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A B S T R A C T

Unstructured (or, semi-structured) natural language is mostly used to capture the requirement specifications
both for legacy software systems and for modern day software systems. The adoption of a formal approach
to the specification of the requirements, using goal models, enables rigorous and formal inspections while
analyzing the requirements for satisfiability, consistency, completeness, conflicts and ambiguities. However,
such a formal approach is often considered burdening for the analysts’ activity as it requires additional skills,
and is therefore, discarded a priori. This works aims to bridge the gap between natural language requirement
specifications and efficient goal model analysis techniques. We propose a framework that uses extensive natural
language processing techniques to transform a set of unstructured natural language requirement specifications
to the corresponding goal model. We combine techniques such as parts-of-speech tagging, dependency parsing,
contextual and synonymy vector generation with the FiBER transformer model. An extensive unbiased crowd-
sourced evaluation of the proposed framework has been performed, showing an acceptability rate (total and
partial combined) of 95%. Time and space analyses of our framework also demonstrate the scalability of the
proposed solution.
1. Introduction

The evolution of software development methodologies – from plan-
based Waterfall models (in the 70s and 80s) to Agile and Lean De-
velopment models (in the late 90s and early 2000s) and, the more
recent, DevOps techniques (popularized over the last decade) – has
constantly highlighted the need for the software industry to respond
to volatile business environments more rapidly and effectively. This has
resulted in a paradigm shift from investing in extensive documentations
to rapid delivery of working code. As a result, both maintenance of
legacy systems and development of modern software suffer from one
common flaw — the negligence of requirements engineers in applying
proper requirements engineering techniques to manage the volatile re-
quirements of the business and software application effectively. In this
regard, requirements elicitation and analysis is one of the most critical
activities for ensuring the correctness and efficacy of the software being
developed and maintained.

Requirement goal models have the advantages of goal refinement
formalization (Darimont and Van Lamsweerde, 1996) as well as
reusability (Mussbacher et al., 2007; Duran et al., 2015). The goal-
oriented requirements engineering community has proposed frame-
works, tools and solutions for effective management, analysis and
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validation of system requirements with the help of requirement goal
models (Van Lamsweerde, 2009, 2001a). Most requirement specifi-
cations are captured – both within legacy requirement specification
documents and agile story cards – using natural language statements.
Natural language specifications are prone to inconsistencies, incom-
pleteness, and errors arising out of incorrect interpretations (Popescu
et al., 2007; Landhäußer et al., 2014; Kof, 2005). Automatic tech-
niques cannot be applied on such specifications for performing different
types of analyses such as satisfiability analysis, entailment checking,
inconsistency checking, and others.

Existing works in the literature have already demonstrated how
requirements models can be derived from structured or semi-structured
natural language requirement specification documents. Most of these
works aim to derive UML Use Case or Sequence diagrams from semi-
structured natural language requirements (Deeptimahanti and Sanyal,
2011; Kumar and Sanyal, 2008; Deeptimahanti and Babar, 2009a;
Güneş and Aydemir, 2020). On the other hand, deriving requirement
goal models from unstructured natural language requirement (uNLR)
specifications is still an open research problem.

In this paper, our objective is to create and empirically assess a
comprehensive framework for managing system requirements, thereby
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filling the noted research gap. The end objective of this exercise is
to extract the goal modeling constructs that remain embedded within
natural language requirement specifications. The derivation of goal
models from detailed natural language requirement specifications can
be labor intensive and prone to errors that arise out of misinterpre-
tation. The research is quite challenging as it involves extensive text
analysis tasks. In this paper, we try to address these challenges by com-
bining natural language processing (NLP) techniques and methods like
Natural Language Understanding (NLU), Information Retrieval (IR),
Sentence Embedding, Dependency Parsing, Entity Type Recognition,
and Similarity Checking, in addition to several pre-processing tasks as
well. Recent progresses in the NLP domain allow us to reduce human
intervention and incorporate as much automation as possible.

The proposed comprehensive end-to-end framework is composed of
several modules and algorithms that utilize different NLP techniques to
facilitate the process of deriving a goal model from uNLR specifications.
At first we identify goal modeling constructs like goals, softgoals, and
resources, along with the semantic relationships among them as given
in the uNLR document. In the next phase, the framework employs
two algorithms that utilize the information from the previous stages
and generate the goal model. The goal model construction process
consists of three sub-processes - (a) goal model construction with actor
boundaries; (b) representing goal decompositions; and (c) representing
hard goal and softgoal associations. The framework uses machine learn-
ing techniques to address specific challenges during the goal model
derivation process.

We evaluated the application of our framework on two different
case studies: (1) a meeting scheduling system and (2) an online shopping
ystem. We achieve over 85% of accuracy in all the tasks - Goal
dentification, Goal Decomposition, Resource Identification, Goal-Resource
ssociation, Softgoal Recognition and Goal-Softgoal Association - required

o construct the goal models for the above use cases. We adopted
crowd-sourcing based evaluation approach for estimating the ac-

eptability of our solutions tailored for the requirements engineering
ommunity. Time and space analyses also demonstrate the scalability
f the proposed solution.

The main contributions of this paper can be summarized as follows:

1. An end-to-end framework for generating goal models from un-
structured natural language requirements, supporting goal de-
compositions, and associations among goals, resources and soft-
goals.

2. A software requirements classification approach to classify func-
tional and non-functional requirements(NFR) with 92% of ac-
curacy that outperforms state-of-the-art works for requirements
classification. The classification model is also able to classify the
types of NFR.

3. A working prototype1 of our proposed framework that allows
the research community and requirements engineers to use our
framework in real world software-enabled business environ-
ments.

The rest of the paper is organized as follows. Section 3 presents
he existing state-of-the-art for deriving goal models from natural lan-
uage requirements. Section 2.5 gives a brief idea of how goal model
ntities and relationships can be derived from uNLR specifications. In
ection 2.4, we document the preliminary concepts of goal models
nd different NLP mechanisms. The framework is presented in full
etails in Section 4. In Section 5, we experimentally evaluate it on two
ell-known case studies. Section 7 concludes.

1 https://github.com/svk-cu-nlp/NLR-to-Goal-Model.
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2. Background, related concepts and motivating example

This work makes a conscious effort to bring together two very
diverse research communities — the goal-oriented requirements engi-
neering community and the natural language processing community. In
order to make the paper better readable for this diverse target audience,
we would like to briefly discuss the concepts which have been adopted
from these two communities for the presentation of our research work.
We also present a simple example to demonstrate how the concepts
may be used to achieve the desired output.

2.1. Representations of natural language requirements

The requirements engineering community has proposed different
notations for documenting system requirement specifications such as
structured, semi-structured and unstructured natural language, design
description languages, graphical notations, and mathematical specifi-
cations. However, among these the two most popular and widely used
notations are as follows:

• Structured Natural Language Requirements: The requirement spec-
ifications are expressed in plain English on a common form or
template. Each field contains information on a different aspect
of the requirement. Several templates (Rupp et al., 2009; Arora
et al., 2015) have been proposed in the requirements engineering
literature to be served as a simple tool for improving the quality
of requirements by avoiding complex structures, ambiguities, and
inconsistencies in requirements. Such notations have been widely
popularized by Agile teams who use them for capturing user
stories or story cards (Lucassen et al., 2016; Dalpiaz et al., 2019;
Spijkman et al., 2021).

• Unstructured Natural Language Requirements: The more popular
notation for capturing requirement specifications in the industry
is the unstructured natural language notation. Such specifications,
on the other hand, might be complicated and difficult to in-
terpret since the requirements are subject to the interpretation
of the user. There are three main problems that often arise
when requirements are written in unstructured natural language
sentences (Jackson, 1995):

– Lack of clarity: It is sometimes difficult to use language
in a precise and unambiguous way without making the
document wordy and difficult to read.

– Requirements confusion: Functional requirements, non-funct-
ional requirements, system goals and design information
may not be clearly distinguished.

– Requirements amalgamation: Several different requirements
may be expressed together as a single requirement.

Within the scope of this paper, our emphasis lies in employing
NLP techniques to process unstructured natural language requirement
(uNLR) specifications and subsequently generating modeling constructs,
particularly tGRL (Abdelzad et al., 2015b) goal models, from these
specifications.

2.2. Concepts of goal model

The goal oriented requirements engineering literature has intro-
duced many different goal modeling concepts over the past couple of
decades. In this section, we highlight and briefly explain only those
concepts which we have used in this paper and which are fundamental
to most goal modeling frameworks that are available in the existing
state-of-the-art.

• Actor: An actor is an active entity that carries out actions to
achieve goals by exercising its knowledge (Yu, 2011).

https://github.com/svk-cu-nlp/NLR-to-Goal-Model
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• Goal: A goal is a condition or state of affairs in the world that the
actor would like to achieve (Yu, 2011). They are binary in nature
i.e. they can be satisfied or not satisfied. Example - ‘‘User must
enter shipping address before placing order’’

• Softgoal: A softgoal is a condition in the world which the actor
would like to achieve but unlike in the concept of a hard goal, the
criteria for the condition being achieved is not sharply designed a
priori, and is subject to interpretation (Yu, 2011). They are fuzzy
in nature. Example — Reliability, Performance, Security.

• Goal Decomposition: Goals are refined into subgoals that elaborate
on how the goal is achieved. Goal decomposition could be of two
types.

– AND Decomposition: AND-refinement links relate a goal to a
set of subgoals (called refinement); this means that satisfy-
ing all subgoals in the refinement is sufficient for satisfying
the parent goal (Van Lamsweerde, 2001b). For example —
The goal ‘‘Place order’’ can be decomposed into ‘‘Provide
delivery address’’ and ‘‘Make payment’’.

– OR Decomposition: OR-refinement links relate a goal to an
alternative set of refinements; this means that satisfying
one of the refinements is sufficient for satisfying the parent
goal (Van Lamsweerde, 2001b). For example — The goal
‘‘Login’’ can be achieved by using ‘‘Facebook authentica-
tion’’ or ‘‘Google authentication’’.

• Resource: Physical or informational entity (Yu, 2011).
• Means-end Link: A means-ends link indicates a relationship be-

tween an end – which can be a goal to be achieved, a task to
be accomplished, a resource to be produced, or a softgoal to be
satisficed – and a means for attaining it (Yu, 2011). For example
— The goal ‘‘Encrypting data’’ has a means-end link towards
satisficing the softgoal ‘‘Data Security’’.

.3. Challenges of constructing goal models from uNLR specifications:

The construction of goal models from unstructured natural language
equirements brings different critical challenges. This section highlights
he major challenges we encountered while developing our framework.

• Understanding the Structure of Sentences: Extraction of different
components like actors, goals, and resources from uNLR state-
ments requires a deep understanding of the English grammatical
structure. Identifying subject, verb, object and relations among
multiple words within an active (or passive) sentence involves
a moderate level of NLP tasks like POS Tagger and Dependency
Parser.

• Identifying Actors and Resources: Actors and resources are entities
which are always domain-specific in nature. Identifying actors
and resources from the noun phrases of a sentence brings another
significant challenge.

• Identifying Goals and Softgoals: In goal models, functional re-
quirements are represented as goals (also called hard goals) and
non-functional requirements are represented as softgoals. Several
key concepts of a goal model like goal decomposition, the contri-
butions of softgoals, and dependency among goals and softgoals
define the completeness of a goal model. This is the reason
why the recognition of goals and softgoals is so crucial. In or-
der to identify the goals and softgoals in the goal model, we
must classify the requirements. Requirements classification task
can classify the requirements into two categories (i) Functional
requirements and (ii) Non-functional requirements. We can fur-
ther extend the classification task to classify sub categories of
non-functional requirements.

• Goal Decomposition: In natural language requirements, the de-
composition of goal may not be specified in an explicit manner.
3

The decompositions of goals need to be extracted from multi-
ple uNLR statements. Semantic relationships among requirement
statements with respect to the same goal is the key to identify the
goal decomposition.

• Decomposition Type Identification: Once we identify the existence
of a potential goal decomposition across a set of uNLR statements,
we need to also identify the type of decomposition. A supervised
classification task to classify the decomposition type could be the
possible solution.

• Softgoal-Goal Association: Goals can contribute some positive or
negative values towards satisficing (also referred to as satisfying)
a softgoal. In this work, we aim to identify only the association
between goals and softgoals; predicting the contribution value
is beyond the scope of this work. Identifying the association
between softgoals and goals may require a systematic approach.
The systematic approach could leverage NLP tasks like uNLR
classification, and semantic similarity between multiple require-
ments to accomplish the identification of the goal and softgoal
association.

n this paper, we take up all the above mentioned challenges and try
o solve them by combining different NLP techniques.

.4. Natural language processing tasks

This section briefly elaborates the NLP concepts and technologies
hat have been used in our proposed framework. This section is aimed
or the requirements engineering community readers who might not be
amiliar with NLP concepts.

• Dependency Parsing. A dependency parser analyzes the grammat-
ical structure of a sentence, establishing relationships among the
words of the sentence. It maintains a partial parse – a stack of
words that are presently being processed and a buffer of words
that are yet to be parsed – at every step. An open-source python
library spaCy2 has been used in this work to generate a depen-
dency parse tree. The spaCy dependency parser offers tokens with
different properties to traverse the dependency parse tree. In this
work, we have used the Stanford dependency parser models in
spaCy pipeline. It is worth mentioning that the Stanford depen-
dency parser models (Chen and Manning, 2014; Dozat et al.,
2017) support English (with Universal Dependencies, Stanford
Dependencies and CoNLL Dependencies) and achieve the highest
accuracy in the CoNLL 2017 (Straka and Straková, 2017) and
2018 (Zeman et al., 2018) shared task.
Natural language requirement specifications can be diverse in
structure, as they can be written in either active or passive voice.
Our framework uses a dependency parser to efficiently recog-
nize the structure of these sentences, and to find the subjects,
verbs, and objects within them. This allows us to accurately parse
natural language requirements specifications, regardless of their
structure.

• Information Extraction (Cowie and Lehnert, 1996). Information
extraction is a powerful natural language processing (NLP) tech-
nique that can be used to extract structured information from
unstructured text. This capability proves invaluable in extract-
ing crucial components from requirements specifications for con-
structing comprehensive goal models. The community might be
using the information extraction techniques to extract entities
and establishing links between different pieces of information.
In our framework, information extraction plays a vital role in
the implementation of several components. Resource identifica-
tion, for example, requires more deep analysis of the text. Entity
type recognition is the key to identify resources specified in the
software requirements specification document. These extracted
information are the building blocks for the rest of the framework.

2 https://spacy.io/usage/linguistic-features#morphology.

https://spacy.io/usage/linguistic-features#morphology
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Table 1
Specification of parameters to fine-tune the FiBER model for different tasks.

Task Parameters Value

1. Actor and resource recognition

Optimizer AdamW
Learning rate 1e−3
Loss function Cross-entropy
Weight decay 0.01
Epoch 8
Batch size 16
Train and test split 0.80

2. Goal decomposition type prediction

Optimizer AdamW
Learning rate 5e−05
Loss function BinaryCrossEntropy
Weight decay 0.01
Epoch 10
Batch size 16
Train and test split 0.8

3. Goal softgoal classification

Optimizer AdamW
Learning rate 5e−05
Loss function Cross-entropy
Weight decay 0.01
Epoch 10
Batch size 16
Train and test split 0.75

• Sentence Embedding Model. The quality of understanding a sen-
tence is determined based on three characteristics of a word
embedding or sentence embedding model. These are as follows:

– The corpus on which the model is trained.
– The architecture of the model.
– The amount of contextual knowledge focused on by the

model.

The FiBER (Das et al., 2021) model is a transformer architecture
based language model which is fine-tuned on the BERT (Devlin
et al., 2018) model with the PURE (Ferrari et al., 2017) dataset
(comprising of unstructured natural language requirement state-
ments). The FiBERmodel uses the vast vocabulary of BERT, grasps
certain words from the domain of requirements engineering and
has the ability to generate sentence embeddings. The FiBER model
comes with very high accuracy of 88% for identifying both similar
and dissimilar natural language requirements. In different phases
of our framework, identifying related requirement statements
is very crucial and cosine similarity make it easier to achieve
relatedness measures. NFR classification task is another vital
feature in our framework. We have also trained the FiBER model
for NFR classification task and it achieves 89% of accuracy for
multi-class classification task. The FiBER model has also been
used for the Decomposition Type prediction task of the framework.
Moreover, the FiBER model has been trained for identifying goal
model entities, more specifically Actors and Resources. Table 1
shows different parameters used to fine-tune the FiBER model for
different tasks.

2.5. A motivating example

We would like to introduce a preliminary case study that allows the
reader to better appreciate the exact problem statement and the desired
outcomes from our proposed solution. The requirement statements are
kept simple, intentionally, in order to demonstrate the entire process
with ease. It is worth mentioning here that this example is not part of
the evaluation of our framework. It only explains the different outputs
that the system is expected to generate at every step and may differ with
actual evaluation outputs. We consider a partial set of requirements
for an e-commerce application taken from the PROMISE (Cheikhi and
Abran, 2013) dataset. Our framework performs the following set of
4

activities.
Table 2
uNLR specifications (partial) for E-commerce application.

Functional requirements

1. User shall login into the system.
2. User can use either Google credentials or
Facebook credentials in order to login.
3. User shall search products.
4. User has to enter text to search product.
5. User can filter searched products by category,
price or color.
6. User shall place order of products.
7. User can make payment through Net Banking or
credit card.
8. User must provide delivery details like street
address, zip code and mobile number.

Non-functional requirements
9. User login credentials must be stored using
encryption.
10. Payment should be done on secure channel.

Constraints 11. User must make payment before placing order.
12. User has to login before ordering products.

1. Classification of Requirements Statements. The entire process starts
with analyzing the requirements statements and identifying
functional requirements, non-functional requirements and con-
straints as depicted in Table 2. Functional and non-functional
requirements must be classified in order to identify goals and
softgoals for goal model construction.

2. Goal Model Component Extraction. At this point, we need to ana-
lyze every uNLR statement in order to extract different building
blocks of a goal model such as Goals, Actors, Resources and
Softgoals. We aim to identify goal decompositions from sin-
gle requirement statements or multiple consecutive requirement
statements. Furthermore, we intend to infer relationships among
multiple functional and non-functional requirements in terms
of goal-softgoal associations. Table 3 gives an overview of how
essential components may be extracted from the partial set of
uNLR statements listed in Table 2. Additional information, like
dependencies among goals and softgoals can also be observed
for the 9th and 10th requirements in Table 3.

3. Goal Model Generation. Once we have all the necessary infor-
mation for generating the goal model, we aim to generate the
goal model description using the tGRL (Abdelzad et al., 2015b)
domain specific language (DSL). Goal model generation from the
components is significantly challenging. We propose a couple
of algorithms to arrange the extracted components within a
goal model and the corresponding tGRL description should be
generated as shown in Fig. 1. We choose tGRL over other goal
model approaches because the DSL is simple to understand and
automated composition of the goal model is relatively easy. The
tGRL description can also be visualized graphically using the
existing jUCMNav tool (Abdelzad et al., 2015a).

3. Related works

The strong relationship between Natural Language (NL) and soft-
ware requirements has inspired researchers to introduce NLP to auto-
mate the processing of natural language requirements (NLR) for later
stages of software development. Basic tools and libraries like POS(Parts-
of-Speech) tagger (Santorini, 1990), dependency parser, lemmatizer,
entity recognizer are often used in analyzing natural language require-
ments to build requirements models (Sagar and Abirami, 2014; Robeer
et al., 2016; Letsholo et al., 2013). Word and sentence embedding mod-
els like Word2Vec (Mikolov et al., 2013), BERT (Devlin et al., 2018)
and other language models (Liu et al., 2019; Sanh et al., 2019) are
also gaining attention as they interpret natural languages into machine
readable form and help to perform critical tasks like Requirements De-

pendency Classification(RDC) (Deshpande et al., 2021), requirements
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Table 3
Extracted components of natural language requirements.

Natural language requirements Type of requirements Extracted entities and relationships

1. User shall login into the system. Functional requirements Actor: User, Goal: Login

2. User can use either Google credentials or
Facebook credentials in order to login.

Functional Requirements Actor: User, Goal: Login, Subgoal: Login via Google Credentials,
Login via Facebook Credentials, Decomposition Type: OR

3. User shall search products. Functional requirements Actor: User, Goal: Search Products

4. User has to enter text to search product. Functional requirements Actor: User, Goal: Search Products,Subgoal: Enter text,
Decomposition Type: AND

5. User can filter searched products by category,
price or color.

Functional Requirements Actor: User, Goal: Filter Searched Products, Subgoal: Filter by
category, Filter by price, Filter by color, Decomposition Type:
OR

6. User shall place order of products. Functional requirements Actor: User, Goal: Place product order

7. User can make payment through Net Banking or
credit card.

Functional requirements Actor: User, Goal: Make payment, Subgoal: Payment through Net
Banking, Payment through Credit card, Decomposition Type: OR

8. User must provide delivery details like street
address, zip code and mobile number.

Functional requirements Actor: User, Goal: Provide delivery address details, Subgoal:
Provide street address, Provide zip code, Provide mobile
number, Decomposition Type: AND

9. User login credentials must be stored using
encryption.

Non-functional
requirements

Actor: User, Softgoal: encryption, Associated Goal: Login

10. Payment should be done on secure channel. Non-functional
requirements

Actor: User, Softgoal: Security, Associated Goal: Payment.

11. User must make payment before placing order. Constraint Actor: User, Dependent Goal: Place order, Dependee Goal: Make
payment.

12. User has to login before ordering products. Constraint Actor: User, Dependent Goal: Order products, Dependee Goal:
Login
Fig. 1. tGRL description of the goal model.
lassification (Hey et al., 2020), entity coreference identification (Agar-
al et al., 2019) and many more. Automated model generation from
LR text documents is an active field of study for researchers. Several

esearches like Kumar and Sanyal (2008), Zhou and Zhou (2004) and
en Abdessalem Karaa et al. (2016) have been conducted to generate
ML class diagram from NLR specification documents. Similar re-
5

earches (Deeptimahanti and Babar, 2009a; More and Phalnikar, 2012;
Ibrahim and Ahmad, 2010) have been introduced to develop UML use
case diagram from NLR documents using NLP tools and techniques.
Kochbati et al. (2021) proposes a machine learning-based approach
to automatically break down a software system into sub-systems and
generate preliminary architecture models from natural language user
stories. The paper uses word2vec for semantic similarity and optimal

cluster estimation. It proposes a clustering solution to generate UML
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Table 4
Comparison of existing systems.

Paper Human
intervention
needed

Classification of
requirements
considered

Softgoal
identified

Unstructured
NLR
considered

Final outcome Acceptance
analysis

Evaluation metric

Letsholo et al. (2013) ✓ ✗ ✗ ✓ Analysis model on UML
class diagram

✗ Precision and recall

Robeer et al. (2016) ✗ ✗ ✗ ✗ Conceptual models ✗ Precision and recall

Deeptimahanti and
Babar (2009b)

✓ ✗ ✗ ✗ UML class diagram,
analysis model and
collaboration diagram

✗ Not evaluated

Sagar and Abirami
(2014)

✗ ✗ ✗ ✓ UML class diagram ✗ Precision and recall

Ben Abdessalem Karaa
et al. (2016)

✗ ✗ ✗ ✓ UML class diagram ✗ Precision and recall

Cleland-Huang et al.
(2006)

✓ ✓ ✓ ✓ Visualize the quality
concerns

✗ Precision recall and
F1-measure

Güneş and Aydemir
(2020)

✗ ✗ ✗ ✗ Goal models ✗ Not evaluated

Arora et al. (2016) ✓ ✗ ✗ ✓ Domain models ✓ Acceptance analysis
Shimada et al. (2017) ✓ ✗ ✗ ✓ Goal Models ✓ Acceptance analysis
Bragilovski et al.
(2022)

✓ ✗ ✗ ✓ UML class diagram ✓ Acceptance analysis

Zhou et al. (2022) ✓ ✗ ✗ ✓ Goal model snippets ✗ Precision recall and
F1-measure

Proposed approach ✓ ✓ ✓ ✓ Goal models ✓ Acceptance analysis
use-case models from user stories. In another work (Sagar and Abirami,
2014), authors presented an automated system that involves different
NLP tools and several design rules to create a class diagram from
natural language requirements. They have also classified relationships
as Associations, Aggregation, Composition and Generalization. Letsholo
et al. (2013) developed the TRAM tool platform to construct analysis
models automatically from the natural language specifications by incor-
porating conceptual patterns with NLP techniques. In another research,
Arora et al. (2016) proposed an automated approach of building NL
Domain Models based on the use of existing NLP tools, and are also
proposing new modeling rules using NLP Dependence Parser. Robeer
et al. (2016) introduce a completely automatic tool to create a concep-
tual model as OWL ontology from user stories by using NLP heuristics.
Another work (Bragilovski et al., 2022) offers example-based guidelines
for deriving class and use case diagrams from user stories. Through a
controlled experiment with 77 undergraduate students, it demonstrates
that these guidelines improve the completeness and validity of concep-
tual models for medium complexity cases, potentially assisting analysts
in refining user stories.

Weber-Jahnke and Onabajo (2009) proposed an approach for the
mining of safety goals and the analysis of the goal model. Additionally,
they have provided the tool support for the framework. Cleland-Huang
et al. (2006) proposed a machine learning and data mining based
approach of eliciting quality concerns and constructing a Softgoal
Interdependency Graph (SIG) from a natural language requirements
specification. In another work (Casagrande et al., 2014), authors have
integrated data mining and NLP approaches with KAOS framework
to extract goals from textual data. In semi-automatic and iterative
format the NLP-KAOS system is able to generate a goal specification.
Another research (Liaskos et al., 2010) proposed an approach which
uses NLP to identify stakeholder’s preferences from natural language
expressions given by stakeholders themselves. Later on, they have
associated these preferences with the corresponding goal of the goal
model. A framework for goal model construction from user stories
using NLP techniques and some heuristics has been presented by Güneş
and Aydemir (2020). Shimada et al. (2017) presented an approach to
construct goal model from requirements descriptions. The approach
consists of three steps — requirements decomposition, goal extraction
and integration. First, the requirements description is decomposed into
fragments. Several extraction rules have been applied to elicit goals
from the natural language requirements. Finally, different small goal
6

models are combined into one goal model. Zhou et al. (2022) present
a systematic framework that semi-automatically generates goal model
snippets from textual requirements specifications. They fine-tune the
BERT model on datasets for actor entity extraction, intention entity
extraction, and actor relation extraction. This interactive and iterative
modeling process effectively combines human decisions and AI algo-
rithms, offering valuable assistance in performing iStar modeling. In
another research (Bhatia et al., 2016) the authors have proposed a
hybrid combination of crowd sourcing and NLP to extract privacy goals
from the privacy policies. In this framework, crowd workers interprets
phrase-level policy as small tasks. In order to keep the tasks small and
affordable, dependency parsing based on part-of speech (POS) tagging
has been incorporated to annotate privacy goals semi-automatically. In
Table 4, the state-of-the-art approaches in conceptual domain model
generation from natural language requirements are highlighted.

The current state-of-the-art shows several approaches or frame-
works leveraging NLP techniques and rule based approaches to obtain
goal model from NLR. However, these methods work on structured
or semi-structured NLR and covers few concepts of goal model to
incorporate. This domain still lacks a framework enriched with robust
NLP techniques to understand unstructured NLR to work on and covers
some crucial concepts of goal model while developing the model. In
comparison with previous works presented in this area, our framework
takes a step further. Our framework involves multiple NLP techniques
to address those critical aspects of constructing goal models from
unstructured natural language requirements.

4. Goal model generation

In this section, we introduce our framework, which takes unstruc-
tured natural language requirements (uNLRs) as input and uses several
natural language processing (NLP) tasks on it. As an end product of the
framework, we re-engineer the goal model corresponding to the uNLRs
provided as input.

Fig. 2 depicts the overall architecture, consisting of different mod-
ules, marked using numbers for sequencing purposes, and data stores.
Multiple machine learning algorithms have been used to accomplish
challenging tasks mentioned in Section 2.3. In the following subsec-
tions, we elaborate on each of these modules and explain how different
NLP approaches can be adopted and combined to accomplish the de-
sired tasks and overcome different research challenges. We consider the
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Fig. 2. Framework of goal model generation from NLRs.
following three sample uNLR statements (from the PROMISE3 dataset)
to illustrate how every module works and the intermediate outputs that
are generated towards producing the final goal model.

1. The system uses a standard navigation menu familiar to most
web users.

2. The system shall allow user to navigate to different menus of the
WebApp.

3. The system must be able to export reports in spreadsheet form
as xls or 123 formats.

4.1. Preprocessing and dependency parsing

Applying different machine learning methods on raw uNLR state-
ments is quite difficult and the performance is unsatisfactory. For better
outcomes, the very first task that needs to be performed on such
statements is preprocessing. The first module (marked as 1 in Fig. 2)
represents this module. The preprocessing task which is carried out
for almost every NLP approach is parts-of-speech (POS) tagging. POS
tagging is useful to understand the construction of the language. Fig. 3
shows the POS tagging of our sample uNLR sentences where different
labels represent different part-of-speeches. For example NN represents
Noun, singular or mass, VB represents verb in base form, whereas
VBZ represents verb in 3rd person singular present form, JJ represents
Adjective and so on. Detailed list of these parts-of-speech tags can
be found in Penn treebank4 and NLTK guide.5 Finding dependencies
among different words within a sentence becomes easier when POS
tagging is used. In our framework, POS tagging is useful for identifying
different components of uNLR statements. We use the Stanford POS-
tagger (Santorini, 1990) which is able to achieve 96.97% of accuracy
in identifying parts-of-speech accurately.

On the other hand, the Stanford dependency parser (Chen and
Manning, 2014) is used to obtain dependency among words in terms
of subject, verb and predicate. For example — in the first sentence,
the word system has the subjective (nsubj) relation with the verb
allow and the object is user. The main verb allow is connected using
clausal complement (xcomp) relationship with another verb navigate.

3 http://promise.site.uottawa.ca/SERepository/.
4 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_

pos.html.
5 https://www.nltk.org/book/ch05.html.
7

The detailed explanation of different relationships is present in stan-
ford’s documentation.6 Fig. 4 shows the output as a dependency tree
generated using the dependency parser.

4.2. Component extraction

The POS tagged statements along with dependency relationship
information are accepted by the Component Extractor module which is
the second component of the framework (marked as 2 in Fig. 2). This
module identifies subject, the object (or the predicate) and the action or
process (the verb) by establishing links among the words based on their
type of relations. It is worth mentioning that the dependency parser
takes care of passive sentences also and extracts the subject, object
and verb. Fig. 4 shows that we can precisely extract the noun words
or nominal compounds from the subjects and objects of the sentences,
respectively. For example — in the second sentence The system has the
subjective relation with the main verb uses. The main verb is again
connected with nominal compound navigation menu using obj relation.
Furthermore, the nominal compound has the adjective attached to it
using amod (adjectival modifier) relation. These extracted information
is essential for the next most crucial module of the framework. The next
module is responsible of identifying the goal model artifacts – actors,
goals, resources, and softgoals – and the relationships between them.

4.3. Goal model metadata generation

At this point, we have all the components extracted from our uNLR
specifications that are required to generate the goal model metadata
corresponding to the specifications. One major aspect that still remains
to be explored is the actual binding of these components to create the
goal model. The module of the framework (marked as 3 in Fig. 2)
represents the goal model metadata generation module. This module
tries to identify the goal model artifacts and their relationships across
multiple uNLR statements. We define the relationships by identifying
goal decompositions, associations between goals and softgoals and
those between goals and actors.

6 https://web.stanford.edu/jurafsky/slp3/14.pdf.

http://promise.site.uottawa.ca/SERepository/
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.nltk.org/book/ch05.html
https://web.stanford.edu/jurafsky/slp3/14.pdf
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Fig. 3. Example uNLRs tagged with POS.
Fig. 4. Dependency parsing and goal identification for three example uNLRs.
4.3.1. Actor and resource recognition
One of the major challenges involved in the metadata generator

module is to identify actors and resources from the uNLR specifications.
The metadata generator module (marked as 3a in Fig. 2) uses entity
type recognition for this purpose. The Component Extractor module has
already extracted the nouns and nominal compounds from the natural
language sentences. We need to determine the actor and resource from
the noun (or nominal compound) entity. For example, we may extract
a nominal compound like ‘‘Mainframe System’’, ‘‘System Administrator ’’.
It is not easy to recognize a noun phrase as a resource because every
project has its own set of domain specific resources. It is hard to
build a universal model with the ability to recognize resources from
different projects. We have prepared a dataset containing requirement
statements along with labeled resources. We build a classification
model and train it on the above dataset. The details of the dataset, the
classification model, and how it is used for the recognition tasks are
elaborated as follows:

(a) Dataset Generation: We have taken uNLR statements from the
PROMISE_exp (Lima et al., 2019) dataset. PROMISE_exp is the
expansion of the original PROMISE (Cheikhi and Abran, 2013)
dataset and contains 969 requirements statements from 34 dif-
ferent projects. We further expand this uNLR dataset by adding
3000 sentences containing resources related to IT infrastruc-
ture domain. These sentences are sourced from diverse data,
8

Table 5
Software requirement specific entities used for the annotation of the dataset.

Entity Description Example

O Non Entity Tokens Tokens not belong to entity set
VART Virtual Artifacts Case History, Record, Account

PART Physical Artifacts Credit Card, Course Material,
Brochure

SSW Standard Software Components Anti-virus, URL, PDF, JPG,
Database

GUI Components of Graphical User
Interface

Widget, Page, Applet, Wizard

HW Hardware Components Printer, Display, Projection
Screen, Pump Regulator

PLAT Application or Software Platforms Browser, CRM, ERP, Ubuntu
EVE Event or Activity Screening, Beta-Testing,

TIM Time Indicator Minute, Second, Hour, Date, Day,
Month, Year

ORG Organization Apple, Microsoft, IBM
ACTOR Entity which has a role Admin, Developer, Client, System

including the PURE dataset,7 user guides of various software ap-
plications, articles on operating systems (e.g., official documen-
tation of Windows, Mac), databases (e.g., official documentation

7 https://zenodo.org/record/1414117#.ZAr4u3bMK3A.

https://zenodo.org/record/1414117#.ZAr4u3bMK3A
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of MongoDB, Oracle), cyber security (MITRE documentation),
and software product descriptions, including AWS documenta-
tion. textitAnnotation Process: Throughout the dataset creation
process, a team of five annotators, including two authors of
the paper, actively participated in the annotation task. Each
annotator was responsible for annotating approximately 800
sentences, which were subsequently distributed among the other
annotators for further checks. In order to ensure the quality and
accuracy of the dataset, validation was performed collectively by
all annotators and authors. The majority voting consensus was
used to finalize the labels for each entity within the sentences.
The process of annotation is accomplished with the help of
ner-annotator tool.8
In Table 5, we present a diverse set with ten (10) entity la-
bels – nine (9) entity categories and one (1) non-entity label
– which covers different aspects of the software specifications.
The identified nine entity categories can help end users to ex-
tract information from the uNLR specification documents. We
manually identify the resources and label them after initial
data cleaning and pre-processing steps. No lemmatization or
stemming technique has been applied as we opted to keep the
semantic structure of words similar to the documents prepared
in the software development processes. In order to create the
annotations, we apply the widely accepted BIO representation
scheme.9 Table 6 shows an example of a uNLR sentence from
the dataset which has been annotated in the BIO format. Fi-
nally, we examine the annotations manually in order to ensure
high-quality data.

(b) Entity Recognition Model: Next, we define the model for entity
classification task. We load the FiBER model (Das et al., 2021)
and additionally specify the number of labels. The base layers
are initialized with pre-trained weights. The token classification
head on top has randomly initialized weights. We use these
random weights and pre-trained weights together to train the
model using our labeled dataset. We use cross entropy loss func-
tion (Chong and Zak, 2013) and AdamW optimizer (Loshchilov
and Hutter, 2017) with default learning rate of 1e−3. (Please
refer to Task 1 in Table 1). We evaluate the performance of the
classifier on 20% of test data and it shows 92% of accuracy,
92% of precision, 91% of recall and 92% of F1-Score. Finally,
we save the model by saving the vocabulary, model weights and
the model’s configuration for the next step. In an extension of
the experiment, we fine-tuned large variant of T5 (Raffel et al.,
2020) and BART (Lewis et al., 2019) models. Furthermore, we
employed the GPT-3.5 (Ouyang et al., 2022) model to perform
the entity recognition task, exploring both zero-shot and few-
shot learning setups. In order to accomplish the Named Entity
Recognition (NER) task within the scope of few-shot learning,
we curated a collection of 100 requirement statements. Notably,
every entity appeared a minimum of five times throughout
the entire collection. Subsequently, these instances are fed into
the instruction prompt. In this scenario, the GPT-3.5 model
achieved a accuracy of 92%. The performance metrics of all
three models are presented in Table 7. Notably, the FiBER model
demonstrates a unique advantage in comprehending software
specification documents, attributed to its training on relevant re-
quirements specification datasets. However, the GPT-3.5 model,
when employed in a few-shot learning context, attains compa-
rable performance to the FiBER model. Yet, the accessibility of
the GPT-3.5 model is restricted, accompanied by notably greater
expenses compared to the rest of the models.

8 https://github.com/tecoholic/ner-annotator.
9 In software requirement context, BIO can be interpreted as Beginning Inside

r Outside of the entity tag.
9

(c) For recognition tasks, we use the different types of relationships
among the different phrases and the root word of the sentence
that is provided by the Component Extractor module.

(i) Actor Recognition. Our entity classification model is
used to identify the actors by recognizing the ACTOR
labels from the uNLR statements which have a subjective
relationship (nsubj) with the root word. The extracted
actors from three example uNLR sentences have been
shown in Table 8.

(ii) Resource Recognition. Resources are recognized from
the uNLR statements as those entities that have the ob-
ject relationship (obj and obl) with the root word of the
sentence. We do not consider ORG, TIM and ACTOR labels
as possible resources of the intended goal model. Extracted
resource metadata for three sample sentences have been
presented in Table 9.

In Fig. 5, we can see how our classifier annotates our three
sample sentences using the Entity Recognition Module.

omparison of proposed classification model with existing approaches
In Table 10, we list some entity recognition systems that have

een proposed for the software engineering domain. The SoftNER
odel (Tabassum et al., 2020) is a BERT-based solution tailored to

xcel in identifying code tokens and software-related labels in Stack-
verflow data. The entity recognition system proposed by of Ye et al.

2016) uses the 150 Stack Overflow posts to train with and recognizes
different classes of entities. The work achieves 78.17% of F1-Score

n an average in recognizing these classes. Malik et al. (2021) trained
heir model on SRS documents of Dynamic Object-Oriented System
DOORS) (Hull et al., 2002) and classified 10 different classes with an
1-Score of 89% on an average. Another work (Herwanto et al., 2021)
roposes an automated NER approach to detect privacy-related entities
n user stories. Our proposed model is trained on PROMISE dataset
nd classifies 10 entity types of requirements engineering domain. Our
ransformer based classification model achieves 92% of F1-Score on
verage. Table 10 presents a comparative analysis among them.

.3.2. Goal identification
The previous component extractor uses the Stanford dependency

arser to extract the root and subtle information of a sentence like
upporting verb to the main verb, auxiliary verbs, nominal compound
nd many more (Chen and Manning, 2014). These information are
ccepted by the Goal Identification module (marked as 3b in Fig. 2). The
nformation are efficiently represented in a tree structure. In most of the
ases, the Goal Identification module recognizes the main verb as the
ain process or Goal. The Goal can be combined with other words or

compound words exhibiting the obj, xcomp or amod relationships with
the main verb. However, in some situations where a main verb is not
present in the sentence, the auxiliary verb, in combination with another
word, acts as the root verb. For example, Fig. 6 shows such a case
where no main verb is present in the sentence. The word ‘‘available’’
s acting as the root word. In such cases, the auxiliary verb is also
ombined to create the root word. In order to identify the goal from the
NLR statements, we completely rely on the dependency parser and we
ecognize the root of the sentence as the goal. Table 11 presents the list

of goals that have been identified for three sample uNLR sentences.

4.3.3. Decomposition type prediction and subgoal identification
In this module (marked as 3c in Fig. 2), we have considered two

types of goal decompositions - AND and OR - respectively. In order
to detect the decomposition type from uNLR specifications in an au-
tonomous manner, we perform supervised classification. We have pre-
pared a dataset of 1200 natural language requirements statements and

their classification labels. The requirements statements are collected

https://github.com/tecoholic/ner-annotator
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Fig. 5. Actor and resource identification using our entity recognition model.
Fig. 6. Example of root word while main verb is absent.
Table 6
Example sentence annotated with entity labels in BIO format.
System Shall Have MDI Form That Allows User To View Graph In The Screen

B-PLAT O O B-GUI I-GUI O O B-ACTOR O O B-VART O O B-HW
Table 7
Performance of different entity recognition approaches.

Model Precision Recall F1-Score Accuracy

T5-large 89.65% 89.12% 88.88% 89.42%
BART-large 87.68% 87.42% 87.54% 87.42%
FiBER 92.34% 91.56% 91.95% 92.14%
GPT-3.5 Zero-shot 90.56% 89.24% 89.90% 89.42%
GPT-3.5 Few-shot 91.80% 90.68% 91.24% 92.18%

Table 8
Actor metadata.

Sentence Metadata obtained

The system shall allow user to navigate to different menus of
the WebApp

Actor: System

The system uses a standard navigation menu familiar to most
web users

Actor: System

The system must be able to export reports in spreadsheet
form as xls or 123 formats.

Actor: System

Table 9
Resource metadata.

Sentence Metadata obtained

The system shall allow user to navigate to
different menus of the WebApp

Resource: Menus

The system uses a standard navigation menu
familiar to most web users

Resource: Navigation menu,
Web

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

Resource: Reports, xls, 123
formats

from the PROMISE10 and PURE11 datasets. Among the 1200 uNLR
statements, 587 are labeled as OR decompositions and 613 are labeled
as AND decompositions. We use the AdamW Optimizer (Loshchilov and
Hutter, 2017) with weight decay of 0.01 and learning rate of 5e−5
to tune up the FiBER model (Das et al., 2021) for 10 epochs. We
then combine it with the BinaryCrossEntropy (Bruch et al., 2019) loss

10 http://promise.site.uottawa.ca/SERepository/datasets-page.html.
11 https://zenodo.org/record/1414117#.Y1RPa3ZBy3A.
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function since Decomposition Type detection is a two-class problem.
(Please refer to Task 2 in Table 1.) The model achieves 79% of accuracy
along with 78% of recall, 80% of precision and 79% of F1-Score.
Table 12 shows the results for our three sample sentences.

Multiple interrelated goals and subgoals are often inherently present
in uNLR specifications. It is a challenging task to identify the child
subgoals of a particular parent goal. Once the Decomposition Type is
predicted, we find the relationship between the root word and sub-
phrases of the sentence that exhibit obl or obj relations. The idea is to
identify the objects that can be represented as possible subgoals. On the
other hand, it could also be the case that multiple phrases are connected
with conjunctions. For example, The system must be able to export reports
in spreadsheet form as xls or 123 formats. In such cases, we combine
the root word with the phrases to generate the subgoals as shown in
Table 13.

4.3.4. Softgoal identification
Softgoal identification from uNLR statements is also a crucial task.

This module is marked as 3d in Fig. 2. In order to determine different
softgoals involved in the system, we need to classify the uNLRs state-
ments as functional or non-functional requirements (NFRs). We train
the FiBER model with different parameters of the PROMISE_exp (Lima
et al., 2019) dataset (Please refer to Task 3 in Table 1). The dataset
consists of 969 requirements. The 969 requirements include 444 func-
tional and 525 non-functional requirements. We consider total 12
classes for the classification task. There are 11 different NFR subclasses
mentioned in the dataset and 1 is reserved for functional requirements.
We use AdamW Optimizer during the training process. The AdamW
Optimizer (Loshchilov and Hutter, 2017) considers a weight decay
correction and does not compensate for bias. We use a weight decay
of 0.01 and a maximal learning rate of 5e−05. The cross-entropy loss
function is used for the training. The training of the model performed
best for a batch size of 16 with 10 epochs. With .75-split of the dataset,
the model achieves an accuracy of 91% on accuracy for multi-class clas-
sifier task. The model shows an average of 91% precision, and 90% for
both recall and F1-Score. Furthermore, we fine-tuned the large variant
of T5 (Raffel et al., 2020) and BART (Lewis et al., 2019) models on the
PROMISE_exp dataset for requirements classification. we incorporated
the GPT-3.5 (Ouyang et al., 2022) model to perform the classification
task, covering both zero-shot and few-shot learning scenarios. In order

http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://zenodo.org/record/1414117#.Y1RPa3ZBy3A
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Table 10
Comparison of different entity recognition systems in software engineering domain.

Approach Model Dataset used Recognized classes Performance metric

Malik et al. (2021) BERT, RoBERTa
ALBERT

SRS documents of Dynamic
Object Oriented
Requirements System
(DOORS) software

O - Non entity tokens
CORE - Specific to software
requirements domain
USER - Specific user of the software
GUI - Graphical user interface
components
HARDWARE - Computer hardware
LANGUAGE - Programming language
API - Software APIs
STANDARD - Software/programming
standards
PLATFORM - Software platforms
ADJECTIVE - Descriptive adjectives of
software, hardware and design
components
VERB - Actions related to software,
hardware and design components

Precision - 89%
Recall - 90%
F1-Score - 89%

Ye et al. (2016) CRF + Brown
Clustering

150 Stack Overflow posts O - Non entity tokens
PL - Programming language
Plat - Platform
API - API
Fram - Tool library framework
Stan - Software Standard

Precision - 82%
Recall - 74%
F1-Score - 78%

Tabassum et al. (2020) BERT 150 Stack Overflow posts CLASS, VARIABLE, FUNCTION
LIBRARY, VALUE, DATATYPE
HTML XML TAG,
APPLICATION, UI ELEMENT,
LANGUAGE, FILE TYPE,
DATA STRUCTURE, FILENAME,
VERSION, DEVICE, OS,
WEBSITE, and USER NAME

Precision - 78%
Recall - 79%
F1-Score - 79%

Herwanto et al. (2021) RoBERTa, BERT +
BiLSTM + CRF

Manually labeled user
stories

Data Subject
Processing
Personal Data

Data Subject
F1 - 91%
Processing
F1 - 74%
Personal Data
F1%–72%

Proposed approach BERT based FiBER
Model

34 projects of
PROMISE_exp dataset

O - Non entity tokens
VART - Virtual Artifact
PART - Physical Artifact
SSW - Standard Software Resource
GUI - Graphical components
HW - Hardware Resource
PLAT - Platform
EVE - Event
TIM - Time Indicator
ORG - Organization
USER - Specific user of the software

Precision - 92%
Recall - 91%
F1-Score - 92%
Accuracy - 92%
Table 11
Goal metadata.

Sentence Metadata obtained

The system shall allow user to navigate to
different menus of the WebApp

Goal: Allow user to navigate

The system uses a standard navigation menu
familiar to most web users

Goal: Use standard navigation
menu

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

Goal: Export reports

to conduct classification in a few-shot learning context, we curated
10 example requirement statements for each category, summing up to
110 examples embedded into the instruction prompt. In this few-shot
learning scenario, the GPT-3.5 model achieved a noteworthy accuracy
of 89%. The results, presented in Table 14, show that T5-large achieves
highest performance and slightly better than the FiBER model. While
our framework is flexible enough to use any requirements classification
model, we chose to use the FiBER model because it is less than half
the size of the T5-large model, which makes it more memory-efficient.
11

Table 15 shows that the classification module has identified one NFR
Table 12
Decomposition type metadata.

Sentence Metadata obtained

The system shall allow user to navigate to
different menus of the WebApp

NA

The system uses a standard navigation menu
familiar to most web users

NA

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

DecompositionType: OR

(Usability) out of three example sentences that we took for explaining
the working process of the framework.

Comparison of proposed classification model with existing approaches
Amidst various approaches for NFR classification, Li et al. (2022) re-

cently introduced DBGAT, an automatic requirements classification sys-
tem that artfully combines BERT and Graph Attention Network (GAT).
The method effectively utilizes dependency parse trees to capture

implicit structure and syntactic features from requirements.
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Table 13
Subgoal metadata.

Sentence Metadata obtained

The system shall allow user to navigate to
different menus of the WebApp

NA

The system uses a standard navigation menu
familiar to most web users

NA

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

Subgoal: Export reports xls,
Export reports 123 formats

Table 14
Requirements classification results of different transformer models.

Model Precision Recall F1-Score Accuracy

T5-large 94.42% 93.81% 94.11% 93.56%
BART-large 88.46% 87.85% 88.15% 88.28%
FiBER 91.16% 90.24% 90.70% 91.26%
GPT-3.5 Zero-shot 86.52% 85.82% 86.17% 86.21%
GPT-3.5 Few-shot 90.24% 89.12% 89.68% 89.46%

Table 15
Softgoal metadata.

Sentence Metadata obtained

The system shall allow user to navigate to different
menus of the WebApp

NA

The system uses a standard navigation menu familiar
to most web users

Softgoal: Usability

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

NA

Table 16
State of the art for requirements classification task.

Author Methodology Evaluation metrics

Navarro-Almanza
et al. (2017)

The approach is based on
Convolutional Neural Network
(CNN) to classify 12
categories of requirements

Precision: 81%
Recall: 78.5%
F1-Score: 77%

Dias Canedo and
Cordeiro Mendes
(2020)

The approach combines two
text vectorization techniques
with four ML algorithms to
classify 12 categories of
requirements.

F1-Score for binary
classification: 91%

F1-Score for 12 class
classification: 78%

Kurtanović and
Maalej (2017)

The approach uses SVM
algorithm and involves
features like meta-data,
lexical, and syntactical
information.

For binary classification
F1-Score: 93%
For multi-class
classification
F1-Score: range from 64%
to 77%

Hey et al. (2020) The work proposes NoRBERT
that fine-tunes BERT for
classification task using
PROMISE NFR dataset.

F1-Score up to 92%

Li et al. (2022) The work proposes DBGAT,
that combines BERT and
Graph Attention Network
(GAT).
Experiments has been
conducted on PROMISE NFR
dataset

F1-Score up to 88%

Proposed
approach

We fine-tune FiBER model for
classification task using
PROMISE_exp dataset.

Precision: 91.167%
Recall: 90.241%
F1-Score: 90.702%

Our classification task closely resembles the work of Hey et al.
2020), where they successfully fine-tuned the BERT model for clas-
ification using the PROMISE dataset, achieving performance similar
o ours. However, we made a distinctive choice by employing the
iBER model and fine-tuning it on the PROMISE_exp (Lima et al., 2019)
ataset. The FiBER model’s unique capability to understand and embed
12
Table 17
Goal softgoal association metadata.

Sentence Metadata obtained

The system shall allow user to navigate to
different menus of the WebApp

NA

The system uses a standard navigation menu
familiar to most web users

Softgoal: Usability;
AssociatedGoal: Use
standard navigation menu

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

NA

uNLR documents better than other transformer models motivated our
selection for this classification task. Table 16 presents a comprehensive
comparison of the performance metrics achieved by our proposed
model with those of other existing approaches 16.

4.3.5. Goal-softgoal association
This is the last task of the goal model metadata generator module

(marked as 3e in Fig. 2). It uses the goal model artifacts and rela-
tionships already identified in the previous tasks. We group all the
requirements for each of the actors. Based on the output of the previous
task, we identify all the non-functional requirement statements and the
softgoals. We have also identified our goals and subgoals from the func-
tional requirement statements in previous tasks. Finally, we measure
the overall textual semantic similarity between the functional and non-
functional requirements associated with the same actor. Additionally,
we take into consideration the common (or similar) goals and resources
among these sentences. If the method is unable to find reasonable
similarity (similarity score ≥ 0.5) or goals in common, it simply returns
NULL; otherwise, the goal-softgoal association is stored as goal model
metadata. See Table 17.

4.3.6. Goal model metadata generation algorithm
Algorithm 1 explains the entire goal model metadata generation

from uNLR specifications. It takes unstructured natural language re-
quirements NLR. The algorithm produces the goal model metadata G𝑀
or the specification represented as NLR. At the very first step the
lgorithm identifies all the actors from the given uNLR specifications
nd creates a set of actors S𝐴 (line 2). Next, it repeats the entire
rocedure for each actor by iterating through all the actors in the actor
et S𝐴 (line 3). In the next step, requirements are grouped based on the
pecific actor A and stored in R𝐴. In the next step, for each requirement
𝑅 in R𝐴, we extract goals and resources (line 5 to line 7). After
extracting goals and resources, we find the association among goals
and resources (line 8). 𝐺𝑅 is the set contains goal that is associated
with the corresponding resources. If cannot find any association 𝐺𝑅

ill be 𝜙 and iteration will take place for the next requirements from
he set 𝑅𝐴. Otherwise, We keep the original requirement statements

with the goal-resource association set as 𝐺𝑅′ (line 10). We include every
such goal-resource association set along with requirements statements
in another set 𝐺𝑅𝐴 (line 11). In the next step (line 14), we group up
all the requirements having relationships among them in terms of goals
and resources. 𝑆𝐺𝑅𝐴 contains multiple sets of related requirements. We
use FiBER model and cosine similarity to measure similarity among
requirements. Common or similar goals and resources add an extra
degree of accuracy for measuring relatedness among requirements.
The next step is to predict the decomposition type (𝐷𝑇 ) for each set
of requirements (𝑠𝑔) in 𝑆𝐺𝑅𝐴 (line 16 and 17). Goal decomposition
information helps to identify the parent and sub goals for each set of
related requirements (line 18 and 19). After extracting parent goal and
subgoals, links among them are identified and stored in the goal model
metadata G (line 20 and 21).
𝑀
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Algorithm 1 Goal Model Metadata Generation
Input:

a) NLR: a set of natural language requirements tagged with
POS and dependency relationships.

Output:
a) G𝑀 : the goal model metadata.

1: procedure Generate Goal Model(NLR)
2: S𝐴 ← 𝐹 𝑖𝑛𝑑𝐴𝑙𝑙𝐴𝑐𝑡𝑜𝑟𝑠(NLR)
3: for A ∈ S𝐴 do
4: R𝐴 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑞𝐺𝑟𝑜𝑢𝑝𝐵𝑦𝐴𝑐𝑡𝑜𝑟(A,NLR)
5: for 𝑅 ∈ R𝐴 do
6: 𝑔 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐺𝑜𝑎𝑙(𝑅)
7: 𝑟 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑅)
8: 𝐺𝑅 ← 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝐺𝑜𝑎𝑙𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑔, 𝑟)
9: if 𝐺𝑅 ≠ 𝜙 then

10: 𝐺𝑅′ ← {𝐺𝑅, 𝑅}
11: 𝐺𝑅𝐴 ← 𝐺𝑅𝐴 ∪ 𝐺𝑅′

12: end if
13: end for
14: 𝑆𝐺𝑅𝐴 ← 𝐺𝑟𝑜𝑢𝑝𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝑒𝑞(𝐺𝑅𝐴)
15: G𝑀 ← 𝜙
16: for 𝑠𝑔 ∈ 𝑆𝐺𝑅𝐴 do
17: 𝐷𝑇 ← 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑔)
18: 𝐺𝑃 ← 𝐹 𝑖𝑛𝑑𝑃𝑎𝑟𝑒𝑛𝑡(𝑠𝑔)
19: 𝐺𝑆 ← 𝐹 𝑖𝑛𝑑𝑆𝑢𝑏𝐺𝑜𝑎𝑙(𝑠𝑔)
20: 𝐺𝑀 ′ ← 𝐶𝑟𝑒𝑎𝑡𝑒𝑃𝑎𝑟𝑒𝑛𝑡𝐿𝑖𝑛𝑘(𝐺𝑃 , 𝐺𝑆 , 𝐷𝑇 )
21: G𝑀 ← G𝑀 ∪ 𝐺𝑀 ′

22: end for
23: end for
24: end procedure

Table 18
Generated goal model metadata.

Sentence Metadata

The system shall allow user to navigate to
different menus of the WebApp

Actor: System; Goal: Allow
user to navigate; Resource:
Menus

The system uses a standard navigation menu
familiar to most web users

Actor: System; Softgoal:
Usability; Associated Goal:
Use standard navigation
menu; Resource: Navigation
menu, Web

The system must be able to export reports in
spreadsheet form as xls or 123 formats.

Actor: System; Goal: Export
reports; Subgoal: Export
reports xls, Export reports 123
formats; DecompositionType:
OR; Resource: Reports, xls,
123 formats

4.4. tGRL model generator

The previous Goal Model Metadata Generator module generates the
essential goal model metadata to generate the corresponding goal
model specification. The tGRL Model Generator module of the frame-
work (marked as 4 in Fig. 2) accepts the complete goal model metadata
(as shown in Table 18) and generates tGRL descriptions of the goal
model. Fig. 7 shows the generated tGRL representation for the example
requirements statements. This tGRL description can be visualized as
a graphical model using the open source jUCMNav (Abdelzad et al.,
2015a) tool.

5. Experimental evaluation

We perform a crowdsourced experiment with our framework on 22
use cases in this section. We take the help of 335 crowdsource agents
13
in our evaluation of the framework’s performance. We look into the
following three aspects in order to conduct a precise analysis of the
applicability, effectiveness, and acceptance of our framework based on
the observations from our experiment.

(i) Acceptability of the goal models generated by our framework to
Requirements Engineers. A given uNLR specification can be repre-
sented by different goal model specifications depending upon the
interpretations of the requirements engineer. The goal models
generated by our framework might look different from other
interpretations of experts. We aim to take feedback from the
domain experts about the acceptability of the generated goal
models in terms of correctness and completeness.

(ii) Benefits of our approach. The value proposition of our compre-
hensive framework is only limited by the benefits that goal
models bring to requirement engineers and analysts. This is to
observe whether requirements engineers are able to leverage
the advantages of goal modeling analysis, both for legacy and
modern systems.

(iii) Feasibility in terms of time and space: Requirement documents can
be quite lengthy and it is a laborious job for the requirements
engineer to analyze the whole document and extract a goal
model which entails the specification. As a result, we investigate
whether the framework operates within feasible time and space
constraints, for generating the goal model.

(iv) Scalability of the Framework: Scalability stands as a fundamental
aspect within this research and its practical applications, ensur-
ing the solution’s adaptability to handle the growing volumes
of data and high-performing compatible deep learning models.
This is to investigate that the design of the framework is flexi-
ble enough to accommodate the integration of more advanced
models.

.1. The crowdsourced experiment

We adopt a crowdsourcing based evaluation approach for our pro-
osed framework. This approach has been used recently (Patward-
an et al., 2018; Arora et al., 2016) for estimating the acceptability
f AI/ML-based solutions tailored for the requirements engineering
ommunity.

.1.1. The questionnaire
The questionnaire which was circulated contains 22 uNLR use cases

nd their corresponding goal models generated by our proposed frame-
ork. Each use case consists of 3 to 4 unstructured or semi-structured

entences. The 22 use cases are deliberately manually composed by
xtracting statements from PROMISE and PURE datasets. The arrange-
ent of these statements is intentionally maintained in an unstructured

r, at the very least, semi-structured manner. This deliberate choice
f unstructured sentences aims to test the framework’s efficiency in
andling diverse and challenging sentence structures. It is to be noted
hat, although our framework uses the tGRL language for representing
he goal models, yet we present the i∗ visualization of the goal models
n the questionnaire for provide better understanding and decision
aking. Fig. 8 shows an example of one such use case from the

uestionnaire. The crowdsource agents are given three options for
roviding their feedback on the correctness and completeness of the
uto-generated goal models:

(i) Correct : According to the user, the artifacts represented in the
goal model are correct and have an accuracy of more than 80%
in capturing the uNLR statements.

(ii) Partially Correct : According to the user, some of the artifacts
represented in the goal model are incorrect and have an accuracy
between 50 − 80% in capturing the uNLR statements.

(iii) Incorrect : According to the user, the artifacts represented in the
goal model are mostly incorrect and have an accuracy of less

than 50% in capturing the uNLR statements.
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Fig. 7. Generated tGRL representation of the three sample uNLR statements.
5.1.2. Specification of crowdworkers
We collected the feedback from 305 undergraduate students who

were in the third year (fifth semester) of their B.Tech. degree pro-
gram in Computer Science and Engineering.12 and 30 postgraduate
students who were pursuing their Masters in Computer and Information
Science13 The students were enrolled in Software Engineering courses
of their respective institutions and were exposed to rigorous training
of goal-oriented requirements engineering tools (like RE-Tools and
jUCMNav) as part of their Software Engineering practical sessions.
Each of students has developed more than 5–10 goal models as weekly
assignments over a period of 8 weeks (2 months approximately) and
also worked on a capstone project in groups of five members. Addi-
tionally, the students participated in live viva every week that involved
interactions with the course instructor and three teaching assistants
who are doing their Ph.D. in Requirements Engineering. Although the
students (the crowdworkers) cannot be treated as experts, they can be
expected to have an intermediate level of expertise in goal-oriented
requirements engineering. The questionnaire was sent out as part of
their course evaluation where they were asked to answer the questions
with proper reasoning and justification. After submission, they were
randomly asked to explain the rationale behind their feedback for
specific use cases and marks were given based on the sincerity of effort
put in by that student. This was done to prevent any sort of internal
bias from effecting our evaluation process.

5.1.3. The results
We discuss the results of our crowdsource experiment with respect

to the three aspects of evaluation mentioned at the beginning of the
section.

(i) Acceptability of the goal models generated.
Fig. 9(a) shows the responses against all the 22 uNLR use cases,
denoted as 𝑅1 to 𝑅22. It can be observed that the crowdworkers
have accepted the generated goal models (except for 𝑅6, 𝑅8,
𝑅11, 𝑅13, and 𝑅21) as a correct representation of the given uNLR
statements. Even among the five exceptions, only 𝑅8 has been
classified as incorrect by majority of the crowdsource agents; the

12 The B.Tech. students were from the Indian Institute of Information
Technology, Vadodara, India.

13 The Masters students were from the University of Calcutta, India.
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others have been accepted as partially correct. We also took the
help of 10 requirements engineers who have been involved with
the research community for at least three years. They were asked
to provide their feedback on the questionnaire. Their opinion of
the goal models validated the distribution of responses received
from the crowdsource agents.
Furthermore, in Fig. 9(b), we observe that 77% of the total
feedbacks received from the crowdsource agents conclude that
the goal models produced by our framework (across the 22
use cases) are correct. On the other hand, 18% of the feed-
back acknowledged that the generated goal models are partially
correct. Only 5% of all the feedback across all crowdsource
agents and across all use cases suggested that the generated
goal models were incorrect. Based on the results obtained from
this crowdsourced experiment, we conclude that the goal models
generated by the framework are well acceptable to a reasonable
amount of people having certain amount of domain knowledge.
With proper deployment and continuous enhancement of the
framework, it could become a useful and widely acceptable
open-source tool for the software engineering community.

(ii) Benefits of our framework.
With the aid of requirement goal models, the community of
goal-oriented requirements engineering has offered frameworks,
tools, and solutions for efficient management, analysis, and val-
idation of system requirements. On the other hand, the major-
ity of requirement specifications are documented in software
industries using natural language statements, both in legacy
requirement specification documents as well as agile story cards.
Natural language specifications are prone to errors resulting
from wrong interpretations, inconsistencies, and incompleteness.
Our proposed solution makes it possible to derive requirement
goal models from uNLR specifications, which would make it
easier to carry out various types of requirements analyses like
satisfiability analysis, entailment checking, inconsistency check-
ing, and others. More specifically, the framework would ease the
process for the requirements engineers to apply RE techniques
and tools in order to manage volatile requirements.

(iii) Feasibility in terms of time and space.
In order to address this aspect, we analyze the time and space
requirements of the framework with respect to the number of
artifacts identified in the goal models.
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Fig. 8. Questionnaire of interview survey.
Fig. 9. Results of the crowdsourced experiment.

(a) Time Analysis: We consider a batch to consist the 22 use
cases. We executed our approach 20 times on the same
batch to get a good average estimate about the execution
time. For each use case, the execution time of our frame-
work for extracting the goal model from uNLR statements
is in the order of minutes. Execution times were measured
on a laptop with a 2.90 GHz CPU and 16 GB memory. The
15
time requirements of each use case include the processing
time of every module of the framework, starting from
the processing of uNLR statements and ending with the
generation of the goal model. The time required for each
use case is analyzed in terms of a scatter plot and a linear
regression line.
Fig. 10 shows the scatter plot along with the linear re-
gression line. The linear regression equation has the form
𝑌 = 𝑎 + 𝑏𝑋, where 𝑌 is the dependent variable (time
required to run the framework), 𝑋 is the independent
variable (number of components in the goal model), 𝑏 is
the slope of the line and 𝑎 is the y-intercept. The equations
for finding 𝑎 and 𝑏 are as follows:

𝑎 =
(
∑

𝑦)(
∑

𝑥2) − (
∑

𝑥)(
∑

𝑥𝑦)
𝑛(
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𝑥)(
∑
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𝑛(
∑

𝑥2) − (
∑
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Based on these equations, we determine the values of 𝑎
and 𝑏 as 65.22 and 4.96, respectively. We can observe
that the execution time grows linearly as the number of
generated goal model components increases. Thus, we can
conclude that our framework takes reasonable amount of
execution times without involving any GPU infrastructure
and, hence, we expect our approach to scale to larger
requirement documents efficiently.

(b) Space Analysis: We examine the space requirements of
the different components of the framework in order to
analyze the overall space requirements of the complete
framework. The following list includes the major memory
intensive components and their memory needs.

i. Program variables and files: 10 MB
ii. Dependency Parser and POS Tagger : 248 MB

iii. FiBER model: 1.7 GB
iv. Entity recognition model: 3.5 GB
v. Softgoal Classification model: 2.4 GB

Only the first two components are variables and depend
on the size of the uNLR specification being worked upon.
The memory requirements of the models (mentioned be-
tween iii - v) are invariant with respect to our framework.
Over a certain period of time, the models may have to
be retrained in order to take care of data drifts. The
retraining activity will be sporadic in nature and does
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Fig. 10. Time required for extracting goal model components.
not affect our space and time analyses. Additionally, with
recent advancements in computer systems and cloud in-
frastructures, we can expect our framework to use space
efficiently.

(c) Scalability of the Framework: The framework harnesses
the power of various NLP tasks, such as dependency pars-
ing and POS tagging. Additionally, it utilizes the BERT-
based FiBER model across different modules to achieve
diverse objectives. The key lies in fine-tuning the FiBER
model with task-specific datasets, tailoring it for various
purposes. For example, the FiBER model is trained on an
NER dataset to adeptly recognize Actors and Resources.
Similarly, when fine-tuned on the PROMISE_exp dataset,
it demonstrates its proficiency in classifying functional
and non-functional requirements.
It is important to emphasize that this paper introduces
an innovative framework designed to tackle the research
problem holistically, without being constrained by the
performance of any individual module. As time
progresses, the framework remains adaptable, enabling
the replacement of deep learning models with even more
advanced and compatible ones, thereby ensuring scalabil-
ity and future-readiness.

5.2. Application in popular case studies

In this section, we present the results of applying our framework
on two popular case studies explored in the goal-oriented require-
ments engineering literature. These include the meeting scheduling
system (Yu, 2001) and an online shopping system (Giorgini et al.,
2005). We have carefully selected the use cases of Meeting Scheduling
System and Online Shopping System for this study. These use cases
have been considered by several other research studies (Yu et al., 2008;
Liaskos et al.) because they closely resemble real-world scenarios. We
manually created the requirements specification statements for both
of the use cases. The requirements statements are intentionally kept
unstructured. Fig. 12 shows such examples of requirements statements
for the meeting scheduling system use case. The meeting scheduling
use case and the online shopping system use case contain 46 and 52
natural language requirements statements respectively. Furthermore,
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Table 19
Properties of the use case goal models.

Properties Use cases

Meeting scheduling
system

Online shopping
system

Number of goals 18 23
Number of goal decompositions 20 22
Number of resources 4 7
Number of goal-resource associations 7 7
Number of SoftGoals 7 2
Number of goal-Softgoal associations 10 2
Number of natural language
requirements statements

46 52

Table 19 presents different properties of these goal models. A part of
the meeting scheduling system is presented in Fig. 11(a). Fig. 11(b)
shows the corresponding goal model derived by our framework from
uNLR specifications of the meeting scheduler. This figure highlights in
red those components which could not be identified and extracted by
our framework.

Our evaluation of the generated goal model is measured based on
six characteristics:

1. Number of Goals.
2. Number of Goal Decompositions.
3. Number of Resources.
4. Number of Goal-Resource Associations.
5. Number of Softgoals.
6. Number of Goal-Softgoal Associations.

We evaluate our framework on both case studies and present the
results in Table 20. In the case of meeting scheduling system, our
framework recognizes 17 goals among 18 available goals and gives
some false positives. Thus it achieves 95.83% of accuracy. There are
20 goal decompositions that have been presented in the original goal
model. Our algorithm shows 87.5% of accuracy by recognizing 17
goal decompositions along with some false positives. On identifying
resources and their associations with goals, our framework recognizes 6
softgoals out of 7 available softgoals. Thus, it shows 91.66% of accuracy
but suffers from false positives. The original meeting scheduling goal
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Fig. 11. Comparative analysis of original goal model and generated goal model.
Fig. 12. Example of requirements statements for meeting scheduling system.
model has 10 goal-softgoal associations and out of which our frame-
work recognizes 6 associations. Thus, it achieves 60% of accuracy. The
detailed analysis of precision, recall and F1-Score have been presented
in Table 20.

In the online shopping case study, our framework recognizes 21
goals among 23 available goals with few false positives. Thus, it
achieves 88.46% of accuracy. In the original goal model, there are 22
goal decompositions and our framework shows 92.30% of accuracy by
recognizing 20 goal decompositions. There are 7 resources available in
the online shopping goal model and our framework recognizes all of
them but suffers from some false positives. It presents an accuracy of
92.59%. Similar results can be seen in the case of goal and resource
17
associations. The framework recognizes all the soft goals and their as-
sociations present in the goal model. The detailed analysis of precision,
recall, and F1-Score have also been presented in Table 20.

6. Threats to validity

In this section, we list the limitations and other threats to the
validity of our framework.

• Human Feedback Bias: The use of human feedback to evaluate the
applicability of the framework may introduce bias in the evalua-
tion data. This bias could impact the measurement of the actual
capability and applicability of the framework, especially when



The Journal of Systems & Software 211 (2024) 111981S. Das et al.
Table 20
Experimental results of applying our proposed framework.
Parameters Use cases and results

Goal identification

Number of Successful Goal Identification Precision Recall F1-Score Accuracy

Meeting Scheduling System

17 1 0.94 0.97 0.95

Online Shopping System

21 0.95 0.91 0.93 0.88

Goal decomposition

Number of Successful Goal Decompositions Identification Precision Recall F1-Score Accuracy

Meeting Scheduling System

17 1 0.85 0.91 0.87

Online Shopping System

20 1 0.91 0.95 0.92

Resource identification

Number of Successful Resource Identification Precision Recall F1-Score Accuracy

Meeting Scheduling System

4 0.66 1 0.80 0.91

Online Shopping System

7 0.77 1 0.87 0.92

Goal-Resource association

Number of Successful Goal-Resource Association Precision Recall F1-Score Accuracy

Meeting Scheduling System

7 0.77 1 0.87 0.92

Online Shopping System

7 0.77 1 0.87 0.92

Softgoal identification

Number of Successful Softgoal Identification Precision Recall F1-Score Accuracy

Meeting Scheduling System

6 0.85 0.85 0.85 0.91

Online Shopping System

2 1 1 1 1

Goal-Softgoal association

Number of Successful Goal-Softgoal Association Precision Recall F1-Score Accuracy

Meeting Scheduling System

6 0.85 0.60 0.70 0.80

Online Shopping System

2 0.66 1 0.80 0.96
the feedback is provided by students with limited professional
experience.

• Unable to capture some Goal Model artifacts: Our framework is not
mature enough to capture some concepts of goal models such
as dependencies, contribution values on contribution links, and
softgoal interdependency graphs.

• Difficulty in finding relatedness among uNLRs: Requirements state-
ments that are inter-related may span across multiple statements.
It is still difficult for our framework to find the relation between
two goals (or softgoals) that reside across multiple statements or
even across a paragraph.

• Difficulty in identifying goal decompositions: Our framework can
identify goal decompositions from a single sentence or within two
consecutive sentences. However, it may be the case where goal
decomposition for a particular goal is specified in a span of mul-
tiple statements. In such a case, our framework will fail to identify
the goal decompositions. Also, we observed that our framework
fails to identify goal decompositions when the subgoals are not
well mentioned in the uNLR statements.

• Significant Time Requirements: As our framework employs several
NLP tasks and algorithms, it needs to load large language models.
The framework requires a reasonable amount of time, specifically
to accomplish classification tasks using language models and the
measurement of semantic similarity.
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Examples of scenarios where our framework faces limitations are show-
cased in Table 21.

7. Conclusion

In this paper, we propose a comprehensive framework that supports
the construction of goal model specifications from unstructured natural
language requirement specifications. Our approach seamlessly inte-
grates diverse NLP algorithms, techniques, and advanced transformer
models to achieve this goal. Notably, the framework’s adaptability
ensures future scalability, allowing the replacement of current deep
learning models with more advanced and compatible alternatives as
they emerge over time. During the development of the framework, we
come up with a requirements classification framework that outperforms
state-of-the-art requirements classification models. We also developed
an entity type recognition system in this domain which can work
independently outside the framework. We have performed an extensive
crowdsource experiment to analyze the acceptability of the goal mod-
els generated by our framework. The acceptability analysis has been
further validated by taking the opinion of experienced requirements
engineers. In the future, we aim to capture softgoal interdependency
graphs and the contribution values from the uNLR specifications in or-
der to make the generated goal models more complete. We also intend
to perform empirical evaluations of our framework on some industry
use cases in real-life projects. We also plan to test our framework
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Table 21
Examples of such cases where our framework fails.
Example sentence Problem Possible cause for the problem

Any administrative level user can
delegate another user to execute
some or all his authorized actions

Unable to identify exact subgoal
‘‘some authorized actions’’

The proposed method is unable to
find the phrase, acting as subgoal
after the word ‘‘some’’.

Any administrative level user or
inventory user can edit an asset that
belongs to its department; same
thing for faculty user

Unable to recognize same goal for
the faculty user.

The second sentence is referring to a
phrase of the previous sentence and
the proposed mechanism is unable to
recognize it.

The system will allow the admin or
lecturer to plan meetings

Irrelevant subgoals ‘‘allow admin to
plan meetings’’ and ‘‘allow lecturer
to plan meetings’’ recognized.

Structural diversity of the language.

The users are able to send and
receive messages.They can confirm
their availability

Unable to recognize actor in the
second sentence.

Anaphora resolution has not been
done.

Registered and Guest user both can
view the products.

Unable to associate goal ‘‘view
products’’ to Guest user.

Proposed approach assumes only one
actor should be specified in a single
requirements statement.

Any authorized user can made
creating request to borrow an asset

Unable to attach goal to all users
having authorization.

Proposed approach cannot find
relevant actors referred by the words
like ‘‘any’’, ‘‘all’’, ‘‘every’’, ‘‘each’’
and so on.
for agile platforms and look into the challenges in capturing similar
concepts from user stories.
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