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Abstract. We identify recurrent ingredients in the antithetic sampling litera-
ture leading to a unified sampling framework. We introduce a new class of
antithetic schemes that includes the most used antithetic proposals. This per-
spective enables the derivation of new properties of the sampling schemes:
i) optimality in the Kullback—Leibler sense; ii) closed-form multivariate
Kendall’s 7 and Spearman’s p; iii) ranking in concordance order and iv) a
central limit theorem that characterizes stochastic behaviour of Monte Carlo
estimators when the sample size tends to infinity. The proposed simulation
framework inherits the simplicity of the standard antithetic sampling method,
requiring the definition of a set of reference points in the sampling space and
the generation of uniform numbers on the segments joining the points. We
provide applications to Monte Carlo integration and Markov Chain Monte
Carlo Bayesian estimation.
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1. INTRODUCTION

The Monte Carlo method is at the core of model-
based scientific exploration. In its simplest form, it re-
lies on approximating an integral J = [ f(x)m(dx) with
Jg = 52?:1 f(X;) when 7 is a probability measure,
F; is the corresponding cumulative distribution function
(CDF), f: RP — R is a integrable function with respect
to m, d is the Monte Carlo sample size and X;,...,Xy
are independent, identically distributed (henceforth, iid)
samples from 1.

In modern computational problems, sampling from the
distribution 7 may be expensive, in terms of either com-
putational effort or time, so techniques needed to reduce
the Monte Carlo sample size d, while maintaining the
desired precision in estimation, are essential. A relevant
class is represented by the variance reduction techniques
that use statistical properties induced by the sampling de-
sign to reduce the variance Var(Jy). For instance, in the
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case p = 1, if the independence condition between sam-
ples X,..., X  is dropped then, Var(J,;) becomes
ey

d
> Var (F (X0) + 33 3 Con (£ (1), £ (X)),
i=1 i#]
which is reduced, compared to independent sampling, if
the average covariance is negative.

Antithetic sampling designs aim at minimizing the co-
variances between samples while preserving their marginal
distribution. A historical perspective on the strategies for
antithetic sampling (e.g., Hammersley and Mauldon,
1956; Hammersley and Morton, 1956) allows us to better
understand the rationale behind various constructions and
to establish useful relationships with the results available
from related fields, such as stochastic orders (e.g., Barlow
and Proschan, 1975), optimal transport (e.g., Gaffke and
Riischendorf, 1981), Fréchet classes (e.g., Whitt, 1976),
and group transformation (e.g., Andréasson, 1972). Our
historical review identifies some key recurrent ingredients
used to propose a unified framework for antithetic sam-
pling. We introduce a new class of antithetic construc-
tions that also includes some of the, to our knowledge,
most used antithetic proposals, which are reviewed later
in this section. The sampling schemes in the class are sim-
ple and consist in choosing once for all a deterministic set
of points in a given dimension and the way those points
are joined with segments. Then random vectors from the
schemes are obtained by sampling on the segments.


https://imstat.org/journals-and-publications/statistical-science/
r.casarin@unive.it
radu.craiu@utoronto.ca
lorenzo.frattarolo@ec.europa.eu
xian@ceremade.dauphine.fr

Moreover, this new perspective enables the derivation
of new properties of the sampling schemes for p stochas-
tically independent replications (p > 1): i) optimality in
the Kullback—Leibler sense; ii) closed-form multivariate
Kendall’s 7 and Spearman’s p; iii) ranking in concordance
order, and iv) a central limit theorem that characterizes
stochastic behavior when d tends to infinity.

The pairwise antithetic coupling introduced by Ham-
mersley and Morton (1956) achieves variance reduction
by generating d/2 (we assume d is even in (1)) iid pairs
of negatively correlated random variables (X1;, Xo;), i =
1,...,d/2. The joint bivariate distribution of (X1;, X2;)
foreachi=1,...,d/2 achieves the lower Fréchet bound,

W (Fr (X1i) , Fr (X2;)) = max (Fr (X15) + Fr (X2;) — 1,0),

that represents the point-wise minimal joint cumulative
distribution among the class of distributions having F; as
marginal (see Fréchet, 1935). This is achieved by sam-
pling using the quantile coupling:

(2) Xyi~m, Xog=F (1 — Fr (X1)).

™

This procedure minimizes the correlation for any mono-
tonic f in the case d = 2 and p = 1. The explanation of
this reduction, as correctly pointed out by Whitt (1976),
can be found in Hoeffding (1940) and Fréchet (1951),
and it is due to the rearrangement inequality (see chapter
X of Hardy et al., 1934). Interestingly, the construction
cannot be unambiguously extended beyond pairs because
the lower Fréchet bound of all d-variate distributions is
a distribution only when d = 2. In particular, in dimen-
sion d = 2, for a given Fi, the Fréchet lower bound is
the unique element in the set of bivariate distributions
that is minimal for most dependence orders, i.e., there
is no other element ranking lower than Fréchet bound in
those orders. Beyond dimension d = 2, minimal elements
are not unique. In the following, we focus on the concor-
dance order, establishing a relationship with the variance
of functions in one variable, i.e. p = 1.

DEFINITION 1.1 (Concordance Order (Joe, 1990)).
Let X and Y be random vectors with CDFs F' and GG
and survival function F and G, respectively. Then Y is
more concordant than X (written X <o Y) if

(3) F<G@G and F<Q@G.

As remarked by Joe (1990), for d dimensional vectors,
X <¢Y implies

d d
4 Var (Z blf(Xl)) < Var (Z bJ(YZ)) :
=1 =1

with f monotonic and any b; > 0,1 =1,...,d. Equation
(4) implies that concordance order is an efficiency order
for Monte Carlo estimators when considering monotonic

functions of dimension p = 1.' It follows that the best
candidates for variance reduction, in the monotone case
with p =1 and d > 2, are the elements in the set of d-
variate distribution with given marginals that are minimal
in concordance order. We remark that given other notions
of dependence order that imply concordance order, such
as supermodular order (Miiller and Scarsini, 2000) and
correlation order (Lu and Yi, 2004), the set of minimal
elements with respect to the other order is contained in
the set of minimal elements with respect to concordance
order (c.f. Remark 3.1 in Ahn and Fuchs, 2020) .

If we drop the monotonicity assumption about f in
(1), the discussion and derivation of lower bounds for
the variance are more complex and less general. If p =1
and d = 2, for non-monotonic, bounded f, Hammers-
ley and Mauldon (1956) prove that the lower bound of
the variance can be attained only by a multivariate trans-
formation of a single standard uniform random variable
which, almost surely, is coordinate-wise monotonic. The
proof relies on two main ingredients. First, the mono-
tonic transformation introduces an approximate represen-
tation of the class of bivariate distributions with uniform
marginals. The candidate member of the class is approx-
imated by partitioning the unit square in sub-squares of
side 1/n. The approximation is a doubly stochastic matrix
in which each element corresponds to a sub-square and
has a value equal to the mass assigned to the correspond-
ing sub-square. This construction relies on the bijective
rearrangement (Puccetti and Wang, 2015) also known
as measure-preserving transformation (e.g. Brown, 1966;
Vitale, 1990). In the interpretation of Vitale (1990), for
every random vector (Uy,Us) on the unit square, with
standard uniform marginals, there is a sequence of bijec-
tive maps f, such that (U, f,, (U1)) weakly converges
to (U1,Us). Bijective rearrangements and the induced
stochastic dependence (Durante and Sanchez, 2012) are
relevant to our discussion of the antithetic constructions
for d > 2.

The second ingredient is the Birkhoff-Von Neumann’s
decomposition (Birkhoff, 1946; Von Neumann, 1953) of
doubly-stochastic matrices in which they are represented
as convex combinations of permutation matrices. Hand-
scomb (1958) extends the latter result to characterize
the extremal points of multi-stochastic arrays as higher-
dimension permutation arrays and to provide a gener-
alization for d > 2 of the results in Hammersley and
Mauldon (1956).

Those early results based on discretization give suf-
ficient conditions to characterize the transformations

I'The statement remains valid for importance sampling estimators.
In the Markov Chain Monte Carlo theory, a related result is in Daduna
and Szekli (2006) showing the equivalence of concordance order and
the South West order (Mira, 2002) of asymptotic variances of Markov
chains.
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needed to obtain a minimum variance. Unfortunately, the
characterizations are not constructive and do not provide
feasible random sampling algorithms. Moreover, the exis-
tence of the optimal transformation minimizing the vari-
ance is not guaranteed.

This led earlier researchers to propose feasible yet sub-
optimal sampling solutions, including Hammersley and
Morton’s (Hammersley and Morton, 1956) proposal for
d > 2. Andréasson (1972), Andréasson and Dahlquist
(1972), and Roach and Wright (1977) follow a group the-
oretic approach to span the set of antithetic vectors. In
particular, Roach and Wright (1977), build on Andréas-
son (1972), Andréasson and Dahlquist (1972) and Tukey
(1957), and draws a parallel with systematic sampling.
Roach and Wright (1977) sampling solutions for d = 2,
in the case of non-monotonic fs, rely on discretization,
optimal transport, and use a branch and bound algorithm
to explore the group of transformations leading to an-
tithetic vectors. The group theoretic approach of Roach
and Wright (1977) was also used in Fishman and Huang
(1983) to obtain a reinterpretation of the original Ham-
mersley and Morton (1956) proposal for d > 2. Their con-
struction, named rotation sampling, is described next.

EXAMPLE 1 (Rotation sampling).
U =U~UI[0,1],

-1
(5) Ul:<d+U>mOd1, l€{2,,d},

where U0, 1] denotes the standard uniform distribution.

This proposal is a particular case of our stochastic rep-
resentation.

The extension to unbounded functions of the theorems
in Hammersley and Mauldon (1956) and Handscomb
(1958) can be found in Wilson (1979) ford > 2and p=1
and in Wilson (1983) for d > 2, p > 1. The latter paper
combines discretization and bijective rearrangement with
the optimal transport assignment problem to prove the re-
sults. Bijective rearrangement and Monge-Kantorowitch
transportation problem are used in Gaffke and Riischen-
dorf (1981) to obtain minimum variance constructions for
f equal to the identity function. The authors are the first to
realize that the Hammersley and Morton (1956) bivariate
antithetic vector has an almost sure constant sum, which
is one of the main ingredients of our unified approach.
Thus they minimize the variance in the case p =1 and f
equal to the identity function.

The relationship between constant sum and variance re-
duction is trivial. Random vectors of dimension d > 2
with constant sum achieve the smallest variance for the
sum of their components. Beyond that, a recent stream of
papers (see Ahn and Fuchs, 2020, and references therein)

proves that the constant sum vectors are among the mini-
mal vectors with respect to the concordance order. In par-
ticular, one possible generalization of the constant sum
constraint is the following one.

DEFINITION 1.2 (I-countermonotonic). A d-dimen-
sional random vector U with uniform marginals, is said
to be [-countermonotonic ([-CTM), if there exist some
index set L C D with D = {1,...,d} and |£]| =1, a
family {g;},. of strictly increasing continuous functions
[0,1] — R and some k € R such that:

(6) Zgg (U)) =k as.

lel

Theorem 2 and Proposition 1 in Lee and Ahn (2014)
show that the antithetic vector is the only element of the
2-CTM class and it is minimal in the concordance order.

In addition, conditions for achieving minimality in the
concordance order were linked to /-CTM random vectors.
Lee, Cheung and Ahn (2017) show that the set of d-CTM
vectors is contained in the subset of elements minimal in
concordance order. It follows then that d-CTM proposals
represent valid candidates for variance reduction, in the
monotone case with p = 1.

In this paper, we study some of the existing sampling
methods and propose new constructions for d-CTM vec-
tors of Uniform(0,1) random variables with a.s. constant
sum, that is ¢;(U;) = U;, | € D in Eq (6). This sub-
class is known in the literature as strict d-CTM (Lee and
Ahn, 2014). Gaftke and Riischendorf (1981) recognize
that Hammersley and Morton (1956) is strict 2-CTM and
provide the first strict 3-CTM construction given below.

EXAMPLE 2 (Gaffke and Riischendorf (1981) strict
3-CTM).

Ur=U,  U~Uo,1],

D Ua=Ut gl (O) - 51 ),

2

Us = _2U+]I[O,é] (U) + 2]1[%’1] (U) .

For the case d > 3, the authors propose to generate a se-
quence of independent random vectors using their repre-
sentation in (7) and the bivariate antithetic vector of Ham-
mersley and Morton (1956).

EXAMPLE 3 (Gaffke and Riischendorf (1981) strict
d-CTM). Let d = [(d —2)/2] where [z] denotes the

largest integer smaller than x, and let V;, 7t =1,...,dbe a

sequence of independent random variables. Define
Usir=V;, Uy=1-V;, i=1,....d

with

®) Uic1=Vj, Us=1-V;

d+1’
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if d even, and

Ua-2= Vi

1 |
) U1 = Vgyy + 501011 (Vir) = 51127 (Vi) »

Ug=—-2U0 +H[o,§] (Vi) + 2]1[;1] (Vi)
if d is odd.

Almost contemporaneously, Arvidsen and Johnsson
(1982) put forward the apparently different proposal
given in the following.

EXAMPLE 4 (Arvidsen and Johnsson (1982) strict
d-CTM).

U =U, U ~Uio,1],

(10) U;= (2°72U1 +1/2) mod 1, 2<i<d-—1,

Uj=1-— (Qd_QUl) mod 1.

We will show that for d = 3, the two proposals in Ex-
amples 2 and 4 coincide and are special cases of our gen-
eral stochastic representation. Both constructions yield
vectors with a constant sum, but Gaffke and Riischen-
dorf (1981) proposal’s use of independent random vari-
ates for d > 3 made us wonder about its efficiency, es-
pecially since the results in Hammersley and Mauldon
(1956) and Handscomb (1958) suggest that combinations
of independent vectors could be sub-optimal. We com-
pare different strict d-CTM constructions using the con-
cordance order. According to Ahn and Fuchs (2020), all
strict d-CTM have minimal multivariate Kendall’s 7, but
they can have different multivariate Spearman’s p values.
For example, Gaffke and Riischendorf (1981), and Arvid-
sen and Johnsson (1982) proposals have the same values
for multivariate Kendall’s 7, but different ones for Spear-
man’s p.

Other examples of strict d-CTM vectors, partially cov-
ered by our representation, can be found in Knott and
Smith (2006), Lee and Ahn (2014), and after a linear
transformation also the construction in Bubenik and Hol-
brook (2007) and references therein, can be seen as strict
d-CTM vectors.

The range of application of CTM constructions has
been extended to other marginal distributions. For in-
stance, Riischendorf and Uckelmann (2002), expands the
work in Gaffke and Riischendorf (1981) to random vari-
ables {Y1,..., Yy} with unimodal distributions using the
Levy-Shepp form of the Khinchine representation theo-
rem (Lévy, 1962; Shepp, 1962), as Y; = X'V; where V; ~
U(—1,1) for all 1 <i < d. Hence, a CTM construction
for {V1,...,Vy} implies constant sum for {Y7,...,Yy}.
Trivially, such a vector will achieve the smallest vari-
ance for the sum of its components. In those cases, the

literature refers to these vectors as complete or joint
mix, differentiating between having identical or different
marginals (see Puccetti and Wang, 2015, and references
therein). Our general construction can be extended to
non-uniform marginals following Riischendorf and Uck-
elmann (2002).

In Rubinstein and Samorodnitsky (1987), a different
extension of Handscomb (1958) theorem was proposed
by dropping the bijective condition for the rearrangement.
They prove the existence of antithetic solutions that mini-
mize the variance. According to the authors, optimal anti-
thetic solutions should be a function of only one uniform
random variable, without restriction on the functional de-
pendence. Unfortunately, dropping the bijective condition
results in a tautological statement because, as shown in
Brown (1966), Whitt (1976), Vitale (1990) and recently
reformulated in theorem 1 of Puccetti and Wang (2015),
every random vector can be expressed as a function of
only one uniform random variable.

This difficulty of narrowing down conditions for the
existence of optimal antithetic variables is linked to the
challenge of extending the Birkoff-von Neumann repre-
sentation to the continuous case. It is, in fact, well known
that bijective rearrangements are only a sub-class of the
extremal transformations. For example, the d = 2 case is
known as Birkhoff’s problem 111 (Isbell, 1955), and even
if there exists a characterization (Lindenstrauss, 1965),
the necessary and sufficient conditions in their most rec-
ognizable form (Moameni, 2016) are of limited practical
relevance. For a discussion and an example of an extremal
non-bijective class in the multivariate case, refer to Du-
rante, Fernandez Sdnchez and Trutschnig (2014). Since a
general characterization is out of reach, we solve the opti-
mal transport problem for transformations in the extremal
class and produce a stochastic representation that depends
on a single standard uniform.

Historically, given the impossibility of obtaining opti-
mal and feasible antithetic plans, by mid 80’s the litera-
ture shifted the focus to negative dependence. In partic-
ular, a procedure considered close to antithetic sampling,
but applicable to the general d > 2, p > 1 is the Latin
Hypercube sampling introduced in McKay, Beckman and
Conover (1979).

EXAMPLE 5 (McKay, Beckman and Conover (1979)
Latin Hypercube). Given a standard uniform d-dimen-
sional random vector V and D7 = (¢ (0),...,0 (d— 1)),
a permutation of {0,1,...,d — 1} independent of U, set
1

an U:d

(D7 +V).

The simplicity of the method, the guarantee of asymp-
totic variance reduction (Stein, 1987) and the availability
of a central limit theorem (Owen, 1992) made it one of
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the most common variance reduction strategies. The rela-
tionship with antithetic variates was studied in Craiu and
Meng (2005), where through the introduction of an itera-
tive version of the method, the Iterated Latin Hypercube
(ILH), it is shown that, in the iteration limit, the result-
ing random vector has an almost-sure constant sum. Our
new representation allows comparing ILH and its combi-
nation with other antithetic proposals. Finally, we extend
the central limit theorem in Owen (1992), showing the
irrelevance of the starting distribution when d goes to in-
finity, and the number of iterations is fixed.

The paper is structured as follows: Section 2 contains
the description of the unified representation and its in-
terpretation. Section 3 discusses distributional properties
and concordance measures. New and old illustrations of
the unified representation and their ranking are presented
in Section 4 followed by the derivation of the general cen-
tral limit theorem for Latin Hypercube in Section 5. Nu-
merical illustrations are presented in Section 6 and the
paper ends with a discussion of future directions for re-
search in Section 7.

2. SAMPLING ON LINE SEGMENTS

We introduce a general method for constructing anti-
thetic vectors whose components have a standard uni-
form, Uniform(0,1), as marginal distribution. Non-uniform
variables can be obtained using various transformations,
e.g. the inverse CDF method or the Levy-Shepp form
of the Khinchine representation theorem (Lévy, 1962;
Shepp, 1962). We study conditions for achieving d-CTM
and show that several known countermonotonic random
vectors used in variance reduction can be obtained as spe-
cial cases of our general construction.

2.1 Standard Antithetic Construction

Our method relies on sampling with equal probability
on a collection S of line segments in the d-dimensional
Euclidean space. Since each segment is uniquely charac-
terized by its endpoints or vertexes, the collection S can
be equivalently represented by the set of vertex pairs that
define the segments and their coordinates. This represen-
tation is efficient in large dimensions even when the seg-
ments share some of their vertexes.

More formally, let us define a vertex set V ={1,...,n}
as a set of points in the d-dimensional hypercube, the co-
ordinates of the k-th vertex as the column vector x; =
(T1ky - - - ,l'dk)T € [0, l]d and the coordinate matrix X =
(x1,...,Xy) as the collection of vertex coordinates. We
assume there is an edge e = (i,j) between i and j, with
1 < j, if there is a segment joining the two vertices ¢ and
J, and define the collection of segments by the edge set
E={(i,j) €V x V}. Then G = {V, £} is an undirected
graph and S = {G, X} is the collection of segments. The
lexicographic order on vertex indexing induces an order

X2

1

ENe)

vV 1 1

FIG 1. Left: support set, i.e. the segment joining vertices 1 and 2 of
coordinates x1 and x9, for the antithetic sampling. Right: dependence
graph G withV ={1,2} and € = {e1 }.

on the edge set, such that the k-th element e € £ is
uniquely associated to its couple of vertices, defining the
map ¢ : {1,...,[E|} =& k— (i(k),j(k)).

Our stochastic construction relies on the graph repre-
sentation G and requires a properly chosen vertex matrix
X and two independent standard uniform random num-
bers

1. draw V ~U[0,1] and W ~ 1[0, 1] independently;

2. choose with uniform probability on the edge set
& the edge ex by computing K = ||E|W] +
1; obtain the random pair of vertices (I,J) =
(i (K) ,j (K) with (i (K), j (K)) = pe (K);

3. obtain a random point on the segment joining ver-
tices I and J with uniform probability

U=z V+(1-V)xyy,

(12)
Ug=zq/V+(1-=V)zgy.

As in antithetic coupling, it is possible to use only one
standard uniform number W by setting V' = {|E|W}.
One can show that P ({|E|[W} <u| |[|E|W] +1=k) =
P({|€|W} < wu). The following example shows that the
standard antithetic method is a special case of our general
sampling construction.

EXAMPLE 6. Let us consider d = 2 and sampling in
the unit square on the diagonal joining the vertex 1 of
coordinates x1 = (x11 = 1,291 = O)T and the vertex 2 of
coordinates x3 = (212 =0, 292 = 1)T (see Figure 1). Let
V ~U[0,1] and compute

U=znV+(1-V)xa=V,
U2=$21V+(1—V)5622:1—V.

Thus, sampling one uniform antithetic couple V' and
1 —V is equivalent to sampling on a segment (see the left
plot in Figure 1), and the support of the samples can be
summarized by the vertex coordinate matrix

(13) X <:v11 :E12>

Z21 T22
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and the couple of vertices e; = (1,2) of the segment we
are sampling on (right plot).

The marginal uniformity of the samples on the segment
follows from the convex combination representation and
the standard uniform assumption for V'

(14) U; ~U [min (x,x12) , max (1, x12)], | =1, 2.

In addition, the standard uniformity of U; follows from
the assumption max (z;1,2;2) = 1 and min (71, 2;2) =0
for all [ = 1,2, and the d-CTM property from conditions
on the vertex coordinates: x11 + 91 = 12 + T92 = 1.

Example 6 illustrates the fact, which is easy to prove
in full generality, that our construction generates samples
with uniform probability on S. However, it does not guar-
antee that all the marginal distributions of the components
Ui, for [ € D, are Uniform(0,1). In the following, we
study the conditions on G and X, such that the variables
U;, I € D are conditionally uniform, given the choice of
the segment, and marginally Uniform(0, 1).

2.2 Uniformity

We provide conditions on the collection of segments
S in the d-dimensional hypercube to achieve standard
marginal uniformity and d-CTM when using our con-
struction. Before presenting the general result we intro-
duce some notation and discuss the main assumptions.

For the general case, the following condition rules out
atomic and mixed probability measures.

ASSUMPTION 1 (Admissibility). ThesetS = {G,X}
is admissible if all segments in S are not contained in any
of the (d — 1)-hyperplanes that are parallel to a (d — 1)-
dimensional hyperface of the unit hypercube [0, 1]%.

We provide some intuition for Assumption 1 through
the following 2-dimensional example.

EXAMPLE 7. Consider the collection of segments in
the left plot of Figure 2 with coordinate matrix

_(afya
(15) X_(Baﬁa>’

where a < f < v € R. According to the lexicographic
order map k — (i(k),j(k)) the edge set is: £ =
{6{ =(1,2), e; = (1,3), e3 = (1,4), ey = (2,3), e5 =
(2,4), e5=(3,4)} (see right plot). Since the sampling
method can concentrate the probability mass at some
points or along some directions of the hypercube we
need to impose some admissibility conditions to have
non-degenerate distributions. The first set of conditions
excludes degenerate segments, which are segments with
equal end-points. Thus, we rule out self-loops from the
graph, i.e. edges from one vertex to itself. The second set

FIG 2. Left: support set of the sampling scheme. Right: admissible
(solid) and not-admissible (dashed) edges. Edge labeling follows the
vertex lexicographic order.

of admissibility conditions excludes edges where the dis-
tribution concentrates along some coordinates. The edge
e; joining vertex 1 to 3 is not admissible since:

U=onV+z3(1-V)=7-(v—a)V,
Uy=x0V +a93(1—-V)=5,

and Us is almost surely constant conditionally on being
on that edge. A similar remark applies to the edges e3 and
er, whereas e} (red dashed in Figure 2) is only admissible

if <.

In summary, the admissible edge set is:

{61:6>{:(1,2),62:622(2,3)7
E= 632622(?)’4}7 ifﬁ<%
{e1=¢]=(1,2),ea =€ =(3,4)}, if 5=1.

In our construction, conditional uniformity is a necessary
condition for standard marginal uniformity and the admis-
sibility assumption implies conditional uniformity. To en-
hance the paper’s readability, all proofs are deferred to the
Appendix.

LEMMA 1 (Conditional Uniformity). Let S satisfy
Assumption 1. Conditionally on being on the k-th seg-
ment of edge e, = (i (k),j (k)), for each | € D, the ran-
dom variable U; in (12) is uniform on [ay, 5] with
o = min (25(), T, ) and By = max (2y,i(k), 1) ) -

Another requirement for our construction is that sam-
pling points are in the unit hypercube which is guaranteed
by the following range condition.

ASSUMPTION 2 (Range). The range requirement is
satisfied if max{z;,k=1,...,n} =1 and min{zy, k =
1,...,n}=0.
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Since U is a convex combination of z; ;,7 € {1,...,n},
Assumption 2 is needed in light of the requirement that
U, €[0,1] foreach [ € D.

In order to introduce the third assumption we need
some notation. The set of admissible edges depends on
the partitions induced by the distinct elements, sorted
in ascending order, in the rows of X. For each row
(115 21p), of X with [ =1,...,d we define a; =
(ar1,a12,...,a;n,—1,a;y,) the sequence of n; < n sorted
distinct elements. The unique values define a partition,
say {Ajm},_, of the unit interval with elements:

(16) Al,m = [al,mfla al,m) ;

For each unique value a;;, the position set M, ; =
{ie{l,...;n} 21, =a;x}, k=1,...,n; denotes the set
of points that provides the unique projected values of X’s
columns into the /-th dimension. For each row, M, ;, must
therefore satisfy:

m€{2,...,nl}.

n
Mg "My =0, | Mim={1,...,n},
m=1

and one can represent the coordinates of the vertex xj, by
using the sets of positions of the unique values:

ny
Tk = Z al,mHMz,m (k) , LD,
m=1

which will be used in the following to write the CM con-
straint.

For illustration purposes, let us focus on the first co-
ordinate of Example 7 in the case § < . The sequence
of n; = 3 sorted distinct elements of the first row is
a; = (a11 =w,a12=0,a13=") and the sets of posi-
tions of the unique values are M;; = {1,4}, M2 =
{2}, M1 5 ={3} which is a partition of {1,2,3,4}.

We denote with G; = {V;,&;} the projection of G on
the [-coordinate induced by the unique values a;. G; is
the graph obtained by assigning a node to each of the
n; components of a; and defining the edge set & =
{ei1,-- e e} through the map {1,...,[€]} — &, k €
{1,..., [} = e = (m(k),m (k)) € & where

m(k)={me{l,...,n}:i(k) e Myn},
m' (k) ={m e{1,....,n}: j (k) € My }.
We call n!

(m,m”)
jected nodes m and m/, by convention if (rm,m’) is not in

the edges multiplicity between the pro-

l —
& then ) = 0.
REMARK 1. In the proposed notation, Assumption 1

corresponds to m (k) # m’ (k) when e; , = (m (k) ,m’ (k))
forallk=1,...,|&|,l=1,...,d.

2 2
N
NAR e
L8}
@‘1::‘)
1 €13 3 1
2 2
@\“x @‘W»>
AN e
1 1

FI1G 3. Graph projection for the graph in Example 7 in the case 3 <
(top) and B8 =~ (bottom), considering the first (left) or the second
(right) coordinate.

In Figure 3 we report the projection of the graph of Fig-
ure 2 onto the [-th coordinates given in Equation (15) of
Example 7.

Set ok = A, (k) and 617;{ = A mg (k) where mg, (]C)
and mg (k) are the minimum and the maximum value be-
tween m (k) and m’ (k), and define

Kim={ke{l,...,|€]} :ma (k) +1 <m <mg(k)}.

We state now the condition on the coordinates of the sam-
pling construction for marginal standard uniformity.

ASSUMPTION 3 (Coordinate). The following set of
n; — 2 equations in the variables a;,,, m =2,...,n; — 1
are satisfied

(17) Fim (al)—|51| > :

kEICl,m alvmﬁ (k) o alvma(k)

—1=0

m=2,...,n—1witha;; =0and q;,,, = 1.

The following example clarifies the relationship be-
tween Assumptions 2-3 and standard uniformity.

EXAMPLE 8. We discuss separately the two cases:
B = and 8 < ~y since they correspond to two different
admissible edge sets. If 5 = ~ the first component of U
in the stochastic construction of Equation (12) is:

U a+(B-a)V, if K=1
"\ B8-B-a)V,ifK=2.

Since we are sampling uniformly on the edge set £ it fol-
lows that:
P(K=1)=P(K=2)= L _1
(K=1)=P(K=2)= 5=}
and U; has the following marginal probability density
function (PDF)

11 11
flur) = §mﬂ[aﬁ] (u1) + 55— Tag (w1)

20—«
1
(18) = 5 gles ().
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FIG 4. Sampling on line segments. The support set of the 2-dimensional
example with 4 vertexes. Cases: 3 =y (left) and B < ~y (right).

We get a standard uniform random variable if o = 0 and
B = 1. By the same argument, Us is a standard uniform
random variable. In conclusion, by sampling on the two
diagonals of the unit square with a mixture of an antithetic
couple (V,1 — V') and a comonotonic couple (V, V), the
method can attain marginal standard uniformity (left plot
in Figure 4).
If 8 < v the PDF of Uy is:

1 1

fur) = mﬂ[aﬁ] (u1) + mﬂ[ﬁq] (u1)

1

(19) + mﬂ[a,y] (u1).

A necessary and sufficient condition for u; € [0,1] is
a =min{z1x,k=1,...,4} =0 and v = max{zx, k =
1,...,4} = 1 which implies the PDF is piece-wise con-
stant on the partition [0, 5) C [0,1] and [8,1] C [0,1], in-
duced by the unique values in the first row of X, and is
null on [0,5) N [B,1]. For 8 = 1/2 the PDF is constant
over the elements of the partition, i.e.:

20) i |

ﬂ—i—l—?j,lf uy € [B,1]
which implies U; ~ U[0,1] and Uz ~ U]0,1/2]. Thus,
for 8 < v our construction is not standard uniform along
all coordinates of the vector. The right plot of Figure 4
shows that the range of U; is [0,1] (horizontal axis) and
the range of Us is [0,1/2] (vertical axis). Similar argu-
ments can be applied to show that imposing standard uni-
formity for U, requires min{z1x,k=1,...,4} =a =0
and max{zyx,k=1,...,4} = f =1 which is not satis-
fied since 8 < 7.

ifu; € [07/3>7

We are ready to state the main result of this section
which guarantees the marginal standard uniformity of our
construction. In addition, we provide a method to find a;
satisfying the condition in Assumption 3.

THEOREM 1 (Marginal Standard Uniformity). Under
Assumptions 1-3, each coordinate of the random vector

U = (Uy,...,Uy) in the stochastic representation (12) has
a Uniform(0, 1) marginal distribution.

THEOREM 2. The set of equalities in (17) are satisfied
iff a; is a solution of the following convex minimization
problem

21 i U
ey o 11 @)

with constraints a; ; = 0 and q; ,, = 1, where

ny

1
Uy (ay) = o Z nl(mm,) log |ay m: — a1m] -

m,m’=1

Since the optimization problem is convex, if a solution
exists it is a global minimum. In addition, since ¥; (a;)
is a sum of lower semi-continuous functions, it is lower
semi-continuous. This, together with the compactness of
the unit hypercube, guarantees the existence of a solution,
by the lower version of the Weierstrass theorem (see for
example Theorem 2.43 in Aliprantis and Border (2007)).

In the next theorem, we show that our construction
satisfies an optimality criterion involving the Kullback—
Leibler (KL) divergence from the uniform distribution.
We remind the reader that the KL divergence of the prob-
ability measure P with respect to the probability measure

Qis

Dir (P||Q) =Ep [log (ig)] |

In our case, PP is the joint measure of U; and K given by
the stochastic representation (12):

1
dP (uy, k) = @f (w| K =k) duy,

and Q is the joint uniform independent measure in U; and
K:

1
(22) dQ (u, k) = EH[O,H (wr) duy.

Let us denote with Py, ¢ the class of measures with
stochastic representation (12) and n nodes in the unit hy-
percube of dimension d connected by the edges in the set

£.

THEOREM 3. The minimization problem in (21) is
equivalent to:
(23) min Dy (P||Q)
PEPi n,e

with Q the joint uniform in Eq. 22.

Finally, we note that Assumptions 1-3 refer only to
properties of the marginal distribution. Consequently, our
marginal uniformity result holds also for the following
generalization of our construction.
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Given a d-dimensional V ~ F' with V; ~ 1[0, 1] for [ =
1,...,d and the stochastic representation

U=z Vi+a15(1-W),

(24)
Uig=xqrVa+zqs(1—Vy),

we have the following corollary to Theorem 1.

COROLLARY 1. Under Assumptions 1-3 the [-th
component of the random vector U = (Uy,...,Uy) in the
stochastic representation (24) is a standard uniform ran-
dom variable.

The results in Theorems 1-3 allow us to find the [-th row
ay, of the coordinates matrix X such that U; in representa-
tion (12) is standard uniform. Thus, we have d minimiza-
tion problems each with a different number of variables,
n;, where the dependence structure in U is given by the
graph G of the segments in § and marginally encoded by
a; and projected graphs G;.

DEFINITION 2.1. Let S = (G, X) be the segment set
with G = {V, £}. The convex minimization problem

d

min Z U, (ay)

{alylzlv---vd}e[OJ} =1

is called standard uniform on S problem.

In the previous optimization problem, as well as in
those introduced later on in this section, the vertex set
V and the edge set £ are held fixed. We are optimizing
on the position of the vertexes, i.e. in the coordinate ma-
trix X (or equivalently on the collection of vectors aj,
l=1,...,d). In the following sections, we will show how
to rank d-dimensional construction based on a different
number of vertexes n and different £ by their amount of
negative dependence, using concordance measures.

2.3 Strict Countermonotonicity on Segments

Limiting the study to strict d-CTM leads to an unique
value for the constant k in (6):

d d d
k=E ) U; :ZE[UJ-]:Q
j=1 j=1

The constant sum condition can be written as a linear re-
striction on the coordinates of the vertices xy, that is

d d d d d
SEEDSRIERE) T et
=1 =1 =1 =1

and since the previous relationship should be valid for all

V and (I, J) (i.e. for all W in our setting) we obtain the
condition that all vertices should be in the hyperplane of
constant sum, i.e.

n;

d d
(25) lek = Z Z al,m]l/\/[lym (k‘) = g k= 1, e, n.
=1

=1 m=1
The convexity of the minimization problem in Equa-
tion (2.1) is not altered by the inclusion of a linear con-
straint, nevertheless the constraint couples the coordinates
and yields the following non-separable optimization prob-
lem in ng = S| ny variables.

DEFINITION 2.2. Let S = (G, X) be the segment set
with G = {V, £}. The convex minimization problem

d
min Z\I/l (al)
=1

{anl=1,....d}e[0,1]"1 " "a

subject to
d

ng d
>3t ()= 5. k=1.....n
=1 m=1
will be referred as the strict d-CTM on S problem.

Since all the constraints are affine the problem in the
above definition represents an ordinary convex problem in
the terminology of Rockafellar (1970) and can be solved
using the method of Lagrange multipliers. Local min-
ima are also global if they exist. Finally, the existence
of a solution is guaranteed by lower semi-continuity of
sz:1 U; (a;) and the fact that the intersection of the unit
hypercube with the hyperplane of constant sum is com-
pact.

3. DISTRIBUTIONAL PROPERTIES
3.1 Distribution

The joint CDF of the stochastic representations of U in
Equations (12) and (24) can be written using the distri-
butions of the reflections of V. Let I; denote the identity
matrix and e; its [-th column. Reflections are defined in
the following.

DEFINITION 3.1 (Reflections). Let U € [0,1]¢ be a
random vector. The transformation U — W = R, 1 (U)
with Ry 1 (U) = [15—2(ere] )] U + ey, defines a reflec-
tion of U with respect to the hyperplane defined by the
I-th coordinate equal to 1/2. Given a index subset £ C
D, the sequential reflection transformation REé(U) =
Uy — 23 e €€l )]U + Y€ is the transformation
obtained by reflecting U sequentially using Rl,% forle L
Then RQ%(U) =I;—2[5))U+1;,=1—-Uy,...,1—
Ui, ...,1 —Uy) is the central inversion through the center
of the unit hypercube.
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Given a index subset £, we denote the distribution of
the reflection R, 1 (V) with:
Fy(u)=P (Ra,; (V)< 11> .

The marginal distribution of U; conditionally on living on
an edge ey, is U|oy i, B ) with CDF

max{ahk, min{ﬁl’k, ul}} — Oé“g
Bik —

where oy 1, (3 are defined in Lemma 1. For each k =
1,...,n define the sets:

L ={le{l,....d} @y — 2 > 0},
Ly ={le{l,....d} 2y — zijr) <O}

(26) Fy, i (w; k) =

)

THEOREM 4. The random vector U = (Uy,...,Uy)
in representation (24), conditional on K = k, has cumu-
lative distribution function Fy| (u1,...,uq4; k) given by

P(Uh<u,....Us<uq|K=k)=Fy - (Vi)

where Vi = (Ul,ka R 'Ud,k) with ULk = FUL\K (ul; k:)

The following result comes from summing over all pos-
sible values of K.

COROLLARY 2. The random vector (U,...,Uy)
in representation (24), has distribution Fy (ug,...,uq)
given by

&
1 €]

P(Ui <uy,...,Us <uq) =

— > Iy (vi).
|g|kzl V,Ek( k)

For random vectors in representation (12) we are able
to derive a closed-form expression of the conditional dis-
tribution of U.

COROLLARY 3. U = (Uy,...,Uy) in representation
(12) when conditioning on K = k has cumulative distri-
bution function

Fy|k (ul,...,ud;k):max(v,j—kv,; —170)7

where v,j =min{v g, € E;}, v, =min{v,l € L, }
and vy = Fy, |k (u;; k). The pairs of variables U; and
Up 1 # 1" have cumulative distribution function Fy, 17, i
(ug,uy; k) whose form depends on [, 1" as follows:

min (Ul,kyvl’,k)y ifl,l/ Gﬁ:,

min (vy g, vy k) , ifl,l'e L,
(27
max (v”f + oy g — 1,0), if [ € ﬁ;, I'e ﬁ;,

max (1)[7]{ + ok — 1,0) ,ifl e L‘;:,ll € ﬁl;

From Corollary 3 and following the definition of
Fréchet bound (Fréchet, 1951), the elements U; and Uy
of the stochastic representation (12) are monotonic in the
same direction if [, € £, or [,I' € £, and antithetic if
le L, l'eL}orleL], '€ L, conditionally on liv-
ing on the k-th segment.

3.2 Multivariate Kendall’s 7 and Spearman’s p

Multivariate Kendall’s 7 and Spearman’s p are multi-
variate measures of concordance introduced in Joe (1990)
as a generalization of the well-known bivariate measures.
As in the bivariate case, they are invariant to mono-
tonic transformations and increase with concordance or-
der. They attain the maximal value of 1 in the extreme
positive dependence case of the comonotonic coupling.
They are zero in the independence case and negative in
the case of negative dependence. Contrary to the bivariate
case in which the minimum value of —1 is attained by the
Fréchet lower bound, in the multivariate case, the extreme
negative value generally depends on d and does not reach
the value —1.

In particular, Fuchs, McCord and Schmidt (2018); Ahn
and Fuchs (2020) show that d-CTM vectors have the same
minimal multivariate Kendall’s 7 but different Spear-
man’s p. Then, Spearman’s p can be used to rank d-CTM
vectors in concordance order.

Let U and W be independent random vectors with
the same distribution Fy = Fyw = (. The multivariate
Kendall’s 7 is defined as:

9d [ 1
Fy)= ——— F F _
T( U) 2d—1_1 /['071](1 U(u)d U(u) 2d]
2¢ T 1
— iy [EGOW) - 5]
2¢ T 1
= 5T ]P’(UgW)—%l]

Fuchs, McCord and Schmidt (2018) show that if U and
W are d-CTM then 7 (Fyy) attains its minimal value

1
S od-1_7°
We provide an analytical expression of the Kendall’s 7 for
vectors with the stochastic representation of Equation 24.

(28) T (FU) = Tmin =

PROPOSITION 1. Let S = (G, X) be the segment set
with G = {V,€}. Let U and W be two independent
copies of a random vector with the generalized line seg-
ments representation (24) on S, then:

2t |1 & 1
(29) 7 (Fuy) = 211 |]g] Z P(RV,L;U V) Squ) —9d|»

ku=1

with Yy, = (Fu, ik, Wisku) .- Fuy ke (Wasku)).
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We use the definition of Spearman’s p in Joe (1990)? for
distributions with standard uniform marginals. Let F' (U)
be the cumulative distribution function of the random vec-
tor Uj; then the multivariate Spearman’s p is

24 (d+1) 1

24 — (d+1) (/[OJ]d u(u )du_2d>
2 +1) d 1
T _(d+1) </[0,1]lel“LdFU (u) - 2d>

_20(d+1) d 1
2o (] 1)

U,
—(d+1 [[o
The attainable lower bound pmin can be computed us-

p(Fu) =

=1

ing the lower bound for E [Hle Ul} given in Corollary

4.1 of Wang and Wang (2011). We report the values in
Table 1.

TABLE 1
Minimum values of multivariate Spearman’s p, using the lower bound
in Corollary 4.1 of Wang and Wang (2011).

d 2 3 4 5 10 20 50 100

Pmin -1 056 032 -0.18 -001 -199-107° 453107 -797.10729

The following proposition provides the Spearman’s p
of the segment construction S and some sufficient condi-
tions for the reduction of the Spearman’s p.

PROPOSITION 2. Let the random vector U satisfy the
generalized representation (24). The Spearman’s p is:

d
Fu)=>, Y. &.r(Fyvpe,)+

m=0 Lm CD
[Lm|=m

(d+1) 1
2d

—@rnz &Y

with
€]
L. Z Iz 1T 2w |
k: 1 \leL,, leD\[L,
d €l d
= > =i ZH (@1i0) + 2150k )-
m=0 |zﬁjm|C—D |g|k 1l=1

If V is reflection invariant, and £* < 1 the Spearman’s p
satisfies:

(30)p (Fu) = €"p (Fy) + (1 - £€) <_2d<d+1>>

—(d+1)
GDp(Fu) <p(Fv).

>The Spearman’s p following the definition in Ahn and Fuchs
(2020) is obtained as: (p (Fy7) + p (Fyy))/2, with W = R 1 (U).
2

We provide a simplified formula for p (FV,D\ ﬁm) in
the case of two line segment constructions which will be
studied later on in this paper. For the line segment repre-
sentation (12) we obtain

d
-2 v 3)
:2(1_@5;1)1)(3( Y ld—m+1) - 21d)

where B (z,y) is the Euler’s beta function.
For the representation (24), under the independence as-
sumption V;, Il =1,...,d iid, the Spearman’s p is

p(Frmve,) = 2D (HEW I =i )

p(Fvoc,)

leL 1ED\L
24(d+1) (1 1
2 = ———— —_——— = U.
(32) 20— (d+1) (2d 2d) 0

Constructions obtained as a random permutation of a line
segment construction inherit its concordance order rank
since the multivariate Kendall’s 7 and Spearman’s p are
permutation invariant. In addition, they satisfy the d-CTM
property as stated in the following.

COROLLARY 4. Let W be the exchangeable version
of a strict d-CTM line segment vector U obtained as ran-
dom permutations of its components, then W is strict d-
CTM and exchangeable.

4. SPECIAL CASES

In this section, we discuss several examples starting
from the new constructions proposed in this paper and
then reviewing the constructions proposed in the literature
which are special cases of our stochastic representations
(12) or (24). We use multivariate Spearman’s p to rank the
proposals in concordance order?.

4.1 Circulant Variates

Obtaining the coordinate matrix X used in Equation 12
can be costly in high dimensions especially when numeri-
cal procedures are used to solve the optimization problem
stated in Section 2.2. We propose suitable constraints on
the segment set S = (X, G) to reduce the computational
cost of our procedure. The proposed conditions on the co-
ordinate matrix X allows for decoupling the CTM con-
straint.

3To keep the paper to a reasonable length, we report here the values
of the multivariate Spearman’s p for dimensions d from 2 to 5. We have
evaluated the ordering of the constructions up to dimension d = 20,
and no changes were observed.
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First, we assume that the number of vertices n is equal
to the dimension d of the random vector and X = d/2X
where X is doubly stochastic, and obtain:

d n d
i=1 k=1 2

This assumption allows us to simplify the optimization
problem and to search for independent solutions for each
row of X.

We assume further constraints on the matrix X and on
the graph G such that the same optimization problem is
solved for all rows of X. We assume the first coordinates
of the d vertices are arranged in increasing order x1; <
... < x14 and compute the k-th coordinates as the k-th
circular permutation of the first ones:

Lkl = 21 (k—1)(mod d)+15
(33) Thi = 21 (i—1+(k—1))(mod d)+1>

Lkd = T1(d—14(k—1))(mod d)+1-

The resulting coordinate matrix X is a circulant matrix
with ¢-th row sum equal to the i-th column sum for all
rows. Imposing z1; < ... < x14 implies the same set
of a; is used for all [ € D, with the same multiplicities
| M m| = |Mi,m| but with different positions m € M,
as effect of the circular permutation.

Furthermore, we choose the edge set in such a way as to
have the same projected graph for each set of coordinates
and assume a circulant graph that is invariant by circular
shifts of the vertexes.

DEFINITION 4.1 (Circulant Graph). Given a sub-
set £C {1,...,[%|} then the d-vertex circulant graph
Cq(L) is a graph with vertices 1,...,d and edge set
Eac is such that (i,7) € &, if either |i —j| € £ or
(d—li—j|)eL.

The circular symmetry imposed on the vertex coordi-
nates and on the graph simplifies the optimization prob-
lem. Whatever the multiplicities | M ,, |, under Assump-
tions 1 and 2, we obtain the following results:

W (ay) = ¥y (ar) = @1 (x1)
1
= - > loglar;— 1,

E
.zl iy

ni d
> IMiglarm =) w1
m=1 i=1

This rewriting of constraint and objective function al-
lows one to minimize on X; instead of a;. Minimization

TABLE 2
Circulant graphs Cg (L) of the Circulant Countermonotonic on
Segments up to dimension 5.

Graph Label g X1 Spearman’s p
Ca({1}) I (0,1) -1
C3({1}) (o,%,1) 05
ca({1}) (n%%1) -0.2840

Cs({1,2}) ©) (D (0,57 2%@%+%ﬁ1) 02763

®
Ca({2H (0,0,1,1) 202121
Cs ({1}) (0,1/4,2/4,3/4,1) -0.1659

G5 ({1.2}) (0.%727\?? 11y 2\/\%),1) 01577

Cs ({2}) (0,0,%,1,1) -0.1385

automatically excludes vectors that violate Assumption 1
given &y ¢, because for those cases the objective function
is infinite. The following definitions introduce formally
our new proposal called Circulant Variates (CCV).

DEFINITION 4.2 (Circulant Countermonotonic). We
call the circulant matrix X € R% x R™ whose rows are
obtained by the d circular shifts of the first row, a solution
of the Circulant Countermonotonic on Segments problem,
on the circulant graph C4 (L), if 11 =0, 14 =1 and

{z12,...,21,4-1} solve the convex minimization prob-
lem:
min Dy (x1)
{z1,m Y, €00,1)77
with
1
Py (x1) =~ Z log [@1,; — 1,44

2 ‘gd’ﬁ‘ (4,9)€Eq,c
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subject to:
.
: 10— 2 .
i=1

DEFINITION 4.3 (Circulant Variates). Let Sqp =
{X,C4 (L)} a collection of segments such that X is a
solution Circulant Countermonotonic on Segments prob-
lem on Cg4 (L). Variates obtained from the components of
the d-dimensional random vector uniformly distributed
on Sy ¢ are Circulant Variates (CCV).

The following corollary is an application of Theorem 1
to CCV.

COROLLARY 5. CCV are marginally standard uni-
form and constant in sum.

For C; ({1}) a solution can be derived as follows. The
sum in each of the first d — 1 equations of (12) has only
two terms, and considering the m-th equation we have

1 1

(214 — 211)

Substituting the constraints z1; = 0 and 14 = 1, we find
that the x’s are uniformly spaced on the unit interval and
satisfy all the d — 2 equations in (17). The case of C5 ({1})
was already studied in Nelsen and Ubeda-Flores (2012) .
In their example, the probability mass has a distribution
uniform on the edges of the triangle with vertices x; =
(0,1/2,1), xo = (1/2,1,0), x3 = (1,0,1/2). The other
two vertices are different 3-cycles of the first one. This
implies that the row sum of X = (x1,x2,X3), is equal to
its column sum and both are equal to 3/2. Lee and Ahn
(2014) show that the construction in Nelsen and Ubeda-
Flores (2012) is 3-CTM.

Additionally, the exchangeable version of the Cy ({1})
construction is distribution-wise equivalent to the degen-
erate random balanced sampling introduced in Equation
(8) of Gerow and Holbrook (1996). They propose to gen-
erate Z; as an uniform random variable on [—1,1] and
obtain the remaining variables according to
[ € D, and then randomly permute the Z;. They show that
Zle Z; =0 and that once permuted, the Z;’s are uni-
formly distributed on [—1,1]. If we set U; = (Z; + 1) /2
then the permuted version can be written in terms of per-
muted Cy ({1}) construction:

=d.

(xlerl - xlm)

Zl:Cl—

PROPOSITION 3. The exchangeable version of U; =
(Z; +1)/2 1 € D has the same distribution of the ex-
changeable version of CCV with dependence graph

Ca({1}).

4.2 Rotation Sampling

Fishman and Huang (1983) rephrase the original Ham-
mersley and Morton (1956) proposal for d > 2 obtain-
ing an equivalent construction with the standard marginal
uniformity that was missing in Hammersley and Morton
(1956). Their construction was named rotation sampling
because the modulo one arithmetic on which it is based is
often associated with circular motion.

PROPOSITION 4. The line segment stochastic repre-
sentation (12) of the rotation sampling in the Example 1
has 2d vertices with coordinate matrix of elements:

l+m—1

, ifm<d+2-1,
Lim = l—i—md—l—d
T T > dy2 -1,
d
bhm=2 e cdio_1.
Lid+m = | Z9_4d
%,ifmzd—iﬁ—l

and edge set:
ERS = {(i,d+1)]ie{1,2,...,d}}.

COROLLARY 6. A rotation sampling random vector
has standard uniform marginals and is not d-CTM.

We report in Table 3 the analytic values of the Multi-
variate Spearman’s p for rotation sampling vectors up to
dimension d = 5.

TABLE 3
Values of the multivariate Spearman’s p for rotation sampling.

d 2 3 4 5

pmin  -0.5 -033  -02168 -0.1372

For d = 2 this construction does not reduce to the usual
antithetic variates. This is suggested by a value of multi-
variate Spearman’s p different from the value of —1 at-
tained by the Fréchet lower bound. Lacking the constant
sum property, the proposal has multivariate Spearman’s p
larger than one of the d-CTM proposals considered in this

paper.
4.3 Arvidsen and Johnson: A Fresh Look

In the pioneering paper of Arvidsen and Johnsson
(1982), the objective of variance reduction is obtained
by designing the first standard uniform d-CTM construc-
tion (10). Craiu and Meng (2005) show that this construc-
tion is displacing the binary digits of U; and give the
name permuted displacement to its exchangeable version.
We show in the next proposition the relationship between
Arvidsen and Johnson sampling scheme and the scheme
from Example 3.
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FIG 5. G for b-based Arvidsen and Johnson’ construction.

PROPOSITION 5. For d = 3, the construction of
Arvidsen and Johnsson (1982) given in Example 4 is
equivalent to the antithetic proposal of Gaffke and Riischen-
dorf (1981) given in (7).

The Ardvisen and Johnson construction (AJ) and the
following family of general constructions admit a line
segment representation. The generalization is useful to
show that Ardvisen and Johnson is the only d-CTM
within this family and attains consequently the minimal
Spearman’s p within this family.

DEFINITION 4.4. Given Uy ~U[0,1] and b € N the
base-b Ardvisen and Johnson construction is:

U= (b'"2U; + 1/b)mod 1, i ={2,...,d — 1},
(BHUs =1~ (V7201 ) mod 1.
PROPOSITION 6. The line segment stochastic repre-

sentation (12) of the construction in (34) has 2b%2 ver-
ticeswith coordinate matrix X = (z”,y?) where:

1 pi-2 —1\7 1
y1 = O,bd_Q,..., bd_2 ,Z1:y1—|—bd7_21bd—1,
1 1
Yk = bk_2y1+b>mod1, Zk:}’k+bdi_k1bd*1,
yYa = lpa-1, Zg=Yyd — lpa-1,

y:(YIa"'7Yd)7 Z:(Z17"-7Zd>

and edge set:

g7 = {(z’,bd_2 +z’) i e {1,2,...,bd_2}}.

COROLLARY 7. The base-b Ardvisen and Johnson
random vector has standard uniform marginals. Only the
case b=21is d-CTM.

Table 4 shows that the constructions in Definition 4.4
attain the lowest Spearman’s p for b = 2.

Table 4 reports also the multivariate proposal of Gaffke
and Riischendorf (1981) (GR) described in Example 3.
The table shows that GR performs better than the non d-
CTM proposal, but worse than the AJ proposal because it

TABLE 4
Multivariate Spearman’s p for base-b Ardvisen and Johnson random
vectors and the multivariate proposal of Gaffke and Riischendorf
(1981) in Example 3.

Spearman’s p b GR
1 2 3 4 5
d 2 -1 -1 -1 -1 -1 -1
3 -0.3333  -0.5000 -0.3333 -0.2083  -0.1200 -0.5000
4 -0.0909 -0.2822 -0.1662 -0.0869 -0.0367 -0.2525
5 0.0154  -0.1637 -0.0933 -0.0455 -0.0165 -0.1538

has independence as one of the main ingredients as dis-
cussed in the introduction. This also shows the effective-
ness of multivariate p as a ranking measure for d-CTM
vectors.

4.4 Latin Hypercube lterations

In this section, we will reconsider the Iterated Latin

Hypercube construction introduced in Craiu and Meng
(2005) and establish a relationship with a d-dimensional
generalization of the superstar introduced in Gerow and
Holbrook (1996), and with our strict countermonotonic
on segments construction.
The Latin Hypercube sampling, introduced by McKay,
Beckman and Conover (1979), and further developed
by Craiu and Meng (2005) with the goal of obtain-
ing variance reduction in MCMC sampling, consists of
the following steps: for ¢ = 0,...,7T take an iid stan-
dard uniform d-dimensional random vector Ug and
let D7 = (04(0),...,00(d—1))" be a permutation of
{0,1,...,d — 1} independent of Uy,...,U;_; and

1
(35) Ui== (D) + U y).

d

If t =1 (35) corresponds to the original Latin Hyper-
cube Sampling, and ¢ > 1 to the Iterated Latin Hyper-
cube procedure introduced in Craiu and Meng (2005). It
was shown in Craiu and Meng (2006) that ILH iterations
represent an Iterated Function System with probabilities

(IFSP) ([0, 1%, (ws), pa) with w, similitudes with con-

traction ratio d~! associated to each permutation o of
{1,...,d}

wg(u)z(”(l)lﬁs,...,"(‘glﬁj).

(36) p

We can show that the 3-dimensional superstar considered
in Gerow and Holbrook (1996) can be obtained by using
the same IFSP:

PROPOSITION 7. The 3-dimensional superstar pro-
posed in Gerow and Holbrook (1996):

1 2
Xt =fr(Xi—1) = Xeo1+ 2 Vi

37) 3 3
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with Vj, a random permutation of {—1,0,1} and an ini-
tial X a 3-dimensional vector such that —1 < X5 <1
and 25’:1 X0 =0, up to a change of support, is gener-
ated by the same IFSP of the 3-dimensional version of
the Iterated Latin Hypercube construction introduced in
Craiu and Meng (2005).

PROPOSITION 8. The line segment stochastic repre-
sentation (24) of the construction in (35) has 2d! vertices
with coordinates z;x = (o (1) + 1)d~" and g4k =
(or (1))d~ ', k=1,...,d and edge set:

EM = {(i,d! +4) |i € {1,2,...,d!}}.

Craiu and Meng (2005) obtained standard marginal
uniformity for the special case of an initial vector with
iid components. In the superstar case, the original distri-
bution is concentrated on points but converges to stan-
dard marginal uniforms as shown in Gerow and Holbrook
(1996). In Craiu and Meng (2005), it is also shown that in
the limit ¢ — oo the ILH is d-CTM. We show that the ILH
iterations preserve marginal uniformity and constant sum
in the general case.

COROLLARY 8. Let U;_; be a dependent random
vector of dimension d, whose coordinates add up to d/2
(a.s.) and each coordinate has a ¢/[0, 1] distribution. Then
the random vector U; in (35) has all its coordinates
marginally /[0, 1] distributed and adding up to d/2.

The preservation of strict d-CTM property raises the
possibility of using ILH iterations on Arvidsen and John-
son’s and CCV constructions. In addition, using results
in section 3.2, we can give a closed-form expression for
the multivariate Kendall’s 7 and Spearman’s p for ILH
iteration applied to V with i.i.d components or in rep-
resentation (12) and rank the obtained random vector in
the concordance order. In particular, ILH iterations on the
Arvisen and Johnson construction and CCV have a con-
stant sum and minimal multivariate Kendall’s 7 ( equation
(28)). Spearman’s p for those constructions can be easily
obtained using the deterministic composition and equa-
tion (32). Using the segment representation in Proposition
8, the ILH(T") proposal applied to V with iid components,
can be expressed as a T-fold deterministic composition.
Each composition expands the cardinality of vertex and
edge sets by d!, resulting in a vertex set of cardinality
2(d)” and an edge set of cardinality (d!)’. To main-
tain a feasible notation we substitute the index k of the
different edges with the multi-index {kt}le where each
]Ct:].,...,d!Z

—~ ok, (1)
(38) Al k. kp = Z djljir+1v
r=1

T
o (1 1
(39) Bls oo = dz’f:fﬁl -

r=1

The following proposition allows for computing multi-
variate Kendall’s 7 and Spearman’s p for the ILH(T') case.

PROPOSITION 9. Let Uy be a d dimensional random
vector with iid /[0, 1] components and let U7 be the vec-
tor obtained by applying to it the ILH transformation in
(35). Then the Kendall’s 7 is

1 1
()

and the Spearmans’ p has coefficient £* in Equation (30)
equal to

. d
5 N Z (mg,ml,...

mo+mi+...4+mp=d

where

and Cp ,,,, denotes the set of combinations of the elements
of D with m,; elements.

In the one iteration case, i.e., 7' = 1, we obtain the fol-
lowing expression:

L ety G-t
_g( : )_E( - )

_ d-1t [T
S di(2d-1(d—1)!)  dd2d-1

and using the arithmetic and geometric means inequality
we obtain the bound:

d

1\2d—1

(EZl:d l) <o (341 d<1
dd2d—1 - 4d -

For the sake of comparison, in Figure 6 we summarize
Kendall’s 7 and Spearman’s p for all the constructions
discussed in this section. Since Kendall’s 7 and Spear-
man’s p are permutation invariant, the same ranking ap-
plies to the exchangeable versions of the constructions.

& <

5. A CENTRAL LIMIT THEOREM

In this section, we study the Central Limit Theorem for
our best-performing classes of variates. While the deriva-
tion does not yield a minimality result, it complements
the one in Equation 4 because it guarantees asymptotic
variance reduction for all square-integrable functions.
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FIG 6. Ratio of minimum value attainable by multivariate association
measures and the values attained by different antithetic random vec-
tors (vertical axis) as a function of dimension d (horizontal axis). Left:
the Spearman’s p measure. Right: the Kendall’s T measure. Note: in
each plot, larger values indicate constructions farther from the mini-
mum.

DEFINITION 5.1 (Generalized Latin Hypercube Sam-
ple). Let o;, e =1,...,p be independent random per-
mutations of 0,...,d — 1 and V' = (Vf,...,Vj), 1=
1,...,p random vectors, independent from the o; and
from each other, identically distributed with probability
measure . A p X d matrix U is a Generalized Latin Hy-
percube Sample if it has the stochastic representation

(D) +1. . ol .

@y op= 20 Ly 2Oy
d d
withi=1,...,pand(=1,...,d.

We remark that the constructions with the lowest multi-
variate Spearman’s rho ILH(T), LH-Cy ({1}), and LH-AJ
generate Generalized Latin Hypercube Samples.

The following lemma introduces the irrelevance of the
distribution on the Vi, i =1,...,p.

LEMMA 2. Consider a a-LH sample and a b-LH sam-
ple where a and b are two different Radon measures. The
following relationship holds for every function f locally
integrable with respect to both measures:

d " d "
Eorn |:<2Zf(Ul)> —EBorn K Zf(m)) } =o(1).
=1 =1

Given the previous lemma, we are able to show that the
asymptotic distribution is the same as the ordinary Latin
Hypercube. In particular, Stein (1987) express the vari-

S

ance of the Latin Hypercube using the ANOVA decom-
position of the function f:

@) f () =Epp[f (O)]+ ) fi(us) +7(u)
=1

fi(wi) =Errp [f (w) —Eqrp [f (U)]|U; = us],

where r(u) denotes the residual from the additive decom-
position (Owen, 1992).

— 1
THEOREM 5. Let X = ngzl £ (Uy) with U; [ e

D from a u-LH sample with g being Radon and f
being bounded and locally integrable with respect to
u. Then V/d (X — Errp (X)) converges in distribution

to N (O, f[o " (u)? du), where 7 (u) is introduced in
41).

REMARK 2. The hypothesis of U’ being independent
of U for all j #k j,k=1,...,p in the definition of
Generalized Latin Hypercube Sample is not restrictive as
it seems. In practice, one can use the inverse Rosenblatt
transform (see for example Riischendorf (2013), Theorem
1.12) to obtain samples from a generic distribution. Then,
if the composition of f with the inverse Rosenblatt trans-
form is bounded, we are still under the incidence of The-
orem 5. A multivariate version of the central limit theo-
rem can be obtained as in Corollary 1 of Owen (1992).
Concerning the boundedness assumption on f, it is prob-
ably too restrictive because in Loh (1996) a multivariate
Berry-Essen type bound for the standardized multivariate
version of X, in the case of Latin Hypercube, is obtained
under the assumption that the multivariate function f in-
volved is Lebesgue measurable and E ||f]|* < oo.

6. NUMERICAL ILLUSTRATIONS

We illustrate the performance of the methods presented
in this paper using several simulation exercises involving
standard Monte Carlo, Markov chain Monte Carlo and Se-
quential Monte Carlo algorithms.*

One of the critical dimensions used to rank our counter-
monotonic vectors is sampling time, as shown in Figure 7.
It is obtained by averaging over 1000 independent repli-
cations. In each experiment, we sampled 5000 antithetic
vectors of dimension 2 < d < 20. Sampling schemes have
been implemented in Matlab on a Windows 10 laptop
with an Intel i17-6500U CPU and 8 GB of RAM.

Permuted C; ({1}) outperforms the other competitors.
We report the times for the segment version that randomly

4Replication codes for the examples in the paper can be found at
https://github.com/Frattalol/Livingontheedge
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FI1G 7. Sampling times (vertical axis) as a function of the sampling
dimension d (horizontal axis) for different methods (different symbols
and colors). All estimates are averages over 1000 experiments. In each
experiment, 5,000 antithetic vectors of dimensions d are sampled fol-
lowing a given method.

permutes stochastic representation (12) and the RBS ver-
sion that uses the equivalence with random balanced sam-
pling described in Proposition 3. The latter choice is
faster, and it is also used as the base for the Latin Hy-
percube iteration in LH-Cy ({1}).

Consequently, all the experiments in the section use
the exchangeable version of LH-Cy; ({1}). In fact, LH-
Cq({1}) vector reaches the lower value of multivariate
Kendall’s 7 and Spearman’s p (Figure 6) but is also a
faster sampling scheme.

6.1 Monte Carlo Integration

The first evaluation of our methodology is for the
Monte Carlo integration on the unit hypercube, with in-
tegration points chosen according to the three compet-
ing schemes. In standard Monte Carlo (MC), the sam-
pling points are iid, and each sampling point corresponds
to a random vector of dimension equal to the number of
variables in the function. In our antithetic method (LH-
Cyq({1})) the variables used to populate the same coordi-
nate for different sampling points are from an antithetic
vector. Across coordinates, these antithetic vectors are in-
dependent of one another. For the Quasi-Monte Carlo’s
Sobol scheme (QMC Sobol), a deterministic sequence
of points uniformly covers the hypercube of dimension
equal to the number of variables. In the evaluation of the
integration problem complexity, the effective dimension
plays an important role. We refer to Owen (2003), Wang
and Fang (2003) and Wang and Sloan (2005) for the for-
mal definition of truncation p; and superposition pg di-
mensions. Owen (2003) shows that a low p; is necessary
for QMC to surpass the computational efficiency of MC

when the sample sizes are at practical levels. Wang and
Fang (2003) and Wang and Sloan (2005) show that the
integrands commonly used in option pricing have p; ~ p
and p; < 2 and explain, using those results, QMC’s good
performance in this domain. According to our Theorem
5 for integrands with ps = 1, i.e. for functions that are
well approximated by sums of one-dimensional functions,
LH-C,; ({1}) should be efficient in reducing the variance.
Theorem 5 also guarantees that our method cannot per-
form worse than MC, asymptotically in the number of
points. To investigate the role of effective dimension in
the relative performance of the three competing methods,
we use the two-parameter function introduced in Wang
and Sloan (2005):

P
(42) FE)=]]Q+ar" (z;i—1/2)).
i=1

Varying the parameter a has more effect on p; than on
ps and varying the parameter 7 has the opposite effect.
We consider a high dimensional function (p = 100) and
different specifications of effective dimensions, according
to the parameters reported in Table 5.

TABLE 5
Wang and Fang (2003) effective dimensions (truncation and
superposition dimensions, p; and ps, respectively) of the integrand
function in Equation (42) for dimension p = 100 and different
parameter settings (columns).

e 01 01 01 01 01 1 1 1 1 1 10 10 10 10 10
r 01 05 08 09 1 01 05 08 09 1 01 05 08 09 1

pe 2 4 11 22 100 2 4 11 23 100 2 5 17 39 100
ps 1 1 1 1 2 1 12 3 14 1 38 15 96

Effective dimensions are computed using the methods
for multiplicative functions introduced in Wang and Fang
(2003).

Figure 8 shows the mean square error (MSE) (ver-
tical axis) and the computing time (horizontal axis) of
Monte Carlo (red), QMC (black) and circulant variates
LH-Cy({1}) (blue) sampling, for the different effective
dimensions p; and ps (different plots) given in Table 5.
Our LH-C;({1}) method has the best performance when
the superposition dimension is equal to 1. The perfor-
mance is decreasing in the truncation dimension. For
ps = 2,3, QMC performs better than the method proposed
here when the number of points used in the integration is
high. QMC advantage increases in the truncation dimen-
sion. At moderate p; QMC dominates. In those cases, our
proposal is slower than MC but reaches the same MSE. In
the extreme case of f being almost full dimensional (right
lower corner), Cy ({1}) is performing as badly as MC, but
QMC is doing orders of magnitudes worse. These numer-
ical results are in line with the result in Theorem 5 and
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FI1G 8. Monte Carlo integration of the Wang and Sloan functions with
p = 100 and different effective dimensions. Mean square error (verti-
cal axis) and computing time in thousands of seconds (horizontal axis).
Different plots use different effective dimensions (pg,ps). In each plot:
Monte Carlo (red), QMC (black), and circulant variates LH-C 3({1})
(blue) sampling. For each line: different number of samples from 10 to
1,000 (circles). For each setting, all statistics are averages over 10,000
experiments.

indicate that our method should be used when the super-
position dimension is low and when there is no informa-
tion about effective dimensions of the integrand since in
the worst case, it reproduces the precision of standard MC
estimates.

6.2 Markov Chain Monte Carlo

6.2.1 Bayesian inference on Probit (van Dyk and
Meng, 2001) The data used are taken from van Dyk
and Meng (2001) and represent the clinical character-
istics summarized by two covariates of 55 patients, of
which 19 were diagnosed with lupus. The disease indica-
tor is modelled as independent Bernoulli variables Y; ~
Ber (® (x!'3)) where @ is the standard normal CDF and

B = (o, b1, BQ)T is a the vector of parameters. The ob-
jective is to sample from the posterior distribution corre-
sponding to the flat prior for 3. We adopt the standard
Gibbs sampler with latent variables 1); ~ N (xiT,@, 1) of
which we consider only the sign. We repeat the following
alternating two steps to obtain draws from the posterior.

First, we sample from 3|1 ~ N <B, (XTX)_I) with

B=(XTX) ™" XTq with X the data matrix whose i-th
rows is x;. Then from ; |3,Y; ~ TN (X?B, 1, YZ) where
TN (u, o2, Y) is a the normal distribution with mean p
and variance o2, truncated to be positive if Y > 0 or neg-

ative otherwise. Further details of the algorithms can be
found in Craiu and Meng (2005).
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F1G 9. Monte Carlo variance of the posterior mean estimator (vertical
axis) corresponding to a different number of antithetic variates d (hor-
izontal axis) for the parameters [ (left panel), B1 (center panel) and
Bo (right panel). In each plot: the average variance of antithetic Gibbs
(blue dots) and of iid Gibbs (yellow dots) with their range (vertical seg-
ments). Note: all estimates are based on 100 independent experiments.
In each experiment, the Gibbs sampler runs for 10 seconds.

6.2.2 Metropolis within Gibbs Hierarchical Poisson
(Gelfand and Smith, 1990) This second example con-
cerns the counts of failures s = (s1,...,s,) for n =
10 pumps in a nuclear power plant. The time t =
(t1,...,t,) of operation are known. The model assumes
sp ~ Poi(Agty) and A\ ~ Ga(«,3) with parameters
a, 8 > 0. The objective of the inference is the posterior
distribution of « and 3, to which we assign an exponen-
tial prior with mean 1 and a Gamma prior Ga (0.1,1), re-
spectively. Using the conjugate priors, it is easy to obtain
a Gamma distribution for A\; given As, ..., A\, and 3, and
those variables can be easily sampled using a Gibbs step.
Sampling « is slightly more difficult. In fact, we have:

P(|A,y...yAn, B) xexp |:Oé <n10g/3+ Zlogx\k — 1) — nlogl"(a)} .
k=1

We then sample o with a random walk Metropolis-
Hastings (MH) step with a deterministic scan. We show
results for the case when we antithetically couple the uni-
form draws for acceptance rejection choice and when we
are not doing it. The former case is the one for which
Frigessi, Gasemyr and Rue (2000) reports the worst per-
formance of the usual two-variates antithetic coupling of
chains, in agreement with our results.

6.2.3 Pseudo Marginal Metropolis-Hastings Stochas-
tic Volatility (Gerber and Chopin, 2015) The last appli-
cation targets a state-of-the-art methodology, the Pseudo
Marginal MH (PCMH) proposed by Andrieu and Roberts
(2009), which is able to estimate models with intractable
likelihoods that are approximated using a particle filter. In
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F1G 10. Monte Carlo variance of the posterior mean estimator (verti-
cal axis) corresponding to a different number of antithetic variates d
(horizontal axis) for the parameters o (left panel) and 3 (right panel).
In each plot: the average variance for the MH with (blue dots), without
(red dots) antithetic acceptance rule and standard iid MH (yellow dots)
and their ranges (vertical segments). Note: all estimates are based on
100 independent experiments. In each experiment, the Gibbs sampler
runs for 10 seconds.

particular, following Gerber and Chopin (2015), we con-
sider the bivariate stochastic volatility model introduced
in Chan, Kohn and Kirby (2006):

1/2
yt:St/ €¢,

Xt =M 1+ (Xt_l - lJ/) + \111/21/,5,
Sy = diag (exp (214, z2t)) ,
<€t7’/t) NN(047C>

with y¢ = (y1¢,92¢)7 and x; = (w14, 72;)” observable and
latent log-volatility vectors, ® and ¥ diagonal matrices
and C a correlation matrix. Following those authors we
take independent uniform and gamma prior distributions:

(44) @Zjl ~ Ga(10exp(—10),10exp (—3))
2
and a flat prior for p, where ¢;; and v;; denote the diag-
onal elements of ® and W, respectively. In addition, we
assume that C is uniformly distributed on the space of
correlation matrices. To sample from the posterior distri-
bution of the parameters, we use a Gaussian random-walk
MH algorithm with covariance matrix calibrated by Ger-
ber and Chopin (2015) so that the acceptance probability
of the algorithm becomes, as N tends to infinity, close
to 25%. We consider the mean-corrected daily returns on
the Nasdaq and Standard and Poor’s 500 indices for the
period ranging from January 3rd, 2012, to October 21st,
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FIG 11. Acceptance rate (top) and effective sample size (bottom) of the
PCMH using Sequential Monte Carlo (SMC), Sequential Quasi-Monte
Carlo (SQMC), and Sequential Antithetic Monte Carlo (SAMC) (dif-
ferent colors). Acceptance rate of the Metropolis step (vertical axis)
versus the number of particles (horizontal axis, Panel A) and comput-
ing time (horizontal axis, Panel B). Maximum and minimum effective
sample size (vertical axis) versus number of particles (horizontal axis,
Panel C) and computing time (horizontal axis, Panel D).

2013, so that the data set contains 452 observations. Fig-
ure 11 PCMH algorithms using sequential quasi-Monte
Carlo and antithetic Monte Carlo are equivalent in ac-
ceptance rate and effective sample size (Panels A and C)
when a low number of particles (up to 20) is used. Never-
theless, antithetic Monte Carlo achieves larger acceptance
rates (AR) and effective sample size (ESS) with a lower
computing time (Panels B and D). When a larger num-
ber of particles is used (above 20), the performances are
equivalent in terms of ESS, whereas SQMC is better in
terms of AR.

7. DISCUSSION

The development of antithetic constructions has gen-
erated a rich class of methods to accompany the evolu-
tion of Monte Carlo sampling algorithms. We enrich this
class with a new antithetic method, the circulant variates
(CCV), that satisfies the countermonotonicity, exchange-
ability, and marginal uniformity conditions. In particu-
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lar, the marginal uniformity condition is linked to the
Kullback—Leibler optimality.

The principle behind the proposal, relying on sampling
on segments, leads to a unification of several classical an-
tithetic constructions: rotation sampling, Latin hypercube,
permuted displacement, and random balanced sampling.

Within this common framework, we provide a conve-
nient representation of the antithetic vectors in terms of
graphs, i.e. vertices, and edges, and evaluate theoretically
their distributions and concordance measures. The latter
allows us to rank the methods within the class of sampling
on segments. The constructions based on circulant graphs
(CCV) with the smallest number of edges rank best. Also,
the best CCV outperforms the existing constructions re-
viewed in the paper. We also demonstrate a central limit
theorem in the case of asymptotically increasing vector
size.

Leveraging on Iterated Latin Hypercube (ILH) prop-
erties, we combine the two methods by using the CCV
construction to initialize the ILH construction and reduce
the number of iterations. This reduces the simulation cost
and improves the concordance lower bound. The numer-
ical experiments include MCMC, Sequential MC, Quasi-
MC, and classical MC integration. The proposed methods
outperform standard implementations and are competi-
tive with Quasi-Monte Carlo methods in scenarios with
low effective dimensions. The asymptotic variance reduc-
tion with respect to standard MC, implied by Theorem
5, is confirmed by our numerical experiments. The re-
sults hold for all square-integrable functions. Moreover,
the variance reduction is larger for functions that are well
approximated by sums of one-dimensional functions.

Future work includes possible extensions of the the-
ory for KL optimality beyond the marginal univariate
case. An investigation of the relationship between the
line segment representation and orthogonal array-based
Latin Hypercubes (Tang, 1993) could lead to an improve-
ment of the performance for superposition dimensions
bigger than 1. We notice that different methods that sat-
isfy countermonotonicity, exchangeability, and marginal
uniformity yield different variance reductions in practice.
The results for the CCV suggest a non-trivial relationship
between graph topology, concordance order, and variance
reduction. A more general and ambitious goal is to pro-
pose a mathematical framework directed at identifying the
additional features that produce these differences.

Our sampling method has been successfully applied
within the Bayesian estimation framework of the Euro-
pean Commission’s multi-country model (Albonico et al.,
2019). We expect that the proposed simulation technique
will find direct application in other fields of computational
mathematics and statistics.
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