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ABSTRACT
This article proposes Bayesian nonparametric inference for panel Markov-switching GARCH models. The
model incorporates series-specific hidden Markov chain processes that drive the GARCH parameters. To cope
with the high-dimensionality of the parameter space, the article assumes soft parameter pooling through a
hierarchical prior distribution and introduces cross sectional clustering through a Bayesian nonparametric
prior distribution. An MCMC posterior approximation algorithm is developed and its efficiency is studied
in simulations under alternative settings. An empirical application to financial returns data in the United
States is offered with a portfolio performance exercise based on forecasts. A comparison shows that the
Bayesian nonparametric panel Markov-switching GARCH model provides good forecasting performances
and economic gains in optimal asset allocation.
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1. Introduction

Over the last 10 years, there has been an increasing interest in the
study of volatility of large panels of asset returns, with a special
focus on dynamic dependence and heterogeneity across assets.
Studies on asset volatility are relevant in strategic investing deci-
sions and useful to professional investors, such as investment
companies, pension funds and mutual funds, to improve the
portfolio allocation.

In this article we consider a benchmark dataset of the S&P100
constituents and compute the percentage log-returns at weekly
frequency from 6th January 2000 to 3rd October 2020.

Figure 1 reports the estimates of the log-volatility and log-
kurtosis of the 78 constituents considered in the analysis (top
panel). Three dates are selected within the dot.com bubble,
the financial crisis and COVID outbreak periods, respectively,
where significant volatility in returns was observed. The figure
indicates that volatility and kurtosis change over time with time
series clustering effects. This calls for the use of Generalized
Autoregressive Conditional Heteroscedasticity (GARCH) mod-
els with Markov-switching (MS) effects as to deal with regime
changes and temporal clustering of the conditional volatility
(e.g., see Engle 1982; Bollerslev 1986; Ang and Timmermann
2012; Bauwens and Otranto 2016).

Furthermore, the cross-sectional distribution of the volatility
and kurtosis exhibits multiple modes and long tails (see bottom
panel). This fact seems to imply cross-section heterogeneity
in the data with possible similarities in the dynamics. Given
that these effects can only be partially captured by independent
MS models, several multivariate GARCH models have been
proposed to account for dependence (see Virbickaite, Ausín, and
Galeano 2015; Bauwens and Otranto 2016, 2020).
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Nevertheless, the estimation of a large number of parameters
with the available data dimension may lead to intractability,
overfitting and loss of efficiency. Strong restrictions, such as
the parameter pooling assumption, can be used, even though
those appear to be too restrictive. Instead, different approaches,
such as shrinkage or sparse estimation, can be applied. Com-
pared to standard approaches (e.g., see regularization tech-
niques), the Bayesian framework based on hierarchical prior
distributions provides a coherent approach to inference that
naturally allows for partial pooling and sharing of information
across equations. Bayesian inference and hierarchical priors
have been successfully used in econometrics to avoid overpa-
rameterization and overfitting (e.g., see Canova and Ciccarelli
2004). Bayesian inference accommodates for various degrees of
shrinking and for sparse estimation through the choice of suit-
able classes of prior distributions, such as Bayesian Lasso prior
(Park and Casella 2008) and spike-and-slab (George and McCul-
loch 1993), and can be combined with other dimensionality
reduction strategies.

In this respect, evidence of cluster-wise dependence in the
distribution of financial asset returns (see Bauwens and Rom-
bouts 2007) has prompted researchers to adopt cross-sectional
clustering of the time series as a building block for a dimen-
sionality reduction step in large dimensional problems and over-
parameterized models (e.g., see Hirano 2002; Billio, Casarin,
and Rossini 2019; Fisher and Jensen 2022). To address this
issue, this article uses a panel MSGARCH model with cross-
sectional clustering based on a Bayesian nonparametric (BNP)
prior (Lo 1984). In order to detect the number of regimes, we
extend the approach of Otranto and Gallo (2002) to a panel
framework.

© 2023 The Authors. Published with license by Taylor & Francis Group, LLC.
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Figure 1. Top panel: rolling window estimates of the log-volatility (left) and log-kurtosis (right) for the S&P100’s constituents from 6th January 2000 to 3rd October 2020
(30 weeks window). Vertical bars indicate three reference dates: 6th July 2002, 23rd August 2008 and 22nd February 2020. Bottom panel: cross-sectional distribution of the
log-volatility (left) and log-kurtosis (right) in three reference dates.

A hierarchical Pitman-Yor process prior (Pitman and Yor
1997) for the MSGARCH parameters is considered. In the
first stage of the hierarchical prior, cross-unit heterogeneity is
allowed for, while shrinking all unit-specific parameters toward
a common mean. The second stage of the hierarchy allows for
mixed effects in the common mean. There are many advan-
tages in using this hierarchical nonparametric prior. First, our
approach allows for making inference on the number of mixture
components in the cross-sectional clustering. Second, it adds
flexibility to the model allowing for different shapes of the prior
and posterior predictive distributions. Third, the predictive dis-
tribution incorporates uncertainty in the parameters and in the
number of mixture components. Nonparametric Bayesian tech-
niques have been largely and successfully used in different fields
such as biostatistics (Do, Müller, and Tang 2005), biology (Arbel,
Mengersen, and Rousseau 2016), medicine (Xu et al. 2016),
and neuroimaging (Zhang et al. 2016). For an introduction to
Bayesian nonparametrics see Hjort et al. (2010) and for a review
of models and applications in different fields see Müller and
Mitra (2013).

The inference proposed in this article is novel in some
respects. As such, the article contributes to the Bayesian non-
parametrics literature for time series analysis (e.g., see Taddy
and Kottas 2009; Jensen and Maheu 2010; Griffin and Steel
2011; Di Lucca et al. 2013; Bassetti, Casarin, and Leisen 2014;

Billio, Casarin, and Rossini 2019; Nieto-Barajas and Quin-
tana 2016; Griffin and Kalli 2018). The article innovates on
the Bayesian nonparametric dynamic panel model in Hirano
(2002) by introducing Markov-switching and GARCH dynam-
ics and extends the nonparametric switching regression in Taddy
and Kottas (2009) to a panel model with GARCH dynam-
ics. Our approach differs from those in Hirano (2002) and
Taddy and Kottas (2009), and is in line with the strategies
for large dimensional and over-parameterized models (e.g.,
see MacLehose and Dunson 2010; Wang 2010; Billio, Casarin,
and Rossini 2019), where nonparametric hierarchical priors are
used to combine partial pooling and clustering effects in the
parameter space.

Further, differently from Hirano (2002) and Taddy and Kot-
tas (2009), the article uses a MCMC algorithm for posterior
approximation that relies on the efficient sampling method
developed in Walker (2007), Kalli, Griffin, and Walker (2011),
and Hatjispyros, Nicoleris, and Walker (2011). Lastly, the article
makes a contribution to the literature on Bayesian Markov-
switching panel models (e.g., see Kaufmann 2010, 2015; Billio
et al. 2016; Casarin et al. 2019) by introducing GARCH effects
and allowing for a flexible nonparametric specification.

The estimation of MSGARCH models is also a difficult task
given the path dependence problem (Gray 1996) and approxi-
mation methods have been considered (e.g., see Haas, Mittnik,
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and Paolella 2004; Ardia 2008; Bauwens, Preminger, and Rom-
bouts 2010; He and Maheu 2010; Bauwens, Dufays, and Rom-
bouts 2014; Dufays 2016; Wee, Chen, and Dunsmuir 2022). In
this article, we extend the univariate Gibbs sampler by Billio,
Casarin, and Osuntuyi (2016) to a multiple time series set-up
and provide an efficient MCMC procedure for the hidden states
of a panel MSGARCH model. The proposed method relies on
a combination of blocking Gibbs and generalized Metropolis
samplers.

An empirical application to financial returns of the S&P100
constituents in the United States over the period 6th January
2000–3rd October 2020 is provided. The analysis offers an opti-
mal portfolio comparison based on one-step ahead forecasts
generated by the Bayesian nonparametric panel MSGARCH
(BNP-MSGARCH) and competitive models, such as a Bayesian
nonparametric GARCH model without regime changes (BNP-
GARCH), and a parametric GARCH. First, we detect the num-
ber of regimes using a new developed panel version of the
univariate procedure by Otranto and Gallo (2002), fit the BNP-
MSGARCH to the data, and examine the clusters’ composi-
tion. For the BNP-MSGARCH model, we consider two different
regime identifications: (a) a restriction on the expected returns
(BNP-MSGARCH-μ); and (b) a restriction on the uncondi-
tional volatility level (BNP-MSGARCH-γ ), for example, see
Ardia et al. (2019). Second, the BNP-MSGARCH is evaluated
against the other GARCH models in out-of-sample forecasts
through statistical accuracy measures. Third, a portfolio exercise
is carried out to ascertain economic gains. The main results show
that the BNP-MSGARCH model is competitive against the other
models for point-forecast and superior for density-forecast and
portfolio performance.

The article is organized as follows. Section 2 describes the
panel MSGARCH model and the Bayesian nonparametric prior
distribution. Section 3 presents the data augmentation strategy
and the posterior approximation method. Section 4 offers the
empirical application. Section 5 concludes.

2. A Bayesian Nonparametric MSGARCH Model

We assume that the observable variable yit for the ith unit of the
panel at time t satisfies

yit = μi(sit) + σitεit , εit
iid∼ N (0, 1),

t = 1, . . . , T, i = 1, . . . , N, (1)

whereN (μ, σ 2) denotes the Gaussian distribution with location
μ and scale σ . The conditional variance is as follows

σ 2
it = γi(sit) + αi(sit)ε

2
it−1 + βi(sit)σ

2
it−1, (2)

which is the MSGARCH model, and sit , t = 1, . . . , T is a
hidden Markov chain process with transition probability P(sit =
k|sit−1 = l) = pi,lk, k, l = 1, . . . , K, with K the number of states.
The functional form for the switching parameters is

μi(sit) =
K∑

k=1
μikI(sit = k), αi(sit) =

K∑
k=1

αikI(sit = k), (3)

βi(sit) =
K∑

k=1
βikI(sit = k), γi(sit) =

K∑
k=1

γikI(sit = k). (4)

We cope with the high dimension of the parameter space and
related overfitting issues by exploiting cross-sectional clustering
of the series. More specifically we propose to combine two mod-
eling strategies. First, we assume soft parameter pooling through
a hierarchical prior distribution with two stages, and second we
introduce clustering effects in the parameter space through a
nonparametric prior. The resulting joint prior distribution for
the MSGARCH parameters is given by the following.

In the first stage, the rows pi,k = (pi,k1, . . . , pi,kK) of the
transition matrix follow a Dirichlet distribution

(pi,k1, . . . , pi,kK)
iid∼ Dir(φrk1, . . . , φrkK), i = 1, . . . , N, (5)

for all regimes k = 1, . . . , K, where the precision parameter φ

shrinks the unit-specific probabilities toward a common value
rk = (rk1, . . . , rkK), that is the Dirichlet distribution parameter.
For the second stage we assume

(rk1, . . . , rkK)
iid∼ Dir(1/K, . . . , 1/K). (6)

To address the high-dimensionality issue, the first stage of
the hierarchical prior shrinks the switching parameters toward
some common values, and the second stage clusters the units in
Mk groups C1,k, . . . , CMk,k within each regime, such that Ch,k ∩
Cl,k = ∅ for h �= l and ∪Mk

h=1Ch,k = {1, . . . , N}. In the first stage,
for k = 1, . . . , K we assume

μik ∼ N (μ̃∗
ik, s), γik/a ∼ Be(rγ̃ ∗

ik/a, r(1 − γ̃ ∗
ik/a)), (7)

αik ∼ Be(rα̃∗
ik, r(1 − α̃∗

ik)), βik ∼ Be(rβ̃∗
ik, r(1 − β̃∗

ik)), (8)

whereBe(α, β) is the beta distribution with mean α/(α+β) and
a > 0. The scale hyperparameters s and r are shrinking θ ik =
(μik, γik, αik, βik) ∈ R × [0, a] × [0, 1]2 toward the parameter
θ̃

∗
ik = (μ̃∗

ik, γ̃ ∗
ik, α̃∗

ik, β̃∗
ik) ∈ R×[0, a]×[0, 1]2 which is assumed to

be constant for all units in the same cluster, that is for all i ∈ Ch,k
where h = 1, . . . , Mk (for further details see Section 3 and (23)).

The second stage of the hierarchy generates the clusters of
parameters. For each regime k we assume a Pitman-Yor process
(PYP) prior

θ̃
∗
ik|Gk

iid∼ Gk, Gk ∼ PYP(ν, ψ , H0), (9)

with base measure H0 and concentration and dispersion param-
eters ν ∈ [0, 1] and ψ > −ν, respectively. We assume H0
is the product of independent normal and uniform distribu-
tions N (μ; m∗, s∗), U(γ ; 0, a), U(α; 0, 1) and U(β ; 0, 1), which
are usually chosen priors in parametric Bayesian inference for
MSGARCH (e.g., see Billio, Casarin, and Osuntuyi 2016). The
PYP introduced in Pitman and Yor (1997) is a generalization of
the Dirichlet process which can be obtained for ν = 0 (e.g., see
Bassetti, Casarin, and Leisen 2014).

Through the illustration of the Chinese Restaurant metaphor,
the clustering structure of the PYP is defined by a Polya-Urn
sampling scheme. The parameter θ̃

∗
i of the ith unit is either equal

to one of the other units or a new one from the base distribution
H0, that is,

θ̃
∗
ik|θ̃

∗
1k, . . . , θ̃∗

i−1k = 1
ψ − ν + i

i−1∑
j=1

δ
θ̃

∗
jk
(θ̃

∗
ik) + ψ

ψ − ν + i
H0(θ̃

∗
ik).

(10)
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Figure 2. DAG of the Bayesian nonparametric panel MSGARCH model. It exhibits
the hierarchical structure of the observations yt = (y1t , . . . , yNt) (boxes), the latent
state variables st = (s1t , . . . , sNt) (gray circles), the parameters of the transition
probability matrix Pi = (pi,1, . . . , pi,K ), θ i = (μi , γi , αi , βi), the hyperparameters of
the first stage R = (r1, . . . , rK ), θ̃

∗
i = (μ̃∗

i , γ̃ ∗
i , α̃∗

i , β̃∗
i ) and of the second stage G

(white circles). The directed arrows show the conditional independence structure of
the model.

This sequential allocation procedure generates clusters in the
parameter space, where the number of clusters Mk is random
with the following prior distribution

P(Mk = h) = νh−1�(ψ/ν + h)�(ψ + 1)

�(ψ/ν + 1)�(ψ + N)
Sν(N, h),

with h ∈ N, where Sν(N, h) is a generalized Stirling number of
the first kind, and �(x) is the one-parameter gamma function
(e.g., see Bassetti, Casarin, and Leisen 2014). To evaluate the
prior mean of the number of clusters, we use

E(Mk) =
{ ∑N

h=1
ψ

ψ+h−1 , if ν = 0,
�(ψ+ν+N)�(ψ+1)
ν�(ψ+ν)�(ψ+N)

− ψ
ν

, if ν �= 0.

We summarize our Bayesian nonparametric model in the
Directed Acyclic Graph (DAG) representation of Figure 2.

The PYP clustering effects on the cross section correspond to
a probabilistic clustering of the parameters based on an infinite
mixture distribution. The PYP can be written in a Sethuraman’s
like representation as a discrete random measure (see Sethura-
man 1994)

Gk(dθ∗) =
∞∑

h=1
Whkδθ∗

hk
(dθ∗), (11)

where the atoms θ∗
hk are iid random variables from the base mea-

sure H0 and the random weights Whk have the stick-breaking
representation

Whk = Vhk

h−1∏
l=1

(1 − Vlk), (12)

with Vlk ∼ Be(1 − ν, ψ + νl), l = 1, 2, . . . , h (see Arbel, Blasi,
and Prünster 2019).

By integrating out the discrete part of the hierarchical prior,
the following infinite mixture representation of the prior distri-
bution on θ is obtained

θ ik|Gk
ind∼

∫
π(θ ik|θ∗)Gk(dθ∗) =

∞∑
h=1

Whkπ(θ ik|θ∗
hk), (13)

where π(θ ik|θ∗) is the joint parameter distribution at the first
stage of hierarchical prior (see (7)–(8)) and Gk(θ

∗) is the distri-
bution at the second stage. In conclusion the PYP prior allows
for probabilistic clustering in the parameter space.

The predictive density induced by our prior assumptions can
be written as

yit|G, sit
ind∼

∞∑
h=1

Whsit

∫
ft(yit|sit , θ isit )π(dθ isit |θ∗

hsit
), (14)

where G = (G1, . . . , GK) is the collection of state-dependent
measures, ft(yit|sit = k, θ isit ) = f (yit|μik, σik,t) is the transition
kernel of the MSGARCH with σ 2

ik,t = γik + αikε
2
it−1 + βikσ

2
it−1

for k = 1, . . . , K and θ ik = (μik, γik, αik, βik). This prior
predictive density accounts for various forms of possible hetero-
geneity in the data such as asymmetry, excess of kurtosis and
multimodality.

3. Posterior Approximation

In this section we discuss the approximation of the posterior
distribution, some identification issues and the selection of the
number of regimes. We also summarize the simulation results
for approximation efficiency and inference effectiveness. Let
 = (θ1, . . . , θK) be the collection of the units and regime
parameters θk = (θ1k, . . . , θNk) and P = (P1, . . . , PN) the col-
lection of transition probability matrices. Let Y = (y1, . . . , yT)

and S = (s1, . . . , sT) be the collection over time of observa-
tion vectors yt = (y1t , . . . , yNt) and of latent vectors st =
(s1t , . . . , sNt), respectively. The likelihood function of the panel
MSGARCH model is not tractable being written in integral
form. However, a data-augmentation principle can be applied
to develop efficient posterior simulation methods (Frühwirth-
Schnatter 1994). We introduce the set of auxiliary allocation
variables ξik,t = I(sit = k) to write the complete-data likelihood
function as follows

L(Y , �|, P) =
T∏

t=1

N∏
i=1

f (yit|sit , θ i,sit )

K∏
l=1

l∏
k=1

pξil,t−1ξik,t
i,lk , (15)

where � = (�1, . . . , �T) is the collection of the latent vectors
�t = (ξ 1t , . . . , ξNt) over time, with ξ it = (ξi1,t , . . . , ξiK,t).

The joint hierarchical prior distribution is

π(, G) =
K∏

l=1

( N∏
i=1

π(θ il|Gl)
l∏

k=1
prk−1

i,lk

)
π(Vl)π(∗

l ), (16)

where the infinite mixture priors, for k = 1, . . . , K, are given by

π(θ ik|Gk) =
∞∑

h=1
Whkπ(θ ik|θ∗

hk), (17)
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where π(θ ik|θ∗
hk) = N (μik|μ∗

hk, s) Be(αik|α∗
hk, r) Be(βik|β∗

hk, r)
Be(γik/a|γ ∗

hk/a, r) is the first-stage joint prior distribution given
in (7)–(8), and

π(∗
k) =

∞∏
h=1

N (μ∗
hk; m∗, s∗)U(α∗

hk; 0, 1)U(β∗
hk; 0, 1)U(γ ∗

hk; 0, a),

(18)

π(Vk) =
∞∏

l=1
Be(Vlk; 1 − ν, ψ + νl), (19)

are the joint distributions of the infinite collection of atoms
and stick-breaking variables, ∗

k = (θ∗
1k, θ∗

2k, . . .) and Vk =
(V1k, V2k, . . .), respectively.

The joint prior distribution in a Bayesian nonparametric
framework is usually not tractable since its support is the space
of the discrete random measures which are infinite-dimensional
objects (see (17)–(19)). Nevertheless, the data-augmentation
principle can be applied in order to make the inference problem
more tractable. Following the recent Bayesian nonparametric
literature (e.g., see Bassetti, Casarin, and Leisen 2014; Bassetti,
Casarin, and Ravazzolo 2018; Billio, Casarin, and Rossini 2019),
we introduce a set of slice variables Uik ∼ U(0, 1) and define the
index set Aik = {h|Uik < Whk}. Then the infinite mixture can
be demarginalized as follows

π(θ ik|Uk, Vk, θ∗
k ) =

∞∑
h=1

I(Uik < Whk)π(θ ik|θ∗
hk)

=
∑

h∈Aik

π(θ ik|θ∗
hk), (20)

which is a almost-surely finite mixture since Card(Aik) < ∞
a.s., where Uk = (U1k, . . . , UNk) is the collection of slice vari-
ables.

Following the standard practice in finite mixture modeling
we introduce the latent allocation variable Dik ∈ Aik and obtain

π(θ ik|Uk, Dk, Vk, θ∗
k ) = I(Uik < WDikk)π(θ ik|θ∗

Dikk), (21)

where Dk = (D1k, . . . , DNk). Let us denote with V =
(V1, . . . , VK), U = (U1, . . . , UK) and ∗ = (θ∗

1, . . . , θ∗
K) the

collections of regime-specific auxiliary variables and atoms. The
joint posterior distribution π(�, , P, U, D, V , ∗|Y) is propor-
tional to

L(Y , �|, P) =
K∏

l=1

( N∏
i=1

π(θ il|Ul, Dl, Vl, ∗
l )

l∏
k=1

prk−1
i,lk

)

× π(Vl)π(l). (22)

Note that the allocation variables allow to reconcile the nota-
tions used in the hierarchical model of (7) and the random
measure representation in (11)–(13) as follows

θ̃
∗
ik = θ∗

Dikk. (23)

A Gibbs sampler is used to generate random samples from
the joint posterior and to approximate the Bayesian estimator.
The Gibbs sampler iterates the following steps

1. Sample slice and stick-breaking variables U and V given
�, , P, D, ∗, Y

2. Sample the transition probability matrices P given
�, , U, D, V , ∗, Y

3. Sample the atoms ∗ given �, , P, U, D, V , Y
4. Sample the MSGARCH parameters  given

�, P, U, D, V , ∗, Y
5. Sample the switching allocation variables � given

, P, U, D, V , ∗, Y
6. Sample the mixture allocation variables D given

�, , P, U, V , ∗, Y

The derivation of the full conditional distributions and sam-
pling method are given in Appendix A. The parameter estimator
θ̂ , with θ element of , is approximated as average of MCMC
draws from the posterior. The latent state estimator is approx-
imated as ŝit = ∑K

k=1 kξ̂ik,t , with ξ̂ik,t the kth element of the
switching allocation variable estimator ξ̂ it = arg max{q̂(ξ it|Y)},
where q̂(ξ it|Y)} is the MCMC approximation of the discrete pos-
terior distribution q(ξ it|Y), obtained from the Forward Filtering
Backward Sampling step.

The likelihood function and the posterior distribution
remain unchanged with respect to any state permutation. This
identification issue and the related label switching problem
are commonly solved by imposing a prior restriction on the
parameters θ ik, or on a transformation q(θ ik) (see Celeux
1998; Frühwirth-Schnatter 2001, 2006) such as a prior ordering,
q(θ i1) > q(θ i2) > · · · > q(θ iK), with some economic inter-
pretation. In this article we implement two alternative strategies
based on performance regimes μi1 > μi2 > · · · > μiK (BNP-
MSGARCH-μ model) and on volatility regimes γi1/(1 − αi1 −
βi1) > γi2/(1 − αi2 − βi2) > · · · > γiK/(1 − αiK − βiK)

(BNP-MSGARCH-γ model). The first identification scheme
mimics an investing strategy which classifies risky assets into
different groups (styles) and move invested funds among these
styles depending on their relative performance. This strategy
would be decisive in monitoring the relative performance of
style portfolios, especially during large market drops so to better
understand where markets are heading (see Bianchi 2020). In the
literature, this approach for asset allocation is known as “style
investing” or “style strategies” (Barberis and Shleifer 2003) and
the style identification criterion is known as “style features.” The
classification of assets usually relies on industry sectors (Jame
and Tong 2014) or factors (Barberis and Shleifer 2003), whereas
in this article it is driven by our statistical model. The second
identification scheme is more common in volatility modeling
and can be used to protect portfolio allocation against excess of
volatility (i.e., Barro, Canestrelli, and Consigli 2019).

In order to detect the number of regimes, we extend the
univariate approach by Otranto and Gallo (2002) to a panel
data framework. As in Otranto and Gallo (2002), we exploit
the fact that the joint density of a panel MS model is a mixture
density with the number of components equal to the number
of regimes and specify the following multivariate BNP model
yt|(μ̃t , �̃−1

t )
ind∼ NN(μ̃t , �̃−1

t ), t = 1, 2, . . . , T, with location
μ̃t = (μ̃1t , . . . , μ̃Nt)′ and diagonal precision matrix �̃t =
diag(λ̃1t , . . . , λ̃Nt), such that (μ̃t , �̃−1

t )|G iid∼ G, where G ∼
PYP(υ0, φ0, G0) is a PY prior. This approach is flexible and
robust to structural change-points at the beginning or at the end
of the sample. Procedure details are given in Appendix A. For
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Figure 3. The posterior co-clustering matrix in regime 1 (left) and 2 (right) for expected returns (top) and volatility (bottom) identification constraints. In each block, gray
shades represent the sector membership of the assets.

MCMC approximation efficiency and inference effectiveness, we
run simulation experiments for four different data generating
processes (DGPs) using BNP-MSGARCH-μ. We consider two
regimes and various degrees of separation in the cluster intercept
and variance. The simulation results show that the MCMC chain
converges and a thinning of 10 is needed to reduce the Monte
Carlo variance. Details are reported in Appendix B (supplemen-
tary materials).

4. Empirical Application

This section presents an empirical application of the BNP-
MSGARCH model to the S&P100 constituents over the period
6th January 2000–3rd October 2020. 78 assets of the 101 con-
stituents are selected in order to keep the panel balanced. Fur-
ther, since style investing uses weekly or monthly predictions
(e.g., see Froot and Teo 2008; Brookfield, Su, and Bangassa 2015),
the percentage log-returns at weekly frequency are obtained.
As a preliminary evidence, the cross-sectional heterogeneity
observed in Figure 1 is robust to the choice of the rolling window
size (see Appendix C, supplementary materials). In the analysis,
we proceed in three steps: (i) detection of the number of regimes;
(ii) forecast comparison; (iii) portfolio analysis.

The number of regimes is detected using the procedure
described in Section 3, the BNP-MSGARCH model is fitted to
the data (using both BNP-MSGARCH-μ and BNP-MSGARCH-
γ ), and the clusters’ composition is examined. We set two
regimes (the extend procedure of Otranto and Gallo (2002)
points to 2 regimes, see Figure C3). When ordering the expected

returns in the BNP-MSGARCH-μ model (μi1 > μi2), regime 1
corresponds to a relative over-performance state and regime 2
to an under-performance state. Observations of the assets are
assigned to one of the two regimes on the basis of the largest
posterior probability (see ŝit in Section 3). We notice that this
identification constraint is strongly supported by the data and
allows us to separate the assets returns in two performance
regimes (see Figure C4).

For cluster identification, we assume a quite diffuse PYP prior
distribution (ν = 0 and ψ = 10). The posterior distribution is
concentrated (see Figure C5) suggesting a substantial revision
of the prior information and the MAP estimates of the number
of clusters is 2 and 3 for regime 1 and 2, respectively. To study
the composition of the clusters in the two regimes, we use the
sector classification (for details, see Appendix C) and some fun-
damental financial ratios. First, we identify the clusters using the
co-clustering probability matrix, which contains the probability
P({Dik = Djk}|Mk, Y) that the parameters θ∗

ik and θ∗
jk are in

the same cluster. This probability can be easily approximated by
using the MCMC samples as

∑
r∈Rk

δ(D(r)
jk − D(r)

ik )/Card(Rk),
where D(r)

ik is a sample of the allocation variable for the i-unit
parameters in the regimes k, andRk = {r = 1, . . . , R|N(r)

k = M}
contains the values of MCMC iterations such that the parameters
of the panel units are allocated to exactly M mixture com-
ponents. A spectral clustering algorithm has been applied to
reorder the series and provide a better graphical representation
of the clusters.

The top panel of Figure 3 reports the co-clustering matrices
for the two regimes in case of expected returns identification
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Figure 4. Price-to-Earning for the assets in clusters of regime 1 (left) and of regime 2 (right), constraint on expected returns (top panel). Logarithm of implied volatility for
the assets in clusters of regime 1 (left) and of regime 2 (right), constraint on volatility (bottom panel).

constraint. In each block matrix, the algorithm identifies a
constituent (asset) belonging to a cluster with the label 1
(gray shaded patch) and 0 (white patch) otherwise. The gray
shades represent the sectors in the clusters. Following Wade and
Ghahramani (2018), we use the variation of information (VI)
metric proposed by Meilâ (2007) to compare the two regimes
(in terms of clusters). This measure compares the information
in the two regimes with the information shared between the two
regimes. The normalized value of VI is equal to 0.20 (VI lies
in the interval 0 − log2(N), and a normalized value is obtained
dividing VI by log2(N)), which suggests a substantial difference
between the clustering and composition in the two regimes (see
Figure 3).

In particular, for cluster 1 in both regimes, the majority of the
sectors representing the assets are: manufacturing (about 40% in
both regimes), financial and insurance (19% in the first regime),
and wholesale and retail (25% in the second regime). Similar
results for the sectors are found for cluster 2 in the two regimes:
the manufacturing sector represents about 40% of the assets
in the two regimes, while the financial and insurance sector is
about 18% for regime 2, and information and communication is
around 20%.

Further, in order to characterize the clusters in terms of the
market size, measured by market capitalization, of the con-
stituents, we first rank the companies by computing the average
size of each of them using the last year of the sample period.
Then, we classify the assets into three groups, namely small
(bottom panel 30%), medium (middle panel 40%) and big (top
panel 30%) companies (see Tab. C4). In regime 1, companies

with the medium size represent the largest majority about 40%,
and a similar outcome is also observed for regime 2.

For the cluster composition, we also compute the value of the
Price-to-Earnings ratio (PE) for all the clusters (the average PE is
computed over the last 10 years following the standard practice
in style analysis). For regime 1, clusters 1 and 2 have values of PE
equal to 26.97 and 32.38, respectively. For regime 2, these values
are 27.08, 35.69, and 23.72 for clusters 1, 2, and 3, respectively.
In both regimes cluster 2 is overvalued. Further to this, Figure 4
shows that dynamics in clusters 1 and 2 in regime 1 resemble
those in regime 2.

Compared to the case of constraint on expected returns,
the volatility identification strategy returns separated regimes
for the single series, while the identification is less effective
for the panel as a whole. Further, the posterior distribution
concentrates on 5 and 4 cluster for regime 1 and 2, respectively
(see Figure C5). The normalized value of VI is equal to 0.41
(see bottom panel of Figure 3). The analysis of implied volatility
points to a difference in the level rather than in the dynamics (see
Figure 4). Further details of all the results on cluster composition
are reported in Appendix C.

As regards the one-step ahead forecast comparison,
we use the following models: BNP-MSGARCH-μ, BNP-
MSGARCH-γ , BNP-GARCH, and GARCH. All the models
are GARCH(1,1). The forecasts are computed for the period
December 26, 2014–October 3, 2020 by a rolling window of 780
observations. We assess the forecasts by the RMSE and CRPS
for the full out-of-sample period, and pre-COVID and COVID
periods. The RMSE in Table 1 indicates that models show
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Table 1. Out-of-sample evaluation. RMSE and CRPS.

Models RMSE

Full period pre-COVID period COVID period

BNP-MSGARCH-μ 3.829 3.047 7.156
BNP-MSGARCH-γ 3.826 3.045 7.152
BNP-GARCH 3.823 3.041 7.151
GARCH 3.830 3.042 7.180

Models CRPS

Full period pre-COVID period COVID period

BNP-MSGARCH-μ 1.931 1.677 3.867
BNP-MSGARCH-γ 1.927 1.674 3.865
BNP-GARCH 2.026 1.783 3.890
GARCH 2.026 1.777 3.913

Models SR

Full period pre-COVID period COVID period

BNP-MSGARCH-μ 0.124 0.127 0.107
BNP-MSGARCH-γ 0.111 0.114 0.088
BNP-GARCH 0.103 0.104 0.095
GARCH 0.090 0.079 0.088

NOTES: BNP-MSGARCH-μ and BNP-MSGARCH-γ are the Bayesian nonparametric
panel Markov-Switching models with restrictions on expected returns and on
volatility, respectively; GARCH is the standard GARCH model; BNP-GARCH is the
Bayesian nonparametric GARCH model without regime changes. RMSE, CRPS,
and SR are the averages of the root mean square error, the continuous ranked
probability score, and the Sharpe ratio, respectively. The COVID period starts in
early February 2020, see Centers for Disease Control and Prevention (CDC)).

equal predictive ability, especially for the full out-of-sample
period and the pre-COVID period, with marginal differences
(Appendix C includes box-plots of RMSEs). In the COVID
period, the performance of all models worsens, but the largest
flexibility of the nonparametric GARCH models ensures better
forecasts.

When looking at CRPS, BNP-MSGARCH-γ ranks first and
BNP-MSGARCH-μ places second. This result is likely due to
the fact that CRPS accounts for differences not only in mean but
also in higher order moments of the forecast distributions. The
BNP-GARCH and the GARCH have similar performance, with
the exception of the COVID period.

A Markowitz portfolio allocation based on forecasts is car-
ried out to establish economic gains. An investor deals with
the following decision problem V = ∑N

i=1
∑N

j=1 XiXjσij, s.t.
E = ∑N

i=1 Xiμyi = ȳ,
∑N

i=1 Xi = 1, Xi ≥ 0, where E is the
expected return from a portfolio, Xi is portfolio weights chosen
to minimize the portfolio risk, and μyi is the expected return of
the ith asset. Xi is assumed to be nonnegative (no short sales). We
omit the constraint E = ∑N

i=1 Xiμyi = ȳ to build a minimum
variance portfolio (see Hlouskova, Schmidheiny, and Wagner
2009). For the portfolio, we compute the Sharpe ratio for each
model using the weekly treasury bill rate from Kenneth French’s
data library as a risk free (RF) rate (https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html)

In terms of Sharpe ratio, BNP-MSGARCH models gain the
best portfolio performance (Table 1), indicating that the largest
flexibility of nonparametric models has an economic value. The
portfolio proportion invested in value stocks rises in periods
of increasing overperforming probability (see Figure C9). The
weights to stocks with large implied volatility decrease when
the probability of high-volatility regime increases. In particular,

value stocks are undervalued at the beginning of the outbreak
and reconvey to a larger portfolio proportion toward the end of
2020.

5. Conclusion

The study of volatility in large panels of financial assets is central
for professional investors focusing on protection of invested
portfolios, and for policy maker aiming at the stability of the
economic system. The evidence of clusters in financial returns
has attracted researchers’ attention. This article proposes a new
Bayesian nonparametric (BNP) inference for Markov-switching
GARCH (BNP-MSGARCH) models with clustering effects to
deal with regime changes, temporal and cross-sectional cluster-
ing in large panels of financial data.

Within the BNP-MSGARCH framework, the number of
regimes is detected using a new BNP procedure that extends
the univariate approach of Otranto and Gallo (2002) to panel
data. Further, to capture cross-sectional clustering, this arti-
cle proposes a hierarchical Pitman-Yor process prior for the
MSGARCH parameters. The simulations show that our poste-
rior approximation procedure is efficient and our inference is
able to recover the true value of the parameters and the number
of clusters and regimes.

An application to the S&P100 constituents is offered for
forecasting and portfolio allocation purposes. There is clear-
cut evidence of asset clustering with heterogenous composi-
tion across sectors and style features, which ensures a superior
density-forecast performance and a better portfolio allocation
for the BNP-MSGARCH model.

Appendix A: Proof of the Results in Section 3

We introduce for h ≥ 1 the set of parameters allocated to the hth
mixture component in the regime k, Dhk = {i = 1, . . . , N|Dik = h}
and the set of the non-empty mixture components D∗

k = {h|Dhk �=
∅}. The number of stick-breaking components needed for the finite
mixture representation is D∗

k = max{Dik, i = 1, . . . , N}. When
sampling from the full conditional distribution of ∗

k and Vk, only
N∗

k element are sampled, where N∗
k is the smallest integer such that∑N∗

k
h=1 Whk > 1 − U∗

k , where U∗
k = min{Uik, i = 1, . . . , N}.

A.1. Full Conditional Distribution of V and U

Let us split Vk in three blocks: V∗
k = {Vlk : l ∈ D∗

k }, V∗∗
k =

{VkD∗
k+1, . . . , VkD∗

k+N∗
k
} and V∗∗∗

k = {Vlk : l > N∗
k }. The samples

are generated from a collapsed Gibbs step

1. the full conditional of the elements in V∗
k given �, , P, D, ∗, Y

f (Vlk| · · · ) ∝ Be

⎛
⎝1 − ν +

N∑
i=1

I(Dik = l), ψ + νl +
N∑

i=1
I(Dik > l)

⎞
⎠

× l ≤ D∗
k (24)

2. the full conditional of the elements of V∗∗
k and V∗∗∗

k given
�, , P, D, V∗, ∗, Y , which coincides with the prior distributions
Be(1 − ν, ψ + νl) for l > D∗

k
3. the full conditional of the elements of Uk given V and

�, , P, D, ∗, Y , f (Uik| · · · ) ∝ I(Uik < WDikk), which is
uniform on the interval (0, WDik)

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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A.2. Full Conditional Distribution of P and R

We apply a collapsed-Gibbs step and sample rk, k = 1, . . . , K, given
�, −p, D, V , Y , and pk = (p1,k, . . . , pN,k), k = 1, . . . , K, is the
collection of the kth row of the transition probability matrices given
(r1, . . . , rK) and �, −p, D, V , Y . As for the transition probabilities,
from standard calculations in Markov-switching regressions we obtain

f (pi,k| · · · ) ∝
K∏

h=1
pφrkh+ni,kh−1

i,kh

∝ Dir(φrk1 + ni,k1, . . . , φrkK + ni,kK), (25)

where ni,kh = ∑T
t=1 ξikt−1ξiht . The marginal distribution is

f (rk| · · · ) ∝
∫
�N

[0,1]K

N∏
i=1

K∏
h=1

pφrkh+ni,kh−1
i,kh

�(φ)

�(φrkh)
dpi,khπ(rk)

∝
K∏

h=1
rd−1
kh

N∏
i=1

�(φrkh + ni,kh)

�(φ + ni,k)
�(φ)

�(φrkh)
,

where ni,k = ni,k1 + · · · + ni,kK , and �[0,1]K = {(p1, . . . , pK) ∈
R

K |pk > 0 ∀k, p1 + · · · + pK = 1} is the K-dim standard simplex.
From the properties of the gamma functions

�(φrkh + ni,kh) =
ni,kh∏
l=1

(φrkh + l − 1)�(φrkh),

�(φ + ni,k) =
ni,k∏
l=1

(φ + l − 1)�(φ),

we have: f (rk| · · · ) ∝ Dir(1/K + mk1, . . . , 1/K + mkK)g(rk), where
g(rk) = ∏N

i=1
∏K

h=1
∏ni,kh

l=2 (φrkh + l − 1), mkh = Card(Mkh) and
Mkh = {i = 1, . . . , N|ni,kh > 0}. Samples from this full conditional
distribution are obtained by a Metropolis-Hastings (MH) algorithm
with independent proposal distribution Dir(1/K + mk1, . . . , 1/K +
mkK).

A.3. Full Conditional Distribution of �∗

The full conditional distribution of θ∗
hk = (μ∗

hk, γ ∗
hk, α∗

hk, β∗
hk) can

be sampled by simulating iteratively from the following conditional
distributions. The full conditional of μ∗

hk is

f (μ∗
hk| · · · ) ∝ N (μ∗

hk|m∗, s∗)
∏

i∈Dhk

N (μik|μ∗
hk, s)

∝ N
(
μ∗

hk|mhk, shk
)

,

where mhk = s2
hk

(
m∗
s∗2 +

∑
i∈Dhk

μik
s2

)
and shk =(

1
s∗2 + Card(Dhk)

s2

)−1/2
. The full conditional distribution of γ ∗

hk
is

f (γ ∗
hk| · · · ) ∝ I[0,a](γ ∗

hk)
∏

i∈Dhk

Be(γik/a|rγ ∗
hk/a, r(1 − γ ∗

hk/a)), (26)

∝ I[0,a](γ ∗
hk)∏

i∈Dhk

exp{(rγ ∗
hk/a − 1) log(γik/a) + (r(1 − γ ∗

hk/a) − 1) log(1 − γik/a)}
�(rγ ∗

hk/a)�(r(1 − γ ∗
hk/a))

,

∝ exp{−κhkγ
∗
hk}

(
1

�(rγ ∗
hk/a)�(r(1 − γ ∗

hk/a))

)Card(Dhk)

I[0,a](γ ∗
hk),

where κhk = r
a

∑
i∈Dhk log((a − γik)/γik) samples from this

conditional distribution are obtained by a MH algorithm with
independent proposal distribution

(
1 − exp{−κhkγ

∗
hk}

)
(1 −

exp{−aκhk})−1
I[0,a](γ ∗

hk). The full conditional of α∗
hk is

f (α∗
hk| · · · ) ∝ I[0,1](α∗

hk)∏
i∈Dhk

exp{(rα∗
hk − 1) log(αik) + (r(1 − α∗

hk) − 1) log(1 − αik)}
�(rα∗

hk)�(r(1 − α∗
hk))

,

∝ exp{−τhkα
∗
hk}

(
1

�(rα∗
hk)�(r(1 − α∗

hk))

)Card(Dhk)

I[0,1](α∗
hk),

where τhk = r
∑

i∈Dhk log((1 − αik)/αik). Samples from this condi-
tional distribution are obtained by MH with independent proposal dis-
tribution

(
1 − exp{−τhkα

∗
hk}

)
(1 − exp{−τhk})−1

I[0,1](α∗
hk). Similar

argument is applied to derive the full conditional distributions of β∗
hk.

A.4. Full Conditional Distribution of �

The full conditional distribution of the elements of θ ik k = 1, . . . , K is
discussed. Let μi = (μi1, . . . , μiK), its full conditional distribution is

f (μi| · · · ) ∝
⎛
⎝ T∏

t=1
N (yit|μi(sit), σit)

⎞
⎠ K∏

k=1
N (μik|μ̃∗

ik, s), (27)

which is not tractable due to the recursive form of σ 2
it . Thus, we sample

from the full conditional by MH with proposal distribution obtained
through the approximation σ∗2

it of σ 2
it . The joint full conditional of

μi can be approximated by a normal distribution with mean mi =
Si(mi1/s2

i1, mi2/s2
i2, . . . , miK/s2

iK)′ and diagonal covariance matrix

Si = diag
(
s2
i1, s2

i2, . . . , s2
iK

)
where mik = s2

ik

(
μ̃∗

ik
s2 + ∑

t∈Ty,ik
yit
σ ∗2

it

)

and s2
ik =

(
1
s2 + ∑

t∈Ty,ik
1

σ ∗2
it

)−1
, with Ty,ik = {t = 1, . . . , T|sit = k}

and σ∗2
it = γi(sit) + αi(sit)(yt−1 − μi(sit−1))2 + (βi(sit))σ∗2

t−1. The
constructed mean and variance are used to define the parameters of
the normal mixture proposal distribution for μi, that is f (μi| . . .) =
0.05N (μi|mi, Si) + 0.95N (μi|μ(r−1)

i , Si). As regards the parameters
of the volatility process, the full conditional is

f (γ i, αi, β i| · · · ) ∝
K∏

k=1
Be(γik/a|rγ̃ ∗

ik/a, r(1 − γ̃ ∗
ik/a))

Be(αik|rα̃∗
ik, r(1 − α̃∗

ik))

Be(βik|rβ̃∗
ik, r(1 − β̃∗

ik))
T∏

t=1
N (yit|μi(sit), σit),

(28)
where γ i = (γi1, . . . , γiK), αi = (αi1, . . . , αiK) and β i =
(βi1, . . . , βiK). We follow the ARMA approximation of the MSGARCH
process, that is

σ 2
it = γi(sit)+αi(sit)ε

2
it−1 + βi(sit)σ

2
it−1, (29)

ε2
it = γi(sit) + (αi(sit)+βi(sit))ε

2
it−1−βi(sit)(ε

2
it−1−σ 2

it−1)

+(ε2
it −σ 2

it ). (30)

Let wit = ε2
it − σ 2

it =
(

ε2
it

σ 2
it

− 1

)
σ 2

it = (χ2(1) − 1)σ 2
it with

Et−1[wit] = 0 and vart−1[wit] = 2σ 4
it . Subject to the above, we

assume wit ≈ w∗
it ∼ N (0, 2σ 4

it ) (Nakatsuma 1998). The auxil-
iary ARMA model for the squared error term ε2

it is ε2
it = γisit +
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(αi(sit) + βi(sit))ε2
it−1 − βi(sit)w∗

it−1 + w∗
it with w∗

it ∼ N (0, 2σ 4
it ),

which returns w∗
it = ε2

it − γi(sit) − αi(sit)ε2
it−1 − βi(sit)(ε2

it−1 −
w∗

it−1). Following Ardia (2008) we further express w∗
it as a linear

function of the (3K × 1) vector of volatility parameters θ iσ =
(γi1, . . . , γiK , αi1, . . . , αiK , βi1, . . . , βiK)′. To do this, we approximate
the function w∗

t by the first order Taylor’s expansion about θ
(r−1)
iσ =

(γ
(r−1)
i1 , . . . , γ (r−1)

iK , α(r−1)
i1 , . . . , α(r−1)

iK , β(r−1)
i1 , . . . , β(r−1)

iK )′ as

w∗
it ≈ w∗∗

it = w∗
it(θ

(r−1)
iσ ) + ∇′

it(θ iσ − θ
(r−1)
iσ ), (31)

where ∇′
it = (∇it1, ∇it2, . . . , ∇itK) with ∇′

itk =
(

∂w∗
it

∂γik
,
∂w∗

it
∂αik

,
∂w∗

it
∂βik

)
.

∇′
it satisfies the recurrence: ∇′

it = u′
tξ it + ∇′

it−1(β iξ
′
it), where ut =

(−1, −ε2
it−1, −(ε2

it−1 − w∗
it−1)), ∇i0k = 0 and ξ it is a row vector.

Upon defining r∗it = w∗
it(θ

(r−1)
−iπ )−∇′

itθ
(r−1)
iσ , it turns out that w∗∗

it =
r∗it + ∇′

itθ iσ . Furthermore, by defining μi = (μi1, μi2, . . . , μiK),the
T × 1 vectors wi = (w∗∗

i1 , . . . , w∗∗
iT )′ and r∗i = (r∗i1, . . . , r∗iT)′, and a

T × 3K matrix ∇i = (∇i1, ∇i2, . . . , ∇iT)′ as well as a T × T diagonal
matrix ϒi = 2diag(σ∗∗4

i1 , σ∗∗4
i2 , . . . , σ∗∗4

iT ) with σ∗∗2
it = (ξ itγ

(r−1)′
i ) +

(ξ itα
(r−1)′
i )(yt−1−ξ t−1μ

(r)′
i )2+(ξ itβ

(r−1)′
i )σ∗∗2

it−1, we have wi = r∗i +
∇iθ iσ . Using this linear approximation, the full conditional distribution
of θ iσ approximates as

f (θ iσ |ξ (r−1)
i,1:T , μ(r)

i , y1:T) ∝ 1

|ϒi|
1
2

exp

(
−w′

iϒ
−1
i wi
2

)
I(θ iσ )

∝ N3K(miσ , Siσ )I(θ iσ ), (32)

where  = {γi1 > 0, . . . , γiK > 0, 0 < αi1 < 1, . . . , 0 < αiK <

1, 0 < βi1 < 1 . . . , 0 < βiK < 1} and Siσ = (∇′
iϒ

−1
i ∇i)−1,

miσ = −Siσ ∇′
iϒ

−1
i r∗i . The mean and variance defined above are

used to characterize proposal distribution for θ iσ , that is a mixture
of truncated normal distributions. In our MCMC exercise, we sample
θ iσ from the normal mixture f (θ iσ | . . .) = 0.05N (θ iσ |miσ , Siσ ) +
0.95N (θ iσ |θ (r−1)

iσ , Siσ ) and check that each sample satisfies the con-
straints.

A.5. Full Conditional Distribution of �

The full joint conditional distribution of the state variables, ξ i,1:T =(
ξ i1, . . . , ξ iT

)
with ξ it = (

ξi1,t , . . . , ξiK,t
)
, given the parameter values

and return series

p(ξ i,1:T | . . .) ∝
T∏

t=1
f (yit|sit , θ isit , )

K∏
k=1

k∏
l=1

pξilt−1ξikt
i,lk , (33)

is a nonstandard distribution. For this reason, following Billio, Casarin,
and Osuntuyi (2016), we propose a MH algorithm with proposal
distribution given by an approximation of the smoothed probabil-
ity p(ξ i,1:T | . . .). The algorithm involves running a Forward Filtering
Backward Sampling (FFBS) on an auxiliary model to generate proposals
at each iteration step (Carter and Kohn 1994; Frühwirth-Schnatter
1994). Among several alternative collapsing procedures (see Billio,
Casarin, and Osuntuyi 2016), we adopt the MSGARCH model by
Klaassen (2002) as an auxiliary model as it accounts for the highest
amount of information in its construction. We denote the proposal
distribution by

q(ξ i,1:T |θ i, yi,1:T) = q(ξ iT |θ i, yi,1:T)

T−1∏
t=1

q(ξ it|ξ it+1, θ i, yi,1:t), (34)

where q(ξ it|ξ it+1, θ i, yi,1:t) = q(ξ it|yi,1:t , θ i)q(ξ it+1|ξ it , θ i)/q(ξ it+1|
yi,1:t , θ i), and q(ξ it|yi,1:t , θ i) is the filtered probability. At time t, given

θ i and yi,1:t , the predicted and filtered distributions are

q(ξ it|θ i, yi,1:t−1) =
K∑

k=1

⎛
⎝ K∏

l=1
pξil,t

i,lk

⎞
⎠ q(ξ it−1 = ek|θ i, yi,1:t−1),(35)

q(ξ it|θ i, yi,1:t) = g(yit|ξ it , θ i, yi,1:t−1)q(ξ it|θ i, yi,1:t−1)/c, (36)

where c = ∑K
k=1 g(yit|ξ it = ek, θ i, yi,1:t−1)q(ξ it = ek|θ i, yi,1:t−1), ek

is the k−th row of the identity matrix IK . The conditional density of the
unit i under the auxiliary model is

g(yit|ξ it , θ i, yi,1:t−1) ∝
t∏

τ=1

1
hiτ

exp

(
− (yiτ − μi(siτ ))2

2h2
iτ

)
, (37)

where h2
it = γi(sit) + αi(sit)ε2

(y)it−1 + βi(sit)σ 2
(y)i,kt−1 with ε(y)it−1 =

yit−1 − μ(y)i,kt−1, μ(y)ik,t−1 = E[μi(sit)|yi,1:t−1, ξ it = ek], and
σ 2
(y)i,kt−1 = E[σ 2

it−1(yi,1:t−2, ξ it−1, ξ it−2)|yi,1:t−1, ξ it = ek].
Using the output of the forward filtering, we

compute q(ξ iT |θ i, yi,1:T) and q(ξ it|ξ it+1, θ i, yi,1:t) ∝∏K
l=1

(∑K
k=1 pi,lkξi1,t

)ξil,t+1 q(ξ it|θ i, yi,1:t), t = T − 1, T − 2, . . . , 2, 1.
Then, at each time, step we sample ξT from q(ξT |θ i, yi,1:T) and ξ it
from q(ξ it|ξ it+1, θ i, yi,1:t) iteratively for t = T − 1, T − 2, . . . , 2, 1.
This is the backward sampling step. Samples from q(ξ it|ξ it+1, θi, yi,1:t)
can be obtained by multinomial sampling.

A.6. Full Conditional Distribution of D

The full conditional of Dik is P(Dik = h| · · · ) = ch/c for h ∈ Aki,
with ch = N (μik|μ∗

hk, s) Be(αik|rα∗
hk, r(1 − α∗

hk)) Be(βik|rβ∗
hk, r(1 −

β∗
hk))Be(γik/a|rγ ∗

hk/a, r(1 − γ ∗
hk/a))/a where c = ∑

h∈Aki ch is the
normalizing constant and a a real positive constant.

A.7. Detection of the Number of Regimes

We present the panel version of the univariate approach by Otranto and

Gallo (2002). We assume yt| (μ̃t , �̃−1
t )

ind∼ NN( μ̃t , �̃−1
t ), t = 1, 2,

..., T, with (μ̃t , �̃−1
t ) |G iid∼ G, and G ∼ PYP(υ0, φ0, G0). The BNP

model allows for the infinite mixture representation yt| G ∼ ∑∞
k=1 Wk

ϕ(yt| μk, �−1
k ), where ϕ(y|μ, �) denotes the density of a multivariate

normal with location and scale parameters, μ and �, respectively. We
assume the base measure G0 is a product of N independent hierarchical
prior distributions G0(μ, �) = Ga(τ ; c/2, d/2)

∏N
j=1 N (μj; mj, τλ−1

j )

Ga(λj; a/2, b/2). Instead of using the sampler in Otranto and Gallo
(2002), we apply a more efficient sampler which relies on the stick-
breaking representation (Walker 2007). The sampler requires the use

of the allocation, Dt
iid∼ P(Dt = k) = Wk t = 1, . . . , T, stick-

breaking Vk
ind∼ Be(1 − υ0, φ0 + kυ0) k = 1, 2, . . . , and slice Ut ∼

U(0, WDt ) variables. The allocation variable has the interpretation of
regime allocation as in Otranto and Gallo (2002). The full conditionals
of μk, �k, and τ are

f (μkj| · · · ) ∝ N ((
∑

t∈Dk

yjt + mjτ)/((Tk + τ)), 1/(λkj(Tk + τ))),

(38)

f (λkj| · · · ) ∝ Ga((Tk + a)/2, ((Tk − 1)s2
jk + (Tkτ(mj − ȳjk)

2)
/

(Tk + τ) + b)/2), (39)

f (τ | · · · ) ∝ Ga((N + c)/2, (d +
N∑

j=1
(μkj − mj)

2λkj)/2), (40)
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j = 1, . . . , N, where Dk = {t = 1, . . . , T|Dt = k}, Tk = Card(Dk)
s2
jk = ∑

t∈Dk (yjt − ȳjk)
2/(Tk − 1), ȳjk = ∑

t∈Dk yjt/Tk. Let
D∗ = max{Dt , t = 1, . . . , T} be the maximum value of the allocation
variables, and D∗

t the smallest integer such that
∑D∗

t
k=1 Wk > 1 − Ut .

Since D∗
t < ∞ a.s., the infinite mixture reduces to a finite mixture. The

full conditionals of the steak-breaking components, the slice variables
and the allocation variables are

f (Vl| · · · ) ∝ Be(1 − υ0 +
T∑

t=1
I(Dt = l), φ0 + υ0l

+
T∑

t=1
I(Dik > l)), l ≤ D∗, (41)

f (Ut| · · · ) ∝ U(Ut < WDt ), (42)

f (Dt = k| · · · ) ∝ ϕ(yt|μk, �−1
k ), k ≤ D∗

t . (43)

Supplementary Materials

Simulation results and further details on the empirical application are given
in the online supplementary materials.
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