wise.
For this purpose, we designed Metacasanova, a meta-compiler whose
meta-language is based on natural semantics. Metacasanova benefits in
terms of development speed manifested almost immediately, as the first
re-implementation of the Casanova language was substantially shorter
than its hard-coded counterpart in F#. This result is further backed up
by an analogous code reduction size when implementing the networking
extension. Moreover, the structure of the formalization of the language
semantics was almost entirely preserved in the Metacasanova implementa-
tion, while in the hard-coded version of the compiler this is lost. However,
these benefits came at a cost, since the runtime performance of a Casanova
program turned out to be slower than Python, thus making the use of
a DSL implemented in Metacasanova impractical for game development.
We overcame this drawback by extending the meta-language of Metaca-
sanova with functors and modules that allow to perform code generation
optimizations, thus improving also the performance of the Casanova im-
plementation that now runs 42 times faster than the previous version. We
can conclude that such performance boost makes Metacasanova suitable
not only for rapid prototyping a DSL for game development, but also to
produce a language version that can be used in practical applications.
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8.3 Future Work

Metacasanova comes with a series of features that boost the development
speed of a domain-specific language for game development with respect
to its typing and semantics. Little effort was put into providing a way of
defining the syntax of such language in Metacasanova. In all the exam-
ples presented in this work we wrote the programs of the programming
language implemented in Metacasanova in terms of the meta-language
itself. This of course is not ideal because, in the current state, the pro-
grammer must be expert of both this programming language and the
meta-language of Metacasanova. Metacasanova should thus be extended
also to support a way to define a syntax definition in a parser that gen-
erates a representation of the program in terms of the meta-language of
Metacasanova.

Another interesting research aspect regarding the optimization of Me-
tacasanova would involve the memoization of function calls: a lot of the
overhead of the evaluation of rules of natural semantics goes into the pat-
tern matching of the input parameters and of the result of the premises.
Since Metacasanova is referentially transparent (unless an evaluation rule
contains calls to external code), it would be possible to store the result of
the evaluation of a rule in a lookup table and retrieve it if the same call
is performed at a later stage instead of recomputing it every time, thus
getting rid of much of the costs of pattern matching.

Finally, in this work we focused our attention on using functors and
modules in Metacasanova to improve the performance of a domain-specific
language for game development, and in particular to improve the perfor-
mance of accessing the fields of an entity in Casanova and optimize its
update, but we argue that the same approach could be used in general
to optimize the compilation of any programming language. Of course
this, for now, it is just a conjecture that requires further investigation by
building a set of different and more diverse domain-specific languages.
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Appendix A

List Operations with Templates

In this appendix we will show in detail some operations on lists built
on top of what presented in Section 2.6.1 that can be built by using
meta-programming in C++ templates. The goal of this appendix is to
convince the reader about the level of complexity of using C++ templates
to express meta-programming and why it is preferable to use a dedicated
meta-compiler.

A.1 Element Getter

Accessing the n-th element of a list defined with templates mimics the
behaviour of the its definition in a functional programming languages
given below:

let rec nth (n : int) (l : List <’a>) : ’a =
match l,n with
| x :: xs ,0 -> x
| x :: xs,_ -> nth (n - 1) xs

The recursion base case is when the index we want to access is 0, which
means that we want to access the head of the list. In this case we simply
return the head by decomposing the list through pattern matching. In the
other case we simply make a recursive call by passing the index decreased
by 1 and the tail of the list. In template meta-programming, this is
translated into a template that performs the same task:

template <typename List > struct Nth <LST , 0>
{

typedef typename List::Head result;
};

As shown in Section 2.6.1, the arguments of the function are passed as
arguments of the template itself. This version of the template is special-
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ized for the integer 0, which corresponds to the base case of the recursion.
The general case of the recursion has a dedicated template as follows:

template <typename List , int N> struct Nth
{

typedef typename List::Tail Tail;
typedef typename Nth <Tail , N - 1>:: result result;

};

The template contains a type definition for the parameter corresponding
to the list tail and another type definition corresponding to the recursive
call to another Nth template, this time containing only the tail of the list
and the counter decreased by 1. To test this we can use the following
sample:

template <int N> struct Int
{

static const int result = N;
};

typedef List <Int <1>, List <Int <2>, List <Int <3>>>> testList
;

int main()
{

cout << Nth <testList , 2>:: result :: result << endl;
}

Note that we need to access result twice, because the first result is
the type of the head of the list generated by template, which is Int. So
calling

Nth <testList , 2>:: result

returns Int, that is a type. If we want to access the value stored in Int

then we must access the constant integer result contained in it. Note
that if we try to access an invalid index in the list, the compiler will
complain because it will try to generate a template with the tail of a list
that does not exist. In this way something that in a normal program
becomes a runtime error is here treated as a compilation error.

A.2 Element Existence

The code that tests the existence of an element within a list is recursive
as well and mimics the behaviour of its functional counterpart:

let exists (element: ’a) (l : List <’a>) : ’a =
match l with
| [] -> false
| x :: xs when element = x -> true
| x :: xs -> exists element xs
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The function returns false as a base case when the list is empty, because
it means that the whole list has been examined and the element has not
been found. The second case is when the head of the list matches the
element, which returns true. The last case is used when the head of the
list does not match the element, thus we call recursively exists on the
tail. In order to implement this function with C++ templates, we need
to define two utility templates able to compare two elements:

template <class X, class Y> struct Eq { static const bool
result = false; };

template <class X> struct Eq<X, X> { static const bool
result = true; };

The first template has a result set to false when its arguments are dif-
ferent, while the second template is a specialization of the first one where
both the first template argument and the second are the same and its
result is true. With this utility templates we can correctly compare the
values of a list defined with templates and define the recursive template
for the existence function:

template <class Element , class List > struct Exists
{

static const bool result =
Eq<Element , typename List::Head >:: result || Exists <

Element , typename List::Tail >:: result;
};

template <class Element > struct Exists <Element , NIL >
{

static const bool result = false;
};

The first template is the general case of the recursion. It uses Eq to test
the value of the searched element against the head of the list. It then
combines this result with the logical or on Exists run with the remaining
tail of the list. The second template is the base case and contains a
constant set to false. This corresponds to the base case of the recursive
function above.
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Appendix B

Metacasanova Grammar in BNF

In this section we provide the grammar of Metacasanova in Backus-Naur
Form [63]. For brevity we provide only the grammar productions and not
the tokens (written in capital letters). Note that this version includes the
language extension described in Chapter 5.

moduleId = ’*’ | ID

moduleArg = [’(’] ID ’:’ moduleId [’) ’]

moduleDeclaration = ’Module ’ STRING ’=>’ { moduleArg }
’:’ ID { NEWLINE } ’{’ { declaration } ’}’

program =
{ NEWLINE } { NAMESPACE dottedPath newLineSeq } {

includeStmts } { declaration } { subtype } { rule }

includeStmts = ’include ’ STRING

dottedPath = ID { ’.’ ID }

declarations = { declaration }

genericSeq = ’[’ ID { ’,’ ID } ’]’

typeArg = ID | argSeq | ’<<’ STRING ’>>’

funcArg = ’*’ | typeArg

declArgs =
| STRING { ’->’ typeArg }
| { ’->’ typeArg } STRING { ’->’ typeArg }
| { ’->’ typeArg } STRING

funcArgs =
| STRING { ’=>’ funcArg }
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| { ’=>’ funcArg } STRING { ’=>’ funcArg }
| { ’=>’ funcArg } STRING

priority = ’Priority ’ INT
associativty = ’Associativity ’ (’left ’ | ’right ’)

declaration =
| "Func" { genericSeq } declArgs ’:’ typeArg [ priority

] [ associativity ]
| "Data" { genericSeq } declArgs ’:’ typeArg [ priority

] [ associativity ]
| "Functor" funcArgs ’:’ typeArg [ priority ] [

associativity ]

literal =
| INT
| FLOAT
| STRING
| UNIT
//...

arg =
| ’(’ argSeq ’)’
| literal
| dottedPath
| CUSTOMOPERATOR

argSeq = arg { arg }

subtype = ID ’is ’ ID

comOp =
| ’=’ | ’>’ | ’<’ | ’>=’ | ’<>’

premise =
| argSeq ’->’ argSeq
| argSeq compOp argSeq
| argSeq ’=>’ argSeq

rule =
| { premise } ’--’ { ’-’ } argSeq ’->’ argSeq
| { premise } ’--’ { ’-’ } argSeq ’=>’ argSeq { NEWLINE }

’{’ program ’}’
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