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A highly scalable method for (non-)Gaussian random fields estimation is proposed. In particular, 
a novel (a) symmetric weight function based on nearest neighbors for the method of maximum 
weighted composite likelihood based on pairs (WCLP) is studied.

The new weight function allows estimating massive (up to millions) spatial datasets and improves 
the statistical efficiency of the WCLP method using symmetric weights based on distances, as 
shown in the numerical examples.

As an application of the proposed method, the estimation of a novel non-Gaussian random 
field named Tukey-ℎℎ random field that has flexible marginal distributions (possibly skewed 
and/or heavy-tailed) is considered. In an extensive simulation study the statistical efficiency of 
the proposed nearest neighbors WCLP method with respect to the WCLP method using weights 
based on distances is explored when estimating the parameters of the Tukey-ℎℎ random field. 
In the Gaussian case the proposed method is compared with the Vecchia approximation from 
computational and statistical viewpoints. Finally, the effectiveness of the proposed methodology 
is illustrated by estimating a large dataset of mean temperatures in South-America. The proposed 
methodology has been implemented in an open-source package for the R statistical environment.

1. Introduction

Many applications of statistics across a wide range of disciplines rely on the estimation of the spatial dependence of a physical 
process based on irregularly spaced observations and then predict the process at some unknown spatial locations. Gaussian random 
fields (RFs) are among the most popular tools for analyzing data in spatial statistics (Banerjee et al., 2004; Cressie and Wikle, 2011; 
Stein, 1999) and several other disciplines, such as machine learning and image analysis, as well as in other branches of applied 
mathematics including numerical analysis and interpolation theory.
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Unfortunately, practical use of Gaussian RFs has two potential problems. The first problem is from a computational viewpoint. 
The estimation of Gaussian RFs with the maximum likelihood (ML) method involves 𝑂(𝑛3) operations and 𝑂(𝑛2) memory storage, if 
𝑛 is the number of location sites, which can be computationally impractical when 𝑛 is only moderately large. This fact motivates the 
search for estimation methods with a good balance between statistical efficiency and computational complexity. Different estimation 
methods have been proposed in the recent years to deal with this goal. Among them methods based on low rank structure on the 
covariance matrix (Banerjee et al., 2008; Cressie and Johannesson, 2008; Stein, 2008), based on tapered covariance matrix (Furrer et 
al., 2013; Kaufman et al., 2008; Stein, 2013), based on composite likelihood (Bevilacqua and Gaetan, 2015; Eidsvik et al., 2014; Varin 
et al., 2011), based on approximation using Markov Gaussian RFs (Lindgren et al., 2011) based on multiresolution approximations 
(Katzfuss, 2017; Katzfuss and Gong, 2020) to name just a few. A general framework that includes several proposals based on Vecchia 
approximation (Vecchia, 1988) has recently been proposed in Katzfuss and Guinness (2021). For an extensive review see Heaton et 
al. (2019) and the references therein.

The second problem is from a modeling viewpoint. Indeed, in many geostatistical applications, including climatology, oceanog-

raphy, the environment and the study of natural resources, the Gaussian framework is unrealistic because the observed data have 
specific features such as asymmetry and/or heavy tails. One popular approach for modeling this kind of data is the hierarchical 
model proposed by Diggle et al. (1998) that can be viewed as a generalized linear mixed model (Diggle and Ribeiro, 2007; Diggle 
and Giorgi, 2019). Under this framework, non-Gaussian models for spatial data can be specified using a link function and a latent 
Gaussian RF through a conditionally independent assumption. However, this kind of construction has some drawbacks. For instance 
the underlying conditional independence assumption leads to a “forced” nugget effect (Gelfand and Schliep, 2016) that is a dis-

continuity at the origin of the associated covariance function and this can be troublesome when modeling spatial data displaying 
some kind of continuity. A scalable method of estimation for this kind of models based on the Vecchia-Laplace approximation has 
been proposed in Zilber and Katzfuss (2021). Wallin and Bolin (2015) proposed non-Gaussian RFs derived from stochastic partial 
differential equations to model non-Gaussian spatial data. However, this approach is restricted to the Matérn covariance model with 
an integer smoothness parameter and its statistical properties are much less understood than those of Gaussian RFs.

A very flexible class of non-Gaussian RFs that solve these potential drawbacks can be obtained through a suitable transformation of 
one or independent copies of (transformed) Gaussian RFs sharing a common correlation function. Specifically, let 𝑍 = {𝑍(𝒔), 𝒔 ∈ 𝐴}, 
𝐴 ⊂ IR𝑑 a Gaussian RF and let 𝑌 = {𝑌 (𝒔), 𝒔 ∈ 𝐴} a RF defined through the transformation

𝑌 (𝒔) = 𝑓 (𝑔1(𝑍1(𝒔)), 𝑔2(𝑍2(𝒔)), .....𝑔𝑞(𝑍𝑞(𝒔))), 𝑞 ≥ 1, (1)

where 𝑍1, … , 𝑍𝑞 , are independent copies of 𝑍 and 𝑓 ∶ IR𝑞 → IR and 𝑔1, … , 𝑔𝑞 with 𝑔𝑖 ∶ IR→ IR are suitable functions. The class (1)

includes several examples of non-Gaussian RFs proposed in the literature such us Bernoulli RFs (Heagerty and Lele, 1998), skew-

Gaussian RFs (Zhang and El-Shaarawi, 2010), Tukey 𝑔 − ℎ RFs Xua and Genton (2017), Student-𝑡 RFs (Bevilacqua et al., 2021), 
Two Piece RFs (Bevilacqua et al., 2022a), Weibull RFs (Bevilacqua et al., 2020) or Poisson RFs (Morales-Navarrete et al., 2022) to 
mention just a few. In addition, the so-called class of trans-Gaussian RFs (see for instance DeOliveira et al. (1997) and Allcroft and 
Glasbey (2003)) or the general class of non-Gaussian-RFs based on Gaussian Copula (Kazianka and Pilz, 2010; Masarotto and Varin, 
2012; Gräler, 2014) and chi-square Copula (Bárdossy, 2006) belong to the class (1). The general class of non-Gaussian RFs in (1) is 
a convenient approach since geometrical properties such as mean square continuity and differentiability can be inherited from the 
underlying Gaussian RF by using flexible correlation models such as the Matérn (Stein, 1999) of the generalized Wendland model 
(Bevilacqua et al., 2019).

When estimating non-Gaussian RFs such as those belonging to class (1), the computational complexity can be even harder than 
the Gaussian case, depending on the type of transformation involved. If the non-Gaussian RF is obtained through a monotonic 
transformation of a Gaussian RF (𝑞 = 1) and, the inverse transformation has a closed form, then the computation of the multivariate 
density requires, as in the Gaussian case, 𝑂(𝑛3) operations and 𝑂(𝑛2) memory storage. Some notable examples are Log-Gaussian RFs 
(Oliveira, 2006) or the class of Gaussian copula RFs (Kazianka and Pilz, 2010; Masarotto and Varin, 2012) or the sinh-arcsinh RFs 
proposed in Yan et al. (2020) and Blasi et al. (2022). If the transformation is not monotonic and/or involves independent copies 
of (transformed) Gaussian RFs then the associated multivariate distribution can be computationally prohibitive even for a small 𝑛. 
For instance ML estimation of the skew-Gaussian RF proposed in Zhang and El-Shaarawi (2010) requires computation of order 
𝑂(2𝑛−1). Another notable example is the ML estimation of the Bernoulli RFs proposed in Heagerty and Lele (1998). In this case the 
transformation is not continuous and the likelihood evaluation requires computation of 2𝑛−1, 𝑛-dimensional normal integrals. In other 
cases the likelihood is completely unknown as, for instance, in the 𝑡 RFs proposed in Bevilacqua et al. (2021) or the Poisson RF in 
Morales-Navarrete et al. (2022)

To address the abovementioned computational problem we consider the method of composite likelihood (CL) (Lindsay, 1988; 
Varin et al., 2011). CL is a general class of objective functions based on the likelihood of marginal or conditional events that has 
been successfully applied in the recent years when estimating (non-) Gaussian RFs. For instance, in the Gaussian case, Bevilacqua and 
Gaetan (2015) considered a weighted composite likelihood based on pairs (WCLP hereafter) while Eidsvik et al. (2014) developed a 
block composite likelihood in a vein similar to Caragea and Smith (2006). Furthermore, the methods proposed, for instance, in Stein 
et al. (2004) or Guinness (2018), based on Vecchia approximation (Vecchia, 1988), can be viewed as CL methods.

A benefit of using WCLP with respect to other types of CL methods is that in some complex non-Gaussian RFs as those belonging 
to class (1), the multivariate distribution is unknown and/or difficult to compute but the bivariate density is known and relatively 
simply to evaluate as for instance in the aforementioned Bernoulli, 𝑡, Poisson and skew-Gaussian RFs. In this case, estimation with 
2

other types of CL, such as the CL based on independent blocks, is troublesome. As a consequence, WCLP estimation has a broader 
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applicability than other types of CL and can be performed as long as the bivariate of the non-Gaussian RFs can be evaluated. For this 
reason hereafter, we focus on WCLP.

The contribution of this paper is twofold. First, a novel asymmetric weight function based on nearest neighbors is proposed for the 
weights involved in the WCLP estimation method. The main benefits of the proposed nearest neighbors WCLP (NNWCLP hereafter) 
method are as follows: 1) it improves the statistical efficiency of the WCLP method that uses a symmetric weight function based on 
distances (DDWCLP hereafter) as proposed for instance in Heagerty and Lele (1998); Varin and Vidoni (2005); Bai et al. (2014); Feng 
et al. (2014); Bevilacqua and Gaetan (2015) and 2) it allows performing estimation of massive datasets (up to millions) since kd-tree 
algorithms (Bentley, 1975; Arya et al., 1998) can be exploited to achieve an objective function requiring 𝑂(𝑛𝑚) time complexity, 
where 𝑚 is the order of nearest neighbors involved, and 𝑂(𝑛) memory storage.

The second contribution is a novel non-Gaussian RF that has flexible marginal distributions, possibly skewed and/or heavy-tailed. 
Our proposal falls into class (1) and is similar to Tukey-𝑔ℎ RFs proposed in Xua and Genton (2017) which is based on a generalization 
of a RF with Tukey-ℎ marginals (Goerg, 2015). The benefit of our transformation with respect to the Tukey-𝑔ℎ transformation is to 
possess an explicit inverse, and as a consequence, likelihood-based methods can be readily applied. We provide analytic expressions 
for the covariance function and for the multivariate probability density function of the proposed Tukey-ℎℎ The evaluation of the 
multivariate 𝑝𝑑𝑓 , as in the Gaussian case, is computationally expensive for massive datasets. However the bivariate distribution can 
be easily evaluated and, as a consequence, the NNWCLP method is a suitable estimation tool for this kind of model.

In an extensive simulation study we compare the NNWCLP method versus the DDWCLP method when estimating the parameters 
of the Tukey-ℎℎ RF. It turns out that the NNWCLP method clearly outperforms DDWCLP from a statistical efficiency viewpoint. Then 
we compare the NNWCLP method with the standard maximum likelihood method. In the purely Gaussian case we also compare the 
NNWCLP method with some recent improvements (Katzfuss and Guinness, 2021; Guinness, 2021) of Vecchia approximation method 
originally proposed in Vecchia (1988). It turns out that the proposed method shows a reasonable loss of statistical efficiency with 
the Vecchia method and, at the same time, a substantial gain in terms of computational time.

Finally we apply the proposed methodology by analyzing a large geo-referenced dataset (approximatively 360,000 data) from the 
ERA5-Land dataset (Muñoz Sabater et al., 2021) of the mean temperature over the first two months of 2020 in South America.

The methodology considered in this paper has been implemented in the GeoModels R package (Bevilacqua et al., 2023) and R 
code for reproducing the work is available as an online supplement. We want to stress that this paper has been motivated by the 
first and second “Competition on Spatial Statistics for Large Datasets” (Huang et al., 2021; Abdulah et al., 2022) organized by King 
Abdullah University of Science and Technology (KAUST). In both competitions the analysis has been performed using the GeoModels
package achieving very competitive results. For instance, the GeoModels team reached the second position in the competition for large 
spatial datasets (Abdulah et al., 2022).

The remainder of the paper is organized as follows. In Section 2 we review the WCLP estimation method and we introduce the 
proposed weight function based on nearest neighbors. In Section 3 we introduce the Tukey-ℎℎ RFs and provide analytic expressions 
for the correlation function and the bivariate and multivariate distributions. In Section 4, we present an extensive simulation study 
to investigate the computational and statistical performance of the NNWCLP method. In Section 5, we present the analysis of the 
mean temperature data. Finally, in Section 6, we provide some conclusions. All the proofs have been deferred to the Appendix.

2. Nearest neighbors weighted composite likelihood estimation based on pairs

For the rest of the paper, given an RF 𝑍 = {𝑍(𝒔), 𝒔 ∈ 𝐴} defined on 𝐴 ⊂ IR𝑑 , with IE(𝑍(𝒔)) = 𝜇(𝒔) and 𝑉 𝑎𝑟(𝑍(𝒔)) = 𝜎2, we denote by 
𝜌𝑍 (𝒅) = 𝐶𝑜𝑟𝑟(𝑍(𝒔𝑖), 𝑍(𝒔𝑗 )) its correlation function, where 𝒅 = 𝒔𝑖 − 𝒔𝑗 is the lag separation vector.

For any set of distinct points (𝒔1, … , 𝒔𝑛)𝑇 , 𝒔𝑖 ∈ 𝐴, 𝑛 ∈ , we denote by 𝒁 𝑖𝑗 = (𝑍(𝒔𝑖), 𝑍(𝒔𝑗 ))𝑇 , 𝑖 ≠ 𝑗 and 𝑍𝑖∣𝑗 = 𝑍(𝒔𝑖) ∣ 𝑍(𝒔𝑗 ) = 𝑧𝑗 the 
bivariate random vector and the conditional random variable respectively and we denote by 𝒁 = (𝑍(𝒔1), … , 𝑍(𝒔𝑛))𝑇 the multivariate 
random vector. In addition, we denote with 𝑓𝒁𝑖𝑗

, 𝑓𝑍𝑖∣𝑗
and 𝑓𝒁 the associated probability density functions and we denote 𝑓𝑍𝑘

as the 
marginal density function of 𝑍(𝒔𝑘). Finally, we denote 𝑍∗ as the standardized RF, 𝑖.𝑒., 𝑍∗(𝒔) ∶= (𝑍(𝒔) − 𝜇(𝒔))∕𝜎.

Following Varin et al. (2011) and Lindsay (1988) consider a random vector 𝒁 with 𝑝𝑑𝑓 𝑓𝒁 (𝑧; 𝜽) for some unknown parameter 
vector 𝜽. Denote by {𝐵1, … , 𝐵𝐾} a set of marginal or conditional events with associated log-likelihood 𝑙𝑘(𝑧; 𝜽) = 𝑙𝑜𝑔(𝑓𝒁 (𝑧 ∈ 𝐵𝑘, 𝜽)), 
𝑘 = 1, … , 𝐾 . The log-CL is an objective function defined as a sum of 𝐾 sub-log-likelihoods

𝐶𝐿(𝜽) =
𝐾∑

𝑘=1
𝑙𝑘(𝑧;𝜽)𝑤𝑘, (2)

where 𝑤𝑘 are suitable weights that do not depend on 𝜽. The maximum CL estimate is given by 𝜽̂ = argmax𝜽 𝐶𝐿(𝜽).
The WCLP estimation method (Bevilacqua and Gaetan, 2015) is a special case of (2) obtained by setting 𝐵𝑘 =𝒁 𝑖𝑗 or 𝐵𝑘 = 𝑍𝑖∣𝑗 . In 

the first case we obtain the pairwise marginal log-likelihood 𝑙𝑖𝑗 (𝜽) = 𝑙𝑜𝑔(𝑓𝒁𝑖𝑗
(𝑧𝑖𝑗 , 𝜽)) and in the second case we obtain the pairwise 

conditional log-likelihood 𝑙𝑖∣𝑗 (𝜽) = 𝑙𝑜𝑔(𝑓𝒁𝑖𝑗
(𝑧𝑖𝑗 , 𝜽)∕𝑓𝑍𝑗

(𝑧𝑗 , 𝜽)). The corresponding weighted composite log-likelihoods functions are 
given by:

𝑤𝑝𝑙𝑀 (𝜽) =
𝑛∑

𝑖=1

𝑛∑
𝑗≠𝑖

𝑙𝑖𝑗 (𝜽)𝑤𝑖𝑗 , 𝑤𝑝𝑙𝐶 (𝜽) =
𝑛∑

𝑖=1

𝑛∑
𝑗≠𝑖

𝑙𝑖∣𝑗 (𝜽)𝑤𝑖𝑗 , (3)

and 𝜽̂𝑎 = argmax𝜽 𝑤𝑝𝑙𝑎(𝜽), where 𝑎 = 𝑀, 𝐶 is the associated estimator. Note that, assuming non-zero weights, the computational cost 
3

associated with both functions is of order 𝑂(𝑛2). In general, a loss of statistical efficiency is expected for both cases with respect to the 
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Fig. 1. Left part: location sites of the toy example and the weights selected using the weight function (4) based on distances 𝑤𝑖𝑗 (𝑘) with 𝑘 = 0.36. Right part: location 
sites of the example and the weights selected using the weight function (5) based on nearest neighbors 𝑤𝑖𝑗 (𝑚) with 𝑚 = 2.

ML estimation and the role of the weights 𝑤𝑖𝑗 is to minimize this loss. Using theory of optimal estimating equations (Heyde, 1997), 
it can be easily seen (Bevilacqua et al., 2012) that the optimal weights require the computation of the inverse of a 𝑛(𝑛 − 1) × 𝑛(𝑛 − 1)
matrix which is even computationally harder than the requirements for ML estimation. Some approximations of the optimal weights 
have been proposed in literature as for instance in Li and Sang (2018) and Pace et al. (2019). However the computation of this kind 
of weights can be computationally demanding for large 𝑛.

To avoid this computational problem different authors (Bai et al., 2014; Bevilacqua and Gaetan, 2015; Feng et al., 2014; Heagerty 
and Lele, 1998; Varin and Vidoni, 2005) have proposed the DDWCLP method that considers the weight function:

𝑤𝑖𝑗 (𝑘) =

{
1 ‖𝒔𝑖 − 𝒔𝑗‖ < 𝑘

0 otherwise,
(4)

where 𝑘 ∈ IR+ is an arbitrary distance greater than the minimum distance of the location points. This kind of weights allows ruling 
out a certain percentage (depending on 𝑘) of the total number of pairs allowing a clear computational gain with respect to the 
non-zero weighted version. Additionally, it has been shown that this kind of weights improves the statistical efficiency of the method 
with respect to the use of constant weights (see for instance Joe and Lee (2009), Davis and Yau (2011) and Bevilacqua et al. (2012)).

It should be outlined that the function (4) restricts the weights to be symmetric i.e. 𝑤𝑖𝑗 (𝑘) = 𝑤𝑗𝑖(𝑘) and this is a potential limitation, 
particularly when considering the conditional likelihood 𝑙𝑖∣𝑗 (𝜽) which is not symmetric.

Our proposal (NNWCLP) considers weights based on nearest neighbors that can be either symmetric or not symmetric. Specifically, 
let 𝑁𝑚(𝐬𝑙) be the set of neighbors of order 𝑚 = 1, 2, … of the point 𝐬𝑙 ∈ 𝐴. We propose the following weight function:

𝑤𝑖𝑗 (𝑚) =

{
1 𝐬𝑖 ∈ 𝑁𝑚(𝐬𝑗 )
0 otherwise,

(5)

for 𝑖, 𝑗 = 1, … , 𝑛 and 𝑖 ≠ 𝑗. By construction the weights 𝑤𝑖𝑗 (𝑚) can be either symmetric or not and to illustrate this we consider a 
simple toy example with four location sites 𝐬1 = (0.15, 0.75)𝑇 , 𝐬2 = (0.2, 0.85)𝑇 , 𝐬3 = (0.3, 0.7)𝑇 and 𝐬4 = (0.26, 0.35)𝑇 . The left part of 
Fig. 1 depicts the weights selected using the weight function (4) based on distances 𝑤𝑖𝑗 (𝑘) and setting 𝑘 = 0.36. On the right part, 
the weights selected using the weight function (5) based on nearest neighbors 𝑤𝑖𝑗 (𝑚) with 𝑚 = 2 are depicted (the zero weights are 
ignored in both cases). It can be appreciated that the number of selected weights is the same in both cases and the two weight 
functions share most of the weights. However, the NNWCLP method includes the weights 𝑤14 = 1 and 𝑤34 = 1 while the DDWCLP 
method includes the symmetric weights 𝑤34 = 1 and 𝑤43 = 1.

This simple example shows that the proposed weight function can potentially include weights (and as a consequence pairwise 
or conditional log-likelihoods) that the method based on distances ignores. Thus, in principle, more information is considered when 
estimating with NNWCLP than with DDWCLP. An interesting question is whether this implies a gain in statistical efficiency. In 
Section 4, a simulation study shows that the proposed NNWCLP method actually outperforms the DDWCLP method.

In addition, the proposed weight function is computationally convenient since kd-tree type algorithms (Elseberg et al., 2012; 
Bentley, 1975; Arya et al., 1998) can be exploited to drastically reduce the computational costs of the WCLP functions in Equation 
(3). Two preliminary steps are required before the optimization of the WCLP functions: 1) building a kd-tree that typically requires 
𝑂(𝑛𝑙𝑜𝑔(𝑛)) time complexity and 𝑂(𝑛) associated storage and 2) searching for 𝑚 nearest neighbors inside the kd-tree that has an 
𝑂(𝑚𝑙𝑜𝑔(𝑛)) time complexity. In our implementation in the 𝑅 package GeoModels these preliminary steps are performed, using the 
function GeoNeighIndex that exploits the function knn of the 𝑅 package 𝑛𝑎𝑏𝑜𝑟 (Elseberg et al., 2012).

The final step involves the maximization of 𝑤𝑝𝑙𝑎(𝜽), 𝑎 = 𝑀, 𝐶 functions in (3) that can be computed in 𝑂(𝑚𝑛) time, summing up 
only the 𝑙𝑖𝑗 (𝜽) or 𝑙𝑖∣𝑗 (𝜽) functions selected through the nearest neighbors weight function.

The maximum XWCLP estimator, where X=NN and DD is given by
4

𝜽̂𝑎 ∶= argmax𝜽 𝑤𝑝𝑙𝑎(𝜽), 𝑎 = 𝑀,𝐶,
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and, as in Bevilacqua and Gaetan (2015), under some mixing conditions of the Tukey-ℎℎ RF and under the assumption that the 
weight function is compactly supported as in (4) or (5), it can be shown that, under increasing domain asymptotics, 𝜽̂𝑎 is consis-

tent and asymptotically Gaussian with the asymptotic covariance matrix given by 𝐺−1
𝑎 (𝜽) the inverse of the Godambe information 

𝐺𝑎(𝜽) ∶= 𝐻𝑎(𝜽)𝐽𝑎(𝜽)−1𝐻𝑎(𝜽), where 𝐻𝑎(𝜽) ∶= IE[−∇2𝑤𝑝𝑙𝑎(𝜽)] and 𝐽𝑎(𝜽) ∶= Var[∇𝑤𝑝𝑙𝑎(𝜽)]. Standard error estimation can be obtained 
considering the square root diagonal elements of 𝐺−1

𝑎 (𝜽̂). Moreover, model selection can be performed by considering the information 
criterion, defined as

PLIC ∶= −2𝑤𝑝𝑙𝑎(𝜽̂) + 2tr(𝐻𝑎(𝜽̂)𝐺−1
𝑎 (𝜽̂)), (6)

which is composite likelihood version of the Akaike information criterion (AIC) (Varin and Vidoni, 2005). Note that, the computation 
of standard errors and PLIC require evaluation of the matrices 𝐻𝑎(𝜽̂) and 𝐽𝑎(𝜽̂). However, the evaluation of 𝐽𝑎(𝜽̂) is computationally 
unfeasible for large datasets and in this case subsampling techniques can be used to estimate 𝐽𝑎(𝜽) as in Bevilacqua et al. (2012) and 
Heagerty and Lele (1998). A straightforward and more robust alternative that we adopt in Section 4.1 and in Section 5, is parametric 
bootstrap estimation of 𝐺−1

𝑎 (𝜽). Since this technique is simulation based, fast methods of simulation of Gaussian RFs such as circulant 
embedding or turning bands methods (Emery et al., 2016) are required for large datasets.

3. Tukey-𝒉𝒉 random fields

Let 𝐺∗ = {𝐺∗(𝒔), 𝒔 ∈ 𝐴} be a zero mean and unit variance weakly stationary Gaussian RF with correlation function 𝜌𝐺∗ (𝒅) and 
hereafter, with some abuse of notation, we set 𝜌(𝒅) ∶= 𝜌𝐺∗ (𝒅) and 𝐺 ∶= 𝐺∗. In addition, hereafter, with 𝜙𝑛(⋅, 𝝁, Σ) we denote the 𝑝𝑑𝑓

of the Gaussian 𝑛-variate distribution with mean 𝝁 and covariance matrix Σ.

Following Xua and Genton (2017), let 𝑇 ∗
ℎ
= {𝑇 ∗

ℎ
(𝒔), 𝒔 ∈ 𝐴}, with ℎ ∈ [0, 1∕2), be an RF with a standard Tukey-ℎ marginal distribu-

tion defined through a monotonic transformation 𝜏ℎ(𝑥) = 𝑥𝑒
ℎ𝑥2
2 , 𝑥 ∈ IR of a standard Gaussian RF 𝐺 as:

𝑇 ∗
ℎ
(𝒔) =∶ 𝜏ℎ(𝐺(𝒔)). (7)

The inverse transformation 𝜏−1
ℎ

(𝑥) can be expressed in terms of the Lambert function 𝑖.𝑒., 𝜏−1
ℎ

(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) 
(

𝑊 (ℎ𝑥2)
ℎ

)1∕2
where 𝑊 (⋅)

is the Lambert-𝑊 function (Goerg, 2015).

This kind of RF has marginal symmetric distributions and the parameter ℎ governs the tail behavior of the RF, with a larger value 
of ℎ indicating a heavier tail. Specifically the marginal distribution has (asymptotically) a Pareto-heavy tailed distribution with a tail 
index equal to 1∕ℎ (Morgenthaler and Tukey, 2000). If ℎ = 0 the Gaussian RF 𝐺 is obtained as the special limit case.

For the Tukey-ℎ RFs IE(𝑇 ∗
ℎ
(𝒔)) = 0 and 𝑉 𝑎𝑟(𝑇 ∗

ℎ
(𝒔)) = (1 − 2ℎ)−3∕2 and the correlation function is given by:

𝜌𝑇 ∗
ℎ
(𝒅) = 𝜌(𝒅)(1 − 2ℎ)3∕2

[(1 − ℎ)2 − ℎ2𝜌2(𝒅)]3∕2
. (8)

In addition, the Tukey-ℎ RF has a marginal 𝑝𝑑𝑓 given by (Goerg, 2015):

𝑓𝑇 ∗
ℎ
(𝑡) =

𝜏−1
ℎ

(𝑡)
𝑡(1 +𝑊 (ℎ𝑡2))

𝜙(𝜏−1
ℎ

(𝑡),0,1) . (9)

Note that 𝑓𝑇 ∗
ℎ
(𝑡) is well defined when 𝑡 → 0 and/or ℎ → 0 using the limits lim

ℎ→0
𝜏−1
ℎ

(𝑡) = 𝑡, lim
ℎ→0

𝑊 (ℎ𝑡2) = 0, lim
𝑡→0

𝜏−1
ℎ

(𝑡) = 𝑡, lim
𝑡→0

𝑊 (ℎ𝑡2) = 0. 
The multivariate 𝑝𝑑𝑓 of the vector 𝑻 ∗

ℎ
= (𝑇 ∗

ℎ
(𝒔1), … , 𝑇 ∗

ℎ
(𝒔𝑁 ))𝑇 is given by:

𝑓𝑻 ∗
ℎ
(𝒕) =

∏𝑛
𝑖=1 𝜏−1

ℎ
(𝑡𝑖)

(
∏𝑛

𝑖=1 𝑡𝑖(1 +𝑊 (ℎ𝑡2
𝑖
))

𝜙𝑛(𝜏−1ℎ
(𝒕),𝟎,𝑅𝑛) , (10)

where 𝑅𝑁 = [𝜌(𝒔𝑖−𝒔𝑗 )]𝑛𝑖,𝑗=1 denotes correlation matrix associated with the underlying correlation function 𝜌(𝒅) and the transformation 
𝜏−1
ℎ

(𝒙) applies pointwise for a given vector 𝒙.

To take into account both heavy tails and skewness, a generalization of (7) has been proposed in Xua and Genton (2017) by 
considering the so-called Tukey-𝑔-ℎ RF 𝑀∗

ℎ,𝑔
= {𝑀∗

ℎ,𝑔
(𝒔), 𝒔 ∈ 𝐴} defined as:

𝑀∗
ℎ,𝑔

(𝒔) ∶= 𝑔−1(𝑒𝑔𝐺(𝒔) − 1)𝑒
ℎ(𝐺(𝒔))2

2 , (11)

where 𝑔 ∈ IR is a skewness parameter. The Tukey-ℎ RF is obtained as special case using the limit 𝑙𝑖𝑚𝑔→0(𝑒𝑔𝑥 − 1)∕𝑔 = 𝑥. Nevertheless, 
the transformation involved in (11) does not have an explicit inverse and as a consequence (composite) likelihood based methods 
are not readily applicable. To solve this problem Xua and Genton (2017) proposed to maximize an approximated likelihood function 
which is basically a multivariate extension of the algorithm proposed in Xu and Genton (2015). This algorithm is based on a linear 
approximation of the log-likelihood defined on a finite set of equally spaced knots in a specified interval (see Xua and Genton (2017)

for the details).

Our proposal considers an alternative generalization of (7) obtained by defining the RF 𝑇 ∗
ℎ𝑙,ℎ𝑟

= {𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔), 𝒔 ∈ 𝐴}, with ℎ𝑙 ∈ [0, 1∕2)
5

and ℎ𝑟 ∈ [0, 1∕2), as:
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𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔) ∶=

{
𝜏ℎ𝑙

(𝐺(𝒔)), 𝐺(𝒔) < 0
𝜏ℎ𝑟

(𝐺(𝒔)), 𝐺(𝒔) ≥ 0.
(12)

The marginal distribution of 𝑇 ∗
ℎ𝑙 ,ℎ𝑟

is called the Tukey-ℎℎ distribution (Morgenthaler and Tukey, 2000) with 𝑝𝑑𝑓 given by (Goerg, 
2015):

𝑓𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝑡) =
𝜏−1
ℎ𝑙

(𝑡)

𝑡(1 +𝑊 (ℎ𝑙𝑡
2))

𝜙(𝜏−1
ℎ𝑙

(𝑡),0,1)𝐼(−∞,0)(𝑡) +
𝜏−1
ℎ𝑟

(𝑡)

𝑡(1 +𝑊 (ℎ𝑟𝑡
2))

𝜙(𝜏−1
ℎ𝑟

(𝑡),0,1)𝐼[0,∞)(𝑡), (13)

where 𝐼𝐴(𝑥) denotes the indicator function of the set 𝐴. The properties of the marginal density 𝑓𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝑡) are the same as those of the 
Tukey-ℎ distribution, except that the left and right tails have to be considered separately. Hereafter we call 𝑇 ∗

ℎ𝑙 ,ℎ𝑟
a Tukey-ℎℎ RF.

The Tukey-ℎ RF is obtained as special case when ℎ𝑙 = ℎ𝑟 and the Gaussian special limit case is obtained when ℎ𝑙 = ℎ𝑟 → 0. For the 
Tukey-ℎℎ RF, the mean and variance, respectively, are given by;

IE(𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔)) =
ℎ𝑟 − ℎ𝑙√

2𝜋(1 − ℎ𝑙)(1 − ℎ𝑟)
, (14)

𝑉 𝑎𝑟(𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔)) = 1
2
[
(1 − 2ℎ𝑙)−3∕2 + (1 − 2ℎ𝑟)−3∕2

]
− IE2(𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔)). (15)

From (14) it is apparent that the two-parameters ℎ𝑙 ∈ [0, 1∕2) and ℎ𝑟 ∈ [0, 1∕2) can help correct for skewness through the difference 
−1∕2 < ℎ𝑟 − ℎ𝑙 < 1∕2, depending on whether ℎ𝑙 > ℎ𝑟 (positive skewness) or ℎ𝑙 < ℎ𝑟 (negative skewness) and for kurtosis (through 
𝑚𝑎𝑥(ℎ𝑙, ℎ𝑟)) (Morgenthaler and Tukey, 2000).

We now study the correlation function of the Tukey-ℎℎ RF. Using Lemma (1) in the Appendix, the correlation of the Tukey-ℎℎ RF 
is given by:

𝜌𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝒅) =
2𝜋(1 − ℎ𝑙)2(1 − ℎ𝑟)2𝔼(𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔)𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔+ 𝒅)) − (ℎ𝑟 − ℎ𝑙)2

𝑚(ℎ𝑙, ℎ𝑟)
, (16)

where a closed form expression of 𝔼(𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝒔)𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔+ 𝒅)) can be found in the Appendix and where 𝑚(ℎ𝑙, ℎ𝑟) = 𝜋(1 − ℎ𝑙)2(1 − ℎ𝑟)2((1 −
2ℎ𝑙)−3∕2+(1 −2ℎ𝑟)−3∕2) −(ℎ𝑟−ℎ𝑙)2. One implication of the correlation function given in Equation (16) is that if the underlying Gaussian 
RF is weakly stationary then the Tukey-ℎℎ RF is also weakly stationary. In addition the RF 𝑇 ∗

ℎ𝑙,ℎ𝑟
is mean-square continuous if the 

underlying Gaussian RF is mean square continuous since it can be shown that IE(𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔)𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔 + 𝒅)) = 1
2 [(1 − 2ℎ𝑟)3∕2 + (1 − 2ℎ𝑙)3∕2]

and this implies 𝜌𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝟎) = 1. In addition it can be shown that 𝑇 ∗
ℎ𝑙,ℎ𝑟

inherits the mean square differentiability of underlying Gaussian 
RF.

Note that a version of the Tukey-ℎℎ RFs in Equation (13) that is not mean-square continuous can be obtained by introducing a 
nugget effect. In our construction a nugget effect can be easily introduced by choosing a discontinuous correlation function of the 
underlying Gaussian RF that is by replacing 𝜌(𝒅) with 𝜌∗(𝒅) = (1 − 𝜏2)𝜌(𝒅) + 𝜏2𝐼(𝒅 = 𝟎) where 0 ≤ 𝜏2 < 1 represents the underlying 
nugget effect.

By studying the correlation function of 𝑇 ∗
ℎ𝑙,ℎ𝑟

in (16) some other interesting properties can be shown. For instance a symmetry 
property with respect to the parameters ℎ𝑙, ℎ𝑟 exists; that is, 𝜌𝑇 ∗

ℎ𝑙 ,ℎ𝑟

(𝒅) = 𝜌𝑇 ∗
ℎ𝑟,ℎ𝑙

(𝒅). In addition 𝜌𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝒅) ≤ 𝜌(𝒅) and 𝜌𝑇 ∗
ℎ𝑙 ,ℎ𝑟

(𝒅) = 0 if 
𝜌(𝒅) = 0 that is 𝜌𝑇 ∗

ℎ𝑙 ,ℎ𝑟

(𝒅) is compactly supported if 𝜌(𝒅) is compactly supported.

To illustrate some examples let us consider a flexible isotropic correlation model for the underlying Gaussian RF that is a 
reparametrized version of the generalized Wendland correlation function (Gneiting, 2002; Bevilacqua et al., 2019) as proposed 
in Bevilacqua et al. (2022b). It is defined for 𝜈 ≥ 0 as:

𝜈,𝛿,𝐿(𝜈,𝛿,𝛼)(𝒅) =
⎧⎪⎨⎪⎩

𝐾 (𝑈 (𝒅))𝜈+𝛿
2𝐹1

(
𝛿

2 ,
𝛿+1
2 ; 𝜈 + 𝛿 + 1;𝑈 (𝒅)

)
0 ≤ ‖𝒅‖ ≤ 𝐿(𝜈, 𝛿, 𝛼)

0 otherwise,
(17)

where 𝑈 (𝒅) ∶= 1 −
( ‖𝒅‖

𝐿(𝜈,𝛿,𝛼)

)2
, 𝐿(𝜈, 𝛿, 𝛼) ∶= 𝛼 (Γ(𝛿 + 2𝜈 + 1)∕Γ(𝛿))

1
1+2𝜈 , 𝐾 ∶= (2−𝛿−1Γ−1(2𝜈)Γ(𝜈)Γ(2𝜈 + 𝛿+1))∕Γ(𝜈+ 𝛿+1) and 2𝐹1 (𝑎, 𝑏, 𝑐, 𝑥)

is the Gaussian hypergeometric function (Gradshteyn and Ryzhik, 2007). Here 𝛼 > 0, 𝛿 ≥ (𝑑 +1)∕2 + 𝜈 guarantee the positive definite-

ness of the model in IR𝑑 . Bevilacqua et al. (2022b) show that 𝜈,𝛿,𝐿(𝜈,𝛿,𝛼)(𝒅) →𝜈+0.5,𝛼(𝒅) as 𝛿 →∞ where

𝜈,𝛼(𝒅) =
21−𝜈

Γ(𝜈)

(‖𝒅‖
𝛼

)𝜈

𝜈

(‖𝒅‖
𝛼

)
𝑟 ≥ 0, (18)

is the celebrated Matérn correlation model (Stein, 1999). Thus 𝜈,𝛿,𝐿(𝜈,𝛿,𝛼) is a flexible correlation model that can switch from 
compactly supported to globally supported correlation functions. Let us consider the special case 𝜈 = 0 that is:

0,𝛿,𝐿(0,𝛿,𝛼)(𝒅) ∶=
⎧⎪⎨
(
1 − ‖𝒅‖

𝛿𝛼

)𝛿
, 0 ≤ ‖𝒅‖ < 𝛿𝛼

(19)
6

⎪⎩0 otherwise.
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Fig. 2. First column: three realizations of a Tukey-ℎℎ RF 𝑇 ∗
ℎ𝑙 ,ℎ𝑟

with (from left to right) ℎ𝑙 = ℎ𝑟 = 0.15 and ℎ𝑙 = 0.25 ℎ𝑟 = 0.05 and ℎ𝑙 = 0.05, ℎ𝑟 = 0.25 respectively. 
Second column: associated histograms.

In the first row of Fig. 2 we depict, from the left to the rights, three realizations on a fine grid of a unit square of a Tukey-ℎℎ RF with 
underlying correlation function 0,3.5,𝐿(0,3.5,0.1)(𝒅) setting ℎ𝑙 = ℎ𝑟 = 0.15 and ℎ𝑙 = 0.25, ℎ𝑟 = 0.05 and ℎ𝑙 = 0.05, ℎ𝑟 = 0.25 respectively. 
The second row depicts the associated histograms showing the flexibility of the Tukey-ℎℎ distribution.

We now study the multivariate 𝑝𝑑𝑓 associated with the Tukey-ℎℎ RF. Since the transformation involved in (12) is monotone 
increasing, the multivariate distribution can be readily obtained. The following theorem gives an explicit closed-form expression for 
the 𝑝𝑑𝑓 of the random vector 𝑻 ∗

ℎ𝑙,ℎ𝑟
= (𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔1), … , 𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔𝑛))𝑇 .

Theorem 1. Let 𝑻 ∗
ℎ𝑙,ℎ𝑟

, ℎ𝑙, ℎ𝑟 ∈ [0, 1∕2) be the 𝑛−dimensional random vector associated to the Tukey-ℎℎ RF with underlying correlation 
𝜌(𝒅). Then:

𝑓𝑻 ∗
ℎ𝑙 ,ℎ𝑟

(𝒕) =
𝑛∏

𝑖=1

𝜏−1𝓁𝑖
(𝑡𝑖)

𝑡𝑖(1 +𝑊 (𝓁𝑖𝑡
2
𝑖
))

𝜙𝑛(𝜏−1𝓵 (𝒕),𝟎,𝑅𝑛), (20)

where 𝜏−1𝓵 (𝒕) = 𝐷(sgn{𝒕})𝑔𝓵(𝒕) with 𝑔𝓵(𝒕) =
(√

𝑊 (𝓁1𝑡21)
𝓁1

,… ,

√
𝑊 (𝓁𝑛𝑡2𝑛)

𝓁𝑛

)𝑇

, where 𝓵 = (𝓁1, … , 𝓁𝑛)𝑇 with 𝓁𝑘 = ℎ𝑙 if 𝑡𝑘 < 0 and 𝓁𝑘 = ℎ𝑟 if 

𝑡𝑘 ≥ 0 for 𝑘 = 1, … , 𝑛, 𝐷(sgn{𝒕}) is the diagonal matrix with elements equal to −1 or 1 depending on the sign of the values of 𝒕 and 
𝑅𝑛 = [𝜌(𝒔𝑖 − 𝒔𝑗 )]𝑛𝑖,𝑗=1.

From Theorem (1) the bivariate 𝑝𝑑𝑓 can be easily obtained as:

𝑓𝑻 ∗
ℎ𝑙 ,ℎ𝑟 ;𝑖𝑗

(𝑡𝑖, 𝑡𝑗 ) =
𝜏−1𝓁𝑖

(𝑡𝑖)𝜏−1𝓁𝑗
(𝑡𝑗 )

𝑡𝑖𝑡𝑗 (1 +𝑊 (𝓁𝑖𝑡
2
𝑖
))(1 +𝑊 (𝓁𝑗 𝑡

2
𝑗
))

𝜙2(𝜏−1𝓁𝑖 ,𝓁𝑗
(𝑡𝑖, 𝑡𝑗 ),𝟎,𝑅2), (21)

where 𝓁𝑘 = ℎ𝑙 if 𝑡𝑘 < 0 and 𝓁𝑘 = ℎ𝑟 if 𝑡𝑘 ≥ 0 for 𝑘 = 1, 2.

The bivariate pdf in (21) can be easily evaluated since efficient numerical computation of the Lambert-𝑊 function can be found in 
different libraries such as the GNU scientific library (Gough, 2009) and the most important statistical software including R, MATLAB 
7

and Python.
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Fig. 3 depicts the contour plots of (21) when 𝜌(𝒅) = 0.2, 0.5, 0.9 and for three combinations of the (ℎ𝑙, ℎ𝑟) that is (ℎ𝑙 = 0.2, ℎ𝑟 = 0.2)
and (ℎ𝑙 = 0.2, ℎ𝑟 = 0.4) and (ℎ𝑙 = 0.4, ℎ𝑟 = 0.2). It turns out that the bivariate Tukey-ℎℎ contour lines are not elliptical and when ℎ𝑙 and 
ℎ𝑟 approach zero the contour plots tend towards an elliptical form, as expected.

Finally, a more flexible model than 𝑇 ∗
ℎ𝑙,ℎ𝑟

can be obtained by defining an RF 𝑇ℎ𝑙,ℎ𝑟
= {𝑇ℎ𝑙,ℎ𝑟

, 𝒔 ∈ 𝐴} through a location and scale 
transformation:

𝑇ℎ𝑙,ℎ𝑟
(𝒔) =∶ 𝜇(𝒔) + 𝜎𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔), (22)

where 𝜇(𝒔) is the location dependent mean and 𝜎 > 0 is a scale parameter. A typical parametric specification for the mean is given 
by 𝜇(𝒔) = 𝑋(𝒔)𝑇 𝜷 where 𝑋(𝒔) ∈ IR𝑘 is a vector of covariates and 𝜷 ∈ IR𝑘 but other types of parametric or nonparametric functions can 
be considered. In addition, non-stationarity can be added into the formulation of (22) by allowing the scale parameter 𝜎 to depend 
on the location 𝒔. All the properties studied in this section can be easily extended from 𝑇 ∗

ℎ𝑙 ,ℎ𝑟
to 𝑇ℎ𝑙,ℎ𝑟

including the bivariate density 
which is given by:

𝑓𝑻 ℎ𝑙 ,ℎ𝑟 ;𝑖𝑗
(𝑡𝑖, 𝑡𝑗 ) =

1
𝜎2 𝑓𝑻 ∗

ℎ𝑙 ,ℎ𝑟 ;𝑖𝑗

(
𝑡𝑖 − 𝜇(𝒔𝑖)

𝜎
,
𝑡𝑗 − 𝜇(𝒔𝑗 )

𝜎

)
. (23)

4. Simulation study

In this section, we consider three simulation studies. The first study (Subsection 4.1) compares the proposed NNWCLP method 
versus the DDWCLP method in terms of statistical efficiency when estimating the parameters of the Tukey-ℎℎ RF. In the comparison, 
we consider both the 𝑤𝑝𝑙𝑎, 𝑎 = 𝑀, 𝐶 functions. In addition we consider a small simulation study assessing the coverage probabilities 
of the confidence intervals based on the NNWCLP method.

The second simulation study (Subsection 4.2) focuses on the comparison of the proposed NNWCLP method with the classical 
maximum likelihood method.

The third simulation study (Subsection 4.3) focuses on Gaussian RF estimation and compares the proposed NNWCLP method with 
the Vecchia method from statistical and computational viewpoints.

4.1. NNWCLP vs DDWCLP methods when estimating Tukey-ℎℎ random fields

As simulation setting we consider a set of 𝑛 spatial points uniformly distributed on the unit square, 𝒔𝑖 ∈ 𝐴 = [0, 1]2, 𝑖 = 1, … , 𝑛. We 
simulate, using Cholesky decomposition for the underlying Gaussian RF, 1000 realizations of the Tukey-ℎℎ RF observed at 𝑛 = 500
spatial location sites. Specifically, we consider the RF in Equation (22) where the mean 𝜇(𝒔) is considered spatially varying through 
a regression linear model that is:

𝑇ℎ𝑙,ℎ𝑟
(𝒔) = 𝛽0 + 𝛽1𝑢(𝒔) + 𝜎𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔), (24)

where 𝑢(𝒔) is a standard uniform random variable assumed to be covariate. We set 𝛽0 = 0.5, 𝛽1 = −0.25 and 𝜎2 = 1, and different 
combination of the asymmetry/heavy tail parameters are considered that is ℎ𝑙 = 0.1, 0.2, 0.3 and ℎ𝑟 = 0.1, 0.3. As underlying isotropic 
parametric correlation model, we consider the model in Equation (19) with 𝛼 = 0.06 and 𝛿 = 3.5 where 𝛿 is assumed known and fixed. 
The vector parameters to be estimated are 𝜽 = (𝛽0, 𝛽1, 𝜎2, ℎ𝑙, ℎ𝑟, 𝛼)𝑇 .

For 𝑤𝑝𝑙𝑎, 𝑎 = 𝑀, 𝐶 functions we consider the NNWCLP method by considering the nearest neighbors weight function in Equation 
(5) with 𝑚 = 2, 4, 8, 16 and the DDWCLP method by considering the weight function based on distances in Equation (4) with 𝑘 =
0.03584, 0.05118, 0.07339, 0.10514, respectively. The values of 𝑚 and 𝑘 have been chosen such that the number of pairs involved in the 
𝑤𝑝𝑙𝑎, 𝑎 = 𝑀, 𝐶 estimation is approximatively the same for both weight functions so the comparison between NNWCLP and DDWCLP 
should be performed for the cases 𝑚 = 2, 𝑘 = 0.03584 then 𝑚 = 4, 𝑘 = 0.05118 and so on.

Table 1 show the bias and root mean squared error (RMSE) of the 𝑤𝑝𝑙𝑀 , estimates under the different scenarios when estimating 
𝜽 (we highlight the best RMSE in bold for each scenario). It can be appreciated that 𝑤𝑝𝑙𝑀 using NNWCLP outperforms DDWCLP in 
terms of RMSE, for each scenario. In particular, depending on the parameter, it can be appreciated that the best setting is for small 
values of 𝑚 (𝑚 = 2 or 𝑚 = 4 depending on the parameter). Taking into account that the number of pairs involved in the maximization 
is approximatively the same for both weight functions, this implies that the nearest neighbors weight function select more informative 
pairs, as suggested in the example in Section 2.

We replicate the same experiment using the 𝑤𝑝𝑙𝐶 function. Table 2 show bias and RMSE under the different scenarios when 
estimating 𝜽. Even in this case, it can be appreciated that maximization of the 𝑤𝑝𝑙𝐶 function using NNWCLP overall outperforms 
𝑤𝑝𝑙𝐶 using DDWCLP in terms of RMSE, for each scenario. In addition, as in the 𝑤𝑝𝑙𝑀 case, the distribution of the 𝑤𝑝𝑙𝐶 estimates 
is approximatively symmetric, showing very few outliers for all scenarios. As an example, Fig. 4 show the centered boxplots of the 
𝑤𝑝𝑙𝐶 estimates using both weight functions, for each parameter, when ℎ𝑙 = 0.2 and ℎ𝑟 = 0.1.

Comparing Table 1 with Table 2 it can be appreciated that the 𝑤𝑝𝑙𝐶 method shows an overall general better performance with 
respect to the 𝑤𝑝𝑙𝑀 method for each parameter. To globally compare 𝑤𝑝𝑙𝐶 and 𝑤𝑝𝑙𝑀 , we have considered, for each scenario, a 
8

measure of global relative efficiency (Davison, 2003), that is:
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Fig. 3. Contour plots of the bivariate Tukey-ℎℎ distribution (21) when (ℎ𝑙 = 0.2, ℎ𝑟 = 0.2), (ℎ𝑙 = 0.2, ℎ𝑟 = 0.4) and (ℎ𝑙 = 0.4, ℎ𝑟 = 0.2) (from left to right) and the underlying 
correlation is 𝜌(𝒅) = 0.9 (first row), 𝜌(𝒅) = 0.5 (second row) and 𝜌(𝒅) = 0.2 (third row), respectively.

GRE =

(
det[𝐹 𝑤𝑝𝑙𝐶 ]

1
2

det[𝐹 𝑤𝑝𝑙𝑀 ]
1
2

)1∕𝑝

, (25)

where 𝑝 = 6 is the number of unknown parameters in 𝜽 and the matrix 𝐹 𝑤𝑝𝑙𝑎 is the sample mean squared error matrix 𝐹 𝑤𝑝𝑙𝑎 =
1000−1

∑1000
𝑘=1

(
𝜽̂

𝑎

𝑘 − 𝜽̄
)(

𝜽̂
𝑎

𝑘 − 𝜽̄
)′

with 𝜽̄ = 1000−1
∑1000

𝑘=1 𝜽̂
𝑎

𝑘, 𝑎 = 𝑀, 𝐶 . Table 3 depicts the GRE results for each scenario and using both 
weight functions. Since the value of the GRE are overall lower than one, 𝑤𝑝𝑙𝐶 outperforms 𝑤𝑝𝑙𝑀 using both weight functions and 
for all the scenarios with a relative efficiency gain between approximatively 10% and 15%.

Summarizing our numerical experiments show that the 𝑤𝑝𝑙𝑎, 𝑎 = 𝑀, 𝐶 estimators using NNWCLP generally outperform DDWCLP

in terms of statistical efficiency and the best efficiencies are achieved with small values of 𝑚 (𝑚 = 2 or 𝑚 = 4). In addition the 𝑤𝑝𝑙𝐶
estimator shows a better statistical efficiency with respect to the 𝑤𝑝𝑙𝑀 estimator irrespective of the weight function.

Another important point related to the NNWCLP method is standard error estimation and the construction of confidence intervals. 
We perform a small simulation study to assess the coverage probabilities of the confidence intervals based on the NNWCLP method 
where, as mentioned in section 2, we use parametric bootstrap to estimate 𝐺−1

𝑎 (𝜽). In particular, since 𝐺−1
𝑎 (𝜽) is the asymptotic 
9

variance-covariance matrix of the NNWCLP estimator, the parametric bootstrap estimation of 𝐺−1
𝑎 (𝜽) is obtained by simulating 𝐾
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Table 1

Bias and RMSE when estimating with 𝑤𝑝𝑙𝑀 the model in equation (24) with 𝛽0 = 0.5, 𝛽1 = −0.25, 𝜎2 = 1, for different values of ℎ𝑙 and ℎ𝑟 , with the weight function 
(5) (NNWCLP) with 𝑚 = 2, 4, 8, 16 and with the weight function (4) (DDWCLP) with 𝑘 = 0.03584, 0.05118, 0.07339, 0.10514. The underlying correlation function is 
0,3.5,𝐿(0,3.5,𝛼)(𝒅) = (1 − ||𝒅||∕(3.5𝛼))3.5+ with 𝛼 = 0.06.

ℎ𝑙 = 0.1 ℎ𝑙 = 0.2 ℎ𝑙 = 0.3

ℎ𝑟 = 0.1 ℎ𝑟 = 0.3 ℎ𝑟 = 0.1 ℎ𝑟 = 0.3 ℎ𝑟 = 0.1 ℎ𝑟 = 0.3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

𝛽0

𝑚 = 2 -0.00106 0.12353 -0.00173 0.12365 -0.00131 0.12394 -0.00192 0.12317 -0.00134 0.12349 -0.00191 0.12202

𝑚 = 4 -0.00121 0.12349 -0.00163 0.12398 -0.00143 0.12406 -0.00179 0.12365 -0.00143 0.12381 -0.00176 0.12272

𝑚 = 8 -0.00086 0.12418 -0.00117 0.12502 -0.00107 0.12494 -0.00134 0.12490 -0.00108 0.12490 -0.00132 0.12418

𝑚 = 16 -0.00062 0.12458 -0.00095 0.12578 -0.00092 0.12550 -0.00119 0.12586 -0.00102 0.12570 -0.00126 0.12538

𝑘 = 0.03584 -0.00018 0.14471 -0.00121 0.14484 -0.00050 0.14512 -0.00145 0.14426 -0.00049 0.14464 -0.00140 0.14293

𝑘 = 0.05118 -0.00044 0.13925 -0.00089 0.13986 -0.00065 0.13986 -0.00105 0.13946 -0.00057 0.13953 -0.00095 0.13835

𝑘 = 0.07339 0.00005 0.13587 -0.00035 0.13671 -0.00021 0.13664 -0.00057 0.13657 -0.00020 0.13653 -0.00055 0.13572

𝑘 = 0.10514 0.00050 0.13379 0.00010 0.13498 0.00016 0.13468 -0.00020 0.13506 0.00006 0.13487 -0.00028 0.13450

𝛽1

𝑚 = 2 0.00086 0.05206 0.00083 0.05477 0.00082 0.05367 0.00078 0.05657 0.00075 0.05468 0.00070 0.05779

𝑚 = 4 0.00016 0.05532 0.00005 0.05831 0.00007 0.05701 -0.00008 0.06025 -0.00006 0.05814 -0.00023 0.06156

𝑚 = 8 -0.00007 0.06173 -0.00013 0.06473 -0.00020 0.06348 -0.00028 0.06671 -0.00036 0.06465 -0.00046 0.06812

𝑚 = 16 0.00015 0.06834 0.00014 0.07120 0.00003 0.07007 -0.00001 0.07321 -0.00016 0.07113 -0.00020 0.07450

𝑘 = 0.03584 0.00162 0.05788 0.00145 0.06124 0.00154 0.05992 0.00135 0.06364 0.00145 0.06140 0.00122 0.06535

𝑘 = 0.05118 -0.00038 0.05831 -0.00052 0.06181 -0.00041 0.06008 -0.00059 0.06380 -0.00047 0.06132 -0.00067 0.06527

𝑘 = 0.07339 -0.00017 0.06403 -0.00028 0.06745 -0.00027 0.06573 -0.00041 0.06950 -0.00042 0.06693 -0.00058 0.07099

𝑘 = 0.10514 0.00005 0.07071 0.00001 0.07376 -0.00018 0.07246 -0.00024 0.07589 -0.00043 0.07355 -0.00053 0.07720

𝛼

𝑚 = 2 -0.00098 0.00775 -0.00098 0.00775 -0.00099 0.00775 -0.00099 0.00775 -0.00100 0.00775 -0.00100 0.00775

𝑚 = 4 -0.00118 0.00707 -0.00118 0.00707 -0.00119 0.00707 -0.00118 0.00707 -0.00120 0.00707 -0.00119 0.00707

𝑚 = 8 -0.00145 0.00707 -0.00144 0.00707 -0.00145 0.00707 -0.00144 0.00707 -0.00146 0.00707 -0.00145 0.00707

𝑚 = 16 -0.00175 0.00775 -0.00174 0.00775 -0.00175 0.00775 -0.00174 0.00775 -0.00176 0.00707 -0.00174 0.00707

𝑘 = 0.03584 -0.00137 0.00949 -0.00140 0.00949 -0.00140 0.00949 -0.00141 0.00949 -0.00143 0.00949 -0.00144 0.00949

𝑘 = 0.05118 -0.00157 0.00837 -0.00158 0.00837 -0.00158 0.00837 -0.00159 0.00837 -0.00160 0.00837 -0.00160 0.00837

𝑘 = 0.07339 -0.00168 0.00775 -0.00167 0.00775 -0.00168 0.00775 -0.00168 0.00775 -0.00170 0.00775 -0.00169 0.00775

𝑘 = 0.10514 -0.00195 0.00775 -0.00195 0.00775 -0.00196 0.00775 -0.00195 0.00775 -0.00197 0.00775 -0.00195 0.00775

𝜎2

𝑚 = 2 0.00198 0.13259 0.00250 0.13943 0.00347 0.13649 0.004002 0.14307 0.00477 0.13982 0.00533 0.14612

𝑚 = 4 0.00272 0.13428 0.00368 0.14181 0.00432 0.13860 0.00538 0.14605 0.00566 0.14216 0.00680 0.14933

𝑚 = 8 0.00337 0.13557 0.00460 0.14314 0.00497 0.14029 0.00632 0.14772 0.00638 0.14412 0.00781 0.15133

𝑚 = 16 0.00405 0.13795 0.00521 0.14564 0.00590 0.14325 0.00719 0.15090 0.00748 0.14744 0.00890 0.15495

𝑘 = 0.03584 -0.00153 0.16897 0.00023 0.17816 0.00081 0.17401 0.00298 0.18330 0.00266 0.17819 0.00507 0.18735

𝑘 = 0.05118 0.00118 0.15560 0.00326 0.16429 0.00320 0.16016 0.00560 0.16882 0.00484 0.16395 0.00745 0.17242

𝑘 = 0.07339 0.00286 0.14896 0.00489 0.15748 0.00476 0.15372 0.00703 0.16208 0.00639 0.15761 0.00888 0.16577

𝑘 = 0.10514 0.00228 0.14728 0.00406 0.15576 0.00446 0.15291 0.00650 0.16140 0.00623 0.15719 0.00848 0.16556

ℎ𝑙

𝑚 = 2 -0.00788 0.04313 -0.00772 0.04405 -0.00926 0.06099 -0.00902 0.06221 -0.01109 0.07727 -0.01079 0.07849

𝑚 = 4 -0.00821 0.04416 -0.00810 0.04506 -0.00964 0.06245 -0.00948 0.06372 -0.01152 0.07893 -0.01133 0.08019

𝑚 = 8 -0.00833 0.04593 -0.00827 0.04669 -0.00973 0.06434 -0.00964 0.06550 -0.01173 0.08044 -0.01162 0.08173

𝑚 = 16 -0.00873 0.04754 -0.00867 0.04827 -0.01035 0.06626 -0.01025 0.06731 -0.01252 0.08240 -0.01240 0.08185

𝑘 = 0.03584 -0.00975 0.05020 -0.00965 0.05128 -0.01214 0.07176 -0.01202 0.07314 -0.01532 0.09017 -0.01517 0.09160

𝑘 = 0.05118 -0.00932 0.04848 -0.00930 0.04950 -0.01127 0.06899 -0.01126 0.07043 -0.01393 0.08678 -0.01389 0.08832

𝑘 = 0.07339 -0.00917 0.04827 -0.00919 0.04919 -0.01093 0.06841 -0.01093 0.06971 -0.01350 0.08556 -0.01348 0.08689

𝑘 = 0.10514 -0.00905 0.04960 -0.00904 0.05040 -0.01103 0.06964 -0.01101 0.07078 -0.01369 0.08660 -0.01366 0.08792

ℎ𝑟

𝑚 = 2 -0.00755 0.04359 -0.00930 0.07931 -0.00768 0.04427 -0.00944 0.08019 -0.00779 0.04472 -0.00955 0.08081

𝑚 = 4 -0.00781 0.04450 -0.00982 0.08000 -0.00794 0.04517 -0.00997 0.08087 -0.00804 0.04561 -0.01009 0.08149

𝑚 = 8 -0.00824 0.04572 -0.01047 0.08130 -0.00836 0.04626 -0.01062 0.08210 -0.00847 0.04680 -0.01075 0.08276

𝑚 = 16 -0.00834 0.04754 -0.01043 0.08331 -0.00850 0.04806 -0.01064 0.08408 -0.00862 0.04848 -0.01082 0.08473

𝑘 = 0.03584 -0.00894 0.05099 -0.01251 0.09154 -0.00914 0.05167 -0.01284 0.09236 -0.00929 0.05215 -0.01306 0.09295

𝑘 = 0.05118 -0.00951 0.04848 -0.01303 0.08741 -0.00968 0.04909 -0.01328 0.08826 -0.00981 0.04960 -0.01345 0.08894

𝑘 = 0.07339 -0.00917 0.04868 -0.01216 0.08666 -0.00932 0.04919 -0.01242 0.08741 -0.00945 0.04970 -0.01260 0.08803

𝑘 = 0.10514 -0.00881 0.04960 -0.01149 0.08695 -0.00900 0.05010 -0.01180 0.08764 -0.00915 0.05060 -0.01202 0.08826

times a Tukey-ℎℎ RF (using the estimated parameters) and then taking the variance covariance matrix of the 𝐾 estimates. Then, a 
100(1 − 𝛼)% confidence interval is constructed as:

(𝜽̂𝑎,𝑖 − 𝑧1−𝛼∕2𝑠𝑒(𝜽̂𝑎,𝑖), 𝜽̂𝑎,𝑖 + 𝑧1−𝛼∕2𝑠𝑒(𝜽̂𝑎,𝑖)),

where 𝑧1−𝛼∕2 is the quantile of the standard Gaussian distribution, 𝜽̂𝑎,𝑖 is the 𝑖−th element of 𝜽̂𝑎 and the standard error 𝑠𝑒(𝜽̂𝑎,𝑖) is the 
square root of the 𝑖−th diagonal element of the variance covariance matrix bootstrap estimate of 𝐺−1

𝑎 (𝜽).
We simulate 100 Tukey-ℎℎ RFs using the previous simulation setting considering only the case ℎ𝑙 = 0.1 and ℎ𝑟 = 0.3 and we esti-

mate with the NNWCLP method using the 𝑤𝑝𝑙𝐶 function with 𝑚 = 2. Parametric bootstrap estimation of 𝐺−1(𝜽) has been computed 
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using the GeoVarestbootstrap function of the GeoModels package setting 𝐾 = 200. The confidence interval coverage probabil-
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Fig. 4. Centered boxplots of the estimated parameters 𝛽0 = 0.5, 𝛽1 = −0.25, 𝛼 = 0.05, 𝜎2 = 1, ℎ𝑙 = 0.2 and ℎ𝑟 = 0.1 (from left to right) when estimating the model 
(24) with 𝑤𝑝𝑙𝐶 using the weight function (5) (NNWCLP) with 𝑚 = 2, 4, 8, 16 and using the weight function (4) (DDWCLP) with 𝑘 = 0.03584, 0.05118, 0.07339, 0.10514
respectively.

ities of (𝛽0, 𝛽1, 𝜎2, ℎ𝑙, ℎ𝑟, 𝛼)𝑇 are reported in Table 4 where CP90 and CP95 represent the coverage probability of the nominal 90%
and 95% confidence intervals, respectively. It can be appreciated that the confidence interval based on the parametric bootstrap 
estimation achieves coverage probability close to the nominal ones.

4.2. Comparing NNWCLP with maximum likelihood method when estimating Tukey-ℎℎ random fields

We perform a small simulation study comparing NNWCLP method, in particular using the 𝑤𝑝𝑙𝐶 function, with standard maximum 
likelihood using the multivariate density in (20). As simulation setting we consider the same spatial locations of the previous Section, 
that is we simulate 1000 realizations of the Tukey-ℎℎ RF observed at 𝑛 = 500 spatial location sites.

We consider the RF in Equation (22) where the mean is considered fixed and equal to zero, 𝜎2 = 1 and the asymmetry/heavy tail 
parameters are fixed as ℎ𝑙 = 0.2 and ℎ𝑟 = 0.1. Finally, as underlying isotropic parametric correlation model, we consider the same 
model of the previous Section. For the NNWCLP method we consider the nearest neighbors weight function in Equation (5) with 
𝑚 = 3. Finally, the vector parameters to be estimated are 𝜽 = (𝜇, 𝜎2, ℎ𝑙, ℎ𝑟, 𝛼)𝑇 . Table 5 depicts RMSE for each parameter, RE and GRE 
associated to the comparison between NNWCLP and maximum likelihood (ML) methods. Overall, it can be appreciated that NNWCLP 
11

performs very well when compared to maximum likelihood with RE and a GRE between 0.9 and 0.1 approximatively.
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Table 2

Bias and RMSE when estimating with 𝑤𝑝𝑙𝐶 the model in equation (24) with 𝛽0 = 0.5, 𝛽1 = −0.25, 𝜎2 = 1, for different values of ℎ𝑙 and ℎ𝑟 , with the weight function (5)

(NNWCLP) with 𝑚 = 2, 4, 8, 16 and with the weight function (4) (DDWCLP) with 𝑘 = 0.03584, 0.05118, 0.07339, 0.10514, respectively. The underlying correlation function 
is 0,3.5,𝐿(0,3.5,𝛼)(𝒅) = (1 − ||𝒅||∕(3.5𝛼))3.5+ with 𝛼 = 0.06.

ℎ𝑙 = 0.1 ℎ𝑙 = 0.2 ℎ𝑙 = 0.3

ℎ𝑟 = 0.1 ℎ𝑟 = 0.3 ℎ𝑟 = 0.1 ℎ𝑟 = 0.3 ℎ𝑟 = 0.1 ℎ𝑟 = 0.3

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

𝛽0

𝑚 = 2 -0.00171 0.11489 -0.00324 0.11189 -0.00174 0.11345 -0.00317 0.10964 -0.00157 0.11127 -0.00289 0.10696

𝑚 = 4 -0.00090 0.11485 -0.00187 0.11269 -0.00086 0.11397 -0.00177 0.11091 -0.00069 0.11229 -0.00155 0.10872

𝑚 = 8 -0.00081 0.11580 -0.00156 0.11498 -0.00082 0.11567 -0.00153 0.11397 -0.00068 0.11472 -0.00136 0.11238

𝑚 = 16 -0.00098 0.11841 -0.00151 0.11870 -0.00112 0.11887 -0.00159 0.11832 -0.00105 0.11853 -0.00150 0.11730

𝑘 = 0.03584 -0.00155 0.14170 -0.00479 0.13740 -0.00135 0.13971 -0.00432 0.13450 -0.00050 0.13624 -0.00329 0.13058

𝑘 = 0.05118 -0.00095 0.13635 -0.00238 0.13330 -0.00066 0.13509 -0.00203 0.13088 -0.00007 0.13274 -0.00143 0.12783

𝑘 = 0.07339 -0.00012 0.13401 -0.00116 0.13255 -0.00011 0.13364 -0.00111 0.13111 0.00021 0.13221 -0.00078 0.12896

𝑘 = 0.10514 0.00052 0.13263 -0.00025 0.13266 0.00032 0.13297 -0.00041 0.13206 0.00038 0.13244 -0.00034 0.13081

𝛽1

𝑚 = 2 0.00143 0.04960 0.00128 0.05196 0.00139 0.05099 0.00123 0.05367 0.00132 0.05196 0.00115 0.05477

𝑚 = 4 0.00091 0.05040 0.00076 0.05310 0.00081 0.05187 0.00064 0.05486 0.00070 0.05292 0.00051 0.05604

𝑚 = 8 0.00044 0.05486 0.00025 0.05771 0.00035 0.05639 0.00014 0.05958 0.00022 0.05753 -0.00001 0.06083

𝑚 = 16 0.00005 0.06173 -0.00006 0.06458 -0.00007 0.06340 -0.00020 0.06648 -0.00023 0.06450 -0.00038 0.06775

𝑘 = 0.03584 0.00234 0.05486 0.00207 0.05779 0.00228 0.05657 0.00200 0.05992 0.00222 0.05779 0.00192 0.06132

𝑘 = 0.05118 0.00018 0.05339 -0.00005 0.05648 0.00015 0.05495 -0.00011 0.05840 0.00011 0.05604 -0.00016 0.05967

𝑘 = 0.07339 0.00016 0.05701 -0.00005 0.06025 0.00007 0.05857 -0.00016 0.06221 -0.00004 0.05975 -0.00031 0.06356

𝑘 = 0.10514 0.00009 0.06380 -0.00003 0.06693 -0.00012 0.06550 -0.00026 0.06899 -0.00034 0.06663 -0.00051 0.07036

𝛼

𝑚 = 2 -0.00044 0.00707 -0.00037 0.00707 -0.00041 0.00707 -0.00034 0.00707 -0.00038 0.00707 -0.00031 0.00707

𝑚 = 4 -0.00082 0.00707 -0.00078 0.00707 -0.00080 0.00707 -0.00076 0.00707 -0.00079 0.00707 -0.00074 0.00707

𝑚 = 8 -0.00120 0.00707 -0.00117 0.00707 -0.00119 0.00707 -0.00116 0.00707 -0.00118 0.00707 -0.00115 0.00707

𝑚 = 16 -0.00158 0.00707 -0.00156 0.00707 -0.00158 0.00707 -0.00155 0.00707 -0.00157 0.00707 -0.00154 0.00707

𝑘 = 0.03584 -0.00076 0.01000 -0.00065 0.01000 -0.00070 0.01000 -0.00059 0.01000 -0.00068 0.01000 -0.00057 0.01000

𝑘 = 0.05118 -0.00124 0.00837 -0.00119 0.00837 -0.00122 0.00837 -0.00116 0.00837 -0.00121 0.00837 -0.00114 0.00837

𝑘 = 0.07339 -0.00148 0.00775 -0.00145 0.00775 -0.00147 0.00775 -0.00144 0.00775 -0.00147 0.00775 -0.00143 0.00775

𝑘 = 0.10514 -0.00184 0.00775 -0.00183 0.00775 -0.00184 0.00775 -0.00182 0.00775 -0.00184 0.00775 -0.00182 0.00775

𝜎2

𝑚 = 2 -0.00049 0.12198 -0.00009 0.12946 0.00048 0.12490 0.00084 0.13214 0.00142 0.12767 0.00178 0.13472

𝑚 = 4 -0.00186 0.12021 -0.00152 0.12716 -0.00105 0.12317 -0.00079 0.12985 -0.00023 0.12594 -0.00001 0.13236

𝑚 = 8 -0.00024 0.12462 0.00013 0.13142 0.00075 0.12826 0.00111 0.13491 0.00165 0.13142 0.00201 0.13780

𝑚 = 16 0.00138 0.13050 0.00204 0.13780 0.00273 0.13506 0.00344 0.14223 0.00390 0.13871 0.00466 0.14574

𝑘 = 0.03584 -0.00502 0.16081 -0.00398 0.16873 -0.00323 0.16453 -0.00194 0.17210 -0.00210 0.16778 -0.00067 0.17510

𝑘 = 0.05118 -0.00293 0.14704 -0.00152 0.15463 -0.00155 0.15040 0.00001 0.15758 -0.00047 0.15343 0.00120 0.16028

𝑘 = 0.07339 -0.00051 0.14227 0.00088 0.15010 0.00089 0.14598 0.00242 0.15346 0.00204 0.14913 0.00368 0.15636

𝑘 = 0.10514 -0.00014 0.14255 0.00121 0.15060 0.00159 0.14731 0.00309 0.15531 0.00299 0.15106 0.00462 0.15884

ℎ𝑙

𝑚 = 2 -0.00511 0.03937 -0.00468 0.04062 -0.00571 0.05477 -0.00508 0.05604 -0.00653 0.07007 -0.00573 0.07113

𝑚 = 4 -0.00586 0.03950 -0.00556 0.04062 -0.00679 0.05523 -0.00634 0.05630 -0.00794 0.07071 -0.00736 0.07176

𝑚 = 8 -0.00691 0.04159 -0.00667 0.04243 -0.00806 0.05805 -0.00772 0.05908 -0.00953 0.07362 -0.00908 0.07463

𝑚 = 16 -0.00771 0.04472 -0.00756 0.04550 -0.00903 0.06221 -0.00880 0.06332 -0.01083 0.07785 -0.01054 0.07893

𝑘 = 0.03584 -0.00670 0.04722 -0.00599 0.04858 -0.00789 0.06768 -0.00686 0.06921 -0.01000 0.08556 -0.00875 0.08660

𝑘 = 0.05118 -0.00743 0.04416 -0.00717 0.04528 -0.00885 0.06332 -0.00845 0.06450 -0.01078 0.08136 -0.01019 0.08246

𝑘 = 0.07339 -0.00802 0.04472 -0.00785 0.04572 -0.00953 0.06364 -0.00928 0.06481 -0.01163 0.08099 -0.01125 0.08210

𝑘 = 0.10514 -0.00845 0.04712 -0.00834 0.04806 -0.01024 0.06648 -0.01006 0.06768 -0.01261 0.08355 -0.01235 0.08479

ℎ𝑟

𝑚 = 2 -0.00470 0.04000 -0.00588 0.07225 -0.00469 0.04062 -0.00580 0.07280 -0.00470 0.04111 -0.00573 0.07308

𝑚 = 4 -0.00527 0.03962 -0.00648 0.07176 -0.00526 0.04025 -0.00638 0.07246 -0.00527 0.04074 -0.00630 0.07287

𝑚 = 8 -0.00657 0.04195 -0.00815 0.07503 -0.00659 0.04254 -0.00811 0.07583 -0.00661 0.04301 -0.00807 0.07635

𝑚 = 16 -0.00746 0.04483 -0.00933 0.07925 -0.00754 0.04539 -0.00940 0.08000 -0.00761 0.04583 -0.00945 0.08062

𝑘 = 0.03584 -0.00578 0.04817 -0.00857 0.08701 -0.00572 0.04889 -0.00833 0.08769 -0.00564 0.04940 -0.00806 0.08803

𝑘 = 0.05118 -0.00754 0.04427 -0.01060 0.08142 -0.00755 0.04494 -0.01051 0.08204 -0.00754 0.04550 -0.01037 0.08240

𝑘 = 0.07339 -0.00793 0.04528 -0.01064 0.08191 -0.00800 0.04583 -0.01069 0.08258 -0.00804 0.04637 -0.01068 0.08307

𝑘 = 0.10514 -0.00820 0.04722 -0.01067 0.08390 -0.00832 0.04775 -0.01085 0.08462 -0.00841 0.04827 -0.01095 0.08515

4.3. Comparing NNWCLP with the Vecchia method for Gaussian random field estimation

The basic idea of the Vecchia method (Vecchia, 1988; Katzfuss and Guinness, 2021) is to replace the multivariate Gaussian 
distribution with a product of Gaussian conditional distributions, in which each conditional distribution conditions on only a small 
subset of previous observations. This kind of approximation depends basically on a specified ordering of the spatial location vector 
and the size of the conditioning vectors 𝑚. Generally, the larger is the 𝑚, the more accurate and computationally expensive the 
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approximation is.
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Table 3

Global Relative efficiency (GRE) defined in equation (25) between 𝑤𝑝𝑙𝑀 and 𝑤𝑝𝑙𝐶 methods using the weight function (5) (NNWCLP) with 𝑚 = 2, 4, 8, 16 and using the 
weight function (4) (DDWCLP) with 𝑘 = 0.03584, 0.05118, 0.07339, 0.10514, respectively, under different scenarios.

ℎ𝑙 = 0.1 ℎ𝑙 = 0.2 ℎ𝑙 = 0.3

ℎ𝑟 = 0.1 ℎ𝑟 = 0.3 ℎ𝑟 = 0.1 ℎ𝑟 = 0.3 ℎ𝑟 = 0.1 ℎ𝑟 = 0.3

𝑚 = 2 0.93935 0.93595 0.93391 0.93033 0.93288 0.92928

𝑘 = 0.03584 0.96164 0.95724 0.95639 0.95161 0.95319 0.94782

𝑚 = 4 0.92106 0.91800 0.91603 0.91263 0.91584 0.91260

𝑘 = 0.05118 0.94312 0.93977 0.93933 0.93550 0.93916 0.93525

𝑚 = 8 0.92762 0.92611 0.92487 0.92334 0.92556 0.92411

𝑘 = 0.07339 0.94712 0.94579 0.94480 0.94340 0.94521 0.94395

𝑚 = 16 0.94774 0.94846 0.94668 0.94738 0.94667 0.94734

𝑘 = 0.10514 0.96052 0.96105 0.95968 0.96010 0.95998 0.96047

Table 4

The coverage probability of the nominal 90% and 95% confidence intervals (CP90 and CP95 respectively) associated with the 
NNWCLP method (𝑤𝑝𝑙𝐶 function with 𝑚 = 2) of (𝛽0 , 𝛽1 , 𝜎2 , ℎ𝑙, ℎ𝑟, 𝛼)𝑇 constructed using parametric bootstrap estimation of the 
asymptotic variance covariance matrix.

𝛽0 𝛽1 𝛼 𝜎2 ℎ𝑙 ℎ𝑟

CP90 0.91 0.89 0.90 0.92 0.86 0.89
CP95 0.95 0.94 0.94 0.96 0.92 0.93

Table 5

RMSE for each parameter and relative efficiency (RE) between NNWCLP method (𝑤𝑝𝑙𝐶 ) using the weight function (5)

with 𝑚 = 3 and maximum likelihood method. The Global Relative efficiency (GRE) is 0.94368.

𝜇 𝜎2 ℎ𝑙 ℎ𝑟 𝛼

NNWCLP 0.10925 0.12044 0.05311 0.03903 0.00630
ML 0.10912 0.12416 0.05229 0.04116 0.00707

RE 1.00122 0.96999 1.01555 0.94829 0.89067

The Vecchia method by construction specifies an approximation of a valid likelihood function that corresponds to a specific data 
generating process, as opposed to WCLP, and it can be used for simulating and predicting purposes. In general, it can be computed 
in 𝑂(𝑛𝑚3) time and with 𝑂(𝑛𝑚2) memory burden.

Although the Vecchia method can in principle be used to estimate the proposed Tukey-ℎℎ RF, we compare the NNWCLP with the 
Vecchia method when estimating Gaussian RFs.

Specifically, we consider a simulation setting with 𝑛 = 5000 spatial points uniformly distributed on the unit square, 𝒔𝑖 ∈ 𝐴 = [0, 1]2, 
𝑖 = 1, … , 𝑛. We simulate, 500 realizations of a zero mean and unit variance Gaussian RF with Matérn correlation model in Equation 
(18) that is we consider the RF 𝐺(𝒔) = 𝜇 + 𝜎𝐺∗(𝒔) with 𝜇 = 0, 𝜎2 = 1 and 𝜌𝐺∗ (𝐡) = 𝜈,𝛼(𝒅). The correlation parameters are set 
𝜈 = 0.5, 1.5 and 𝛼 = 0.050, 0.0316 respectively. This parameter setting guarantees that the practical range of the correlation function is 
approximatively 0.15. We consider two scenarios: in the first we assume that the smoothness parameter is known and fixed and in 
the second we assume it unknown.

For each simulated dataset we perform the estimation with the NNWCLP method (using the 𝑤𝑝𝑙𝐶 function) and the Vecchia 
method. To stress the comparison we consider a recent efficient proposal of Guinness (2021) that exploits a Fisher-scoring algorithm 
to find the maximum of the Vecchia approximation using a specific type of ordering (maximum-minimum ordering, see Guinness 
(2018) for details). We use the fit_model R function of the GpGp R package that implements the method of Guinness (2021) and 
the GeoFit R function in the GeoModels R package using a specified algorithm of optimization (we use the nlminb R function 
(Gay, 1990)) in our example). The starting values used are the same for both R functions.

Tables 6 and 7 depict the results of the simulation study when estimating with the NNWCLP and Vecchia methods using 𝑚 =
2, 4, 8, 16, assuming the smoothness parameter known and unknown, respectively. The results are reported in terms of RMSE and 
relative efficiency (RE) for each parameter. In addition, the bottom part of both tables shows the results in terms of global relative 
efficiency (GRE) as defined in Equation (25). The lowest RMSE values across the different choices of 𝑚 are reported in bold for each 
parameter.

As a general pattern, it can be appreciated that the best choice for the Vecchia method is 𝑚 = 16 for each parameter, as expected. 
For the NNWCLP method the best choice of 𝑚 generally depends on the type of parameter.

Another general pattern that can be outlined is that the REs of the mean and variance parameter are very close to 1 (including 
greater than 1 in some cases) indicating that the NNWCLP method performs very well if compared to the Vecchia method, irrespective 
13

of the choice of 𝑚 and the value of 𝜈.
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Table 6

RMSE and associated relative efficiency (RE) when estimating the parameters of a Gaussian RF with Matérn correlation and smoothness parameter 𝜈 = 0.5, 1.5 (𝜈 is 
assumed known) using NNWCLP and Vecchia methods with increasing 𝑚 = 2, 4, 8, 16. The bottom line shows information on the global relative efficiency (GRE).

𝜈 = 0.5 𝜈 = 1.5

𝑚 = 2 𝑚 = 4 𝑚 = 8 𝑚 = 16 𝑚 = 2 𝑚 = 4 𝑚 = 8 𝑚 = 16

𝜇

NNWCLP 0.11348 0.11277 0.11226 𝟎.𝟏𝟏𝟏𝟑𝟖 0.12983 0.12612 0.12393 𝟎.𝟏𝟐𝟐𝟔𝟑
Vecchia 0.11960 0.11542 0.11475 𝟎.𝟏𝟏𝟏𝟒𝟗 0.13298 0.13237 0.12671 𝟎.𝟏𝟐𝟎𝟒𝟖
RE 1.05393 1.02349 1.02218 1.00099 1.02426 1.04956 1.02243 0.98247

𝛼

NNWCLP 𝟎.𝟎𝟎𝟒𝟕𝟒 𝟎.𝟎𝟎𝟒𝟕𝟒 0.00477 0.00497 0.00187 𝟎.𝟎𝟎𝟏𝟖𝟎 0.00181 0.00195

Vecchia 0.00481 0.00465 0.00465 𝟎.𝟎𝟎𝟒𝟒𝟓 0.00141 0.00136 0.00126 𝟎.𝟎𝟎𝟏𝟏𝟓
RE 1.01477 0.98101 0.97484 0.89537 0.75401 0.75556 0.69613 0.58974

𝜎2
NNWCLP 0.08669 0.08485 𝟎.𝟎𝟖𝟒𝟑𝟎 0.08451 0.12043 0.11390 𝟎.𝟏𝟏𝟐𝟑𝟑 0.11274

Vecchia 0.08713 0.08564 0.08614 𝟎.𝟎𝟖𝟐𝟒𝟔 0.10882 0.10983 0.10545 𝟎.𝟎𝟗𝟕𝟓𝟓
RE 1.00508 1.00931 1.02183 0.97574 0.90360 0.96427 0.93875 0.86527

GRE 1.00747 0.97145 0.95190 0.87194 0.84060 0.77120 0.71119 0.63092

Table 7

RMSE and associated relative efficiency (RE) when estimating the parameters of a Gaussian RF with Matérn correlation and smoothness parameter 𝜈 = 0.5, 1.5 (𝜈 is 
assumed unknown) using NNWCLP and Vecchia method with increasing 𝑚 = 2, 4, 8, 16. The bottom line shows information on global relative efficiency (GRE).

𝜈 = 0.5 𝜈 = 1.5

𝑚 = 2 𝑚 = 4 𝑚 = 8 𝑚 = 16 𝑚 = 2 𝑚 = 4 𝑚 = 8 𝑚 = 16

𝜇

NNWCLP 0.11394 0.11307 0.11236 𝟎.𝟏𝟏𝟏𝟕𝟔 0.13767 0.12840 0.12537 𝟎.𝟏𝟐𝟑𝟏𝟒
Vecchia 0.11971 0.11519 0.11479 𝟎.𝟏𝟏𝟏𝟓𝟏 0.13271 0.13234 0.12649 𝟎.𝟏𝟐𝟎𝟒𝟎
RE 1.05064 1.01875 1.02163 0.99776 0.96398 1.03069 1.00893 0.97775

𝛼

NNWCLP 0.00668 0.00625 𝟎.𝟎𝟎𝟓𝟗𝟕 0.00621 0.00507 0.00414 0.00359 𝟎.𝟎𝟎𝟑𝟓𝟔
Vecchia 0.00645 0.00598 0.00588 𝟎.𝟎𝟎𝟓𝟔𝟔 0.00254 0.00220 0.00187 𝟎.𝟎𝟎𝟏𝟔𝟗
RE 0.96557 0.95680 0.98492 0.91143 0.50099 0.53140 0.52089 0.47472

𝜎2
NNWCLP 0.08685 0.08543 0.08433 𝟎.𝟎𝟖𝟒𝟐𝟗 0.12887 0.11846 0.11454 𝟎.𝟏𝟏𝟑𝟑𝟖
Vecchia 0.08764 0.08676 0.08729 𝟎.𝟎𝟖𝟑𝟓𝟕 0.11828 0.11978 0.11278 𝟎.𝟏𝟎𝟑𝟎𝟑
RE 1.00910 1.01557 1.03510 0.99146 0.91782 1.01114 0.98463 0.90871

𝜈

NNWCLP 0.02180 0.01937 𝟎.𝟎𝟏𝟖𝟏𝟔 0.01919 0.33952 0.21636 0.14736 𝟎.𝟏𝟑𝟑𝟕𝟓
Vecchia 0.01720 0.01486 0.01420 𝟎.𝟎𝟏𝟑𝟗𝟎 0.04798 0.03285 0.02564 𝟎.𝟎𝟐𝟑𝟓𝟗
RE 0.78900 0.76717 0.78194 0.72434 0.14132 0.15183 0.17400 0.17637

GRE 0.93404 0.91972 0.92401 0.86902 0.37729 0.40847 0.46559 0.45243

From the computational point of view, the cases 𝑚 = 2 or 𝑚 = 4 and 𝑚 = 8 are the more interesting settings for both methods. 
The NNWCLP method is very competitive under these settings when 𝜈 = 0.5 is assumed known. For instance when 𝑚 = 2 and 𝜈 = 0.5
is fixed the NNWCLP has approximatively the same performance of the Vecchia method (GRE=1.00747). However, a loss of global 
relative efficiency can be appreciated when 𝑚 = 2 and 𝜈 = 1.5 is assumed known (GRE=0.84060). In addition, the relative efficiencies 
of the NNWCLP method generally worsen when the smoothness parameter is assumed unknown. If 𝜈 = 0.5 this loss of efficiency is 
still reasonable (for instance GRE=0.93404 if 𝑚 = 2). Nevertheless, when increasing the smoothness parameter the loss is much more 
severe (GRE=0.46559 if 𝑚 = 4). Observing the efficiencies of each parameter it is apparent that this loss of efficiency is mainly due 
to the poor performance of the NNWCLP method when estimating the smoothness parameter 𝜈 compared with Vecchia method. In 
particular, note that the efficiency of the NNWCLP method when 𝜈 = 1.5 clearly improves when increasing 𝑚.

Summarizing, as an overall comment the NNWCLP method shows a general reasonable loss of statistical efficiency in comparison 
to the Vecchia method, particularly when 𝜈 = 0.5. This loss of efficiency is much more apparent when estimating and/or increasing 
the smoothness parameter. However, from a computational viewpoint the NNWCLP method clearly outperforms Vecchia method. 
To give an idea of the computational gains of the NNWCLP method we compare both methods in terms of R elapsed time using the

system.time function. For the comparison we have considered the GPvecchia R package (Katzfuss et al., 2020). Both methods 
require a preliminary step. For instance in the Vecchia method a neighborhood structure that depends on 𝑚 (the size of the con-

ditioning vector) and the type of ordering (we consider a maxmin order as proposed in Guinness (2018)) must be created before 
the optimization step. For the NNWCLP method the preliminary step involves, as explained in Section 2, building a kd-tree and 
searching for 𝑚 nearest neighbors inside the kd-tree. The preliminary step can be performed with the GeoNeighIndex function of 
the GeoModels package for the NNWCLP method and the vecchia_specify function of the GPvecchia package for the Vecchia 
method. For the second and final step we compare the time needed for the evaluation of the vecchia_likelihood R function that 
implements a likelihood approximation based on Vecchia method versus the evaluation of the NNWCLP function.

Table 8 shows the seconds needed for these two steps when increasing 𝑛, the number of location sites, and when 𝑚 = 2, 4, 8, 16. 
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All calculations were carried out on a 2.4 GHz processor with 16 GB of memory.
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Table 8

Elapsed time (seconds) needed for the first preliminary step (1) and the objective function evaluation (2) when estimating a spatial dataset with increasing size 
𝑛 = 10000, 50000, … , 1200000 using the Vecchia method and the NNWCLP method using 𝑚 = 2, 4, 8, 16.

𝑚 = 2 𝑚 = 4 𝑚 = 8 𝑚 = 16

𝑛 NNWCLP Vecchia NNWCLP Vecchia NNWCLP Vecchia NNWCLP Vecchia

10000 1 0.01 0.61 0.01 0.87 0.02 1.22 0.05 1.87
2 0.01 0.48 0.02 0.60 0.03 0.90 0.07 1.85

50000 1 0.06 3.42 0.10 3.97 0.14 5.40 0.34 3.42
2 0.04 2.49 0.07 2.76 0.15 4.34 0.24 2.23

100000 1 0.12 6.80 0.17 7.90 0.27 10.78 0.80 18.43
2 0.07 5.24 0.16 4.96 0.29 10.46 0.60 20.12

300000 1 0.33 25.65 0.49 27.75 1.03 38.68 2.21 57.95
2 0.27 16.62 0.52 22.64 1.65 29.43 4.23 49.23

600000 1 1.31 51.37 1.78 64.84 2.63 83.16 4.98 137.93
2 0.49 35.19 1.23 123.12 1.71 170.08 3.86 201.64

1200000 1 2.52 118.66 3.36 141.51 5.17 170.33 6.12 272.23
2 1.04 100.74 1.98 111.98 3.99 182.76 9.65 300.32

Focusing on small neighbors, i.e. 𝑚 = 2 or 𝑚 = 4, the gain in terms of computational time (summing up the times of the two steps) 
with respect to the Vecchia method can be huge when estimating massive spatial dataset. For instance, when 𝑚 = 2 NNWCLP is 
approximately 60 time faster than Vecchia method and when 𝑚 = 4 NNWCLP is 50 time faster than Vecchia method when estimating 
on a dataset of size 1200000.

In addition the NNWCLP method, similar to the Vecchia method, can be parallelized to further reduce the computational bur-

den associated with estimation step. A version of the GeoModels package (currently available only for macOS at the time) that 
implements a parallelized NNWCLP method can be found at https://vmoprojs .github .io /GeoModels -page.

As a final comment, NNWCLP exhibits a good balance between statistical efficiency and computational complexity. Compared 
with the Vecchia method the NNWCLP shows an overall loss of statistical efficiency when estimating a Gaussian RF with Matérn 
correlation. The loss of efficiency in general tends to increase when estimating the smoothness parameter and/or when consid-

ering differentiable RFs. However, the proposed method shows clear computational gains compared to the Vecchia method. As a 
consequence the proposed estimation method can be an effective solution when analyzing massive datasets.

5. Application

We consider data from the ERA5-Land product Muñoz Sabater et al. (2021) which is a reanalysis dataset providing a consistent 
view of the evolution of land variables over several decades (1950 to present) at a very fine resolution of the earth that can be 
downloaded from the section Datasets in https://earthengine .google .com/.

In particular, we focus on hourly surface temperature of January and February 2020 over the region delimited by longitude 
(in decimal degree) (-85,-34) and latitude (-40,12) which correspond to the greater part of South-America (363827 locations sites). 
Finally, for each location site, we consider the overall mean of January and February.

Following Li and Zhang (2011), we first detrend the data using splines to remove the cyclic pattern of both variables along the 
longitude and latitude directions, and we treat the residuals as a realization from an RF. Fig. 5, from left to right, depicts the colored

map, the histogram and the empirical semivariogram of the residuals. The graphics suggest that a weakly stationary RF with flexible 
marginal distribution is potentially an appropriate model for our data. In our analysis we consider three RFs with increasing level of 
complexity:

1. a Gaussian RF,

𝐺(𝒔) = 𝜇 + 𝜎𝐺∗(𝒔).

2. a Tukey-ℎ RF,

𝑇ℎ(𝒔) = 𝜇 + 𝜎𝑇 ∗
ℎ
(𝒔), ℎ ∈ [0,0.5),

where 𝑇 ∗
ℎ

is a Tukey-ℎ RF defined in Equation (7).

3. a Tukey-ℎℎ RF

𝑇ℎ𝑙,ℎ𝑟
(𝒔) = 𝜇 + 𝜎𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔), ℎ𝑙, ℎ𝑟 ∈ [0,0.5),
15

where 𝑇 ∗
ℎ𝑙,ℎ𝑟

is a Tukey-ℎℎ RF defined in Equation (12).

https://vmoprojs.github.io/GeoModels-page
https://earthengine.google.com/
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Fig. 5. From left to right: colored map, normalized histogram and empirical semivariogram of the land surface temperature data residuals. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

Table 9

NNWCLP estimation (for 𝑚 = 8 and 𝑚 = 16) with associated standard error for the Gaussian, Tukey-ℎ and Tukey-ℎℎ RFs and associated PLIC and RMSE values.

𝜇 𝜎2 ℎ ℎ𝑙 ℎ𝑟 𝛼 𝜈 PLIC RMSE

𝑚 = 8

Gaussian 0.0234 13.8484 178.96 0.6694 6094235 0.33187
(0.4461) (1.269) (13.705) (0.0045)

Tukey-ℎ 0.9458 7.0187 0.2120 165.70 0.7152 5337899 0.33077
(0.0269) (0.6764) (0.0210) (13.042) (0.0054)

Tukey-ℎℎ 0.4620 6.7776 0.1349 0.2584 158.82 0.7155 5331609 0.33075
(0.05475) (0.6309) (0.0129) (0.0258) (11.485) (0.0062)

𝑚 = 16

Gaussian 0.0247 13.812 186.41 0.6565 14303492 0.33220
(0.4490) (1.350) (15.180) (0.0042)

Tukey-ℎ 0.9599 6.8732 0.2196 207.57 0.6581 12751849 0.33211
(0.0309) (0.7601) (0.0249) (19.042) (0.0043)

Tukey-ℎℎ 0.4783 6.6382 0.1382 0.2681 197.39 0.6592 12738045 0.33207
(0.0755) (0.6788) (0.0150) (0.0291) (16.655) (0.0043)

As underlying correlation model for the RFs 𝐺∗, 𝑇 ∗
ℎ

and 𝑇 ∗
ℎ𝑙,ℎ𝑟

we consider a Matérn correlation model 𝜌𝐺∗ (𝐡) =𝜈,𝛼(𝒅). We apply 
the NNWCLP method for the estimation of the three RFs by considering the weight function (5) with 𝑚 = 8 and 𝑚 = 16. The choice 
of 𝑚 follows the empirical evidence from Section 4. Table 9 summarizes the results of the estimates, including their standard error 
computed using parametric bootstrap. In addition the values of the PLIC defined in (6) are reported. It can be appreciated that 
the values of the smoothness parameter and spatial scale parameters are quite similar for the three models. However the variance 
parameter change drastically for the Tukey’s RFs compared to the Gaussian RFs. More importantly, the PLIC value for 𝑚 = 8, 16
selects the proposed Tukey-ℎℎ RF. Fig. 6 depicts the normalized histogram of the land surface temperature data residuals versus the 
estimated marginal density function for the Gaussian RF, Tukey-ℎ RF and Tukey-ℎℎ RF and, in addition, the empirical semivariogram 
versus the associated estimated semi-variograms.

We also want to assess the predictive performances of the three models. To do so, we apply a cross validation technique that is 
we randomly choose 90% of the spatial locations for the parameter estimation and use the remaining 10% for the predictions. We 
repeat this procedure 100 times, recording the square root of the mean squared error (RMSE) prediction each time.

Since the size of the dataset is very large, the prediction is performed using the best local linear predictor using 100 neighborhoods

and using the estimation of the correlation functions 𝜌𝐺∗ (𝐡), 𝜌𝑇 ∗
ℎ
(𝒅) and 𝜌𝑇 ∗

ℎ𝑙 ,ℎ𝑟

(𝒅) respectively. Table 9, depicts the empirical mean of 
the 100 RMSEs obtained. It turns out that the model with the best prediction performance is the proposed Tukey-ℎℎ RF. In addition 
the Tukey-ℎℎ RF estimated using NNWCLP with 𝑚 = 8 achieves the best prediction performance.

6. Concluding remarks

In this paper we have focused on weighted composite likelihood based on pairs, a useful estimation method that has a broad 
applicability when estimating complex (non)-Gaussian RFs. The asymmetric weight function based on nearest neighbors that we 
have proposed in this paper has been shown to be an effective solution when estimating a Tukey-ℎℎ RF, a novel flexible model for 
16

spatial data that has flexible marginal distributions, possibly skewed and/or heavy-tailed.
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Fig. 6. Top part (from left to right): normalized histogram of the land surface temperature data residuals versus the estimated marginal density function for a) 
Gaussian RF, b) Tukey-ℎ RF and c) Tukey-ℎℎ RF. Bottom part (from left to right): empirical semivariogram of the land surface temperature data residuals versus the 
estimated semi-variogram for d) Gaussian RF, e) Tukey-ℎ RF and f) Tukey-ℎℎ RF.

On the one hand we have shown, through numerical examples, that the proposed weight function outperforms the symmetric 
weight function based on distances from a statistical efficiency viewpoint. On the other hand the computational benefits obtained 
using the proposed weight function allow estimating massive (up to millions) spatial datasets. This is because kd-tree algorithms can 
be exploited to achieve an objective function requiring 𝑂(𝑛𝑚) time complexity and 𝑂(𝑛) memory storage where the best choice of 𝑚
(the order of the nearest neighbors involved) is typically between 2 and 16, as shown in the numerical examples. Compared to the 
Vecchia approximation, the proposed method shows a general reasonable loss of statistical efficiency which is more apparent when 
estimating differentiable Gaussian RFs. However, from a computational point of view, the proposed method clearly outperforms the 
Vecchia approximation. As a consequence we believe that the proposed method represents an effective solution with a good balance 
between statistical efficiency and computational complexity when estimating (non)-Gaussian massive datasets. Finally, although we 
treat the spatial case in this paper, the proposed weight function can be easily extended to the space-time context by considering a 
spatio-temporal neighborhood.
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Appendix A. Proofs

A.1. Lemma 1

Lemma 1. Let 𝑇 ∗
ℎ𝑙 ,ℎ𝑟

, with ℎ𝑙, ℎ𝑟 ∈ [0, 1∕2) be the Tukey-ℎℎ RF defined in (12). Then:

IE(𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔)𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔+ 𝒅)) =
𝑔1(𝒅, ℎ𝑙)𝑢

(
𝜌2(𝒅)

𝑔21 (𝒅,ℎ𝑙)

)
2𝜋𝑔

3∕2
2 (𝒅, ℎ𝑙)

+ 𝜌(𝒅)
2𝑔3∕2(𝒅, ℎ𝑙, ℎ𝑟)

+ 𝜌(𝒅)

4𝑔3∕22 (𝒅, ℎ𝑙)

+
𝑔1(𝒅, ℎ𝑟)𝑢

(
𝜌2(𝒅)

𝑔21 (𝒅,ℎ𝑟)

)
2𝜋𝑔

3∕2
2 (𝒅, ℎ𝑟)

+ 𝜌(𝒅)

4𝑔3∕22 (𝒅, ℎ𝑟)

−
[𝑔1(𝒅, ℎ𝑙)𝑔1(𝒅, ℎ𝑟)]1∕2𝑢

(
𝜌2(𝒅)

𝑔1(𝒅,ℎ𝑙)𝑔1(𝒅,ℎ𝑟)

)
𝜋𝑔3∕2(𝒅, ℎ𝑙, ℎ𝑟)

, (A.1)

where 𝑔1(𝒅, 𝑥) = 1 −(1 −𝜌2(𝒅))𝑥, 𝑔2(𝒅, 𝑥) = (1 −𝑥)2 −𝑥2𝜌2(𝒅), 𝑔(𝒅, ℎ𝑙, ℎ𝑟) = 1 −ℎ𝑙 −ℎ𝑟 +(1 −𝜌2(𝒅))ℎ𝑙ℎ𝑟 and 𝑢(𝑥) =
√
1 − 𝑥+

√
𝑥𝑎𝑟𝑐𝑠𝑖𝑛(

√
𝑥).

Proof. In the proof we make use of some special functions such as the hypergeometric Gaussian function 2𝐹1 (𝑎, 𝑏; 𝑐;𝑥), the con-

fluent hypergeometric function 1𝐹1 (𝑎;𝑏;𝑥) and the parabolic cylinder function 𝐷𝜈 (𝑥) (see Gradshteyn and Ryzhik (2007) for their 
definitions). Setting, IE(𝑇 ∗

𝑖
, 𝑇 ∗

𝑗
) = IE(𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔𝑖)𝑇 ∗

ℎ𝑙,ℎ𝑟
(𝒔𝑗 )) with 𝒅 = 𝒔𝑖 − 𝒔𝑗 we have:

IE(𝑇 ∗
𝑖 , 𝑇 ∗

𝑗 ) = IE

[
𝐺(𝒔𝑖)𝐺(𝒔𝑗 )𝑒

ℎ𝑟 (𝐺(𝒔𝑖 ))2
2 +

ℎ𝑟 (𝐺(𝒔𝑗 ))2

2

]
+ IE

[
𝐺(𝒔𝑖)𝐺(𝒔𝑗 )𝑒

ℎ𝑙 (𝐺(𝒔𝑖 ))2
2 +

ℎ𝑙 (𝐺(𝒔𝑗 ))2

2

]

+ IE

[
𝐺(𝒔𝑖)𝐺(𝒔𝑗 )𝑒

ℎ𝑟 (𝐺(𝒔𝑖))2
2 +

ℎ𝑙 (𝐺(𝒔𝑗 ))2

2

]
+ IE

[
𝐺(𝒔𝑖)𝐺(𝒔𝑗 )𝑒

ℎ𝑙 (𝐺(𝒔𝑖))2
2 +

ℎ𝑟(𝐺(𝒔𝑗 ))2

2

]

= 1
2𝜋(1 − 𝜌2(𝒅))1∕2 ∫

ℝ2
+

𝑔𝑖𝑔𝑗𝑒
− 1

2(1−𝜌2(𝒅))

[
𝑔2
𝑖
+𝑔2

𝑗
−2𝜌(𝒅)𝑔𝑖𝑔𝑗

]
𝑒

ℎ𝑟𝑔2
𝑖

2 +
ℎ𝑟𝑔2

𝑗
2 𝑑𝑔𝑖𝑑𝑔𝑗

+ 1
2𝜋(1 − 𝜌2(𝒅))1∕2 ∫

ℝ2
−

𝑔𝑖𝑔𝑗𝑒
− 1

2(1−𝜌2(𝒅))

[
𝑔2
𝑖
+𝑔2

𝑗
−2𝜌(𝒅)𝑔𝑖𝑔𝑗

]
𝑒

ℎ𝑙𝑔
2
𝑖

2 +
ℎ𝑙𝑔

2
𝑗

2 𝑑𝑔𝑖𝑑𝑔𝑗

+ 1
2𝜋(1 − 𝜌2(𝒅))1∕2 ∫

ℝ+

∫
ℝ−

𝑔𝑖𝑔𝑗𝑒
− 1

2(1−𝜌2(𝒅))

[
𝑔2
𝑖
+𝑔2

𝑗
−2𝜌(𝒅)𝑔𝑖𝑔𝑗

]
𝑒

ℎ𝑟𝑔2
𝑖

2 +
ℎ𝑙𝑔

2
𝑗

2 𝑑𝑔𝑖𝑑𝑔𝑗

+ 1
2𝜋(1 − 𝜌2(𝒅))1∕2 ∫

ℝ−

∫
ℝ+

𝑔𝑖𝑔𝑗𝑒
− 1

2(1−𝜌2(𝒅))

[
𝑔2
𝑖
+𝑔2

𝑗
−2𝜌(𝒅)𝑔𝑖𝑔𝑗

]
𝑒

ℎ𝑙𝑔
2
𝑖

2 +
ℎ𝑟𝑔2

𝑗
2 𝑑𝑔𝑖𝑑𝑔𝑗

= 𝐴1 +𝐴2 +𝐴3 +𝐴4. (A.2)

Taking the first integral 𝐴1 and using (3.462.1) of Gradshteyn and Ryzhik (2007), we obtain,

𝐴1 =
1

2𝜋(1 − 𝜌2(𝒅))1∕2 ∫
ℝ+

𝑔𝑗𝑒
−

[1−(1−𝜌2(𝒅))ℎ𝑟 ]𝑔2𝑗
2(1−𝜌2(𝒅))

⎡⎢⎢⎢⎣∫ℝ+

𝑔𝑖𝑒

[
−

[1−(1−𝜌2(𝒅))ℎ𝑟]𝑔2𝑖
2(1−𝜌2(𝒅))

+
𝜌(𝒅)𝑔𝑖𝑔𝑗

(1−𝜌2(𝒅))

]
𝑑𝑔𝑖

⎤⎥⎥⎥⎦𝑑𝑔𝑗

= 1
2𝜋(1 − 𝜌2(𝒅))1∕2

[
(1 − 𝜌2(𝒅))

1 − (1 − 𝜌2(𝒅))ℎ𝑟

]
∫
ℝ+

𝑔𝑗𝑒
−
[
[1−(1−𝜌2(𝒅))ℎ𝑟]

2(1−𝜌2(𝒅))
− 𝜌2(𝒅)

4(1−𝜌2(𝒅))[1−(1−𝜌2(𝒅))ℎ𝑟 ]

]
𝑔2
𝑗

×𝐷−2

(
−

𝜌(𝒅)𝑔𝑗√
(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

)
𝑑𝑔𝑗 . (A.3)

Now, considering (9.240) of Gradshteyn and Ryzhik (2007):

𝐷−2

(
−

𝜌(𝒅)𝑔𝑗√
(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

)
= 𝑒

−
𝜌2(𝒅)𝑔2

𝑗

4(1−𝜌2(𝒅))[1−(1−𝜌2(𝒅))ℎ𝑟 ]

(
1 𝜌2(𝒅)𝑔2

𝑗

)

18

× 1𝐹1 1;
2
;
2(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]
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+

√
2𝜋𝜌(𝒅)𝑔𝑗𝑒

−
𝜌2(𝒅)𝑔2

𝑗

4(1−𝜌2(𝒅))[1−(1−𝜌2(𝒅))ℎ𝑟 ]

2
√
(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

× 1𝐹1

(
3
2
; 3
2
;

𝜌2(𝒅)𝑔2
𝑗

2(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

)
, (A.4)

combining equations (A.4) and the integral of (A.3) and using (7.621.4) of Gradshteyn and Ryzhik (2007), we obtain

𝐴1 =
(1 − 𝜌2(𝒅))1∕2

2𝜋[1 − (1 − 𝜌2(𝒅))ℎ𝑟] ∫
ℝ+

𝑔𝑗𝑒
−

[1−(1−𝜌2(𝒅))ℎ𝑟 ]𝑔2𝑗
2(1−𝜌2(𝒅)) 1𝐹1

(
1; 1

2
;

𝜌2(𝒅)𝑔2
𝑗

2(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

)
𝑑𝑔𝑗

+
√
2𝜋𝜌(𝒅)

4𝜋[1 − (1 − 𝜌2(𝒅))ℎ𝑟]3∕2 ∫
ℝ+

𝑔2𝑗 𝑒
−

[1−(1−𝜌2(𝒅))ℎ𝑟 ]𝑔2𝑗
2(1−𝜌2(𝒅)) 1𝐹1

(
3
2
; 3
2
;

𝜌2(𝒅)𝑔2
𝑗

2(1 − 𝜌2(𝒅))[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

)
𝑑𝑔𝑗

= (1 − 𝜌2(𝒅))3∕2

2𝜋[1 − (1 − 𝜌2(𝒅))ℎ𝑟]2
2𝐹1

(
1,1; 1

2
; 𝜌2(𝒅)
[1 − (1 − 𝜌2(𝒅))ℎ𝑟]2

)
+ 𝜌(𝒅)(1 − 𝜌2(𝒅))3∕2

4[1 − (1 − 𝜌2(𝒅))ℎ𝑟]3
2𝐹1

(
3
2

,
3
2
; 3
2
; 𝜌2(𝒅)
[1 − (1 − 𝜌2(𝒅))ℎ𝑟]2

)
. (A.5)

Using Euler transformation and the identity 2𝐹1

(
3
2 ,

3
2 ;

3
2 ;𝑥

)
= (1 − 𝑥)−3∕2, we obtain

𝐴1 =
[1 − (1 − 𝜌2(𝒅))ℎ𝑟]

2𝜋[(1 − ℎ𝑟)2 − 𝜌2(𝒅)ℎ2
𝑟 ]3∕2

2𝐹1

(
−1
2

,−1
2
; 1
2
; 𝜌2(𝒅)
[1 − (1 − 𝜌2(𝒅))ℎ𝑟]2

)
+ 𝜌(𝒅)

4[(1 − ℎ𝑟)2 − 𝜌2(𝒅)ℎ2
𝑟 ]3∕2

. (A.6)

Similarly, 𝐴2, 𝐴3 and 𝐴4 in (A.2), are given by:

𝐴2 =
[1 − (1 − 𝜌2(𝒅))ℎ𝑙]

2𝜋[(1 − ℎ𝑙)2 − 𝜌2(𝒅)ℎ2
𝑙
]3∕2 2𝐹1

(
−1
2

,−1
2
; 1
2
; 𝜌2(𝒅)
[1 − (1 − 𝜌2(𝒅))ℎ𝑙]2

)
+ 𝜌(𝒅)

4[(1 − ℎ𝑙)2 − 𝜌2(𝒅)ℎ2
𝑙
]3∕2

.

𝐴3 = −
([1 − (1 − 𝜌2(𝒅))ℎ𝑙][1 − (1 − 𝜌2(𝒅))ℎ𝑟])1∕2

2𝜋[1 − ℎ𝑟 − ℎ𝑙 − (1 − 𝜌2(𝒅))ℎ𝑟ℎ𝑙]3∕2
2𝐹1

(
−1
2

,−1
2
; 1
2
; 𝜌2(𝒅)
[1 − (1 − 𝜌2(𝒅))ℎ𝑟][1 − (1 − 𝜌2(𝒅))ℎ𝑙]

)
+ 𝜌(𝒅)

4[1 − ℎ𝑟 − ℎ𝑙 − (1 − 𝜌2(𝒅))ℎ𝑟ℎ𝑙]3∕2
.

𝐴4 = −
([1 − (1 − 𝜌2(𝒅))ℎ𝑙][1 − (1 − 𝜌2(𝒅))ℎ𝑟])1∕2

2𝜋[1 − ℎ𝑟 − ℎ𝑙 − (1 − 𝜌2(𝒅))ℎ𝑟ℎ𝑙]3∕2
2𝐹1

(
−1
2

,−1
2
; 1
2
; 𝜌2(𝒅)
[1 − (1 − 𝜌2(𝒅))ℎ𝑟][1 − (1 − 𝜌2(𝒅))ℎ𝑙]

)
+ 𝜌(𝒅)

4[1 − ℎ𝑟 − ℎ𝑙 − (1 − 𝜌2(𝒅))ℎ𝑟ℎ𝑙]3∕2
. (A.7)

Finally, combining equations (A.6) and (A.7), and using the identity 2𝐹1

(
−1

2 ,−1
2 ;

1
2 ;𝑥

)
=

√
1 − 𝑥 +

√
𝑥𝑎𝑟𝑐𝑠𝑖𝑛(

√
𝑥) we obtain 

IE(𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔𝑖)𝑇 ∗
ℎ𝑙,ℎ𝑟

(𝒔𝑗 )). □
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