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Abstract

In this paper we propose two bias correction approaches in order to
reduce the prediction bias of the robust M-quantile predictors in small
area estimation in the presence of representative outliers. A Monte-
Carlo simulation study is conducted. Results confirm that our approaches
improve the efficiency and reduce the prediction bias of M-quantile predictors
when the population contains units that may be influential if selected in
the sample.
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1 Introduction

Outliers can arise frequently in sample surveys, for instance regarding economic
variables whose distribution are highly skewed the data distribution is highly
skewed. Some outliers are sample elements whose data values are recorded
incorrectly or are unique, consequently they can be can be somehow corrected
or removed. However, other outliers may not associated with an error: the
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sample values associated with these outliers have been correctly recorded and
they cannot be considered as unique. According to (Chambers, 1986) they
are ‘representative outliers’. Such outliers values are representative of the
non-sampled part of the population and they can seriously affect the survey
estimates. Consequently, several methods have been developed in order to
mitigate the effects of outliers on survey estimates. The representative outliers
are even more concerning in the small area estimation (SAE) context, where
sample sizes are very small and the estimation is often model-based Chambers
et al. (2014). Robust small area estimation has received considerable attention
in last years. Among other, Chambers and Tzavidis (2006) propose a robust
approach based on the M-quantile regression aiming at overcoming the issue of
outliers by avoiding the normal assumption. Sinha and Rao (2009) addressed
the same issue from the perspective of linear mixed models. However, these
approaches use plug-in robust prediction replacing parameter estimates in optimal
but outlier-sensitive predictors by outlier robust versions and they may introduce
a prediction biases. Dongmo-Jiongo et al. (2013) and Chambers et al. (2014)
proposed a bias correction method for models with continuous response variables.
The main aim of this work is to propose general bias correction methods to
reduce the prediction bias of the robust M-quantile predictors in SAE in the
presence of outliers. Two approaches are studied. The first estimator is a
unified approach to M-quantile predictors based on a full bias correction and it
could be viewed as a generalization of Chambers (1986). The second proposal
is developed following the conditional bias approach by Beaumont et al. (2013)
and Dongmo-Jiongo et al. (2013).

2 Bias corrected M-quantile-based estimator

Let θi be a finite population parameter for area i. That is, θi is a well-defined
function of the values of a random variable Y associated with the Ni elements of
such a small area finite population of interest. For ease of notation, we assume
that both Y and θi are scalar, and we denote

θi = f(yUi
),

where yUi denotes the vector of population values of Y for small area i and
f is a known function. A basic sample survey inference problem is then one
of predicting the value of θi give a sample of n < N values from yU . Without
loss of generality we put ys equal to the population sub-vector defined by these
values, where s denotes the set of sampled population units. We define (i) yUi

vector of population values of Y for area i with U =
⋃m
i=1 Ui with m is the

number of small areas; (ii) ysi vector of sampled population values in small
area i with s =

⋃m
i=1 si. Suppose that, given ysi we can impute the remaining

values ŷUi
denote this imputed vector. A popular method of predicting the

unobserved value of θi is via the Plug-In Predictor (PIP)
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θ̂i = f(ŷUi). (1)

Adopting a model-based approach, the empirical PIP for θi based on this
plug-in approximation is

θ̂i = f(ysi , {ŷoptij ; j ∈ Ui − si}) (2)

where the set Ui − si contains the Ni − ni indices of the non-sampled units,
ŷoptij = E[yij |ys; δ = δ̂] is the plug-in approximation of the minimum mean

squared error predictor (MMSEP) of yoptij for a non-sampled population unit j
for area i, and δ is a vector of unkown parameters. The above PIP (2) for small
area can be also computed using the M-quantile approach. It can be obtained by
using the estimated regression coefficients by M-quantile approach, β̂τ , leading
to

θ̂MQ
i = f

(
ysi , {g−1(xTijβ̂τi); j ∈ Ui − si}

)
, (3)

where τi represents the order of M-quantile for area i. Its computation varies
depending on the type of the data.

We propose two small area estimators based on Generalised version of M-
quantile regression models.

The first estimator is a unified approach to M-quantile predictors based on a
full bias correction. Following Chambers (1986), the first order approximation

to the prediction bias of θ̂MQ
i is

E[θ̂MQ
i −θi] '

∑

j 6∈si

( ∂f

∂yij

)
yUi

=mUi

E[ŷij−yij ] '
∑

i∈rj

( ∂f

∂yij

)
yU=m̂Uq̄j

(∂g−1

∂η

)
η=xT

ij β̂q̄j

xTijE[β̂q−βq],

The bias corrected robust predictor MQC for the population average of Y
in the ith area will be:

θMQC
i = N−1

i

(∑

j∈si
yij +

∑

j∈ri
µ̂ij +

∑

j∈ri

( ∂f

∂yij

)
yU=m̂Uq̄j

(∂g−1

∂η

)
η=xT

ij β̂q̄j

xTijB̂i

)
(4)

where djhq̄j = 2 {q̄jI(rhj > 0) + (1− q̄j)I(rhj ≤ 0)} and B̂i has to be computed
depending of the type of the response variable. If yij is continuous

B̂i =




m∑

h=1

∑

j∈sh

xhj d̂hjx
T
hj



−1

m∑

h=1

∑

j∈sh

xhj d̂hj σ̂hjφ

{
yhj − xTijβ̂τi

σ̂hj

}
. (5)

The second proposal is developed following the conditional bias approach
by Beaumont et al. (2013) and Dongmo-Jiongo et al. (2013). In a model based
approach, the conditional bias attached to unit ij is

Bij = E[θ̂ − θ|s;Yij = yij ].

The prediction error θ̂i − θi can be approximated as:
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θ̂i − θi '
∑

j∈ri
Bij(Iij = 0) +

∑

j∈si
Bij(Iij = 1). (6)

To determine the conditional bias, we need to distinguish two cases, whether
the unit belongs to the sample or not. The main problem is that the conditional
bias of a non-sampled unit can’t be estimated since it depends on the Y -values
on the non-sample units, which are not observed. A robust predictor of the
mean in the ith area can be expressed as

N−1
i

(∑

j∈si
yij +

∑

j∈ri
g−1(xTijβ)−

∑

j∈si
Bij(Iij = 1) + φ

{∑

j∈si
Bij(Iij = 1)

})

where φ is the Huber function. Translating the idea for MQ we have:

θMQD
i = N−1

i


∑

j∈si
yij +

∑

j∈ri
g−1(xTijβq̄j )−

m∑

h=1

∑

j∈sh

B̂jh(Ijh = 1) + φ





m∑

h=1

∑

j∈sh

B̂jh(Ijh = 1)






 .

(7)

The φ-function in MQD depends on a tuning constant c. Using min-max
method to compute the optimal tuning constant we obtain

θMQD
i = N−1

i

(∑

j∈si
yij +

∑

j∈ri
g−1(xTijβq̄j )− 1

2
(min {Bjh(Ijh = 1)}+max {Bjh(Ijh = 1)})

)

(8)

where the conditional bias for unit j has to be computed depending of the
type of the response variable. If yij is a continuous

B̂hj(Ihj = 1) =
∑

i/∈si

xTij





m∑

h=1

∑

j∈sh

xhj d̂hjx
T
hj





−1

d̂hjxhj(yhj − xThjβ̂τi). (9)

3 Model-based simulations

In this section, we provide results regarding model-based simulation scenarios
for continuous variables. We use a simulation setup based on Chambers et al.
(2014). We consider the following outcome model for generating the finite
population for m = 40 small areas:

yij = 100 + 5xij + ui + εij ,

where i refers to the areas and j to the population units. Values for x
are generated as i.i.d. from a lognormal distribution with a mean of 1 and a
standard deviation of 0.5 on the log scale. The area and individual random
effects are independently generated according to the following scenarios:

a) [0,0,0] - no outliers, u ∼ N(0, 3) and e ∼ N(0, 6);
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b) [e,u,0] - outliers in area (fixed) and individual effects, u ∼ N(0, 3) for areas
1–36, u ∼ N(9, 20) for areas 37–40 and e ∼ δN(0, 6) + (1− δ)N(20, 150).

The sample data are selected by a simple random sampling without replacement
within each area. The population and sample size are the same for all areas and
are fixed at Ni = 100 and ni = 5.

Each scenario is independently simulated 1000 times. The parameter of
interest is the population mean in each small area. Nine different estimators are
used for this purpose: the M-quantile estimator MQ by (Chambers and Tzavidis,
2006) which serves as a reference for the MQ regression based estimators, the
bias corrected M-quantile estimator MQBC by (Chambers et al., 2014), the M-
quantile estimator based on full bias correction MQC (see equation (4)), the
M-quantile estimator based on conditional bias correction MQD (see equation
(8)),the standard EBLUP which serves as a reference for all the considered
estimators, the robust eblup REBPLUP by (Sinha and Rao, 2009) and its
robust bias corrected version REBLUP–BC by (Chambers et al., 2014), the
CBEBLUP and CEBLUP predictorS by (Dongmo-Jiongo et al., 2013). The
influence function φ that is used in MQBC, MQC, REBLUP BC, CBEBLUP
and CEBLUP is a Huber proposal 2 type. For each estimator, we test three
different tuning constant for the bias correction part equal to 3, 6 and 9. The
performance of the proposed indicators is evaluated according to min-max plots
(Figure 1). The values on the x-axis and y−axis on plots are:

AbsRBias =
Median[AbsB(θki)]−min{Median[AbsB(Θi)]}

max{Median[AbsB(Θi)]} −min{Median[AbsB(Θi)]}
and

RRMSE =
Median[RRMSE(θki)]−min{Median[RRMSE(Θi)]}

max{Median[RRMSE(Θi)]} −min{Median[RRMSE(Θi)]}
,

where θki is the kth estimator in the ith area and Θi is the vector all K
predictors in area i.

(a) (0,0,0) (b) (e,u,0)

Figure 1: Min-Max plots for MQ, MQBC, MQC, MQD, EBLUP, REBLUP,
REBLUP BC, CBEBLUP and CEBLUP under selected simulation scenarios.
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Results confirm our expectations regarding the behaviour of the MQC and
MQD estimators. With respect to MQ estimator, the new proposed estimators
reduce the bias in the presence of outliers.
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Abstract

In the last years one could see increasing methodological research and
applications of multivariate Fay-Herriot (MFH) models. The models al-
low for various structures of random effects and sampling variances and
can further improve the quality of the model-based predictions. In ap-
plications to real data, however, MFH models can suffer from partially
missing direct estimates of the variables of interest. This can frequently
occur when considering direct estimates from different survey or differ-
ent points in time as dependent variables. Burgard et al. (2021b, 2019)
introduce a variant of the bivariate Fay-Herriot model which allows for
partially missing direct estimates. They present parameter estimation
(ML and REML), derive (empirical) best predictors and approximations
to the corresponding MSE for the new model. We extend their work on
bivariate models to arbitrary multivariate models and missing structures
of the variables of interest, conduct simulation studies, and give an appli-
cation to publicly available data from the American Community Survey
(ACS).

Keywords— area-level models, multivariate models, small area estimation,
missing values

1 The multivariate FH model

For fine regional and demographic domains, direct survey estimates can be as-
sociated with high variability due to small sample sizes. Model-based small
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area estimation (SAE) techniques facilitate to increase the effective sample size
of domain-level direct estimates by combining similar domains in a common
model-based framework; a procedure which is referred to as borrowing strength.
A comprehensive overview of SAE techniques is given in Rao and Molina (2015)
and Morales et al. (2021). There are two main types of model-based small area
estimation techniques, unit- and area-level models. In the small area context
their variants are often referred to as Battese-Harter Fuller (BHF) and Fay-
Herriot (FH) models respectively, following the works of Battese et al. (1988)
and Fay and Herriot (1979). Even though area-level models do not directly
use unit-level sampling information, but only aggregate domain statistics, there
are a number of reasons for their use, several of them listed in Morales et al.
(2021, Chapter 16). For non-linear statistics, the auxiliary information have
to be available for the entire target population at the unit-level. This is often
not given or leads to the fact that valuable but only aggregated auxiliary in-
formation cannot be used. Furthermore, researchers often do not get access to
unit-level information on fine regional and demographic levels, but only aggre-
gate statistics.

In the class of area-level small area models, multivariate Fay-Herriot (MFH)
models have received more attention in recent years. With MFH models several
variables of interest are modelled simultaneously, additionally profiting from the
correlation structure between them. One can model one statistic over different
points in time or several statistics from the same survey together. The possibil-
ity of using additional information from the same survey for SAE motivated Fay
(1987) to propose a multivariate version of the FH model. He applied the model
to estimate the median income of three-, four-, and five-person households in
the U.S. Current Population Survey (CPS). The structure of the MFH model
accounts for covariances of the sampling errors which is especially necessary
when considering variables of interest from the same survey. Even when one is
interested in one variable alone, the multivariate modeling can further increase
the precision of each variable of interest when the variables are sufficiently cor-
related. Thus, MFH models facilitate to include further variables of interest as
well as (estimated) auxiliary information for which sampling error covariances
can be estimated. Further early work with MFH models is given in Datta et al.
(1991) and Datta et al. (1999). To name a few applications of the MFH model,
in the context of poverty estimation it is applied in Huang and Bell (2004) with
further studies in Huang and Bell (2006), Morales et al. (2015), Porter et al.
(2015), Benavent and Morales (2016), Arima et al. (2017), Ubaidillah et al.
(2019), Benavent and Morales (2021), and Burgard et al. (2021a). We refer to
Benavent and Morales (2016) for a general description of the MFH model and
its parameter estimation.

2 Partially missing information

Especially when using data from different sources it can frequently occur that in-
formation which is needed for modeling is partially missing. Area-level informa-
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tion can be partially missing when the domains of interest are not incorporated
in the sampling design (via stratification) and thus - by chance - domain-specific
sample sizes can be zero such that no direct estimate can be computed. Fur-
thermore, statistical agencies usually only publish aggregate statistics for which
a statistic of the variation, e.g. the standard error or the coefficient of variation,
does not exceed a certain threshold. Molina and Marhuenda (2015) recall that
in official statistics the threshold for the coefficient of variation is usually set to
20%. In addition to that, for disclosure control statistical agencies set minimum
cell counts for the publication of frequency tables, see Hundepool et al. (2010)
for an overview. The previously mentioned reasons can lead to missing values
both in the variables of interest and auxiliary data. Partially missing auxil-
iary data can be imputed. Then, however, the associated measurement errors
should be considered in the FH model. The use of partially-imputed auxiliary
information motivated Lohr and Ybarra (2002) to investigate an extension of
the FH model to measurement errors, known as the measurement error model
which is published in Ybarra and Lohr (2008). The model is extended in Bur-
gard et al. (2021a) to bivariate FH models and a bivariate normal distribution
of measurement errors.

Next to the auxiliary data, also the direct estimates of interest may be par-
tially missing. Then, a multivariate - or a corresponding univariate - FH model
can only be applied to the domains with full information. Using a model fit on
domains with complete data, synthetic predictions can be calculated for domains
with missing direct estimates, see e.g. Morales et al. (2021, Chapter 16).

Let there be D domains and m > 1 dependent variables. Then, we can
partition the set of domains in subsets D0 = {1, . . . , D0} and D1 = {D0 +
1, . . . , D}, where D0 < D, such that if the vector of the m direct estimates yd
is completely observed d ∈ D0 and if at least one entry of yd is not observed
d ∈ D1. Parameters β, i.e. the fixed effects of the model, and θ, i.e. the
variance parameters of the model, can be estimated based on information from
D0 via maximum likelihood (ML) or restricted maximum likelihood (REML).
The synthetic predictor of the characteristic of interest µd is given by

µ̂synd = Xdβ̂, d = 1, . . . , D, (1)

where Xd is the matrix of auxiliary information for domain d. For domains
with missing direct estimates the mean squared error of the synthetic predictor
can be approximated by

MSE(µ̂synd ) ≈ Xd(X
⊤
0 V −1

0 X0)
−1X⊤

d + Vud, ∀d ∈ D1, (2)

where quantities X0 and V0 are defined solely based on data from D0, compare
Morales et al. (2021, 441–442). The MSE can be estimated by plugging in θ̂ for
θ.

Applying the MFH model only to the domains with complete information,
however, is unsatisfactory. The estimation of the parameters (apart from the
correlation of the random effects) can be worse than with the corresponding
univariate FH models. This occurs when there are only few domains for which
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no observation is missing and when the missing pattern is heterogeneous across
domains. On the other hand, the univariate FH model ignores the correlation
of the variables of interest, thereby only using part of the available informa-
tion. Furthermore, the synthetic predictor is not considering the information
of other domain-specific direct estimates in a domain which could give valuable
information for the prediction of the missing values.

3 The multivariate FH model under partially
missing information

Burgard et al. (2021b, 2019) introduce a bivariate Fay-Herriot model under
partially missing direct estimates of the dependent variables, called missing data
BFH (MBFH) model. They give ML and REML fitting algorithms to estimate
model parameters. Furthermore, they introduce empirical best predictors of
target values and derive approximations to the mean squared error. For the
bivariate case Burgard et al. (2021b, 2019) allow some of the direct estimates
ydk, k = 1, 2, to be missing. By setting yd̄1 = (yd1, 0)

⊤ and yd̄2 = (0, yd2)
⊤,

three groups of domains can be distinguished:

D1 = {d ∈ N : 1 ≤ d ≤ D1} containing the D1 domains where only yd1 is
observed.

D2 = {d ∈ N : D1 + 1 ≤ d ≤ D1 +D2} containing the D2 domains where
only yd2 is observed.

D3 = {d ∈ N : D1 +D2 + 1 ≤ d ≤ D} containing the remaining domains
with fully observed yd = (yd1, yd2)

′.

The best predictor (BP) of ud under the MFH model, exemplary shown for
domains in D1, is given by

ûbpd = E[ud|yd] = Φd1

(
σ−2
ed1 0
0 0

)
(yd̄1 −Xdβ), d ∈ D1 (3)

with

Φd1 =

[(
σ−2
ed1 0
0 0

)
+ V −1

ud

]−1

. (4)

By considering the partially-missing direct estimates in (3), domain-specific best
predictions of random effects can be given, also for the missing direct estimates.
This is a significant advantage of the MBFH model compared to the synthetic
predictions which could else-wise only be calculated for missing values in a FH
or MFH model.

We extend the model introduced in Burgard et al. (2021b, 2019) to multivari-
ate dependent variables, derive empirical best predictors of domain parameters
and approximations to the mean squared error. The derived algorithms are
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