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• Future pluvial flood scenarios per
formed with ML methodology are 
proposed. 

• Forward features selection and spatio- 
temporal CV permit to predict pluvial 
flood occurrence. 

• LR model was the most accurate model 
to predict pluvial flood events. 

• Risk maps of pluvial flood are developed 
for future scenarios of climate change 
(RCPs 4.5 and 8.5). 

• Managing pluvial flood risk can increase 
climate resilience in the MCV.  
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A B S T R A C T   

Pluvial flood is a natural hazard occurring from extreme rainfall events that affect millions of people around the 
world, causing damages to their properties and lives. The magnitude of projected climate risks indicates the 
urgency of putting in place actions to increase climate resilience. Through this study, we develop a Machine 
Learning (ML) model to predict pluvial flood risk under Representative Concentration Pathways (RCP) 4.5 and 
8.5 for future scenarios of precipitation for the period 2021–2050, considering different triggering factors and 
precipitation patterns. The analysis is focused on the case study area of the Metropolitan City of Venice (MCV) 
and considers 212 historical pluvial flood events occurred in the timeframe 1995–2020. The methodology 
developed implements spatio-temporal constraints in the ML model to improve pluvial flood risk prediction 
under future scenarios of climate change. Accordingly, a cross-validation approach was applied to frame a model 
able to predict pluvial flood at any time and space. This was complemented with historical pluvial flood data and 
the selection of nine triggering factors representative of territorial features that contribute to pluvial flood events. 
Logistic Regression was the most reliable model, with the highest AUC score, providing robust result both in the 
validation and test set. Maximum cumulative rainfall of 14 days was the most important feature contributing to 
pluvial flood occurrence. The final output is represented by a suite of risk maps of the flood-prone areas in the 
MCV for each quarter of the year for the period 1995–2020 based on historical data, and risk maps for each 
quarter of the period 2021–2050 under RCP4.5 and 8.5 of future precipitation scenarios. Overall, the results 
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underline a consistent increase in extreme events (i.e., very high and extremely high risk of pluvial flooding) 
under the more catastrophic scenario RCP8.5 for future decades compared to the baseline.   

1. Introduction 

Despite the risk reduction efforts and billions invested in flood pro
tection actions put in place by governmental institutions, floods 
continue to be a serious issue causing several damages and injuring 
people (Kundzewicz et al., 2013). Moreover, it is expected that changes 
in precipitation patterns (e.g. extreme rainfall) prompted by climate 
change will increase the intensity and frequency of weather-related di
sasters including flash floods, riverine and coastal flooding, and pluvial 
floods in many regions (Asadieh and Krakauer, 2017) (IPCC, 2021). The 
IPCC predicts that climate-related extreme events will become more 
frequent, will affect multiple sectors and will cause systematic failures 
across Europe, leading to greater economic losses. Particularly, climate 
change is already affecting the occurrence, intensity, and spatial distri
bution of extreme weather events. Among these, pluvial flooding, that 
occurs when water runoff exceeds infiltration rates and drainage ca
pacity (frequently during short-duration and high-intensity rainfall 
events) (Wheater, 2006; Miller and Hutchins, 2017), results from the 
combination of unfavorable hydrological, meteorological and geomor
phological conditions, as well as a failure of flood protection structures 
or improper early warning systems (Roy et al., 2020). Furthermore, to 
the undeniable effects of global warming, anthropogenic factors, pri
marily urban sprawl and population growth, have increased the 
magnitude of flood runoffs and have amplified the flood damage po
tential (Kundzewicz et al., 2013; UNISDR, 2015; Szewrański et al., 
2018). They constitute an increasing vulnerability of the territories, 
which have a reduced capability to absorb surface runoff and are more 
exposed to damages, both economic and to people and assets (Blanc 
et al., 2012; Miller and Hutchins, 2017). The extent of economic losses 
and the number of individuals displaced by flooding events has already 
increased globally (Roy et al., 2020). According to the United Nations 
World Water Development Report (UNESCO, 2020), in the last decades 
Europe has counted >6 million people affected by flood events and 
economic damages for more than US$86 billion. In this context, flood 
risk management has become even more significant, pushing many 
governments and decision makers to recognize the need of developing 
resilient flood management strategies and policies for sustainable urban 
development (Herath and Wijesekera, 2019), as highlighted also by the 
Sendai Framework for Disaster Risk Reduction (UNISDR, 2015). 
Accordingly, this paper aims at increasing the current knowledge and 
awareness on the risks of pluvial flood arising in urban areas due to 
future scenarios of climate change. 

Despite over the last years the interest in pluvial flood risk is grown 
steadily as response to flood events occurred in Europe, few methodol
ogies have been developed for studying pluvial flood events under 
climate scenarios (Sperotto et al., 2015; Szewrański et al., 2018; Peleg 
et al., 2022; Jiang et al., 2023; Ebers et al., 2023). The methodological 
approaches developed so far concern Storm Water Management Model 
for assessing the impacts of urbanization on runoff and flood reduction 
while applying low impact development actions (Ahiablame and Sha
kya, 2016); Hydrodynamic Model of Urban Drainage System (Now
akowska et al., 2017), Regional Risk Assessment (Sperotto et al., 2015), 
and combined fluvial-pluvial hazard assessment based on the proba
bility of flood occurrence (Apel et al., 2016). However, these approaches 
do not include climate change scenarios and gaps exist in knowledge and 
research concerning pluvial flood modelling, risk assessment and man
agement (Apel et al., 2016; Szewrański et al., 2018). The majority of 
modelling techniques developed for studying pluvial flood risk in urban 
areas uses hydraulic and hydrodynamic models, Geographic Informa
tion System (GIS) and Remote Sensing (RS) techniques, and Multi- 
Criteria Decision Analysis (MCDA) functions (Zanetti et al., 2022). 

However, these methodologies present some intrinsic limitations (e.g., 
require complex input data, high computational time and costs, high 
dependence on expert knowledge, strong decision-makers assumptions) 
(Chowdary et al., 2013; Khosravi et al., 2019; Wagenaar et al., 2020; 
Guo et al., 2021), which fostered the scientific community to explore 
and test new methodologies able to overcome these challenges, such as 
through Machine Learning (ML) models (Zennaro et al., 2021). Over the 
last years, the use of ML methods to predict natural hazard risks has 
massively increased, due to their high performance and predictive 
capability (Ahmadlou et al., 2019; Zanetti et al., 2022). Particularly, the 
most widespread ML techniques have focused on incorporating GIS- 
based flood models and RS tools for the spatial analysis of large vol
ume of data on natural hazards. The majority of methods used so far 
include Artificial Neural Networks (Kia et al., 2012; Aslan et al., 2022), 
Frequency Ratio (Lee et al., 2012; Rahmati et al., 2016), Logistic 
Regression (Pradhan, 2009; Pham et al., 2020), Decision Trees (Ting
sanchali and Karim, 2010; Merz et al., 2013; Tehrany et al., 2013), 
Support Vector Machines (Deng et al., 2013; Tehrany et al., 2014), 
Random Forest (Roy et al., 2020), Evidence Belief Function (Chowdhuri 
et al., 2020). These models are useful to identify flood-prone areas, but 
do not consider spatio-temporal constraints and they have not been 
tested under climate change scenarios. 

Drawing on such considerations, the aim of the analysis presented 
here is to develop a ML model able to foresee robust scenarios of pluvial 
flood in the medium-long term. The method is based on historical 
pluvial flood data to predict the pluvial flood risk in the Metropolitan 
City of Venice (Northern Italy) for each quarter of the period 
1995–2020. Then, the developed ML model is used to predict pluvial 
flood risk under the Representative Concentration Pathways (RCP) 4.5 
and 8.5 scenarios of future precipitation for the time period 2021–2050. 
The ML model builds on the relationship between a set of input vari
ables, called features, and an output variable, called response variable. 
In this work, the response variable is represented by the occurrence or 
not of a pluvial flood for each specific area of the MCV, while the fea
tures are represented by precipitation and triggering factors that char
acterize the territory. These features might positively or negatively 
affect the flooding occurrence in a specific area and time. Therefore, the 
collected data (e.g., triggering factors, precipitation and historical 
pluvial flood data) constitute the dataset used to build up the model. 

The presented ML methodology builds up on the ML model devel
oped in Zanetti et al. (2022) on the baseline scenario of pluvial flood risk 
for the Metropolitan City of Venice for the period 1995–2020. 

2. Case study area: the metropolitan city of Venice 

The study area for the pluvial flood risk assessment under future 
climate change scenarios is represented by the administrative bound
aries of the Metropolitan City of Venice (MCV), located in the Veneto 
region, in the North East coast of the Adriatic Sea (Fig. 1). It consists of 
44 municipalities and has an extension of 2467 km2 for an overall 
population of 839.396 inhabitants (ISTAT, 2022), mainly concentrated 
around the two biggest urban centers of Mestre and Venice. The territory 
includes both the small island around the Venice lagoon and the main
land, in which resides most of the population. In the area, multiple and 
diversified economic activities have taken place, ranging from industries 
(e.g., the petrochemical industry of Marghera district), shipping, seaport 
activities, to tourism and fishing activities along the coast (Dipartimento 
per gli Affari Regionali e le Autonomie, 2017). The urbanization 
development of the CMV is primarily due to the economic growth after 
the World War II and the expansion of the petrochemical plant of Porto 
Marghera, which led to a rapid urbanization sprawl of the area. This 
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development led to a growing demand of residential areas and in
frastructures, at the expense of green areas that were converted into 
urban zones. These changes determined structural hydraulic criticalities 
that were partially overcome with new public green areas (Venice 
Province, 2011). Despite the implementation of such measures, many 
criticalities remain due to improper sewer and drainage systems, espe
cially during severe rainfall events. These criticalities might become an 
obstacle with the future climate scenarios, according to which will in
crease the frequency and intensity of extreme rainfall events in the 
Mediterranean region (Spano et al., 2020; IPCC, 2021). Specifically, in 
Northern Italy is expected a precipitation reduction during the summer 
period and an increase in precipitation for the winter period (Spano 
et al., 2020). Beside the climate drivers, the geological, hydrological and 
social (e.g., growing population rate in urban areas) and structural (e.g., 
urbanization rate, sewage system) factors will directly contribute to 
increase the vulnerability of the territory and limit the soil absorption 
capability, exposing local communities to pluvial flood events (Spano 
et al., 2020). These criticalities already showed up during a flooding 
event occurred in September 2007 in the city center of Mestre, with 
260.4 mm of precipitation in 24 h (ARPAV, 2007). However, similar 
events occurred from 2000 to 2009 in the same areas, causing extensive 
economic damages to goods and people (Venice Province, 2011). As a 
result, a comprehensive study able to incorporate climate change sce
narios in predicting pluvial flood risk is essential to aid decision- and 
policy makers in defining adaptation measures in the medium and long 
term. For this aim, and to develop a robust model able to predict pluvial 
flood events, territorial features (e.g., land use, aspect, curvature, 
permeability, slope, etc.) have been included, as detailed in Chapter 3.1. 

3. Material and methods 

To assess pluvial flood risk, territorial features and precipitation 
data, varying both in time and space, have been analyzed, and for which 
a specific methodology considering spatio-temporal constraints needs to 
be developed. The flowchart in Fig. 2 outlines the main steps of the ML 
methodology implemented to identify pluvial flood risk areas under 
future scenarios of climate change. 

In the first step triggering factors and historical pluvial flood data 
have been collected to create the dataset used to fit the ML model 
(Sections 3.1 and 3.2). The input data have been divided in multiple data 
sets, used in different stages of the creation of the ML model: training 
and test set (Sections 3.3 and 3.4). Then, cross validation approaches 
were used to further split the training set into training and validation set 
(Section 3.5). In this case study, the validation set was used for hyper
parameters tuning as well as to select the main features to consider for 
improving the prediction of pluvial flood areas. The hyperparameters 

tuning was applied to define the structure of the model and to control 
the learning process of the model itself. Four ML models were tested and 
their accuracy was evaluated. Finally, the best model was selected to 
predict pluvial flood events considering future scenarios of climate 
change, under RCP4.5 and 8.5 (Section 3.6). 

3.1. Data collection and preprocessing 

3.1.1. Triggering factors 
Pluvial flood can or cannot occur in an area according to the 

morphology of the territory. In predicting pluvial flood events, a set of 
triggering factors, used as learning variables by the model, were iden
tified to predict the response variable (i.e., flooded areas) at a different 
time and location. They represent territory’s features that might posi
tively or negatively affect the occurrence of flooding events. In this 
study, 9 triggering factors have been selected, identified according to the 
literature (e.g., Arabameri et al., 2019; Wang et al., 2020; Shahabi et al., 
2021) and, particularly, the available data, from which part of the 
triggering factors were derived (e.g., distance to road, distance to river). 
The dataset and maps available restricted the characterization of the 
MCV to 9 territorial features, considered also the most relevant in 
shaping the risk of pluvial flood in the study area (Fig. A in SM). Spe
cifically, the features considered are: aspect, curvature, distance to river, 
distance to road, land use, Normalized Difference Vegetation Index 
(NDVI), permeability, slope and texture. These triggering factors include 
information about the characteristics of the case study area of the MCV, 
and, only for the land use, the time in which the territory has these 
characteristics. The triggering factors can be classified as numerical, 
when their values are numbers, or as categorical, when they are grouped 
in classes. Aspect is the direction or orientation of the maximum slope of 
the surface and it has been considered in four categories according to 
different angle ranges: North (45◦-135◦), West (135◦-225◦), South 
(225◦-315◦), and East (315◦-45◦). Curvature is the degree of distortion 
of the slope surface and it has been differentiated into three classes: flat, 
concave or convex. Distance to road indicates the proximity to artificial 
infrastructure and it has been considered both as numerical and as 
categorical in three classes (0 m - 250 m, 250 m - 500 m, >500 m). 
Distance to river indicates the proximity to river networks and it has 
been considered both as numerical and as categorical in three classes (0 
m - 250 m, 250 m - 500 m, >500 m). Land use is the specific land types 
and have been considered four main classes of land use: agricultural 
areas, green areas, industrial areas and urban areas. Land use data were 
collected for five different years: 1990, 2000, 2006, 2012, and 2018. 
Normalized Difference Vegetation Index (NDVI) indicates the vegetation 
density extracted from satellite images; it has been considered as nu
merical. Permeability is an indicator of water infiltration and it is 

Fig. 1. The case study area: the Metropolitan City of Venice with the water basins flowing in.  
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numerically expressed in millimeters per hour (mm/h). Slope is the 
inclination of the surface and it has been considered in two classes: 
presence or absence of slope. Texture is a soil infiltration property, 
classified by the percentage composition of its solid particles distin
guished in granulometric characteristics as the percentage of sand, silt, 
clay, quartz and porosity. Table 1 lists the triggering factors and their 
data sources. 

3.1.2. Historical pluvial flood data 
A dataset of historical pluvial flood events recorded between 1995 

and 2020 was provided by the Metropolitan City of Venice (https://web 
gis2.cittametropolitana.ve.it) with detailed information regarding the 
localization and extent of flooded areas for each event. 212 daily events 
were grouped by dividing the year in four periods of three months each 
and combining them to get more reliable information on the flooded 
areas occurred in a specific time period with respect to a daily event. 
Fig. 3 shows the percentage of case study areas that were inundated at 
least once in each quarter of the time period 1995–2020. From the 
figure, it can be noticed that the periods with major flooding events 
occurred in the 3rd quarter (i.e., months from July to September) of 
2007 (4.24 %), 1st quarter (i.e., months from January to March) of 2013 

(2.92 %) and 1st quarter of 2014 (4.06 %). Notice that, in the period 
between 1996 and 2005, only two pluvial flood events were recorded. 

3.1.3. Historical precipitation 
Precipitation is expected to be the main indicator related to pluvial 

flood occurrence. Historical precipitation data were provided by the 
Regional Agency for Environmental Prevention and Protection of Ven
eto (ARPAV) for each day of the period between January 1995 and 
October 2020. Precipitation features were extracted for each quarter 
based on the maximum cumulative precipitation in 1 day, 2 to 14 
consecutive days, 21 consecutive days, 28 consecutive days and 90 
consecutive days. Also, indicators of the number of times that daily 
cumulative precipitation reached 10 mm, 20 mm, 30 mm, 40 mm and 
50 mm in three months were collected. Overall, 17 features were 
extracted for cumulative precipitation and 5 features to count the 
reaching of specific levels of rainfall (10 to 50 mm). Since the meteo
rological stations do not cover all the study area, the spatial distribution 
of precipitation was computed by interpolating the 188 stations placed 
across Veneto region using the Inverse Distance Weighting (IDW) 
method. It is noticeable that ML models’ performance can vary ac
cording to the quality of the input data, hence precipitation was 

Fig. 2. Flowchart of the ML methodology to predict pluvial flood risk under future climate scenarios.  

Table 1 
The triggering factors collected and their data sources. Digital Terrain Model (DTM) and Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto 
(ARPAV).  

Triggering factors Spatial resolution Temporal resolution Features Variable type Data source 

Aspect 25 m 2019  4 Categorical DTM Veneto Region 
Curvature 25 m 2019  3 Categorical DTM Veneto Region 
Distance to river – 2020  4 Categorical / Numerical Metropolitan City of Venice 
Distance to road – 2019  4 Categorical / Numerical Metropolitan City of Venice 
Land use 100 m 1990–2018  4 Categorical CORINE Land Cover 
Normalized Difference Vegetation Index (NDVI) 10 m 2015  1 Numerical Sentinel 2 - Earth Explorer 
Permeability – 2016  1 Numerical ARPAV 
Slope 25 m 2019  1 Categorical DTM Veneto Region 
Texture – 2016  5 Numerical ARPAV  
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interpolated considering different combinations of meteorological sta
tions: 3, 5, 7 or 9 closest stations. Fig. 4 shows the 95th percentile of the 
cumulative precipitation in 1 and 14 days for each quarter of the period 
of analysis, identifying the worst day and 14 cumulative days of rainfall 
in the quarter. Each bar displays that there has been at least 5 days (for 1 
day of rain) or 5 periods of 14 days of cumulative rainfall in which the 
value was above the value reported on the y-axis. From the figure we can 
see that the most intense daily cumulative precipitation was recorded in 
the 3rd quarter of 2007 (153 mm of rainfall) while the most intense 14 
consecutive days of cumulative precipitation were recorded in the 1st 
quarter of 2014 (352 mm of rainfall). Overall, highest is the bar in the 
chart, more extreme rainfall events have occurred in the quarter. 
Therefore, according to Fig. 4, most extreme events occur mainly in 
autumn (4th quarter) with peaks in winter and spring, while the summer 
period experiences reduced precipitations. However, an overall constant 
increasing trend of extreme events can be identified for the historical 
period. 

3.1.4. Future precipitation scenarios 
In Section 3.1.3 historical precipitation from meteorological stations 

were introduced to relate rainfall to pluvial flood events of the past. In 
this section, future precipitation collected from a different data source 
are presented to get a future estimation of rainfall events. Since future 
pluvial flood events were not yet occurred, only historical precipitation 
was used to study the effect of rainfall on pluvial flood. 

Future precipitation data were collected from the regional COSMO 
Climate Change (COSMO-CLM) model that simulates daily cumulative 

precipitation under the Representative Concentration Pathways (RCP) 
4.5 and 8.5. The COSMO-CLM model reports the predictions for the time 
period 2006–2100 covering the MCV with a spatial resolution of 8 km. 
Fig. 5 (a) shows the 95th percentile of the cumulative precipitation for 1 
and 14 consecutive days for each quarter of each year for the time period 
2021–2050 under RCP 4.5. From the figure we can see that the most 
intense precipitation day would be predicted for the 4th quarter of 2044 
(130 mm of rainfall), while the most intense 14 consecutive days would 
be expected for the 4th quarter of 2026 (256 mm of rainfall). Under 
RCP4.5 scenario, the extreme events under 14 days of cumulative pre
cipitation do not exceed the 250 mm of rainfall, which are instead 
overcome multiple times under RCP8.5. Fig. 5 (b) shows the 95th 
percentile of the cumulative precipitation for 1 and 14 days under RCP 
8.5 and can be noticed that the most intense precipitation day and the 
most intense 14 consecutive days would be in the 3rd quarter of 2047 
(182 and 343 mm, respectively). In general, highest is the bar more 
extreme events are expected in the future under the two RCPs scenarios 
and, specifically, RCP 8.5 scenario is expected to have more extreme 
precipitation events compared to RCP 4.5 scenario. The results show 
higher values of cumulative precipitation in the 1st and 4th quarters and 
an overall constant increasing trend, with more extreme rainfall events 
alternated to limited precipitations under RCP8.5. 

3.2. Data merging 

Once collected and preprocessed the triggering factors, historical 
pluvial flood data and precipitation data, they need to be merged 

Fig. 3. The percentage of reported flooded areas in the time period 1995–2020 in the Metropolitan City of Venice.  

Fig. 4. The 95th percentile of cumulative precipitation for 1 and 14 consecutive days by quarter in the time period 1995–2020 in the Metropolitan City of Venice.  
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together to create a unique dataset useful to find the relations between 
the features and the response variable. This process is called data 
merging, and it consists of the integration of different datasets: trig
gering factors, historical pluvial flood data and precipitation. In this case 
study, the relation among the characteristics of the territory, precipita
tion (millimeters) and pluvial flood inundated areas may depend both 
on the spatial area and the time period in which the event occurred. The 
spatial domain of the case study is the Metropolitan City of Venice area, 
that was subdivided in 786.988 small cells with 50x50m of spatial res
olution. The temporal domain regards all the quarters of 1995–2020 for 
the past period (i.e., 26 years, 104 quarters), and all the quarters of 
2021–2050 for the future time period (i.e., 30 years, 120 quarters). It is 
important to mention that, for the temporal domain, triggering factors 
(i.e., the morphological characteristics of the territory) are assumed to 
remain unchanged for all the time period 1995–2050, while precipita
tion changes over time and pluvial flood occurrence is known for the 
past and it needs to be predicted for the future. Since historical pluvial 
flood data refers to specific single day events, they were aggregated by 
quarter and each of the 786.988 small areas were labelled as flooded if at 
least one flood event occurred in that quarter, or as non-flooded 
otherwise. 

3.3. Machine learning models 

Machine learning techniques can be applied to pluvial flood analyses 
to identify the most relevant patterns in the data among inundated areas, 
precipitation and the characteristics of the territory (i.e., the triggering 
factors). Pluvial flood prediction is a classification task, which aims to 
classify if a cell of the study area is likely to be flooded or not in a specific 
quarter. Four different ML models were considered in the analysis, to 
estimate pluvial flood risk in the most accurate way based on the 104 
quarters between 1995 and 2020. The ML models taken into consider
ation were Logistic Regression (LR), Bayes Classifier (BC), Neural Net
works (NN) and Random Forest (RF). LR, BC and RF are widely applied 
models for classification tasks as they are simple to implement and 
interpret, while NN model is more flexible to learn complex relations 
between the features and the response variable (Azzalini and Scarpa, 
2012). Notice that NN and RF need to be trained on historical data using 
different configurations of their hyperparameters, i.e. parameters used 
to control the learning process of the model and to set their ideal model 
architecture (Lecun et al., 2015). 

Fig. 5. The precipitation scenarios under RCP 4.5 (a) and 8.5 (b) of COSMO model for each quarter of the time period 2021–2050.  
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3.4. Dataset folds for spatio-temporal analysis 

The assessment of pluvial flood risk is based on triggering factors, 
precipitation and their link with the response variable. As pluvial flood 
occurrence depends on the spatial characteristics of the territory and the 
time interval in which precipitation occurs, a specific methodology 
needs to be developed to consider spatio-temporal constraints. Indeed, 
ML models were tested to be reliable to predict pluvial flood occurrence 
in different spatial locations and time periods that the model has never 
experienced before. For this reason, the data were split in different folds, 
considering both time and space, in order to keep the assumption of 
independence between the folds in the geographical and temporal 
domain (Roberts et al., 2017). Hence, the dataset was split in T x S folds, 
where T is the number of time periods and S is the number of spatial 

areas in which the dataset was split up. Time intervals and spatial areas 
were chosen to guarantee an almost equal distribution of pluvial flood 
examples in each fold. Indeed, the time periods were calculated using 
the quantile distribution of the quarter of the flooded observation. In 
particular, the limits of the temporal classes are the 1/T, …, (T-1)/T 
quantile of the historical events with pluvial flood areas reported. The 1/ 
T quantile divides the first and second time period, while the (T-1)/T 
quantile divides the second from last and the last time periods. 
Regarding the spatial areas, observations were grouped according to the 
latitude of the flooded observations to split the areas in S groups. In 
particular, the limits of the spatial classes were the 1/S, …, (S-1)/S 
quantile of the latitude of the case study area. 

Fig. 6. The cross-validation process. At each step one of the T x S folds is the test set and (T-1) x (S-1) folds are part of the training set. In this example T = 4 and S 
= 4. 
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3.5. Cross validation for hyperparameters tuning, features selection and 
model selection 

Usually, the performances of machine learning models to predict the 
response variable are assessed by splitting the dataset in two parts: the 
training and the test set. The training set is used by the ML models to 
learn the relations between the features and the response variable, while 
the test set measures the ability of the model to predict the response 
variable with data that the model has never seen before. Since the 
relation of pluvial flood occurrence with triggering factors and precip
itation that can vary both in time and in space, we need a model able to 
generalize these relations for any kind of characteristics of the territory 
and precipitation (Meyer et al., 2018). For this reason, training and test 
set are not generated randomly, as it is usual in machine learning ap
proaches, but were taken into consideration both time and space to 
avoid any correlation between folds. A spatio-temporal cross-validation 
approach was applied to get a more reliable approximation of the model 
accuracy to detect pluvial flood occurrence. All the possible different 
combination of features, hyperparameters and ML models were evalu
ated to obtain the best model to predict pluvial flood areas in all the T x S 
folds. For each combination, the evaluation of the model accuracy is 
composed by a series of steps. At each step, one fold kt;s between the T x 
S folds was selected to be part of the test set, (T-1) + (S-1) folds that have 
in common the time period or the spatial area with the test set were 
excluded from the analysis while the (T-1) x (S-1) independent folds 
were selected to be part of the training set. The procedure continues 
until all folds have been exactly once part of the test set, i.e., when the 
model has predicted all the observations of the dataset. Fig. 6 shows an 
example of spatio-temporal cross-validation with T = 4 and S = 4. 
Ideally, since the process is iterative, it is possible to evaluate the 
model’s performances in a great number of configurations of hyper
parameters and features, until it is reached the maximum value of a 
metric that measure the performances of the model in predicting pluvial 
flood in the test set. The metric adopted to evaluate ML models is the 
Area Under the Curve (AUC), a recommended metric used instead of the 
overall accuracy to compare different ML algorithms in classification 
problems (Bradley, 1997). As there can be a huge number of configu
rations based on different features and hyperparameters, the computa
tional power may increase exponentially. For this reason, only a list of 
opportune hyperparameters is candidate to form the model, while a 
forward features selection is applied to keep only the features that are 
important to predict pluvial flood in the cross-validation process. As 
there was a relevant number of precipitation features, a constraint added 
on the feature selection process consists in the selection of just one 
precipitation feature to avoid any collinearity problem between the 
precipitation features, while all the triggering factors can be selected 
without any limit. Finally, the model that got the best AUC score in the 
test set during the 16 steps was selected to predict the pluvial flood 
inundated areas with the future scenarios of precipitation. 

3.6. Pluvial flood risk mapping for past and future 

3.6.1. Pluvial flood risk by quarter of the year 
Once all the ML models have been trained and tested, the model that 

gets the best performances on the test sets based on the AUC score was 
selected to estimate the pluvial flood risk using its best hyperparameters 
and the selected features. As mentioned in Section 3.2, triggering factors 
are assumed to be unchanged for past and future, since no data are 
available for future scenarios, while precipitation data are available 
both for the past (from historical data of meteorological stations) and for 
the future (from the COSMO-CLM model). Hence, the selected model 
was used to estimate the risk of pluvial flood in each quarter 1995–2050, 
using the selected triggering factors for all the time period, historical 
precipitation data for 1995–2020 and the precipitation scenarios under 
the RCP 4.5 and 8.5 for 2021–2050. In each quarter, for each area of the 
case study region, the model estimated the probability of being a flooded 

area or not based on the features selected by the model itself. 

3.6.2. Pluvial flood worst risk by quarter of the decade 
In a decade time period perspective, it is possible to aggregate the 

information about the pluvial flood risk by quarter of the 10 years of that 
decade. The aggregation function used to summarize the risk of a spe
cific decade is the calculation of the maximum risk for each cell of the 
study area to underline the worst risk that any area may face in 10 years. 
For this analysis, overall five decades have been considered, of which 
two for the past (2000–2009 and 2010–2019) and three for the future 
(2021–2030, 2031–2040 and 2041–2050). 

4. Results 

4.1. Dataset creation and split in spatio-temporal folds 

4.1.1. Dataset 
Information on the 786.988 cell areas of the case study region were 

collected for each quarter of the time period 1995–2020 (104 quarters) 
resulting in a spatio-temporal domain of 81’846’752 unique spatio- 
temporal observations, of which only 176’035 observations are floo
ded points, which is the 0.21 % of the total observations. Considering 
that for each unique spatio-temporal observation we need to collect 115 
features (27 triggering factors and 88 precipitation indexes), the amount 
of data collected leads to an exponential increase of the computational 
costs to train the machine learning models. For this reason, a subset of 
400’000 observations has been selected for further analysis: 300′000 
non-flooded observations (75 %) and 100’000 flooded observations (25 
%). Overall, the dataset used to train the machine learning models is 
composed by 400’000 unique spatio-temporal observations, 115 fea
tures and the response variable. 

4.1.2. Training and test set 
The objective of the proposed approach is to develop a ML model 

able to predict pluvial flood occurrence in different time periods and 
geographic locations. In ML approaches, the dataset is partitioned into 
training and test set. The training set is used to fit the parameters of the 
model, while the test set provides unbiased evaluations of the prediction 
errors of the model fit on the training set. The dataset was randomly split 
in training and test set, specifically in 16 different folds, starting from T 
= 4 temporal groups and S = 4 spatial groups. The 4 temporal groups of 
data were chosen to get an almost equal number of flooded observations 
in each group (in a range between 20’000 and 30’000), while the spatial 
groups were created using latitude as a reference in order to get an 
almost equal number of flooded observations in each area (about 
25’000). Clearly, these thresholds guarantee an equal number of flooded 
observations in each spatial or temporal group, but they do not guar
antee that a specific spatio-temporal fold includes any flooded obser
vation. For example, it is possible that in a specific area, there were no 
flooded events in a specific temporal period. Table 2 shows the number 
of flood and non-flood observations for each of the 16 folds and it can be 
noticed that two folds do not include any flooded point. 

4.2. Features and model selection 

Each ML model, for a specific configuration of its hyperparameters 
and features, was trained and tested 16 times, until each fold was part of 
the test set exactly one time. As reported in Table 3, the model that 
obtained the best AUC score was the Logistic Regression, without any 
hyperparameter tuning, and the most important feature resulted to be 
the 14 days of cumulative precipitation (interpolated from the nearest 7 
stations). Cumulative precipitation refers to the most intense 14 days of 
rainfall that happened in a specific quarter and indicates that flooded 
events are more related to consecutive days of rainfall than a single day. 
Since the other features only slightly improve the accuracy of the model 
(maximum increment of the AUC score is +0.4 %), and to be in 
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compliance with the other models, only 14 days of cumulative precipi
tation was considered in the LR model, obtaining the highest AUC score 
between all models, hyperparameters and features tested, that is 0.867 
in the test set. Therefore, the LR model with 14 days of cumulative 
precipitation was trained using the 400′000 observations of the dataset 
to better estimate the relations between the cumulative precipitation 
and pluvial flood risk. This final model was used to estimate pluvial 
flood risk in the past and to predict it in the future scenarios. 

4.3. Pluvial flood mapping 

The Logistic Regression model was run to map the risk of pluvial 
flood in the Metropolitan City of Venice for each quarter of the historical 
period 1995–2020, considering the historical precipitation data, while 
precipitation scenarios under RCP4.5 and 8.5 were used for the future 
(2021–2050). To better visualize the pluvial flood risk maps, the risk has 
been grouped in six classes: very low (0–20 %), low (20–40 %), medium 
(40–60 %), high (60–80 %), very high (80–95 %) and extremely high 
(95–100 %). Fig. 6 shows the percentage of the study area with pluvial 
flood risk above 80 % in each quarter of 1995–2020 and future quarters 
2021–2050 under RCPs 4.5 and 8.5. The first bar chart of Fig. 6 shows 
the pluvial flood risk in each quarter of the time period 1995–2020, in 
which for two quarters the study area was strongly impacted (flooded 
areas larger than 20 %). In particular, in the 1st quarter of 2014, it was 
estimated that >72 % of the study area was at very high risk (80–100 %) 
of pluvial flood, while, in the 3rd quarter of 2006, the estimated area at 
medium risk was slightly >55 %. Clearly, machine learning models may 
overestimate the risk of pluvial flood in classification problems as the 
goal is to minimize both false negative (misclassified flooded areas) and 
false positive (misclassified unflooded areas) observations to maximize 
the AUC score. Indeed, in Fig. 3 the percentage of reported flooded areas 
in each quarter was always lower than 5 % of the total study area, while 
the model suggests a higher area at risk of pluvial flood in some quarters. 
ML estimates the probability of occurrence of the most critical events (i. 
e., those events in which some areas have a very high probability of 
pluvial flood) and not a certainty, as represented in Fig. 3 for the past 
monitored event. Therefore, ML models allow to identify the most 
vulnerable areas to pluvial flood and to capture the most critical events 
occurred in the past. The second bar chart of Fig. 7 represents the pre
dicted highest risk of pluvial flood for each quarter of 2021–2050 time 
period, under RCP4.5. In these predictions, as in the past period, only 

two quarters may have a very high risk with pluvial flooded areas larger 
than 40 % of the study area: 4th quarter of 2026 and 4th quarter of 2044. 
On the other side, the third bar chart represents the predicted highest 
risk of pluvial flood for each quarter of 2021–2050 timeframe, under the 
most severe climate scenario RCP8.5, according to which 5 quarters are 
considered large pluvial flood events. In particular, in the 4th quarter of 
2045, in the 3rd quarter of 2030 and in the 4th quarter of 2049 the 
predicted risk of pluvial flood covers a very relevant area: respectively 
the 61 %, 82 % and 71 % of the study area. 

Due to the long time period from today to 2050, it is not very 
plausible to be certain about the exact quarter in which dangerous 
pluvial flood events will occur according to the precipitation scenarios. 
For this reason, the risks of pluvial flood were aggregated by decade, 
focusing on two past decades (2000–2009 and 2010–2019) and three 
future decades (2021–2030, 2031–2040, 2041–2050) under RCPs 4.5 
and 8.5. Fig. 8 shows the highest risk classes of pluvial flood for each cell 
of the study area for selected past period and future decades under 
RCP8.5. However, further detailed maps for the whole period under 
study (i.e., the two past decades 2000–2009 and 2010–2019 and three 
future decades 2021–2030, 2031–2040 and 2041–2050) for each 
quarter and for the future scenarios RCP4.5 and RCP8.5 is reported in 
Fig. B of the Supplementary Material. The selected quarters reported in 
Fig. 8 show that the north-eastern side of the MCV presents extremely 
high risk of pluvial flood both in the past decade and in the future. This 
risk enlarges in the 2041–2050 period, also embracing the central part of 
the MCV. Overall, almost the whole study area presents very high risk of 
flooding events for the third quarter and under the RCP8.5. 

5. Conclusions 

The multiple threats posed by climate change require reliable 
methodologies, such as the development of ML models, to prevent 
disaster risk and to develop suitable response actions to increase climate 
resilience. 

The methodology presented in this paper develops a ML model able 
to implement spatio-temporal constraints to improve pluvial flood risk 
prediction considering future scenarios of climate change, under the 
RCPs 4.5 and 8.5. 

The produced outputs are representative of future trends of climate 
change and are useful for the identification of vulnerable areas to pluvial 
flood risk at local scale for the different scenarios. They are effective to 

Table 2 
The number of flood (a) and non-flood (b) observations in the dataset is grouped in 16 spatio-temporal folds. 

(a) (b)

Flood Non-flood
Space T1 T2 T3 T4 Total Space T1 T2 T3 T4 Total
S1 0 4.638 11.975 8.329 24.942 S1 15.431 7.215 2.929 5.720 31.295
S2 0 6.616 8.961 9.334 24.911 S2 21.614 10.137 4.174 7.931 43.856
S3 10.709 3.830 5.949 4.618 25.106 S3 63.172 29.808 12.430 23.700 129.110
S4 19.510 4.872 276 383 25.041 S4 46.958 21.963 9.196 17.622 95.739

Total 30.219 19.956 27.161 22.664 100.000 Total 147.175 69.123 28.729 54.973 300.000

Time Time

Table 3 
The AUC score in the train and test set and the selected features for each ML model. 

Model Selected features Train AUC Test AUC 

Logis�c Regression Cumula�ve precipita�on 14 days 0.869 0.867 

Bayes Classifier Cumula�ve precipita�on 14 days 0.868 0.859 

Neural Networks Cumula�ve precipita�on 14 days 0.851 0.830 
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Fig. 7. The percentage of the study area at extremely high risk of pluvial flood in each quarter of 1995–2020 and future quarters 2021–2050 under RCP 4.5 and 8.5.  

Fig. 8. The highest risks of pluvial flood for each cell of the study area for the most relevant past and future decades and quarter.  
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mainstream mitigative and adaptive strategies and plans (e.g., identifi
cation of hotspots and vulnerabilities, identification of mitigation and 
adaptation priorities as well as nature-based management solutions (e. 
g., O’Leary et al., 2022)) and to support decision-makers in undertaking 
actions and in developing early warning systems. 

However, some limitations of the methodology must be acknowl
edged. Firstly, in the analysis only one regional climate model, COSMO- 
CLM, was investigated for future scenarios of precipitation, while the 
adoptions of multiple climate models might have made the predictions 
more accurate. A further limitation of the study is the 50 m spatial 
resolution, as a higher resolution would better support ML models and 
would catch stronger relationship between the territory features, the 
precipitation rates and the flooded areas. Future works are envisioned 
towards a comprehensive methodology that not only provide accurate 
risk flooding maps, but also rely on advanced ML techniques (e.g., 
Convolutional Neural Network, Graph Neural Network) for rapid pre
diction of flood inundation. Such methodologies are becoming largely 
adopted to predict, at spatio-temporal scale, water levels of flash flood 
events through image classification (Kabir et al., 2020; Bentivoglio et al., 
2023). 
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