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Abstract

In Machine Learning community the fundamental recognized problems are certainly re-
lated to classification and regression tasks, in which the way data are represented or anal-
ysed plays a crucial role to devise such applications. This research is focused on the study
of solutions aimed to discover significant patterns which characterise data in a given do-
main and consists mainly in the ability of a machine to measure similarity relations be-
tween distinct objects, in order to identify a specific category or predict future outcomes.
Pattern Recognition is the branch of science that treats these specific problems, which is
supported by a rich literature of mathematical interpretations and practical approaches.

The Matching Problem is related to a well-known methodology whose contribution
in this field is very influential, since the determination of correspondences between key
substructures in the data can suggest a strong similarity information. In the contexts of
Graph Theory and Computer Vision, such elements are nodes of two graphs or points
of two shapes respectively, whose matches can yield to the intermediate transformation
which aligns an object with respect to each other. Although, this is a task very difficult to
solve generally, both for the complexity to compute the exact solution and for the presence
of noise in real data. However, these limits can be overcome by formulating approxima-
tions of the primal infeasible models, which still provide sufficiently discriminative power
for reasonable practical applications.

Furthermore, the matching problem has been always and mainly studied as a pairwise
inference, but recently there is growing the interest to generalize this task in multiple
setting too. Here, we are interested to solve a set of transformations between all the
possible couples of objects in a given dataset, which has to support a global consistency
criterion that leads the estimation towards the final transitive solution. The latter is a new
fundamental notion in addition of the classic pairwise matching problem, which can be
interpreted as a form of transformation synchronization. The main advantage consists to
enforce the accurateness of the pairwise solution exploiting of the overall information in
the set, reducing wrong correspondences and increasing the tolerance of the process with
noisy data.

In this thesis we present novel works that exploit of synchronization to solve problems
of Multi-Graph and Multi-Point Set Matching. As concern the former, we formulated the
solution according different transformation domains proposing three specific approaches:
in our first work, we treated orthogonal permutation matrices among graphs, creating
a framework which is independent with respect to the initial solution from an external



Graph Matching algorithm, resulting to an off-line synchronization; in our second work,
we formulated permutations as double-stochastic matrices in Birkhoff’s Polytope, realiz-
ing a tool which can be integrated in any Graph Matching scheme in such space and that
operates pushing actively the synchronized solution to the vertexes of the polytope dur-
ing the learning; in our third work, we generalized the subgraph matching problem with
numerous graphs of different size, we enforced consistency deriving partial permutations
on the multi-simplex space that embraces the common universe of nodes. As concern the
latter, we treated planar homographic transformations between 2D images, devising an
optimization process which enforces consistency of the point correspondences and simul-
taneously learns a classifier to detect the plane contained in each view.



Sommario

Nella comunità scientifica del Machine Learning i fondamentali problemi riconosciuti
sono sicuramente quelli rivolti ai compiti di classificazione e regressione, in cui il modo
di rappresentate e analizzare le informazioni gioca un ruolo chiave per la loro risoluzione.
La ricerca si concentra nello studio di soluzioni in grado di scoprire pattern significativi
sui dati definiti in un certo dominio ed è indirizzata principalmente alla capacità di una
macchina nel misurare aspetti di somiglianza tra oggetti, con lo scopo di identificare la
loro appartenenza a una categoria o restituire un valore a cui dipendono. Il campo del Pat-
tern Recognition è proprio indirizzato a studiare queste problematiche e nella letteratura
scientifica si trova un vasto repertorio di formulazioni matematiche e relativi sviluppi
pratici.

Il ben conosciuto Matching Problem si riferisce a una metodologia il cui contributo
in questo campo è davvero influente, dal momento che il problema di determinare cor-
rispondenze tra le caratteristiche intrinseche che descrivono gli oggetti possono suggerire
significativi aspetti di somiglianza tra i dati. Nei contesti di Graph Theory e Computer Vi-
sion, solitamente si cercano rispettivamente le corrispondenze tra nodi di due grafi oppure
punti di due immagini, le quali costituiscono una soluzione atta a trasformare la rappre-
sentazione di un oggetto verso l’altro. Tuttavia questo compito risulta generalmente di
rilevante difficoltà, sia per la richiesta computazionale e sia per la ricerca alla soluzione
esatta in condizioni di rumore nei dati. Quindi si arginano queste limitazioni proponendo
soluzioni approssimative rispetto alle formulazioni di partenza, ma che diano comunque
una resa accettabile in termini di precisione nella messa in pratica.

In aggiunta, il problema di matching è sempre stato studiato principalmente come un
tipo di analisi orientata alle sole due entità, ma di recente sta emergendo l’interesse nel
generalizzare questo approccio disponendo di molteplici istanze. L’interesse verte a sti-
mare un insieme di trasformazioni tra tutte le possibili combinazioni di oggetti facenti
parte della collezione, ma a cui si impone un criterio di consistenza globale sulle cor-
rispondenze. Quest’ultimo rappresenta un nuovo e fondamentale principio rispetto al
classico approccio a coppie, il quale può essere interpretato come una forma di sincroniz-
zazione delle trasformazioni. Il vantaggio primario consiste nel cercare di migliorare
la precisione delle corrispondenze derivate su due entità servendosi però del contributo
informativo portato da tutti gli altri oggetti in gioco, perciò riducendo possibili errate
supposizioni delle soluzioni e rendendo il processo più tollerante al rumore nei dati.

In questa tesi si presentano dei lavori innovativi che fanno beneficio proprio della



sincronizzazione come paradigma per risolvere problemi di Graph Matching e Point Set
Matching su insiemi di oggetti. Per quanto riguarda la prima categoria, si propongono
soluzioni legate al dominio delle trasformazioni distinte però in tre approcci: il primo
lavoro tratta matrici di permutazione ortogonali tra grafi, realizzando un framework ch’è
indipendente rispetto alla soluzione di partenza non sincronizzata, la quale è ottenuta
da un classico algoritmo a coppie di Graph Matching, quindi ne deriva una sincroniz-
zazione di tipo off-line; nel secondo lavoro le permutazioni sono trattate come matrici
bi-stocastiche appartenenti al politopo di Birkhoff, ottenendo quindi uno strumento che
può essere integrato in qualsiasi algoritmo ordinario di Graph Matching e rendendolo ca-
pace di stimare attivamente la soluzione sincronizzata presente ai vertici del politopo; il
terzo lavoro generalizza ulteriormente la ricerca di corrispondenze in sottografi, costru-
endo matrici parziali di permutazione sullo spazio del multi simplesso in un universo co-
mune di nodi. Per quanto riguarda la seconda categoria, si propone un lavoro per trasfor-
mazioni omografiche planari tra immagini 2D, realizzando un processo di ottimizzazione
atto a sostenere la consistenza delle corrispondenze tra punti e simultaneamente stimare
un classificatore in grado di stabilire la presenza del piano nelle immagini.
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Notation

Multidimensional Objects

• a: is any generic element (normally can assume nominal, scalar or vectorial form);

• a = (a1, a2, . . . , am)T : is a column vector of m elements (or a m × 1 matrix, with
m rows and one column);

• A = (aij): is a m× n matrix, with m rows and n columns where aij is the element
in the matrix at the row i and column j (if aij is even a matrix the structure A is
said block matrix);

• 0, 1: are constant column vectors or matrix whose all elements are respectively the
scalars 0 or 1 (the dimensions are explicated by the context);

• Im: is an identity m×m matrix composed by all zero values and ones in the main
diagonal;

• eh: is a binary vector where the unique value equals to 1 is the h-th component (the
dimension is explicated by the context);.

Sets

• S = {s1, s2, . . . , sm}: is a finite set composed by a homogeneous collection of m
different objects (|S| = m denotes the cardinality of the set as the number of its
elements), if m = 0 then S is expressed as the empty set ∅ = {}), moreover, the
style S refers to a special set such as problem space or domain of values;

• N,Z,Q,R,C: are the typical infinite numerical sets respectively for natural, inte-
ger, rational, real and complex numbers (to denote the subset of all the positive or
negative numbers is added the superscript + or −);

• [α, β] ⊂ R: is the closed interval for all the real numbers between two scalar ends
with α ≤ β (to denote that α is not included in the interval the symbol ‘[’ is replaced
with ‘(’ and in the same manner for β where ‘]’ becomes ‘)’, in this case the interval
is said open in one on both ends and infinite ±∞ ends are possible).

• ∆m = {x ∈ Rm | ∀i = 1 . . .m : xi ≥ 0,
∑m

i=1 xi = 1}: is the Standard simplex set
of m variables and contains any probability distributions in Rm (let x ∈ ∆m, if
x = eh for some h = 1 . . .m then x is a vertex point in the boundary of the standard
simplex, otherwise is any other point in the interior space).



xii Notation

Operations

• S × Q = {(s, q) | s ∈ S, q ∈ Q}: the Cartesian product between the sets S and
Q is a non commutative operation which returns a set composed by all the possible
|S||Q| ordered pairs from the elements contained in them;

• Sn = S × S × . . .× S︸ ︷︷ ︸
n times

: is the Cartesian power of a set S as the Cartesian product

of itself for n times;

• S m×n: the space in which are contained all the possible m × n matrices whose
domain of the values is S;

•
(
n
k

)
=

n!

k!(n− k)!
(with n, k ∈ N; 0 ≤ k ≤ n): the binomial coefficient which

determines the number of subsets of k samples without repetitions extracted from a
population of n different elements;

• exp(x) = ex: is a compact notation for a scalar exponentiation with the typical
Euler’s number e;

• (a)k = ak: is a shortcut notation to denote the k-th element from vector a;

• (A)k = ak: is a shortcut notation to denote the k-th column vector from matrix A;

• ‖a‖2 =

√
m∑
k=1

a2
k: is the Euclidean norm (or length in the Euclidean space) of a

scalar vector of m dimensions (the shorter notation ‖·‖ can be equally used);

• ‖a− b‖2 =

√
m∑
k=1

(
ak − bk

)2

: is the Euclidean distance between two scalar vec-

tors of both m dimensions (you can observe that the norm of a vector is equal to its
distance with respect to the origin, namely ‖a‖ = ‖a− 0‖;

• ‖A‖F =

√
m∑
i=1

n∑
j=1

a2
ij: is the Frobenius norm of a m× n matrix;

• Tr(A) =
∑m

i=1 aii: is the linear Trace operator of a m ×m square matrix, which
returns the total sum of the elements in the main diagonal;

• 〈a,b〉 = aTb =
∑m

k=1 akbk = ‖a‖ ‖b‖ cos(θ): is the dot product (also known as
scalar product or inner product in Euclidean space) of two scalar vectors where θ
denotes the angle between them;

• det(A): is the determinant of a matrix;



Notation xiii

• AT : the typical transposition for a matrix A = (aij) where AT = (aji);

• vec(A) = (a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n)T : is the vectorization
of a m× n matrix into a column vector;

• C = A ⊗ B: given the m × n matrix A and the p × q matrix B the Kronecker
product between them returns C = (Cij) as a m× n block matrix (or an extended
mp × nq matrix) where the element at row i and column j is a p × q matrix such
that Cij = aijB.

Any exception of the notation as above is locally explained in this thesis to avoid
misunderstanding.
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1
Introduction

In 1959, Arthur Lee Samuel in his very well-known survey about the game of checkers
introduced for the first time in the history of Computer Science the term “Machine Learn-
ing” [142], which he defined as the “field of study that gives computers the ability to learn
without being explicitly programmed”. From this essential definition we can derive two
fundamental branches in the evolution of the ample set of techniques we know nowadays.
The general concept of “learning” by a machine is strictly related to the prospect that such
ability may be totally autonomous or instead conditioned to follow some predetermined
boundary. In the first class we relate to the well-known artificial neural network paradigm,
where structures similar to human brain can potentially learn something without some ex-
ternal supervision. Despite the intensive efforts have been done to reach this goal, due
to both the computational complexity and the unclear to describe precisely the dynamics
in such learning scheme, the greater useful contribution has been given by applications
reside in the second class, i.e., solutions strictly conceived inside a specific problem space.

Indeed, concrete works in Machine Learning rely on foundations of Statistics and
Maths through abstractions of real world problems. The majority of applications in this
field are related to the well-known branch of Pattern Recognition. Here, the fundamental
point of interest is focused on data, since the only way to transfer new knowledge in a
machine consists to extract information from observations of some specific reality. The
learning is just the ability to discover this information, which can be interpreted as the
presence of recurring patterns or regularities in rough data. Obviously, this fundamen-
tal aspect is critically bound by the specific context of application, because according
the origin nature whence are retrieved the samples, there are derived different types of
patterns, as for instance, sound versus image. Therefore, it is necessary to define a ref-
erence decisional or functional model that is assumed to describe properly the nature of
a particular training set. Afterwards the machine has acquired sufficiently information,
then it learned and its abstracted representation of acquired knowledge is expressed as
the set of fixed parameters for the reference model. Finally, the validation consists just
asking to the machine what is the most likely learned pattern which recognises in a new
unknown testing observation: the performance yields in the accuracy of its answer. Fun-
damental branches of problems in Pattern Recognition are surely related to classification
and regression, which are aimed to define a model that predicts a categorical class or
a real-valued signal dependent to the input instance. Although, we can generalize this
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matter just considering essentially what may mean the presence of recurrent patterns in
data. Without loss of generality, when two observations contain common features it is
reasonable to assume they share similar properties, an aspect that should yield to assign
analogous answers in the predictive model as well.

Data mining refers to another ample field of Machine Learning in which are included
diversified techniques to infer salient patterns from the samples. The crucial efforts in this
area reside on the study of the special real world nature, with particular focus to the data
representation and the formal analysis of its structural domain. After that, machines can
manage information relying on predetermined paradigms, which can be inspired from the
most simple set of numbers to more complex structures, such as vectors or matrices and
further combinations of the latter. Therefore, the salient features of real objects that could
be relevant for a learning task have to be firstly measured and secondly organized in a
suitable data structure. Even if these aspects may appear obvious and even uncorrelated
by the concrete mining process, actually they involve heavily both the correctness of the
acquired knowledge and the scheming of the reference model.

Measurements are often affected by bias due to the instrument sensitivity as well as
errors in post-processing step of more complex devices. After that, the rooted assump-
tion to devise robust learning strategies consists just that data contain always noise and
machines should be able to deal with it autonomously. Nevertheless, this problem could
be reduced increasing the resolution of the measurements, but such solution yields to the
well-known Curse of dimensionality phenomenon [11]. Actually, the salient information
necessary to acquire good knowledge is contained in far less features with respect to all
those available. This is fundamental, in particular to speed up algorithms even operating
on huge data set, but on the other hand, it suggests that enlarging the precision of the
measure cannot always reduce the presence of noise.

Data structure has some determined properties, which can be expressed such as the
domain of values, magnitude, scale, functional dependences, ordering and more artic-
ulate relations among the measures. Therefore, with the purpose to retrieve significant
patterns, it is necessary to study the meaning of these properties with respect to the nature
of the object which describe. In more technical terms, we have to establish that kind of
knowledge to retrieve and those operations are required to perform a comparison. For
example, we need to measure the distance between two 3D points represented as two
real-valued vectors in R3. Trivially, exploiting of the spatial relation of the features in
vectorial Euclidean space, there is not ambiguity to consider the Euclidean norm to solve
this problem. After that, Pattern Recognition field is dominated by techniques which rely
on the vectorial paradigm, just due to its relative simplicity to manage and discriminate
data in this form.

Greater complexity emerges in case the objects of interest are represented by data
structures with further arrangement of the features, e.g., the classical rectangular repre-
sentations or more generally feature collections, which are vastly employed to describe
2D images, 3D point clouds, graphs, metabolic networks and so on. Intuitively, one could
divert the problem just devising an approach to project non-vectorial data against the vec-
torial paradigm and exploiting of ordinary techniques thus to derive a proper solution.
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Unfortunately, this strategy is very difficult in general, since an injective mapping be-
tween such data spaces is not directly derivable, which is a problem typically in NP-hard
class [145]. We may give two examples to highlight such difficulty: considering a 2D
picture which is unrolled as a trivial sequence of colours, the visual regions of the original
image are not spatially recognizable anymore; second, a data structure can be affected
by isomorphism, which means that can describe with several different representations the
same object, e.g., the case of isomorphic graphs.

Sure enough, we can realize that the essential key issue is about the ordering or index-
ing of the features inside own data structure. Therefore, we need to deal with this problem
looking for another interpretation of the content. Simply, since similar features can take
arbitrary locations in own data representation, we may consider as salient patterns the cor-
respondences between features of two distinct objects. In other terms, we need to learn
how to “realign” (like a 15-puzzle game) the data representation of an object with respect
to each other in order to enhance structural similarity: this special task is well-known as
Matching Problem.

In this thesis we treat problems of matching in two specific contexts of Machine Learn-
ing, which are Graph Theory [85] and Computer Vision [8].

In the former context, we consider the analysis of general graph-based structure,
which is expressed as a set of interconnected nodes with possibly further informative
attributes both to nodes and edges. The related approach is well-known as Graph Match-
ing [35, 45], where the goal consists to derive the binary mapping between the nodes of
two graphs, that is a combinatorial problem. This strategy in Graph Theory is considered
the most preferable way to retrieve similarity information, since takes in account both
nodes and topological aspects in the substructures. Graph Matching yields to the well-
known (sub)graph isomorphism, which emerges by the absence of ordering of nodes in the
graph-based representation, whose exact recognition is proofed to be NP-complete [51].

In the latter context, our objects of interest refer to visual instances, which can be
expressed by images, surfaces or more generally point clouds. Here, the correspondence
estimation yields to the well-known problem of Point Set Matching [29, 135] or Point Set
Registration, whose goal consists to infer a rigid or affine transformation that brings the
points of an image to those of the other one. The fundamental aspect of this process is
related on its real-valued domain, which relies on properties of Euclidean or Affine spaces.
The general approach consists to extract subset of salient keypoints between the images
whence estimating the optimization parameters of the reference model by minimizing the
squared distance of the registered points with respect to a landmark subset. In general,
this problem can be solved in polynomial time, since it can be treated as a classical least
squares problem.

The majority of solutions in Machine Learning, as more generally in Computer Sci-
ence, are diversified by their orders of complexity, whose greater interest relates to the
fundamental distinction between polynomial and non-polynomial problems. The crucial
point consists in the applicability of these methods in real world scenario, i.e., the fea-
sibility in terms of computational time required to solve the given tasks. Unfortunately,
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there are many important problems whose exact solutions can not be obtained by polyno-
mial algorithms, e.g., graph (sub)isomorphism. Typically, these processes are modelled
as optimization problems, in which the desirable solution is evaluated by a score objective
function over the reference model parameters. Therefore, the main goal consists to max-
imize (minimize) the objective, but the optimal solution, i.e., its global maximum (min-
imum), could require very effort to be solved. Although, this limit can be overcome by
establishing a trade-off, which consists to focus the research in alternative solutions with
the purpose to save computational time. Here, infeasible optimization problems can be
relaxed by further approximate formulations, reducing in general the problem space and
shifting the research towards local maximum (minimum). Fundamental contribution to
treat these subjects is related to the well-known Dynamical Programming [11] field. The
matching problems discussed in this thesis are just carried according such approaches.

Graph Matching and Registration may appear two very diversified applications in
Machine Learning, but actually share both the fundamental purpose to estimate corre-
spondences between data structures, in particular, representations of real world objects.
Clearly, this application is encoded according different schemes, i.e., matching between
nodes (combinatorial) w.r.t. matching between points (geometrical), but the solution can
be considered just a more general data “transformation” or “alignment” of two objects.
Correspondences on hand, we can reorganise the features in the data structures to en-
compass a common structural domain, hence getting the representations being potentially
comparable with classical distance metrics. Between the various benefits derived from
this approach, we find the fundamental requirement to design desirable positive semidef-
inite kernels, which are functions that quantifies the similarity between two data entities.
Indeed, kernel methods can be exploited in order to perform classification tasks even from
non-vectorial data.

Furthermore, there is another interesting aspect that characterizes this kind of analysis,
which is the simple fact that the inference aimed to estimate the final transformation relies
exclusively to a couple of instances only. This thing is quite obvious, because a matching
problem is in general a pairwise process, but since data contains noise for assumption its
integrity may affect deeply the accuracy of the overall learning task. Unfortunately, it
is not always possible to devise robust methodologies just trusting on this limited set of
information as well. On other hand, matching techniques can be very useful tools to deal
with noisy data as nestled processes inside more complex applications. After that, finding
correspondences states strong data relations, which could suggest to further specialized
solvers what elements to discard in the estimation of their reliable knowledge. In such
vast field of techniques, this methodology is well-known as Inlier Selection [44], wherein
the main goal consists to detect the best set of instances to fit a model filtering potential
outliers in raw data.

Recently, in several contexts of Machine Learning is increasingly rising a new ap-
proach to overcome just this critical drawback, which consists in a generalization of the
matching problem exploiting of multiple instances, i.e., more than two objects. Indeed,
there exist specific applications where for example sensors or cameras can take numer-
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ous observations of a same reference object from different point of view, therefore an
extension of this problem is reasonable in practical scenarios. The underlying principle in
this novel scheme consists just to exploit of additional information brought from similar
objects to enforce those uncertain correspondences due to noise in the pairwise analysis.
In other terms, the local bias is spread globally over all the possible pairwise transfor-
mations, which should even the quality of the estimated solutions. This approach is very
challenging, but introduces further complexity to the matching problem. We describe just
the simple case with three objects xa, xb, xc and all possible combinations of alignments
as πab, πac, πbc. The fundamental condition which must be supported is clearly that if the
result of the transformation from xa to xc is the following estimated object xc = πac(xa)
then (πbc ◦ πab)(xa) = xc. In other terms, the alignments has to be transitive and such
status can be interpreted as the global transformation synchronization [13, 123]. Unfor-
tunately, this consistency constraint is not in general guaranteed by classical pairwise
solvers, but it has to be imported in multi-matching problems both to keep coherency of
the transformations and to realize positive semidefinite kernels. The main contribution in
this thesis regards several techniques aimed to synchronize transformations for multi-way
matching, whose principal applications are addressed to generic graph and visual repre-
sentations.

The contents in this work are organized in three fundamental macro-parts: for each
one, we give a brief introduction presenting the fundamental topics and motivations.

I. Related Work. In the first part of this thesis we give an overall and detailed presen-
tation of common theoretical concepts related to the works treated in this text. The
main areas of the science covered are about Machine Learning, Graph Theory and
Computer Vision. Clearly, we focus our attention to introduce just those notions
which are relevant to an exhaustive comprehension for the reader, without consid-
ering the overall theoretic background which would deserve such fields. Moreover,
the whole explanation is addressed to review in deep the general literature of all
the well-known methodologies and concepts presented, with the purpose to high-
light the current state-of-the-art in these related works. The Chapter 2 is aimed
to introduce our reference data structures underlining their canonical representa-
tions and the properties of the spaces where are defined. In particular, we cover
the topic of Kernel Methods, presenting advantages, limits and some famous mod-
els. Furthermore, we give a general introduction of Computer Vision, presenting the
characteristics of the Camera Model and some fundamental applications on images,
shape or point clouds. The Chapter 3 contains an exhaustive introduction about the
well-known Matching Problem, which is divided in two distinct scenarios: the clas-
sical pairwise setting, where the inference task relates totally just on the pair of two
data objects; the generalization of the matching problem, where the inference task
involves a collection of data objects beyond the base case. The matching prob-
lem in the first part of this chapter is treated in the pairwise setting presenting two
particular applications: first, it is related to consider combinatorial problems with
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data graphs (i.e., the Graph Matching problem), presenting well-known approxima-
tions which relax the associated isomorphism notion; second, it is related to solve
matching problems on general point clouds (i.e., the Point Set Matching problem),
introducing efficient methods to estimate rigid or affine transformations with par-
ticular applications addressed to Computer Vision. The matching problem in the
second part of this chapter is again treated both for graph and images, but consid-
ering the multiple data scenario. In this part we present state-of-the-art techniques
that solve the fundamental problem to guarantee global consistency for these two
special kinds of transformations.

II. Transformation Synchronization. In the second part of this thesis we introduce
the overall contribution of our work, which consists in four novel approaches that
treat matching problems in multiple data setting, both applied for graph structures
and for visual instances with applications in Computer Vision. The first work pre-
sented in Chapter 4 consists in a framework which realizes a transitive assignment
kernel [47] applied on graphs with the purpose to solve typical classification tasks.
This method performs a synchronization strategy [123] according the initial esti-
mated solution given by some external and independent pairwise Graph Matching
solver, therefore represents an off-line process. This approach introduces alignment
step according the paradigm of assignment kernels and assumes the assumption of
orthogonal permutations. The problem space of the permutations is relaxed in the
space of real-valued matrices and the solution estimated iteratively. The formu-
lation of the kernel is based on transitive permutation alignments and due to the
global consistency it results to be positive semidefinite as well. The second work
presented in Chapter 5 consists in an optimization methodology to estimate con-
sistent homographic transformations [110, 155, 182] derived from a dense set of
2D views for plane classification. The main assumption consists that all these im-
ages contain a common planar subject and an initial inconsistent solution of the
homographies is given. This iterative process for each step simultaneously recti-
fies the affine transformations performing a synchronization [13] and in meanwhile
learns a predictor over the pixel to distinguish the regions which contain the plane
in the view. The third work presented in Chapter 6 consists in synchronization
process for multi-graph matching based on Birkhoff’s Polytope [16]. This work
is particularity inspired to the method presented in the Chapter 4, but differs for
two fundamental aspects: first, the synchronization is led on-line, which means that
can be completely integrated in the operative context of an extended matching al-
gorithm in multiple data setting (similarity as in the previous Chapter 5); second,
it does not consider orthogonal permutations, but works in the problem space of
doubly-stochastic matrices. The resulting iterative optimization is rooted by the
Birkhoff-Von Neumann theorem, whose permutations are replaced by alignments
to solve the transitive double stochastic transformations. The fourth and last work
in Chapter 7 introduces a further generalization of multi-graph matching problem
allowing to operate with graphs of different size, i.e., solving graph matching as
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the multiple data extension of the common pairwise subgraph problem [38, 179].
This work continues to exploit of permutation synchronization, but its formulation
introduces a common node dimension to set the multi-simplex space, which can
embrace the matching expectations for each possible pair of uneven graphs. This
approach is inspired to the previous methods in the Chapters 4 and 6 for different
aspects: in the former, there is no dependence with respect to the initial solution
which can be imported from any graph matching solver; in the latter, the definition
of the alignments is at least one-way stochastic.

III. Conclusion and Future Work. In the third part of this thesis we present our final
conclusions about the overall work with transformation synchronization problems,
describing the salient aspects of the proposed solutions and obtained results. More-
over, we introduce our future intentions in this special field, reasoning about the
principal weak points in our current experience and presenting some further new
directions.
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2
Preliminaries: Graphs and

Computer Vision

In this chapter we present the preliminary and fundamental concepts which spread the
various topics treated in this thesis. The rich existent literature from Machine Learning,
Graph Theory and Computer Vision communities is supported by a well-established man-
ner to describe certain theoretical notions; despite this fact, we prefer to underline also in
this text how we conceive some rooted aspects in such specific areas of the science. The
reader could have already a good familiarity with these contents, but we aim to get used
him to our language in order to avoid possible misunderstandings of the next and more
complex subjects.

In section 2.1 we introduce formally some structural data representations and well-
known methods to derive affinities measures, with particular interest to Graph-based
structures. Moreover, in section 2.2 we give a brief introduction of Computer Vision,
treating the fundamental aspects related to geometrical transformations, camera model
and special tasks with images and point clouds.

2.1 Similarity Methods in Structural Data

In Machine Learning community the concept of similarity or its counterpart distance
plays a fundamental role in several pattern recognition applications. Surprisingly, the
problem to model a reliable measure of affinity between two formal objects can be very
complicated in some scenarios. The fundamental implications in this matter are strictly
related to the real world nature of the objects and in particular the translation of them-
selves in a specific formal data structure, which is a required condition for the embedding
in a mathematical context. After that, the complexity of any recognition task depends
heavily by the special peculiarities of the involved data representations. In particular, the
main problem consists in devising a discrimination approach which can be considered
reliable according the following two aspects: first, the comparison has to take in account
the fundamental differences both of the structures and features; second, there most not be
ambiguous cases in the manipulation of the data.
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In this section we introduce the general data representations in this thesis, which are
based on vectorial, matricial and graph paradigms. Moreover, we present in detail several
techniques for the definition of reliable measures of affinity in order to discriminate such
structures.

2.1.1 Structural Data Representations

In Machine Learning field, the vectors and matrices are surely milestone data structures
extensively employed in the formulation of mathematical problems. They are fundamen-
tal tools which can be used as fully or partial descriptors of objects in real world domain.
Obviously the crucial point consists to clarify how to analyse the information in these
structures with respect to how to import them, but there can be contexts where is not so
trivial to look for a one-to-one mapping from the real world objects to vectorial/matricial
paradigm. In this thesis the main objects of interest are described as sequence of features,
indexed tables, data graphs or combinations of such latter structures. Although, even if
these data structures could seem very difficult to generalize, in principle they are all de-
rived just from sets of vectors and matrices defined in a specific domain. The general
notation for structural data we apply in our work is summed up as follows.

Vectorial Paradigm

Any real-world object has measurable features, e.g., for an image could be the pixel colour
signals or for an animal some physical information (e.g., height, weight, age, sex, and so
on). In general, a single feature k is well defined in a proper domain Xk which may be
numerical/quantitative (e.g., height) or nominal/categorical (e.g., sex). Therefore consid-
ering the representation of any object according a set ofm known features, it is possible to
define a common descriptor domain for all the objects of interest, which can be modelled
as the feature space X = X1 × X2 × . . .× Xm. Hence, the classical data structure which
represents an objects is the observation or feature vector as follows:

x = (x1, x2, . . . , xm)T ∈ X .

An important required condition in sequential data is the lack of dependence among its
features, namely, a feature should not be obtainable from other features (e.g., age ver-
sus birth date). In the practice, typical algorithms are designed to operate with points
defined in the mathematical notion of vector space, in particular with real and complex
numbers, that is X = Rm and X = Cm respectively. Anyway, nominal feature can be
easily mappable to a quantitative finite domain, therefore we consider implied such pre-
processing step.
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Matricial Paradigm

The vectorial paradigm could not be sufficient to model further data representations in
case the indexing of the features would require to be extended. Therefore, adding a new
dimension n in the one-dimensional sequence model, the result is just a table of features
which introduces two way indexing for each feature xij , which is named as cell. This en-
larged structure inherits all the aspects of the vectorial paradigm and it is well-recognized
as the following feature matrix:

X =

 x1,1 . . . x1,n
... . . . ...

xm,1 . . . xm,n

 ∈ X m×n.

There exist many applications of this data structure in Machine Learning, for example to
describe a whole dataset of different m object observations with a fixed number of n fea-
tures, which are arranged per row in the matrix. In Computer Vision, if the feature domain
is the colour signal of a 2D image with resolution m × n, each cell can represent a pixel
and in particular the indexes are the pixel coordinates. Finally, the matricial paradigm
can be generalized even with further dimensions: the multi-dimensional feature matrix.
An example is the 3D space to represent volumetric images in Rm×n×o, the voxel (the
extension of the cell in 2D tables) represents a 3D pixel, which is indexed by the three
common coordinates (x, y, z) in the box of resolution m × n × o pixels. In Advanced
Mathematics exits several applications with exploit of multi-dimensional structures that
go beyond the third dimension, even if there is not often a precise correspondence with
real world objects anymore.

Graph-based Paradigm

The data structure most important in this context for its rich expressiveness is surely the
well-known Graph-based representation of an object (e.g., shape, social network, road
map, etc.), which can exploit of both vectorial and matricial structures. The graph is
described typically as a pair Gi = (Vi, Ei) where Vi = {vik}nk=1 is the set of nodes1

and Ei ⊆ V 2
i the set of edges. The cardinality of these sets are respectively denoted as

n = |Vi| and m = |Ei|. The topology of Gi can be described by an n× n matrix derived
from the setEi as well, since the edges between nodes require just two indexes: the pair of
labelled nodes. This structure is well-known as adjacency matrix A = (apq), whose entry
apq > 0 when (vip, v

i
q) ∈ Ei or 0 otherwise. Nodes and edges of a graph can have assigned

further information, which is typically composed by sets of vectorial data. For instance,
if a graph represents a subject of an image, each node can contain the coordinates of the
pixel point that represents; moreover, the value of the distance between pair of nodes can

1Note that the verbose notation vik ∈ Vi is just preferential to avoid ambiguities in multiple data refer-
ences. Although, if the context is sufficiently clear, the related light version k ∈ Vi is equally accepted.
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be assigned as an edge attribute. If the latter is simply a scalar value, the adjacency matrix
is a sufficient tool even to incorporate this further information as well, which is treated
just as a weight. In general, a graph Gi can be weighted or unweighed just according the
domain of the related adjacency matrix, respectively when A ∈ Rn×n and A ∈ {0, 1}n×n.
In addition, if edges have not an orientation, i.e., the graph is undirected, the matrix A is
symmetric as well, otherwise the graph is directed.

In a wide class of applications is necessary to introduce an additional important feature
associated to the data, whose concrete meaning depends both from the problem of interest
and what learning approach is employed. More specifically, it is sufficient to introduce
in deep the idea of label or class, which limits the domain of such feature to the categor-
ical case. We can express formally the space of k possible labels as Y = {1, 2, . . . , k},
therefore for each i-th structured object the data model is extended as the pair

(Xi, yi) ∈ X × Y ,

where yi is the label associated to a structured object Xi. Such new information yi is
considered as the depended feature with respect to all the others contained in Xi, which is
hence an independent component; in other terms the label is assumed to be determinable
on the basis of own associated descriptor. This model describes the well-known classifi-
cation problem in machine learning.2

2.1.2 Kernel Function and Hilbert Space
An important task to treat in Machine Learning consists to definite a way in order to
measure the affinity between couples of data objects, which are described for example as
vectors or matrices. There are two possible forms or nomenclature to express the same
concept from opposite point of views:

d(·, ·) dissimilarity or distance: measures how much two elements are dissimilar,
typically ranges in [0,+∞);

s(·, ·) similarity: measures how much two elements are similar, typically ranges in
[0, 1].

In more general terms, the main goal consists in the definition of a function between two
data entities which holds some special mathematical properties. This research is largely
supported by the theoretical notion of kernel function. Formally, let X be a vector space,3

2The case when holds Y ⊆ R determines another class of learning which is the field of regression
problem; anyway it is skipped since not pertinent with respect to the work in this thesis.

3Actually, the spaceX could be treated as a more general input space of objects, i.e., it is not a constraint
of the kernel function definition. Although, we introduce the notion of vector space just to reflect the
structural nature of data.
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the two-argument real-valued function κ : X × X → R is a kernel if for any x1,x2 ∈ X
holds

κ(x1,x2) = 〈ϕ(x1), ϕ(x2)〉V
for some inner-product space V such that ∀x ∈ X holds ϕ(x) ∈ V .

This definition is well-known in Kernel Methods field as the Kernel Trick [145], which
allows to get linear learning algorithms to learn non-linear function or decision bound-
ary. Kernel functions support fundamental properties, in particular they are symmetric
and (semi-)positive define. Clearly, the former is due to the symmetry of inner prod-
ucts, while we can explain the latter property from by the definition of Positive (Semi-)
Definiteness [160] of a matrix as follows:

• A symmetric real matrix A ∈ Rn×n is positive semi-definite (PSD), if for all
x ∈ Rn holds xTAx ≥ 0. We denote that A is PSD with A � 0.

• Moreover, A is (strictly) positive definite, if A is PSD and xTAx = 0 iff x = 0n.
We denote this variant with A � 0.

This condition in matricial calculus can be interpreted by the analogy with positive scalar
numbers, in fact, there does not exist a consistent notion of “positive” operating with such
structures, which are a special case of symmetric matrices as well. The definition of Neg-
ative (Semi-)Definiteness is easily derivable by inverting the inequalities.

Let X = {xi ∈ X}Ni=1 be a collection of N objects in the vector space X , the kernel
matrix (or Gram matrix) can be described as the symmetric matrix K that results from
applying the kernel function κ(·, ·) to all the pairs of data points in set X as follows:

K =

 κ(x1,x1) . . . κ(x1,xN)
... . . . ...

κ(xN ,x1) . . . κ(xN ,xN)

 .

Therefore, the kernel function κ(·, ·) is semi-definite just because any its kernel matrix K
is also a semi-definite matrix, i.e., K � 0.

Finally, the crucial aspect in the definition of data kernels onto any structural domain
X is the inner-product vectorial space V , which is in particular vastly required to be a
Hilbert space [119] too. This special class of spaces in real and complex domains is
a generalization of the common Euclidean space beyond the third dimension.4 In fact,
the fundamental hard problem in this field consists just in the definition of a one-to-one
mapping φ : X → H from a general vectorial space X of the data to a Hilbert space H,
that is the main ingredient to formulate a semi positive kernel.

4Typical examples of Hilbert spaces are the interval [0, 1], the real set R, the complex set C and the set
Rn with n ∈ N.
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Main Structural Kernels

In this section we introduce some well-known kernels in Machine Learning, for vectors,
matrices and other more complexed data structures, presenting their fundamental aspects
and several solutions in literature.

• Linear Kernel: κlin(x1,x2) = xT1 x2 =
∑m

k=1(x1)k(x2)k

The Linear kernel is just the inner product of two vectors, hence it must be symmet-
ric and positive semidefinite for definition trivially. This function produces results
which range arbitrary in R, therefore there is not a direct interpretation of affinity
between two entities actually. In fact, the main information given by this kernel is
related to orthogonally since κlin(x1,x2) = ‖x1‖ ‖x2‖ cos(θ), where θ is the angle
between the vectors. From this result is possible to define also the Cosine kernel as
follows

κcos(x1,x2) =
κlin(x1,x2)

‖x1‖ ‖x2‖
= cos(θ),

which considers just the cosine of the angle between the vectors. This further func-
tion is still a kernel and in particular can give a notion of affinity since ranges in
[−1, 1] as well: negative values of the kernel are interpreted as a distance measure,
while positive values as a similarity; finally, if κcos(x1,x2) = 0 means that x1 and
x2 are orthogonal, therefore they are not correlated.

• Polynomial Kernel: κpol(x1,x2) = (xT1 x2 + c)d

The Polynomial kernel computes a measure of similarity between two vectors over
polynomials of the original variables with order d > 0, therefore allowing the learn-
ing of non-linear models. The free parameter c ≥ 0 exploits of the influence of
higher-order versus lower-order terms in the polynomial produced by the kernel,
which is called homogeneous in case c = 0. This kernel allows to discriminate two
vectors not only through a linear dimension of their features (as the linear kernel
κlin), but also by combinations of the ones too. Therefore, this kernel can be an
useful tool to work in training data with strong functional dependency among the
features, but without requiring to learn all the parameters.

• RBF Kernel: κRBF (x1,x2) = exp
(
−‖x1−x2‖22

2σ2

)
The Radial Basis Function (RBF) kernel, or Gaussian kernel, represents a well-
known measure of similarity which is formulated from the classical Euclidean dis-
tance metric between vectors d(x1,x2) = ‖x1 − x2‖2 and the Gaussian function
with a free scaling parameter σ ∈ R. Indeed, since RBF kernel is just the expo-
nential of always negative number, the outcome decreases with the distance of the
two vectors and in particular ranges in ]0, 1], i.e., the lower bound is 0 in the limit(
d(x1,x2) = +∞

)
and upper bound is 1 when x1 = x2

(
d(x1,x2) = 0

)
, which

are the typical conditions for a well-formed similarity measure.
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• Graph Kernels

In this special class of kernels we have to introduce an ideal input space G whose
elements are data graphs. Therefore, the definition of a Graph kernel consists just in
a positive semidefinite function κg : G×G → R, which measure distance/similarity
between a pair of graphs G1, G2 ∈ G. Nevertheless, in this new context there
cannot be a direct formulation of κg(·, ·) as other kernels whose entities reside in
vector space X , just because graphs are structures defined in a space G with totally
different mathematical nature. The famous Kernel Trick [145] represents the main
guideline to solve this problem, but looking for a proper injection ϕ : G → H (i.e.,
a complete graph kernel) to embed a graph in a Hilbert spaceH is in general a NP-
hard problem. This statement is supported by the fact that computing any complete
graph kernel is at least as hard as deciding whether two graphs are isomorphic and
the graph isomorphism can be yielded to a NP-hard problem [49]. Indeed, if ϕ is
injective, then

√
κg(G1, G1)− 2κg(G1, G2) + κg(G2, G2)

=
√
〈ϕ(G1)− ϕ(G2), ϕ(G1)− ϕ(G2)〉H

= ‖ϕ(G1)− ϕ(G2)‖2

= 0

if and only if G1 is isomorphic to G2.

For the special case of Graph kernels in this section, we decide to give a picture of
their essential story in literature, evaluating pros and cons of the main approaches
and solutions.

Main approaches. The easily strategy to devise a graph kernel is just to define a
process which projects graphs to feature vector space. In this way the computation
of similarity is clearly addressed by classical distance metrics for vectorial data and
thus the related well-known learning techniques can be imported. Unfortunately,
in general this task could lead loss of the topological information of the original
graphs or it yields to subgraph isomorphism problems.

A well-known strategy that skips the direct structural representation is based on
Graph Edit Distance [50], whose scheme consists to assign costs for edit operations
(edge/node insertion/deletion and renaming of the nodes) which transform a graph
G1 toG2 (see Figure 2.1). Therefore, the affinity measure is obtained as the cumula-
tive cost from the set of operations necessary to complete the graph transformation.
Even if this new strategy can describe partial similarity and cope with noise data,
it is affected by the hard problem to assign proper cost for the operations and still
requires to deal with subgraph isomorphism as verification step.
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Figure 2.1: Example of transformation of two graphs
as a set S of Edit Distance operations with costs assigned to edges.

The R-convolution kernels by Haussier [66] represents a new fundamental mathe-
matical abstraction of structural data which can be used in the definition of graph
kernels. The general principle is based to define a decomposition relationR which
divides structural objects in ideal parts. For example, let O1, O2 be two ideal
structural objects and o1

i , o
2
i the i-th related parts of such objects in R, then the

R-convolution kernel is defined as follows

κR-conv(O1, O2) =
∑

(o1
i ,O1)∈R

∑
(o2

i ,O2)∈R

κparts(o
1
i , o

2
i ),

where κparts(·, ·) is a further kernel function over the parts. In this way, graph
kernels can be treated as convolution kernels κg(G1, G2) = κR-conv(G1, G2) over
pairs of graphs and each new decomposition relationR yields in a new graph kernel
as well.

Another famous class of graph kernels is based on the Random Walks paradigm [80].
The main principle consists to discriminate two graphs G1, G2 counting their num-
ber of common random walks. This problem can be solved in a very elegant way
constructing a new supporting structure Gw = (Vw, Ew), which is a direct product
graph between the graphs, therefore the random walks in Gw are just the common
walks between G1 and G2. The walks on length k are obtained by looking the k-th
power of the related adjacency matrix Aw of n = |Vw| nodes, then the resulting
Random Walks-based graph kernel is formulated as follows:

κRW (G1, G2) =
n∑

i,j=1

(
∞∑
k=0

λkAk
w

)
ij

,

where λ > 0 is a free scale parameter of the function. This model is affected by two
fundamental drawbacks due to the nature of product graphs and random walks. The
former is related to runtime performance operating with Gw, both to perform the
direct computation in O(n6) and the space complexity to store the whole structure.
Vishwanathan et al. [183] propose a fast computation version just by the factoriza-
tion κRW (G1, G2) = 1T (1−λA)−11 = 1TM1, where the n×nmatrix M is solved
by Sylvester equations reducing the polynomial time to O(n3). Another marginal
performance problem consists in the construction of Gw, which is affected by the
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Label Enrichment process. Mahé et al. [105] reduce the space required to manage
product graph by introducing new artificial node labels as topological descriptors
based on Morgan index, which counts the k-th order of neighbour nodes. Finally,
in this work is solved the well-known phenomenon called tottering or halting in
random walks, in which possible cyclic walks for relative small substructures of the
graphs can be unjustifiably measured with very high kernel values. The solution
consists to modify the probabilistic model of random walk cutting the path with a
repeated node in the form v1, . . . , vk with vi = vi+2.

Following a similar direction to discriminate two graphs according common walks,
another well-known strategy is based to replace random walks with shortest paths.
Borgwardt and Kriegel [17] propose a solution based by comparing all the pairs
of shortest path lengths related the pair of graphs. Let d(·, ·) be the ideal distance
metric of the shortest path from the node vpi to vpj in a generic graphGp and κlen(·, ·)
a further kernel to compare two lengths, the shortest-path kernel is formulated as
follows:

κS-Path(G1, G2) =
∑

v1
i ,v

1
j∈V1

∑
v2
k,v

2
l ∈V2

κlen

(
d(v1

i , v
1
j ), d(v2

k, v
2
l )
)
.

The choice of κlen(·, ·) is in general treated as a Delta kernel κδ(l1, l2) which is 1
for l1 = l2 and 0 otherwise or a Linear kernel κlin(l1, l2) = l1l2, where the latter
yields to the product of the Wiener Indexes of the graphs [185]. Clearly, this kernel
requires the computation and comparison of all the pairs of shortest paths, which
can be solved in polynomial time respectively by Floyd-Warshall O(n3) and by
Wiener Indexes O(n4). The Shortest-Path-based kernels are in general faster than
Random Walks-based kernels and they give a more accurate measure of similar-
ity. Finally, Ramon and Gaerther [131] introduce a kernel based on subtree-based
pattern, which is a supporting structure that allows repetition of nodes and edges
similarly as the walk/path paradigm. The general idea consists to construct subtree-
based patternsGst

1 , G
st
2 related the two graphsG1, G2, the measure is obtained com-

paring the nodes v1
i ∈ Gst

1 , v
2
j ∈ Gst

2 via a proper kernel function and recursively
for all the sets of neighbours of such nodes. There are two common setbacks of all
the graph kernels introduced so far: first, the weak ability to catch the topological
information of the substructures of the graphs; second, the low scalability operating
with big data.

Optimal Assignment kernel [48] is a new class of graph kernels, which can dis-
criminate two graphs topologically by applying a kernel on aligned substructures.
Let {xi1, . . . , xi|Vi|} be a set of substructures extracted from a general graph Gi and
κsub(·, ·) a kernel over them. Moreover, let π be a permutation of the natural number
in the set [1,min(|V1|, |V2|)] ⊂ N according the dimensions of two graphs G1, G2,
then the Optimal Assignment kernel is formulated as follows:
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κopt(G1, G2) =

maxπ
∑|V1|

i=1 κsub

(
x1
i , x

2
π(i)

)
|V2| ≥ |V1|

maxπ
∑|V2|

j=1 κsub

(
x1
π(j), x

2
j

)
otherwise.

Neuhaus and Bunke [118] overcome the limit of edit distance and random walk
proposing a graph kernel based on a further version which combines both the
paradigms. The resulting Edit-Distance kernel can be described as a random walk
kernel whose product graph is generated by only pairs of nodes which match with
the related edit distance graph built over the couple of graphs. Although, Edit-
Distance kernel as well as any other Optimal Assignment based kernel, does not
guarantee to be also a positive semidefinite kernel [181], which is a general prob-
lem due to the alignment step of the substructures. Menchetti et al. [111] propose
an interesting new paradigm of graph kernel, which imports structural discrimina-
tion following a similar principle of R-convolution kernels. The root idea consists
in the definition of a new form of decomposition of a graph Gi that is expressed
as the following pair of two special substructures (si, zi): the selector, which is a
subgraph si of Gi with associated a related kernel κδ(·, ·); the contexts of occur-
rence of si in Gi, which are arranged in a vector zi = (zi1, . . . , z

i
D) of D subgraphs

of Gi and for each substructure zd is defined a proper kernel κd(·, ·). An example
of decomposition could be when Si is just a node and zi the neighbourhood of Si

in Gi. Let R−1(Gi) be the space of all possible decompositions of a graph Gi, we
define the Weighted Decomposition kernel as follows:

κWD(G1, G2) =
∑

(s1,z1)∈R−1(G1)
(s2,z2)∈R−1(G2)

κδ(s
1, s2)

D∑
d=1

κd
(
(z1)d, (z

2)d
)
.

This assignment kernel has the advantage to be positive semidefinite and to take in
account of the substructures of two graphs as well, but there is not a reliable strategy
to establish non-trivial selectors.

In conclusion, we can observe that defining a graph kernel which discriminates
over the topologies consists in a task which yields mainly to a matching problem
of substructures, in other terms the Graph Matching (GM) [35, 45]. Therefore, the
vertex correspondences derived from any GM algorithms not only can be used to
align two graphs, but they represent precious information to define a reliable graph
kernel as well.

2.2 Foundations of Computer Vision
Computer Vision [165] is a well-known interdisciplinary field of research in which the
main problems are focused on acquiring, processing, analysing, and understanding the
specific information derived from images and videos. The underlying motivation in this
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area is based on the imitation of the human vision and how to bring this ability in a
machine with the purpose to gain the maximum as possible performances. Consequently,
the structured new information which is extracted by these methods could be used to
perform some decision.

The typical and fundamental tasks which are treated in Computer Vision could be
listed in recognition of objects in a scene, motion analysis of points by changing their
positions in sequential frames, scene recognition through the reconstruction of objects
by combining several shots, and image restoration in which an image can be cleaned
and enhanced from noise or general damages due to low quality in acquisition. Images,
shapes or more general points clouds can be analysed in several ways according the two
main classes of 2D and 3D point spaces. In this primary step, the camera model which
is used to import data from real world to a structured domain represents a fundamental
aspect which involves the implementation of a computer vision process. Typically, there
are methodologies which either assume an initial guesses to lead the solution in a reduced
problem space or rely just of the essential information extracted from images. Although,
we are interested to introduce techniques according the latter case, discarding special con-
ditions of the problem and dealing with just coarse data.

In this section we focus only some general foundations of Computer Vision to give a
theoretical background which is necessary to cover the main topics in this thesis. In par-
ticular, we are interested to describe in deep the set of notions related to vision schemes,
well-known data extraction techniques and matching problems operating in this special
field.

2.2.1 Camera Model and Epipolar Geometry

Digital camera represents clearly that hardware device which can translate the visible light
from real world as digital information towards a storage support. Actually, this process is
divided in a very articulated work-flow of sub problems, but independently from aspects
of physics or other pre/post processing stages, the underlying notion that leads such ac-
quisition is the geometrical abstraction considered in the machine. After that, a camera
can be interpreted as an ideal mapping from real world space to a mathematical system of
coordinates.

First of all, there is required to define formally how the fundamental geometrical
transformations are described in Computer Vision (see Figure 2.2). Considering the d-
dimensional real-valued space Rd, any related geometrical transformations in such do-
main can be modelled just as an ideal function TΘ : Rd → Rd subject to a set of param-
eters Θ, which transforms any point p ∈ Rd in another point p′ = TΘ(p). Typically,
we are interested to study linear maps, that are in particular divided in two fundamental
groups of transformations with the following salient aspects.
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• Rigid: a rigid or similarity transformation is an application between Euclidean
spaces and it has the main property on preserving the distances between every pair
of transformed points, therefore visual objects will preserve shape and size. The
typical model is TΘ(p) = sRp + t, where R ∈ Rd×d is the rotation matrix (an
orthogonal matrix, i.e., RT = R−1, constrained to det(R) = 1), s ∈ R+ is a
scaling factor and t ∈ Rd is the translation vector of the point w.r.t. the origin.
Furthermore, the parameters of a rigid transformation are represented by the set
Θ = {s,R, t}. Generally, if there are known scaling, rotation and translation TΘ is
called similarity transformation, otherwise euclidean transformation without scal-
ing; moreover, the degrees of freedom (dof) related to these two transformation
schemes are 1

2
d(d+ 1) + 1 and 1

2
d(d+ 1) respectively.

• Non-Rigid: a non-rigid transformation is referred typically to affine transforma-
tion, whose projection resides in affine spaces, i.e., generalizations of the typical
Euclidean spaces. Therefore, the mapping will preserve visual patterns as points,
straight lines, planes and so on, but not necessarily angles between lines or dis-
tances between points (e.g., scaling, rotation, translation, reflection, etc.). The typ-
ical model is TΘ(p) = Vp + t, where V ∈ Rd×d is a linear transformation matrix
and t ∈ Rd the translation vector of the point w.r.t. the origin. Hence, the affine
transformation consists just in an application of the parameter set Θ = {V, t}.5

Figure 2.2: Classification of several geometrical transformations in Computer Vision with some
example on a 2D image.

5In the context of non-rigid transformations are commonly used further geometrical transformations, as
for example the non-linear transformations which can be parametrized by the eigenvalue or thin plate spline
too. We skip to focus in deep these formulations since they are not relevant topics for this thesis.
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In Computer Vision, there exist different formal camera models paired with digital
camera devices, but the most employed and reference scheme which is considered in
majority of applications is the well-known pinhole camera model. This camera is a closed
black box with a single pinhole in the centre of a surface, whose light rays can enter from
the external environment. The image is vertically flipped and projected over the parallel
planar surface inside the camera box with respect to the pinhole. The latter determinates
the position of a virtual plane outside the camera box, which contains the visible scene,
e.g., the specular copy of the acquired image. Therefore, this is a symmetric system which
is aligned by the optical axis with origin in the pinhole (i.e., perspective projection). In
other terms, a pinhole camera is just a classical Camera Obscura without a physic lens
(see Figure 2.3). The latter represents the main weak point in real cameras, since produces
deformations of the incident light rays; although, there exist several methods that rectify
this physical defect in polynomial time by the emulation of real world distortion patterns.
Formally, a pinhole camera can be described by a set of fundamental parameters: the pose
or extrinsic parameters of the camera with respect to real world Θc = {R, t}, which are
expressed by a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3 from the origin;
the camera focal length, which is the distance f of the projected image with respect to the
pinhole; the coordinate system of the virtual plane which intersects the optical axis in the
principal point c = (cx, cy)

T , i.e., the image centre.

Figure 2.3: Schema of the fundamental elements which describe the Pinhole Camera Model (Cam-
era Obscura).

The projection of a point p = (px, py, pz)
T from the 3D real world coordinate system

to the equivalent image point p′ = (p′x, p
′
y)
T in 2D pixel coordinates is determined by two

separated steps (see Figure 2.4).

1. From World to Camera. The first step consists to solve the point from real world p
to camera (or film) coordinate systems pc = (pcx, p

c
y, p

c
z)
T . The mapping is obtained

by a rigid body transformation according the extrinsic parameters of the camera
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Θc, which is formulated in homogeneous coordinates6 as follows
pcx
pcy
pcz
1

 =

(
R t
0T3 1

)
px
py
pz
1

 .

2. From Camera to Pixel. The second step consists to project the point in the camera
coordinate system pc onto the virtual planes of the system. This further transfor-
mation has to take in account the natural problem to discretise the real point in a
pixel point, which is slightly referred to physical characteristics imported in the
camera model. The latter are described by a set of intrinsic parameters of the cam-
era system, which are the vertical fx and horizontal fy focal length to generalise
non-squared pixel, an aspect ratio α, a skewness factor γ between the x and the y
axis for non-rectangular pixels (rhombi/parallelograms) and the principal point c.
These parameters are organized in a further new structure called camera calibration
matrix as follows:

K =

fx γ cx
0 fy cy
0 0 1

 =

−f γ cx
0 −αf cy
0 0 1

 .

The final mapping is obtained by a linear transformation combining the calibration
and projection Π0 = (I3 03) matrices as follows:

λz

p′xp′y
1

 = KΠ0


pcx
pcy
pcz
1

 = K

1 0 0 0
0 1 0 0
0 0 1 0



pcx
pcy
pcz
1

 .

In practical applications, the majority of camera models are set with the assumption of
perfected squared pixel α = 1, resulting to fix intrinsic parameters as fx = fy = −f
and γ = 0 with the image centre in c = 02. Typically, the whole conversion from 3D
World to 2D image pixel coordinate systems is realized directly by the definition of an

unique 3× 4 projection matrix P = KΠ0

(
R t
0T3 1

)
= K (R t), which is well-known as

camera matrix. Therefore, the general compact rule in homogeneous coordinates can be
formulated as follows

λz

p′xp′y
1

 = P


px
py
pz
1

 .

6The homogeneous coordinates or projective coordinates represents a system of coordinate which re-
sides in projective geometry. By contrast to Cartesian coordinates in Euclidean geometry, a homogeneous
point is actually a set of points at infinity in an ideal line projected in a certain direction from the origin.
Given a point (x, y)T on the Euclidean plane, for any λz 6= 0 the triple (xλz, yλz, λz)

T = λz(x, y, 1)
T

determinates the set of homogeneous coordinates for the point.
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The essential benefit in describing a camera system formally consists to give a method-
ology to perform an accurate interpretation of the real world scene. Moreover, once the
parameters of model are established, the prospective geometry can be applied as veri-
fication tool to detect possible point which does not hold the expected rules, therefore
potential outliers in the data.

Figure 2.4: Schema of the projection between Camera to Pixel coordinate systems.

So far we have considered the case operating with a single camera, but such model
can be extended considering an enlarged system composed by two distinct camera models.
The result is a Stereo Vision scheme, which is governed by a fundamental relation that
binds the coordinates of the common target point p in real world projected against two
different cameras, which are not just independent systems actually.

The representation of this new vision model can be described formally by the well-
known Epipolar geometry (see Figure 2.5). According the pinhole camera model, let
o1,o2 be the axis origins of the camera coordinate systems and x1,x2 the projected points
of p onto the image planes, the Epipolar plane is the space circumscribed among the base-
line between the two origins and the optical lines of the two systems to the common target
object in real world (i.e., the triangle by connecting the vertexes o1,p,o2). The epipols
e1, e2 are the points on the two image planes pierced by the baseline. By the intersection
of the epipolar plane with respect to the image planes are derived the Epipolar lines l1, l2,
which are paired segments between the epipols and the respectively projections of p lay-
ing in the image planes. The root Epipolar constraint consists just that points laying on
l1 can match only in the epipolar line l2.
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Figure 2.5: Schema of the Epipolar Geometry applied in a Stereo Vision System.

The formal description of the coordinates between these two systems is possible under
the assumption that the rotation R and translation t = (tx, ty, tz)

T from the first camera to
the second one is known, which are extrinsic parameters Θs = {R, t} of the stereo camera
system. There are two main epipolar constrains which can be formulated according the
following cases.

1. Uncalibrated case. In this situation, the two cameras are not calibrated, i.e., there
is not possible to estimate the intrinsics parameters in K1 and K2. Nevertheless, a
slight epipolar constraint can be formulated according the existence of the transfor-
mation E = t×R well-known as essential matrix [100], which is a transformation
derived by the cross product between extrinsic parameters of rotation and transla-
tion. Therefore, the mapping between the coordinates of both cameras has to hold
the following condition:

xT1

 0 −tz ty
tz 0 −ty
−ty tx 0

Rx2 = xT1 Ex2 = 0.

Moreover, there are some special properties deriving by possible applications of the
essential matrix:

• the epipolar lines of the two cameras, which are respectively determined by
l1 = Ex2 and l2 = ETx1;

• the epipols gets null the respective transformations Ee2 = ETe1 = 0;

• E is a singular matrix with rank 2;

• E has in overall 5 degrees of freedom (dof), because 3 are derived by R and 2
by t (since that is up a scale due to homogeneous coordinate system).
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2. Calibrated case. In the scenario where the intrinsics parameters K1 and K2 of
the two cameras are known respectively, the epipolar constraint can be finally gen-
eralized to enclose completely the overall information in the stereo vision system.
From the underlying essential transformation is derived the natural extension of this
scheme by the transformations of the points applying the inverses of the calibration
matrices against E. Therefore, the resulting mapping of the coordinates over the
two image planes has to hold the following condition:

(K−1
1 x1)E(K−1

2 xT2 ) = x1(K−1
1

T
EK−1

2 )xT2 = x1FxT2 = 0,

where the structure F = K−1
1

T
EK−1

2 is well-known as fundamental matrix [104].
In the latter, we recognize some important properties similar to the essential matrix
as follows:

• determination of the respectively epipolar lines, i.e., l1 = Fx2 and l2 = FTx1

on the image planes;
• the epipols gets null the respective transformations Fe2 = FTe1 = 0;
• F is a singular matrix with rank 2 and det(F) = 0;
• F has in overall 7 degrees of freedom (dof), because 3 are derived by R and 2

by t (considering 9 variables due to a 3×3 matrix, there exists just 8 indepen-
dent ratios because the one represents the common scaling is not significant,
but since F has also null determinant, another dof is removed finally).

The Epipolar geometry, applied in the perspective projection vision by pinhole cam-
eras, introduces the critical task to estimate two possible structures to solve the mapping
between world and image domains, i.e., the essential matrix E or the fundamental matrix
F. Actually, there is not always the requirement to solve both problems, since there are
scenarios in which some parameters can be already known. For instance, if the intrinsic
parameters of the camera are given, the latter are sufficient just to derive the essential ma-
trix solving whole scheme, which is a task quite simple due to its low degrees of freedom;
otherwise, this research will turn to the fundamental matrix, but requiring a greater effort.
Moreover, there are further special scenarios in which knowing the kind of environments
can simply the estimation. For example, if the points in world coordinates laying in a pla-
nar surface, the fundamental matrix is an Homography [110,155,182], which is a special
class of affine transformation which can be estimated efficiently just establishing 4 point
matchings. In literature there are many algorithms and approaches to solve this special
task [63, 170, 197], but we skip to review them in detail for the low relevance than other
topics of this thesis.

2.2.2 Feature Point Detection
In several applications where is required the alignments of different views from a common
scene emerges the problem to detect special points which can be matched to perform
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correctly the 3D reconstruction. Moreover, there exist further problems where the interest
is not related to establish relation between multiple images, but just to extract salient
reference points to induce new information or perform some image processing task. The
preferable property which should be held by these keypoints consists to be both possibly
repeatable in similar images and well characterized inside the single image. After that, the
research of reliable reference points should be generally a task which cannot be dependent
by further frames, but applicable just from the information contained in a single shot.
Indeed, if we consider this problem in relation with the matching techniques, the latter
cannot manage independently feature extraction, but they can be applied at most as filters
to prune redundant keypoints or outliers, which is totally another task with respect to
detect them for the first time. Typically, these special points (or small areas) can be
recognized by some invariant properties of the light (e.g., the corners of an object) as well
as analysing several spatial aspects with respect to own neighbourhood (see Figure 2.6
for an example). Despite the rich literature in this field [87, 138], we review just the most
well-known and vastly employed techniques in the panorama of Computer Vision.

Figure 2.6: Example of feature keypoints (red circles) detected with SURF [10] descriptor on a
2D image.

The early and basic methodologies to extract keypoints from an image can exploit of
general detectors, as for example the Harris Operator [62] and the Difference of Gaus-
sian [106], which give a solution with sub-pixel precision as well. Other strategies are
based to recognize affine invariant regions, such as Maximally Stable Extremal Regions
(MSER) [109] and Hessian-Affine [113]. The latter approach is more preferable, since
affine transformations are also employed in further applications, e.g., registration prob-
lems. In general terms, devising keypoint descriptors based on common methodologies
which may be shared by other different techniques could increase considerably (at least
in principle) the accurateness of the results in more complex pipeline processes.

Typically, the output of any keypoint detection approach consists just in a set of vecto-
rial descriptors assigned to the retrieved keypoints, which contains their pixel coordinates
and further affine invariant features of the regions. The Scale Invariant Feature Transform
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(SIFT) [101] detects keypoints which are invariant by the emulation of transformations
such as rotation, scaling, illumination and different 3D camera viewpoints. Speeded Up
Robust Features (SURF) [10] is considered a faster alternative than SIFT, which is based
to an integer approximation of the determinant of Hessian related to a Blob detector [94]
just by three integer operations; the derived descriptor is based on a sum of the Haar
Wavelet signals around the point of interest. The Gradient Location and Orientation His-
togram [114] is based on SIFT, but considers more spatial regions for the histograms. The
Gradient Location and Orientation Histogram [114] is built on the local energy model of
feature perception, combining the signal of several filter orientation and local histograms
from patches of the image. GIST descriptor [121] produces a low depiction of a pic-
ture as an holistic representation of its spatial envelope, without requiring segmentation
methods. A common problem of the descriptors introduced so far consists to generate
orderless bag-of-features depiction of the images, that cannot register properly the spatial
layout of the features, hence getting difficult to detect shape or segmenting objects in a
background. The Spatial Pyramid Matching (SPM) [88] refines an initial object descrip-
tor partitioning iteratively the image into increasingly finer spatial subregions whence are
computed statistics (or histograms) of local features.

Nevertheless the vast selection of feature descriptors available in the context of Com-
puter Vision, the most employed techniques remain always SIFT-like, since offer a good
trade-off between precision and performance. Recently, there are proposed further ap-
proaches which are based on variants inspired to SIFT descriptor: PCA-SIFT [81] in-
creases the distinctivenesses of the features by applying PCA to reduce the redundant in-
formation in the gradient patch; PHOW [19] enlarges the density of the descriptor as well
as exploits of the neighbours colours of the keypoint as further information; ASIFT [116]
solves some general problems of the classical SIFT descriptor to deal with the tilt phe-
nomenon of the cameras.

2.2.3 Matching Problems in Computer Vision
The amplest macro-group of problems in Computer Vision is essentially related by an
inference task which involves pairs of visual instances (in two or three dimensions). After
that, there is not other way in principle to infer very reliable structured information re-
garding the real world environment just analysing one and only one observation, at least
that by a machine. In fact, a static image could be considered as a sort of “frozen entity”,
even if we may perform some operation on that, e.g., feature extraction, filtering, seg-
mentation, etc., when we need to recognize some property that involves depth it yields to
perform a comparison process, against other observations or some well-known patterns.
Therefore, any Computer Vision task which involves multiples images contains implicitly
and always a Matching problem (as amply discussed in sections 3.1 and 3.2).

In general, once a set of reliable reference point correspondences is obtained, the
geometry of a given model is applied according the estimated parameters to verify the
quality of the projection. This is commonly requested in different various tasks in Com-
puter Vision and consists in an iterative rectification process well-known as bundle ad-
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justment [175]. The goal consists to refine 3D coordinates describing the scene geometry,
the parameters of related motion and cameras. Let N be the number of cameras and M
be the number of 3D points, the general guideline is an optimization problem aimed to
minimize the reprojection error as follows:

N∑
j=1

M∑
i=1

vij ‖xij −Pixj‖2
2 ,

where against the i-th reference image, the binary variable vij denotes the visibility of the
point xj and xij is the associated projection.

In this section we sum up some fundamental Computer Vision tasks which involve set
or sequence of visual observations, giving a general explanation of the main methods and
well-known solutions in literature.

Camera Calibration

The preliminary step for any computer vision process consists on an accurate calibration
of the parameters that govern the camera model, which is based mainly on the estimation
of the intrinsics K and, in case the pose is unknown, the extrinsic parameters Θc as well.
In Computer Vision this problem is well-known as Camera Resectioning, which does
not have to be confused with the estimation of the motion Θs in a stereo vision system
composed by two cameras, since camera calibration refers in general to one device. Op-
eratively, the classical pipeline is based in two fundamental stages: an initial acquisition
of 2D images of a specific calibration object from different point views (since a single
view is not sufficiently informative to perform a complete calibration [132]); retrieving
the matches between repeatable reference points in the acquired images and applying the
geometrical rules which describe a camera model to estimate the parameters.

The initial step is very critical, because the choice of the geometry and additional in-
formation related to the target object involve totally the accurateness of the calibration.
In this task, 3D calibration objects (i.e., specific shapes which does not support copla-
nar geometry) represent the best solutions, because both there is not dependence between
extrinsic and intrinsic parameters with respect to the reprojection error, and depth irregu-
larities on the calibration object can compensate lens distortions. Although, there are two
main setbacks, since establishing the best geometry for such objects is not always a clear
task and their manufacture is in general quite expensive. To overcome these problems,
cheaper solutions are based on one-dimensional objects [196], i.e., planar surfaces, that
can trust of efficient homographic transformations in the next steps. The final problem
consists in the decision of the feature pattern which covers the 3D or planar surfaces re-
lated to the calibration objects, which is fundamental to detect the correct set of reference
points to match. Zhang [195] proposes the typical chessboard-like pattern, which works
very well in general but due to the asymmetry of the marker could arise localization errors
in some real world circumstances (e.g., light bleeding). Alternatives to solve such prob-
lem could be the symmetric marker such as circular point [68] and checker-board [102].
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High quality target points on hand, registration approaches are used to derive proper
correspondences (see section 3.1.2). Assuming such demand is solved in accurate way,
the final task consists to estimate the camera parameters. In this new step is worth to be
noted that a calibration method is bound to the reference camera model, which are two
different aspects even though strictly subject to each other. After that, there are camera
models which consider more complex real world abstractions, e.g., the visual distortion
of the lens, therefore the associated calibration method has to take in account of further
elements. In a simplistic scheme of a pinhole camera which does not take in account of
distortion parameters, this problem yields in a general linear transformation as in works
by Hall et al. [61], Faugeras et al. [43] and the well-known Direct Linear Transformation
(DLT) algorithm proposed by Sutherland [164]. By contrast, in more sophisticated cam-
era models is necessary to introduce new parameters to describe distortions. Brown [23]
proposes a complex approach based on three radial and two decentering distortion coeffi-
cients and more recently, Heikkilä [68] introduces even two new coefficients of tangential
distortion. For a comprehensive review of the most important calibration methods we
refer to [139].

Structured Light

In the typical scenario where a computer vision system returns a set of coarse 3D point
clouds, applying a triangulation process there is possible to obtain a more structured de-
scription of the surfaces. The reliable reconstruction of the overall 3D environment is
possible by merging each surface in suitable way (as Figure 2.7), which is possible just
detecting some reference features to dovetail all the patches. This task requires to extract
feature points between two surfaces that can be matched to understand those joint points
are in common to perform such reconstruction. In this place, the critical problem consists
to have the guarantee that these invariant features are always available and sufficiently
dense to solve the problem without ambiguities. There exist several and complementary
approaches to deal with this problem in literature [143], but the common strategy trusts
to photometric correlation only, i.e., exploiting of the direction of the incidence natural
light available in the environment on the materials. The weakness in this approach can be
dealt with the introduction of artificial non-contact guidelines on the scene directly by the
system, for example projecting bright patterns to enhance the morphological characteris-
tics of the target object: this further class of computer vision techniques is well-known as
Structured Light [9].

Typically, the most employed solutions are based on multiplexing methodologies
based on n-ary or Gray codes as well as further hybrid schemes [141]. The simplest
case consists to assign to each pixel a binary codeword which matches to blank and white
stripes projected in the scene over the time. Alternatively, this scheme can be enhanced
introducing patterns in grayscale. Although, these approaches suffer of low scanning res-
olution due to the small coding space. Nevertheless, even if the number of measurements
may be enlarged, the latter does not a guarantee to improve preciseness, which is a prob-
lem related to the nature of the light over special materials, e.g., low reflective or smooth
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metal areas. Therefore, these approaches can be really reliable just under the well-known
uniform albedo assumption of the surfaces.

Another methodology for structured light applications is based on Phase Shifting [163]
measurements. The scanning resolution can be increased by a periodic projection of dif-
ferent light patterns over the time: the new information associated to each pixel is just
determined by the phase shift. These techniques yields to sub-pixel precision and spatial
measures in high resolution, due to the uninterrupted phase distribution within the period.
Moreover, the shifting pattern enhances soft discrepancies on the materials, resulting in
a stronger tolerance in non-uniform albedo surfaces. Although, the M-step relationships
applied in these approaches can arise ambiguities, since they are relative phase values
actually. This weak point of the method may be reduced by integrating Gray coding
schemes, even if that yields considerably in huge number of patterns which are clearly
prone to generate errors [93].

Optical profilometer techniques represents a further class of approaches which is
based on quantifying the roughness of the objects by well-known surface profiles. The
general methodology extracts profilometer measures by the variation in height of a planar
reference surface scanning the scene orthogonally [159]. The classical strategy is based
to project grating or sinusoidal patterns which are shifted first on the reference plane and
then on the object of interest. Finally, the phase shift information can be estimated on the
well-known fringe pattern, in general by means of various techniques or other more pre-
cise approaches based on Fourier Transformation [167]. Although, optical profilometer
methods share generally the common drawback to support limited variation in height of
the surfaces causing a high rate of ambiguous measurements.

Figure 2.7: Example of object reconstruction by merging three 3D point clouds which describe
different shots of a teapot.
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Structure from Motion

One of the most influential and studied application in Computer Vision is addressed to
extract 3D structures just taking in account of frame sequences in 2D dimensions, which
can be coupled with motion information (i.e., poses of the cameras). This method trusts on
well-known range imaging techniques, in which for each pixel is assigned an estimation
of the distance with respect to an established point, that is in general related to the camera
pose. In fact, such application is inspired from the natural behaviour of human being
to get reliable information of the environment just by moving inside it and simultaneity
analysing the movements of fixed or even animated objects in their vision field over the
time. In general, this problem is treated as an articulated pipeline of sub tasks which is
described by the well-known paradigm of Structure from Motion (SfM) [188]. Typical
applications that benefit of SfM are for example Advanced Human Interfaces [4], 3D
Reconstruction [95], 3D object recognition [112] and SLAM [137].

Structure from Motion pipeline is generally divided in two stage macro-groups: Im-
age based local steps and Structure based global steps. In the former, the main activities
consists to detect salient keypoints from rough 2D images by classical feature descriptors
and then performing some general registration technique to align the features between
consecutive instances. In the latter, correspondences on hand, the guess of depth and
motion in 3D real world environment is performed in order to reconstruct globally the
3D scene. Typically, initial guess can be rectified by an iterative bundle adjustment step.
Once the optimal solution is estimated the result consists in a set of 3D surfaces which can
be reassembled together to obtain the final reconstruction of the 3D environment or the
object of interest (as in Figure 2.7). This post-processing step is based in a further match-
ing problem, in particular a registration task between range images, with the purpose
to establish the best alignment of the surfaces and possibly using the motion informa-
tion estimated for each point to lead aptly the process. Regardless the specific technique
employed to establish reliable correspondences, the final step to complete the surface reg-
istration is always related to the estimation of a rigid transformation that aligns the couple
of points reducing the squared distance between them (see section 3.1.2). Considering
the overall SfM work-flow, in the transition from a stage to the other one there is always
applied some filtering process to improve the quality of the intermediate solution, which
can trust either on the nature of rough image data or more articulated properties such as
camera projection rules, distance measurements and so on.

In general, the registration problems are categorized in two possible scenarios: fine or
coarse registration methods. The main difference between these two classes consists that
fine methods can rely on initial guess to mitigate wrong matches, which can be particu-
larly related to the specific context of application, by contrast than rougher approxima-
tions based just on similarity measures over the features.

The majority of techniques based on fine alignments are in general just special variants
of the well-known Iterative Closest Point (ICP) method [14, 135]. The main differences
which distinguish such approaches relate to the particular way that points laying on the
surfaces can be sampled, the rejection of incompatible matches and the error measures
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to establish these decisions. In general, the root setback of all these techniques is the
iterative nature of the ICP-based method, which does not guarantee to estimate optimal
solutions. Recently, novel strategies introduce new probabilistic schemes to evaluate can-
didate correspondences based for example by Evolutionary model [96] or Expectation
Maximization [60].

Conversely, coarse registration approaches may be categorized in three main classes,
such as global methods, feature-based methods and inlier selection methods based on
RANSAC [44] or PROSAC [32] (see Figure 2.8 for an example of this application). In
general, global methods for instance PCA [34] and Algebraic Surface Model [168] rely
on some global constrain related to the surface. Although, the main problem is due to
well-known occlusion phenomenon, i.e., some region may be hidden by other foreground
elements in the scene. Feature-based methods are not sensitive in general to this problem
since they operate locally in the scene and thus work very well even with surfaces which
do not present complete overlapping areas. By contrast, the RANSAC-based methods
solve the registration problem in very different strategy. Chen et al. [28] propose the
RANSAC-Based DARCES algorithm, which consists to select randomly the set of corre-
spondences between the surfaces and using the accuracy of the estimated transformation
to weight the matches. More recently, Aiger et al. [5] introduce an alternative consensus
strategy based on Four Points Congruent Sets, in which noisy data are removed by a fil-
tering process and the registration is speeded-up with an early verification step. Further
interesting works based on accuracy evaluation are exhaustively reviewed in [140].

(a)

(b)

Figure 2.8: Two matching experiments with SIFT [101] descriptor, in the simple case (a) es-
tablishing the correspondences between the nearest key features or (b) applying RANSAC [44]
method to filter out the wrong matches.



3
Matching Problem and

Generalizations

3.1 Matching Problem
In several areas of Machine Learning is frequently required to retrieve a correspondence
relation between two or multiple objects. This specific information can assume different
meanings according the type of application where a given problem has to be treated. In
Pattern Recognition or more generally in Data Mining, the relations among entities could
reveal aspects of similarities, dependences, interactions and any other kind of bonds that
once are discovered allow to derive new information from apparently uncorrelated ob-
jects. The technical term matching could equally refer to an alignment as well, since data
structures which describe the individuals of a problem can be permuted or transformed
according the estimated correspondences between them. The complexity of this prob-
lem depends mainly by the specific type of data representation that describes the objects,
as for example vectorial points, graphs, images and so on. Moreover, even if there ex-
ist theoretical exact solutions for these problems, in practical applications are infeasible
both for their complexity order and for the presence of noise in the data. Although, these
fundamental drawbacks are overcome finding approximations of the real solutions by the
formulation of relaxed schemes.

In this section we introduce two classical matching problems in Machine Learning
which find extensively applications in the sub-branch of Computer Vision: the Graph
Matching problem (section 3.1.1) and the Point Set Matching problem (section 3.1.2). We
present such topics first giving a formal definition of the matching problems and secondly
reviewing the main related approaches in literature.

3.1.1 Graph Matching Problem
Graph is a fundamental data structure which describes different kind of real-world objects
as a set of interconnected nodes, in which can be assigned an orientation and weight
to links as well as additional attributes to nodes (see section 2.1.1). Typical areas of
the science which exploit of graphs are for example Bio-informatics, Computer Vision,
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Chemistry and so on. The extreme power that is recognized by representing data as a
graph consists mainly in the high capability to catch just the essential characteristics that
describe an object. Although, exploiting of such expressiveness has a cost which emerges
heavily when different graphs require to be analysed in some pattern recognition task. The
Graph matching (GA) [35,45] represents the challenging problem to match the nodes of a
couple of graphs according their intrinsic topologies, in order to discriminate or compare
their substructures in reliable way.

Graph G1 Graph G2
An isomorphism

between G1 and G2

φ(a) = 1
φ(b) = 6
φ(c) = 8
φ(d) = 3
φ(g) = 5
φ(h) = 2
φ(i) = 4
φ(j) = 7

Figure 3.1: Example of graph isomorphism φ between two graphs.

Unfortunately, it is not just a trivial task to solve in practice this problem, because
there does not exist an unique structural representation for the same graph since nodes
are ordering-free entities: in Graph Theory this property is formalized by the well-known
notion of graph isomorphism (see Figure 3.1). More specifically, the presence of an iso-
morphism between two graphs Gi and Gj is encoded with the existence of a bijection
φ that maps the node labels of a graph with respect to each other preserving the same
topologies. In other terms, if two graphs are isomorphic, it means they contain the same
relations, hence they are equivalent. For example, an exact and naive solution for this
problem consists just to list all possible permutations of nodes to look for the one that
realigns the graph Gj to Gi. Formally, Graph Matching can be expressed as a set of
combinatorial constrains which is mathematically formulated as a quadratic assignment
problem (QAP) [82, 99]. Nevertheless the extensive research in this topic, the main limit
is related on the complexity to solve φ in polynomial time, since such QAP remains in-
feasible in practicals tasks belonging to the NP-Hard class [49]. For this reason, real
applications are based on heuristic approaches, where an approximated optimal solution
is obtained from a relaxation of the crisp assignments as the trade-off to reduce computa-
tional time and complexity for the problem.

Problem Definition

We give here a general and formal definition of Graph Matching, which is sufficiently
expressive to cover the majority of solutions we find in pattern recognition field.
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Let Gi = (Vi, Ei) and Gj = (Vj, Ej) be two graphs which are for simplicity undi-
rected and unweighed. The Graph Matching problem consists to find a map φ : Vi → Vj
such that maximizes the objective function S(Gi, Gj, φ), which scores the correctness of
the alignment, in other terms it can be expressed as the following maximization problem:

φij = arg max
φ

S(Gi, Gj, φ). (3.1)

This formulation governed by an energy function is very flexible, since it does not
force the process to return an exact solution for the matching, but it considers just the best
estimated map φij that a graph matching method could require. Since the problem (3.1)
is of maximization, the alignment score sij = S(Gi, Gj, φij) could be interpreted even as
an indicator of similarity between two graphs, i.e., greater is sij much more Gi and Gj

are similar. We have already said that the optimal map is preferred to be injective and
total, which is the necessary condition for exact graph matching, but this is not requested
in our general formulation actually, hence it allows to find an inexact (but best) solution
even with graphs of different size |Vi| 6= |Vj|. As a consequence, we can generalize the
formulation of subgraph matching by solving (at least) an injective mapping yielding in a
form of induced subgraph isomorphism. Here, it is worth to be mentioned that such con-
dition may bear to describe even the well-known subgraph monomorphism [54], which
is a further exemplification that does not preserve the topological properties also in the
opposite map direction, i.e., including extra edges as well. Although, we specify that
our reference definition of (sub)graph matching (which leads the works presented in this
thesis) considers always symmetric transformations and thus the inverse mapping is ever
determined as φji = φ

−1

ij .

The same optimization (3.1) can be redefined in terms of a quadratic assignment prob-
lem (QAP) just reformulating its fundamental components in matricial form. We denote
the cardinalities ni = |Vi|, nj = |Vj| for the node sets and mi = |Ei|,mj = |Ej| for the
edge sets related to the two graphs. Let the affinity matrices be Wv ∈ Rni×nj over the
nodes and We ∈ Rmi×mj over the edges, we define the global affinity matrix in this way
W ∈ Rninj×ninj , which can be simply formulated as a specific combination ω of node
and edge affinities matrices as follows: W = ω(Wv,We). Formally, the entry war,bs in
W contains the affinity for edge pair (via, v

i
b) ∈ Ei and (vjr , v

j
s) ∈ Ej , while the diagonal

term war,ar the affinity between the node via ∈ Vi and vjr ∈ Vj . The data structure W
plays a fundamental role in Graph Matching, since encapsulates as a sort of black-box all
the information available (node attributes and topologies) of the matching problem. It is
not necessary to introduce in deep how to solve W, but we can suggest just an elegant
factorization in [198]. Let Σb be the space of the binary permutation matrices (one-to-one
mapping) as the following set:

Σb = {P|P ∈ {0, 1}ni×nj ,P1nj
≤ 1ni

,PT1ni
≤ 1nj

}, (3.2)



38 3. Matching Problem and Generalizations

where the inequalities in the definition allow to support graphs of different sizes and
1n is a vector composed by n ones.1 Encoding φ just as the binary permutation matrix
P = (par) ∈ Σb, which maps the vertexes in Gi to vertices in Gj (i.e., given two nodes
via ∈ Vi and vjr ∈ Vj , if φ(via) = vjr holds that par = 1), then Graph Matching problem is
formulated as the following QAP (Lawler’s formula [99]):

Pij = arg max
P∈Σb

vec(P)TWvec(P), (3.3)

where vec(·) is a function that returns the vectorized version of a matrix. Permutation ma-
trices defines the basis to describe formally the structural similarity between two graphs,
since the existence of exact (sub)graph isomorphism yields just to the equality as follows

Ai = Pij(PijAj)
T .

The computation and management of the affinity matrix W could be very critical in prac-
tical applications due to its dimensionality. There exists another version of the score
function in (3.3) which does not take in account of the similarity between edges in ma-
tricial form. Let Ai and Aj be respectively the adjacency matrices representing the two
graphs, then Graph Matching problem is formulated as the following QAP (Koopmans-
Beckmann’s formula [82]):

Pij = arg max
P∈Σb

tr(PTAiPAj) + tr(WT
v P). (3.4)

Main Approaches

The Graph Matching problem has been studied for decades in pattern recognition com-
munity [35]. There two main families of solutions in literature: the exact graph matching,
whose goal consists to find a bijection between the nodes of two graphs and the inexact
graph matching, in which the combinatorial constrains are relaxed in order to reduce the
complexity of the problem by finding a heuristic solution.

The early works from the first family due to their computational demanding and the
rigid method to deal with the matching problem have found a weak success in practical
tasks [38, 127, 179].

Conversely it is the manner for the methods in the second approach, which have found
many applications in machine learning especially in Computer Vision area. In this thesis
we are interested just to review the literature which involves this heuristic methodology
for graph matching problems, which could be divided further in two sub groups: Spec-
tral Relaxation and Doubly-stochastic Relaxation. There exists another third sub group
well-known as SDP Relaxation actually, but we decided to skip it since does not concern

1In real implementations this condition is very often skipped to simplify matricial calculus making the
graphs Gi and Gj uniform with a common number of n nodes (two-way constrains). This is realized just
replacing the graph Gj with an extended version G′j adding the necessary noj number of dummy/outlier
nodes in order to obtain the condition ni = nj + noj = n′j = n.
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directly graph matching techniques treated in this work.

In Spectral Relaxation works the permutation matrix holds a fundamental condition
of orthogonally, which means PPT = I. Leordeanu and Hebert [89] propose the Spectral
Matching (SM) algorithm, wherein the quadric assignment problem (3.3) is relaxed in or-
der to learn the permutation matrix moving onto a real space subject to have an unit length,
i.e., ‖vec(P)‖2 = 1, since only the relative values in P are considered really relevant. The
optimal solution is obtained finding the principal eigenvector of W, which maximizes the
score S by Raleigh’s ratio theorem. Cour et al. [39] propose a generalization (SMAC)
of the spectral matching incorporating affine constraints on the relaxed solution as well.
Regarding restrictedly the graph matching methods formulated as the quadratic prob-
lem (3.4), under the orthogonal constrain Umeyama [180] exploits in closed-form of the
eigendecomposition on the adjacency matrices, generalizing the case both weighted and
directed/undirected graphs. Intuitively, the trace Tr(PTAiPAj) could be expressed as
Tr(|Ui||Uj|TP), where |Ui| and |Uj| are respectively the eigenvectors in absolute values
derived from the adjacency matrices of the graphs Ai and Aj . Finally, the well-known
polynomial Hungarian algorithm [21] is applied to find P that maximizes the trace. In
literature we find other formulations [25,147,149] of the same QAP (3.4), which are still
based by an underlying closed-form eigendecomposition. Although, in these methods the
main common drawback consists that the spectral embedding of the graph nodes is not
uniquely defined, in particular for two main reasons: first, the eigenvectors are defined
at most up to a sign flip, therefore it is necessary to define some convention for a sign
synchronization in order to maintain the biggest component always positive; second, the
adjacency matrices could have multiple eigenvalues resulting just in arbitrary rotations of
the eigenvectors.

In Doubly-stochastic Relaxation works the main aspect that identifies such Graph
Matching approaches consists in redefinition of the permutation matrix space as follows

Σd = {P|P ∈ [0, 1]ni×nj ,P1nj
≤ 1ni

,PT1ni
≤ 1nj

} (3.5)

in which the one-to-one correspondences between nodes are expressed as likelihoods.
This new problem space, also called Birkhoff’s polytope [16] in the balanced case ni = nj ,
is much less rigid with respect to the binary set Σb, indeed the latter represents just the
subset containing its extreme points Σb ⊂ Σd. Therefore, solving the graph matching
problem in this further space consists in the estimation of a double-stochastic matrix since
X ∈ Σd, which represents the local optimum for a non-convex quadratic programming
problem. Another fundamental consequence to highlight is about the loss of orthogonal-
ity property than the estimated solutions with Spectral Relaxation methods, since Σd is
a convex hull as well. However, it is easily possible to project the final solution in the
permutation space P ∈ Σb performing a discretization process in polynomial time to the
matrix X, for example by the well-known Hungarian algorithm [21] as follows

P = HUNGARIAN(X).
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In literature one of the most influential work which exploits of the doubly-stochastic for-
mulation is the Path Following (PATH) algorithm proposed by Zaslavskiy et al. [193].
The approach is defined as a convex-concave quadratic program which supports labelled
and weighted graphs. The root idea consists in a linear interpolation on X between a con-
vex f0(X) and concave f1(X) relaxations, which is controlled by a parameter λ ∈ [0, 1]
as follows

fλ(X) = (1− λ)f0(X) + λf1(X). (3.6)

The algorithm could be described as a power iteration process which tracks a path of lo-
cal minima fλ+dλ over the double-stochastic permutation space Σd moving between the
lower bound f0(X) with λ = 0 and upper bound f1(X) with λ = 1, where dλ encodes
the updating step, until a convergence criterion is reached. The computation of the energy
fλ(X) is solved effectively by a revised version of the Frank-Wolfe algorithm [46]. Even
if PATH algorithm supports labelled and weighted graphs, it requires that the weighted ad-
jacency matrices are symmetrical, i.e., it works just with undirected graphs. Recently, Liu
et al. [97] propose just an extension of Path Following, which is able to operate with di-
rected graphs. Almohand and Duffaa [6] propose another approximation solving the non-
convex quadratic problem by linear programming, even if that is intrinsically an approach
closest to Path Following since also Frank-Wolfe algorithm is treated as a linear program.
All these methods are devised to support only the optimization (3.4) on doubly-stochastic
domain, but in literature the majority of the works operating on the convex polytope Σd

are formulated as the more general maximization problem (3.3). The first work in this
fashion is the well-known Graduated Assignment proposed by Gold and Rangarajan [56].
The method is based on a combination of graduated non-convexity, two-way constraints
and sparsity resulting in an efficient process which copes with noisy data to estimate a
(sub)graph isomorphism both on weighted and attributed relational graphs. The authors
start to reason from the definition of a quadratic assignment problem, which is based
to find a double-stochastic matrix X = (xar) ∈ Σd such that minimizes the objective
function

−1

2

ni∑
a=1

nj∑
r=1

ni∑
b=1

nj∑
s=1

xarxbswar;bs (3.7)

according the usual global affinity matrix W = (war,bs) ∈ Rninj×ninj . The solution
is rooted on the idea to expand (3.7) starting from an initial condition X0 via Taylor
series approximation. This process is controlled by the gradient matrix Z(t) = (q

(t)
ar )

which describes the current assignment at time t and whose entries are determined as
q

(t)
ar =

∑ni

b=1

∑nj

s=1 x
(t)
bs war;bs. Nevertheless, it is not guaranteed that Z(t) ∈ Σd, hence

the matrix is finally rectified to the double-stochastic space by Sinkhorn [156] method
achieving a problem of softassign. In order to relax the complexity is used a continua-
tion method which solves a succession of several assignment problems by the parameter
β(t) ∈ R+ which governs the whole process as the final formulation:

X(t) = SINKHORN
(
exp(β(t)Z(t))

)
, (3.8)
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wherein greater is β(t) much more the softassign step pushes the algorithm towards inte-
ger solutions. Finally, the framework introduces slack variables in the double-stochastic
matrix adding a new and provisional dimension in order to model intermediately wrong
assignments due to noisy data. From another prospective, Graduated Assignment can re-
lax the crisp constrains as a sort of two-way relaxation labelling scheme [133]. Whilst
this smoothed formulation such process remains quite rigid since treats own set of vari-
ables independently and thus without considering eventual relations among different as-
signments. Cho et al. [30] solve the problem proposing a graph matching method based
on Reweighted Random Walks, which can be seen as a generalization of the well-known
PageRank algorithm [124]. The root idea consists to construct an association graph which
can be ideally modelled like a function which depends by two graphs Gi, Gj and the
global affinity matrix W as follows Grw = f(Gi, Gj,W). The nodes of Grw define just
a candidate correspondence of the nodes between the graphs. Therefore, using Markov
Random Walks to rank the nodes of Grw a possible optimal matching is determined. In
the classical formulation of PageRank the transition matrix which involves the node vis-
ited from a walker consists in a row normalization of W. This formulation achieves a
democracy policy in which each nodes has the same total out-going weights, but in the
graph matching problem this aspect could lead to strengthen false candidate correspon-
dences (e.g., outliers). To overpass such problem the association graph is reformulated as
an augmented versionGrwa, which preserves all the relative affinities relations inGrw and
includes an absorbing node vabs reachable from all other ones: a special state that once
reached cannot be transitioned out. The authors call this approach affinity-preserving ran-
dom walk. Let dmax = maxi

∑
j wij = maxi di be the maximum out-going degree di in

the nodes of Grwa, the sub-stochastic transition matrix is defined as

T =
W

dmax
.

In this further setting the vectorized double stochastic permutation matrix x = vec(X) to
estimate can be interpreted as a probability distribution of the unabsorbed random walker,
which is defined at time t+ 1 as follows:

x(t+1)T = x(t)TT. (3.9)

This definition lacks of the typical behaviour in ranking methods which model the concept
of jump, in which a random walker can traverse an edge with probability α or jump to
some constrained nodes with probability 1−α. The introduction of a reweighing jump in
the (3.9) is based in a inflation step

exp

(
β

x(t)

max x(t)

)
, (3.10)

which both smooths small values and amplifies the large values in x(t) according a scaling
factor β, hence reducing the weights for uncertainly matching. Similarly to Graduated
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Assignment in (3.8), there is required the Sinkhorn method to guarantee that the matricial
form of (3.10) is defined in the doubly-stochastic space Σd. For the sake of simplicity,
the two-ways normalized inflation step structure can be encapsulated as the outcome of a
more general function as r(t) = f(x(t)). Adding this jump model in the affinity-preserving
schema (3.9) is finally formulated the Reweighted Random Walks for graph matching
method as:

x(t+1)T = αx(t)TT + (1− α)r(t)T . (3.11)

All the methods introduced so far have a common drawback which is the memory space
complexity due to the maintenance of the huge global affinity matrix W, whose magni-
tude is generallyO(n2

in
2
j). Recently, Zhou and De la Torre [198] propose a method which

is based in a factorization of such matrix requiring only to store affinities over the edges
O(mimj) and nodes O(ninj) separately. The resulting graph matching method is still
based in a path following strategy, but revised according their factorization. Moreover,
by this new formulation the authors incorporate geometrical transformation in the graph
matching problem and define a clean connection with the well-known Iterative Closes
Point (ICP) [14] matching (see section 3.1.2).

3.1.2 Point Set Matching Problem

In Computer Vision, the inference process which trusts on couple of views yields typi-
cally the crucial and final stage to combine 3D surfaces or generally n-dimensional point
clouds. This is a fundamental task, since through the alignment of such sparse collection
of points is possible to derive precious structural information of the scene, as for instance
motion, depth and so on. There exist special contexts where this task can be simplified
by additional a priori knowledge of the problem, but in general it is necessary to con-
sider the worst case in which only a couple of disconnected surfaces constitutes the whole
information available.

This class of problems is well-known as Point Set Registration or Point Set Matching,
which is especially treated in Computer Vision, but it could be generalized to further sce-
narios actually. Furthermore, the estimation of reliable matches between points not only
can be considered as a ex post processing step in complex systems. Indeed, the point set
matching could be just a halfway stage inside some more complex pipelines (e.g., Struc-
ture from Motion, Structured Light or further applications as in section 2.2.3). In this
further context, the goal consists to improve the accuracy of a model by discarding noisy
correspondences or filtering outlier points in the training data.

In this thesis we are interested to present formally the (general purpose) registration
problem, introducing and reviewing the most famous approaches residing in literature.
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Problem Definition

We give in this section the very essential definition of Point Set Matching, which may be
easily applicable in more specific Computer Vision contexts. We define a geometric point
as the d-dimensional vector in real space pi ∈ Rd. LetM = {pi}ni

i=1 and S = {pj}
nj

j=1

two sets of d-dimensional points with respectively ni and nj elements. The goal of point
matching consists to define a geometric transformation T which moves all the points in
the model set M such that the difference with respect to the scene set S is minimized.
Typically, the desired transformation is governed by an optimization parameter set Θ,
therefore it could be formulated as the function TΘ : Rd → Rd, whose resulting mapping
may consist of a rigid or non-rigid transformation. The set of all the derived points is said
“registered model” and it is formulated as follows:

TΘ(M) = {pk | pk = TΘ(pi) ∀pi ∈M}. (3.12)

The Point Set Matching problem consists in the estimation of the set of parameters Θ
for the transformation T which aligns optimallyM against S. This principle is similar
to a binary matching problem among labelled objects (i.e., combinatorial constrains), but
there is a fundamental difference: in this task the result of a transformation could return
a set of unknown points, since it does not consist in a permutation of a given structure, in
other terms, it is possible that S−TΘ(M) 6= ∅. Therefore, this process does not guarantee
to describe directly a one-to-one mapping, by contrast for example with Graph Matching
(see section 3.1.1). The Point Set Registration is a complex problem and the majority of
the methods are formulated according distance metrics between the points d : Rd → R+,
the resulting process is controlled by an objective function which is based to solve the
parameters in Θ minimizing the distance of the mapped points as follows:

Θ = argmin
Θ

∑
pk∈TΘ(M)

∑
pj∈S

d
(
pk,pj

)
. (3.13)

Although, this formulation is very minimal and particularly weak in presence of noisy
data or outliers. We can propose another more robust version where the distance measures
are weighted properly by an ideal function Ψ such that the local configuration of the point
setM is insensitive with respect to very distant points as follows:

Θ = argmin
Θ

∑
pk∈TΘ(M)

∑
pj∈S

Ψ
(
d
(
pk,pj

))
. (3.14)

This formulation is well-known in statistics since the score objective in (3.14) is actually
a M -estimator as well.

Generally, the various registration techniques are addressed to a problem space ac-
cording the special nature of the data, i.e., which geometrical transformation TΘ is as-
sumed to be suitable in a given scenario. In section 2.2.1, we introduce in detail two
fundamental linear transformations in Computer Vision, which are the well-known rigid
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and non-rigid applications. Therefore, for the problems of Point Set Matching, we cate-
gorize the possible methodologies as follows:

• Rigid registration: when TΘ describes a rigid or similarity transformation, there-
fore the goal consists to estimate the set of optimization parameters Θ = {s,R, t}
subject to R ∈ Rd×d is an orthogonal matrix (i.e., RT = R−1, constrained to
det(R) = 1), s ∈ R+ is a scaling factor and t ∈ Rd is the translation vector of the
point w.r.t. the origin, such that TΘ(p) = sRp + t.

• Non-Rigid registration: when TΘ describes a affine transformation, therefore the
goal consists to estimate the set of optimization parameters Θ = {V, t} subject to
V ∈ Rd×d is a linear transformation matrix and t ∈ Rd the translation vector of the
point w.r.t. the origin, such that TΘ(p) = Vp + t.

However, in the majority of applications is employed a rigid transformation and the
typical distance metric consists in the Euclidean measure d(x1,x2) = ‖x1 − x2‖2

2 be-
tween two points; therefore, the process (3.13) is equivalent in solving a least squares
problem.

Main Approaches

A very influential method in Computer Vision community to solve Point Set Matching is
the well-known Iterative Closest Point method (ICP), which is firstly introduced by Besl
and McKay [29] (see Figure 3.2). The main principle of this approach consists to estab-
lish the matching between the points from two sets considering each point pk ∈ TΘ(M)
has to correspond to the nearest point pj ∈ S . More specifically, the method consists
in a rigid registration on Euclidean-based distance metric, which solves a least squares
regression according the set of all the matched points {(pk,pj)i}Ni=1, and estimating the
parameter set Θ including the rotation and translation of the related rigid transformation.
This process is iterated until the differences between TΘ(M) and S is sufficiently lower
that a certain threshold, i.e., all the set is registered. This approach suffers by the prob-
lem that all the points in the model point set M are used, including therefore outliers.
Moreover, since the cost function depends strictly by the registered points (which are dy-
namical entities), then it could change trend during the whole process without guarantees
there is reached a local optimum [177]. Indeed, ICP is in general very sensitive at the ini-
tialization step, in other terms, by the initial optimization parameters Θ

(0)
. In literature we

find several variants to overcome these limits [135], but essentially the common guideline
consists to add new structural information in the registration schemes [22]. Alternatively,
there exist further advanced optimization models with an approach more heuristic. Steven
Gold et al. [58] propose a robust point matching method introducing a binary correspon-
dence between the points in the sets TΘ(M) and S. Their formulation is relaxed in a
deterministic annealing and normalized by softassign step to obtain a one-to-one map-
ping, a property which is not guarantee with normal ICP. Moreover, this method models
affinity transformation consisting in a non-rigid registration. Chui and Rangarajan [31]
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propose a similar method, but modelling the transformation as a thin plate spline. The
main drawback of this new approach is the geometrical nature of the TPS, which works
in 3D space only, i.e., there does not deal onto greater space order d > 3 with respect to
the robust registration scheme proposed by Gold et al. [58].

Figure 3.2: Registration example of the 3D surface which describes a monkey face with ICP [29]
method per iterations. The black dots denotes the original points of the point cloud, while the red
dots are the aligned point cloud estimated by ICP. In the last image the model fits perfectly with
the original point cloud.

Another well-known method which is used typically for ICP problems is the RANSAC
algorithm [44], even if it describes a general approach to fit a model discriminating data
points as inliers and outliers, in other terms, it can be used as a filter to remove noisy data
and obtain a more reliable registration. Assuming that a model requires a minimum of N
points to solve its parameter set Θ, having a training set such as |M| ≥ N the RANSAC
method randomly selects a subsetM(t) ⊂ M to estimate Θ

(t)
a time t. Successively, an

evaluation strategy scores the capability of the learned model to classify all the points of
M with a suitable way according the kind of application, for example the alignment of
T

Θ
(t)(M) against S. The process continues iteratively and according the scores recorded

in each trial the set with most consensus emerges. The selection can terminate in case
there will be found a model with a sufficient acceptable score or after a fixed number of
trials is reached. Successively to have obtained a proper set of inliers, a least squares op-
timization could be run to enhance the solution. Despite RANSAC method is considered
a valid approach to inlier selection is affected by two main drawbacks: first, the number
of required iterations for the selection of the best consensus set depends strictly by the
number of outlier points in the datasets; second, to evaluate the conformity of the model
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with respect to the data a valid threshold has to be fixed. The latter is particularly difficult
to solve, since if the threshold is too low could be impossible to establish a sufficient re-
liable set of inliers; conversely, a too large threshold could lead to include noisy points in
the consensus set.

In literature there exist some alternative versions of RANSAC method to speed up
the velocity of the process, which are meanly categorized according two principles: ap-
proaches that improve the verification stage of the model, and techniques that avoid a
random selection of the points in the estimation of the model parameters.

In the first group Matas and Chum [107] propose a strategy to filter out in advance
wrong hypothesis just selecting a small subset of data whence running the model valida-
tion: at the first test failure, the verification is terminated discarding the hypothesis. The
main problem of this approach consists in the possibility to encounter false negatives, al-
though experimental results have shown that this trade-off is acceptable with respect to the
relevant reduction in execution time. Capel [26] proposes an early termination strategy
modelling the assumption that the inliers in a random sample of points follow a hyper-
geometric distribution. Iteratively, fixing the best hypothesis with N inliers, each new
hypothesis is evaluated onto a further subset of points, with the termination criterion in
which the probability that the overall number of inliers is more ofN is greater than a fixed
threshold. Recently, Mates and Chum [108] exploit of the sequential decision-making
Walds theory to devise an optimization problem which establishes when the model is
good (or bad) and simultaneously decreases the number of verification steps executed.

In the second group, the sampling of the data points is not random, but the extraction
is controlled exploiting of additional a priori information inferred from the data. The
common principle of several methods is the fact that groups of similar instances tend to
be inlier points as well. Tordoff and Murray [169] introduce a non-uniform sampling of
correspondences in the Maximum Likelihood Estimation Sample Consensus (MLESAC)
algorithm [171], a generalization of the original RANSAC method. MLESAC assumes an
uniform prior to validate a match, but Tordoff and Murray replaces such priors deriving
the probabilities by a quality function of the point matchings. PROSAC [32] method fol-
lows a similar approach, where the matches are ordered according their similarity scores
as well as larger subsets of tentative correspondences are iteratively used to make hypoth-
esis. Chum et al. [33] solve a weak assumption residing in the general termination step of
RANSAC method, namely, a model is consistent just when the data sample contains all
inliers, which is the main reason because the process is so sensitive when operates with
noisy data. The solution is based to generate a constant number of hypothesis just from the
inliers of the current best model. This inner RANSAC version have shown experimentally
to increase the consensus score rapidly and requiring a lower number of iterations.
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3.2 Multi-way Matching Problem

The problem to align the data structures of two objects remains nowadays the fundamen-
tal reference tool for recognition tasks. Although, in several contexts of Computer Vision,
such as Image Registration [150], Shape Matching [12], Object Recognition [90], Struc-
ture from Motion (SfM) [188], Stereo [55] and so on, there may be employed supplemen-
tary set of noisy objects, e.g., graphs, images, data points, etc., as several observations
of a common subject of interest. Here, we can give just two typical examples, such as
the dataset composed by several graph representations related to shots of a same object
from different viewpoints, or the sequence of frames registered from a camera installed
on mobile robot in indoor/outdoor environments.

In these extended scenarios the matching problem needs to be reformulated in a gen-
eralized form of alignment which is spread on the multiple data entities. This is a very
challenging task, because with respect to the classical pairwise analysis, in this new mul-
tiple setting the several alignments are not independent structures anymore, since they
refer to a common cluster of objects. This bond emerges in a further constrain supported
by the transformations, which is a consistency property typically refereed to transitivity.
The fundamental advantage in exploiting of multiple data yields in the the recognition
performances, since the impact of the error to align couples of objects can be smoothed
by additional information derived from the remaining samples.

In this part of the thesis we introduce the generalizations of the classical pairwise prob-
lems of Graph Matching and Point Set Matching presented in detail in the sections 3.1.1
and 3.1.2 respectively. Without loss of generality, we give here a formal definition of
these problems, then we review in deep the several related approaches in literature.

3.2.1 Multi-Graph Matching Problem

For the last three decades [36] the investigation concerning the well-known Graph Match-
ing problem (GA) has focused matching techniques confined in an inference process
which has mainly considered two graphs only. Therefore, GA is essentially a pairwise
analysis, but this aspect may be revealed in a critical weak point when the estimation
of the optimal correspondences is compromised by poor quality of the input data, i.e.,
operating with graphs with high noisy information (both widespread on the links and, if
any, the nodes attributes). In the scenario where the available data can trust on several
observations of the same object, the Graph Matching problem could be generalized to
reduce the bias related to a noisy couple of graphs, by the incorporation of further infor-
mation carried from the remained instances in whole set: this is the Multi-graph Matching
problem.
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Problem Definition

In this section we give a formal definition of the Multi-Graph Matching problem as the
continuation of the pairwise schema presented in section 3.1.1. Therefore, for a fluent
explanation we avoid to reintroduce here some already treated concepts or structures.

(a) (b)

Figure 3.3: Example of (a) consistent, and (b) inconsistent mapping between three graphsG1, G2

and G3 from two possible starting nodes v1
1 and v1

2 of G1.

Let G = {G1, . . . , GN} be a set of N graphs, we can define a new ideal set which
contains all the possible pairwise maps for each couple of graphs Gi, Gj ∈ G as fol-
lows: ΦG = {φij}N,Ni,j=1. With these premises, there would be natural to conclude that
solving Multi-Graph Matching consists just to estimate an optimal matching configu-
ration ΦG such that an energy function is maximized. Unfortunately, the problem is
more complex in the multiple setting, since all the possible pairwise maps are not nec-
essarily independent in each other. If we consider just the case of a triple of graphs
Gi, Gj, Gk ∈ G and respectively the related maps as φij, φik, φkj , if it holds φik(via) = vkz
and φkj(vkz ) = vjr , i.e., the node via ∈ Vi matches with the node vkz ∈ Vk and the lat-
ter matches with the node vjr ∈ Vj , for transitivity is verified φij(via) = vjr as well. In
other terms, the three maps have to be consistent, since φij = φkj ◦ φik, i.e., could be
described as the functional composition of two boundary maps which include the k-th
graph. This constrain, also well-known in literature as cycle consistency [190], is the
new fundamental ingredient to take in account in the multi-graph matching problem. Let
Φ∗G = { ΦG | φij ∈ ΦG, φij = φkj ◦ φik ∀k = 1, . . . , N ; k 6= i, j } be the set of all possible
matching configurations for G which are consistent too, the natural extension following
the pairwise formulation in (3.1) consists to look for a set of maps in Φ∗G which maxi-
mize the cumulative score for each couple of graphs from G, hence achieving the general
Multi-Graph Matching problem as follows:

ΦG = arg max
ΦG∈Φ∗G

∑
φij∈ΦG

S(Gi, Gj, φij). (3.15)

The same concepts could be expressed in matricial form with the purpose to describe
the general problem as above in a structural domain. Considering the maps as permu-
tation matrices the transitivity constraint can be modelled in a very simply way. Let
Pij,Pik,Pkj ∈ Σb be the permutation matrices related to three graphs in G, if Pij is con-
sistent with respect to k, then it holds Pij = PikPkj . Therefore, redefining a matching
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configuration as PG = {Pij ∈ Σb}N,Ni,j=1, namely, the set of all possible permutation matri-
ces for the N graphs in G, the space of consistent matching configurations is defined as
follows:

P∗G = { PG | Pij ∈ PG,Pij = PikPkj ∀k = 1, . . . , N ; k 6= i, j } .

Taking in account the score formulation for the pairwise graph matching optimization
based on Lawler’s QAP (3.3), the resulting Multi-Graph matching problem from the gen-
eral model (3.15) could be expressed as follows:

PG = arg max
PG∈P∗G

∑
Pij∈PG

vec(Pij)
TWijvec(Pij). (3.16)

This model represents typically the starting point in several works we find in literature
and in particular the methods treated in this thesis.2 Since this new problem inheritances
still a pairwise graph matching, the class of complexity clearly remains in NP-hard [49].

Main Approaches

The formal definitions of the problems (3.15) and (3.16) skip the fundamental aspect con-
cerning how to solve respectively the constraints ΦG ∈ Φ∗G and Pij ∈ PG into practice, i.e.,
how to work in the permutation space of consistent machining configurations. The several
methods presented in this section are just diversified for their way to reach such condition.

The simplistic strategy to deal with Multi-Graph Matching would consist to solve
multiple pairwise graph matching problems treating the set of graphs as a pool or se-
quence [128], in other terms, by a matching chain G1 → G2 → . . . → GN obtaining
a sequence of maps φ1,2, φ2,3, . . . , φN−1,N . Although, this approach suffers of two main
drawbacks: first, it is necessary to impose a specific order between graphs, causing a par-
tial form of transitivity and without taking in account of the overall information available
in the set of graphs; second, real-world data contains noise, therefore it is sufficient to
estimate a wrong match at the beginning of the sequence to twist critically the next maps
with an exponentially propagations of errors along the chain.

Early works in Multi-Graph Matching face the problem by probabilistic methods. The
work proposed by Williams et al. [186] represents the first approach in this direction, even
if it could be considered just a proof of the benefit in exploiting of multiple data than the
pairwise solution of this problem. In this framework the cycle consistency is obtained
by inducing inference triangles (or graph triples) through the composition of pairwise
matching functions in a Bayesian fashion. More specifically, the candidate output node in
the matching between two graphs (Gi, Gj) is extracted according the one with maximum
probability in a fuzzy-inference matrix, whose entries are determined as the sum of all
possible compositions moving an intermediate graphs Gk spanned in the pair.

2We skip to present also the extension based on Koopmans-Beckmann’s QAP (3.4), which is trivially
derivable by replacing the score function in the schema (3.16).
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The work of Solé-Ribalta and Serratosa [158] is aimed to solve a well-known problem
in literature which is the common labelling in a set of attributed graphs. The intermediate
step which is necessary to derive the final labelling is just essentially a multi-graph match-
ing problem. The authors devise a probabilistic scheme building a N -dimensional hyper-
cube, whose points are joint probabilities over the nodes of the N graphs and weights are
likelihoods of the matches. Denoting with via ∈ Vi the a-th node in the i-th graph of the
set, the probability is define as follows:

p
(
v1
a, v

2
b , . . . , v

N
c

)
= p

(
φ1,2(v1

a) = v2
b ∧ φ1,3(v1

a) = v3
p ∧ . . . ∧ φN−1,N(vN−1

c ) = vNq
)
.

(3.17)

In a certain sense this model is just a generalization of the problem for N ≥ 2, but if
we consider the pairwise case N = 2, the hypercube becomes a matrix indeed, which
is just the same data structure treated in Double-stochastic relaxation methods as in sec-
tion 3.1.1. Hypercube on hand, the final step consists to perform a discretization pro-
cess to obtain the final maps, which are consistent since the probabilistic model assumes
dependency among all possibility matches, therefore represents surely an isomorphism
too. The authors propose two strategies to solve the computation of the whole structure:
first, as an extension of the pairwise Graduated Assignment algorithm [57] in the N -
dimensional fashion, which consider the joint probabilities derived from the assignments
cost as (3.17); second, as the previous version but the computation of the hypercube is ex-
emplified considering independence between the isomorphism, i.e., by the simply product
of probabilities as follows:

p
(
v1
a, v

2
b , . . . , v

N
c

)
=

N∏
i=1

N∏
j=1

ni∏
a=1

nj∏
b=1

p
(
φi,j(v

i
a) = vjb

)
.

Although, the main drawback of this probabilistic scheme is the extreme space com-
plexity due to the managements of the whole hypercube during the learning.

The multi-graph matching begins to be treated as an optimization problem with the
work of Pachauri et al. [123], which introduce the concept of “permutation synchroniza-
tion”. This process works in an out-of-box fashion, i.e., it does not treat explicitly graphs
actually, but require as input a general multi-way matching configuration between ideal
objects, independently of their nature and the origin algorithm used to derive it. The relax-
ation proposed is realized from a spectral perspective by an eigenvector decomposition.
Considering the case of squared permutation matrices of dimensionalityO(n2), if the con-
sistency constrain between pairwise transformations is satisfy, i.e., Pij = PikPkj ∀i, j, k,
then there exists an unknown reference ordering in which the N objects induce own per-
mutations Q = {Qk ∈ Σb}Nk=1 such that

Pij = QiQ
−1
j . (3.18)

Therefore the problem consists just to solve the set of transitive alignments Q, which
are sufficient to derive whole matching configuration PG(Q) = {QiQ

−1
j }

N,N
i,j=1 by (3.18).
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In a general scenario we can denote an initial non-consistent matching configuration as
PG = {Pij ∈ Σb}N,Ni,j=1, therefore the intuitive approach is based just to estimate the align-
ments which produce permutations that are the closest as possible according a distance
measure d : Rn×n × Rn×n → R as follows

Q = argmin
Q

∑
Pij∈PG

Qi,Qj∈Q

d(Pij,QiQ
−1
j ). (3.19)

The authors propose the general distance metric d(A,B) = n−〈A,B〉, where 〈·, ·〉 is the
inner product for the matrices A,B ∈ Rn×n. According the indexing of the data struc-
tures in the sets Q, PG(Q) and PG , we can give without loss of generality the equivalent
matricial representations as the block matrices K ∈ {0, 1}nN×n, PG(K) ∈ {0, 1}nN×nN ,
PG ∈ {0, 1}nN×nN respectively. In this way the formulation of the optimization (3.19)
can turn in the maximization problem as follows:

K = argmax
K
〈PG(K),PG〉. (3.20)

The proposed relaxation for (3.20) is based in the particular form of the matrix K. The
space of the permutations Σd is orthogonal, i.e., it holds that Q−1

j = QT
j , therefore we can

rewrite PG(K) = KKT . Moreover, since PG(K) is a nN -dimensional rank n symmetric
matrix whose non-zero eigenvalues are N , it is possible to approximate such structure by
solving a generalized Rayleigh problem factorizing PG(K) = UUT with

U =
√
N
[
v1 v2 . . . vn

]
,

in which the columns v1,v2, . . . ,vn are the n leading normalized vectors of PG . De-
noting with [PG(K)]i,1 the n × n matrix placed in the i-th row in the first column of
PG(K), then the final alignment is obtained in permutation space by Hungarian algo-
rithm Qi = HUNGARIAN([PG(K)]i,1). This approach has the advance to work very well
with noisy data, in particular when the number of available objects is suitable to tolerate
weak instances. Although, this process is less scalable since requires a spectral decom-
position over a matrix with order O(n2N2), which could be a very critical task operating
with huge data structures.

The framework proposed by Yan et al. [191] is based in a power iteration process
alternating the updates of the several permutation matrices, which are solved by an IQP
quite similar to (3.3). The principal cost matrix is computed from the composition of
three graphs Gi, Gk, Gj ∈ G starting from the general maximization problem as follows:

arg max
Pik,Pij ,Pkj∈PG

vec(Pik)
TWijvec(Pik) + vec(Pij)

TWijvec(Pij) + vec(Pkj)
TWkjvec(Pkj).
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Yan et al. [190] proposed another method which can be described as a regularization
of the multi-graph matching based on the pairwise problem (3.4) and exploiting of the
Lagrange multiplier with the purpose to enforce the cycle consistency as follows:

PG = argmax
PG

∑
Pij∈PG

vec(Pij)
TWijvec(Pij) + λ

N∑
k=1

||Pik −PkjPij||F , (3.21)

where λ ∈ R is the Lagrange multiplier. Since the problem (3.21) is still NP-Hard, the
author propose a relaxation strategy introducing a measure of graph consistency, which
could be described as the accuracy that an intermediary graphGk has between all possible
pairs of graphs in the set G as follows:

CG(Gk,PG) = 1−
∑N−1

i=1

∑N
j=i+1 ‖Pik −PkjPij‖F
nN(N − 1)/2

∈ [0, 1],

where N = |G| is the number of graphs and n = |V1| = |V2| = . . . = |VN | denotes the
common number of nodes of all the graphs. The final iterative process consists to update
the permutation matrix P

(t)
ij = P

(t−1)
ik P

(t−1)
kj at time t for the graph Gk which maximizes

the regularized objective CG(Gk) + (1 − λ)vec(P
(t)
ij )TWijvec(P

(t)
ij )/J

(0)
max, where J (0)

max

is the constant energy scale reference (maximum score measured at the beginning of the
learning process). However, a drawback of this method consists in the lack of guarantee
to provide fully consistency after the convergence, i.e., PG 6∈ P∗G , requiring smoothing
methods [191] or by maximum span tree [53] to rectify the final solution. Moreover, in
the same way like other methods as above [158, 186, 190], the initial solution has to be
inconsistent, otherwise the process cannot work properly.

Yan et al. [192] overcome these limits proposing a method which is a sort of fusion
from the last works [190,191]. In fact, it is not necessary to compute all N2 permutations
matrices in a matching configuration, since for the transitivity constrain any transforma-
tions Pij = PirPrj = PT

riPrj with r 6= i, j, i.e., all the pairwise permutations can be
derived fixing a common reference order r. From this result, the solution consists in an
alternating optimization process by establishing a reference graph to drive the global con-
sistency during the learning. The latter is derived as the graph which reveals the maximum
consistency in the initial solution Gr = argmax

Gk∈G
CG

(
Gk,P(0)

G

)
. Listing the pairwise con-

sistencies of all graphs w.r.t. the reference, the iterative process is driven by selecting
in ascending order that graph Gu and updating the related P

(t)
ur just fixing the remaining

N − 2 variables {P(t)
fr}Nf=1,f 6=r,u. The new version at time t is discarded if the so-far best

objective score J(P
(t)
ur ) is not increased. The authors proposed two versions based on this

general strategy, which are distinguished according the way is formulated the maximiza-
tion problem, such as through a global weight matrix or proposing a less space expensive
factorization.

The methods in our review [158, 191, 192] can be defined as affinity score-driven,
since firstly there is generated a compact set of underlying pairwise matching variables,
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then an objective function to measure the overall affinity score is maximized. Instead
the method [123] can be categorized as pairwise matching consistency-driven, because
starting from an initial set of pairwise solutions given from an independent solver, it may
introduce or increase the overall consistency as a rectification step. Although, both these
two strategies have an own weak point: in the former, if the bases of variables contain
noise or they are lightly corrupted, such errors would lead the learning process to enhance
the distortion towards the final solution; conversely, in the latter the assumption that an
unknown algorithm provides always an inconsistent initial solution is a requirement pretty
awkward. Recently, Yan et al. [189] propose a method that in a certain way combines the
advantage of these two strategies for a flexible process which exploits of the matching
consistency as a regularizer for the overall affinity score. In other terms, since the affinity
score could be used as an indicator for the semantic of the matching in the early iterations,
when it begins to be less informative the consistency of the matching can be used as a
regularizer to unweighed the contribute carried from possible noisy graphs in the overall
score.

3.2.2 Multi-Point Set Matching Problem

The challenging problem to estimate a geometrical transformation between images, shapes
or more generally point clouds is extensively treated in literature and with particular in-
terest to solve such task through disjointed pairs of objects [77]. Here, by contrast with
other similar problems, e.g., Graph Matching, the rigid or affine transformation can be
derived even exploiting of partial subsets extracted from whole available data. For exam-
ple, to estimate planar linear transformations is sufficient a reduced set of 4 key points
from each input images actually. Moreover, the geometrical alignments are not forced
to describe an one-to-one mapping between the chosen points of two objects. Therefore,
this problem itself gives the opportunity to devise easily strategies under such relaxed
conditions in order to smooth and filter noisy data as well as removing outlier points.
Although, the majority of research in this field is focused in the pairwise setting of the
problem, which is clearly generalizable to a multiple point registration as well. This re-
quest is two-fold necessary: first, there are specific problems in this field which require
explicitly the alignment of multiple set of objects, as for example the creation of statisti-
cal shape models [37]; second, by the introduction of a global consistency among all the
transformations in a multiple set of objects, the impact that noisy data could affect onto
the derived registrations can be more tolerable.

Problem Definition

In this section we introduce the Multi-Point Set Registration problem recalling notation
and fundamental concepts which there have been already treated in the pairwise schema
presented in section 3.1.2, therefore we avoid to be too verbose by reintroducing such
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details again.

The initial step to extend the classical pairwise Point Set Matching consists to general-
ize the data in multiple setting. Let Ci = {ps ∈ Rd}ni

s=1 be a point cloud of ni real-valued
points with a common number of d dimensions, we can formalize the input of the prob-
lem as a set of N different point clouds as follows: Z = {Ci}Ni=1. According a specific
application of the problem, we can assume the existence of an unique and common geo-
metrical transformation function T , which is applied to all possible N2 optimization set
Θij related to each pair of point clouds Ci, Cj ∈ Z whence is derived the registered set
of Cj by the usual transformation TΘij

(Ci). Therefore, we can define an optimization set
configuration for the overall input data as the set ΘZ = {Θij}N,Ni,j=1. Since we are defining
a process which spreads information of a multiple set of point clouds to estimate pairwise
transformations, there has to be supported some consistency property in the final solu-
tion. We can express this concept in a very general way just stating that an optimization
set Θij is consistent when for each k = 1, . . . , N holds the transitive constraint as fol-
lows: Θij ∼ Θik ◦ Θkj .3 Exploiting of this essential formalism, the set of all possible
optimization set configurations on ΘZ which are globally consistent is defined as follows:

Θ∗Z = {ΘZ | Θij ∈ ΘZ ,Θij ∼ Θik ◦Θkj ∀k = 1, . . . , N ; k 6= i, j } .

At this point, we have introduced all the ingredients to formulate finally the Multi-point
Set Matching in terms of the following optimization problem:

ΘZ = arg min
ΘZ∈Θ∗Z

∑
Θij∈ΘZ

∑
ps∈TΘij

(Ci)

∑
pr∈Cj

d
(
ps,pr

)
. (3.22)

The goal reacted by the problem (3.22) consists to estimate a consistent optimization
set configuration such that the distances between the points of all possible pairwise trans-
formations are minimized. It is worth to be noted that if we consider transformations
where location, scale and rotation are removed (i.e., Absolute Orientation Problem [70]
or Procrustes Analysis [59]), in the optimization set remains the transformation matrix
Θij = {Tij} only, in other terms, the points are derived by ps = TΘij

(pr) = Tijpr. This
further matricial scheme becomes a problem where the goal consists just to estimate a set
ΘZ of transitive geometrical transformations, which is just a similar approach we have
already treated with the permutation synchronization in Multiple Graph Matching (see
section 3.1.1).

Main Approaches

In this section we are interested to review the literature just focusing on a specific subclass
of transformation problems relevant for the topics introduced in this thesis. More specif-
ically, we consider rigid registrations among shapes in terms of point correspondences.

3This expression has to be considered just a special notation for this thesis, with the purpose to denote
in general terms the property of consistency/transitivity in geometrical transformations as well.
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This is a specific task well-known in Computer Vision community as Procrustes Analysis,
which is deeply studied in statistics and shape analysis [59,134]. The related extension of
such problem which considers set of point clouds greater than the pairwise case N = 2 is
called Generalized Procrustes Analysis. Typically, this new problem is solved selecting
initially a reference shape Cr ∈ Z and registering in an “alternating process” each other
shapes averaging the reference such that the global alignments are optimized by a score
function [41].

Krishnan et al. [84] propose a simultaneous global registration approach for multi-
view 3D point sets where the correspondences between overlapping scans is known. The
main idea consists just in solving an unconstrained optimization problem on a constrained
manifold formed by N-fold product of orthogonal groups. The solution is obtained by an
Newton-type iterative process governed by the reduction of cost functions on such smooth
manifold. The latter represents the principal power of this method, since such special
manifold can incorporate transformation groups in Computer Vision as SO3 or SE3, which
are provided of Lie algebra, notions used by the authors to model the geometrical nature
of the problem. Despite this multi-registration method reveals good performances with
real world data, it is limited to treat just instances of 3D point clouds.

The work of Wen et al. [184] generalizes the Absolute Orientation Problem to deal
with points of any dimensions. Considering the case where all the N point clouds are
composed by n points in Rd, the general goal consists to estimate a fixed reference point
set Pr = {ri}ni=1 and optimization Θr = {Θj = (Tj, tj, cj)}Nj=1 sets, such that the
following score is minimized:

arg min
Pr, Θr

1

N

N∑
j=1

[
1

n

n∑
i=1

∥∥pji − cjTjri − tj
∥∥2

2

]
. (3.23)

The solution is formulated by a reduced gradient process devising a total least squares
fitting algorithm. The approach is based in two steps: first, iteratively computing Θ

(t)
r at

time t by SVD algorithm for Procrustes Analysis; second, computing the optimum min-
imum value x(t)

0 of the mean squared error in (3.23) which updates each point in P(t)
r .

The convergence is reached when the global error is lower than a fixed threshold. Re-
cently, Chaudhury et al. [27] solve another similar work addressed to realign globally
overlapped patches of points against an unique scene set, but formulating the problem as
a semidefinite program. Nevertheless, there remains a fundamental and common draw-
back of all these last approaches, which essentially resides being governed by an unique
reference structure, which could induce noise in the alignments. Some different propos-
als are based to update alternating the reference frame meanwhile the global alignments
are solved, i.e., either by means or adaptive strategies. Although, such solutions remain
iterative processes, which are in general schemes that could not give guarantee both in
convergence and in achievement of a global minimum.

Pizarro and Bartoli [129] propose a statistical cost function which involves the trans-
formation against an unknown reference shape to maximize the overall likelihood. The
formulation is derived from the algebraic geometry applied on Sum Of Squares (SOS)
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functions [126], which is a fundamental tool to find the global bounds for polynomials
that describe equality and inequality constrains. The problem is proposed as a SOS pro-
gram (SOSP) relaxation, which is easily converted in an equivalent Semidefinite program
(SDF) in order to exploit of external convex optimization tools as final solvers. Their
process can find always a global minimum and it supports both 2D and 3D shapes for
Euclidean and similarity transformations.

Recently, Bernard et al. [13] propose a solution for solving the multi-alignment GPA
as a very flexible generalization with respect to the classical techniques [27, 129], which
enforces global self-consistency through a closed-form formulation in a semidefinite pro-
gram for orthogonal pairwise transformations. Their method not only overcomes the
disadvantage of iterative processes being an eigenvalue decomposition, but supports in-
vertible linear transformations too, which includes similarity, Euclidean and rigid regis-
trations; furthermore, such strategy finds even applications to synchronize permutation-
based transformations [123]. Considering to have available from an external process
the initial unsynchronized set of all pairwise linear transformations {Tij}N,Ni,j=1 related
to N points clouds, then there exists an unknown reference coordinate frame ∗ such
that Tij = Ti∗T∗j = Ti∗T

−1
j∗ for all i, j. In this way the global consistency of the

linear and invertible transformations is guarantee computing the transitive block matrix
W = [Tij]

N,N
i,j=1 = U1U2, solving U1 = [T1∗ · · ·TN∗]

T or U2 = [T−1
1∗ · · ·T−1

N∗]
T . This

model is very similar than [123] with the difference that does not require necessary the
orthogonally property T−1

i∗ = TT
i∗ (see section 3.2.1). Posing Z = W − NI is possible

to state that the structure U1 can be computed just finding the d-dimensional null space
of Z. Therefore, performing a singular value decomposition as Z = UΣVT , the final
solution consists to extract the d columns of V reconstructing just U1. This formulation
holds if we consider perfect information in the problem, i.e., absence of noisy data Z.
Therefore, to cope with real world contexts, i.e., assuming the presence of noise in the
structure Z, the process can be rewritten as a least-squares transformation synchroniza-
tion finding U1 which minimizes the Frobenius norm

∥∥ZU1

∥∥2

F
. In this case, the align-

ments U1 = [T1∗ · · ·TN∗]
T are retrieved extracting the d smallest singular values from

the spectral decomposition of Z. Moreover, the authors show by just reformulating the
initial transformation matrices of the problem, that is possible to solve affine, similarity,
Euclidean and rigid transformations. Whilst this method is extremely suitable in various
applications, it suffers of some drawbacks: the process can be less scalable in the sce-
nario of high values of O(d) getting the spectral decomposition very time expensive; the
retrieved transitive alignments could not be always invertible transformations in presence
of high noisy data.
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4
Transitive Assignment Kernels for

Structural Classification

Kernel methods provide a convenient way to apply a wide range of learning techniques to
complex and structured data by shifting the representational problem from one of finding
an embedding of the data to that of defining a positive semi-definite kernel. One problem
with the most widely used kernels is that they neglect the locational information within the
structures, resulting in less discrimination. Correspondence-based kernels, on the other
hand, are in general more discriminating, at the cost of sacrificing positive-definiteness
due to their inability to guarantee transitivity of the correspondences between multiple
graphs.

In this chapter we adopt a general framework for the projection of (relaxed) corre-
spondences onto the space of transitive correspondences, thus transforming any given
matching algorithm onto a transitive multi-graph matching approach. The resulting tran-
sitive correspondences can then be used to provide a kernel that both maintains locational
information and is guaranteed to be positive-definite. Experimental evaluation validates
the effectiveness of the kernel for several structural classification tasks.

4.1 Introduction

Graph-based representations have proven invaluable in several application domains due
to their ability to characterize complex ensembles in terms of parts and binary relations.
Concrete examples include the use of graphs to represent shapes [154], metabolic net-
works [76], protein structure [72], and road maps [78]. However, the expressive power of
graphs comes at the cost of a reduced pattern analysis toolset available to the practitioner.
In fact, our ability to analyse data abstracted in terms of graphs is severely limited by
the restrictions posed by standard feature-based paradigm dominating pattern recognition
techniques, which require data to be representable in a vectorial form.

There are two reasons why graphs are not easily reduced to a vectorial form. First,
unlike the components of a vector, there is no canonical ordering for the nodes in a graph,
requiring correspondences to be established as a prerequisite for analysis. Second, the
variation in the graphs of a particular class may manifest itself as subtle changes in struc-



60 4. Transitive Assignment Kernels for Structural Classification

ture. Hence, even if the nodes or the edges of a graph could be encoded in a vectorial
manner, the vectors would be of variable length, thus residing in different spaces.

The first 30 years of research in structural pattern recognition have been mostly con-
cerned with the solution of the graph matching problem as the fundamental means of
assessing structural similarity [36]. With the correspondences at hand, similarity-based
recognition and classification techniques can be used. Alternatively, graphs can be em-
bedded in a low-dimensional pattern space using either multidimensional scaling or non-
linear manifold learning techniques.

Another alternative is to extract feature vectors from the graphs providing a pattern-
space representation by extracting structural or topological features. For example, spectral
features extracted from the singular value decomposition of the graph Laplacian have been
proven effective [52,103,173,187]. For an overall survey about the current state-of-the-art
in the graph matching problem, refers to the work by Livi and Lizzi [98].

4.1.1 Graph Kernels
The famous kernel trick [145] has shifted the problem from the vectorial representation of
data, which now becomes implicit, to a similarity representation. This has allowed stan-
dard learning techniques to be applied to data for which no easy vectorial representation
exists. Once we define a positive semi-definite kernel k : X ×X → R on a set X , there
exists a map φ : X → H into a Hilbert space H, such that k(x, y) = φ(x)Tφ(y) for all
x, y ∈ X . Also, given the kernel value between φ(x) and φ(y) one can easily compute
the distance between them by noting that ‖φ(x)− φ(y)‖2

2 = φ(x)Tφ(x) + φ(y)Tφ(y) −
2φ(x)Tφ(y). Thus, any algorithm that can be formulated in terms of dot products between
the input vectors can be applied to the implicitly mapped data points through the direct
substitution of the kernel for the dot product. For this reason, in recent years the structural
pattern recognition field has witnessed an increasing interest in graph kernels. However,
due to the rich expressiveness of graphs, this task has also proven to be difficult, with
the problem of defining complete kernels, i.e., ones where the implicit map φ is injective,
sharing the same computational complexity of the graph isomorphism problem [49].

One of the most influential works on structural kernels is the definition of the class
of R-convolution kernel proposed by Haussler [67]. Here, graph kernels are computed
by comparing the similarity of the basic elements for a given decomposition of the two
graphs. Depending on the decomposition chosen, we obtain different kernels. Most
R-convolution kernels simply count the number of isomorphic substructures in the two
graphs. For example, Kashima et al. [79] compute the kernel by decomposing the graph
into random walks, while Borgwardt et al. [18] have proposed a kernel based on shortest
paths. Here, the similarity is determined by counting the numbers of pairs of shortest
paths of the same length in a pair of graphs. Shervashidze et al. [151] have developed
a subtree kernel on subtrees of limited size, where the number of subtrees common be-
tween two graphs is computed efficiently using the Weisfeiler-Lehman graph invariant.
Recently, Kriege et al. [83] proposed that a kernel based on the number of isomorphisms
between pairs of subgraphs, while Neumann et al. [120] have introduced the concept of
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propagation kernels to handle partially labelled graphs through the use of continuous-
valued vertex attributes.

4.1.2 Assignment Kernels
One drawback of these kernels is that they neglect the locational information for the sub-
structures in a graph. In other words, the similarity does not depend on the relationships
between substructures. As a consequence, these kernels cannot establish reliable struc-
tural correspondences. This limits the precision of the resulting similarity measure. Ong
et al. [122] introduce several kernel methods about indefinite kernel for general struc-
tures, while Geibel et al. [73, 74] give a solution to deal with not positive semidefinited
kernel based on Schur-Hadamard Inner Product applied on graphs. Further, Schietgat
et al. [144] propose a graph metric which is based on the maximum common subgraph,
while in [115] the authors exploit indefinte maximum common subgraph kernels using the
potential of support vector machine for indefinite matrices, extending the work proposed
by Hochreiter and Obermayer [69]. Another interesting solution described by Fröhlich
et al. [48] presents alternative optimal assignment kernels. Here, each pair of structures
is aligned before comparison. Another example of alignment-based kernels are the edit-
distance-based kernels introduced by Neuhaus and Bunke [118]. Here, the alignments
obtained from graph-edit distance are used to guide random walks on the structures being
compared.

Unfortunately, the introduction of the alignment step results in a kernel that is not
positive definite in general [181]. The problem arises from the fact that alignments are not
in general transitive. In other words, if σ is the vertex-alignment between graph Ga and
graph Gb, and π is the alignment between graph Gb and graph Gc, in general we cannot
guarantee that the optimal alignment between graph Ga and graph Gc is π ◦ σ. Lacking
positive definiteness the optimal assignment kernels cannot be guaranteed to represent an
implicit embedding into a Hilbert space. However, they have proven to be very effective
in classifying structures.

4.1.3 Multi-Graph Matching
The problem of estimating a transitive set of correspondences between structures, known
as the multi-graph matching problem, has received much less attention by the research
community than pairwise matching. One of the earliest work, due to Williams et al. [186],
imposes the transitive vertex-matching constraint in a softened Bayesian manner, induc-
ing inference triangles by forming fuzzy compositions of pairwise matching functions.
Sole-Ribalta and Serratosa [158] extended the Graduated Assignment algorithm [56] to
the multi-graph scenario by raising the assignment matrices associated to pair of graphs to
assignment hypercube, or tensors, between all the graphs. For computational efficiency,
the hypercube is constructed via sequential local pair matching. More recently, Yan et al.
[191, 192] proposed a new framework explicitly extending the Integer Quadratic Pro-
gramming (IQP) formulation of pairwise matching to the multi-graph matching scenario.
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The resulting IQP is then solved through alternating optimization approach. Pachauri
et al. [123], on the other hand, synchronize a given set of assignments through a spectral
relaxation.

4.1.4 Contribution
In this chapter we want to investigate the use of multi-graph matching techniques in the
context of graph kernels. By forcing the correspondences between the structures under
study to satisfy transitivity, we obtain an alignment kernel that, not only is positive def-
inite, but also makes use of more reliable locational information obtained through the
enforcement of global consistency constraints. In fact, when the alignments are transi-
tive, there is a common simultaneous alignment of all the graphs. Under this alignment,
the kernel is simply the sum over all the vertex/edge kernels, which is positive definite
since it is the sum of separate positive definite kernels.

Here, we adopt an approach similar to Pachauri et al. [123] in avoiding the defini-
tion of a specific multi-graph matching algorithm. Rather, we project a set of (possibly
relaxed) assignments to the set of transitive correspondences. Transformation synchro-
nization techniques such as this have been proven effective in several fields due to their
effectiveness, their ability to leverage the state of the art in pairwise transformation esti-
mation, and their computational efficiency [64,174]. The proposed synchronization tech-
nique shares some similarities with [123], but we adopt a different relaxation scheme that
does not result in a generalized low rank Rayleigh problem, but can however be solved
with a projected power method, avoiding the requirement for an eigendecomposition of
the matching tensor.

4.2 Projection on the Transitive Alignment Space
Let G1, G2, . . . , GN be graphs and let Pij for i, j = 1, . . . , N be a matrix matching ver-
tices in Gi to vertices in Gj obtained with any pairwise matching algorithm. Here, we
assume that (Pij)vw expresses a likelihood that node v in Gi is matched to node w in
Gj , but is not required to represent a permutation, and can be in a relaxed space such as
the space of doubly stochastic matrices. Our goal is to find a set of permutation matrices
Pij ∈ Σn (with Σn the permutation space and i, j = 1, . . . , N ) as similar as possible, in
the least squares sense, to Pij , which satisfy the transitivity constraint. Namely,

PijPjk = Pik ∀i, j, k = 1, . . . , N. (4.1)

In order to do this first we force the graphs all to the same size n by padding them
with dummy disconnected nodes to the maximum size of all the graphs of the set (see
figure 4.1).

Once the graphs are all of the same size, we can enforce transitivity through the intro-
duction of an unknown reference canonical ordering and the alignment matrices Qi ∈ Σn
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Figure 4.1: Graphical example about the refinement task of our datasets. In the figure, the set is
composed of three graphsG1, G2 andG3. The maximum number of nodes is 5 (the second graph),
hence we add two disconnected nodes in G1 and three in G3 in order to obtain respectively the
extended graphs G′1 and G′2. The final dataset with the same number of nodes n = 5 is composed
by the graphs set G′1, G2 and G′3.

original graph �nal graphnode dummy node edge

G1’ G2 G3’
Max number nodes = 5

G1

G3

i = 1, . . . , N that map vertices in Gi to the reference order. With these matrices to hand
we set Pij = QiQ

T
j . Note that there is no lack in representation power, as the transitivity

constraint guarantees the existence of such canonical ordering. In fact, let for example
Qi = Pi1. For transitivity, we have

Pij = Pi1P1j = Pi1P
T

j1 = QiQ
T
j . (4.2)

Furthermore, such canonical ordering is not unique, since for any permutation matrix
P ∈ Σn, we have

Pij = QiQ
T
j = (QiP)(PTQT

j ) . (4.3)

With the canonical ordering representation the projection on the transitive space of
permutations cast as the following minimization process

arg min
Q∈(Σn)N

N∑
i,j=1

∥∥Pij −QiQ
T
j

∥∥2

F
=

arg min
Q∈(Σn)N

N∑
i,j=1

(
‖Pij‖2

F +
∥∥QiQ

T
j

∥∥2

F
− 2Tr(QjQ

T
i Pij)

)
=

arg min
Q∈(Σn)N

2N2n− 2
N∑

i,j=1

Tr(QT
i PijQj) =

arg min
Q∈(Σn)N

2N2n− 2
N∑

i,j=1

vec(Qi)
T (I⊗Pij) vec(Qj) , (4.4)

where ‖·‖F is the Frobenius matrix norm, I is the identity matrix and Tr is the linear trace
operator.
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This is equivalent to the following Integer Quadratic Problem

arg max
Q∈(Σn)N


vec(Q1)
vec(Q2)

...
vec(QN)


T

︸ ︷︷ ︸
vec(Q)T


I ⊗P11 I ⊗P12 . . . I ⊗P1N

I ⊗P21 I ⊗P22 . . . I ⊗P2N
...

... . . . ...
I ⊗PN1 I ⊗PN2 . . . I ⊗PNN


︸ ︷︷ ︸

Π


vec(Q1)
vec(Q2)

...
vec(QN)


︸ ︷︷ ︸

vec(Q)

,

(4.5)
where ⊗ represents the Kronecker product. Note that if the pairwise matches are

symmetric, i.e., Pij = PT
ji, then Π is symmetric as well. However, as in all quadratic

problem, Π (and thus Pij) can be made symmetric without affecting the result.
Our proposal is to relax this to the problem

maximize xTΠx
s.t. x ∈ (Sn)N ,

(4.6)

where Sn is the unit sphere in Rn, and then project the solution to (Σn)N in order to obtain
the alignment matrices Si (which differs from the Qi seen before since we are working
on a relaxed space) and, consequently, the transitive permutation matrices Pij = SiS

T
j .

We solve (4.6) efficiently through a power iteration projected to (Sn)N by noting that
the gradient of the quadratic form can be computed in terms of multiplications and addi-
tions of the matching and alignment matrices:

Πx =


I⊗P11 I⊗P12 . . . I⊗P1N

I⊗P21 I⊗P22 . . . I⊗P2N
...

... . . . ...
I⊗PN1 I⊗PN2 . . . I⊗PNN




x1

x2
...

xN



=


∑N

i=1 P1iXi∑N
i=1 P2iXi

...∑N
i=1 PNiXi

 , (4.7)

where xT = (xT1 , . . . ,x
T
N)T expresses the N spherical components of x, and Xi is the

matrix representing the current relaxation of Qi, for which we have xi = vec(Xi).
Hence, we can maximize (4.6) by iterating the recurrence

X
(t+1)
i =

∑N
j=1 PijX

(t)
j∥∥∥∑N

j=1 PijX
(t)
j

∥∥∥
F

. (4.8)

Once the matrices Xi are at hand, we obtain the closest (in least squares sense) per-
mutations Qi by solving N maximum bipartite assignment problems.
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4.3 Transitive Assignment Kernel
With transitive matches to hand, we follow Fröhlich et al. [48] in the definition of an
assignment kernel between graphs Gi = (Vi, Ei) and Gj = (Vj, Ej): we define two sets
of kernels, one Kv : Vi × Vj → R for the vertices, and one Ke : V 2

i × V 2
j → R for the

edges and fuse them with the transitive correspondence πij : Vi → Vj encoded in Pij , to
obtain the Transitive Assignment Kernel:

TAK(Gi, Gj) =
∑
v∈Vi

Kv

(
v, πij(v)

)
+
∑
v∈Vi

∑
w∈Vi

Ke

(
(v, w), (πij(v), πij(w))

)
. (4.9)

Here, both kernels are assumed to be positive semidefinite and symmetric. In our
experiments we used the dot product between Heat Kernel Signatures [162] (HKS) for the
vertex kernel Kv. More precisely, given an undirected graph G of n nodes, let A = (aij)
the n× n adjacency matrix (where aij is the weight of the edge between the nodes i and
j in G) and D the degree matrix, we compute the related n× n Laplacian matrix L as

L = D−A.

Let φi the i-th eigenvector of L (with i = 1, . . . , n) and Λ = (λ1, λ2, . . . , λn)T the
eigenvalues of the Laplacian. Finally, let m be a set of time values {t1, t2, . . . , tm}, we
define the HKS feature vector f = (f1, f2, . . . , fn)T for each time tj as

fj =
n∑
k=1

exp(−tjλk)φ2
k,

where the square of k-th eigenvector is meant just as a punctual operation over the com-
ponents x2 = (x2

1, x
2
2, . . . , x

2
n)T . Once computed, the feature vectors are collected on a

n×m matrix F as columns

F = (f1 f2 · · · fm) .

Given two graphs Gi and Gj (with the same number of nodes n), our HKS ker-
nel is defined as the sum of the dot product between the respective feature matrices
k = 〈Fi,Fj〉 = (k1, k2, . . . , kn)T . Hence, the kernel matrix is defined as

Kv(G
i, Gj) =

n∑
w=1

kw.

On the other hand, the edge kernel Ke was chosen to be a discrete enforcement of the
topological structure:

Ke

(
(u, v), (a, b)

)
=

{
1 if

(
(u,w) ∈ Ei ∧ (a, b) ∈ Ej

)
∨
(
(u,w) 6∈ Ei ∧ (a, b) 6∈ Ej

)
0 otherwise.

(4.10)
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The positive semidefiniteness of the proposed kernel can be proved through the closure
properties of positive definite functions. The closure under sum states that, given a non-
empty set X and two positive semidefinite symmetric kernels KA, KB : X ×X → R, it
holds

K = KA +KB : X ×X → R. (4.11)

Then, K is a positive semidefinite symmetric kernel. In other words, in order to
construct a new positive semidefinite kernel as the sum of existing ones (Kv and Ke in
our instance), first the kernels need to be positive semidefinite. Second, they all must
be defined in the same space. The kernels employed in (4.9) are positive semidefinite by
hypothesis. Furthermore, since the projection on the transitive alignment space introduces
a reference canonical order (and such canonical ordering is guaranteed by the transitivity
constraints, see section 4.2), the space of the kernels is the same. In fact, the kernels
defined as the sum of all Kvs (KA) and the sum of all Kes (KB) are clearly positive
semidefinite since all Kvs and all Kes belong to the same respective spaces. Hence, the
kernel defined in (4.9) is positive semidefinite. Note that without the transitive alignment
and its induced canonical ordering, the assumption that all Kvs and Kes belong to the
same respective spaces would be wrong.

4.4 Experimental Evaluation
We evaluate the performance of the proposed method in terms of classification accuracy
and we compare it with a number of well-known kernels, namely the Weisfeiler-Lehman
kernel [151] (where the number of iterations parameter was set to h = 3 and we used
the degree of each node as the node attribute), the graphlet kernel [153], the shortest-path
kernel [18], the random walk kernel [79] and an experimental kernel based on the Heat
Kernel Signature [162] method. In particular, we employ the Heat Kernel Signature to
compute the feature descriptors with respect to k = 100 time parameters t uniformly
distributed within the range [1, 10] and we build the kernel as described in section 4.3.

Furthermore, we compare the performance of the proposed method with respect to
the state-of-the-art of graph matching methods, namely the Spectral Matching (SM) [89]
and Reweighted Random Walks Matching (RRWM) [30]. In order to do so, we address
the classification task using several popular datasets with and without the permutations
computed by the graph matching methods.

Given a pair of graphs (Gp, Gq) with the same number of nodes n, we compute the
n2 × n2 affinity matrix Mpq = (mia,jb) on the respective edge weights (apij, a

q
ab) as

mia,jb = exp

(
−

(apij − a
q
ab)

2

σ2

)
,

where σ2 is a scale factor which is experimentally set to 0.15. This affinity matrix is
employed as the input of one of the graph matching technique (GM) introduced above
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(SM and RRWM), obtaining the n × n weight matrix Wpq = GM(Mpq). Note that the
number of nodes of the graphs Gp and Gq are not required to be same, since if they are
different, we will just add some disconnected dummy nodes in order to make the number
of the nodes equal, as explained in section 4.2. Finally, we use the real matrix Wpq as
the input for the Hungarian algorithm, which is a well-known method that performs a
combinatorial optimization finding a maximum score matching in a weighted bipartite
graph. This results in a discretised version of the weight matrix, which is, in practice, a
permutation matrix. Hence, we define the permutation matrix Ppq as

Ppq = Hungarian(Wpq).

We run our experiments on the following datasets:
MUTAG dataset [40] was constructed based on data from review of literatures about

mutagenicities in Salmonella Typhimurium based on 200 aromatic and heteroaromatic
nitro compounds. As a result, 188 congeners were extracted together with their structure-
activity relationship (SAR) data.

PPI dataset, which consists of protein-protein interaction (PPIs) networks related to
Histidine Kinase [75] (40 PPIs from Acidovorax avenae and 46 PPIs from Acidobacteria).

PTC (The Predictive Toxicology Challenge) dataset, which records the carcinogenic-
ity of several hundred chemical compounds for male rats (MR), female rats (FR), male
mice (MM) and female mice (FM) [91] (here we use the 344 graphs in the MR class).

COIL dataset, which consists of 5 objects from [117], each with 72 views obtained
from equally spaced viewing directions, where for each view a graph was built by trian-
gulating the extracted Harris corner points.

Reeb dataset, which consists of a set of adjacency matrices associated to the compu-
tation of reeb graphs of 3D shapes [15].

ENZYMES dataset [146] is based on graphs representing protein tertiary structures
consisting of 600 enzymes from the BRENDA enzyme database, which are correctly
assigned to one of the 6 EC top-level classes.

SHOCK dataset consists of graphs from the Shock 2D shape database. Each graph of
the 150 graphs divided into 10 classes is a skeletal-based representation of the differential
structure of the boundary of a 2D shape.

For efficiency purposes, the experiments do not involve the whole datasets (see sec-
tion 4.5). In particular, we select a certain number of classes and a certain number of
graphs for each class. The selection of these subsets is performed randomly on the orig-
inal datasets. Table 4.1 shows the number of classes and the number of graphs of each
dataset that has been used to compute the results. In order to get a homogeneous number
of nodes within the graphs of the same dataset, we add to each graph nMAX − ni dummy
nodes (i.e. not connected nodes), where nMAX is the maximum number of nodes among
the graphs of a certain dataset, while ni is the number of nodes of the i-th graph.

We used a binary C-SVM to test the efficacy of the kernels. We performed 10-fold
cross validation, where for each sample we independently tune the value of C, the SVM



68 4. Transitive Assignment Kernels for Structural Classification

Table 4.1: Details of the pruned datasets employed in classification experiments.

Dataset Name Classes Graphs per class Total Graphs Graph Nodes
MUTAG 2 ≈ 94 188 28
PPI 2 15 30 149
PTC 2 30 60 70
COIL 2 20 40 112
Reeb 3 20 60 86
ENZYMES 3 20 60 26
SHOCK 10 15 150 33

regularizer constant, by considering the training data from that sample. The process was
averaged over 100 random partitions of the data, and the results are reported in terms of
average accuracy± standard error. In particular, at each 10-fold cross validation iteration,
the dataset is randomly permuted and subdivided in 10 folds. Every fold is used as a cross-
validation fold, while the remaining are use to train the SVM. The process is repeated 100
times. Finally, we define the standard error as

σ̂X =
√
n ·
√∑n

i=1(x− x̄)2

n
=

√√√√ n∑
i=1

(x− x̄)2,

where x̄ is the mean accuracy obtained in a cross-validation iteration with n samples
X = {x1, x2, . . . , xn}. Our experimental setup and evaluation strategy are inspired to the
protocol [52] from which we imported the proper setting of parameters for graph kernels
and classifier.

Table 4.2 shows the average classification accuracy (± standard error) of the different
kernels on the selected datasets. The first part of the table shows the accuracy computed
using the datasets after the pruning operation mentioned before. These measurements are
achieved just by pairwise kernel with respect to whole set of graphs. We can observe that
our HKS graph kernel is quite competitive in the majority of the datasets, even without
using information from direct correspondences between each pairs of graphs. The second
part of the table (after the double line) shows the classification accuracy achieved after the
application of the permutations yielded by the compared graph matching methods. More
precisely, given Pij the permutation matrix which defines the correspondences of the
graph i with respect to graph j, we compute the value of the kernel between the permuted
graph i and the graph j. In particular, HKS-SM shows the classification accuracy obtained
permuting the graphs using the Spectral Matching results, while HKS-TSM shows the
results obtained using the proposed method which has been initialized using Spectral
Matching. The results show that the proposed method is competitive and outperform the
other graph matching algorithms in almost all the datasets. COIL and PTC datasets are
an exception, since HKS-RRWM performs slightly better with respect to our proposal.
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Table 4.2: Classification accuracy (± standard error) on unattributed graph datasets. Respec-
tively, HKS is the Heat Kernel Signature [162], WL is the Weisfeiler-Lehman kernel [151], GR
denotes the graphlet kernel computed using all graphlets of size 3 [153], SP is the shortest-path
kernel [18], and RW is the random walk kernel [79]. The second part of the table collects the accu-
racy of HKS kernel employing the permutations from Spectral Matching (SM) [89] and Reweighted
Random Walks Matching (RRWM) [30] with respect to the transitive versions produced by our
method (denoted by the prefix T). For each kernel and dataset, the best performing kernel is high-
lighted in italic, while the bold highlights the maximum just considering data i n the second part
of the table for each pair of graph matchings (non transitive w.r.t. transitive).

Kernel MUTAG PPI PTC COIL Reeb ENZYMES SHOCK
HKS 80.5 ± 0.2 63.6 ± 0.7 50.2 ± 0.5 87.8 ± 0.8 46.6 ± 0.6 56.9 ± 0.6 46.8 ± 0.3
WL 78.3 ± 0.2 70.4 ± 0.8 67.1 ± 0.6 70.6 ± 0.7 68.7 ± 0.4 55.4 ± 0.6 35.0 ± 0.2
SP 83.3 ± 0.2 58.5 ± 0.7 50.5 ± 0.6 86.7 ± 0.6 68.1 ± 0.4 52.2 ± 0.5 39.0 ± 0.3
RW 80.1 ± 0.2 48.5 ± 0.8 41.6 ± 0.6 65.2 ± 0.7 49.8 ± 0.6 13.6 ± 0.3 1.7 ± 0.1
GR 81.5 ± 0.2 30.3 ± 0.5 51.6 ± 0.6 87.1 ± 0.5 22.7 ± 0.6 47.0 ± 0.6 26.1 ± 0.3

HKS-SM 69.0 ± 0.3 60.9 ± 0.8 49.4 ± 0.6 84.8 ± 1.0 45.7 ± 0.6 49.1 ± 0.6 39.4 ± 0.4
HKS-TSM 80.7 ± 0.2 64.2 ± 0.8 50.1 ± 0.6 87.0 ± 0.9 46.2 ± 0.5 57.2 ± 0.7 46.7 ± 0.3
HKS-RRWM 79.8 ± 0.2 60.4 ± 0.9 52.1 ± 0.5 87.3 ± 0.9 44.5 ± 0.6 44.9 ± 0.6 25.7 ± 0.2
HKS-TRRWM 80.5 ± 0.2 64.3 ± 0.8 50.9 ± 0.5 86.1 ± 0.9 44.8 ± 0.6 45.5 ± 0.6 46.4 ± 0.3

Note that the first part of the table should be treated by the reader just as a reference of the
accuracies that the state-of-the-art kernel methods achieve. Indeed, these kernels work
independently from the alignment of the graphs to be classified.

On the whole, we highlight the evident aspect that best registered performances are
mainly related to kernels which do not exploit of structural information, i.e., the mea-
surements organized in the first part of Table 4.2. There would have been expected
to observe an opposite behaviour actually, but in particular with classification tasks the
discrimination by topologies cannot reflect properly the ground-truth as well, which is
just a handmade-assigned attribute (not a vertex-permutation). Therefore, supporting this
deeper observation such divergence has less relevance in the overall evaluation of our
work. After that, the main goal of our experimental results was the comparison between
the proposed aligned methods with respect to the compared ones, namely Spectral Match-
ing and Reweighted Random Walks Matching. In particular, we wanted to proof that our
transitive approaches outperformed the performances by the current state of the art in
graph matching methods.

Nevertheless, reasoning just about the plain gain in classification accuracy derived
by our method it may lead to erroneous conclusions since the observed measures are
rough averages actually. With the purpose to support more faithfully the discussion of
our results, we performed the well-known Student’s t-test to determinate if the difference
between two means is statistically significant, i.e., if we can reject the null hypothesis that
the means related to the unknown probability distributions which yield to the measured
performances (i.e., those in second part of the Table 4.2) are equal for the original graph
matching technique µGM and related transitive version through our method µTGM . More-
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Table 4.3: Details of t-tests performed to compare the classification accuracy means from the
second part of the Table 4.2 with respect to the transitive kernels on (a) Spectral Matching and
(b) Reweighted Random Walks Matching for each datasets. The null hypothesis H0 states the
accuracy means come from independent random samples with normal distributions which have
equal means, while the alternative hypothesis is the means from our transitive kernels are greater
than normal performances (left-tailed test). We reject H0 at the significance level α = 5% and
assuming that the unknown variances from the two distribution are equal. Since the results are
means from 100 trials, the degrees of freedom are 198.

Dataset p-value Rejected H0

MUTAG 0.000 Yes
PPI 0.002 Yes
PTC 0.184 No
COIL 0.059 No
Reeb 0.284 No
ENZYMES 0.000 Yes
SHOCK 0.000 Yes

(a) Kernel means for HKS-SM versus HKS-
TSM

Dataset p-value Rejected H0

MUTAG 0.013 Yes
PPI 0.002 Yes
PTC 0.943 No
COIL 0.829 No
Reeb 0.367 No
ENZYMES 0.205 No
SHOCK 0.000 Yes

(b) Kernel means for HKS-RRWM versus HKS-
TRRWM

over, once we have established the means are different we impose the desirable alterna-
tive hypothesis that the mean of our method is greater than the non transitive multi-graph
matching µTGM > µGM as well. In Table 4.3 we collected the final decisions of all the
possibles t-tests for each datasets dividing the comparisons related to the kernels by (a)
Spectral Matching and (b) Reweighted Random Walks Matching. The overall conclusions
are quite in agreement with respect to our initial comments. Sure enough, the cases where
we can reject the null hypothesises are just featured by a significant divergence in the
average classification accuracy. Furthermore, we can observe that PTC, COIL, and Reeb
are quite difficult datasets for both our two methods (a) and (b). In general, the failures of
some tests do not reveal necessarily that our method is worse with respect to the original
techniques, but just the accuracies are statistically similar. Indeed, we encountered such
trend when the classification results are aligned (and especially not under) the baseline
performances.

4.5 Dimensionality Analysis
In this section we present a detailed analysis to investigate further about the dynamics
and dimensionality capabilities of our method. Considering a dataset of N graphs and n
nodes, the computation of the kernel between two instances Gi and Gj can be divided in
three different steps, whose time and space complexity are formalised as follows.

1. Initial Permutations. According some external graph matching solver with con-
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stant cost O(κ(n2×n2)) to generate the pairwise solution (whose order is justified by
the cost to operate on the n2 × n2 affinity matrix), the whole computation would
require O(N2κ(n2×n2)) or O

((
N
2

)
κ(n2×n2)

)
without considering the redundant con-

figurations.1 The maximum magnitude in space required for a couple of graphs
is O(n4), since we need to consider the huge affinity edge matrix, hence whole
process requires at most O(N2n4) or O

((
N
2

)
n4).

2. Transitive Alignments. The computation of a relaxed alignment Xi at time t re-
quires a cost of O(Nκ(n×n)), hence the whole process has O(tN2κ1(n×n)). Consid-
ering the discretization cost of an alignment as O(κ2(n×n)), the whole time com-
plexity is O(tN2κ1(n×n) + Nκ2(n×n)) = O(tN2κ(n×n)). This elaboration requires
mainly all the initial permutation matrices and the alignments, therefore the space
is O(N2n2 +Nn2) = O(N2n2).

3. Graph Kernel. For each graph Gi is required three steps, the constant cost to
compute the Laplacian O(κ1(n×n)), the SVD decomposition O(κ2(n×n)), the fea-
ture matrix Fi of m HKS feature vectors O(mnκ3(n)), hence we can denote such
overall cost as O(κ1(n×n) + κ2(n×n) +mnκ3(n)) = O(κ123(n×n)) with the general
assumption that holds m ≤ n. Finally, considering the time for the dot product of
two feature matrices as O(κ4(n×m)) and the summation of the kernel values n, the
final cost to compute the whole kernel value spends O(2κ123(n×n) + κ4(n×m) + n),
which can be expressed to O(κ(n×n)). In terms of space complexity this task for
one graph requires the structures to store the SVD decompositions O(n2 + n) and
the HKS featuresO(nm), hence for the assumption onm the memory used is in the
order ofO(n2 +n+nm) = O(n2). Finally, there is required to store the dot product
O(n) of two feature matrices to produce the final kernel value O(1), therefore the
overall space is O(2n2 + n+ 1) = O(2n2).

We need to highlight the operative dependencies of these fundamental tasks to under-
stand better the implications in our method. The computation of the initial solution at first
step (1) has to be considered always an independent problem. Therefore, we are forced to
import the cost of such external graph matching technique. The second step (2) represents
the fundamental process in our algorithm, whose cost is related to dynamics of the power
iteration. There is not a reliable way to predict a priori the time t, since this behaviour
depends strictly by the input data, which are all the permutations derived from the external
graph matching solver. The impact of our Graph Kernel (3) could be retained marginal
from an internal point of view, since it is just a static procedure with a constant cost.
Considering a complete execution to compute whole kernel matrix, the overall time com-
plexity isO

(
N2κ1(n2×n2) + tN2κ2(n×n) +N2κ3(n×n)

)
, but if we consider that the number

of iterations is limited always to a maximum threshold, the final time could be roughly
1We introduce the shortcut notation κ(n1×n2) just to express in very general terms some constant com-

putational time that is spent in structures of magnitude n1 × n2, as for example matricial product, norm,
black-box algorithms and so on; denoting with k the scalar cost of an operation, another possibly interpre-
tation could be O(kn1n2).
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approximated to O
(
N2κ1(n2×n2)

)
. In other terms, the real weight of the whole process

is mainly dominated by the complexity of the external graph matching solver, which in-
volves intuitively the final space complexity O(N2n4 + N2n2 + 2n2N2) = O(N2n4) as
well. Moreover, we observe that the order of nodes n has more impact with respect to the
number of graphs N in the dataset.

From the consideration as above we reveal two fundamental weak points in our method.
First, we cannot control completely the cost of the computation, which is dominated by
the external pairwise graph matching technique. After that, we designed our work just
as a rectification process [123] to introduce cycle consistency to an initial independent
solution. Second, as concern our graph kernel we can realize that even to compute one
measure between two graphs only, there is involved always whole weight of the problem
to solve the related pair of transitive alignments. This aspect is very different in com-
parison to other graph kernels that do not require additional work beyond the couple of
graphs.

For these main reasons the employment of our method on large-scale data becomes
very critical, both in terms of computational time and data storage. Nevertheless, since
our approach discriminates by factorizing permutations solving a common set of transitive
alignments (differently by means of structures as other kernel methods) we guess that,
with the purpose to maintain the global consistency on big data, the accuracy should be
always led to saturate (or downgrade) once reached a certain dimensionality.

4.6 Conclusion
In this chapter we investigated the use of multi-graph matching techniques in the context
of graph kernels. By forcing the correspondences between the structures under study to
satisfy transitivity, we obtain an alignment kernel that, not only is positive definite, but
also makes use of more reliable locational information obtained through the enforcement
of global consistency constraints. We proposed a general framework for the projection of
(relaxed) correspondences onto the space of transitive correspondences, thus transform-
ing any given matching algorithm to a transitive multi-graph matching approach. The
resulting transitive correspondences were used to provide an alignment-based kernel that
was able to both maintain locational information and guarantee positive-definiteness. Ex-
perimental evaluation shows that the projection onto the transitive space almost invariably
increases the classification performance of the alignment kernel, often taking it to a per-
formance level that is at least statistically equivalent to the best performing well-tuned
graph kernels present in the literature.



5
Dense Multi-view Homography

Estimation and Plane Segmentation

When a planar structure is observed from multiple views, the projections of its corre-
sponding 3D points on each image are related by a homography. Its estimation is a key
step in many computer vision tasks where either the rigid motion between views or a
per-pixel image correspondence is sought. The vast majority of multi-view homography
estimation techniques relies on matching a sparse set of point-to-point correspondences to
establish a connected graph in the camera network. This track creation step is critical to
ensure that the following bundle adjustment can estimate a globally optimal alignment in
which the error is diffused coherently on each pairwise homography. On the other hand,
erroneous or short tracks often cause misalignments among the views.

We propose an optimization technique to simultaneously recover a transitively con-
sistent network of planar homographies between multiple views together with a segmen-
tation of the pixels comprising the observed plane. Our method acts on a per-pixel basis
to avoid a preliminary multi-view sparse feature matching step. Similarly to bundle ad-
justment, the error is diffused so that each homography in the view graph is transitively
consistent with the others. The effectiveness of the proposed approach is evaluated in
synthetically generated scenes and real-world scenarios.

5.1 Introduction

Given the ubiquitous nature of planar surfaces in urban and man-made environments,
the estimation of homographies giving an image-to-image mapping of plane projections
is at the core of many computer vision techniques. These are for instance: augmented
reality [130], multi-camera [178] or camera-projector [125] calibration, metric rectifica-
tion [92], and ground-plane recognition for object detection and tracking [7]. When the
planar surface is at infinity (i.e., views are related by a pure rotation around the opti-
cal centre), such mapping can be used in panoramic stitching [24] to create wide-angle
images with normal lenses.

The majority of homography recovery approaches resolve the estimation by spatially
matching a set of geometric primitives (points, lines or conics) between the images [110,
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(a) (b)

(c) (d)

Figure 5.1: (a,b) Synthetically generated views of a scene composed by a plane and two objects.
(c) Image (b) warped with the plane homography computed by our algorithm. (d) The recovered
plane segmentation (non-plane points are marked in red).

155]. Approaches that operate globally on the image have also been proposed [86], but
are effective only if the observed planar structure fills the entire image with no additional
clutter. Our method falls in this category as it operates pixel-wise among the images, but
we overcome such limitation by estimating a mask that filters the pixels outside the plane
during the estimation (see Figure 5.1).

More recently, great effort has been spent in the study of the estimation of a set of
interdependent homographic transformations. These can be generated by a multi-view
observation of the same planar scene or when the scene is composed by multiple planar
objects. In the former case, care has to be taken to enforce that each pairwise transfor-
mation is transitively consistent with the other. This ensures that the estimation error is
evenly distributed across the views and reflects the fact that the scene is not changing over
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time. This problem is usually solved with a bundle adjustment approach that globally
minimizes the feature matching error with respect to a set of homographies transforming
each image into a common (unknown) reference frame [176]. In the latter, when multiple
planes are simultaneously estimated, additional constraints have to be imposed to ensure
that all the homographies are mutually consistent with the rigid motions performed by the
camera [194]. As recently claimed in [166], this is still an open problem that will require
to find novel ways to enforce consistency between the recovered homographies and the
epipolar geometry involved.

In this chapter we propose a pixel-based approach to recover a transitively consistent
set of pairwise homographies between multiple views of a single plane. Together with
the homographies, we estimate a plane segmentation mask for each image to mark the
plane pixels. The advantages are threefold. First, we do not rely on the identification of
a sparse sequence of feature matches over multiple images (i.e., tracks). This may rep-
resent a non-trivial step in scenes for which the visibility of a 3D scene points is limited
to a small subset of the images, or where changes in view-direction alter the appearance
of the feature points significantly. Second, we always operate on a pair-wise bases (for
both homography estimation and plane segmentation) while enforcing multi-view con-
sistency among the iterations. This increases the performances w.r.t. bundle adjustment
approaches since each pairwise step can be efficiently parallelized. Finally, we obtain
more accurate results than sparse methods since every image pixel contributes to the esti-
mation.

5.2 Preliminaries

We assume to have a set of I1, . . . In images of a scene in which at least one plane Π is

visible. For each image pair (Ii, Ij), there exists a 3×3 homography matrix Hij =

hT1
hT2
hT3


mapping the projection of the 3D points of Π from Ii to Ij through the function:

Hij(x, y) =

[h1 h2]T

xy
1


hT3

xy
1

 . (5.1)

If the camera calibrations Ki,Kj and Π are known, Hij can be expressed as
Hij = Kj(Rij − tnT

d
)K−1

i where (Rij, t) is the relative motion between the cameras, n
is the plane normal and d is the plane distance w.r.t. the i-th view.

The homographic mapping (5.1) is subject to 8 degrees of freedom since Hij describes
the same transformations up to any non-zero scale factor. To resolve the unknown scaling,
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in our method we restrict each homography to be part of the special linear group SL3 with
respect to standard matrix multiplication by normalizing Hij so that det(Hij) = 1.

When we consider a camera network topology in which the view graph contains
cliques with cardinality n ≥ 2, the set of relative pairwise homographies are transitively
consistent if

HijHjk = Hik ∀i, j, k = 1, . . . , n. (5.2)

This implies that the transformation from i to j followed by the transformation from j
to k leads to the same result that the direct transformation from i to k. This is a crucial
condition that raises naturally by the fact that all the planar mappings are related to the
common scene reference frame.

5.3 Combined Homography and Plane Segmentation Re-
covery

Our goal is to find the set of homographies H̄ = {Hij} ∀i, j = 1 . . . n with respect to the
observed plane Π. Since the scene may also contain other elements than the plane, for
each image Ii we introduce a plane mask function χi(x, y) : R2 → {0, 1} that classifies
each pixel (x, y) as being part or not of a plane (χi(x, y) = 1 in the former case, and
χi(x, y) = 0 in the latter).

We pose the problem as an energy minimization of the functional:

E =
∑
i

∑
j

∫
x

∫
y

χ̂i(x, y|H̄)χ̂j
(
Hij(x, y)|H̄

)
r2
ij(x, y) dxdy (5.3)

with respect to H1...n,1...n, where

r2
ij(x, y) =

(
Ii(x, y)− Ij

(
Hij(x, y)

))2

is the squared difference between Ii and Ij warped through Hij , and χ̂i(x, y|H̄) is an es-
timator of χi conditioned by H̄ . Each Hij is also constrained in SL3 and to be transitively
consistent with the others as stated in (5.2).

To optimizeE we assume to get an initial estimate of H̄(0) at time t = 0 and iteratively
compute H̄(t+1) approximating χ̂i(x, y|H̄) in (5.3) with χ̂i(x, y|H̄(t)).

In practice, we iteratively minimize the functional by alternating the following steps:

1. Optimize each pairwise homography assuming the plane masks estimators to be
known;

2. Synchronize the transformations so that (5.2) is satisfied;

3. Recompute the plane masks estimators conditioned to the currently estimated ho-
mographies.

We iterate until the absolute difference between H̄(t+1) and H̄(t) is less than a threshold
ε. In the following sections we describe each step in detail.
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5.3.1 Homography Optimization
In the homography optimization step we perform a projected gradient descent over the
functional (5.3) so that the special linear group constraint is preserved. At each step, we
compute the gradient of E with respect to each component hiju=1...3,v=1...3 of Hij before
projecting it into the tangent plane of SL3.

In the specific, at each iteration we compute the gradient δHijE as:

dE

dhijuv
=

∫
x

∫
y

χ̂i(x, y|H̄)rij(x, y)

·
[
rij(x, y)∇χ̂j

(
Hij(x, y)|H̄

)
−2χ̂j

(
Hij(x, y)|H̄

)
∇Ij

(
Hij(x, y)

)]T dH(x, y)

dhijuv
dxdy,

where

dH(x, y)

dhijuv
=

1

λ


1 0 − 1

λ
hT1

xy
1


0 1 − 1

λ
hT2

xy
1



⊗ [x y 1]

with λ = hT3

xy
1

 and the image gradients∇Ij numerically approximated with central

finite differences.
Then, we enforce the SL3 constraint C = det(Hij)− 1 = 0 by projecting δHijE in its

tangent space:

δ
‖
HijE = δHijE −

δHijC
T δHijE

δHijCT δHijC
δHijC.

After updating each Hij with a step in the opposite direction of δ‖HijE, the determi-
nants of the homographies might drift away slightly from the unitary value. To fix that,
after each step we renormalise each transformation dividing Hij by 3

√
det(Hij).

5.3.2 Transformation Synchronization
After the previous step there is no guarantee that the transformations are transitively con-
sistent since every homography Hij is independently updated. To enforce this consis-
tency, we use the approach recently presented in [13] to find the optimal (in least squares
sense) common reference frame Hi∗ so that, if we update all the transformations with
respect to that frame
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Hij = Hi∗H
−1
j∗ ∀i, j = 1 . . . n,

we obtain a synchronized network of views. Note that to let all the Hi∗ exist it is
crucial to fix the scaling issue of the homography matrices. So, it is mandatory to constrain
all the transformations in SL3 before performing the synchronization step.

5.3.3 Plane Mask Recovery

We used a multi-classifier fusion approach [136] to implement the plane mask estimator
χ̂i(x, y|H̄(t)). The idea is that, when we compare an image Ii with the warped Ij , we
expect a good match for the pixels that are actual projections of the 3D plane points and
an inconsistent behaviour with the others. Driven by this assumption, for each image pair
(i, j) we classify plane/non-plane points with a binary segmentation of the aligned image
difference:

Erij(x, y) = e
−λ
(
Ii(x,y)−Ij

(
H

(t)
ij (x,y)

))2

, (5.4)

where λ is a parameter to tune the plane classifier sensitivity. The segmentation of
each Erij is performed via Graph-Cut [71] to obtain a set of binary images which are
described as Ωij : R2 → {0, 1} that express the plane visibility of each pixel in Ii consid-
ering the photometric consistency induced by Ij . All the pairwise Ωij are then convolved
with a 2D gaussian kernel G and accumulated as votes to estimate the visibility of each
image pixel with respect to all the other images:

χ̂i(x, y|H̄(t)) =

{
0 if

∑
i

∑
j G ∗ Ωij < v

1 otherwise
(5.5)

with a parameter v that thresholds the number of votes that each pixel must have to be
considered part of the plane.

5.3.4 Implementation Details

Since our method works on a per-pixel basis, care must be taken in the remapping opera-
tion between two images. Indeed, the mapping Ij

(
Hij(x, y)

)
is essentially a resampling

of the image Ij at points Hij(x, y) which would possibly fall in between the samples of
the regular image lattice of Ij . The projective distortion induced by the required homo-
graphic transformation can be so strong that, in practice, a simple bilinear interpolation
may not produce a good quality remapping. For this reason, we implemented a mip-
mapping strategy in which the original image is repeatedly downsized by a factor of two
to create a stack of images with a decreasing level of detail: 1 for full size image, 2 for
half-size, 3 for 1

4
and so on. We define the level of detail associated to a pixel (x, y)
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Figure 5.2: Two example shots of our synthetically generated scene. The homographies are eval-
uated with respect to the big plane at the bottom of the two objects.

warped through a homography H as:

lodH(x, y) = log
(
|JH(x, y)|

)
,

where | · | is the determinant operator and JH is the jacobian of H(x, y). Finally, to
resample an image, we use trilinear filtering to linearly interpolate the results of bilinear
filtering performed at the two mip-map levels nearest to the level of detail of each pixel.

Finally, it is worth to mention that there is a trivial solution when χi(x, y) is 0 ev-
erywhere. We decided to avoid a regularization term for χi for two reasons. First, we
assume that the initial configuration given by sparse matching is close enough to a local-
optimum to give a reasonable result. Second, it is difficult to constrain the extent of the
planar region for any generic scene without inevitably affecting each Hij(x, y). With
these premises, our method should be considered as an iterative refinement of an initial
solution provided by sparse matching instead of a global energy minimization technique.

5.4 Experimental Validation

We tested the performance of our method quantitatively with a set of experiments on syn-
thetically generated sample scenes. This allow us to get the ground-truth homographies
between all the views together with the exact segmentation of all plane pixels. In our tests,
we measure the accuracy of each pair-wise homography by generating a regular grid of
200 × 200 points and computing the squared error between each point transferred with
the estimated homography and the ground truth. Then, all the squared errors are averaged
among all the possible view pairs to compute the square root and obtain the final RMS er-
ror. Moreover, we presented qualitative tests with real world datasets to show the effective
improvement in the optimized homography derived with the proposed method. Finally,
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Figure 5.3: (a) Homography recovery comparison between the standard RANSAC approach, Visu-
alSFM and our algorithm for all the synthetically generated datasets. (b) Homography accuracy
recovered by our algorithm varying the initial pairwise homography errors.

we combined quantitative and qualitative validations for both synthetic and real-world
datasets by measuring the visual sharpness between original and transformed images.

We highlight that to guarantee the practicability of our process we need to operate with
small motion datasets, due to the weak reference point set which arises working onto a
single common plane spanned in multiple views [194]. Moreover, even if we can evaluate
our method by applying different baseline data conditions, we are forced to skip the direct
comparison with alternative schemes in literature for their incompatibility with respect to
the special strategy treated here.

5.4.1 Synthetic Experiments

We generated a set of 5 different scenes comprising a single textured plane and two float-
ing objects to simulate clutter and distracting elements that can be found on a real sce-
nario. We rendered each dataset simulating a camera with resolution of 800× 600 pixels,
known intrinsics (800px focal length and principal point at the image centre) and a vari-
able camera pose to compose a fully-connected network of 6 views. For each rendering,
a per-pixel mask of the visible portion of the plane was generated as a plane segmenta-
tion mask ground truth. Dataset 1 was generated simulating a plane being at the base of
a turntable so that the scene is imaged from 6 different points of view disposed evenly
around the centre. This is the ideal condition for any Structure-from-Motion pipeline as
it gives an optimal track extension and enough baseline for triangulation. Dataset 2 sim-
ulates a pure translational movement of a camera moving forward with a vector oriented
slightly upward its optical axis. In Dataset 3 we tilted the plane around its x-axis (varying
the plane pitch w.r.t. the camera) and, finally, in Dataset 4 we simulated a fixed camera
with varying focal length ranging from 800 to 950 pixels. As a reference, we have also
generated the “No Clutter” dataset with the same poses of Dataset 1, but with the plane as
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the only visible object in the scene. In all the tests we set λ = 0.003, v = n(n−1)
2

and the
smoothing kernel G with σ = 0.5.

We first compared the homography recovery accuracy of our method with a base-
line standard approach (SIFT feature matching and RANSAC inlier selection) and the
structure-from-motion pipeline VisualSFM [188]. In the latter, we tested both the uncali-
brated and the calibrated camera case (named SFM1 and SFM2 respectively in the plots),
to obtain a set of camera poses and sparse point cloud. To recover the homographies,
we fitted a plane to the point cloud with care to not include any outlier deriving from the
floating objects. Additionally, we tested the calibrated camera case with the same point
matches used to initialize our method (SFM3).

In Figure 5.3(a) we observe that our method gives better results than the alternative
sparse approaches in terms of final RMS error. SFM fails to converge to a valid solution
for Dataset 2 and 3 since there is not enough baseline between the views to triangulate
the plane points. As expected, the structure-from-motion approach gives its best results
in Dataset 1 that are comparable with ours when a calibrated camera is given. However,
our method do not use this assumption and hence we imagine a broader applicability. It is
also worth to be noted that our method exhibits less variability (lower standard deviation
in multiple repetitions of the experiment) with respect to the other methods.

To test the sensitivity of our method to the initial conditions we perturbed the ground
truth homographies of Dataset 1 with zero-mean gaussian random noise with a standard
deviation σ = 10−3 . . . 10−2 and plotted the final homography RMS with respect to the
initial

(
Figure 5.3(b)

)
. In all the tests we observed a consistent decrease of the homog-

raphy error which is particularly relevant when the initial RMS error is less than 2.5 px.

(a) (b)

Figure 5.4: Example of the initial (a) and final (b) plane segmentation for a view of the Dataset 3.
Note how the refined homographies allow a better classification of the plane points (in this case,
the recall increases while exhibiting an almost constant precision).
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Figure 5.5: Precision and recall performances of the plane point segmentation for Dataset 2 (left
column) and Dataset 3 (right column) expressed as values (top row) and curves (bottom row) per
iteration.

This is expected since we operate on a pixel basis that requires the starting condition be-
ing not too distant from the optimal condition. Nevertheless, an initial error of about 3
pixels is easily achievable with any non sophisticated feature matching strategy.

To evaluate the quality plane segmentation we compared the obtained plane mask
with the ground truth considering our method as a binary classifier (plane/non-plane) and
computing the aggregated precision/recall among all the views during the optimizations.
In Figure 5.5 we show an example of the precision and recall for Dataset 2 and 3 (re-
spectively for the columns), which are plotted as values and curves (respectively for the
rows) in 40 iterations. In both datasets the recall increases with the iterations since the
refined homographies improve accuracy of the plane classifiers. Indeed, we can visually
observe this behaviour on Figure 5.4(a) and Figure 5.4(b) looking how the classified non-
plane points (in red) change between the first and last iteration. Finally, another aspect we
realize from precision/recall experiments consists that the maximum accurateness of the
plane classifiers are reached very fast actually, i.e., more or less beyond the 5th iteration.
This is not a surprising behaviour, but it suggests that our optimization can require few
time to be solved properly.
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5.4.2 Qualitative Evaluation

We show some qualitative example of the results obtainable with our method on some
real-world scenarios. In the first two rows of Figure 5.6 we show the results on a dataset
composed by 5 different views of some object disposed on a flat surface whereas in the
last two rows we examine a subset of the “castle-P19” scene of the dataset presented
in [161]. In the first column we rendered one of the views of the network with the plane
segmentation superimposed in red. In both the cases the object lying in front of the
plane get correctly discarded as they are not coherent with the remapping induced by the
homography. Additionally, the results after the optimization (2nd and 4th rows) exhibit
less false negatives for the better alignment of the views. In the last 3 columns we show
two views of the scenes warped by the estimated homographies and rendered in different
colour channels to enhance the alignment errors. After the optimization we note a better
alignment that is particularly visible in high contrast areas (in the last column we show a
closeup of some regions).

Figure 5.6: Qualitative evaluation of the results obtained with the proposed method on two dif-
ferent real-world cases. First two rows: dataset composed by some objects lying on a flat surface.
Last two rows: Image sequence from a subset of the “castle-P19” dataset. 1st and 3rd row show
the starting point of the optimization obtained via sparse feature matching, 2nd and 4th row shows
the results after the optimization.
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5.4.3 Visual Sharpness Evaluation

We complete the evaluation of the proposed method measuring concretely the visible
accurateness of the optimized and synchronized homographies with respect to the related
transformed images. In other terms, we aim to quantify the visual quality which a human
eyes can infer by itself as we introduced in section 5.4.2. Our strategy consists to evaluate
the overlapping of the image Ii and its reconstruction derived from another image Ij by
applying the homography Ij

(
Hij(x, y)

)
= Ij→i(x, y). This alignment can be represented

by the averaged image between the original and transformed instances as

1

2

(
Ii(x, y) + Ij→i(x, y)

)
χ̂i(x, y), (5.6)

which is properly cleaned by the associated mask function χ̂i(x, y). We expect that as
greater is the quality of homography Hij as bigger will be the degree of focus for the mean
image by the functional (5.6). In our experiment we used the well-known Brenner focus
measure [65], which is based on summing the squares of the horizontal first-order deriva-
tive of the pixels. This measure is largely employed in photography to quantify the focus
of objects which are contained in an image. We computed the Brenner focus measures
for each datasets we used in our experiments and considering all possible configurations
of homographies as well as the average focus values. The measurements related to the
several synthetic datasets are reported in Tables 5.1, 5.2, 5.3, 5.4 and 5.5, while those of
real-world scenarios in Tables 5.6 and 5.7. In general, we can observe that the sharpness
values in the transformed images obtained with the optimized homographies increased
considerably. Furthermore, also considering those cases where the general focus does not
improve with respect to original images, the registered absolute divergences are quite low.
Hence, considering the average values in focus for all the datasets, we can conclude that
our method provides better quality than the initial homographies.

5.5 Conclusion

We presented a novel method for the simultaneous estimation of homographies and plane
segmentation from multiple views of a planar scene. Our approach works on a pair-wise
fashion in both the homography estimation and plane segmentation but imposes multi-
view constraints by transformation synchronization and multi-classifier fusion. This guar-
antees that each homography in the view graph is transitively consistent with the others
while still allowing an high-grade of parallelization of the optimization process which
otherwise may be unsustainable in case of a fully-connected view graph. We posed the
problem as an energy minimization acting densely (for each pixel) among the images. For
these reasons, we are not affected by the limitations of multi-view sparse feature matching
nor by the requirement of a calibrated camera. We have shown through synthetically gen-
erated data that we can effectively reduce the homography estimation error with respect
to sparse estimation techniques. Even if the plane segmentation is focused to avoid false
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positives, the obtained results are good enough to provide a good background-foreground
segmentation for panoramic or mostly planar scenes.
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From/To Initial Optimized Improved
2→ 1 81.65 77.54 No
3→ 1 75.14 73.93 No
4→ 1 70.57 69.87 No
5→ 1 77.54 76.51 No
6→ 1 69.66 69.19 No
1→ 2 75.11 82.83 Yes
3→ 2 86.18 91.57 Yes
4→ 2 80.70 86.07 Yes
5→ 2 81.55 87.29 Yes
6→ 2 77.16 84.42 Yes
1→ 3 116.24 117.06 Yes
2→ 3 118.97 117.80 No
4→ 3 108.37 108.85 Yes
5→ 3 106.25 107.44 Yes
6→ 3 117.90 119.06 Yes
1→ 4 114.41 113.60 No
2→ 4 115.73 119.70 Yes
3→ 4 120.01 121.72 Yes
5→ 4 109.55 109.74 Yes
6→ 4 107.77 107.22 No
1→ 5 116.03 111.89 No
2→ 5 113.12 120.17 Yes
3→ 5 121.29 122.36 Yes
4→ 5 124.70 124.76 Yes
6→ 5 113.97 109.98 No
1→ 6 100.82 100.45 No
2→ 6 104.90 110.11 Yes
3→ 6 121.50 124.25 Yes
4→ 6 118.70 121.76 Yes
5→ 6 124.36 127.65 Yes

Mean values: 102.33 103.83 Yes

Table 5.1: Brenner focus measures between initial and optimized homographies for “Synthetic
Dataset 1”.
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From/To Initial Optimized Improved
2→ 1 202.21 200.29 No
3→ 1 185.61 184.45 No
4→ 1 175.56 176.94 Yes
5→ 1 166.42 167.14 Yes
1→ 2 196.38 201.58 Yes
3→ 2 184.32 187.75 Yes
4→ 2 175.06 180.35 Yes
5→ 2 167.40 170.23 Yes
1→ 3 167.23 190.75 Yes
2→ 3 171.69 190.99 Yes
4→ 3 169.56 182.88 Yes
5→ 3 166.54 170.80 Yes
1→ 4 176.89 177.88 Yes
2→ 4 182.28 179.29 No
3→ 4 182.97 174.38 No
5→ 4 182.65 179.17 No
1→ 5 141.79 152.76 Yes
2→ 5 148.72 154.36 Yes
3→ 5 150.05 149.62 No
4→ 5 144.34 153.31 Yes

Mean values: 171.88 176.25 Yes

Table 5.2: Brenner focus measures between initial and optimized homographies for “Synthetic
Dataset 2”.
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From/To Initial Optimized Improved
2→ 1 150.40 162.32 Yes
3→ 1 164.63 163.57 No
4→ 1 158.60 166.84 Yes
5→ 1 162.61 167.34 Yes
6→ 1 164.26 167.17 Yes
1→ 2 197.87 188.15 No
3→ 2 200.33 191.56 No
4→ 2 195.57 197.41 Yes
5→ 2 197.32 193.77 No
6→ 2 192.45 194.19 Yes
1→ 3 170.49 173.21 Yes
2→ 3 154.71 172.46 Yes
4→ 3 163.88 178.48 Yes
5→ 3 167.52 176.15 Yes
6→ 3 169.07 175.70 Yes
1→ 4 180.31 175.50 No
2→ 4 170.60 174.82 Yes
3→ 4 178.33 178.80 Yes
5→ 4 188.21 182.97 No
6→ 4 186.73 183.92 No
1→ 5 162.45 159.73 No
2→ 5 148.82 158.04 Yes
3→ 5 158.20 159.92 Yes
4→ 5 160.60 165.32 Yes
6→ 5 180.61 178.25 No
1→ 6 114.01 116.12 Yes
2→ 6 106.33 111.53 Yes
3→ 6 110.73 113.09 Yes
4→ 6 109.60 115.65 Yes
5→ 6 117.92 121.83 Yes

Mean values: 162.77 165.46 Yes

Table 5.3: Brenner focus measures between initial and optimized homographies for “Synthetic
Dataset 3”.
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From/To Initial Optimized Improved
2→ 1 182.58 186.83 Yes
3→ 1 176.41 182.44 Yes
4→ 1 168.04 178.29 Yes
5→ 1 158.67 166.70 Yes
6→ 1 155.65 162.83 Yes
1→ 2 192.53 188.92 No
3→ 2 185.00 187.22 Yes
4→ 2 175.62 182.06 Yes
5→ 2 165.60 170.71 Yes
6→ 2 162.05 166.87 Yes
1→ 3 199.68 198.22 No
2→ 3 197.01 198.04 Yes
4→ 3 188.19 198.32 Yes
5→ 3 181.65 185.80 Yes
6→ 3 176.43 181.75 Yes
1→ 4 203.17 194.51 No
2→ 4 200.65 194.63 No
3→ 4 196.55 196.17 No
5→ 4 187.98 187.90 No
6→ 4 185.91 184.86 No
1→ 5 200.31 198.77 No
2→ 5 201.04 199.26 No
3→ 5 200.82 199.83 No
4→ 5 193.96 200.52 Yes
6→ 5 194.43 195.96 Yes
1→ 6 194.94 191.73 No
2→ 6 195.02 192.29 No
3→ 6 192.28 192.81 Yes
4→ 6 189.57 193.79 Yes
5→ 6 189.35 189.70 Yes

Mean values: 186.37 188.26 Yes

Table 5.4: Brenner focus measures between initial and optimized homographies for “Synthetic
Dataset 4”.



90 5. Dense Multi-view Homography Estimation and Plane Segmentation

From/To Initial Optimized Improved
2→ 1 169.74 168.91 No
3→ 1 157.75 164.37 Yes
4→ 1 160.58 164.55 Yes
5→ 1 169.53 169.26 No
6→ 1 178.79 177.69 No
7→ 1 177.57 178.42 Yes
1→ 2 177.20 181.94 Yes
3→ 2 182.87 190.85 Yes
4→ 2 170.79 175.97 Yes
5→ 2 189.62 188.56 No
6→ 2 181.51 187.15 Yes
7→ 2 190.97 191.54 Yes
1→ 3 180.52 180.38 No
2→ 3 202.39 196.74 No
4→ 3 187.25 185.90 No
5→ 3 189.78 186.40 No
6→ 3 183.50 185.61 Yes
7→ 3 194.91 192.67 No
1→ 4 195.89 198.59 Yes
2→ 4 199.66 195.85 No
3→ 4 201.56 201.25 No
5→ 4 201.72 202.46 Yes
6→ 4 190.70 196.11 Yes
7→ 4 199.43 197.45 No
1→ 5 258.89 258.78 No
2→ 5 264.32 263.19 No
3→ 5 251.75 256.51 Yes
4→ 5 257.90 259.99 Yes
6→ 5 260.08 264.70 Yes
7→ 5 255.40 257.99 Yes
1→ 6 273.07 270.39 No
2→ 6 262.56 270.06 Yes
3→ 6 257.68 266.95 Yes
4→ 6 257.65 262.02 Yes
5→ 6 264.48 274.56 Yes
7→ 6 259.95 277.45 Yes
1→ 7 223.52 231.08 Yes
2→ 7 223.46 230.42 Yes
3→ 7 218.66 222.15 Yes
4→ 7 220.30 220.65 Yes
5→ 7 227.56 229.55 Yes
6→ 7 233.99 236.28 Yes

Mean values: 212.03 214.56 Yes

Table 5.5: Brenner focus measures between initial and optimized homographies for “Synthetic
Dataset No Clutter”.
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From/To Initial Optimized Improved
2→ 1 375.36 370.70 No
3→ 1 338.79 348.03 Yes
4→ 1 274.29 286.16 Yes
5→ 1 267.67 277.59 Yes
1→ 2 395.16 388.53 No
3→ 2 427.43 435.93 Yes
4→ 2 390.08 390.00 No
5→ 2 376.12 384.29 Yes
1→ 3 386.52 367.49 No
2→ 3 458.80 454.95 No
4→ 3 369.41 366.49 No
5→ 3 358.84 364.31 Yes
1→ 4 320.11 305.80 No
2→ 4 357.62 350.67 No
3→ 4 324.01 323.75 No
5→ 4 311.89 336.22 Yes
1→ 5 339.86 324.85 No
2→ 5 376.64 371.81 No
3→ 5 338.12 337.69 No
4→ 5 344.32 354.21 Yes

Mean values: 356.55 357.95 Yes

Table 5.6: Brenner focus measures between initial and optimized homographies for a subset of
the “castle-P19” dataset.
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From/To Initial Optimized Improved
2→ 1 905.02 905.24 Yes
3→ 1 860.85 861.60 Yes
4→ 1 896.59 896.49 No
5→ 1 900.95 900.50 No
6→ 1 959.59 960.32 Yes
1→ 2 1214.52 1213.13 No
3→ 2 1102.12 1102.41 Yes
4→ 2 1078.54 1081.07 Yes
5→ 2 1032.79 1032.85 Yes
6→ 2 1214.88 1211.53 No
1→ 3 1522.66 1521.15 No
2→ 3 1479.35 1479.87 Yes
4→ 3 1379.52 1380.98 Yes
5→ 3 1315.53 1315.06 No
6→ 3 1521.37 1519.37 No
1→ 4 1222.84 1219.37 No
2→ 4 1184.87 1183.27 No
3→ 4 1162.97 1162.77 No
5→ 4 1094.96 1094.83 No
6→ 4 1226.83 1223.47 No
1→ 5 1052.79 1053.10 Yes
2→ 5 999.02 999.69 Yes
3→ 5 942.26 942.85 Yes
4→ 5 993.18 992.71 No
6→ 5 940.85 939.90 No
1→ 6 534.28 535.32 Yes
2→ 6 505.69 508.30 Yes
3→ 6 480.64 482.26 Yes
4→ 6 485.26 489.07 Yes
5→ 6 485.29 487.30 Yes

Mean values: 1023.20 1025.82 Yes

Table 5.7: Brenner focus measures between initial and optimized homographies for “Objects on
surface” dataset.



6
Synchronization over the Birkhoff

Polytope for Multi-Graph Matching

In this chapter we address the problem of simultaneously matching multiple graphs im-
posing cyclic or transitive consistency among the correspondences. This is obtained
through a synchronization process that projects doubly-stochastic matrices onto a con-
sistent set. Contrary to most approaches in the literature, we do not set-up an expensive
global objective function, but rather try to enforce the consistency as a constraint on the set
of doubly-stochastic matrices, a relaxed assignment space used in several graph-matching
algorithms. We overcome the lack of group structure of the Birkhoff polytope, i.e., the
space of doubly-stochastic matrices, by making use of the Birkhoff-Von Neumann theo-
rem stating that any doubly-stochastic matrix can be seen as the expectation of a distribu-
tion over the permutation matrices, and then cast the synchronization problem as one over
the underlying permutations. This allows us to transform any graph-matching algorithm
working on the Birkhoff polytope into a multi-graph matching algorithm. We evaluate
the performance of two1 classic graph matching algorithms in their synchronized and un-
synchronized versions with a state-of-the-art multi-graph matching approach, showing
that synchronization can yield better and more robust matches.

6.1 Introduction

Graph-based representations have found widespread application in several domains due
to their ability to characterize complex systems in terms of parts and relations, capturing
the fundamental state of the system in a way that is invariant to transformations that
are irrelevant to the classification task at hand. Concrete examples include the use of
graphs to represent shapes [154], metabolic networks [76], protein structure [72], and road
maps [78]. However, this enhanced expressive power comes at the cost of the inability to
utilize most of the pattern analysis tool set directly and in general in the requirement of
using approaches that are computationally more demanding.

1In the experimental section we synchronized a third graph matching algorithm actually, but due to its
special adjustments to incorporate the proposed method we decided to mention it separately.
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Structural pattern recognition in its first 30 years of research has mainly focused its
attention to the graph matching problem as the fundamental means of dealing with struc-
tural representation and assessing their similarity [36]. In fact, with correspondences at
hand, standard similarity-based recognition and classification techniques can be imported
to the structural domain. However, graph matching is in general very computationally
demanding and can introduce bias in the inference process [172].

Alternatively, graphs can be embedded in a low-dimensional pattern space using ei-
ther multidimensional scaling, non-linear manifold leaning techniques, or by adopting the
famous kernel trick through the definition of graph kernels [18,67,79,152]. One drawback
of these approaches is that they neglect the locational information for the substructures in
a graph, thus limiting the precision of the resulting similarity measures.

More recently, in an attempt to increase matching performance and reducing the bias
in the inference process, some researchers have started to study the problem of simul-
taneously extracting correspondence information from whole sets of graphs, rather than
limiting the analysis to each pair. In this multi-graph matching setting, we aim at improve
correspondence estimation by incorporating transitivity constraints among the matches.
Namely, if node vau in graph Ga matches node vbv in graph Gb and, in turn, the latter node
vbv matches node vcw in graph Gc, then node vau in Ga must match node vcw in Gc.

Williams et al. [186] impose the transitive vertex-matching constraint in a softened
Bayesian manner, favouring inference triangles through fuzzy compositions of pairwise
matching functions. Sole-Ribalta and Serratosa [158] extended the Graduated Assign-
ment algorithm [57] to the multi-graph scenario by raising the assignment matrices asso-
ciated to pair of graphs to assignment hypercube, or tensors, between all the graphs. For
computational efficiency, the hypercube is constructed via sequential local pair matching,
but still result in a potentially exponential expansion of the state space. More recently,
Yan et al. [191,192] proposed a new framework explicitly extending the Integer Quadratic
Programming (IQP) formulation of pairwise matching to the multi-graph matching sce-
nario. The resulting IQP is then solved through alternating optimization approach. Junchi
Yan et al. [189, 190] introduced a method to iteratively approximating the global-optimal
affinity matching score in a pool of graphs using the consistency between all the pairwise
matching as a regularizer for the whole process. Conversely, Xiowei Zhou et al. [199]
avoided the semi-definite programming formulation (SDP) proposing a method for multi-
image matching as a low-rank matrix recovery problem based on the nuclear-norm relax-
ation. Pachauri et al. [123] and Schiavinato et al. [1] on the other hand, start from given
pairwise correspondence estimations, and synchronize them, that is finding the set of cor-
respondences that satisfy the transitivity constraint that are closer to the given ones in the
least squares sense.

The advantage of this permutation synchronization approach is that it can be paierd
with any given graph-matching algorithm in the literature it does not require any ad-
ditional memory other than what is required to store the original

(
N
2

)
correspondences

among N graphs. However, it offers only an ex post correction through a relaxation
process and cannot be fully integrated with an iterative matching process to direct its
convergence to a better solution.
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6.1.1 Contribution
In this chapter we aim at extending the synchronization approach in such a way that
it can be used within well-known graph-matching approaches transforming them into
multi-graph matching algorithms. In particular, we aim at defining a synchronization pro-
cess for doubly-stochastic matrices, a probabilistic relaxation of correspondence matrices
commonly used as a state space in several iterative matching processes [30, 57, 193].

The problem with defining a synchronization process over the doubly-stochastic ma-
trices, is that, contrary to the permutation or orthogonal groups used in other approaches,
the Birkhoff polytope does not have a group structure necessary even for defining the
notion of transitivity.

Here, we use the Birkhoff-Von Neumann theorem stating that any doubly-stochastic
matrix can be seen as the expectation of a distribution over the permutation matrices, and
synchronize the doubly-stochastic matrices by implicitly constructing a low entropy dis-
tribution over synchronized permutations that fit the given observations in a least squares
sense.

6.2 Synchronization over the Birkhoff Polytope
The Birkhoff-Von Neumann theorem states that any doubly stochastic matrix can be con-
structed as the convex linear combination of a set of permutation matrices. This implies
that, given an ideal probability distribution q = (q1, q2, . . . , qk, . . .)

T over the group Σn

of n× n permutation matrices, the expected value of such distribution

O = 〈q,P〉 =
∑
k

qkP
k

is a doubly-stochastic matrix and that any doubly-stochastic matrix can be constructed in
this way. Unfortunately, this construction is not unique and several distributions lead to
the same expected value. In general, however, we are interested in sparse, low entropy
distributions. We exploit this property to lower the definition of transitivity to that over
the permutation group Σn and then raise it back to the Birkhoff polytope.

Let {Pij ∈ Σn}N,Ni,j=1 be a set of permutation matrices. We say that they satisfy the
transitivity property if

PijPjk = Pik ∀i, j, k = 1, . . . , N. (6.1)

It can be shown [1] that if the matrices Pij are transitive, then there exist a reference
canonical ordering of the vertices and a set {Qi ∈ Σn}Ni=1 of alignment matrices that map
vertices in Gi to the reference order, such that

Pij = QiQ
T
j ∀i, j = 1, . . . , N. (6.2)

Let Pk
ij = Qk

i (Q
k
j )
T be a sequence of transitive permutation matrices, where k is the

sequence index, while i, j span over the set of graphs. Further, let q be a distribution over
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the sequence, then
Oij =

∑
k

qkP
k
ij ∀i, j = 1, . . . , N (6.3)

forms a set of doubly-stochastic matrices over the given graphs that are composed as
expectation of permutations that satisfy the transitivity property. We say that any doubly-
stochastic matrix thus constructed is transitive. Hence, the problem of synchronization
over the Birkhoff polytope can be reduced to that of finding the transitive set of doubly-
stochastic matrices closest to a given set in a least squares sense. However, the search
space is huge, O(n!N) where N is the number of graphs and n is the number of nodes in
each graph. We solve this by looking for a sparse distribution q over the set of transitive
permutations. This is achieved through the introduction of an entropic regularizer over q
yielding to the minimization problem as follows:

arg min
q,Q̄

N∑
i,j=1

||Oij −
n!N∑
k

qkQ
k
iQ

k
j

T ||2F + λH(q), (6.4)

where λ ∈ R is a free scaling parameter and H(q) = −
∑

k qk ln(qk) denotes the
entropy function.

Assuming the sparsity of the resulting q, we find an approximate solution to the prob-
lem (6.4) through Matching Pursuit.

Let R
(t)
ij =

∑n!N

k q
(t)
k Qk

iQ
k
j
T with i = 1, . . . , N be the set of synchronized doubly

stochastic matrices at iteration t, we can write the solution at the next iteration as

R
(t+1)
ij = (1− α)R

(t)
ij + αQk̂(t+1)

i Qk̂(t+1)

j

T
, (6.5)

where k̂(t+1) is the index which denotes the optimal residual alignment and α is a value
in [0, 1]. Moreover, under the sparsity assumption, we can assume that we only bring in
new entries over the distribution q, so the update step for the probability distribution q
becomes

q(t+1) = (1− α)q(t) + αek̂
(t+1)

, (6.6)

where ek̂
(t+1) is a vector of zeros where the unique one is placed in position k̂(t+1). This

assumption on q allows us to ignore the entropic term λH(q) from (6.4).

With this formulation, the matching pursuit iteration is computed by solving

min
k̂,α

N∑
i,j=1

||Oij − (1− α)R
(t)
ij − αQk̂

iQ
k̂
j

T
||2F + λH

(
q(t+1)

)
. (6.7)

It is worth to be noted that k̂ does not depend by α, thus we can iteratively solve for k̂,
and then for α given the current set of correspondences introduced into the reconstruction
of the doubly stochastic matrices.
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6.2.1 Solving for k̂

Let the matrix M
(t)
ij = Oij − (1 − α)R

(t)
ij , we can rewrite the objective function in the

problem (6.7) without considering the entropic term λH(q(t+1)) as follows:

N∑
i,j=1

||Oij − (1− α)R
(t)
ij − αQk̂

iQ
k̂
j

T
||2F

=
N∑

i,j=1

||M(t)
ij − αQk̂

iQ
k̂
j

T
||2F

=
N∑

i,j=1

||M(t)
ij ||2F + α2n2 − 2αTr

(
Qk̂
iQ

k̂
j

T
M̄

(t)
ij

)
. (6.8)

Note that the optimization over the index k̂ in the set of synchronized permutations
can be substituted for the direct optimization over the set of synchronized permutation
Q̄ = {Qi}Ni=1. Further, under the assumption that α is small, we can set M̄

(t)
ij = Oij−R

(t)
ij

resulting in the optimization problem

arg max
Q̄

N∑
i,j=1

Tr
(
QiQj

TM̄
(t)
ij

)
, (6.9)

which can be solved with any approach extracting synchronized permutations, such as [1].

6.2.2 Solving for α
The entropic term H

(
q(t+1)

)
can be written explicitly as follows:

H
(
q(t+1)

)
= −

∑
k

(
(1− α)qk + αδkk̂

)
ln
(
(1− α)qk + αδkk̂

)
, (6.10)

where δkk̂ denotes the Kronecker delta operator. This can be re-written as:

H
(
q(t+1)

)
= −(1− α)

∑
k 6=k̂

qk
(

ln qk + ln(1− α)
)
− α lnα

= (1− α)H
(
q(t)
)
− (1− α) ln(1− α)− α lnα

= (1− α)H
(
q(t)
)

+H(α), (6.11)

where H(α) is the binary entropy function in α. The problem (6.7) can be solved by
gradient descent of the energy function:

E =
N∑

i,j=1

||Oij − (1− α)R
(t)
ij − αQk̂(t+1)

i Qk̂(t+1)

j

T
||2F + λH

(
q(t+1)

)
. (6.12)
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Differentiating E with respect to α yields:

dE

dα
= −λ

(
H(q(t)) + ln

(
α

1− α

))
+ 2

N∑
i,j=1

[
α||R(t)

ij −Qk̂(t+1)

i Qk̂(t+1)

j

T
||2F

+Tr
(

(Oij −R
(t)
ij )T (R

(t)
ij −Qk̂(t+1)

i Qk̂(t+1)

j

T
)
)]

(6.13)

and, with the derivative to hand, we extract the optimal α ∈ [0, 1] to reconstruct the new
solution using (6.5). We minimize the energy E by gradient descent as follows:

α(t+1) = α(t) − ηdE
dα

(
α(t)
)
,

where η ∈ R+ is a free parameter and α0 = 0 . We control the constrain that α ∈ [0, 1]
suspending the power iteration by the following rule:

α =

{
0 if α(t+1) < 0

1 if α(t+1) > 1.

For numerical reasons may occur sometimes that ln

(
α

1− α

)
/∈ R and is not finite, we

fixed the problem replacing that term with 0. Note that, α = 0, or more unlikely α = 1,
means that the basic pursuit step cannot reduce the entropy-regularized energy and we
take that as a stopping criterion for our basis pursuit approach.

6.3 Synchronized Algorithms

We introduce the fundamental algorithms in our work synchronizing two well-known
graph matching methods operating in the Birkhoff Polytope, namely Graduated Assign-
ment [57] and Path Following [193]. In particular, we included a synchronization step
inside their main updating loops, maintaining the relaxed correspondences consistency
among all the graphs throughout the execution.

Since we followed a common scheme to implement both the proposals, we can give
a very general description as the Pseudocode 1, where T is just a wild-card which refers
to the underlying method. Our synchronization consists in an on-line process, so we
needed to extend the original graph matching method T in a multi-graph setting from
its internal structure. The routine T GRAPHMATCHINGCORE denotes just the principal
section of a method which solves a pairwise matching and that depends only by the shared
β parameter for all possible couples of graphs.
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Algorithm 1 Synchronized Algorithm T for Multi-graph Matching
Input: G
Output: P

O Initialization of β, λs and O according T (For more details view the text).
1: repeat
2: for each Opq ∈ O do
3: Opq ← T GRAPHMATCHINGCORE(Gp, Gq, β)
4: end for
5: λ← λsβ
6: O ← SYNCHRONIZATION(O, λ)
7: β ← βrβ
8: until β ≥ βf
9: P ← DISCRETIZATION(O)

where:

• G = {Gp}Np=1 is the set which collects all graphs, i.e., the input dataset;

• O = {Opq}N,Np,q=1 is the set which contains all the double stochastic permutation
matrices estimated by a graph matching method;

• P = {Ppq}N,Np,q=1 is the discrete version related to O, i.e., the set which contains all
the binary permutation matrices representing each Opq;

• (λs) is the proportionality factor between β and λ;

• (βr) is the growth rate for β;

• (βr) is the exit threshold for β.

Considering a single iteration of the main loop we perform the pairwise matching of a
method T for all the graphs computing the doubly stochastic permutation matrices in O.
In either case there is a β parameter which governs the whole process, pushing it towards
the vertices of the polytope, i.e., towards permutation matrices. After the pairwise compu-
tation of all the doubly stochastic permutation matrices in a given β-iteration, we perform
our synchronization process resulting in synchronized doubly stochastic matrices. This
phase is controlled by our parameter λ, which we set to be proportional to β since the goal
of both parameters consists to push the solution towards the vertices of the polytope. The
synchronization step is well explained in detail in the Pseudocode 2 (SYNCHRONIZATION

routine). When our synchronized algorithm converges, we discretise the solutions apply-
ing the typical maximum bipartite assignment problem through the well-know Hungarian
algorithm to each doubly stochastic matrix Opq ∈ O (DISCRETIZATION routine). Note
that running the algorithm 1 without our synchronization procedure is equal to perform
trivially just the original pairwise matching method T for all couple of graphs.
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Algorithm 2 Synchronization
Input: O, λ
Output: Os

O Initialization of alignments Q(0) =
{

Q
(0)
i

}N
i=1

in the transitive alignment space by [1].

1: Q(0) ← TRANSITIVEALIGNMENT(O)
O Initialization of residualsR(0) =

{
R

(0)
ij

}N,N
i,j=1

.

2: R
(0)
ij ← Q

(0)
i Q

(0)
j

T
, for each i, j = 1 . . . N

O Initialization entropy term and time counter.
3: h(0) ← 0
4: t← 0
5: repeat

O Updates weighted matrices assuming α(t) → 0.
6: M̄

(t)
ij ← Oij −R

(t)
ij , for each i, j = 1 . . . N

O Updates alignments by solving (6.9).

7: Q
(t+1)
i =

∑N
j=1 M̄

(t)
ij Q

(t)
j

||
∑N

j=1 M̄
(t)
ij Q

(t)
j ||F

, for each i = 1 . . . N

O Updates α by gradient descent on the energy (6.12).
8: α(t+1) ← LEARNINGALPHA(O,Q(t+1),R(t), h(t), λ)

O Updates entropy by (6.11), H is the binary entropy function.
9: h(t+1) ← (1− α(t+1))h(t) + α(t+1)H(α(t+1))

O Updates residuals by (6.5).

10: R
(t+1)
ij ← (1− α(t+1))R

(t)
ij + α(t+1)Q

(t+1)
i Q

(t+1)
j

T
, for each i, j = 1 . . . N

11: t← t+ 1
12: until Convergence of Q(t) or a maximum number iterations t is reached.

O Estimating synchronized permutations Os =
{

Xs
ij

}N,N
i,j=1

.

13: Xs
ij ← Q

(t)
i Q

(t)
j

T
, for each i, j = 1, . . . , N

6.4 Experimental Setup and Evaluation

6.4.1 Synthetic Data Experiments
We began the evaluation of our work by comparing the two main synchronized algo-
rithms as section 6.3 to their un-synchronized counterparts and to a state-of-the-art multi-
graph matching algorithm: the Consistency-driven Non-Factorized Alternating Optimiza-
tion (CDAO) [192]. We summarized the main parameter setting for these 5 methods as
follows:

GA, S-GA. For the Synchronized Graduated Assignment (S-GA) we initialized
β = n and all the doubly stochastic matrices are initialized as a random perturba-
tion from the barycentre of the polytope. The entropy scale parameter λs, i.e., the
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proportionality factor between β and λ, was set to 10−6. Moreover, the growth rate
and exit threshold for β were set to 1.075 and 200 respectively.

PF, S-PF. For the Synchronized Path Following algorithm (S-PF) we initialized
the doubly stochastic matrices Opq as in the original work [193] performing a con-
vex quadratic optimization problem by Frank-Wolfe algorithm. The entropy scale
parameter was set to 1 while the increasing rate for β was 0.15.

CDAO. For this method we respected the original setup for the Consistency-driven
Non-Factorized Alternating Optimization algorithm in [192] initializing the max
number of iteration Tmax = 2 and using the Reweighted Random Walks [30] as
pairwise graph matching solver.

We performed tests over several random synthetic graph datasets with different levels
of distortion, variations in edge density and proportion of outlier nodes. This evaluation
approach followed the widely adopted protocol [30, 191, 192]. The dataset is generated
from a set of N root graphs Gr, r = 1, . . . , N , with nin inlier nodes randomly connected
with edge density ρ. Edge attributes arij are randomly drawn from an uniform distribution
in [0, 1]. According these root graphs, we generate several perturbed sets, by varying (a)
edge attributes adding Gaussian noise sampled from N(0, σ2) for increasing values of σ,
(b) edge density ρ, and (c) adding a number of outlier nodes.

We introduced another synthetic test as [158] whose aim is to control the topological
structure of the graphs. The construction of a synthetic dataset G in this experiment is
based on the generation of an initial seed P r = {([0, 1]; [0, 1])i}ni=1 of 2D points which
are related to the n nodes. Each perturbed graph is generated through a random Gaussian
perturbation of the points in P r, from which we extract a Delaunay triangulation. The
computation of the affinity matrix Mpq = (mia,jb) for each pair of graphs (Gp, Gq) is
defined as

mia,jb = exp

(
−

(apij − a
q
ab)

2

σ2

)
(6.14)

where σ2 is a scale factor which we set to 0.15. No single-node weight is considered, so
we set the unary affinity as mia,ia = 0. Considering a single experiment on a synthetic
dataset all the performed methods share the same affinities matrices.

We present our results in terms of vertex correspondences from the permutations given
by the graph-matching methods. The evaluation strategy is based on the computation of
a Matching Accuracy (MA) between the common n nodes of two graphs Gp, Gq ∈ G,
which is defined as the ratio between the number of correspondences found (CALG

pq ) with
respect to those of the ground truth (CTRU

pq ) and the total number of possible matching as
follows:

MA(Gp, Gq) =
|CALG

pq ∩ CTRU
pq |

n
We underline that we only calculate the accuracy for common inlier nodes ignoring the
matching results over outliers. Given a whole dataset G of N graphs, the agglomerated
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matching accuracy (MA) can be expressed as the mean measure:

MA(G) =

∑N−1
p=1

∑N
q=p+1 MA(Gp, Gq)

N(N − 1)/2
(6.15)

In Figure 6.1 we plot the final results of all the synthetic tests varying the parameter
of (a) deformation, (b) edge density, (c) number of outlier nodes and (d) topological noise
(vertex jitter). All these experiments are repeated over 10 trials, for which we plot average
and standard error. Each synthetic dataset has N = 10 graphs with nin = 20 nodes. For
the deformation and edge density tests we set nout = 0, for outlier and density tests we set
the Gaussian deformation with standard deviation as σ = 0.05 and σ = 0.2 respectively.
Finally, just for the deformation tests, the edge density is set ρ = 0.7.

From Figure 6.1 we can see that in general for high deformations the synchronized
algorithms are the best performers regardless of the original algorithm chosen and they
generally outperform CDAO as well. It is interesting to not that for deformation, edge
density and outlier Graduated Assignment seems to be just as robust as the synchronized
algorithms, while is exhibited high sensitivity on the topological noise using Delaunay
triangulations. On the other hand, the synchronized version of Graduated Assignment
seems to under-perform for low topological noise, going back to very high precision for
larger noise. On the other hand, the Synchronized Path Following algorithm is almost
always the top performer, even when the original Path Following algorithm appears to be
the worst-performing of the lot. This appears to point to the fact that path-following and
synchronization provide complementary information. Finally, CDAO, which was built as
a multi-graph matching algorithm optimizing a global objective function does not seem
to offer a real advantage over the synchronized algorithms, performing generally at the
level of the worst-performing non-synchronized algorithms.

6.4.2 Further Implementation Experiments
In this section we present another further version of our algorithms with respect to the im-
plementations described in section 6.3. Our goal consists to overcome even the best results
we obtained through the experiments in section 6.4.1, which are related mainly to the im-
plementation based on Path Following (SP) [193] algorithm. We propose a new solution
as the synchronized multi-graph matching version of the process based on Reweighted
Random Walks (RRW) [30], this choice is motivated for two essential reasons: first,
RRW represents state of the art in pairwise graph matching approaches available in liter-
ature; second, the relaxed definition of the problem in RRW, which fits very well with the
definition of our synchronization scheme over the Birkhoff’s polytope as section 6.2.

The implementation of our new algorithm RRW/S-RRW follows partially the gen-
eral structure presented in the Pseudocode 1, but we applied some adjustments which are
required to respect the original scheme proposed in [30]. For Synchronized Reweighted
Random Walks algorithm (S-RRW) we initialized the doubly stochastic matrices Opq as
the barycentre of the polytope. Unfortunately, we cannot model a parameter β to control
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Figure 6.1: Average results with standard error for synthetic test at varying of the levels of (a)
deformation, (b) edge density, (c) number of outlier nodes and (d) topological noise performing
Graduated Assignment (GA), Synchronized Graduated Assignment (S-GA), Path Following (PF),
Synchronized Path Following (S-PF), and Consistency-driven Non-Factorized Alternating Opti-
mization (CDAO) for Multi-Graph Matching algorithms.

the learning in this process, hence the final iteration is reached by classical convergence
criterion of the solution, i.e., Q(t+1) ≈ Q(t). For this reason, we does not need to define
an increasing rate for β. Moreover, the lack of the latter parameter does not allow us to
set a proportional entropy scale parameter λ as proposed in section 6.3, hence we decided
to suppress it just setting λ = 0.

Here, the evaluation strategy follows the same protocol with synthetic datasets and
matching accuracy performances introduced in section 6.4.1, but we compare our further
novel proposal with respect to the Synchronized Path Following solution only, which is
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Figure 6.2: Average results with standard error for synthetic test at varying of the levels of (a)
deformation, (b) edge density, (c) number of outlier nodes and (d) topological noise perform-
ing Reweighted Random Walks (RRW), Synchronized Reweighted Random Walks (S-RRW), Path
Following (PF), and Synchronized Path Following (S-PF).

the best implementation with respect to state-of-the-art Consistency-driven Non-Factorized
Alternating Optimization (CDAO) [192] as well. Moreover, since the Synchronized Re-
weighted Random Walks (S-RRW) does not use λ, we decide to set the same conditions
on Synchronized Path Following (S-PF) in order to guarantee a fair comparison of both
methods.

In Figure 6.2 we showed that our novel implementation of Synchronized Reweighted
Random Walks (S-RRW) can outperform both the Synchronized Path Following (S-PF)
and the unsynchronized graph matching algorithms in all kinds of experiments. The ro-
bustness of our proposal is highlighted in test (a) even with high values of graph defor-
mation.
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Another interesting aspect is related to the behaviour of Path Following algorithm in
(c) and (d) tests which differs with respect to the results in Figure 6.1. The performances
with this process do not increase as expected by introducing the synchronization step.
In particular on plot (c) the learning even fails totally. In the first place, we guess that
such weaknesses is mainly due to a local minimum which is reached activating the syn-
chronization. Generally speaking, we assumed the main explanation about the new limits
of our approach with Path Following is related to two key factors. First, the removal of
entropy information by suppressing the parameter λ with respect to the original scheme
could make worse the synchronization to deal with noise or general uncertainty of the
vertex correspondences, which could affect considerably Path Following process. Sec-
ond, the common aspect in those experiments, i.e., the (c) and (d), is related to the deep
changing of the topologies in the synthetic graphs by introducing outlier nodes or noise in
Delaunay triangulation. This final consideration is further supported by another marginal
experiment as in Figure 6.5, where we generate synthetic graph datasets by removing
randomly an increasing number of edges to ruin the original structures. Moreover, we
can observe that Path Following is a very sensitive method on graph topologies in prin-
ciple. Indeed, starting from just removing beyond two edges, the performances of the
unsynchronized version fall critically.
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Figure 6.3: Average results with standard error for synthetic test at removing edges in the graphs
performing Reweighted Random Walks (RRW), Synchronized Reweighted Random Walks (S-RRW),
Path Following (PF), and Synchronized Path Following (S-PF).

Since the results of this new implementation are experimentally promising, we de-
cided to include also the Synchronized Reweighted Random Walks algorithm even in the
next experiments as Sections 6.4.3 and 6.4.4. Moreover, in the comparison with respect to
Graduated Assignment (GA) and Path Following (PF) we maintain their original settings
as in Section 6.4.2.
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Figure 6.4: Example of several graphs derived by Delaunay triangulation (green edges) onto 30
landmark feature points (red nodes) from the motion frames in CMU Hotel sequence.

6.4.3 Real-world Data Experiments

The synthetic evaluation of our algorithms gave us the ability to simulate and control dif-
ferent graph dataset scenarios with good performances. In this section we are aimed to
analyse the synchronization even on real-world samples as well. The data used for such
tests are the CMU House and Hotel motion sequences, which consist in two well-known
datasets largely employed for Computer Vision tasks [30,191,198]. The adjacency matri-
ces to describe the structures of the graphs are obtained by a Delaunay triangulation that
is performed onto 30 keypoints manually extracted for each raw image as Figure 6.4. The
computation of the affinity edge matrices between two graphs follows the same formula-
tion as (6.14), but considering the divergence of the Euclidean distances between the 2D
points associated for each node. The original datasets contain 101 ordered frames which
describe very short movements (rotation) of the main subjects. In our experiments we
made two reduced versions in order to accentuate the variability of the instances taking
one every 10 in the sequence, therefore our resulting datasets contain 10 graphs.

Table 6.1 summaries the final results with our (un)synchronized algorithms and state-
of-the-art in terms of matching accuracies as (6.15).

Method CMU House CMU Hotel

GA 34.7± 2.5 35.8± 2.6
S-GA 35.6± 2.6 33.6± 2.2

PF 46.7± 6.2 40.1± 7.1
S-PF 59.7± 5.6 50.5± 6.9

RRW 47.4± 4.5 57.0± 6.0
S-RRW 82.7± 1.6 68.0± 3.0

CDAO 51.1± 4.3 68.1± 4.3

Table 6.1: Mean matching accuracy (%) with standard error for CMU datasets perform-
ing Graduated Assignment (GA), Synchronized Graduated Assignment (S-GA), Path Following
(PF), Synchronized Path Following (S-PF), Reweighted Random Walks (RRW), Synchronized
Reweighted Random Walks (S-RRW), and Consistency-driven Non-Factorized Alternating Opti-
mization (CDAO) for Multi-Graph Matching algorithms.
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The general comment about the results with these real-world datasets consists that
applying our method is inclined to improve or remain statistically balanced with the per-
formances by the unsynchronized counterpart algorithms. Moreover, for each dataset
our Reweighted Random Walks process registered a greater divergence with respect to
the baseline accuracy than Path Following and Graduated Assignment. Finally, we out-
performed state-of-the-art performances on CMU House dataset by our Synchronized
Reweighted Random Walks algorithm.

6.4.4 Dimensionality Analysis

In the various experiments presented so far we followed a general setting that operates
mainly on synthetic (sections 6.4.1 and 6.4.2) and real-world (section 6.4.3) datasets
which are quite small both in terms of graphs and nodes magnitudes. Clearly, we are
interested to analyse in deep the behaviour of our method with respect to the dimension-
ality of the sample data as well. In Figure 6.5 we presented the results of two experiments
employing our synchronized algorithms, respectively increasing the number of (a) nodes
and (b) graphs of the synthetic datasets. The common setting for these two experiments
consists to generate random graphs with edge density ρ = 1 and deformation σ = 0.2,
while for the graph test the number of nodes is fixed to 15 and for the nodes test the
number of graphs is fixed to 20.
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Figure 6.5: Average results with standard error for synthetic test at varying the number of (a)
nodes and (b) graphs of the datasets performing Graduated Assignment (GA), Synchronized Grad-
uated Assignment (S-GA), Path Following (PF), Synchronized Path Following (S-PF), Reweighted
Random Walks (RRW), and Synchronized Reweighted Random Walks (S-RRW).

The results in the (a) tests show a sharp saturation of the average accuracy already
beyond a set of graphs with 15 nodes. We can retain that the impact onto the accuracy
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by the erroneous correspondences becomes more predominant operating with small graph
since that cannot be smoothed in mean terms. Moreover, this trend occurs just for the un-
synchronized multi-graph methods, therefore our synchronized extensions could not do
better at those high nodes values intuitively. Furthermore, in the same critical point Grad-
uated Assignment (GA) falls critically, we retain that this process is very sensitive with
respect to the nodes and the impact of a proper initialization emerges already from low
dimensions (at least in our experiments). Since the pairwise matches are corrupted, the
synchronization cannot exploit of safe information to correct the bias. The performances
measured in the (b) test show that the number of graphs is a parameter that synchroniza-
tion can tolerate very well and even with low values as well. The algorithms begin to
stabilize beyond 18 graphs (the curious fall at 30 is due to randomness surely, i.e., there
are no reason that may be a repetitive trend), but we can observe that the gain in per-
formance with synchronization is not proportional with respect the number of graphs.
Although, this aspect is quite expectable considering our synthetic setting, since datasets
contains the same level of perturbation. Overall, we may deduce by the experiments (a)
and (b) that our synchronization works properly increasing the dimension of the problem,
but the magnitude does not involve significantly to the accuracy of the learning process:
in other terms, if the quality of the data is satisfactory the synchronization is not affected
by the scale.

6.5 Conclusion
In this chapter we proposed a synchronization process for doubly stochastic matrices
which is set as a basis pursuit over the set of synchronized permutations. Through this
approach we can transform any graph-matching algorithm working over the Birkhoff
polytope into a multi-graph matching scheme simply maintain the states synchronized
throughout the execution. We used this approach to create multi-graph versions of the
Graduated Assignment and Path Following methods, and show that the resulting synchro-
nized algorithms outperform not only the original unsynchronized processes, but also
state-of-the-art in multi-graph matching. Finally, we proposed a third experimental work
based on Reweighted Random Walks for multi-graph matching, which is revealed to be
very competitive by relaxing the definition in the proposed method.



7
Subgraph Generalization on
Transitive Correspondence

In several real-world contexts reliable techniques of inlier selection are extensively re-
quired due to the presence of noise in learning data. These methods help to refine prop-
erly parameter model or more generally identify wrong features that not satisfy desired
properties in structured objects. We consider just the applications exploiting binary cor-
respondences as essential information to filter outliers, whose reference schema can be
yielded to a subgraph matching problem. In fact, due to complexity of this task, the cur-
rent solutions are just approximations of the original problem to infer partial matching
between pair of graphs with different size. Recently, graph matching has been gener-
alized to deduce a consistent solution even on multiple data. This new paradigm aims
to reduce bias in local matches, but the underlying formulation is unsuitable to run di-
rectly subgraph matching, since it assumes complete correspondences between nodes. In
this chapter we present a generalization for the problem to estimate the set of consistent
partial constrains over multiple graphs with arbitrary size, which can be employed as a
synchronization framework for multi-subgraph matching.

7.1 Introduction

In several fields of science as Machine Learning, Pattern Recognition, Computer Vision
and Statistics, the quality and quantity of data are two aspects that affect deeply on the
inference task. Although, high magnitude of information does not yield to derive better
knowledge perforce, consequently the overall increasing of noise in real-world observa-
tions. The latter refers to the well-known Curse of Dimensionality phenomenon, which
supports the principle that would be sufficient a reduced set of representative features to
describe the instances actually, which may be related to distinguish between inlier and
outlier entities as well. Moreover, from another prospective, the requirement to infer on
subsets of features can be motived when some global problem cannot be solved totally,
but looking for a partial solution is still reasonable.

In the panorama of learning techniques that use correspondences between structured
data, we find several applications which deal with noise problems. In Computer Vision
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are widely employed Bundle Adjustment [175, 188] processes to refine camera param-
eters or RANSAC-based methods [32, 44] to improve accuracy for coarse point regis-
tration [29, 135]. Furthermore, considering matches just as binary constraints between
labelled entities [148], we introduce the generalization of the Graph Matching [36] prob-
lem, whose correspondences can be inferred even between a reduced number of inlier
nodes. There are two fundamental advantages by solving this general task: first, working
with graph of different sizes, the solution can be inferred directly without adding dummy
nodes; second, in presence of noisy data graphs, the best candidate matches may help to
identify which are potential outlier nodes.

Subgraph matching between two graphs can be treated as the well-known subgraph
isomorphism [42] relaxing the space of constrains and setting other heuristic assump-
tions [45]. Generally, the search space is based on a branch-and-bound strategy defined
over the domain of all possible matches, which is typically represented as a tree structure,
i.e., the space search tree (SST). The main works of subgraph matching are differentiated
just as their way to traverse such SST and pruning the unfair branches [38, 179]. Other
approaches overcome such representations formulating the process as a Quadratic As-
signment Problem (QAP), where the relaxed permutations are solved by maximizing non
linear cost function over the edges [30, 57, 193].

The majority of techniques which solve matching problems encloses the inference
task just assuming pairwise formulation with respect to the number of available objects
independently. Nevertheless, the introduction of further graphs during the learning could
be a useful strategy to smooth the bias in local solutions. Indeed, in graph matching com-
munity there is still a limited selection of works that formulate graph matching problems
with multiple data globally. There two fundamental strategies that deal with these prob-
lems: solving the global mapping optimizing a consistency cost function [3, 157, 191] or
synchronizing the constrains imported by out-of-the-box pairwise solvers [1, 123, 192].
These approaches assume the existence of an unknown reference ordering whose transi-
tive constrains can be derived. Although, the common drawback of such works consists
in the rigid one-to-one formulation of the consistent correspondences, i.e., they solve just
(full) multi-graph matching problem with graphs of the same size.

7.1.1 Contribution
In this chapter we present a novel generalization to derive consistent partial matches given
a set of multiple objects. Our work consists in an experimental synchronization frame-
work for set of partial constraints between graphs with arbitrary dimensions, which can
be addressed in applications of multi-subgraph matching. Our strategy is mainly inspired
with respect to rectification methods [1, 123], therefore we synchronized partial permu-
tations of the graphs independently the specific matching solver. Moreover, we relax the
assumption of two-way constrains in order to deal with subgraph problems. Indeed, con-
versely classical graph matching processes that derive full vertex correspondences from a
double stochastic definition [30, 57, 193], we estimate the transitive alignments enforcing
the matching likelihoods for the nodes at least in one-direction. In fact, our multi-graph
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Figure 7.1: Example of subgraph matching problem between two graphs G1 and G2. The picture
shows a possible matching of G1 with respect to the a subgraph G′2 in G2 which maintains the
topology of structures.

matching approach share several aspects with respect to the current state-of-the-art for
these tasks [192], which are the independence of the initial solution and the global con-
sistency by transitive alignments. Although, in our novel formulation we can deal with
subgraph problem directly, hence avoiding eventual artificial noise introduced by padding
the uneven graphs before the learning.

7.2 Preliminaries
In this section we formalize the fundamental aspects of the subgraph matching problem
with respect to the model we followed to devise our work. Moreover, we introduce the
reference approach from which we aim to conceive our multi-graph formulation and high-
lighting some possible obstacles to describe this special generalization.

7.2.1 Subgraph Matching Problem
We introduce the conventional representation of a graph as the pair G = (V,E), where V
is the set of nodes and E = V ×V the set of edges. Let G1 = (V1, E1) and G2 = (V2, E2)
two different graphs with respectively number of nodes n1 = |V1| and n2 = |V2|, assum-
ing the case n1 ≤ n2 the subgraph matching consists in the problem to derive the partial
injective mapping f : V1 → V2 between the nodes of the (pattern) graph G1 with respect
to a subgraph G′2 in the (target) graph G2, which is optimal according a certain criterion
(as in Figure 7.1). Typically, algorithms exploit of the notion of subgraph isomorphism
to infer a solution which reflects the topological similarity between the pair of graphs.
We could represent the problem with another formulation just assuming the existence of
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a complete (sub)map f ′ : V 1 → V ′2 , which is a bijection that preserves the topologies
between the graph G1 and the subgraph in G2 (i.e., graph isomorphism). In this way,
if n1 = n2, the approach yields to the typical full graph matching (i.e., unique complete
map f ′ = f ). There exist another weaker form of subgraph isomorphism which allows the
presence of extra edges applying the mapping: the subgraph monomorphism. Although,
we specify that in this work we are not interested to model such abstraction, considering
always symmetric matching configurations between graphs.

The several approaches of subgraph matching can be divided in three specific cate-
gories: testing, verifying the existence of at least one match between the graphs; count-
ing, estimation of all the occurrences of a graph inside the other one; listing, reporting the
exact locations of each occurrences. Our method treats the problem of subgraph matching
returning one (and only one) solution which is the optimal occurrence of the pattern graph
and its exact place with respect to the target graph. We encode such solution as a partial
n1 × n2 permutation matrix P = (pij), which models the one-to-one correspondence of
the nodes i ∈ G1 and j ∈ G2 with the assignment pij = 1 (while is 0 otherwise).

7.2.2 Multi-graph Matching Generalization

Graph matching problem can be generalized extending the inference process beyond the
pairwise case, in other terms, working in a set of graphs with cardinality N ≥ 2 si-
multaneously. The hard aspect that arises in this new paradigm consists to support the
well-known cycle consistency, i.e., the matches between all possible pairs of graphs have
to be consistent globally, which is a condition that classical pairwise solvers can not guar-
antee. Our approach is inspired to the classical formulation [123], which is rooted to
introduce a common alignment set {Xi ∈ Σn}Ni=1 posing the transitive permutation ma-
trices as Pij = XiX

T
j , ∀i, j = 1, . . . , N . Although, the latter is feasible when each

graph share the same number of nodes n = |Vi|, ∀i = 1, . . . , N since the alignments has
to be defined in the common permutation space Σn. The general trick to generalize multi-
subgraph matching consists just to add dummy nodes in uneven graphs to exploit of ordi-
nary techniques. However, such halfway practice could enlarge heavy the problem space
downgrading the accurateness of the inference task.

7.3 Generalized Transitive Correspondence

Given a couple of graphs Gi and Gj with number of nodes ni and nj respectively, we
formulate in matricial form the general pairwise solution from any (sub)graph matching
technique as the ni × nj cost matrix Pij whose each entry (Pij)ab ∈ [0, 1] denotes the
weight of the match between their nodes via and vjb .

Let G1, G2, . . . , GN be a set of N graphs with an arbitrary number of nodes and as-
suming that all the possible raw pairwise solutions are known, our generalization for the
multi-subgraph matching problem consists to estimate each partial ni × nj permutation



7.3. Generalized Transitive Correspondence 113

matrix Pij which is the nearest in least squares sense to Pij and transitive as follows

PijPjk = Pik ∀i, j, k = 1, . . . , N.

Defining a direct global transitive formulation is challenging without padding all
graphs to the same size, since the space [0, 1]ni×nj depends by the dimensions of each
couple of graphs. We can generalize this problem just replacing in “one direction” the
node dimension nj by introducing a common universe of nodes m ≥ ni ∀i = 1, . . . , N
which is encoded as the special space Sni×m ⊂ [0, 1]ni×m of the matrices whose rows sum
to unity. In this way we can retrieve an unknown reference canonical order by defining
the alignment Qi ∈ Sni×m ∀i = 1, . . . , N that express for each vertex of Gi the best
candidate matches to such relaxed space, in other terms, each row of Qi yields to an el-
ement in the common standard simplex ∆m. Finally, with these matrices on hand we set
Pij = QiQ

T
j ∀i = 1, . . . , N , that lead back to the real node dimension ni × nj .

Therefore, we need to estimate the set of transitive alignmentsQ = {Qi ∈ Sni×m}Ni=1

whose reconstructions minimise the difference with respect to the original solution, yield-
ing in the optimization problem as follows

arg min
Q∈{Sni×m}N

N∑
i,j=1

∥∥Pij −QiQ
T
j

∥∥2

F
=

arg min
Q∈{Sni×m}N

N∑
i,j=1

(
‖Pij‖2

F +
∥∥QiQ

T
j

∥∥2

F
− 2Tr(QjQ

T
i Pij)

)
=

arg min
Q∈{Sni×m}N

N∑
i,j=1

(
kij − Tr

(
QT
i (2Pij −QiQ

T
j )Qj

))
=

arg min
Q∈{Sni×m}N

N∑
i,j=1

kij −
N∑

i,j=1

Tr
(
QT
i (2Pij −QiQ

T
j )Qj

)
, (7.1)

where ‖·‖F is the Frobenius matrix norm and Tr is the linear trace operator. Our proposal
consists to relax (7.1) in the final maximization problem

arg max
Q∈{Sni×m}N

E =
N∑

i,j=1

Tr
(
QT
i (2Pij −QiQ

T
j )Qj

)
. (7.2)

We decide to solve (7.2) by gradient descent, whose derivative of the energy E with
respect to Qk is the formula as follows:

dE

dQk

= 2
∑N

j 6=k
(
PkjQj −QkQ

T
j Qj

)
+ 2

∑N
i 6=k
(
PT
ikQi −QkQ

T
i Qi

)
+ 4Qk − 4QkQ

T
kQk

= 2
∑N

i=1

(
(Pki + PT

ik)Qi − 2QkQ
T
i Qi

)
.
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The relaxed formulation as above models the constraint Qi1m = 1ni
only, while it

skips QT
i 1ni

≤ 1m which should be required ∀i = 1, . . . , N . Although, once we have
estimated the transitive cost matrix Pij , we can produce the related partial permutation
matrix by discretization with Hungarian algorithm [21].

7.4 Experimental Setup and Evaluation

7.4.1 Synthetic Experiments
In this section we introduce our test protocol to analyse and evaluate the performances
of our method. Since we derive the transitive partial alignments from an initial source of
solutions independently, we synchronized two well-known graph matching algorithms:
Reweighted Random Walks (RRW) [30] and Graduated Assignment (GA) [57]. More-
over, we decided to compare our results with respect to another approach, the Consistency-
driven Alternating Optimization (CDAO) [192], for two main reasons: first, it works sim-
ilarly as our process by solving alignments from a common unknown reference ordering;
second, this method is recognized being the state-of-the-art algorithm for multi-graph
matching in literature. Although, CDAO does not model directly subgraph matching
problems, so we ran such process by adding dummy nodes when is required for the exe-
cution only. In Table 7.1 we describe in deep the whole set of algorithms employed in our
experiments in terms of parameters and implementation details.

We tested these algorithms on synthetic dataset adjusting classical protocols [30, 158,
191, 192] for multi-graph matching task. The dataset is created according the interval of
nodes [nMIN , nMAX ] (with nMAX ≥ nMIN ), which controls the generation of the graphs
in two different ways strategies:

1. Weighted Graphs. We generate a root graph Gr with nMAX nodes of edge density
ρwhose weights are uniformly distributed random numbers in [0, 1]. Each graphGi

is generated perturbing the edges of the root graph by adding Gaussian deformation
N(0, σ2) just in the subgraph of nMIN nodes (i.e., edges between the inliers nodes).
Finally, the final graph is cropped choosing its dimension by a random number of
node such as ni ∈ [nMIN , nMAX ]. In other terms, each graph contains a different
number nMAX − ni of outlier nodes.1

2. Triangulated Graphs. We control the topologies of the graph defining a root
set of 2D points as SGr = {([0, 1]; [0, 1])}nMAX

k=1 . The structure of each graph
Gi is obtained by Delaunay triangulation perturbing the root set with additional
random noise in [0, 1]. Finally, the graph is cropped to a random dimension in
[nMIN , nMAX ].

1The generation of random graphs of different size gets difficult to control properly edge density and
outlier nodes parameters, for this reason in this work we skipped experiments for their deep analysis. Gener-
ally, if there is not specified in the context, we fixed the default levels of edge density ρ = 1 and deformation
σ = 0.2 in the presented tests.
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Methods for Pairwise (Sub)graph Matching
GA. According the original work [57], initializing the parameter
β = max(ni, nj) as the maximum number of nodes of two graphs. The initial
point of the process is set as a rectangular ni × nj matrix of ones. The incre-
mentation ratio for β is set to 1.075, while the related maximum value to 200.

RRW. According the original work [30], initializing the parameters α = 0.2
and β = 30 and defining the initial point as the uniform rectangular ni × nj
matrix of 1/(ninj).
D-GA, D-RRW Refers respectively to original GA and RRW, but adding
dummy nodes to the graphs of different size. More specifically, once we
retrieved the maximum graph dimension in a given dataset, we even the re-
maining smaller graphs with the sufficient number of disconnected nodes.

Methods for Muti-(Sub)graph Matching
SS-GA, SS-RRW. We initialized the parameter m = max(n1, . . . , nN) as
the maximum number of nodes with respect to all the graphs. The initial
pairwise solutions are derived from Graduated Assignment or Reweighted
Random Walks techniques (without padding the graphs), which are related re-
spectively as our Synchronized Sub-graph methods SS-GA and SS-RRW. We
implemented the non-linear problem (7.2) according the well-known Manopt
optimization toolbox [20] to search the solution in the particular manifold of
multi-simplex ofm for each graphs. We set the maximum number of iteration
at 500 and gradient norm with tolerance 10−14.

CDAO-GA, CDAO-RRW. According the original work for the Non-
Factorized version [192], initializing the max number of iteration Tmax = 2
and using the Reweighted Random Walks [30] as internal solver for the
QAP. We imported the external initial solution from Graduated Assignment
or Reweighted Random Walks (padding the graphs), which are denoted re-
spectively as CDAO-GA and CDAO-RRW.

Table 7.1: Parameter settings and implementation details of the algorithms used for pairwise and
multi-(sub)graph matching experiments.

We evaluated the performances in terms of Matching Accuracy (MA) between two
graphs (Gp, Gq), i.e., the ratio of the correct matches with respect to the ground-truth
XTRU
pq , which is defined as the identity set {1, . . . ,min(np, nq)} since our synthetic graphs

are aligned from a common structural seed. Since the discretised solution for each pair
Ppq is defined as the partial np × nq permutation matrix, if np ≥ nq the node 1 ≤ a ≤ nq
matches with the node indexed in the position 1 ≤ b ≤ np of the unique 1 in the column
(Ppq)a, otherwise if np < nq the matches is read (P

T

pq)b. Considering XALG
pq the set of
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Figure 7.2: Average results with standard error for synthetic test at varying the levels of (a)
deformation, (b) topological noise and (c) node range size performing all the methods in Table 7.1.

matches retrieved in this way from some graph matching solver, we computed formally:

MA(Gp, Gq) =
|XALG

pq ∩XTRU
pq |

min(np, nq)
.

Finally, considering the whole set of N graphs G = {G1, . . . , GN}, we computed the
overall measure with respect to all possible not trivial configurations as:

MA(G) =

∑N−1
p=1

∑N
q=p+1 MA(Gp, Gq)

N(N − 1)/2
.

In order to avoid dependence from a specific dataset we generated for each test 10
random graph datasets. Therefore, the final performance presented is the average of cu-
mulative accuracy from all the trial datasets, from which we added a measure of stan-
dard error to visualize properly the boundaries of the mean values. Several algorithms as
Graduated Assignment, Reweighted Random Walk and Consistency-driven Alternating
Optimization require to operate on the npnq × npnq affinity matrix W = (wia,jb), whose
entry are solved by the rule

wia,jb = exp

(
−

(apij − a
q
ab)

2

σ2

)
, (7.3)

where apij and aqab are the related edge weights of the two graphs, and σ2 the scaling pa-
rameter set to 0.15 experimentally. Moreover, the results are obtained sharing always the
same affinity matrices to guarantee a faithful comparison of the algorithms.

In Figure 7.2 we presented the results from three experiments at varying the levels of
(a) deformation, (b) topological noise, and (c) size of the range nodes nMAX−nMIN with
all the algorithms as introduced in Table 7.1. For experiments (a) and (b), the several ran-
dom dataset are generated with a fixed interval of nodes [15, 25]. Moreover, the graphs are
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weighted in (a) and (c), while triangulated in (b). These selection of experiment is aimed
to analyse the performances in the special scenario of subgraph matching problems with
multiple data. We can observe several common aspects from all these experiments. In
general, the baseline Reweighted Random Walks works better with respect to Graduated
Assignment, whose weakness is propagated clearly in the depending algorithms as well.
Our synchronized SS-GA and SS-RRW methods improve the accuracy with respect to
the unsynchronized subgraph matching solutions of GA and RRW respectively. Then, we
outperformed the performances with the state-of-the-art CDAO-RRW and CDAO-GA.
Moreover, the latter tends to be the worst method in our experiments. We explain this
behaviour very likely for the internal solver of CDAO since treats a QAP by RRW algo-
rithm, which could be less suitable to synchronize GA-based solutions. Generally, our
algorithms work properly in condition of perturbation of graphs (a,b) and increasing the
variability of the number of nodes (c). Although, in experiment (b) our SS-GA algorithm
seems to remain on the baseline GA. We could motivate the latter aspect guessing two rea-
sons: first, the performances with GA are quite low generally, our synchronization has no
sufficient information to improve further the accuracy; second, we are working with dis-
crete triangulated graphs (with respect to real-valued representations), whose contribute
in the topological discrimination may affect too crisp the weighted constrains in GA.

Finally, we conclude this evaluation just reasoning about the free parameter m in our
formulation as section 7.3. We decided to set that as the maximum number of nodes of the
graphs in a dataset, which is clearly the baseline condition otherwise some node matches
could not be modelled. Regardless, it would be possible to set even greater value than such
lower bound. Without adding trivial plots, we have tried different tests but the accuracy
has never been affected. We expected such behaviour, since the process should not need
to use further unconnected nodes beyond those would be required to fill all the graphs.
This is in general a good aspect, since our method can operate with good performances
without increasing excessively the dimension of the problem.

7.4.2 Dummy Nodes and Full Graph Matching
We are interested to investigate further about the impact of dummy nodes during the
learning to solve subgraph matching. Even if we could skip directly the introduction of
temporary nodes in certain graph matching methods, we forced such condition to measure
how they involve on the general performances.

In Figure 7.3 we presented the behaviour to solve pairwise subgraph matching with
classical RRW/GA algorithms and by adding dummy nodes as D-GA/D-RRW. The ex-
periment setting (i.e., the employed datasets) followed the main indications as in sec-
tion 7.4.1. We can observe mainly a sharp decreasing of the general accuracy just in the
performances with dummy nodes, therefore even if such nodes are disconnected with re-
spect to the parent graphs, their impact on the learning is pretty relevant. Moreover, this
aspect could explain better why the state-of-the-art CDAO in the previous experience as
in Figure 7.2 is particularly weak with respect to our method. The former is forced by
definition to pad the graphs before the learning, that is synchronizing a resulting initial
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Figure 7.3: Average results with standard error from synthetic data as Figure 7.2 at varying
the levels of (a) deformation, (b) topological noise and (c) node range size performing subgraph
matching with dummy nodes according methods as Table 7.1.

solution which is just disadvantaged at the beginning.
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Figure 7.4: Average results with standard error for synthetic test at varying the levels of (a)
deformation and (b) topological noise with graphs of equal sized performing the graph matching
methods as Table 7.1.

The introduction of dummy nodes by another point of view consists just to solve full
graph matching problem, since all graphs share the same number of nodes. We address to
analysis such condition in general terms, in order to evaluate the behaviour of our method
even in this special case. Figure 7.4 presents an experiment which is similar to Figure 7.2,
but setting the condition nMAX = nMIN = 30, which is just an application of full graph
matching. These new results confirm the conclusions presented in the experiments as sec-
tion 7.4.1, wherein prevails the power of RRW algorithm working both in deformation
test and topological noise experiments. Moreover, it is worth to be noted the fundamental
trend that even by solving a typical task of full graph matching our method remains stati-
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cally aligned with the state-of-the-art performances (which we remind it assumes graphs
of equal sizes). This behaviour is pretty required, since we need to remain competitive
with respect to the performances of classical graph matching solvers. This further ex-
periment showed that our generalized formulation includes properly the discrimination
accuracy to deal with full graph matching as well.

7.4.3 Constrain Violation Study
We are interested to analyse in deep how the violation of the constrain

QT
i 1ni

≤ 1m ∀i = 1, . . . , N

in our formulation acts with respect to different conditions. Considering the i-th alignment
as the ni ×m matrix Qi, we introduce the indicator function

σQi,k =

{
1 (Qi)

T
k 1ni

> 1

0 otherwise,

which returns 1 if the k-th column in Qi does not respect the constrain. We define a rough
overall measure to compute the average Constrain Violation Ratio (CVR) considering all
the columns and alignments as follows

σQ =
1

m

m∑
k=1

[
1

N

N∑
i=1

σQi,k

]
∈ [0, 1].

Moreover, there may be interesting to measure the amount of violation in quantitative
terms. We define the real-valued Average Constrain Violation Value (ACVV) measure as

δQ =
1

m

m∑
k=1

[∑N
i=1 σQi,k

(
(Qi)

T
k 1ni

)∑N
i=1 σQi,k

]
− 1 ∈ R+.

which computes the overall deviation value that exceeds the maximum of 1 in a column.
Finally, we introduce a further measure to combine the ratio of violation event for the
columns with respect to the magnitude of a given violation value v > 1. Considering the
indicator function

σQi,k,v =

{
1 (Qi)

T
k 1ni

≤ v

0 otherwise

we define the Constrain Violation Value Ratio (CVVR) as follows

σQ,v =
1

m

m∑
k=1

[
1

N

N∑
i=1

σQi,k,v

]
∈ [0, 1].

In Figure 7.5 we performed two tests with (a) deformation and (b) node range size for
random graph datasets according the setting of the previous experiments as in Figure 7.2.
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We added the related average measures of Constrain Violation Value (ACVV) in Table 7.2
and the Constrain Violation Value Ratio (CVVR) in Figure 7.6 for both experiments and
methods. The common behaviour we can observe from this analysis consists that the
constrain violation tends to remain quite low and without some tangible correlation with
the decreasing in matching accuracy. The latter aspect is quite important since it means
that supporting at least one constrain may be a sufficient condition to estimate correct
matches as well. Indeed, the results in Table 7.2 highlight that the magnitude of the
violation that happens during the learning is very low in average, considering that the
possible upper bound for an alignment matrix is ni − 1. After that, the overall picture
of these tests in Figure 7.6 shows that the majority of column violations have values
concentrated just beyond 1, in other terms, they are very small. Moreover, contrary to
CVVR, we observe that the ACVV value tends to increase with deformation or node
range size, e.g., when matching accuracy decreases. This aspect may suggest that even if
the ratio of the violation event is quite low, the weak accuracy may be further enhanced
by the bias over the columns.
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(a) Deformation Tests.
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Figure 7.5: Average results of matching accuracy (MA) and constrain violation ratio (CVR)
with standard error for synthetic test at varying the levels of (a) deformation and (b) node range
size performing Syncronized Reweighted Random Walks and Graduated Assignment for multi-
subgraph matching as Table 7.1.

7.5 Conclusion
We have presented a novel generalization of the subgraph matching problem, which ex-
ploits of multiple graphs during the learning with arbitrary sizes. Our approach models
the transitive partial permutation from combination of alignments which are defined ac-
cording a common universe of node that embraces all the graphs. The proposed method
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Table 7.2: Average constrain violation value (ACVV) related to experiments of (a) deformation
and (b) node range size presented in Figure 7.5.

Test SS-RRW SS-GA

0.05 5.0567·10−11 0.0070605
0.10 5.0567·10−11 0.015083
0.15 5.0567·10−11 0.027939
0.20 0.0022064 0.056128
0.25 0.019011 0.075443
0.30 0.066212 0.078494
0.35 0.086735 0.08292

(a) Deformation Tests.

Test SS-RRW SS-GA

0 8.0742·10−11 1.9842·10−8

2 0.0014549 0.0006046
4 0.00031551 0.0080815
6 0.0009673 0.01879
8 0.0020278 0.044988
10 0.0022064 0.056128
12 0.0003098 0.06391

(b) Node Range Size Tests.

works as a off-line rectification process according an initial pairwise solution from exter-
nal solvers. In our experiments we improved the matching accuracy of the unsynchronized
methods based on Graduated Assignment and Reweighted Random Walks. Moreover, we
even outperformed the performance of the state-of-the-art Consistency-driven Alternating
Optimization (CDAO) algorithm in the application of multi-(sub)graph matching.
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(a) SS-RRW in Deformation Tests.

1.00 1.09 1.18 1.27 1.36 1.45 1.54

constrain violation value

5

6

7

8

9

10

11

12

13

co
ns

tr
ai

n 
vi

ol
at

io
n 

va
lu

e 
ra

tio
 (

%
)

0.05
0.10
0.15
0.20
0.25
0.30
0.35

(b) SS-GA in Deformation Tests.
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(c) SS-RRW in Node Range Size Tests.
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(d) SS-GA in Node Range Size Tests.

Figure 7.6: Constrain Violation Value Ratio (CVVR) for each tests and methods presented in
Figure 7.5.
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8
Conclusion

In the first part of this thesis we gave an exhaustive introduction about data representations
in Machine Learning, with particular focus to stress the implications that may arise oper-
ating on classical vector spaces with respect to further complex unstructured paradigms,
such as data graphs or more general feature collections. We presented the basis of the
well-known Kernel Methods, which suggest approaches to generalize a positive semidef-
inite kernel with universal objects, including some classical example of kernel functions.
We presented foundations of Computer Vision, treating in detail the main characteris-
tics of the pinhole camera model and related rigid or affine geometrical transformations.
Moreover, we showed several well-known applications and problems related to feature
extraction as well as method to reconstruct 3D scene from general set of 2D views. The
last and fundamental topic was about Matching Problem, highlighting the specific dis-
tinction between Graph Matching with respect to Point Set Matching. We introduced for
both approaches the classical pairwise formulation and principal related solutions from
the literature. Furthermore, we presented some recent methods to generalize these match-
ing problems with multiple data objects as well.

In the second part of this text we presented our fundamental contribution, describing
four different proposals addressed to solve multi-way matching problems by synchroniza-
tion of structural transformations.

In Chapter 4 we introduced an approach which combines Multi-Graph Matching and
Graph kernel method for classification task. This work consists in a framework which
can be suitable paired with any external pairwise Graph Matching solver in out-of-the-box
fashion. In other terms, our solution operates off-line with respect to the whole estimation
of the synchronized permutations between graphs, hence resulting in a synchronization
process which is an independent rectification step to a primal estimated solution. We
devised our approach by a formulation based on the space of orthogonal permutation ma-
trices and solving the transitive transformations according an underlying set of alignments
related to an unknown reference order. The consequent integer quadratic program is re-
laxed by an iterative optimization in the unit sphere and performing a discretization step
of the final estimated solution. Our graph kernel is inspired to the class of assignment
graph kernel, since we exploit of the aligned permutations of the graphs to retrieve the
similarity measurements. The fundamental constrain of transitivity which is supported in
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our Multi-graph matching approach gets the novel kernel positive semidefinite as well.
Our experimental results in several classification tasks on graph datasets showed that in-
troducing the global consistency in the transformations the performances can increase
significantly, in particular we overcame state-of-the-art accurateness with respect to the
conventional pairwise Graph Matching solvers.

In Chapter 5 we introduced a process for the estimation of synchronized homographic
transformations through a set of dense planar views, which simultaneously learns a pixel-
wise classifier to distinguish the regions which contain the planar surface. Our approach
is inspired on typical bundle adjustment tasks in Computer Vision, since it consists in
an independent refinement operation onto an external set of rough homographies (whose
consistency is not guaranteed at the primal stage). The iterative multi-view optimization
is governed by an energy cost function, which combines homographic transformations
and the plane masks used by the classifier as cumulative contributions of sub pairwise
problems. For each iteration, the homographies are rectified by affine transformation
synchronization in closed-form and the classifier is trained by graph-cut segmentation
separately. Our combination of methodologies yields in a suitable setup, since the whole
process could be easily parallelizable in case of fully-connected view graph. Furthermore,
the method operates densely over the views, therefore does not require feature extraction
or calibration task to lead the optimization. Our experimental results proofed that the
introduction of global consistency in the transitive homographies had a tangible impact to
reduce the general error with respect to other sparse homographic estimation techniques,
both through the plane classifier performances and qualitative/quantitative tests on the
transformed images.

In Chapter 6 we introduced a further work for Multi-Graph Matching which solved
some drawbacks in our previous approach as Chapter 4. The fundamental innovation in
this solution lies in the active synchronization strategy, which works inside an underlying
Graph Matching technique totally. This aspect is crucial to overcome a typical limit in
off-line rectification methods, which suffer to be excessively sensitive by the raw solution
imported to initialize the synchronization, whose accurateness is related to the external
solver which cannot be controlled actively. Moreover, our proposal does not operate
in the orthogonal permutation space, but considers transformations defined as double-
stochastic matrices, which are points in the well-known Birkhoff’s Polytope. In order to
maintain the transitive constraints by the permutations, we just reformulated the Birkhoff-
Von Neumamnn theorem integrating alignments structures. Furthermore, we exploited of
the Matching Pursuit paradigm to get feasible the high magnitude of the resulting cost
function by defining a suitable approximation. Our work could be employed as a gen-
eral component to extend potentially any pairwise Graph Matching algorithm based on
double-stochastic permutation matrices to a Multi-Graph Matching approach. We real-
ized three algorithms which integrate our method based on Graduated Assignment, Path
Following and Reweighted Random Walks for Graph Matching. The experiments demon-
strated the effectiveness of our formulations on several synthetic and real-world graph
dataset, since we outperformed not only the performances with respect to the unsynchro-
nized counterpart algorithms, but even the state of the art in Multi-Graph matching field.
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Finally, in Chapter 7 we introduced a method which generalizes the problem of
(sub)graph matching considering multiple graphs with arbitrary dimensions. This work is
particularly inspired to the previous approaches of (full) Multi-Graph Matching as Chap-
ter 4 and Chapter 6, respectively, for initializing the synchronization from an external
pairwise solution and relaxing the transitive alignments as stochastic matrices (at least
in one-way sense). However, this new approach overcomes the common limit of previ-
ous works by solving multi-subgraph matching without padding the graphs with artifi-
cial dummy nodes directly. Our generalization consists to formulate the transitive align-
ments through the introduction of a further common dimension of nodes, which is set in
the multiple standard simplex in order to embrace the several magnitudes of any graph.
Therefore, we can define constrains against this virtual universe, which are reduced to
real dimensions once the partial permutation are reconstructed. We evaluated our method
synchronizing the solutions from two well-known graph matching solvers such as Grad-
uated Assignment and Reweighted Random Walks on synthetic datasets by controlling in
several ways noise and variability of the graph size. The resulting performances of these
experiments showed a tangible improvement in our generalization both with respect to
the unsynchronized solutions and state-of-the-art technique for Multi-Graph matching.

8.1 Future Work
In this thesis we widely analysed through our four proposed methods that exploiting of
further data in pairwise matching problems can be an effective strategy to reduce signifi-
cantly the uncertainty in local correspondences; although, our investigation to generalize
this task is not terminated yet.

The problem to guarantee global consistency of the transformations is in general quite
difficult to treat, in particular with high dimensionality on data. Despite classical pairwise
matching problems, to enforce transitivity during the learning and in particular for on-line
processes, there is required the active maintenance of several data structures for each iter-
ation, resulting critically expensive both in memory and computational time. Moreover,
there exist several application contexts which involve huge data, especially with graph-
based representations. Hence, there becomes reasonable to plan a future study in order
to devise more scalable formulations of our synchronization processes, e.g., proposing
factorization schemes of the main structures. Nevertheless, we have already presented in
sections 4.5 and 6.4.4 some very general dimensionality analyses of respectively off-line
and on-line learning, which address to reconsider the importance of dataset magnitudes
with respect to synchronization tasks. Indeed, further generalization on huge datasets
could lead to saturate the accuracy, since estimating a big set of alignments which have to
be also very discriminative there could be very hard to solve numerically. For sure, this
conjecture deserves further investigation to be sharper confirmed.

Regardless the dimensions of the problem, there is required further study in order to
understand what are the properly conditions whose synchronization is reasonable gener-
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ally. After that, we need to establish reliable assumptions and preconditions to exploit of
this technique, e.g., number of the samples, structural dimensions of the objects involved,
quality of the available data and context of application. Indeed, there may happen that
synchronization generates itself disturb when the unsynchronized solution has already
the highest quality which is possible for a given problem; in addition, since the princi-
ple of global consistency consists to spread information to reduce local ambiguities, if
the latter is not sufficiently sharp or biased at the beginning, then the process could even
downgrade some local accurate transformations. In our work we simulated these different
conditions mainly with synthetic data, but trusting just on such incomplete experience of
this topic may lead us to pose weak conclusions by considering applications in real-world
scenarios.

Our optimization proposals depend strictly by various parameters to control the learn-
ing phase: some are expected by our formulations, but some else are imported by the
integration of additional solvers in our works. We initialized these values following both
the settings found in the original works and experimentally by our coarse observation of
the optimization dynamics. The latter represents a weak point in our analysis, since the
current parameters should be unsuitable in further scenarios which are still out of our ex-
perience. Therefore, we need to study in deep such manner with the purpose to formulate
some general criterion to tune these parameters properly. Regardless, we have already
tried further alternatives for method in section 6.4.4 without obtaining significant differ-
ences on the final performances. This suggest that the overall impact of some parameters
may be negligible actually, in particular working on low scale applications.

The most recent methods presenting in this thesis are the Synchronized Reweighted
Random Walks algorithm in section 6.4.2 and the Generalization for (sub)graph match-
ing as Chapter 7. In the former work we just adjusted our general model for multi-graph
matching task obtaining a process which registered very high results with respect to our
earlier experience with Synchronized Graduated Assignment and Path Following. Even
if we are quite sure about the effectiveness of our new proposal, the algorithm may be
further analysed with an overall comparison with respect to any multi-graph matching
methods. In the latter and final work we just presented a preliminary study of a possible
generalization for the problem of multi-subgraph matching. We implemented the process
by gradient descent in the manifold of multi-dimensional standard simplex, but another
formulation may be possible relaxing the alignments in the unit sphere, i.e., similarly to
the projection in transitive space as in section 4.2. Moreover, our experiments are limited
with small and synthetic graph datasets, but we need to analyse the method in real-world
scenarios as well. Finally, we illustrated in deep that the constrain violation over the
alignment columns seems to be an event which does not effect heavily the learning ac-
curateness. Although, we are interested to fix this potential weak point by introducing
a hinge loss term in the current formulation, which should tolerate better the lack of the
second constrain.
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