
On the use of the SYMMBK algorithm
for computing negative curvature directions

within Newton–Krylov methods

Giovanni Fasano1, Christian Piermarini2, and Massimo Roma2

1 Dipartimento di Management, Università Ca’ Foscari, Venezia, Italy
fasano@unive.it,

2 Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”,
SAPIENZA – Università di Roma, Italy

piermarini@diag.uniroma1.it, roma@diag.uniroma1.it

Abstract. In this paper, we consider the issue of computing negative
curvature directions, for nonconvex functions, within Newton–Krylov
methods for large scale unconstrained optimization. This issue has been
widely investigated in the literature, and different approaches have been
proposed. We focus on the well known SYMMBK method proposed for
solving large scale symmetric possibly indefinite linear systems [3, 5, 7,
20], and show how to exploit it to yield an effective negative curvature
direction. The distinguishing feature of our proposal is that the com-
putation of such negative curvature direction is iteratively carried out,
without storing no more than a couple of additional vectors. The results
of a preliminary numerical experience are reported showing the reliability
of the novel approach we propose.

Keywords: Large scale unconstrained optimization, Newton–Krylov meth-
ods, Negative curvature directions, Second order critical points

1 Introduction

We focus on linesearch–based Newton–Krylov methods that are widely used for
solving large scale unconstrained optimization problems, namely to determine
a local minimizer of a twice continuously differentiable function f : Rn → R.
Given an initial guess x0 ∈ Rn, at each iteration of these methods, a new iterate
is generated according to the iterative scheme

xk+1 = xk + αkdk, (1)

where dk is a search direction and αk > 0 is a suited steplength. Since the search
direction is determined by means of an iterative Krylov–subspace method, actu-
ally a linesearch–based Newton–Krylov method encompasses two nested loops:
the outer iterations, where αk is computed by a linesearch procedure and starting
from the current iterate xk, a new iterate is generated according to the scheme



2 G. Fasano, C. Piermarini, M. Roma

(1); the inner iterations, namely the iterations of the iterative Krylov–subspace
method used for approximately solving the Newton equation

∇2f(xk)d = −∇f(xk). (2)

In Newton–Krylov methods (also called Truncated Newton methods) inner it-
erations are terminated according to a suited stopping criterion, still ensuring
superlinear converge rate [10, 11]. As concerns global convergence properties,
convergence to first order critical points (stationary points) is ensured, i.e. points
that satisfy first order necessary optimality conditions. For a complete overview
of these methods, we refer the reader to the survey paper [24].

Many machine learning problems can be tackled through the minimization of
non-convex functions on a given feasible set. Such problems can arise in training
neural networks, in low rank subspace clustering problems and in many other
contexts. For instance, Curtis and Robinson [8] present new frameworks for com-
bining descent and negative curvature directions in order to train deep neural
networks. Moreover, the use of negative curvature directions allows to avoid sad-
dle points due to the properties that algorithms inherit in terms of convergence
to second-order points (see, e.g., statistical physics, random matrix theory and
training multilayer perceptron networks [2, 6, 9]).

The use of negative curvature directions within (modified) Newton methods
dates back to the seminal papers [22] and [23]. These led to the development
of several methods based on a combination of a Newton–type direction dk and
a negative curvature direction, i.e. a direction sk such that s>k∇2f(xk)sk < 0,
where the iterative scheme (1) is replaced by

xk+1 = xk + α2
kdk + αksk, (3)

and αk is obtained by means of a curvilinear linesearch. The use of negative
curvature directions has a twofold importance. From the computational point
of view, a movement along a descent negative curvature direction allows the al-
gorithm to escape from regions of nonconvexity of the objective function. From
a theoretical point of view, the use of suited negative curvature directions en-
ables defining methods converging to second order critical points, i.e., points that
satisfy second order necessary optimality conditions, namely stationary points
where the Hessian matrix is positive semidefinite. Note that Newton–type meth-
ods based on trust region approach, naturally possess such convergence property
(see [7]). Linesearch–based methods converging to second order critical points
have been also proposed in the framework of nonmonotone methods [17] and
extended to large scale setting in [21]. Broadly speaking, to ensure this stronger
convergence property, the negative curvature direction must be a good approxi-
mation of an eigenvector of the Hessian matrix corresponding to the most neg-
ative eigenvalue. More precisely, the negative curvature direction sk is required
to be a bounded descent direction satisfying the following property:

s>k∇2f(xk)sk −→ 0 implies min
[
0, λmin

(
∇2f(xk)

)]
−→ 0, (4)



On the use of SYMMBK algorithm 3

where λmin

(
∇2f(xk)

)
is the smallest eigenvalue of the Hessian matrix ∇2f(xk).

Computing a direction sk satisfying (4) is a computationally expensive task.
Moreover, most of the strategies proposed in literature for computing negative
curvature directions satisfying (4) usually rely on matrix factorizations, that
are impracticable in the large scale setting. On the other hand, also iterative
methods usually adopted typically need to store a large matrix, hence they
are unsuited for handling large scale problems. This is the case of the method
proposed in [21], where the Lanczos process is used and the storage of a matrix
of the Lanczos vectors generated at each outer iteration is theoretically needed
to compute adequate negative curvature directions. The strategy adopted in [21]
consisting of imposing an upper bound on the number of the Lanczos vectors
stored, actually implies the loss of the theoretical property of converging to
second order critical points.

A different approach for computing suited negative curvature directions is
proposed in [18]. In this paper, based on the close relation between CG and
Lanczos methods, the Lanczos vectors are regenerated by rerunning the recur-
rence when needed. In this manner, matrix storage is avoided, but an additional
computational effort is required.

To our knowledge, the first attempt to iteratively compute negative curva-
ture directions satisfying (4) without requiring the storage of any large matrix
or rerunning the iterative process, is represented by the use of a planar CG algo-
rithm, as proposed in [16] (we refer the reader to the papers [12, 13] for a complete
description of the planar CG schemes). Besides providing a general theoretical
framework which guarantees convergence to second order critical points, in [16]
results of a preliminary numerical experience are reported showing that the pro-
posed approach is reliable and promising. However, we believe that there is still
need to further investigate how to determine effective negative curvature direc-
tions, to be used within truncated Newton methods. In particular, apart from
guaranteeing convergence toward second order critical points, the use of such
directions should improve the overall efficiency of the method and its capability
to detect better local minimizers.

Another issue worth investigating concerns how to combine a Newton–type
direction and a negative curvature direction taking into account their possible
different scaling. In [18], at each outer iteration, given a descent pair of direc-
tions (dk, sk), only one of the two directions (the most promising) is selected
and a suited linesearch is performed along the chosen direction. Following this
approach, in [14] a new truncated Newton method is proposed. On the same
guideline, in [25] the authors propose to consider three alternatives: to select one
of the two directions dk and sk, or possibly to make use of a combination of both
them. On the other hand, as studied in [1], it would be very beneficial to perform
a scaling process before combining the two directions. Finally, we mention the
recent paper [8] where a novel framework has been proposed for combining the
two directions, alternating two–step and dynamic step approaches. Following the
guidelines of the cited literature, we are aware that suitably selecting/combining
the Newton–type direction with a negative curvature represents a key point for



4 G. Fasano, C. Piermarini, M. Roma

improving both efficiency and effectiveness of an iterative method for large scale
non-convex optimization. In this regard, we have already considered the idea of
a preliminary general framework which possibly encompasses both selection and
combination of two search directions [15].

Nevertheless, in this short paper we prefer to uniquely focus on the iterative
computation of a novel theoretically sound negative curvature direction, to be
used within a curvilinear linesearch–based Newton–Krylov method. In partic-
ular, we refer to SYMMBK method for solving large scale symmetric possibly
indefinite linear systems [3, 5, 7, 20]. Such method has been recently successfully
adopted within truncated Newton methods for computing a gradient related
Newton–type direction [4]. More precisely, in this last paper a modified Bunch–
Kaufman factorization was adopted within SYMMBK algorithm for solving the
Newton equation, at each outer iteration. Indeed, the Bunch–Kaufman factoriza-
tion is an effective and stable matrix decomposition, but when used for solving
the Newton equation might provide a direction not gradient–related, if the ob-
jective function is nonconvex. The modification proposed in [4] enables obtaining
a direction that is also effective in practice. Hence the idea is to possibly use the
same procedure for obtaining also a negative curvature direction satisfying (4),
with minimal additional storage.

2 Computing negative curvature directions via
SYMMBK procedure

We briefly recall that the SYMMBK procedure basically relies on a couple of
relevant tools: the Lanczos iterative process and the Bunch–Kaufman decom-
position [3]. The first tool allows to transform the symmetric linear system (2),
where the matrix ∇2f(xk) is possibly indefinite, into the system of equalities{

Tkyk = ‖∇f(xk)‖e1
dk = Qkyk,

(5)

being Tk ∈ Rm×m tridiagonal and Qk ∈ Rn×m. In (5) the columns of the matrix
Qk are given by the m Lanczos vectors q1, . . . , qm (with qT` qi = 0 and ‖q`‖2 = 1,
being 1 ≤ ` 6= i ≤ m), after m inner iterations. Hence, the m Lanczos vectors
computed by the SYMMBK method yield

Qk =

(
q1

...
... qm

)
. (6)

We remark that at a given iterate xk, a relevant property of matrix Qk is evi-
denced by the next relation

Tk = QTk∇2f(xk)Qk. (7)

Conversely, the Bunch–Kaufman decomposition allows for an easy factorization
of the tridiagonal matrix Tk as in

Tk = SkBkS
T
k , (8)



On the use of SYMMBK algorithm 5

being Sk ∈ Rm×m a block unit lower triangular matrix, while the matrix Bk ∈
Rm×m is block diagonal with blocks of possible dimensions 1 × 1 or 2 × 2. By
(5), after m iterations of the Lanczos process, the vector dk is available and can
be used as a search direction within an optimization framework. Furthermore,
in [4] the authors slightly modified the pivot test within the Bunch–Kaufman
decomposition, so that the resulting vector dk was provably gradient–related.

Our main task here is represented by exploiting SYMMBK procedure, in
order to iteratively build an effective negative curvature direction sk ∈ Rn for
f(x) at xk, such that no more than a couple of n–dimensional vectors need to
be stored for its computation. This will provide a general matrix–free technique
to construct negative curvature directions in large scale settings. The vector sk
will be used to steer the convergence to a stationary point where the Hessian
matrix is positive semidefinite. As a more specific task, we technically address
a negative curvature direction sk such that the next properties are fulfilled (see
also (4)):

sTk∇f(xk) < 0 (9)

sTk∇2f(xk)sk < 0 (10)

sTk∇2f(xk)sk → 0 =⇒ min [0, λmin(∇2f(xk) )]→ 0. (11)

Given (2) and (8), let the vector w ∈ Rm be an eigenvector of the matrix Bk,
associated with a negative eigenvalue λ. Furthermore, assume that computing
the vector y ∈ Rm represents a relatively simple task, such that STk y = w. Then,
by (7) and (8) we obtain

(Qky)T∇2f(xk)(Qky) = yT
[
QTk∇2f(xk)Qk

]
y = yTTky = yTSkBkS

T
k y

= (STk y)TBk(STk y) = wTBkw = λ‖w‖22 < 0. (12)

Thus, the vector Qky represents a negative curvature direction for the function
f(x) at xk, and in the sequel we are committed to show the subsequent results:

– the vector sk = Qky is a direction satisfying (9)–(11);
– the vector sk = Qky can be efficiently (say iteratively) computed by exploit-

ing the (modified) SYMMBK procedure, without storing any matrix.

On this purpose we preliminary consider the next result, whose proof can be
easily obtained from Lemma 4.3 in [23] and Theorem 3.2 in [16].

Lemma 1. Suppose m = n iterations of the Lanczos process are performed by
SYMMBK when solving Newton’s equation (2) at iterate xk, for a given k ≥ 0,
so that the decompositions {

Tk = QTk∇2f(xk)Qk
Tk = SkBkS

T
k

(13)

are available. Then, Qk ∈ Rn×n is orthogonal and Tk ∈ Rn×n has the same
eigenvalues of ∇2f(xk); moreover, the matrices Sk ∈ Rn×n and Bk ∈ Rn×n are



6 G. Fasano, C. Piermarini, M. Roma

nonsingular. In addition, if w is a unit eigenvector corresponding to the smallest
(negative) eigenvalue λ of Bk, and ȳ is a (bounded) solution of the linear system
STk y = w, then the vector sk = Qkȳ is a bounded direction that satisfies (9)–(11).

Now, observe that the results in Lemma 1 assume that the Lanczos process
performs exactly n iterations to solve (2): this is definitely unaffordable for large
n. Hence, we need to generalize the contents in Lemma 1 to the case m < n.
Moreover, we highlight that to compute the vector ȳ in Lemma 1 we can recur
to Lemma 4.3 in [23]. In this regard, with the next lemma we intend to rephrase
Lemma 1 in order to weaken its outcomes.

Lemma 2. Suppose m < n iterations of the Lanczos process are performed by
SYMMBK when solving Newton’s equation (2) at iterate xk, for a given k ≥ 1,
so that the decompositions (13) are available. Then we have Qk ∈ Rn×m and
Tk ∈ Rm×m, along with the fact that the matrices Sk ∈ Rm×m and Bk ∈ Rm×m
are nonsingular. In addition, if w is a unit eigenvector corresponding to the
smallest (negative) eigenvalue λ of Bk, and ȳ is a (bounded) solution of the
linear system STk y = w, then the vector sk = Qkȳ is a bounded direction that
satisfies (9)–(10).

As a further result, Lemma 4.3 in [23] ensures that the outcomes in Lemma 1
can be easily generalized when the linear system STk y = w is replaced by

STk y =
∑

1≤i≤m : λi<0

wi, (14)

being wi an eigenvector of Bk corresponding to its negative eigenvalue λi. In
this regard, a couple of additional observations require our attention:

– computing all the unit eigenvectors of the matrix Bk may represent in gen-
eral an expensive task, so that we may limit our analysis to compute an
eigenvector associated to (one of) the smallest eigenvalues (namely λmin) of
Bk, then exploiting Lemma 1;

– the computation of λmin can be considerably simplified by exploiting a di-
agonalization of the matrix Bk.

3 Iterative computation of negative curvature directions

According with Lemma 1 and Lemma 2, the matrix Tk can be decomposed as
Tk = SkBkS

T
k , being Bk a 1× 1 or 2× 2 block diagonal matrix. After diagona-

lyzing Bk as in Bk = XkDkX
T
k , with Xk orthogonal, we obtain

Tk = SkXkDkX
T
k S

T
k = WkDkW

T
k , (15)

where

Wk
def
= SkXk =


W (1 1)

W (2 1) W (2 2)

· ·
· W (j−1 j−1)

W (j j−1) W (j j)

 , j ≥ 1. (16)



On the use of SYMMBK algorithm 7

Here the sizes (both rows and columns) of the sub–diagonal blocks W (i+1 i),
i ∈ {1, . . . , j− 1}, depend on the sizes of the diagonal blocks W (1 1), . . . ,W (j j).
Moreover, the diagonal blocks W (i+1 i+1) are orthogonal. Now, by combining
(13) and (15) we can compute a set of conjugate directions for the Hessian
matrix ∇2f(xk), being indeed

Tk = WkDkW
T
k = QTk∇2f(xk)Qk, (17)

so that
Dk = W−1k QTk∇2f(xk)QkW

−T
k = GTk∇2f(xk)Gk, (18)

where
Gk

def
= QkW

−T
k ∈ Rn×m. (19)

Since Dk is a diagonal matrix, by (19) the columns of Gk yield a set of m lin-
early independent (see also Proposition 2.1 of [12], for completeness) ∇2f(xk)-
conjugate directions which span the Krylov subspace K(∇2f(xk), q1,m). To ef-
ficiently compute the matrix Gk, let us define

Gk = (G1 G2 . . . Gj−1 Gj), (20)

being Gi an n× 1 or an n× 2 sub–matrix, for any 1 ≤ i ≤ j. Thus, we can now
re–write equation (19) as

GkW
T
k = Qk

def
= (Q1 Q2 . . . Qj−1 Qj), (21)

where each Qi, 1 ≤ i ≤ j, represents an n× 1 or an n× 2 matrix whose columns
are given by the Lanczos vectors. Hence, using the expression (16) for matrix
Wk, as well as the orthogonality of the blocks W (i i), 1 ≤ i ≤ j, we obtain from
(20) and (21)

Gi =

[
Qi −Gi−1

(
W (i i−1)

)T]
W (i i), 2 ≤ i ≤ j, (22)

with G1 = Q1W (1 1). Hence, we can efficiently and iteratively compute the
blocks {Gi}, whose columns represent mutually ∇2f(xk)–conjugate directions,
as long as the quantities {Qj},

{
W (i i−1)} and

{
W (i i)

}
are available (see also

Section 5.2.3 of [7]).

4 Theoretical property of negative curvature directions

Relations (22) indicate how to fully iteratively compute the matrix Gk in (19);
moreover, (18) indicates that the columns ofGk represent indeed a set of∇2f(xk)-
conjugate vectors. Now, let us define the vector

z =
∑

1≤j≤m : µj<0

ajG(j), (23)



8 G. Fasano, C. Piermarini, M. Roma

where µj represents the j-th eigenvalue of the diagonal matrix Dk, while G(j) is
the j-th column of Gk and aj ∈ R is such that∑

1≤j≤n : µj<0

a2jµj ≤ λmin [Dk]

[
min

1≤j≤n : µj<0
a2j

]
. (24)

Then, we set sk = z/‖z‖ and we can prove the next result (which can be suitably
generalized, through some algebra, to the case where m < n inner iterations are
performed).

Proposition 1. Assume that at xk the Hessian matrix ∇2f(xk) has at least
one negative eigenvalue. Let Gk ∈ Rn×n be the matrix in (19) after n inner
iterations, and let κ(Gk) denote the condition number of Gk. Assume aj, with
1 ≤ j ≤ n, is a set of real values satisfying (24). Then

sTk∇2f(xk)sk ≤
1

N · [κ(Gk)]2

 min
1≤j≤n : µj<0

a2j

max
1≤j≤n : µj<0

a2j

λmin

[
∇2f(xk)

]
, (25)

where N ≥ 1 represents the number of negative eigenvalues of ∇2f(xk), and
λmin

[
∇2f(xk)

]
is its smallest eigenvalue.

The last proposition evidences that in the case the Lanczos process performs
exactly n inner iterations within SYMMBK procedure, then a negative curvature
direction sk satisfying (9)–(11) can be easily available.

5 Numerical experiments

We performed a preliminary numerical testing in order to assess the reliability
of the approach detailed in this paper. We relied on the same optimization pro-
cedure proposed in [4]; in particular, to solve Newton’s equation we adopted the
HSL MI02 routine available from the HSL Mathematical Software Library [20],
in which the pivoting rule is modified as described in Section 3 of the afore-
mentioned paper [4] (we refer to this paper for any implementation details). We
embedded in this implementation the iterative computation of the negative cur-
vature direction, as described in the previous sections, requiring a small amount
of additional storage. We adopted the iterative scheme (3), where the steplength
αk is computed by the standard curvilinear linesearch procedure in [22], without
considering any sophisticated strategy for possibly choosing the most promising
between the two directions. This is motivated by the fact that we are mainly
interested here in assessing the reliability of the approach we proposed. In order
to address the well–known scaling problem, possibly occurring when combin-
ing a Newton–type (dk) and a negative curvature (sk) direction, we ignored sk
whenever its norm consistently differed from the norm of dk. More precisely, we
did not use sk when

‖sk‖ > η1 ‖dk‖ or ‖sk‖ < η2 ‖dk‖ ,



On the use of SYMMBK algorithm 9

where η1 > 0 and η2 > 0 are suited scalars. The rationale behind this choice is
suggested by recalling that both dk and sk are built using the same conjugate
directions, i.e. the columns of the matrix Gk in (19). It is a “brute force” rule
that we adopted in the spirit of this preliminary testing. More sophisticated
strategies could be certainly adopted and will be the subject of future work (see
also [15]). In our tests, we set η1 = 4 · 10 and η2 = 1/4 · 10−1.

The algorithm was tested on all the large scale unconstrained test problems
in the CUTEst collection [19], including both convex and nonconvex functions.
The resulting test bed consists of 111 test problems, whose dimension ranges
between 1,000 and 10,000. We report the results obtained in terms of the number
of outer iterations, number of function evaluations, number of inner iterations
and CPU time. Moreover, we monitored the optimal objective function values
obtained. A comparison is performed with an implementation ignoring at all
negative curvature directions. In particular, in Table 1 we report the number of
test problems in which the algorithm which uses negative curvatures performed
better, worse or equal to the benchmark algorithm. We defined specific tolerances

Table 1. Performance comparison (η1 = 4 · 10 and η2 = 1/4 · 10−1). E.g., the value
18 in the first row and fifth column implies that the algorithm which uses our negative
curvature direction achieves better (lower) local minima on 18 out of 111 test problems,
while reaching worse ones on 8 test problems.

Number of Number of Number of CPU Time Objective
outer iter. funct. eval. inner iter. (seconds) funct. value

Number of wins 23 14 26 10 18

Number of losses 21 30 20 14 8

Number of draws 67 67 65 87 85

when comparing the objective function value and CPU time. If the difference
between the performance of the two algorithms is within these tolerances, then
the comparison resulted in a draw. This aims at ensuring the significance of the
achieved results in terms of quality of the solutions and required time. We use
a tolerance of 0.01 between the objective function values and 1 second between
the CPU times.

By observing the last column of Table 1 we can appreciate the enhanced
capability of the algorithm which uses our negative curvature direction to achieve
better minima. This is a result of the fact that negative curvature directions
allow the algorithm to escape from flat zones or valleys where any standard
truncated–Newton method can get stuck into. As expected, the main downside of
our approach is the necessity to perform more function evaluations with respect
to the benchmark algorithm that ignores negative curvature directions (see the
second column of Table 1). This is mainly due to the use of the curvilinear
linesearch. This behaviour may result in a larger CPU time. Of course, the
test bed includes several problems where negative curvature directions are not
encountered, hence a large number of draws.



10 G. Fasano, C. Piermarini, M. Roma

Many further comparison runs were carried out, using different reasonable
threshold values, obtaining similar conclusions. As an example, we report in
Table 2 the results obtained by setting in our numerical experience η1 = 2 · 10
and η2 = 1/2 · 10−1. As it can be easily observed, these results show conclusions

Table 2. Performance comparison (η1 = 2 · 10 and η2 = 1/2 · 10−1).

Number of Number of Number of CPU Time Objective
outer iter. funct. eval. inner iter. (seconds) funct. value

Number of wins 21 13 23 10 15

Number of losses 22 31 23 16 5

Number of draws 68 67 65 85 91

similar to those for Table 1.

References

1. Avelino, C.P., Moguerza, J.M., Olivares, A., Prieto, F.J.: Combining and scaling
descent and negative curvature directions. Mathematical Programming 128, 285–
319 (2011)

2. Bray, A.J., Dean, D.S.: Statistics of critical points of Gaussian fields on large-
dimensional spaces. Physical review letters 98(15), 150,201 (2007)

3. Bunch, J., Kaufman, L.: Some stable methods for calculating inertia and solving
symmetric linear equations. Mathematics of Computations 31, 163–179 (1977)

4. Caliciotti, A., Fasano, G., Potra, F., Roma, M.: Issues on the use of a modified
Bunch and Kaufman decomposition for large scale Newton’s equation. Computa-
tional Optimization and Applications 77, 627—651 (2020)

5. Chandra, R.: Conjugate gradient methods for partial differential equations. Ph.D.
thesis, Yale University, New Haven (1978). Research Report 129

6. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss
surfaces of multilayer networks. In: Artificial intelligence and statistics, pp. 192–
204. PMLR (2015)

7. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust–region methods. MPS–SIAM Series
on Optimization, Philadelphia, PA (2000)

8. Curtis, F.E., Robinson, D.P.: Exploiting negative curvature in deterministic and
stochastic optimization. Mathematical Programming 176, 69–94 (2019)

9. Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing systems 27 (2014)

10. Dembo, R., Eisenstat, S., Steihaug, T.: Inexact Newton methods. SIAM Journal
on Numerical Analysis 19, 400–408 (1982)

11. Dembo, R., Steihaug, T.: Truncated-Newton algorithms for large-scale uncon-
strained optimization. Mathematical Programming 26, 190–212 (1983)

12. Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained op-
timization, Part 1: Theory. Journal of Optimization Theory and Applications 125,
523–541 (2005)



On the use of SYMMBK algorithm 11

13. Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained op-
timization, Part 2: Application. Journal of Optimization Theory and Applications
125, 543–558 (2005)

14. Fasano, G., Lucidi, S.: A nonmonotone truncated Newton–Krylov method exploit-
ing negative curvature directions, for large scale unconstrained optimization. Op-
timization Letters 3, 521–535 (2009)

15. Fasano, G., Piermarini, C., Roma, M.: Bridging the gap between trust–region
methods (TRMs) and linesearch based methods (LBMs) for nonlinear program-
ming: Quadratic sub–problems. Department of Management, Università Ca’Foscari
Venezia Working Paper (8) (2022)

16. Fasano, G., Roma, M.: Iterative computation of negative curvature directions in
large scale optimization. Computational Optimization and Applications 38, 81–104
(2007)

17. Ferris, M., Lucidi, S., Roma, M.: Nonmonotone curvilinear linesearch methods
for unconstrained optimization. Computational Optimization and Applications 6,
117–136 (1996)

18. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Exploiting negative curvature
directions in linesearch methods for unconstrained optimization. Optimization
methods and software 14, 75–98 (2000)

19. Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and unconstrained
testing environment with safe threads. Computational Optimization and Applica-
tions 60, 545–557 (2015)

20. HSL 2013: A collection of Fortran codes for large scale scientific computation. URL
http://www.hsl.rl.ac.uk/

21. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for trun-
cated Newton methods in large scale unconstrained optimization. SIAM Journal
on Optimization 8, 916–939 (1998)

22. McCormick, G.: A modification of Armijo’s step-size rule for negative curvature.
Mathematical Programming 13, 111–115 (1977)

23. Moré, J., Sorensen, D.: On the use of directions of negative curvature in a modified
Newton method. Mathematical Programming 16, 1–20 (1979)

24. Nash, S.: A survey of truncated-Newton methods. Journal of Computational and
Applied Mathematics 124, 45–59 (2000)

25. Olivares, A., Moguerza, J.M., Prieto, F.J.: Nonconvex optimization using negative
curvature within a modified linesearch. European Journal of Operational Research
189, 706–722 (2008)


