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Abstract

In this article, we discuss the pricing performances of a large collection of GARCH
models by questioning the global synergy between the choice of the affine/nonaf-
fine GARCH specification, the use of competing alternatives to the Gaussian distri-
bution, the selection of an appropriate pricing kernel, and the choice of different
estimation strategies based on several sets of financial information. Furthermore,
the study answers an important question in relation to the correlation between the
performance of a pricing scheme and its ability to forecast VIX dynamics. VIX ana-
lysis clearly appears as a parsimonious first-stage filter to discard the worst GARCH
option pricing models.
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tonic stochastic discount factors
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Over the past three decades, autoregressive conditional heteroscedasticity (ARCH) and gen-

eralized autoregressiveconditional heteroscedasticity (GARCH) type models, initiated by

Engle (1982) and Bollerslev (1986), and their various extensions (see, e.g., Chorro, Guégan,

& Ielpo, 2015, Chapter 2) have become an important toolkit in the financial literature.

Concerning the pricing of derivatives, Duan (1995) was the first paper to propose a coher-

ent theoretical framework, namely the locally risk-neutral valuation relationship (LRNVR),

to obtain risk-neutral dynamics of Gaussian GARCH models. This methodology was popu-

larized in Heston & Nandi (2000) where a discrete-time affine GARCH-type model with

Gaussian innovations was able to replicate one of the key features observed in continuous
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time literature (Heston, 1993): the fact that the no-arbitrage price of classical European

options had semiclosed form expression.1 Since then, these two seminal works have been

extended in various directions and, when using GARCH-type models to price options, the

modeler is now facing several important empirical choices namely the volatility structure,

the distribution of the conditional returns, the risk-neutral framework, and the estimation

strategy. What is more, to test the empirical validity of these choices, cumbersome numeric-

al analysis has to be performed using extensive historical options data.

The aim of this study is two-fold. First, based on the most recent advances in this topic,

it attempts to shed light on the interlinkages between the four key factors of GARCH op-

tion pricing models by questioning in details the global synergy between the choice of the

affine/nonaffine GARCH specification, the use of competing alternatives to the Gaussian

distribution, the selection of an appropriate pricing kernel and the choice of different esti-

mation strategies based on several sets of financial information. Up to our knowledge, this

global approach is unique in the literature where in general one or two factors are ques-

tioned ceteris paribus. Second, the article questions the correlation between the perform-

ance of a pricing scheme and its ability to forecast VIX dynamics and we clearly establish

that the performance of a model in fitting VIX time series gives a very good indication of

related pricing performances at a very reasonable computational cost. VIX analysis appears

in this way as a very interesting and parsimonious first-stage evaluation to discard the worst

GARCH option pricing models without using extensive historical options data.

More precisely, in order to improve the numerical performances of the seminal Duan’s

option pricing model, four complementary areas have been explored in the literature:

1. Use more realistic GARCH processes coping with asymmetric volatility responses,

2. Use non-Gaussian distributions to deal with conditional skewness and kurtosis,

3. Use different risk-neutralization processes compatible with the preceding points,

4. Use, when it is possible, more information than just that of the log-returns to estimate

the model.

The two first points are now a classic topic and many extensions have been proposed to

cope with these well-documented stylized facts. The asymmetric effects of positive and

negative shocks of equal magnitude on conditional volatility, the so-called leverage effect,

may be captured using a large family of extended GARCH models the most popular being

probably the exponential GARCH (EGARCH) of Nelson (1991), the nonlinear GARCH

(NGARCH) model of Engle & Ng (1993), the Glosten-Jagannathan-Runkle GARCH

(GJR-GARCH) of Glosten, Jagannathan, & Runkle (1993), the threshold GARCH of

Zakoian (1994), and the affine Heston-Nandi GARCH (HN-GARCH) by Heston & Nandi

(2000). However, the leverage parameter of preceding specifications is not sufficient to cap-

ture all the skewness and kurtosis levels in standardized residuals. Therefore, Gaussian hy-

pothesis for the conditional distribution of log-returns has to be relaxed and a myriad of

possible choices may be used to take into account all the mass in the tails and the

1 In the Duan’s framework, the coefficients of the GARCH risk-neutral dynamics are just functions of

the historical ones, and so may be directly estimated from the log-returns. Nevertheless, the

closed-form expression permits to efficiently use available option information to calibrate the

model.
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asymmetry (Chorro, Guégan, & Ielpo, 2015, Chapter 2). Among them, the Generalized

Hyperbolic (Chorro, Guégan, & Ielpo, 2012; Badescu et al., 2011) family and its Normal

Inverse Gaussian (NIG) subclass (Stentoft, 2008; Badescu, Elliott, & Ortega, 2015), the

Inverse Gaussian (IG) distribution (Christoffersen et al., 2006a), or the mixture of Gaussian

(Badescu, Kulperger, & Lazar, 2008) clearly improve forecasting performances of related

GARCH models.

Once a competing model has been chosen, the choice of the so-called stochastic discount

factor (SDF) to obtain risk-neutral dynamics is fundamental. For this third point, two con-

straining factors apply: this SDF has to be sufficiently flexible to provide explicit risk-

neutral dynamics for a large variety of GARCH structures and innovation distributions and

rich enough to produce good pricing performances. Since the seminal paper of Duan, sev-

eral tools have been developed to select an equivalent martingale measure (EMM; see, e.g.,

Chorro, Guégan, & Ielpo, 2015, Chapter 3).2

Finally, one of the main advantages of GARCH models, with respect, for example, to

stochastic volatility ones,3 is that they may be efficiently estimated using a conditional ver-

sion of the maximum likelihood estimation and a dataset of log-returns. In particular, since,

in the case of exponential-affine or extended Girsanov principle (EGP) SDF, the associated

risk-neutral dynamics are explicit transforms of the historical ones, only log-returns infor-

mation is needed to compute or approximate European option prices.4 Even so, when an

extra piece of financial information (price of plain vanilla options, the VIX index for the

S&P500, etc.) is available it can be of interest to integrate it, in an efficient way, to the esti-

mation process to reduce pricing errors. Therefore, following Christoffersen, Jacobs, &

Ornthanalai (2012) it is now classically possible to build for some affine GARCH models

(at the very least for the HN-GARCH Heston & Nandi (2000) and the IG-GARCH

Christoffersen et al. (2006a) where semiclosed form expressions for option prices are

obtained) a joint maximum likelihood based on log-returns and option prices. In this set-

ting, the affine structure of the model is mandatory: if prices are evaluated using Monte

Carlo methods, computing the likelihood function may be cumbersome. In a recent study,

Hao & Zhang (2013) have computed VIX index formulas implied by various nonaffine

asymmetric Gaussian GARCH models. They presented closed-form formulas for the VIX

index associated with five classical nonaffine Gaussian GARCH models when Duan (1995)

2 The exponential-affine SDF, Mess, developed by Bühlmann et al. (1996) and Siu, Tong, and Yang

(2004), which is based on a conditional extension of the pioneering work of Esscher (1932), and the

SDF given by the EGP of Elliott and Madan (1998) are probably the two best known. In particular,

they coincide with Duan LRNVR in the Gaussian setting. Let us also remark that extended and non-

monotonic versions of the exponential-affine SDF are available for particular choices of distribu-

tions as the exponential-quadratic SDF MQua of Monfort and Pégoraro (2012; see also

Christoffersen, Heston, and Jacobs, 2013) for Gaussian innovations and the exponential U-shaped

stochastic discount factor MUsh proposed by Chorro and Fanirisoa (2019) for the Inverse-Gaussian

GARCH model.

3 See, for example, Taylor (1986) and Heston (1993) where information from the volatility structure is

needed to estimate parameters of the model.

4 This is not true for MQua or MUsh because, in this case, a risk-neutral parameter (the constant pro-

portional wedge between historical and risk-neutral volatilities) has to be evaluated.
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LRNVR is used. Based on this result, Kanniainen, Binghuan, & Hanxue (2014) proposed a

fair comparison between affine and nonaffine Gaussian GARCH specifications using

log-returns and VIX information in the estimation.5 For two affine GARCH models

Chorro & Fanirisoa (2019) and Papantonis (2016) proved that incorporating both the

physical return dynamics of the index and risk-neutral dynamics of the VIX to estimate the

parameters of GARCH option pricing models provides competitive pricing errors at a very

low computational cost.6

This article attempts to fill several gaps in the GARCH option pricing literature, in par-

ticular, from an empirical point of view.

First, in the spirit of Christoffersen & Jacobs (2004) the aim of our study is to provide

an intensive comparison analysis of empirical performances, in VIX index or options valu-

ation, between different GARCH-type models using Gaussian or non-Gaussian distribu-

tions under different classes of risk-neutral measures. Furthermore, particular attention is

granted on the choice of the information set (VIX, options, returns) in the estimation pro-

cess. To keep the empirical analysis manageable, we only focus our attention on four clas-

sical parsimonious GARCH(1,1) structures: HN-GARCH by Heston & Nandi (2000),

GJR-GARCH by Glosten, Jagannathan, & Runkle (1993), NGARCH by Engle & Ng

(1993), and IG-GARCH by Christoffersen et al. (2006a).7 One advantage of this choice is

to question the difference between affine and nonaffine models. As a natural non-Gaussian

alternative we favor the so-called NIG distribution not only because it is known to fit statis-

tical properties of asset returns remarkably but also because, combined with Esscher and

EGP SDF, pricing equations may be solved explicitly.8 Furthermore, monotonic and non-

monotonic pricing kernels (Monfort & Pégoraro, 2012; Chorro & Fanirisoa, 2019) are

considered for Gaussian and IG distributions.

To our knowledge, in the existing literature, empirical studies questioned, in general,

the impact of the distribution (Christoffersen et al., 2006a; Chorro, Guégan, & Ielpo,

5 Recently, a large number of studies have further investigated the ability of the VIX index as an input

variable for volatility to forecast option prices. Considered as an expected volatility series, the VIX

was proposed by Whaley (1993) and introduced by the CBOE in 1993 to serve as a market volatility

indicator. The VIX captures how much the investor is willing to pay to deal with investment risks. In

previous empirical papers on the importance of the VIX index, the attention focus has primarily

been on the impact and the correlation of the VIX index with the stock market and returns volatility.

Giot (2005) and Sarwar (2012) have established empirical results that suggest an asymmetric rela-

tionship between stock market returns and VIX. Cochrane et al. (2012) observed the adequacy of

the VIX index as an important factor in the determination of stock market returns and also of

volatility.

6 When closed-form expressions are not available, two recent studies proposed interesting alterna-

tives. In Lalancette & Simonato (2017), the authors proposed, for the NGARCH model with Johnson

SU distributed driving noise, numerical approximations to make possible the computation of the

implied VIX index using Monte Carlo simulations. In Chorro & Fanirisoa (2018), a new estimation

strategy for some non-Gaussian GARCH models is presented to include options or VIX information

in the joint estimation at a low computational cost.

7 An equivalent study could be performed in a companion paper for Markov-switching (Elliott, Siu, &

Chan, 2006, multi-component (Christoffersen et al., 2008) and multiple-shock (Christoffersen,

Jacobs, & Ornthanalai, 2012) GARCH models.

8 Such a property is not fulfilled if we use, for example, a mixture of Gaussian distributions.
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2012), the choice of the SDF (Badescu et al., 2011; Christoffersen, Heston, & Jacobs, 2013;

Chorro & Fanirisoa, 2019) or the estimation strategy (Hao & Zhangm, 2013; Kanniainen,

Binghuan, & Hanxue, 2014; Papantonis, 2016; Lalancette & Simonato, 2017) on pricing

performances, but none of them consider all these factors at the same time. For example, in

Christoffersen & Jacobs (2004) and Kanniainen, Binghuan, & Hanxue (2014) the authors

study different GARCH structures with different estimation strategies, but restrict them-

selves to the Gaussian setting while in Chorro & Fanirisoa (2019) the authors focus on dif-

ferent SDF and estimation strategies only for the IG-GARCH model. Our study is a means

of making a contribution to understand the combined impact of these complementary

aspects (twenty-one combinations of GARCH-distribution-SDF-estimation are tested), in-

stead of providing restrictive pairwise comparisons, and to conclude that the combination

of all of them is fundamental to producing competitive valuation errors.

Second, we also explore in this article if it is possible to partly classify a large family of

GARCH option pricing models by their ability to simply reproduce the VIX index. In fact,

the correlation between the option pricing performances of a model and its ability to com-

pute accurate VIX measures is a natural question that appears in many talks and discus-

sions among experts but, up to our knowledge, it is not clearly and rigorously addressed in

the literature. Our methodology is inspired by the work of Hao & Zhang (2013) that intui-

tively explained the poor pricing performances of Gaussian GARCH models (risk-neutral-

ized using the LRNVR) by their inefficiency to capture the variance risk premium. In this

article, we not only extend their conclusion exploring its robustness for non-Gaussian dis-

tributions and nonstandard SDF9 but also supporting our findings with a deep empirical

study based on pricing errors associated with a large real-world dataset of option prices.

Here, a challenging aspect is to make VIX analysis a first-stage filter to discard the worst

GARCH option pricing models. From purely numerical aspects, such a conclusion would

be very interesting to back-test these models in an efficient way, using only VIX informa-

tion, when available, instead of complex option datasets.

This article is structured along the following lines. In Section 1, we first provide a partial

presentation of all competing GARCH frameworks used in the empirical part. More pre-

cisely, we consider four GARCH structures for modeling volatility as a time-varying pro-

cess: HN-GARCH, GJR, NGARCH, and IG-GARCH. Then, in Section 2, we recap the

main risk-neutralized frameworks adopted in this study. Next, in Section 3, we derive the

related VIX index formulas. Section 4 deals with the estimation challenge, presenting meth-

odologies based on different information sets and the related numerical results in terms of

VIX approximation and option pricing. We conclude in Section 5.

9 Recent papers (see, e.g., Qiang, Gaoxiu, & Guo, 2015; Wang et al., 2017; Zhang & Zhang, 2020) pro-

vide new estimation methodologies to improve the VIX forecasting performance of Gaussian

GARCH models observed in Hao & Zhang (2013) while in Yang & Wang (2018), the authors favor the

IG-GARCH model risk-neutralized using the conditional Esscher transform. In our study we focus

not only on estimation strategies but also on nonstandard distributions and SDF showing that the

IG-GARCH model combined with a U-shaped pricing kernel delivers the best performances in fore-

casting the VIX index.
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1 Competing GARCH Models

We consider a financial asset with a market price at time t given by St and we denote by

Yt ¼ log St

St�1

� �
the associated log-returns defined on a complete probability space ðX;F ;PÞ

where P represents the historical probability measure. Information filtration fF tg0� t�T is

generated by log-returns supposing that F 0 ¼ 1;Xf g and FT ¼ F . In what follows, we

consider a general dynamics for the stock price process:

Yt ¼ rþmt þ
ffiffiffiffiffi
ht

p
zt

ht ¼ F zt�1; ht�1; h
V

� � (1)

where the zt are i.i.d. centered and reduced random variables depending on a vector of

parameters hD, mt is the predictable time-varying excess of returns, r is the risk-free rate

and F is a mapping, compatible with realistic GARCH(1,1) volatility models that depends

on a vector of parameters hV. From now on, the initial value h0 of the conditional volatility

is supposed to be constant and fixed at its unconditional level depending on the persistence

of the model W (i.e., the coefficient in front of ht in EP htþ1jF t�1½ �).
For our empirical horse-race, we favor four particular GARCH specifications often used

in the literature to cope with volatility clustering and leverage effect. Moreover, these four

GARCH-type models belong to two important families: affine and nonaffine frameworks.

While affine GARCH models are often used because they yield a semiclosed form solution

for prices of European equity options, it is now well-documented (see, e.g., Christoffersen

et al., 2006b) that nonaffine ones provide a better fit to financial data. One important as-

pect of our empirical study will be to question once again this duality. Following

Kanniainen, Binghuan, & Hanxue (2014) we choose the widely recognized NGARCH

Engle & Ng (1993), GJR-GARCH Glosten, Jagannathan, & Runkle (1993), and affine

HN-GARCH Heston & Nandi (2000) models and we add the IG-GARCH of

Christoffersen et al. (2006a; see also Chorro & Fanirisoa, 2019) that is a notable example

of an affine model within a non-Gaussian setting. In the next sections, we briefly recall the

definitions and the main properties of these specifications.

1.1 Affine Competitors

Since the seminal work of Heston (1993), affine models, that led to semiclosed form expres-

sions for option prices, are the keystone of almost all numerical studies. In the discrete-time

literature, the HN-GARCH Heston & Nandi (2000) and the IG-GARCH of Christoffersen

et al. (2006a) are two important contributions. More precisely, the historical dynamics are

given by:

1.1.1 The HN-GARCH model

Yt ¼ rþ k0ht þ
ffiffiffiffiffi
ht

p
zt

ht ¼ a0 þ a1 zt�1 � c
ffiffiffiffiffiffiffiffiffi
ht�1

p� �2

þ b1ht�1

8<
: (2)

with a0 > 0; a1 � 0; b1 � 0
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1.1.2 The IG-GARCH model

Yt ¼ rþ �ht þ gzt

ht ¼ wþ bht�1 þ czt�1 þ a
h2

t�1

zt

8<
: (3)

with w> 0, b � 0; c � 0, and a � 0.

In the HN-GARCH model, the zt are supposed to be Gaussian while in the IG-GARCH

they follow an Inverse Gaussian distribution with degree of freedom dt ¼ ht

g2 whose prob-

ability density function is given by

dzt
zð Þ ¼ 1fz>0g

dtffiffiffiffiffiffiffiffiffiffi
2pz3
p e�

ffiffi
z
p �dt=

ffiffi
z
pð Þ2=2: (4)

The persistence (that will be an important quantity to express associated VIX index for-

mula) of the HN-GARCH (resp. IG-GARCH) is given by W ¼ b1 þ a1c2 (resp.

W ¼ bþ c
g2 þ ag2). Under these two hypotheses on the distributions of innovations, it is

easy to prove for both models that the conditional moment generating function

GP
log STð ÞjF t

uð Þ ¼ EP Su
T jF t

� �
of the log asset price under the physical measure can be written

in the following log-linear form GP
log STð ÞjF t

uð Þ ¼ Su
t eAtþBthtþ1 where the coefficients At and

Bt can be obtained by working backward from the maturity date of the option and using

terminal conditions AT ¼ BT ¼ 0. More precisely, for the HN-GARCH model,

At ¼ ruþ Atþ1 þ a0Btþ1 �
1

2
log 1� 2a1Btþ1ð Þ

Bt ¼ � 1

2
uþ b1Btþ1 þ

u2

2
� 2a1cBtþ1uþ a1Btþ1c

2

	 

1� 2a1Btþ1ð Þ�1

8>><
>>: (5)

and for the IG-GARCH model

At ¼ Atþ1 þ urþwBtþ1 �
1

2
log 1� 2ag4Btþ1

� �
Bt ¼ bBtþ1 þ u� þ g�2 � g�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ag4Btþ1ð Þ 1� 2cBtþ1 � 2ugð Þ

p
:

8<
: (6)

Moreover, one important empirical consequence for the pricing of European call

options is that the very particular form of the conditional moment generating function of

log STð Þ leads to the existence of semiclosed form expressions for prices which allow us to

use Fast Fourier Transform (FFT) methodology and option information in the estimation

procedure as explained in Chorro, Guégan, & Ielpo (2015, Chap 4).

1.2 Nonaffine Competitors

In order to propose asymmetric extensions of the original GARCH(1,1) model, one possi-

bility is to modify the so-called news impact curve (NIC) introduced in Engle & Ng (1993).

For this purpose, we may shift a symmetric NIC to the right or consider curves centered at

0 allowing for slopes of different magnitudes on either side of the origin. These two

approaches were used by Engle & Ng (1993) and Glosten, Jagannathan, & Runkle (1993)

in order to introduce, respectively, the popular NGARCH and GJR models. In both cases, a

single leverage parameter constrains the response of the conditional variance to depend on

the sign of a shock:
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1.2.1 The NGARCH model

Yt ¼ rþ k0

ffiffiffiffiffi
ht

p
� log EP e

ffiffiffi
ht

p
zt

� �� �
þ

ffiffiffiffiffi
ht

p
zt

ht ¼ a0 þ b1ht�1 þ a1ht�1 zt�1 � cð Þ2

8<
: (7)

with a0 > 0; b1 � 0; a1 � 0

1.2.2 The GJR model

Yt ¼ rþ k0

ffiffiffiffiffi
ht

p
� ht

2
þ

ffiffiffiffiffi
ht

p
zt

ht ¼ a0 þ ht�1 b1 þ a1 zt�1ð Þ2 þ cmax 0;� zt�1ð Þ
� �2

h i
8><
>: (8)

with a0 > 0; b1 � 0; a1 � 0, and c � 0.

The persistence of the NGARCH (resp. GJR) is given by W ¼ b1 þ a1 1þ c2
� �

(resp.

w ¼ b1 þ a1 þ c
2). Contrary to models presented in the preceding section, here, conditional

moment generating function is not an exponential-affine function of the one-step ahead

volatility. To compute option prices we use in general Mont-Carlo approximations.

To conclude this subsection, let us discuss the main reasons for the choice of the condi-

tional excess return in Equations (7) and (8). For the GJR model, we take the classical

Duan (1995) specification mt ¼ k0

ffiffiffiffiffi
ht

p
� ht

2 while in the NGARCH model we follow

Badescu et al. (2019) and take mt ¼ k0

ffiffiffiffiffi
ht

p
� logðEP½e

ffiffiffi
ht

p
zt �Þ. These choices may appear ar-

bitrary because in the nonaffine setting they are not restricted to having an affine function

of the conditional variance. Nevertheless, we can first remark that for Gaussian innovations

both coincide. Then, as remarked in Hao & Zhang (2013), VIX implied formulas are avail-

able in this nonaffine setting at the very least for Gaussian innovations. Finally, for the

NGARCH model with NIG innovations, this very particular form may lead to a closed-

form expression for the model implied VIX as explained in Badescu et al. (2019). This

property is remarkable because up to our knowledge this is the unique example in the litera-

ture of an explicit VIX index formula within a non-Gaussian and nonaffine setting.

1.3 A Flexible Alternative to Gaussian Distribution

It is now a well-known fact that forecasting performances of GARCH-type models are

improved when using non-Gaussian innovations. Historically, several interesting distribu-

tions were proposed to better account for the deviation from normality. In the present

section, we have decided to mainly focus our attention on the NIG distribution. This four-

parameter family of distributions has been extensively used during the last decade in

discrete-time literature, especially for pricing issues (Stentoft, 2008; Badescu et al., 2011,

2019; Guégan, Ielpo, & Lalaharison, 2013): for a; b; d; lð Þ fulfilling 0 < jbj < a and

d > 0, the density of the NIG a;b; d;lð Þ is given by

dNIG z; a; b; d;lð Þ ¼ a
p

ed
ffiffiffiffiffiffiffiffiffiffi
a2�b2
p

þb z�l
dð Þ

� � K1 ad
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z�l

d

� �2
q	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z�l

d

� �2
q
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(where K1 is the modified Bessel function of the third kind with index one) and the asso-

ciated cumulant generating function by

jNIG zð Þ ¼ lzþ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
� d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � bþ zð Þ2

q
:

The mean and the variance of this distribution are, respectively, given by

m ¼ lþ dbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q ; r2 ¼ da2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q	 
3
: (9)

Therefore, from the stability of the NIG family under affine transforms, it is possible to

obtain a centered version with unit variance considering

NIG ~a; ~b; ~d; ~l
� �

¼ NIG a; b; d; lð Þ �m

r
(10)

where ~a ¼ ra; ~b ¼ rb; ~d ¼ d
r and ~l ¼ �m

r þ
l
r :

2 Stochastic Discount Factors and Risk-Neutral Dynamics

From the beginning of the 80s (see Chorro, Guégan, & Ielpo, 2015, Chap 3 and references

therein), general methods providing arbitrage-free price processes via the notion of EMM have

been investigated both in discrete or continuous-time frameworks. Furthermore, the choice of

such an EMM is known to be equivalent to the specification of the so-called one-period SDF.

Since markets described by GARCH models are incomplete, there is a priori an infinite number

of SDF available for pricing derivatives and a great challenge is to select tractable candidates for

their strong economic foundations and/or empirical performances. In this section, we present

the main paths to risk-neutralization that will be implemented in the numerical part to obtain

arbitrage-free price approximations in Gaussian or non-Gaussian settings. More specifically,

starting from the Duan (1995) approach particularly well-adapted to Gaussian residuals, we

briefly recall the main lines of the recent advances in modeling SDF dynamics to cope with non-

Gaussian innovations (Elliott & Madan, 1998, EGP and Siu, Tong, & Yang, 2004 conditional

Esscher transform) and/or have better representations of volatility risk (Monfort & Pégoraro,

2012; Chorro & Fanirisoa, 2019). Here, the objective is not to provide a self-contained presen-

tation of these classical tools but to remind about the main intuitions behind Gaussian (see

Table A1 in Appendix A) and non-Gaussian (see Table A2 in Appendix A) risk-neutral dynam-

ics that will be compared in the empirical part. We refer the interested reader to the technical

Appendix A describing in detail all the SDF implicitly used in the article.

As in the preceding section, we consider a GARCH-type specification for the log-returns

Yt ¼ rþmt þ
ffiffiffiffiffi
ht

p
zt

ht ¼ F zt�1; ht�1; h
V

� � (11)

where the zt is i.i.d. centered random variables with unit variance.

2.1 Duan’s LRNVR

Supposing that the zt are i.i.d. N 0;1ð Þ, Duan (1995) was the first to provide a coherent the-

oretical CCAPM framework to obtain risk-neutral dynamics in a GARCH environment in-

dependently of the underlying GARCH structure. More precisely, if Q is an EMM fulfilling
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LRNVR (a set of assumptions made on the utility function and the aggregated consumption

growth that preserves both Gaussianity and volatility) then

Yt ¼ r� ht

2
þ

ffiffiffiffiffi
ht

p
z�t

ht ¼ F z�t�1 �
mt�1ffiffiffiffiffiffiffiffiffi

ht�1

p �
ffiffiffiffiffiffiffiffiffi
ht�1

p
2

; ht�1; h
V

 !
(12)

where z�t are i.i.d. N 0; 1ð Þ under Q. For Gaussian models presented in the preceding section,

risk-neutral dynamics deduced from the Duan’s argument are given in Table A1 in

Appendix A. In the nonaffine GJR and NGARCH setting, prices may be obtained from

Equation (12) using Monte Carlo approximations while in the affine HN case semiclosed

form formulas are available. Nevertheless, Duan’s framework relies on Gaussian hypothe-

ses and cannot be adapted with simplicity to more general distributions.

2.2 The EGP

Duan’s framework relies on Gaussian hypotheses and cannot be adapted with simplicity to

more general distributions. Based on this observation, Elliott & Madan (1998) proposed a

very simple way to select an SDF based on a Girsanov-type transformation that preserves

returns distribution after the change of measure by only shifting the conditional mean to fulfill

the martingale restriction. Such a pricing kernel has also been justified from its consistency

with risk-adjusted cost-minimizing hedging strategies, and under the EMM QEGP we have

Yt ¼ rþmt � �t þ
ffiffiffiffiffi
ht

p
z�t

ht ¼ F z�t�1 �
�t�1ffiffiffiffiffiffiffiffiffi
ht�1

p ; ht�1; h
V

	 

(13)

where z�t follows the same law as zt under P and where �t fulfills e�t ¼ e�rEP eYt jF t�1

� �
.

When the zt is assumed to be Gaussian, we recover the same dynamics as in Equation (12).

Moreover, following Badescu et al. (2019), for NIG innovations this is a tractable frame-

work, especially when combined with the NGARCH model to obtain a closed-form for-

mula for the associated VIX index. In fact, the restriction imposed on the conditional mean

in Equation (7) provides explicit computations. Nevertheless, one of the major drawbacks

of this approach, that may explain partly poor pricing performances of this method for

long maturity options (see Badescu, Kulperger, & Lazar, 2008; Badescu et al., 2011), is the

fact that from P to QEGP only the conditional mean is affected while the conditional vari-

ance, skewness, and kurtosis are the same.

2.3 Exponential Affine SDF: The Conditional Esscher Transform

The conditional Esscher transform introduced in the GARCH setting by Siu, Tong, & Yang

(2004) and Gouriéroux & Monfort (2007) is probably one of the best-known tools to select

efficiently EMM. The associated SDF MEss is exponential-affine of log-returns and the pre-

dictable associated coefficients of affinity are uniquely determined by the pricing equations

related to the bond and the risky asset. In contrast to Duan’s approach, a wide variety of re-

turn innovations may be chosen at the very least within the class of mixture or infinitely

divisible distributions (see Chorro, Guégan, & Ielpo, 2015, Chap 3.4). Even if this tool

coincides with the LRNVR in the Gaussian case, it allows for strongly nonlinear relations

between historical and risk-neutral volatility in the non-Gaussian setting. Furthermore,
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explicit risk-neutral dynamics (see Table A2 in Appendix A) may be obtained for the IG-

GARCH model (3) and GARCH-type models with NIG innovations. In particular, if we

suppose in Equation (11) a NIG ~a; ~b; ~d; ~l
� �

for the zt, we obtain (Badescu et al., 2011) the

following dynamics under the Esscher EMM:

Yt ¼ rþmt þ
ffiffiffiffiffi
ht

p
z�t

ht ¼ F z�t�1; ht�1; h
V

� � (14)

where z�t follows, under QEss, a NIG ~a; ~b þ
ffiffiffiffiffi
ht

p
hq

t ;
~d; ~l

� �
with a predictable parameter hq

t

having an explicit form (see Appendix A).

2.4 Quadratic and U-Shaped SDF

As remarked in Monfort & Pégoraro (2012), the exponential-affine hypothesis concerning

the SDF only allows for an equity risk premium and it may be interesting to partly solve em-

pirical puzzles of option prices taking into account a second-order variance risk premium.

To achieve this, the authors introduced an exponential-quadratic SDF MQua that extends

Mess adding a second moment-based source of risk information. Moreover, under Gaussian

hypothesis, this new change of measure preserves the tractability of the model with a risk-

neutral dynamics given by

Yt ¼ r� h�t
2
þ

ffiffiffiffiffi
h�t

q
z�t

h�t ¼ pF
ffiffiffi
p
p

z�t�1 �
mt�1ffiffiffiffiffiffiffiffiffi

h�t�1

p �
ffiffiffiffiffiffiffiffiffi
h�t�1

p
2

 !
;
h�t�1

p
; hV

 ! (15)

where z�t is i.i.d.N 0;1ð Þ under QQua and p is the proportional wedge between risk-neutral and

historical volatilities assumed to be constant across time (see Appendix A for more details). As

a consequence, for the HN model (2), the dynamics under QQua remains in the same family of

affine GARCH models, preserving analytic properties of the HN specification in terms of op-

tion pricing. Inspired by this new methodology, Chorro & Fanirisoa (2019; see also Babaoglu

et al., 2018) proposed an exponential-hyperbolic SDF MUshp that is able to cope with the same

remarkable features in the case of the IG-GARCH model (3) (see Appendix A).

To conclude this section, let us precisely describe all related GARCH option pricing

models that will be tested in the empirical part: in the affine family, the classical Heston &

Nandi (2000) and the IG-GARCH model (Christoffersen et al., 2006a; Chorro &

Fanirisoa, 2019) will be combined with exponential-affine and U-shaped SDF risk-

neutralization processes. In these cases, Monte Carlo methods won’t be used to approxi-

mate the price of plain vanilla options. To relax the constraints on variance dynamics and

conditional distributions related to affine specifications, we will also study two classical

nonaffine structures namely the GJR and NGARCH models with Gaussian or NIG innova-

tions. In the Gaussian case, the dynamics will be risk-neutralized using the LRNVR or the

quadratic SDF while under NIG hypotheses, exponential-affine and EGP assumptions will

be favored. This great variety of models and SDF will allow us to question several key

aspects of GARCH option pricing modeling. Finally, for sake of concision and simplicity,

all the risk-neutral dynamics used in this study are gathered in Appendix Table A1 for

Gaussian innovations and in Appendix Table A2 otherwise.
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3 Model Implied CBOE VIX

Considered as the investor’s expectation of volatility (see Carr & Wu, 2006), the CBOE

VIX index can be characterized as a forecast of the 30-day risk-neutral volatility

(or twenty-two working days) of the S&P500 index. In this section, we denote by Vixt a

daily-based proxy for VIXt which is the daily-adjusted expression of the expected arithmet-

ic average of variance (see Hao & Zhang, 2013):

Vixt ¼
1

s
VIXt

100

	 
2

¼ EQ

1

Tc

ðtþTc

t

hudujF t

" #
� 1

Tc

XTc

j¼1

EQ htþjjF t

� �
(16)

where s¼250, Tc ¼ 22 represents the maturity in days and Q is an EMM. Depending on

the choice of the risk-neutral dynamics and using iterative properties of conditional expect-

ation, the term EQ htþjjF t

� �
can be explicitly computed for a large class of Gaussian (Hao

& Zhang, 2013) and non-Gaussian (Chorro & Fanirisoa, 2019; Badescu et al., 2019)

GARCH models. In general, EQ htþjjF t

� �
can be expressed as a linear function of historical

volatility at time tþ1, risk-neutral unconditional variance ~h0, and risk-neutral variance

persistence W� under the selected EMM. If we can obtain analytic expressions, we have the

following general form for EQ htþjjF t

� �
and Vixt:

EQ htþjjF t

� �
¼ htþ1 W�½ �j�1 þ ~h0 1� W�ð Þj�1

h i

Vixt ¼ htþ1
1� W�ð ÞTc

1�W�ð ÞTc

þ ~h0 1� 1� W�ð ÞTc

1�W�ð ÞTc

 !
8>>>><
>>>>:

(17)

where expressions of ~h0 and W� for particular models and SDF are reported in Table A3 in

Appendix A. In fact, for Gaussian models under the LRNVR and for affine models with

exponential-affine or U-shaped SDF we have closed-form expressions. For example, in the

case of the HN model, we obtain ~h0 ¼ a0þa1

1�W� and W� ¼ b1 þ a1 cþ k0 þ 1
2

� �2
when an

exponential-affine SDF is used while we obtain ~h0 ¼ a0þpa1

1�W� and W� ¼ b1 þ
p2a1

c
pþ

k0

p þ 1
2

� �2

under the quadratic SDF.

Unfortunately, in the case of NIG innovations (a notable exception is the NIG

NGARCH model associated with the EGP of Badescu et al., 2019) or when an exponential-

quadratic SDF is used with the Gaussian NGARCH and GJR structures, we do not have

closed-form formulas for the implied Vixt. However, as explained in Lalancette &

Simonato (2017), we can still use Monte Carlo simulations to approximate conditional ex-

pectation EQ htþjjF t

� �
and Vixt.

4 Methodology and Empirical Results

In this section, we present the main points emerging from this analysis. First, we carry out

numerical experiments to analyze pricing performances of all competing GARCH models,

focusing on affine/nonaffine structures, the risk-neutralization process, and the estimation

methodology. A pool of twenty-one possible combinations (Model/SDF/Estimation) will

thereby be tested to try to understand the impact of underlying factors. Furthermore, a se-

cond experiment aims to question the possibility of partly ranking GARCH option pricing

models by their ability to simply reproduce VIX dynamics, instead of using a heavy set of
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option data. More specifically, after a brief description of the data, we present the main

lines of classical joint likelihood estimation methodologies based on Option-Returns or

VIX-Returns data (see, e.g., Kanniainen, Binghuan, & Hanxue, 2014 and reference therein)

and that of the two-step estimation strategy recently introduced in Chorro & Fanirisoa

(2018) for NIG-GARCH processes. Then, when closed-form expressions for option prices

are not available, we recall how Monte Carlo approximations may be implemented effi-

ciently in the GARCH framework using the powerful and simple adjustment proposed by

Duan & Simonato (1998). Finally, this section ends with a presentation of the results based

on our empirical findings.

4.1 Data Description

This study used S&P500 daily returns and VIX data from January 7, 1999 to December 22,

2010, which are composed of 2718 observations covering about 12 years. We plotted in

Figure 1 the S&P500 and CBOE VIX indexes with their log-returns series while Table 1 dis-

played associated summary statistics. This information set was used to implement both

classical conditional maximum likelihood strategies and joint estimation strategies based

on returns and VIX information.

We also used a dataset of options written on the S&P500 obtained from Bloomberg.

Due to the number of option pricing models to test in this section, we restricted ourselves to

Wednesday’s contracts and we classically apply to our dataset the same filters as described

in Bakshi, Cao, & Chen (1997). Therefore, it concerned 4563 options contracts whose pri-

ces were quoted during the period spanning from January 2, 2009 to April 15, 2012. We

divided the option dataset into two subsets: one in which model parameters are estimated

(to implement for the affine models the joint likelihood estimation based on returns and

options) and another subset used to compare pricing performances of models. The first sub-

set, used for the in-sample estimation and comparison, is called Dataset A from January 2,

2009 until December 22, 2010 and contains 2714 contracts. However, the second subset

for the out-of-sample comparison is called Dataset B and contains 1849 contracts with

sixty-seven-Wednesdays from January 3, 2011 until April 15, 2012. This will be used to

test the out-of-sample ability to capture the behavior of the index option smile (VIX data

from January 3, 2011 until April 15, 2012 are also used in the empirical part to test the

ability of GARCH option pricing models to forecast VIX dynamics). Summary statistics for

option data are reported in Table 2 for both Dataset A and B: this table shows the number

of contracts, the average price, and the average implied volatility across moneynesses and

times to maturity. The patterns in the Dataset B are clearly similar to those in the in-sample

Dataset A.

Depending on the chosen estimation strategy, the in-sample dataset of returns is com-

bined with in-sample VIX data or Dataset A to estimate the model as explained in the next

section. Furthermore, usual in and out-of-sample option pricing performances are studied:

we use in-sample estimated parameters to compute approximate prices (from FFT or

Monte Carlo approximations depending on the structure of the model) for the contracts in

Dataset A and B to analyze associated errors. In the out-of sample exercise presented above,

we assumed that model’s parameters are constant over the whole sample period (Dataset

B). Obviously, this may appear as unrealistic and unfair for the simulation and relaxing this
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assumption will highlight the robustness of our conclusions. Therefore, in a complementary

numerical experiment, we allowed model parameters to change over time through a rolling

window estimation strategy for the sixty-seven Wednesdays in the Dataset B assuming a

constant window of 12 years (resp. two years) for log-returns and VIX data (resp. for

options). For each Wednesday in Dataset B, we estimated each model and used correspond-

ing parameters to price options next Wednesday.10

4.2 Estimation Methodologies

In this section, we denote by # the set of risk-neutral parameters associated with historical

dynamics (1). When conditional Esscher transform or EGP is used to obtain risk-neutral dy-

namics we simply have # ¼ hD; hV
� �

while # ¼ hD; hV ; p
� �

in the case of U-shaped pricing

kernels where hD is the vector of innovation parameters, hV represents the volatility

Figure 1 S&P500 and VIX closing prices (top) and daily log-returns (bottom) from January 7, 1999 to

December 22, 2010.

Table 1 Descriptive statistics of the S&P500 and VIX datasets covering the period January 7,

1999–December 22, 2010

DATASET Number of

observations

Min Max Mean Std Dev Skewness Kurtosis

Price index 2718 676.53 1565.15 1182.75 190.14 �0:0959 �0:6909

Log-returns 2718 �0:0947 0.1096 �0:0001 0.0139 �0:1214 7.3758

VIX index 2718 9.8900 80.8600 22.1859 9.6098 1.8853 5.6964

Log VIX 2718 �0:3506 0.4960 �0:0001 0.0613 0.5697 4.1682

10 We particularly use estimated in-sample parameters as initial values for the optimization per-

formed the first Wednesday while we initialize parameters of the following Wednesday estimation

process by using parameters obtained the previous week.

Chorro and Fanirisoa Zazaravaka j GARCH Models for Option Pricing 915

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/20/5/902/6105863 by bali.periodici@

unive.it user on 12 D
ecem

ber 2024



parameters, and p is the proportional wedge between risk-neutral and historical volatilities

supposed to be constant. Moreover, we denote by T (resp. N) the number of VIX and log-

returns daily observations (resp. N the cardinal of the set of option market prices) involved

in the estimation process. One of the main advantages of the GARCH machinery is that his-

torical model parameters hD; hV
� �

may be easily obtained, from a simple log-returns data-

set, using a conditional version of the classical maximum likelihood estimator maximizing

log LR hD; hV
� �

¼
XT

t¼1

log
1ffiffiffiffiffi
ht

p fhD

Yt � rþmtð Þffiffiffiffiffi
ht

p
 ! !

where fhD is the probability density function of the model innovations. However, the pro-

portional wedge between historical and risk-neutral volatility p cannot be estimated only

using returns data. Moreover, during the last decade, several empirical studies underlined

Table 2 Properties of the in-sample (Dataset A) options data (2009–2010) and the out-of-sample

(Dataset B) options data (2011–2012)

Option dataset Dataset A Dataset B

Date to maturity < 60 ½60; 180� > 180 All < 60 ½60; 180� > 180 All

Number of call option contracts

0 < S=K < 0:975 178 607 286 1071 107 419 214 740

0:975 < S=K < 1:00 40 103 44 187 36 80 46 162

1:00 < S=K < 1:025 36 96 54 186 30 75 41 146

1:025 < S=K < 1:05 35 93 37 165 31 75 37 143

1:05 < S=K < 1:075 37 93 40 170 28 72 29 129

1:075 < S=K 122 546 267 935 79 312 138 529

All 448 1538 728 2714 311 1033 505 1849

Average call price

0 < S=K < 0:975 8.558 23.392 41.658 24.536 7:436 21.804 42:351 23:863

0:975 < S=K < 1:00 28.133 59.176 84:700 57.336 25.047 59.893 84:423 56:454

1:00 < S=K < 1:025 42.764 71.741 96:643 70.383 45.442 76.560 103.004 75:002

1:025 < S=K < 1:05 59.721 87.681 109.272 85.558 66.109 95.260 119.433 93:600

1:05 < S=K < 1:075 77.534 103.012 125.367 101.971 88.434 116.030 139.506 114.656

1:075 < S=K 133.310 170.220 187.118 163.549 147.551 178.710 197.623 174.628

All 58:337 85:870 107.460 83:889 63.336 91.376 114.390 89:701

Average implied volatility from call options

0 < S=K < 0:975 0.212 0.209 0.210 0.210 0.161 0.174 0.182 0.172

0:975 < S=K < 1:00 0.223 0.231 0.233 0.229 0.177 0.198 0.205 0.194

1:00 < S=K < 1:025 0.228 0.230 0.235 0.231 0.202 0.207 0.211 0.207

1:025 < S=K < 1:05 0.239 0.240 0.233 0.237 0.202 0.210 0.213 0.208

1:05 < S=K < 1:075 0.259 0.245 0.235 0.246 0.226 0.222 0.211 0.220

1:075 < S=K 0.308 0.267 0.255 0.277 0.260 0.235 0.228 0.241

All 0.245 0.237 0.234 0.238 0.204 0.207 0.208 0.207

Note: The table shows the number of contracts, the average price, and the average implied volatility across

moneynesses and times to maturities.
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the real interest to incorporate in the estimation process VIX or option information, when

available, to improve related pricing performances. Therefore, we present below two joint

likelihood estimation strategies used in the empirical part.

4.2.1 Joint estimation strategy using Option-Returns information

We consider a set of option market prices ĉ1; . . . ; ĉNð Þ and define associated weighted Vega

errors �i ¼ ci�ĉ i

V̂ i
where ci and V̂ i are the model prices and the Black and Scholes Vega associ-

ated with ĉi. Following Trolle & Schwartz (2009), we suppose that the �ið Þ are i.i.d. cen-

tered Gaussian variables with variance 1
N

PN
i¼1 �

2
i . Therefore, the associated option log-

likelihood is given by

log LOp #ð Þ ¼ �
1

2

XN
i¼1

log
1

N

XN
i¼1

�2i

 !
þ �2i

1
N

PN
i¼1

�2i

2
664

3
775

and we obtain the joint Option-Returns likelihood (see Christoffersen, Heston, & Jacobs,

2013):

T þN

2

log LR hD; hV
� �� �
T

þ T þN

2

log LOp #ð Þ
N

: (18)

One of the major drawbacks of this approach is the requirement to evaluate several

times the objective function (18) in the maximization process. In the case of affine GARCH

models presented above, independently of the choice of the exponential-affine or exponen-

tial U-shaped SDF, closed-form expressions for option prices are available and make this

process computationally acceptable. As noticed in Section 3, for most of Gaussian GARCH

specifications and for the NIG NGARCH model combined with the EGP it is possible to

obtain closed-form expressions for the implied VIX. Therefore, as provided by Kanniainen,

Binghuan, & Hanxue (2014), a similar strategy based on VIX information and not on

options one may be implemented.

4.2.2 Joint estimation strategy using VIX-Returns information

To build the VIX log-likelihood, we suppose with Kanniainen, Binghuan, & Hanxue

(2014; see also Chorro & Fanirisoa, 2019 or Badescu et al., 2019) that VIX pricing errors

ut ¼ VIXMarket
t � VIXModel

t follow autoregressive disturbances ut ¼ .ut�1 þ et where etð Þt is

i.i.d. Gaussian random variables with mean zero and variance R2 and where j.j < 1 to en-

sure stationarity. Consequently, the VIX log-likelihood is given by

log LVIX #; .ð Þ ¼ �T

2
log 2pð Þ þ log R 1� .2

� �� �� �
þ 1

2
log 1� .2
� �� �

� 1

2R
u2

1 þ
XT

t¼2

ut � .ut�1ð Þ2

1� .2

 !
(19)

and we obtain the joint VIX-returns likelihood log LR hD; hV
� �

þ log LVIX #; .ð Þ
� �

.

Finally, a last estimation strategy will be used in the empirical part for nonaffine

GARCH models with NIG innovations. This strategy, first introduced in Chorro &

Fanirisoa (2018), derives from a very simple finding: under Gaussian hypotheses, nonaffine

GARCH models have outstanding properties (closed-form expressions for the model
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implied VIX) that fail when NIG innovations are involved. Therefore, inspired by the so-

called quasi-maximum likelihood (QML) estimator, a two-step approach is possible to take

benefit of these remarkable features in a Gaussian environment.

4.2.3 Two-step estimation strategy using VIX-Returns

As in the QML approach, this two-step strategy estimates separately volatility and distribu-

tion parameters assuming Gaussian innovations in the first step. We start from a GARCH-

type model with NIG innovations.

Step 1:

We assume that the ztð Þt are i.i.d. N 0; 1ð Þ under P and that, in this situation, we have a

closed-form formula for the VIX index. Subsequently, we can estimate the vector of volatil-

ity parameters hV using the joint VIX-Returns likelihood.

Step 2:

From the i.i.d. residuals ðz1ðĥ
VÞ; . . . ; zTðĥ

VÞÞ that may be extracted from the previous

step, the distribution vector of parameters hD is obtained maximizing

XT

t¼1

� log htð Þ
2

þ log fhD

Yt � rþmtð Þffiffiffiffiffi
ht

p
 !" #

where fhD is the density function of a centered NIG random variable with unit variance as

introduced in Section 1.3.

This estimation strategy permits to introduce VIX information in the estimation process

of NIG-NGARCH and NIG-GJR models without using Monte Carlo approximation to

compute the objective function of the optimizer. This approach not only reduces the com-

putational time of estimation but also allows to split an optimization exercise with ten vari-

ables into subproblems of smaller dimensions.11

4.2.4 Estimation results

To summarize, in our empirical study, the HN model with Gaussian innovations and the

IG-GARCH model (risk-neutralized using Esscher or U-shaped SDF) will be estimated

using the returns, the joint VIX-Returns, and the joint Option-Returns likelihoods. The

GJR and NGARCH models with Gaussian innovations (risk-neutralized using Esscher

SDF) will be estimated using the returns and the joint VIX-Returns likelihood. The

NGARCH with NIG innovations (risk-neutralized using EGP) will be estimated using the

joint VIX-Returns likelihood. The GJR and NGARCH models with NIG innovations (risk-

neutralized using Esscher SDF) will be estimated using the returns and the two-step estimation

strategy. The GJR and NGARCH models with Gaussian innovations (risk-neutralized using

the quadratic SDF) will be estimated using the joint VIX-Returns likelihood.12 In Table 3, we

11 We can see, in this situation, that the two-step estimation strategy provides Options IVRMSE and

VIX RMSE with the same order of magnitude as those obtained from a direct joint estimation strat-

egy using VIX-Returns information where the model implied VIX is computed from Monte Carlo

simulations under NIG residuals. Results in this direction are available upon request and will be

the objective of a companion paper.

12 In this case, and only in this case, the methodology of Lalancette & Simonato (2017) will be used

to approximate VIX performance measures using Monte Carlo methods.
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review the numerical approximations used in the article for each model, each SDF, and each

estimation strategy to compute the objective function in the estimation process.

The estimated parameter values and their respective standard errors, obtained from

using the different sets of information, are reported in Table 4 (resp. Table 5) for Gaussian

GARCH models combined with the exponential-affine (resp. the quadratic) SDF. For NIG

parameters, the results of the two-step estimation exercises are presented in Table 6, while

Table 7 shows estimates for the IG-GARCH model under both MEss and MUshp. Finally, for

the NIG-NGARCH model risk-neutralized using the EGP, the joint VIX-Returns likelihood

estimates are illustrated in Table 8. In all cases, results are roughly in the same range as

those obtained in many other previous empirical studies.

Table 3 When to use what: Numerical approximations used in the article for each model and

each estimation strategy to compute the objective function in the estimation process and the

out-of-sample performance measures

GARCH Estimation strategy Performance measures

Model VIX OPTIONS VIX OPTIONS

G.HN.Ret.Ess – – CF FFT

G.GJR.Ret.Ess – – CF FFT

G.NGARCH.Ret.Ess – – CF MC

G.HN.Op.Ret.Ess – FFT CF FFT

G.HN.Ret.VIX.Ess CF – CF FFT

G.GJR.Ret.VIX.Ess CF – CF MC

G.NGARCH.Ret.VIX.Ess CF – CF MC

NIG.GJR.Ret.Ess – – MC MC

NIG.NGARCH.Ret.Ess – – MC MC

NIG.GJR.Ret.VIX.Ess (two-step) CF – MC MC

NIG.NGARCH.Ret.VIX.Ess (two-step) CF – MC MC

G.HN.Op.Ret.Qua – FFT CF FFT

G.HN.Ret.VIX.Qua CF – CF FFT

G.GJR.Ret.VIX.Qua MC – MC MC

G.NGARCH.Ret.VIX.Qua MC – MC MC

NIG.NGARCH.Ret.VIX.EGP CF – CF MC

IG.Ret.Ess – – CF FFT

IG.Opt.Ret.Ess – FFT CF FFT

IG.Opt.Ret.Ushp – FFT CF FFT

IG.Ret.VIX.Ess CF � CF FFT

IG.Ret.VIX.Ushp CF � CF FFT

Notes: In this table, the acronym CF means that we have used the closed-form expressions provided in

Appendix Table A3 to compute the model implied VIX, the acronym FFT that we have used the Fast Fourier

Transform machinery with a number of discretization points of 211 to compute option prices and the acronym

MC that we have used Monte Carlo simulations with 15,000 paths to approximate the related expectations.

An important point to emphasize here is the use in our study of the so-called empirical martingale simulation

methodology (EMS) proposed by Duan & Simonato (1998) to reduce drastically the variance of Monte Carlo

estimators. As remarked, for example, in Badescu et al. (2015), EMS is an essential tool to improve numerical

efficiency of Monte Carlo methods especially in the GARCH setting and to use a reasonable number of simula-

tions to compute option prices. For the interested reader, results with 125,000 Monte Carlo simulations and

216 discretization points are available upon request and do not change the conclusion of our study.
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Table 4 Parameter estimates and standard errors of Gaussian GARCH models combined with the Esscher SDF

GARCH-type HN-GARCH GJR-GARCH NGARCH HN-GARCH HN-GARCH GJR-GARCH NGARCH

Information Returns Returns Returns Opt-Ret Ret-VIX Ret-VIX Ret-VIX

a0 3:854E� 08 3:049E� 06 1:677E� 06 1:859E� 07 3:757E� 12 4:966E� 06 3:557E� 06

Stand. Dev (0.0044) (0.0011) (0.0000) (0.0009) (0.0007) (0.0004) (0.0009)

a1 2:254E� 05 1:243E� 01 6:174E� 02 1:542E� 06 2:252E� 05 1:240E� 01 6:172E� 02

Stand. Dev (0.0001) (0.0003) (0.0014) (0.0003) (0.0002) (0.0000) (0.0007)

b1 8:272E� 01 8:509E� 01 8:446E� 01 6:500E� 01 9:117E� 01 8:504E� 01 7:956E� 01

Stand. Dev (0.0035) (0.0006) (0.0011) (0.0030) (0.0086) (0.0015) (0.0009)

c 5:379Eþ 01 2:208E� 02 1:174Eþ 00 4:586Eþ 02 1:423Eþ 01 2:314E� 02 4:701E� 08

Stand. Dev (0.0011) (0.0025) (0.0001) (0.0095) (0.0088) (0.0005) (0.0206)

k0 1:020Eþ 00 2:288E� 01 8:911E� 07 8:596Eþ 00 1:513Eþ 00 1:989E� 01 8:452E� 01

Stand. Dev (0.0000) (0.0055) (0.0010) (0.0008) (0.0501) (0.0033) (0.0050)

. – – – – 0.9992 0.8924 0.9542

Stand. Dev – – – – (0.0106) (0.0012) (0.0110)

Notes: Returns means MLE estimation procedure using only returns information, Opt-Ret means Joint MLE estimation using returns and options information, Ret-VIX means Joint

MLE estimation using returns and VIX information. The estimation is based on log-returns and VIX datasets from January 7, 1999 to December 22, 2010 and on the in-sample data-

set of options (2009–2010).
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We notice for the IG-GARCH model that parameter estimates are remarkably stable

across the different approaches. Concerning the other GARCH specifications, instead of

focusing on the individual values of each parameter, we remark that global features of each

model (persistence, leverage effect parameter) differ only a little from one strategy to an-

other. For example, we can deduce from Tables 4 and 5 that in the case of the GJR

GARCH specification we obtain historical (resp. risk-neutral) persistences around 0.986

Table 5 Parameter estimates and standard errors of Gaussian GARCH models combined with

the exponential–quadratic SDF

GARCH-type HN-GARCH HN-GARCH GJR-GARCH NGARCH

Information Opt-Ret Ret-VIX Ret-VIX Ret-VIX

a0 5:7547E� 14 1:0014E� 12 4:966E� 06 1:780E� 06

Stand. Dev (0.0009) (0.0003) (0.0008) (0.0000)

a1 1:5139E� 06 1:5048E� 06 1:241E� 01 3:877E� 02

Stand. Dev (0.0368) (0.0002) (0.0003) (0.0065)

b1 6:500E� 01 6:5121E� 01 8:504E� 01 9:329E� 01

Stand. Dev (0.0032) (0.0066) (0.0004) (0.0000)

c 4:5869Eþ 02 4:586Eþ 02 2:3142E� 02 1:277E� 07

Stand. Dev (0.0036) (0.0095) (0.0002) (0.0078)

k0 8:596Eþ 00 8:672Eþ 00 1:989E� 01 4:583E� 01

Stand. Dev (0.0006) (0.0036) (0.0015) (0.0004)

p 1:6723Eþ 00 1:722Eþ 00 1:2785Eþ 00 1:2413Eþ 00

Stand. Dev (0.0048) (0.0022) (0.0012) (0.0092)

. – 0.8099 0.9546 0.9170

Stand. Dev – (0.0003) (0.06235) (0.0023)

Notes: Returns means MLE estimation procedure using only returns information, Ret-VIX means Joint MLE

estimation using returns and options information, Ret-VIX means Joint MLE estimation using returns and

VIX information. The estimation is based on log-returns and VIX datasets from January 7, 1999 to December

22, 2010 and on the in-sample dataset of options (2009–2010).

Table 6 Parameter estimates and standard errors of the NIG distribution for GARCH models

combined with the Esscher SDF

GARCH-type GJR NGARCH GJR NGARCH

Information Returns Returns Ret-VIX Ret-VIX

a 1.1550 1.2702 1.3589 1.4536

Stand. Dev (0.0108) (0.0036) (0.0001) (0.0009)

b �0:1432 –0.0025 –0.0058 –0.0061

Stand. Dev (0.0057) (0.0015) (0.0023) (0.0001)

d 1.0623 1.6204 1.5336 1.4538

Stand. Dev (0.0000) (0.0005) (0.0000) (0.0000)

l 0.1327 1.9734 7.9908 2.0178

Stand. Dev (0.0076) (0.0055) (0.0000) (0.0003)

Note: These parameters have been obtained using the standard maximum-likelihood algorithm for the resid-

uals extracted from Table 4.
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(resp. around 0.996) and a leverage parameter c between 0.022 and 0.023. We classically

obtain high historical persistences and all models and estimation approaches clearly indi-

cate the leverage effect. Moreover, in the case of the two U-shaped pricing kernels, the pro-

portional wedge between the risk-neutral and the historical volatilities is significantly

estimated to be greater than one, with values ranging between 1.24 and 1.72 (see Tables 5 and

7) for the Gaussian HN and the IG-GARCH models, as observed in empirical studies. Last but

Table 7 Parameter estimates and standard errors of the IG-GARCH model combined with

Esscher and U-shaped SDF

Joint-Estimation Returns Returns-Option Returns-VIX

SDF Mess
t MUshp

t Mess
t MUshp

t

Parameters

w 1:2061E� 06 9:7699E� 06 1:0185E� 05 2:2341E� 06 5:3156E� 05

Stand. Dev (0.0000) (0.0006) (0.0002) (0.0002) (0.0004)

b 2:3052E� 03 1:0159E� 03 1:7211E� 03 2:3184E� 03 1:8603E� 03

Stand. Dev (0.0000) (0.0000) (0.0001) (0.0003) (0.0003)

c 4:9024E� 05 4:5379E� 05 4:5118E� 05 4:8949E� 05 4:8233E� 05

Stand. Dev (0.0000) (0.0000) (0.0001) (0.0009) (0.0005)

a 3:3174Eþ 03 3:3317Eþ 03 3:3174Eþ 02 3:3174Eþ 03 3:3174Eþ 03

Stand. Dev (0.0000) (0.0001) (0.0007) (0.0002) (0.0005)

g �7:972E� 03 �7:5314E� 03 �7:4936E� 03 �7:9552E� 03 �7:928E� 03

Stand. Dev (0.0000) (0.0000) (0.0000) (0.0002) (0.0010)

� 1:2584Eþ 02 1:2594Eþ 02 1:2573Eþ 02 1:2583Eþ 02 1:2584Eþ 02

Stand. Dev (0.0009) (0.0001) (0.0003) (0.0003) (0.0001)

p – – 1:4005 – 1.6325

Stand. Dev – – (0.0084) – (0.0035)

. – – – 9:9552E� 01 9:9386E� 01

Stand. Dev – – – (0.0070) (0.0034)

Notes: Returns means MLE estimation procedure using only returns information, Ret-VIX means Joint MLE

estimation using returns and options information, Ret-VIX means Joint MLE estimation using returns and

VIX information. The estimation is based on log-returns and VIX datasets from January 7, 1999 to December

22, 2010 and on the in-sample dataset of options (2009–2010).

Table 8 Parameter estimates and standard errors of the NIG-NGARCH model combined with

the EGP SDF

Vol Parameters a0 a1 b1 c k0 .

Values 1:896E� 06 3:877E� 02 9:329E� 01 7:110E� 01 9:937E� 02 0.9163

Stand. Dev (0.0035) (0.0008) (0.0000) (0.0001) (0.0000) (0.0004)

NIG parameters a b d l – –

Values 2:961Eþ 00 �9:441E� 01 1.5877 0.5341 – –

Stand. Dev (0.0002) (0.0013) (0.0000) (0.0019) – –

Note: The estimation is based on Joint MLE estimation using returns and VIX information from January 7,

1999 to December 22, 2010.
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not least, as remarked in Kanniainen, Binghuan, & Hanxue (2014), for the joint VIX-Returns

estimation strategy, the autocorrelation coefficient . is uniformly close to one with a minimum

value of 0.81 for the Gaussian HN model combined with the quadratic SDF.

Concerning parameters of the NIG distribution, we can see from Tables 6 and 8 that the

observed (negative) values of skewness vary from –0.01 to –0.34 and that observed excess

kurtosis vary from 1.42 to 2.62. These values provide evidence by their departure from nor-

mality and they are in the same range as those obtained in previous studies (see, e.g.,

Badescu et al., 2011).

4.3 Criteria for the Option and VIX Pricing Analysis

Once a particular GARCH model has been properly estimated using a well-chosen set of

historical financial information, we obtain explicitly from Tables A1 and A2 in Appendix

A the related risk-neutral dynamics depending on the choice of the underlying SDF. For the

HN-GARCH model with Gaussian innovations (Heston & Nandi, 2000; Monfort &

Pégoraro, 2012) and the IG-GARCH model (Christoffersen et al., 2006a; Chorro &

Fanirisoa, 2019), under both exponential-affine and U-shaped SDF, we have quasi-closed-

form solutions for pricing vanilla European options efficiently from FFT methodology (see,

e.g., Chorro, Guégan, & Ielpo, 2015, Chap 4.2) that massively decrease the required time

to price a full option book. For other nonaffine specifications, prices are approximated

using Monte Carlo simulation using 15,000 trajectories. To test the quality of these price

approximations we will use, in the empirical part, the in (Dataset A), out (Dataset B), and

Wednesday (rolling window strategy) Implied Volatility Root Mean Squared Error

(IVRMSE13) that measure the discrepancy between model and option prices:

IVRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
i

ci � ĉi

V̂ i

 !2
vuut

where ci is the option price given by the model, ĉi the corresponding market price, and V̂ i

the Black and Scholes Vega associated with ĉi. Here, following, for example,

Christoffersen, Jacobs, & Ornthanalai (2012), the volatility updating rule is simply

deduced from returns to get option prices given by a model. Moreover, another interesting

economic criteria will be the magnitude of the average annualized volatility risk premium

(VRP) as defined in Papantonis (2016) in order to understand why an equity risk premium

is in general not sufficient to produce realistic price levels. Finally, in order to discuss the

correlation between option pricing performances and the capacity of implied VIX to fit the

market VIX, we will use the measures of adequacy introduced in Qiang, Gaoxiu, & Guo

(2015), namely, the mean percentage error MPEVIXð Þ, the mean percentage absolute error

(MAEVIX) and the root mean squared error RMSEVIXð Þ defined below:

13 In the bulk of recent studies (Christoffersen, Jacobs, & Ornthanalai, 2012; Kanniainen, Binghuan,

& Hanxue, 2014; Badescu, Cui, & Ortega, 2017; Chorro & Fanirisoa, 2019), this indicator was used

to measure pricing performances because Vega-weighted errors do not vary too much across

maturities and moneyness contrary to price errors.
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MPEVIX ¼
1

N

XN
j¼1

VIXModel
j

VIXMarket
j

� 1

0
@

1
A; MAEVIX ¼

1

N

XN
j¼1

����� VIXModel
j

VIXMarket
j

� 1

�����
0
@

1
A

and RMSEVIX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

VIXModel
j � VIXMarket

j

� �2

vuut :

(20)

In Table 3, we review in detail all the numerical approximations used in the article for

each model, each SDF, and each estimation strategy to compute the out-of-sample perform-

ance measures.

4.4 Empirical Findings

Our study relies on twenty-one combinations of GARCH-distribution-SDF-estimation. To

make the presentation much more readable, we group them into five different categories:

the Gaussian–GARCH models combined with MEss, the NIG-GARCH models combined

with MEss, the Gaussian–GARCH models combined with MQua, the IG-GARCH model,

and the NIG-NGARCH model risk-neutralized using the EGP. For each group, we present

in a specific table (see Tables 9–13) option and VIX fitting performances based on the crite-

ria introduced in the preceding section. Furthermore, we report for each model the related

estimation time (the CPU time was obtained with a 2, 4 GHz Intel Core i9 processor and 32

GB RAM 2400 MHz DDR4) and the variance risk premium as defined in Papantonis

(2016). These tables also provide, for a selected subclass containing more than one element,

internal pairwise comparisons in terms of out-of-sample and weekly out-of-sample option

valuation errors. We complete these results in the numerical Online Appendix B giving in-

ternal pairwise comparisons in terms of computational time of estimation and in-sample

pricing performances (see Tables B1–B4). Finally, general results are provided to allow for

broader conclusions: in Table 14, out-of-sample performances of the best models in each

category are compared while we can find in Table 15 summary of VIX and option perform-

ance measures of the twenty-one competitors and their corresponding rankings. Regarding

results presented in Table 15, we can easily notice that ranks related to option (resp. to

VIX) valuation are mostly independent of the choice of the underlying criteria selected

from in sample, out-of-sample or weekly out-of sample IVRMSE (resp. from RMSE, MPE,

or MAE) with Spearman rank correlation coefficient greater than 0.9. Thus, in the follow-

ing, numerical comparisons will rest on out-of-sample IVRMSE and VIX RMSE. We start

our analysis at a group level.

4.4.1 Pricing performances of Gaussian GARCH models with an exponential-affine SDF

We deduce from Table 9 that, when they are estimated only using returns, pricing perform-

ances of Gaussian GARCH models seem to be independent of the choice of the GARCH

structure with IVRMSE ranging from 0.07648 to 0.07770 under Duan’s LRNVR. When an

extra piece of financial information is introduced into the estimation process, we obtain the

smallest IVRMSE of 0.065 for the nonaffine specifications especially the GJR model. This

is in line with the existing literature that favors nonaffine Gaussian stochastic volatility

models (see Christoffersen et al., 2006b; Kanniainen, Binghuan, & Hanxue, 2014 and

references therein). Table 10 leads to similar conclusions in the NIG environment while

Table 11 confirms the slight superiority of nonaffine Gaussian specifications when using an
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Table 9 Option pricing performances and VIX predictability (see Section 4.3) of Gaussian–GARCH models combined with the Esscher SDF.

GARCH-type HN GJR NGARCH HN HN GJR NGARCH

Information Returns Returns Returns Opt-Ret Ret-VIX Ret-VIX Ret-VIX

Option pricing performances and VIX predictability

Model Properties

Times ðhÞ 0.010 0.018 0.025 9.014 0.008 0.021 0.014

�VRP ðin %Þ 3:27E� 10 2:86E� 16 2:26E� 12 8:88E� 11 9:67E� 09 7:122E� 13 1:326E� 16

Predictability of VIX

MPEV IX 0.0113 0.0106 –0.0088 –0.0092 –0.0023 –0.0016 –0.0012

MAEV IX 0.0128 0.0125 0.0106 0.0104 0.0058 0.0059 0.0057

RMSEV IX 0.2849 0.2771 0.2475 0.1869 0.1844 0.1740 0.1748

Pricing performances

In-IVRMSE 0.0599 0.0574 0.0571 0.0557 0.0580 0.0548 0.0557

Out-IVRMSE 0.0777 0.0764 0.0766 0.0733 0.0735 0.0650 0.0729

We-IVRMSE 0.0662 0.0651 0.0652 0.0610 0.0614 0.0592 0.0592

GARCH-type HN GJR NGARCH HN HN GJR NGARCH

Returns Returns Returns Opt-Ret Ret-VIX Ret-VIX Ret-VIX

Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE

HN-Ret – 1.565 1.393 5.540 5.394 16.340 6.054

GJR-Ret 1.736 – –0.174 4.045 3.890 15.010 4.560

NGARCH-Ret 1.509 –0.230 – 4.212 4.057 15.160 4.727

HN-Opt-Ret 7.923 6.297 6.512 – –0.162 11.430 0.536

HN-VIX-Ret 7.259 5.621 5.838 –0.7212 – 11.570 0.697

GJR-VIX-Ret 10.640 9.062 9.271 2.950 3.645 – –12.30

NGARCH-VIX-Ret 10.530 8.954 9.163 2.836 3.531 –0.118 –

Notes: The results are based on estimates provided in Table 4. The column Model Properties presents computational time of estimation in hours and Variance Risk Premium. For the

models comparisons, the upper triangular part of the matrix illustrates relative difference (in percentage) of the out-of-sample IVRMSE between the i-th and the j-th models, as ex-

ample: 1:5650% ¼ 100 � ð0:077701� 0:076485Þ=0:077701. The lower triangular part of the matrix illustrates relative difference (in percentage) of the Wednesday-IVRMSE be-

tween the j-th and the i-th models, as example: 1:736% ¼ 100 � ð0:06626� 0:06511Þ=0:06626.
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exponential-quadratic SDF. Nevertheless, option valuation errors under Gaussian distribu-

tion and exponential-affine SDF are the worst of all competitors. A plausible explanation

comes from the fact that these models generate very small variance risk premia (see

Table 9) which are not in line with empirical observations. In fact, as reported in

Tables 10–13, when we use non-Gaussian alternatives and/or U-shaped pricing kernels we

recover VRP between –2.867% (for the NIG-GJR model estimated using returns only) and

–3.75411% (for the IG-GARCH model estimated using Option-Returns information) that

are in line with a bulk of empirical studies (Papantonis, 2016). For Gaussian distribution

and exponential-affine SDF, the variance risk is neglected and an equity risk premium is

not sufficient to produce realistic price levels.

Table 10 Option pricing performances and VIX predictability (see Section 4.3) of NIG-GARCH

models combined with the Esscher SDF

GARCH-type GJR NGARCH GJR NGARCH

Information Returns Returns Ret-VIX

(two-step)

Ret-VIX

(two-step)

Option pricing performances and VIX predictability

Model properties

Times (h) 0.024 0.031 0.036 0.019

�VRP ðin %Þ 2.867 2.956 3.006 3.366

Predictability of VIX

MPEVIX –0.0043 –0.0029 0.0011 0.0010

MAEVIX 0.0062 0.0053 0.0047 0.0049

RMSEVIX 0.1758 0.1703 0.1130 0.1308

Pricing performances

In-IVRMSE 0.0550 0.0567 0.0512 0.0463

Out-IVRMSE 0.0689 0.0690 0.0595 0.0592

We-IVRMSE 0.0592 0.0586 0.0504 0.0504

GARCH-type GJR NGARCH GJR NGARCH

Returns Returns Ret-VIX

(two-step)

Ret-VIX

(two-step)

Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE

GJR-Ret – –0.088 13.610 14.00

NGARCH-Ret 0.945 – 13.680 14.07

GJR-VIX-Ret (two-step) 14.900 14.090 – 0.45

NGARCH-VIX-Ret (two-step) 14.870 14.060 �0:039 –

Notes: The results are based on estimates provided in Tables 4 and 6. The column Model Properties presents

computational time of estimation in hours and Variance Risk Premium. The upper triangular part of the matrix

illustrates relative difference (in percentage) of the out-of-sample IVRMSE between the i-th and the j-th mod-

els, as example: �0:088% ¼ 100 � ð0:0689� 0:0690Þ=0:0689. The lower triangular part of the matrix illus-

trates relative difference (in percentage) of the Wednesday-IVRMSE between the j-th and the i-th models, as

example: 0:945% ¼ 100 � ð0:0592� 0:0586Þ=0:0592.
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4.4.2 Pricing performances of GARCH models with NIG distribution

In Table 10, the overall IVRMSE is between 0.0592 and 0.0690 for NIG-GARCH models

risk-neutralized with the Esscher SDF with values that are all smaller than corresponding

values for Gaussian innovations. The minimal IVRMSE of 0.0592 is obtained in the case

of the NIG-NGARCH model by estimating with the two-step estimation strategy using

VIX-Returns information as introduced in Chorro & Fanirisoa (2018). Not surprisingly, a

finer modeling approach of conditional skewness improves considerably the quality of price

approximations. The two-step estimation strategy using VIX-Returns information helps to

substantially improve performances at a parsimonious computational cost. The improve-

ment (of around 14% for nonaffine specifications) from using VIX information is also fun-

damental in this framework because returns based estimation strategy only leads to

IVRMSE ranging from 0.0689 to 0.0690. This is confirmed in Table 13 for the NIG-

NGARCH model associated with the EGP with an IVRMSE of 0.05935.

Table 11 Option pricing performances and VIX predictability (see Section 4.3) of Gaussian–

GARCH models combined with the exponential–quadratic SDF

GARCH-type HN-GARCH HN-GARCH GJR-GARCH NGARCH

Information Opt-Ret Ret-VIX Ret-VIX Ret-VIX

Option pricing performances and VIX predictability

Model properties

Times (h) 10.326 0.019 1.053 0.961

�VRP ðin %Þ 3.2301 3.2475 3.3562 3.5628

Predictibility of VIX

MPEVIX –0.0012 –0.0004 –0.0003 –0.0004

MAEVIX 0.0049 0.0047 0.0041 0.0041

RMSEVIX 0.1445 0.1248 0.1119 0.1103

Pricing performances

In-IVRMSE 0.0511 0.0513 0.0507 0.0492

Out-IVRMSE 0.0627 0.0633 0.0628 0.0600

We-IVRMSE 0.0514 0.0515 0.0508 0.0493

GARCH-type HN-GARCH HN-GARCH GJR-GARCH NGARCH

Opt-Ret Ret-VIX Ret-VIX Ret-VIX

Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE

HN-Opt-Ret – –0.892 –0.223 4.287

HN-VIX-Ret –0.097 – 0.663 5.133

GJR-VIX-Ret 1.243 1.339 – 4.500

NGARCH-VIX-Ret 4.216 4.309 3.010 –

Notes: The results are based on estimates provided in Table 5. The column Model Properties presents compu-

tational time of estimation in hours and Variance Risk Premium. For the model comparisons, the upper tri-

angular part of the matrix illustrates relative difference (in percentage) of the out-of-sample IVRMSE between

the i-th and the j-th models, as example: �0:892% ¼ 100 � ð0:06275� 0:06331Þ=0:06275. The lower triangu-

lar part of the matrix illustrates relative difference (in percentage) of the Wednesday-IVRMSE between the j-th

and the i-th models, as example: �0:097% ¼ 100 � ð0:05147� 0:05152Þ=0:05147.
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4.4.3 Pricing performances of Gaussian GARCH models with a quadratic SDF

Working with non-Gaussian residuals is not the only way to generate more realistic VRP

than Gaussian–GARCH ones. We present in Table 11 the IVRMSE of different Gaussian–

GARCH models when an exponential-quadratic SDF is used to price options. It is worth

noting that in this approach, it is not possible to directly estimate models from returns

market quotes because the extra parameter p is involved in the risk-neutral dynamics.

We obtain good IVRMSE between 0.06006 and 0.06331 that consistently outperform the

Gaussian counterpart with exponential-affine SDF. Even if they are slightly worse than cor-

responding values for NIG-GARCH models for out-of-sample IVRMSE, the hierarchy is

reversed when considering the next week pricing errors build on the rolling window estima-

tion strategy. Both a modeling approach based on realistic conditional skewness and a mod-

eling approach incorporating a variance premium in the pricing kernel seem to capture

valuable empirical features. Therefore, a natural question is how is it possible that these

two aspects are more complementary rather than competitive? The IG-GARCH model

appears as an interesting candidate to tackle this issue.

Table 12 Option pricing performances and VIX predictability (see Section 4.3) of the IG-GARCH

model combined with Esscher and U-shaped SDF

Joint-Estimation Returns Returns-Option Returns-VIX

SDF MEss
t MEss

t MUshp
t MEss

t MUshp
t

Option pricing performances and VIX predictability

Model properties

Times (h) 0.036 9.2684 10.3984 0.0152 0.0348

VPR 3.1785 3.7541 3.5165 3.7042 3.4563

Predictability of VIX

MPEVIX –0.0011 –0.0004 –0.0003 –0.00008 –0.00019

MAEVIX 0.0051 0.0043 0.0040 0.0039 0.0039

RMSEVIX 0.1364 0.1315 0.1061 0.1010 0.0990

Pricing performances

In-IVRMSE 0.0543 0.0461 0.0435 0.0464 0.0438

Out-IVRMSE 0.0674 0.0610 0.0566 0.0618 0.0575

We-IVRMSE 0.0514 0.0500 0.0480 0.0510 0.0480

Model comparisons based on out-of-sample IVRMSE and Wednesday-IVRMSE

Ess-Ret – 9.446 16.000 8.295 14.620

Ess-Opt-Ret 2.759 – 7.234 –1.271 5.716

Ushp-Opt-Ret 6.722 4.076 – �9.168 –1.637

Ess-VIX-Ret 0.891 –1.920 –6.251 – 6.899

Ushp-VIX-Ret 6.567 3.916 –0.166 5.726 –

Notes: The results are based on estimates provided in Table 7. The column Model Properties presents the com-

putational time of estimation in hours and the Variance Risk Premium. For the model comparisons, the upper

triangular part of the matrix illustrates relative difference (in percentage) of the out-of-sample IVRMSE be-

tween the i-th and the j-th models, as example: 9:446% ¼ 100 � ð0:067427� 0:061058Þ=0:067427. The lower

triangular part of the matrix illustrates the relative difference (in percentage) of Wednesday-IVRMSE between

the j-th and the i-th models, as example: 2:759% ¼ 100 � ð0:05147� 0:05152Þ=0:05147.
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4.4.4 Pricing performances of the IG-GARCH model

For the IG-GARCH model, we obtain (see Table 12) out-of-sample IVRMSE between

0.067427 (in the case of the Esscher SDF estimated using returns only) and 0.056641 (for

the U-shaped SDF and Returns-Options estimation strategy). Once again, a dataset of

returns is not sufficient to produce competitive results. Furthermore, when the joint VIX-

Returns estimation process is performed we obtain an IVRMSE of 0.057568 that is much

closer to the best value at a considerably shorter computation time. The U-shaped pricing

kernel of Chorro & Fanirisoa (2019) outperforms by around 7% the Esscher SDF in a con-

ditionally Inverse-Gaussian environment and produces the best performances observed in

this section: conditional skewness is a key factor of GARCH option pricing models that

becomes outstanding when associated with a nonstandard SDF.

4.4.5 Pricing performances: A global analysis

When using GARCH option pricing models, the modeler is faced with four degrees of free-

dom: the GARCH structure, the distribution of the innovations, the pricing kernel, and the

estimation strategy. Now we conclude the analysis of option pricing errors brought to-

gether in Table 15 with more general considerations on the impact of each factor caeteris

paribus. Let us start with marginal effects: the impact of the choice of a nonaffine GARCH

structure accounting for the leverage effect is small with a 2.2% improvement in favor of

the GJR model. In the same way, in the case of the NIG-NGARCH model estimated using

returns and VIX information, the Esscher and the EGP SDF give rise to almost identical

results with a difference of 1.4% for the benefit of the exponential-affine parameterization

(see also Badescu et al., 2011; Badescu, Elliott, & Ortega, 2015) that deliver the same con-

clusion). Finally, using an estimation strategy based on options and returns information

only improves by around 1% the IVRMSE with respect to its VIX-Returns counterpart

(however, this improvement is around 10.5% when using returns only) as already observed

in Chorro & Fanirisoa (2019). Nevertheless, for this latter point, we have to keep in

mind that this slight 1% upgrade comes at a very high computational cost as reported in

Tables B1–B4 of the numerical Online Appendix B. More decisively, the NIG distribution

reduces the valuation error of around 11;6% in comparison to Gaussian innovations while,

in the affine family, the IG-GARCH model outperforms by 10.6% the Gaussian HN model.

Concerning, the choice of the SDF, we clearly observe, both in the Gaussian and in the

Inverse-Gaussian case that U-shaped parameterizations yield, respectively, to 13% and 7%

lower IVRMSE (see Christoffersen, Heston, & Jacobs, 2013; Badescu, Cui, & Ortega,

2017; Chorro & Fanirisoa, 2019 for similar findings). In the light of these observations, it

is not surprising to see from Table 14 that, when we compare out-of-sample pricing errors

Table 13 Option pricing performances and VIX predictability (see Section 4.3) of the NIG-

NGARCH model combined with the EGP SDF

VIX performances �VRP ðin %Þ MPEVIX MAEVIX RMSEVIX

Values 3.3645 –0.0001 0.0039 0.1066

Pricing performances Times (h) in-IVRMSE out-IVRMSE we-IVRMSE

Values 0.0101 0.0480 0.0593 0.0488

Note: The results are based on estimates provided in Table 8.
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between the best models of each sub-group, the most interesting performances are delivered

by a model with non-Gaussian innovations, risk-neutralized using a U-shaped SDF and esti-

mated maximizing the joint VIX-Returns log-likelihood, namely, the IG-GARCH model.

What is more, we can observe (see Table B5 of the numerical Online Appendix B) that this

conclusion still holds if we compare, for the best competitors, out-of-sample IVRMSE

desegregated by moneynesses and time to maturities.

We conclude that, when it is possible, the combination of all these factors is fundamen-

tal to producing competitive valuation errors.14 The best model is not the most richly para-

meterized but a parsimonious one able to cope with classical stylized facts in terms of

historical dynamics and risk representation.

4.4.6 Deduce pricing performances from VIX analysis

Even if the ultimate criterion to compare GARCH option pricing models is the value of the

pricing errors associated with a large real-world dataset of option prices, its computation may

lead to large numerical issues in particular when Monte Carlo approximations are needed.

This is true, not only during the estimation stage, but also to compute the objective function.

To conclude this section, we question the possibility of deducing option pricing performances

of a GARCH model from its capacity to forecast VIX dynamics. In Table 15, we have

reported the ranks of the twenty-one models considered in this article regarding VIX and

options adequacy measures introduced in Section 4.3. For example,15 when we measure the

Table 14 Model comparisons based on the out-of-sample IVRMSE and the Wednesday-IVRMSE

for best competitors of each subgroup

GJR NGARCH NGARCH NGARCH IG

Gaus-Ess NIG-Ess Gaus-Qua NIG-EGP Ushp

GJR-Gaus-Ess – 8.780 7.603 8.695 11.440

NGARCH-

NIG-Ess

14.81 – –1.290 –0.092 2.913

NGARCH-

Gaus-Qua

16.74 2.260 � 1.182 4.149

NGARCH-

NIG-EGP

17.50 3.152 0.912 – 3.003

IG-Ushp 18.78 4.659 2.454 1.556 –

Notes: Due to the weak difference between the results obtained using Opt-Ret or VIX-Ret information, we

favor the IVRMSE obtained from Joint MLE estimation using returns and VIX to reduce computational bur-

den. The upper triangular part of the matrix illustrates relative difference (in percentage) of the out-of-sample

IVRMSE between the i-th and the j-th models. The lower triangular part of the matrix illustrates relative differ-

ence (in percentage) of Wednesday-IVRMSE between the j-th and the i-th models.

14 It is also important to remark that noteworthy results are obtained with nonaffine GARCH struc-

tures in NIG environment when VIX information is used in the estimation process. In this case, the

residual error of around 3% comes from the necessity to use classical SDF to obtain risk-neutral

dynamics.

15 In Table 15, we notice that the rankings related to options (or VIX) valuation are essentially inde-

pendent of the choice of the adequacy measures. For example, Spearman’s rank correlation
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Table 15 Option pricing performances and VIX predictability for the twenty-one competitors considered in this article

GARCH IVRMSE VIX

Model in out We RMSE MAE MPE

G.HN.Ret.Ess 0.05939 [21] 0.07770 [21] 0.06647 [21] 0.28494 [21] 0.01287 [21] 0.011305 [21]

G.GJR.Ret.Ess 0.05747 [19] 0.07733 [20] 0.06511 [19] 0.27710 [20] 0.01254 [20] 0.010604 [20]

G.NGARCH.Ret.Ess 0.05718 [18] 0.07661 [19] 0.06526 [20] 0.24753 [19] 0.01065 [19] –0.00886 [18]

G.HN.Op.Ret.Ess 0.05574 [16] 0.07339 [17] 0.06101 [17] 0.18696 [18] 0.01044 [18] –0.00929 [19]

G.HN.Ret.VIX.Ess 0.05801 [20] 0.07351 [18] 0.06145 [18] 0.18444 [17] 0.00588 [15] –0.00237 [15]

G.GJR.Ret.VIX.Ess 0.05483 [13] 0.06500 [12] 0.05921 [14] 0.17404 [14] 0.00594 [16] –0.00168 [14]

G.NGARCH.Ret.VIX.Ess 0.05570 [15] 0.07299 [16] 0.05928 [16] 0.17480 [15] 0.00574 [14] –0.00127 [13]

NIG.GJR.Ret.Ess 0.05502 [14] 0.06894 [14] 0.05925 [15] 0.17585 [16] 0.00629 [17] –0.00437 [17]

NIG.NGARCH.Ret.Ess 0.05670 [17] 0.06900 [15] 0.05869 [13] 0.17036 [13] 0.00533 [13] –0.00296 [16]

NIG.GJR.Ret.VIX.Ess (two-step) 0.05124 [8] 0.05956 [4] 0.05042 [6] 0.11303 [7] 0.00471 [8] 0.001135 [10]

NIG.NGARCH.Ret.VIX.Ess (two-step) 0.04633 [4] 0.05929 [3] 0.05044 [7] 0.13082 [9] 0.00499 [11] 0.001045 [9]

G.HN.Op.Ret.Qua 0.05110 [7] 0.06275 [9] 0.05147 [10] 0.14451 [12] 0.00491 [10] –0.00125 [12]

G.HN.Ret.VIX.Qua 0.05137 [10] 0.06331 [11] 0.05152 [12] 0.12488 [8] 0.00474 [9] –0.00044 [7]

G.GJR.Ret.VIX.Qua 0.05124 [9] 0.06289 [10] 0.05108 [9] 0.11196 [6] 0.00410 [5] –0.00036 [5]

G.NGARCH.Ret.VIX.Qua 0.05168 [11] 0.06240 [8] 0.05005 [4] 0.11032 [5] 0.00417 [6] –0.00040 [6]

NIG.NGARCH.Ret.VIX.EGP 0.05016 [6] 0.06012 [5] 0.04967 [3] 0.10662 [4] 0.00395 [1] –0.00013 [2]

IG.Ret.Ess 0.05435 [12] 0.06742 [13] 0.05147 [11] 0.13641 [11] 0.00511 [12] –0.00118 [11]

IG.Opt.Ret.Ess 0.04616 [3] 0.06105 [6] 0.05005 [5] 0.13159 [10] 0.00432 [7] –0.00049 [8]

IG.Opt.Ret.Ushp 0.04354 [1] 0.05664 [1] 0.04801 [1] 0.10616 [3] 0.00400 [4] –0.00031 [4]

IG.Ret.VIX.Ess 0.04648 [5] 0.06183 [7] 0.05101 [8] 0.10108 [2] 0.00398 [3] –0.00008 [1]

IG.Ret.VIX.Ushp 0.04387 [2] 0.05756 [2] 0.04809 [2] 0.09909 [1] 0.00396 [2] –0.00019 [3]

The corresponding rankings are given in brackets.
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relationship between rankings obtained from out-of-sample pricing errors and VIX RMSE we

obtain a significant Spearman’s rank correlation coefficient of 0.90. Moreover, top ten mod-

els obtained using VIX RMSE criterion are mainly as highly ranked as using options-based

criterion. The most important conclusion is that the ranking of models is well-preserved inde-

pendently of the chosen option or VIX adequacy measure: examining the performance of a

model in fitting VIX time series gives a very good indication of related pricing performances

at a very reasonable computational cost. VIX analysis appears in this way as a very interesting

and parsimonious first-stage evaluation to discard the worst GARCH option pricing models.

5 Conclusion

In this article, we have examined pricing performances of a large collection of GARCH

models by questioning the global synergy between the choice of the affine/nonaffine

GARCH specification, the use of competing alternatives to the Gaussian distribution, the

selection of an appropriate SDF, and the choice of different estimation strategies based on

several sets of financial information and on standard minimization algorithms. Therefore,

twenty-one combinations of GARCH/distribution/SDF/estimation are tested using a large

option dataset written on the S&P500. To do this, an intensive empirical comparison is per-

formed not only based on in and out-of-sample pricing performances, but also using a

weekly rolling window strategy where the model is estimated each Wednesday to price

options one week later. Uniformly for these three criteria, the IG-GARCH model risk-

neutralized using a U-shaped pricing kernel provides the best results. This gives evidence

for the importance of using a non-Gaussian distribution combined with a nonstandard SDF

that takes account of the variance risk premium. Of course, to estimate the variance risk

aversion parameter, historical returns are not sufficient and an extra financial information

is required. At this point, we have found that the joint VIX-Returns likelihood estimation

provides competitive pricing errors at a very interesting computational cost with respect to

option-based estimation processes. This latter finding holds for all models considered in

this article. For nonaffine GARCH specifications, we found that, under NIG innovations,

very interesting pricing errors are obtained when, and only when, VIX information is incor-

porated into the estimation strategy. This is efficiently possible for the NGARCH model

using the EGP risk-neutralization process or using the two-step estimation strategy devel-

oped in Chorro & Fanirisoa (2018).

Finally, we have questioned in this study the possibility to deduce option pricing perform-

ances of a GARCH model from its capacity to forecast VIX dynamics. When we ranked mod-

els using options or VIX criteria we obtained a highly significant Spearman’s rank correlation

coefficient of 0.90. Therefore, examining the performance of a model in fitting VIX time

series gives a very good indication on related pricing performances at a very reasonable com-

putational cost. VIX analysis appears in this way as a very interesting and parsimonious first-

stage evaluation to discard the worst GARCH option pricing models.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.

coefficient between in- and out-of-sample pricing errors ranking methodologies is equal to 0.96.

Consequently, we focus our attention on out-of-sample pricing performances and VIX RMSE.
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Appendix A. Technical Appendix: SDFs, Risk-Neutrals Dynamics and
Model Implied VIX

We propose in this technical appendix, the primer concerning the different SDFs used in

this article to obtain the risk-neutral dynamics provided in Appendix Tables A1 and A2.

This knowledge may be of interest to compute prices under the historical probability even

if in this article all the prices have been computed or simulated under different risk-neutral

probabilities. We refer the interested reader to Chorro, Guégan, & Ielpo (2015, Chap. 3)

and Chorro & Fanirisoa (2019) for complete derivations.

Starting from a financial time series of log-returns Yt ¼ log St

St�1

� �
defined on a filtered

historical probability space X; F tf g0� t�T ;P
� �

it is well-documented that the existence of

an equivalent martingale measure Q is equivalent to the existence of the so-called one

period SDF Mtð Þt2f1;...;Tg that fulfills the pricing equations related to the bond and the risky

asset:

EP erMtþ1jF t½ � ¼ 1
EP eYtþ1 Mtþ1jF t

� �
¼ 1:

�
(A1)

For GARCH models, combining discrete-time modeling and continuous conditional dis-

tributions, the choice of such an SDF is not unique and several classical candidates are

available in the financial literature.

A.1 The Conditional Esscher Transform

We assume for the SDF a particular parametric form (exponential affine of the log-returns):

8t 2 f1; . . . ;Tg;

MEss
t ¼ ehq

t Ytþnq
t (A2)

where hq
t and nq

t are F t�1 measurable random variables.

For the dynamics considered in Equation (1), it is in general possible to find explicitly hq
t

and nq
t that depend on the conditional distribution. In particular (see Chorro, Guégan, &

Ielpo, 2015, Chap. 3.4), when the zt is i.i.d. N 0; 1ð Þ;

hq
t ¼ �

1

2
þmt

ht

	 


nq
t ¼ �hq

t rþmtð Þ � hq
t

� �2 ht

2
� r

8>><
>>: (A3)

and when the zt is i.i.d. NIG ~a; ~b; ~d; ~l
� �

;

hq
t ¼
�1

2
� ~a~b

ffiffiffi
~d

p
ffiffiffiffiffi
ht

p
~.

3
2

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~amt þ

ffiffiffiffiffiffiffi
~dht

p
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� �2

ht
~d~.3

4~a4~d
2

ht
~d~.3 þ ~amt þ

ffiffiffiffiffiffiffi
~dht

p
~b~.

� �2
� 1

0
B@

1
CA

vuuuut :

nq
t ¼ �~lhq

t � ~d~. þ ~d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ~b þ hq

t

� �2
r

� r

8>>>>>>><
>>>>>>>:

(A4)

where ~. ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ~b

2
q

.
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If we consider the IG-GARCH model (3), we obtain

hq
t ¼

1

2
g�1 � 1

�2g3
1þ �

2g3

2

 �2
" #

nq
t ¼ �r hq

t þ 1
� �

� hq
t �ht � dt 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2hq

t g
� �q	 
 �

:

8>>>><
>>>>:

(A5)

A.2 The EGP

Following Badescu et al. (2019), we can see that for the particular NGARCH model (7)

considered in the article, when the zt is i.i.d. NIG ~a; ~b; ~d; ~l
� �

; the SDF coming from the EGP

is given by

MEGP
t ¼ e�r dNIG zt þ k0; ~a; ~b; ~d; ~l

� �
dNIG zt; ~a; ~b; ~d; ~l

� � (A6)

where dNIG is the density function of the NIG distribution given in Section 1.3.

A.3 The Quadratic SDF for Gaussian GARCH Models

In Monfort & Pégoraro (2012), the authors proposed, for Gaussian GARCH models of the

form (1), to extend the exponential affine form of the SDF (A2) adding a quadratic term in

the exponential to cope with more general empirical shapes. More precisely, they supposed

that

M
Qua
t ¼ enq

t þhq
1;t

Ytþhq
2;t

Y2
t (A7)

where nq
t ; hq

1;t and hq
2;t are F t�1 measurable random variables. Obviously, when h2;t ¼ 0 we

recover MEss. This SDF depends on three variables and has to solve the two pricing equa-

tions (Equation A1). In order to obtain a unique solution to this problem, we need to im-

pose an extra constraint. Supposing a constant proportional wedge p ¼ h�t
ht

between the risk-

neutral and the historical volatilities, we obtain (see Chorro, Guégan, & Ielpo, 2015,

Section 3.5)

hq
2;t ¼

p� 1

2pht

hq
1;t ¼ �2rhq

2;t �
1

2
�mt

ht

nq
t ¼ �r�

ht hq
1;t

� �2
þ 2 rþmtð Þhq

1;t þ 2hq
2;t rþmtð Þ2

2 1� 2hq
2;tht

� � þ 1

2
log 1� 2hq

2;tht

� �
:

8>>>>>>>>>>><
>>>>>>>>>>>:

(A8)

This new risk-neutral parameter p cannot be estimated using only information from the

log-returns.
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Table A1 Summary information on risk-neutral dynamics of each Gaussian GARCH model analyzed in this article

Model Risk-neutral dynamics Risk-neutral parameters and distribution References

HN-GARCH

Gaus-Ess Yt ¼ r� ht

2 þ
ffiffiffiffiffi
ht

p
z�t z�t c! Nð0; 1Þ Heston & Nandi (2000)

ht ¼ a0 þ a1ðz�t�1 � c�
ffiffiffiffiffiffiffiffiffi
ht�1

p
Þ2 þ b1ht�1 c� ¼ cþ k0 þ 1

2 Kanniainen, Binghuan, & Hanxue (2014)

Gaus-Qua Yt ¼ r� h�t
2 þ

ffiffiffiffiffi
h�t

p
z�t z�t c! N 0; 1ð Þ; p ¼ h�t

ht
Monfort & Pégoraro (2012)

h�t ¼ pa0 þ p2a1ðz�t�1 � c�
ffiffiffiffiffiffiffiffiffi
h�t�1

p
Þ2 þ b1h�t�1 c� ¼ c

pþ
k0

p þ 1
2

� �
Chorro, Guégan, & Ielpo (2015, Chap. 3.5)

GJR-GARCH

Gaus-Ess Yt ¼ r� ht

2 þ
ffiffiffiffiffi
ht

p
z�t

ht ¼ a0 þ ht�1½b1 þ a1ðz�t�1 � k0Þ2� z�t c! Nð0; 1Þ Kanniainen, Binghuan, & Hanxue (2014)

þcht�1maxð0;�ðz�t�1 � k0ÞÞ2

Gaus-Qua Yt ¼ r� h�t
2 þ

ffiffiffiffiffi
h�t

p
z�t z�t c! N 0; 1ð Þ; p ¼ h�t

ht
Monfort & Pégoraro (2012)

h�t ¼ a�0 þ h�t�1b1 þ a�1h�t�1ðz�t�1 � k�t Þ
2 a�0 ¼ a0p, a�1 ¼ a1p, c� ¼ cp Chorro, Guégan, & Ielpo (2015, Chap. 3.5)

þc�h�t�1maxð0;�ðz�t�1 � k�t ÞÞ
2 k�t ¼ k0ffiffi

p
p �

ffiffiffiffiffiffiffi
h�

t�1

p
2

1
p� 1
� �

NGARCH

Gaus-Ess Yt ¼ r� ht

2 þ
ffiffiffiffiffi
ht

p
z�t z�t c! Nð0; 1Þ

ht ¼ a0 þ b1ht�1 þ a1ht�1ðz�t�1 � c�Þ2 c� ¼ k0 þ c Kanniainen, Binghuan, & Hanxue (2014)

Gaus-Qua Yt ¼ r� h�t
2 þ

ffiffiffiffiffi
h�t

p
z�t z�t c! Nð0; 1Þ, Monfort & Pégoraro (2012)

h�t ¼ a�0 þ b1h�t�1 þ a�1h�t�1ðz�t�1 � c�t Þ
2 p ¼ h�t

ht
; a�0 ¼ a0p; a�1 ¼ a1p Chorro, Guégan, & Ielpo (2015)

c�t ¼
cffiffi
p
p þ k0ffiffi

p
p �

ffiffiffiffiffiffiffi
h�

t�1

p
2

1
p� 1
� �
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Table A2 Summary information on risk-neutral dynamics of each non-Gaussian GARCH model analyzed in this article

Model Risk-neutral dynamics Risk-neutral parameters and distribution References

GJR-GARCH

NIG-Ess Yt ¼ rþmt þ
ffiffiffiffiffi
ht

p
z�t z�t c! NIGð~a; ~b þ

ffiffiffiffiffi
ht

p
hq

t ;
~d; ~lÞ Badescu et al. (2011)

ht ¼ a0 þ ht�1½b1 þ a1ðz�t�1Þ
2� hq

t ¼ � 1
2�

~a~b
ffiffi
~d
pffiffiffiffi
ht

p
~.

3
2

� 1
2 Ht Chorro, Guégan, & Ielpo (2012)

þcht�1maxð0;�ðz�t�1ÞÞ
2

mt ¼ k0

ffiffiffiffiffi
ht

p
� 1

2 ht ~. ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ~b

2
q

NGARCH

NIG-Ess Yt ¼ rþmt þ
ffiffiffiffiffi
ht

p
z�t z�t c! NIGð~a; ~b þ

ffiffiffiffiffi
ht

p
hq

t ;
~d; ~lÞ Badescu et al. (2011)

ht ¼ a0 þ b1ht�1 þ a1ht�1ðz�t�1 � cÞ2 hq
t ¼ � 1

2�
~a~b

ffiffi
~d
pffiffiffiffi
ht

p
~.

3
2

� 1
2 Ht Chorro, Guégan, & Ielpo (2012)

mt ¼ k0

ffiffiffiffiffi
ht

p
� logðEP½e

ffiffiffiffi
ht

p
zt �Þ ~. ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ~b

2
q

NIG-EGP Yt ¼ rþmt � �t þ
ffiffiffiffiffi
ht

p
z�t , z�t c! NIGð~a; ~b; ~d; ~lÞ Badescu et al. (2019)

ht ¼ a0 þ b1ht�1 þ a1ht�1ðz�t�1 � ðk0 þ cÞÞ2 e�t ¼ e�rEP½eYt jF t�1�

mt ¼ k0

ffiffiffiffiffi
ht

p
� logðEP½e

ffiffiffiffi
ht

p
zt �Þ �t ¼ mt þ ~l

ffiffiffiffiffi
ht

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ~b

2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a2 � ð~b þ ~d

ffiffiffiffiffi
ht

p
Þ2

q
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Table A2. (continued)

Model Risk-neutral dynamics Risk-neutral parameters and distribution References

IG-GARCH

IG-Ess Yt ¼ rþ ��h�tþ1 þ g�z�t z�t c! IG
h�t
ðg�Þ2
� �

Christoffersen et al., (2006a)

h�t ¼ w� þ b�h�t�1 þ c�z�t�1 þ a�
ðh�

t�1
Þ2

z�
t�1

g� ¼ g
1�2h�g ; h� ¼ 1

2 g�1 � 1
�2g3 1þ �2g3

2

h i2
 �

c� ¼ c g�

g

� �5
2
; a� ¼ a g�

g

� ��5
2
; �� ¼ � g�

g

� ��3
2
; w� ¼ w g�

g

� �3
2
;

IG-Ushp Yt ¼ rþ ��h�tþ1 þ g�z�t z�t c! IG
h�t
ðg�Þ2
� �

; p ¼ h�t
ht

h�t ¼ w� þ bh�t þ c�y�t þ a�
ðh�t Þ

2

z�t
g� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

�2 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

27p

q	 

3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

�2 �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

27p

q	 

3

s
Chorro & Fanirisoa (2019)

�� ¼ �
p ; w� ¼ wp; c� ¼ cpg�

g ; a� ¼ ag
pg�

Ht ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~amt þ

ffiffiffiffiffiffiffi
~dht

p
~b~.

� �2

ht
~d~.3

4~a4~d
2

ht
~d~.3 þ ~amt þ

ffiffiffiffiffiffiffi
~dht

p
~b~.
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� 1
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A.3 The U-Shaped SDF for the IG-GARCH Model

In Chorro & Fanirisoa (2019), the authors proposed an exponential-hyperbolic SDF for the

IG-GARCH model (3) that may be seen as the analogous of Equation (A7) for the IG distri-

bution. They considered

MUshp
t ¼ ehq

t Ytþeq
t þ

q
q
t

yt ¼ ehq
t Ytþeq

t þ
gq

q
t

Yt�r��ht (A9)

and supposing a constant proportional wedge p between the risk-neutral and the historical

volatilities we obtain (see Chorro & Fanirisoa, 2019, proposition 2.3)

hq
t ¼

1

2g
� 1

2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

�2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

27p

r !
3

vuut þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

�2
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

27p

r !
3

vuut #

qq
t ¼

d2
t

2
1� �2g4

1� 2hq
t g

� �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2g�
p� �� �2

" #

eq
t ¼ �r� rþ �htð Þhq

t � dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

t � 2qq
t

� �
1� 2ghq

t

� �r
� log dtð Þ þ

1

2
log d2

t � 2qq
t

� �
Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

(A10)

where g� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

�2 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

27p

q	 

3

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

�2 �1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�

27p

q	 

3

s
.

Tables A1–A3 provide in detail the Gaussian and non-Gaussian risk-neutral dynamics

considered in the article and the related (when available) closed-form expressions for the

model implied VIX.

Table A3 GARCH implied VIX

GARCH models ~h0 W�

HN-GARCH

Gaussian-Ess a0þa1

1�W� b1 þ a1ðcþ k0 þ 1
2Þ

2

Gaussian-Qua a0þpa1

1�W� b1 þ p2a1
c
pþ

k0

p þ 1
2

� �2

GJR-GARCH

Gaussian-Ess a0

1�W� b1 þ ½a1 þ cNðk0Þ�ð1þ k2
0Þ þ ck0nðk0Þ

NGARCH

Gaussian-Ess a0

1�W� b1 þ a1ð1þ ðk0 þ cÞ2Þ

NIG-EGP a0

1�W� b1 þ a1ð1þ ðk0 þ cÞ2Þ

IG-GARCH

Ess
wþa gð Þ4

1�W� bþ c�

g�ð Þ2 þ a� g�ð Þ2

Ushp
wþag

p2 g�ð Þ3

1�w�ð Þ bþ c�

g�ð Þ2 þ a� g�ð Þ2

Note: We present expressions of the parameters ~h0 and W� associated with the closed-form expression of Vixt

in Equation (17) for different GARCH structures, SDFs, and conditional distributions. In this table, we denote

by N (resp. n) the distribution (resp. the density) function of the standard Gaussian distribution.
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