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ABSTRACT: The detection of cancer biomarkers at an early stage
of tumor development is vital for effective diagnosis and treatment
of cancer. Current diagnostic tools can often detect cancer only
when the biomarker levels are already too high, so that the tumors
have spread and treatments are less effective. It is urgent therefore
to develop highly sensitive assays for the detection of such
biomarkers at the lowest possible concentration. In this context, we
developed a sandwich immunoassay based on surface-enhanced
Raman scattering (SERS) for the ultrasensitive detection of α-
fetoprotein (AFP), which is typically present in human serum as a
biomarker indicative of early stages of hepatocellular carcinoma. In
the immunoassay design, molybdenum disulfide (MoS2) modified
with a monoclonal antibody was used as a capture probe for AFP. A
secondary antibody linked to an SERS-encoded nanoparticle was
employed as the Raman signal reporter, that is, the transducer for AFP detection. The sandwich immunocomplex “capture probe/
target/SERS tag” was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of “hot
spots” on the surface of the immunosensor. The developed SERS immunosensor exhibits a wide linear detection range (1 pg mL−1

to 10 ng mL−1) with a limit of detection as low as 0.03 pg mL−1 toward AFP with good reproducibility (RSD < 6%) and stability.
These parameters demonstrate that the proposed immunosensor has the potential to be used as an analytical platform for the
detection of early-stage cancer biomarkers in clinical applications.
KEYWORDS: molybdenum disulfide, Au−Ag core−shell nanostructures, immunosensor, surface-enhanced Raman scattering (SERS),
α-fetoprotein

■ INTRODUCTION

Early diagnosis technologies are of crucial importance in
modern medicine, especially to reduce the amount of deaths
caused by cancer.1 Therefore, the ultrasensitive and selective
detection of cancer biomarkers has attracted great attention as
a means to diagnose and monitor tumor occurrence and
progression. With currently available diagnostic methods, it is
still challenging to detect cancer biomarkers at low-level
concentrations in the body. In particular, such an ultrasensitive
detection is essential for liver cancer, which is one of the most
common and aggressive cancers worldwide and has no
therapeutic options when not diagnosed at an early stage.
Alpha-fetoprotein (AFP) is a plasma protein mainly found in

human fetuses. During pregnancy, elevated AFP concen-
trations in maternal serum may indicate spina bifida and
anencephaly,2 whereas decreased AFP levels in the second
trimester of pregnancy are evaluated within risk assessment for
trisomy 21 (Down syndrome) in combination with human
chorionic gonadotropin beta (hCG + β) among other
parameters, such as gestational age and maternal weight.3 In

addition, AFP is an important diagnostic tumor-specific
biomarker for different types of cancers. AFP is normally
produced in trace amounts (5−10 ng mL−1) in healthy adult
organs such as yolk sac and liver.4 In 1964, AFP was first
described as a human tumor-associated protein by Tatarinov.5

Afterward, it was proven that high amounts of AFP (>400 ng
mL−1) in individuals are indicative of malignant diseases such
as non-seminomatous testicular cancer and primary hepato-
cellular carcinoma (HCC).6,7 Elevated AFP levels in human
serum have occasionally been found in association with
gastrointestinal tract cancers. Therefore, the early detection
of AFP levels in human blood would play a crucial role in the
prevention of different diseases.
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A wide range of diagnostic techniques have been proposed
for the detection of serum AFP, such as polymerase chain
reaction assay,8 immunoradiometric assay,9 magnetic reso-
nance immunoassay,10 aptamer-based fluorescent assay,11

fluorometric immunoassays,11−15 chemiluminescence as-
says,16−20 electrochemical assays,21−25 and metamaterial-
assisted terahertz spectroscopy,26 among others.27−29 How-
ever, most of these approaches present limited reliability and
sensitivity for AFP or they are time-consuming and require the
use of complex instruments. Thus, the development of
alternative diagnostic techniques for the detection of AFP as
a biomarker is still required.
Surface-enhanced Raman scattering (SERS) has become one

of the most promising analytical techniques30 owing to its high
sensitivity, capable of reaching the single molecule detection
limit under certain conditions, and selectivity related to the
specific peaks for vibrational modes, resulting in molecular
fingerprints. SERS-based immunoassays have been shown to
constitute a promising approach for highly sensitive AFP
detection.31,32 Such SERS-based immunoassays generally
utilize a standard protocol of sandwich structure composed
of three elements: (i) a primary antibody immobilized on the
support surface, (ii) an analyte-specific SERS tag, which is
linked to (iii) a secondary antibody.33 Shape-controlled metal
nanoparticles (NPs) such as nanospheres,34 nanorods,35

nanostars,36 nanocubes,37,38 and so forth are excellent
candidates for the fabrication of SERS substrates due to their
intrinsically intense plasmonic response as well as the potential
formation of “hotspots”. Alternatively, metal/semiconductor
hybrid systems have been recently described as highly efficient
SERS substrates.39 On the other hand, molybdenum disulfide
(MoS2), one of the most interesting two-dimensional (2D)
layered nanomaterials,40 features promising properties toward
biosensing applications, such as SERS performance,41,42 high
surface area, and adsorption capability for biomolecules by
chemical functionalization, to originate stable interfaces.43

Additionally, the various possibilities for chemical modification
largely reduce the potential risk that might be derived from the
biodegradability of MoS2 in biological systems.44−48 The
combination of plasmonic NPs with 2D nanomaterials such as
MoS2, MoSe2, and graphene has been recently reported as an
interesting alternative approach for highly efficient SERS
substrates.49−53 For example, Su et al. achieved a high density
of gold NPs (AuNPs) by in situ growth on MoS2 nanosheets,
thereby producing hot spots for SERS activity amplification.54

We present herein an SERS-based sandwich immunoassay
comprising a monoclonal antibody (mAb) covalently attached
to a MoS2 surface as the capture substrate and a rhodamine 6G
(R6G)-labeled mAb as the SERS probe. Quantitative and rapid
AFP detection is achieved by decoration with plasmonic NPs.
The covalent immobilization of proteins usually provides a
strong and stable attachment, whereas physical adsorption
affords only short-term retention of the biological activity.
Chemically exfoliated MoS2 was selected as a substrate due to
its potential for large-scale production and high surface area.
Monodispersed gold nanospheres (AuNSPs) and silver-coated
gold nanocubes (Au@AgNCs) were used as Raman signal
enhancers to increase the sensitivity of the SERS immuno-
sensor. The proposed SERS-based sandwich immunoassay
exhibits an extremely high sensitivity toward the detection of
AFP (LOD as low as 0.03 pg mL−1), with high stability, even
in blood plasma.

■ EXPERIMENTAL SECTION
Chemicals and Reagents. MoS2 (∼6 μm), iodine (I2), 1,2-

dimethoxyethane, gold (III) chloride trihydrate (HAuCl4·3H2O ≥
99.9%), hexadecyltrimethylammonium chloride (CTAC, 25% in
water), sodium borohydride (NaBH4, 99%), hexadecyltrimethylam-
monium bromide (CTAB, ≥99.0%), benzyldimethylammonium
chloride (BDAC, ≥98.0%), L-ascorbic acid (AA, ≥99%), silver nitrate
(AgNO3, ≥99%), phosphate buffer saline (PBS), Tween20, bovine
serum albumin (BSA, 96%), N-(3-dimethylaminopropyl)-N′-ethyl-
carbodiimide hydrochloride (EDC, 98%), N-hydroxysuccinimide
(NHS, 98%), and R6G (99%) were purchased from Sigma-Aldrich
(Madrid, Spain). 5-Carboxy-R6G (C-R6G) was purchased from Santa
Cruz Biotechnology Inc. (Dallas, USA). Human α1-fetoprotein
(ab112246) and α1-fetoprotein monoclonal and polyclonal antibodies
(ab8201 and ab54745) were purchased from Abcam PLC Inc.
(Cambridge, UK). All chemicals, including organic solvents used in
reactions, purification, and SERS analysis, were purchased from either
Sigma-Aldrich or Alfa Aesar and used as received. Human blood
serum was purchased from Sigma-Aldrich. All reagents and chemicals
were of analytical grade and used without further purification. Milli-Q
water (resistivity 18.2 MΩ·cm at 25 °C) was used in the preparation
of plasmonic NPs. All glassware and stirrer bars were washed with
aqua regia.

Apparatus and Measurements. The prepared nanomaterials
were characterized by Raman spectroscopy, X-ray photoelectron
spectroscopy (XPS), UV−Vis−NIR spectroscopy, and transmission
electron microscopy (TEM). Raman spectra were recorded with a
Renishaw Invia Raman spectrometer equipped with a green laser (λ =
532 nm) and plotted after baseline correction by means of the Wire
4.3 software. XPS measurements were performed in a SPECS Sage
HR 100 spectrometer with a nonmonochromatic X-ray source of
aluminum with a Kα line of 1486.6 eV energy and 300 W. Fitting of
XPS data was carried out using CasaXPS software. UV−Vis−NIR
spectra were recorded with an Agilent 8453 UV−Vis spectropho-
tometer. TEM images were obtained with a JEOL JEM-1400 PLUS
transmission electron microscope operating at an acceleration voltage
of 120 kV, equipped with a GATAN US1000 CCD camera.
Thermogravimetric analysis (TGA) was performed with a TA
Instruments Discovery system under air.

Synthesis of AuNSPs. Gold seeds (∼1.5 nm) were prepared by
fast reduction of HAuCl4 (5 mL, 0.25 mM) with freshly prepared
NaBH4 (0.3 mL, 10 mM) in aqueous CTAB solution (100 mM)
under vigorous stirring for 2 min at room temperature and then kept
undisturbed at 27 °C for 30 min to ensure complete decomposition of
sodium borohydride.55 The mixture turned from light yellow to
brownish, indicating the formation of gold seeds. An aliquot of the
seed solution (0.6 mL) was added under vigorous stirring to a growth
solution containing CTAC (100 mL, 100 mM), HAuCl4 (0.36 mL, 50
mM), and ascorbic acid (0.36 mL, 100 mM). The mixture was left
undisturbed for 12 h at 25 °C. The solution containing 10 nm AuNPs
was centrifuged (9000 rpm, 2 h) to remove excess CTAC and
ascorbic acid and redispersed in water to a final gold concentration
equal to 2.5 mM. To grow 10 nm AuNSPs up to 58 nm diameter, a
volume of gold seed solution (0.05 mL, 2.5 mM) was added under
vigorous stirring to a growth solution containing BDAC (50 mL, 100
mM), HAuCl4 (0.5 mL, 0.5 mM), and ascorbic acid (0.5 mL, 100
mM). The mixture was left undisturbed for 30 min at 30 °C and then
washed twice by centrifugation (6000 rpm, 30 min). Finally, the NPs
were redispersed in CTAB (0.5 mM) to a final gold concentration of
1.0 mM. The diameter of the obtained AuNSPs was 58 ± 1 nm.

Synthesis of Silver-Coated Gold Nanocubes (Au@AgNCs).
To overgrow AuNPs with silver,56 to a solution of 58 nm AuNSPs (10
mL, 0.25 mM) in BDAC (10 mM) at 60 °C, we added solutions of
AgNO3 (0.15 mL, 10 mM) and AA (0.06 mL, 100 mM) under
vigorous stirring for 1 h. The solution containing silver-coated AuNPs
was centrifuged (8000 rpm, 1 h) to remove excess BDAC and
ascorbic acid and redispersed in CTAB (0.5 mM) to a final gold
concentration of 1 mM. The side length of the obtained silver-coated
gold truncated nanocubes was 62 ± 1 nm.
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Preparation of mAb@MoS2. Few-layer MoS2 nanosheets were
exfoliated by NaK alloys according to our previous report.57

Subsequently, exfoliated MoS2 (Exf-MoS2) was sonicated in Milli-Q
water using a tip sonicator in order to increase the active surface sides
of the material. Exf-MoS2 suspension was filtrated using a PTFE
membrane filter (0.45 μM) and then dried under vacuum at room
temperature. The apparent thickness and lateral dimension of Exf-
MoS2 were 220 ± 116 nm (Figure S1) and of 567 ± 239 nm (Figure
S2), respectively. Exf-MoS2 (3 mg) was mixed with capture mAb
(Ab54745, Abcam) in PBS (pH 7.2) and then sonicated in an ice bath
for 10 min.58 The suspension was then mildly shaken inside an ice
bath for 24 h. The resulting mixture was centrifuged five times with
PBS (pH 7.2) at 1109 g using a centrifuge tube with a cut-off
membrane (300 kDa) and then dialyzed in PBS (pH 7.2) using a
dialysis tubing system (300 kDa) to remove non-attached mAb. To
block mAb-bound MoS2 (mAb@MoS2) and to avoid degradation of
MoS2 under environmental conditions, 500 μL of BSA (1%, w/v) in
PBS (pH 7.4) was added to the mAb@MoS2 solution (1 mg mL−1, 1
mL) and incubated for 1 h at 37 °C. Afterward, the mixture was
extensively washed with 0.05% Tween-20 in PBS (PBST) and with
fresh PBS solution. A final concentration of mAb@MoS2 solution was
adjusted to 1 mg mL−1 for the sandwich immunoassay system. The
adsorption of mAb on Exf-MoS2 was characterized by TGA as
presented in Figure S3.
Preparation of the Ab-R6G Complex as a SERS Tag. R6G, as

a Raman reporter molecule, was conjugated with a secondary
antibody (Ab8201, Abcam) by means of the well-known carbodiimide
cross-linker reaction.59 For this purpose, EDC (0.384 mg, 2 μmol),
NHS (0.230 mg, 2 μmol), and carboxylated-R6G (0.495 mg, 1 μmol)
were added to an Ab solution (0.2 mL, 1 mg mL−1) in 2.0 mL of PBS
(pH 7.4) under shaking at room temperature for 3 h. The solution
was then dialyzed five times with PBS solution using a cut-off dialysis
bag (10 kDa) until the complete removal of unattached carboxylated-
R6G. The solution was concentrated to 0.5 mL by centrifugation with
cut-off membrane tubes (50 kDa) and monitored by cleaning the Ab-
R6G complex with fresh PBS solution until no free residual
carboxylated-R6G was detected in the solution.
Immunoassay Protocol for AFP Detection. (I) 100 μL aliquots

at selected AFP concentrations were added to each of the BSA-
blocked mAb@MoS2 solutions (100 μL, 1 mg mL−1) and incubated
for 1 h at 37 °C. Then, the mixture was washed five times with fresh
PBST solutions. (II) 100 μL aliquots of Ab@R6G solutions were
added to each of the AFP-captured mAb@MoS2 solutions and
incubated for 1 h at 37 °C. Then, the mixture was extensively washed
again with fresh PBST solutions and fresh PBS solutions for
purification. (III) The purified immune-SERS composites containing

different AFP concentrations were dispersed in 100 μL of Milli-Q
water for 5 min, followed by drop-casting 5 μL of each SERS
composite onto a silicon wafer (5 mm × 5 mm) and drying at room
temperature. (IV) As a final step, 5 μL of Au@AgNCs was deposited
by drop-casting onto each of the silicon wafers coated with the
immuno-sandwich assay system and subsequently washed with water
to remove unattached NPs.

■ RESULTS AND DISCUSSION

Immunoassay Sensing Strategy. Scheme 1 represents
the design of the SERS immunoassay based on the
combination of a MoS2 substrate and Au@AgNCs. In our
design, chemically exfoliated MoS2 was first prepared by
treatment with a NaK alloy and then functionalized with an
AFP-selective mAb for use as a capture probe for AFP. The
exfoliation process facilitated the production of MoS2 with a
highly enriched 1T phase, having improved SERS activity as
compared to that of bulk MoS2 in a 2H phase due to its
enhanced charge-transfer ability.57 It should be noted that the
use of Exf-MoS2 with a rough surface results in an effective
bioconjugation with the mAb, likely through a non-specific
adsorption.60 We subsequently used dilute BSA as a blocking
agent to prevent the non-specific adsorption of the analyte on
the MoS2 surface as well as to prevent the degradation of
MoS2.

44−48 On the other hand, R6G was attached by amide
bonding to the secondary (detection) mAb and used as an
SERS reporter. In the sensing step, R6G-labeled mAb should
recognize the target AFP, previously captured by the mAb-
modified MoS2 substrate. Finally, Au@AgNCs were deposited
over the surface to enhance the sensitivity of the SERS
immunosensor toward AFP. The choice of Au@AgNCs was
motivated by their SERS-enhancing efficiency,61−63 so that
both the localized surface plasma resonance band of Au@
AgNCs and the absorption band of R6G are resonant with the
532 nm laser (Figure S4). Indeed, Hwang et al. have recently
developed a similar ultrasensitive SERS system based on the
AgNCs/MoS2 platform that is able to detect R6G under 532
nm excitation.64 With this configuration, the developed SERS
immunosensor presents several advantages: (i) direct anchor-
ing of mAb on MoS2 with no need for linker molecules such as
mercaptobenzoic acid or thiolated-PEG, (ii) avoiding the use
of metal nanostructure-based SERS tags and their potential

Scheme 1. Schematic Representation of the SERS Immunosensor Based on Au@AgNCs/MoS2 Hybrid Nanomaterial
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degradation by oxidation of the metal (Ag in particular) during
the functionalization step.65,66

Characterization of Au@AgNCs/MoS2. The chemical
composition, crystalline structure, optical properties, and
morphology of the synthesized nanomaterials were inves-
tigated by XPS, Raman and UV−Vis spectroscopies, and TEM.
The crystallinity and phase transition of MoS2 samples were
confirmed by Raman spectroscopy and XPS (Figures S5−S7).
The obtained results demonstrate the successful exfoliation of
MoS2 with a high proportion of the 1T phase (∼93%). As
shown in Figure S4, the characteristic plasmon band of
AuNSPs at 532 nm was shifted to lower wavelengths after
silver overgrowth, as expected. Shown in Figure 1 are
representative TEM images of monodisperse and smooth
AuNSPs with a size of around 58 nm as well as cubic and
slightly truncated Au@AgNCs upon Ag reduction on the
AuNSP cores.

Characterization of SERS Substrates. To demonstrate
the feasibility of the developed NPs/MoS2-based substrate as a
sensing platform, the SERS performance was first evaluated by
directly adsorbing the Raman reporter R6G (in the absence of
an immunoassay and target analyte) on MoS2. For this
purpose, SERS-active substrates were prepared on a silicon

wafer, comprising a 300 nm SiO2 layer on a Si(100) surface, by
drop-casting chemically exfoliated MoS2 (MoS2/SiO2) and
then plasmonic NPs on the MoS2 surface (AuNSPs/MoS2/
SiO2 and Au@AgNCs/MoS2/SiO2). Subsequently, the pre-
pared NPs/MoS2-based SERS substrates were immersed in an
R6G solution for 2 h to achieve a homogenous interaction on
the whole SERS substrate with the Raman reporter and then
rinsed thoroughly with Milli-Q water and dried under a
nitrogen flow. The surface morphology of the prepared SERS
substrates was analyzed by SEM. Figure 2 shows few-layered
MoS2 nanosheets with micron-sized diameters, on which
spherical AuNSPs and cubic-shaped Au@AgNCs are deposited
with uniform distribution.
All modified SERS substrates were analyzed by Raman

spectroscopy, using a 532 nm excitation laser at a power of 1.6
mW/μm2 and a collection time of 10 s. SERS spectra of R6G
on MoS2/SiO2, AuNSPs/MoS2/SiO2, and Au@AgNCs/MoS2/
SiO2 substrates are compared in Figure 3A. The characteristic
SERS peaks of R6G at 1360 and 1648 cm−1, which are
assigned to C−H bending vibrations in aromatic rings, were
clearly observed for all the substrates.67 This result confirmed
that exfoliated MoS2 displays SERS-enhancing activity, owing
to its superior charge-transfer ability, as previously re-
ported.57,68 The deposition of AuNPs on MoS2/SiO2
remarkably enhanced the SERS intensities of R6G at 1360
and 1648 cm−1 due to their strong plasmonic response. We can
also conclude from Figure 3B that the SERS activity of Au@
AgNCs on MoS2/SiO2 was significantly higher (∼×1.5 times)
than that of AuNSPs toward R6G at both selected Raman
shifts due to the stronger SERS enhancement ability of
AgNPs.69 Indeed, although both samples are resonant with the
532 nm laser line, AuNSPs present high damping rates at this
wavelength via interband transitions, resulting in a decay of the
SERS effect.61−63 Therefore, Au@AgNCs/MoS2/SiO2 was
selected as an SERS platform for further immunosensing
experiments.

Analytical Performance. The detection efficiency of the
SERS immunosensor for quantitative AFP analysis was
evaluated by recording SERS signals for different AFP
concentrations. The vibrational signal at 1648 cm−1, which is
the most intense and characteristic peak for R6G, was selected
as the analytical parameter for AFP detection. For each
concentration, five replicate measurements were recorded
using the developed SERS immunosensor under optimized
conditions. The intensity of the SERS peak at 1648 cm−1 was
found to gradually increase for increasing AFP concentrations,
ranging from 0.001 to 10 ng mL−1 in PBS (pH 7.2) and human
serum, as shown in Figure 4A. The corresponding calibration
curves for both media in Figures 4B and S8 demonstrate a
good linearity between the peak intensities at 1648 cm−1 and

Figure 1. Representative TEM images of AuNSPs (A,B) and Au@
AgNCs (C,D) at two different magnifications.

Figure 2. SEM images of (A) MoS2 nanosheets, (B) AuNSPs/MoS2, and (C) Au@AgNCs/MoS2.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://dx.doi.org/10.1021/acsami.0c22203
ACS Appl. Mater. Interfaces 2021, 13, 8823−8831

8826

http://pubs.acs.org/doi/suppl/10.1021/acsami.0c22203/suppl_file/am0c22203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c22203/suppl_file/am0c22203_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.0c22203/suppl_file/am0c22203_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.0c22203?fig=fig2&ref=pdf
www.acsami.org?ref=pdf
https://dx.doi.org/10.1021/acsami.0c22203?ref=pdf


the logarithm of AFP concentrations, in the same range. The
linear regression equations obtained in PBS and human serum
were determined as y = 2455.5x + 201.7 (R2 = 0.9911) and y =
2550.8x − 69.799 (R2 = 0.9917), respectively, where y is the
average intensity of SERS signals at 1648 cm−1 and x is the
logarithm of AFP concentration. The LOD value for AFP in
human serum was estimated to be 0.03 pg mL−1 (∼0.08 fM)
using the following equation: LOD = 3S/m, where S is the
standard deviation of 10 replicate SERS spectra at the lowest
concentration of the calibration line and m is the slope of the
calibration line. In addition, the Raman spectrum of a control
sample showed no discernible signal in the absence of AFP,
meaning that unspecific adsorption is negligible in this system.

A comparison of the analytical performance of the developed
SERS-based immunoassay with similar studies reported in the
literature (Table 1) demonstrates its potential as an alternative
sensing platform with high sensitivity toward AFP detection.
In order to reveal the specific role played by MoS2 in the

SERS immunosensor, we compared its analytical performance
with that of a traditional ELISA surface based on polystyrene
in the absence of MoS2 but using the same sandwich
immunoassay protocol. It is worth noting that both sensors
involve a similar practicality and rapidity, around 3 h, which is
comparable to similar SERS biosensors.64 Figure 5 summarizes
the sensitivity of the immunosensors at different AFP
concentrations (1.0 to 1000.0 pg mL−1). The results

Figure 3. (A) SERS spectra for 1.0 μM R6G drop-casted on MoS2/SiO2 (a), AuNSPs/MoS2/SiO2 (b), and Au@AgNCs/MoS2/SiO2 (c); (B)
comparison of the SERS intensities at 1360 cm−1 (green columns) and 1648 cm−1 (red columns) for 1.0 μM R6G drop-casted on MoS2/SiO2 (a),
AuNSPs/MoS2/SiO2 (b), and Au@AgNCs/MoS2/SiO2 (c).

Figure 4. (A) SERS spectra of R6G at different concentrations of target AFP, ranging from 1 pg mL−1 to 10 ng mL−1 on the developed sandwich
immunosensor; (B) linear plot of the Raman peak intensity at 1648 cm−1 as a function of the logarithm of the AFP concentration in PBS (pH 7.2)
media (error bars indicate the standard deviation obtained from five different measurements).

Table 1. Comparison of Analytical Performance of Different SERS Immunosensors toward AFP Detection

material linear range LOD refs

AgNF-branched DNA (0.067−670 ng mL−1)a (0.067 ng mL−1)a 31
Au@Ag nanospheres 0.5−100 pg mL−1 0.08 pg mL−1 70
SiO2@Ag microspheres 2.1 fg mL−1−21 ng mL−1 2.10 fg mL−1 71
gold−silica alloy core shell 0.2−22 ng mL−1 0.10 ng mL−1 72
SiC@Ag film 1 fg mL−1−100 pg mL−1 0.46 fg mL−1 73
MBA-AuNPs 1−100 ng mL−1 100 pg mL−1 74
AuNS@Ag@SiO2 3 pg mL−1−3 μg mL−1 0.72 pg mL−1 75
AgNPs trimer (0.0134−1.34 fg mL−1) 6.5 ag mL−1 76
Au@AgNCs/MoS2/SiO2 1 pg mL−1 − 10 ng mL−1 0.03 pg mL−1 this work

aIn this value, it is assumed that the target analyte is recombinant AFP with a molecular weight of 67 kDa.
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consistently demonstrate a superior sensitivity of the
immunosensor involving MoS2, which we assign to the high
available surface area and the excellent adsorption capability of
the corresponding mAb onto MoS2, which facilitate the
interaction between the mAb-functionalized immunosensor
surface and AFP molecules.
Reproducibility and Stability. The reproducibility and

stability of the MoS2-based SERS immunosensor were also
investigated by analyzing AFP (1.0 ng mL−1) under optimal
experimental conditions. After incubation with AFP solution
and with the secondary antibody, SERS spectra were randomly
collected from 20 different spots on the SERS immunosensor
(Figure S9). The relative standard deviation (RSD) value of
the SERS spectra at 1648 cm−1 for AFP was found to be 5.5%.
It was also observed from stability measurements (n = 3) that
94.2% of the Raman response of AFP at 1648 cm−1 on the first
day was maintained after 2 weeks of storage (Figure S10). We
thus conclude that the MoS2-based immunosensor features
high reproducibility and stability toward AFP detection.
Analysis in Serum. The potential analytical application of

the developed SERS immunosensor for the detection of AFP
was evaluated by using human blood serum samples.
Considering the average concentration of AFP in blood
serum of cancer patients, blood serum samples were spiked in
the absence and in the presence of AFP and then stored at −20
°C prior to SERS analysis. SERS spectra were recorded by the
immunosensor as a function of AFP concentration in blood
serum, and the amount of AFP was calculated based on the
R6G Raman signal at 1648 cm−1 (Figure S11). As summarized
in Table 2, average recovery values were found between 96.9
and 104.8% with low RSD values. In addition, a control
experiment with zero AFP concentration in serum was
performed, showing no R6G Raman signals (Figure S12).
These results suggest that our SERS-based immunosensor has
not only high sensitivity but also remarkable accuracy for the
detection of AFP in human serum. Furthermore, these
experiments demonstrate that no interference occurs due to
the presence of other plasma components, considering that the
plasma contains various other proteins such as human serum
albumin, globulins, and fibrinogens, with 6 orders of magnitude
higher concentrations as compared to AFP.77

■ CONCLUSIONS
A SERS-based immunosensor with an ad hoc-devised
architecture has been developed for the ultrasensitive detection
of the cancer biomarker AFP. This immunosensor shows
remarkably high sensitivity and a reliable detection range from
1.0 pg mL−1 to 10.0 ng mL−1 with a competitive LOD of 0.03
pg mL−1 compared to previously reported systems. The
developed immunosensor presents several advantages such as
cost efficiency, fast response, high sensitivity, and reproduci-
bility toward AFP detection. In addition, the developed MoS2-
based immunosensor was successfully applied to detect AFP in
human serum samples with good recoveries, demonstrating
that other species present in serum do not interfere with AFP
detection. The proposed sandwich-type immunoassay could
become an alternative candidate for the early diagnosis of AFP
and other biomarkers in clinical applications.
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1000 1048.2 104.8 2.78
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