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ABSTRACT Fingerprint verification is a popular smartphone authentication method used even for sensitive
services such as banking. However, fingerprint verification also has some issues, such as spoofing even
by inexperienced impostors utilizing a thumbs up Instagram picture without the victim’s knowledge. This
can be a considerable risk with partial scanning of fingertips used on smartphones. To better understand
the fingerprint forgery process and perception, we performed a hands-on forgery simulation to assess the
robustness of smartphone fingerprinting technologies. Overall, 370 inexperienced participants created glue
or silicone counterfeits from a photo of their fingers. Five participants logged in to smartphones with their
counterfeits, and 74 registered them into smartphones as a ‘‘finger’’. With improvements in the forgery
process in the second run, we achieved an increase in true matches from 41 to 113. Our study shows that
quality and scan enhancement is important during the forgery process – enhancement improves the match
score. Our analysis also provides insights into user perceptions regarding the forgery experience. Participants
intend to use fingerprint authentication less often, but we found mixed results regarding the perception of
fingerprint security.

INDEX TERMS authentication, finger-photo, fingerprint, forgery, smartphone.

I. INTRODUCTION

he adoption of biometric technology in smartphones has
been on the rise, with 71% of smartphones featuring enabled
biometrics as early as 2021 [1]. Biometrics are a ‘‘desired
feature’’ for sensitive services such as mobile health applica-
tions [2, p. 12] or mobile banking [3]. The most widespread
biometrics is fingerprint [4].

Plenty of studies considered the usability and the secu-
rity perception of fingerprint authentication (e.g., [3], [5]).
These investigations suggest that fingerprints are popular for
their high usability and perceived security. They also show
that it is widely adopted among users and often integrated
into devices and applications, making it a broadly accepted
and recognized authentication method. Nevertheless, there
are many misconceptions related to fingerprint security [6],
[7]. While perceived as a very secure authentication method,
several risks exist, e.g., spoofing [8], [9], which can be done
even by inexperienced impostors (i.e., non-genuine user who
are committing the act of spoofing for the first time) and
without the knowledge of a victim (e.g., by taking a photo

of a screen full of fingerprints’ smudges [10]). The security
concern is even more significant for smartphone fingerprint
readers that scan only a part of the fingerprint, typically with-
out liveness detection. This means that when only a portion
of the fingerprint is captured, there is a higher likelihood of
generating a false match due to ‘‘entropy loss’’ [10], [11].
In this context, ‘‘entropy loss’’ refers to reducing the amount
of unique information available for verification when only a
partial fingerprint is used, increasing the risk of unauthorized
access.

This work focuses on creating a 3D physical counterfeit
from a photo of a finger (i.e., finger-photo) and then un-
locking a smartphone with such an artifact. It explores how
this vulnerability misuse is effective when done by inex-
perienced impostors to demonstrate its potential concerning
current fingerprint readers. Since fingerprint authentication is
used often on smartphones, we focus on differences between
using counterfeits on distinct smartphone fingerprint readers
to address the following research question:

RQ1: Are the current readers vulnerable to counterfeits cre-
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ated from a photo of a fingertip by inexperienced impostors
concerning the type (i.e., capacitive, optical and ultrasonic)
and position (i.e., front, rear and side) of the reader?

To better understand the quality of counterfeits created
from a finger-photo, counterfeits and corresponding genuine
fingertips were scanned and processed to evaluate their qual-
ity and compute match scores on a computer. Also, we in-
vestigated the role of fingerprint enhancement on the quality
of scans and match scores to answer the following research
question:
RQ2: What is the achieved quality of counterfeits created
from a photo of a fingertip by inexperienced imposters?What
is the impact of fingerprint enhancement and scan quality of
counterfeits on achieved match scores?

This paper explores the effectiveness of exploiting a vul-
nerability in common fingerprint readers towards a 3D phys-
ical counterfeit from a finger-photo to unlock a smartphone.
As mentioned above, users often perceive fingerprint as the
most secure authentication method. In our previous study
about the security perception of fingerprint authentication
[12], we expected that this perception is based on misconcep-
tions about fingerprint authentication. These misconceptions
were meant to be overcome by educating users about biomet-
rics, including a hands-on spoofing experience on creating
a counterfeit from a finger-photo, which is not a common
approach. As part of our study, we also extended our inves-
tigation for another experiment run about user perception to
respond to the following research questions:
RQ3a: What is the perception of fingerprint forgery and
fingerprint security after fingerprint forgery simulation?
RQ3b:Do changes in the simulation affect the changes in the
perception?

To answer the research questions, we conducted a hands-
on spoofing simulation of creating a 3D physical counterfeit
from a finger-photo with a larger group of 370 inexperienced
impostors. We simplified the process of counterfeit creation
from a finger-photo described in [12], but we used different
materials for counterfeits. Also, in that study, we focused only
on user perception (answering the RQ3a, but not the RQ3b).
Notably, we did not consider the effectiveness of counterfeits
on different fingerprint readers (not considering the RQ1)
or the role of the quality of scans and their enhancement
on match scores (not considering the RQ2). This contrasts
with the approach in the study presented in this paper, where
all these research questions were addressed. Further, regard-
ing user perception, we collected data from 149 additional
participants to revise our findings after some changes in the
simulation.

The contributions of our work to fingerprint verification
security are:

• Spoofing feasibility demonstration: We demonstrated
that it is relatively simple for inexperienced impostors,
without any special equipment, to forge a fingerprint
from a finger-photo within just two hours.

• Demonstration that these counterfeits are a real risk to
smartphone fingerprint readers because even few inex-

perienced imposters could log their first-made counter-
feits into a smartphone. However, achieving such quality
for the first-ever-made counterfeit is not highly probable.

• Exploring the vulnerability of current smartphone fin-
gerprint readers used by a young population – around
20% of the investigated smartphones accepted a counter-
feit as a human finger (during the registration as a new
‘‘finger’’).

• Examining achieved quality and effectiveness (match
score) of such spoofing. We also examined the role of
fingerprint enhancement on achieved match scores.

• Rigorously examining (in a two-year study) the percep-
tion of fingerprint spoofing before and after the forgery
experience concerning changes in the simulation pro-
cess.

This manuscript is organized as follows: Section II pro-
vides related work regarding fingerprint readers, fingerprint
quality and forgery, security perception, and education. Sec-
tion III contains the methodology and description of the
forgery process emphasizing changes made in contrast to the
first run [12]. Section IV presents the findings obtained re-
garding smartphone readers, achieved scan quality and match
scores, and forgery perceptions. In Section V, results and
implications are discussed. The paper is concluded by Section
VI.

II. BACKGROUND
This section elaborates on fingerprint readers to highlight
how they may react to counterfeits. It describes the aspects
influencing the quality of fingerprints. It also provides back-
ground on finger-photos. With a focus on fingerprint forgery,
it presents prior research on fingerprint replicas. Finally, it
details user perception of fingerprint security, cybersecurity
education, and intervention.

A. FINGERPRINT READERS
Three commonly used types of fingerprint sensors in smart-
phones are optical, capacitive, and ultrasonic. Each technol-
ogy has its unique approach to capture and process finger-
print data. Optical sensors use light to capture the fingerprint
image. The reflected light is converted into a digital image,
and unique fingerprint features are extracted [13]. Capacitive
sensors use electrical current and an array of tiny capacitors
to detect fingerprint details. The finger’s ridges and valleys
alter capacitance, generating a fingerprint image based on
electrical field variations [13]. Ultrasonic sensors use sound
waves to create a detailed fingerprint image by bouncing
waves off the finger’s ridges. The reflected waves are ana-
lyzed to generate a digital fingerprint image [13]. Smartphone
fingerprint readers are specific in their partial scanning, which
makes them more vulnerable than full fingerprint scans [11].

B. FINGERPRINT QUALITY
Damaged or injured skin can pose challenges to fingerprint
identification. Conditions like burns, dryness, or scars can
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disrupt ridge patterns, making it difficult for automated sys-
tems to identify individuals precisely.

Automated systems may struggle to match and identify
individuals accurately, as skin diseases cause texture and
clarity variations in fingerprints, reducing their reliability as
biometric identifiers [14]. E.g., patients with hand dermatitis
were approximately four times more likely to have dystrophic
fingerprints that failed the verification process compared to
healthy individuals [15].
Sport activities involving physical contact and extreme

conditions can increase the risk of fingerprint damage. Repet-
itive friction and trauma during sports can alter fingerprints’
texture and clarity, compromising their reliability as biomet-
ric identifiers [16]. Exposure to extreme environmental con-
ditions may contribute to fingerprint deterioration, leading to
challenges in using fingerprint recognition systems as e.g.,
weightlifters, gymnasts, tennis players, and rock climbers are
susceptible to ‘‘black palm’’ caused by haemorrhage [17, p.
37].

Fingerprint Ridge Density varies among individuals of
different ethnicity, geographical locations and gender – males
have generally lower densities than females, but there is some
overlap within the population [18].

C. CONTACTLESS AND CONTACT-BASED ACQUIRED
FINGERPRINTS
Authentication with a finger can be done in two ways
on smartphones: via a sensor (fingerprint-based authentica-
tion) and via a standard smartphone camera (finger-photo-
based authentication) [19]. Current smartphones widely use
touch-based sensors for capturing fingerprints, but contact-
less finger-photos are not widely used for authentication,
likely due to various challenges associated with their use
[19]. Finger-photos captured by a smartphone camera have
several issues compared to contact-based sensors, such as
lower contrast between ridges and valleys, parts of the finger
being out of focus, and problematic backgrounds, requiring
additional processing [20], [21]. However, in both cases, a
finger(print) sample is registered and then compared with
another sample obtained in the same (touch-based or touch-
less) way for authentication purposes.

When combining contactless and contact-based samples,
there is a problem of reliably comparing finger(prints) ac-
quired by these two methods. For example, issues arise when
enrollment is done via a fingerprint sensor (touch-based)
but verification is done with a standard smartphone camera
(touch-less) [22]. Nonetheless, some techniques for matching
contactless and contact-based fingerprint images exist (e.g.,
[23]). These techniques aim to improve touch-less fingerprint
sensing for direct processing and comparison with samples in
the database. In our research, we used contactless acquired
finger-photos for forgery purposes. The resulting physical
counterfeit was then scanned by a standard touch-based fin-
gerprint scanner and compared to a genuine sample also
scanned by the same touch-based fingerprint sensor.

D. FINGERPRINT FORGERY
There are several ways to create a replica of a fingertip, with
two approaches: cooperative and non-cooperative. The first
example of a replica is a simple cast of the fingers, which
could be done regardless of the victim’s cooperation [24]. A
cast of the finger was already done during hands-on exercises
with children as an educational activity [25].
More sophisticated spoofing is done without the knowl-

edge and cooperation of the victim, e.g., by creating a coun-
terfeit based on the photograph of the latent fingerprints on
the smartphone screen [10], [26]–[28]. Casula et al. [27], [28]
showed that such counterfeit works on smartphone readers,
but the quality of the input is crucial. They achieved better
results on cleaned screens with intentionally created finger-
print smudges (cooperative) than when simulating the real
live environment with dirt (non-cooperative approach).
There are two studies reconstructing a fingerprint directly

from a finger-photo. Ogane and Echizen [29] simulated ex-
tracting papillary lines from a photo to develop a solution
for fingerprints that disables extracting fingerprints from a
finger-photo. In our previous study [12], focusing on creating
a counterfeit from a finger-photo made by 221 students at a
university, we found out that 26% of our participants could
register the counterfeit into their smartphones. However, the
study [12] presents only participants’ perceptions and reports
their achievements without further details. It does not inves-
tigate the relationship between scan quality, the role of scan
enhancement and the effectiveness of counterfeits on different
smartphone readers.
These two studies cannot be classified as cooperative or

non-cooperative – victims publish photos of their fingers by
themselves, but not with the intention that their fingers will be
spoofed.When impostors find a photo that includes a detailed
fingertip on the internet, they could misuse it for spoofing
without the victim’s knowledge. Our threat scenario is as
follows: users take photos of their fingers and put them onto
their social network, e.g., as a challenge on Instagram with
a thumb-up photo. Then, the impostor finds this photo and
creates a replica without users’ knowledge.

E. USER PERCEPTION OF FINGERPRINT SECURITY
Recent studies found that fingerprint is perceived as the most
secure biometric [30] or authentication method compared to
token and knowledge-based methods [3], [31]. Some users
even consider biometrics as ‘‘unhackable’’ [7, p. 5]. As [10,
p. 522] states, ‘‘users may not perceive the risk of Touch ID
because of the latent fingerprints left on the smartphone’’.
Perceptions of fingerprint security can differ based on the

domain where it is used for authentication. Even though
security experts use fingerprint authentication, they do not use
it for sensitive services, such as banking [32]. Fingerprint can
be used as two-factor authentication (e.g., with a combination
with a PIN), which seems acceptable to users [7], [33].
Several misconceptions surround the perception of finger-

print authentication, e.g., storage of the fingerprint data and
its privacy [6] or user expectation for biometrics providing
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the same protection as two-factor authentication [34]. Mis-
conceptions could also relate to IT savvy users as well [32]
together with a perceiving fingerprint as secure [35].

F. CYBERSECURITY EDUCATION AND INTERVENTION
There are several hands-on hacking exercises, mostly tar-
geting university students [36]. Also, intervention in com-
puter security (e.g., [37]) or cybersecurity education (e.g.,
[38]) is a widely adopted approach, frequently in the field
of fishing (e.g., [39]). Regarding university education about
cybersecurity, intervention also plays an important role, and
authentication is one of the bigger topics [40]. For example,
an intervention regarding secure coding on students achieved
a positive outcome [41]. Also, ‘‘achievement-based teaching
interventions’’ were found to help students to improve their
knowledge about network security [42, p. 129]. Even mul-
tidisciplinary intervention of ethics into computer security
education helped students to perceive it as ‘‘interesting and
relevant’’ [43, p. 475].

III. METHODOLOGY
To answer our research questions regarding the demonstra-
tion of fingerprint spoofing feasibility and its perception, our
study participants collected finger-photos for the extraction of
fingerprint templates for mold. These templates are utilized
to create 3D counterfeits, which are tested across various
smartphones. Given the need for scalability, we performed
this on a large scale utilizing university coursework. We did
not collect data from experienced perpetrators who routinely
forge fingerprints, possibly without any relevant technical
background. Instead, we choose computer science (CS) stu-
dents as our participants because a basic understanding of
current technical solutions is part of their education and
knowledge – they must know as professionals if they can
trust the technical solutions.We prepared a fingerprint forgery
simulation seminar to collect data from the CS student sam-
ple. We examined participants’ experience with fingertip pat-
tern counterfeits on various smartphone fingerprint readers,
quality assessment and effectiveness via match score of their
created counterfeits, and understanding of their perception of
fingerprint authentication and forgery. The first simulation
run from the Spring of 2022 comprised a lecture and two
hands-on seminars. For Spring 2023, several changes were
made, repeating the experiment (i.e., one lecture and one
hands-on seminar), as shown in Figure 1.

A. COURSE DESCRIPTION
The course where data was collected is taught in the second
year of bachelor studies at a university. It is a mandatory
course for all computer science students regardless of special-
ization, introducing them to IT security and covering several
topics, including the basics of cryptography, privacy policies,
network security, secure programming, usable security, and
authentication. These were not computer (cyber)security stu-
dents, so only the basics of computer security were presented
to them in this course.

Students should start with a lecture1 about the topic for the
week, followed by a hands-on seminar in smaller groups (∼16
students per group). For the fingerprint forgery seminar, the
lecture covered identity and access management, including
fundamental concepts like passwords, tokens, and biometrics.
The focus was on error rates, fingerprints, and face recogni-
tion.
The seminar structure consisted of the following:
1) Inviting students to participate in a study.
2) Measuring their perception of fingerprint authentica-

tion and forgery using a questionnaire.
3) Introducing forgery simulation in a hands-on manner.
4) Allowing participants to create physical counterfeits.
5) Instructing participants to process these counterfeits

using matching software on a computer.
6) Encouraging participants to use their counterfeits to

unlock and register them on their smartphones.
7) Collecting results on the processing of the counterfeits

(without collecting any personal or biometric data).
8) Continuing the survey on perception.

B. FINGERPRINT FORGERY PROCESS
The participants created a counterfeit from the finger-photo.
The forgery process demonstrated in Figure 2 consisted of the
following steps:
leftmargin=.45cm
1) Finger-photo: Participants had to take a finger-photo

with the proper lighting and next to the reference object
to estimate the fingertip size on a uniform black back-
ground. Participants used their devices (e.g., smart-
phones) to photograph their fingertips2. This demon-
strated to the participants how challenging or easy it can
be to capture a finger-photo of their own finger using
their smartphone camera. Participants were expected to
take the finger-photo before the seminar.

2) Extracting papillary lines – template for mold: Par-
ticipants processed their finger-photos with our pre-
pared software to get a life-size inverted black-white
picture of their fingertip pattern. Firstly, a reference

1Lectures were pre-recorded due to class size and COVID-19 restrictions
in 2022. Lectures were taught in person, with the possibility of watching
recorded lectures with a few days’ delay in 2023.

2We provided a device for photographs only in exceptional cases where
participants struggled to get the finger-photo and asked for help.

FIGURE 1. Simplified schemes of procedures in 2022 [12] and 2023: The
number of seminars varied, but the basic idea remained the same – first
was a theoretical lecture, then the first questionnaire at the beginning of
the hands-on part (seminar). The seminar then focused on the creation
and processing of counterfeits. The seminar finished with the second
questionnaire.
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FIGURE 2. Schema of the fingerprint forgery process adapted from [12]:
(1) a finger-photo, (2a) template preparation – extracting papillary lines,
(2b) inverting colors on the template, (3) printing the mold on the printer
(4a) application of a cast material on the mold and (4b) resulted
counterfeit.

object was detected to estimate the size of the finger.
Then, the borders of the fingertip were detected. In the
area of the detected fingertip, the software was looking
for fingertip patterns – papillary lines, i.e., ridges and
valleys. After that, the colors of ridges and valleys were
inverted to get a template for the mold (‘‘negative’’).

3) Mold for 3D counterfeit: The inverted horizontally
flipped black-white picture was printed on a plastic foil
to create a mold. The layer of ink creates the ridges (that
impress valleys into the counterfeit material), while
a plastic foil without ink creates valleys (resulting in
counterfeit ridges). Plastic foil has no structure, and
the ink has no grades of shade, so it keeps all template
features designed on a computer.

4) 3D counterfeit: The form was then filled with some
cast material. All participants applied the material by
themselves. The final counterfeit cast was created when
the material was dried out solid.

C. COUNTERFEITS PROCESSING
When a physical 3D counterfeit was created, participants
were expected to process it with NIST Biometric Image Soft-
ware (NBIS) tools [44]. These tools were used to evaluate the
artifacts on a computer. Specifically, NFIQwas used for qual-
ity evaluation, MINDTCT for creating a minutia map, and
BOZORTH3 for computing match scores by comparing the
counterfeits to genuine fingertips. These tools were also used
by, e.g., [45]. In addition to using NBIS tools for evaluation,
participants attempted to log into their smartphones using
these physical counterfeits. Counterfeit processing consisted
of the following steps:

1) Scanning: It was necessary to scan genuine fingertips
and counterfeits first to be able to process them on
a computer with NBIS tools. An external fingerprint
reader Futronic FS80H was used.

2) Quality evaluation: The quality of genuine fingertips
and counterfeits scans was evaluated with the NFIQ
tool. Participants were informed about the quality of
their scans.

3) Enhancement:When processing fingerprints, enhanc-
ing the images is a good practice. For fingerprint en-
hancement, Gabor filtering [46], [47] was used. How-
ever, the enhancement requires input scans of a certain
quality [48]; otherwise, false minutiae points are cre-
ated. In the first run, scan enhancement was applied
to the template for mold. In the second run, mold was

created from the non-enhanced (raw) template, and en-
hancement was used only on scans of genuine fingertips
and counterfeits (see Section III-E).

4) Minutia map creation: The minutiae map of genuine
fingertips and counterfeits scans was created with the
MINDTCT tool.

5) Matching: The match score was computed with the
BOZORTH3 algorithm based on the files created in
the previous step. Raw and enhanced scans of genuine
fingertips were compared to raw and enhanced scans of
counterfeits.

6) Smartphone activity: Participants were encouraged
to try logging into smartphones with their counterfeits
(after registration of the corresponding genuine fingers
into the smartphones). Also, they were attempting to
register the counterfeits into the smartphones as new
fingers.

D. DIFFERENCES BETWEEN RUNS
Based on the experience from the first run [12], changes
were incorporated into the second run. One seminar (2 hours)
was used instead of two (2x2 hours) (see Figure 1). For
example, the presentation part done by seminar tutors was
shortened and did not repeat the theoretical part of the lecture.
Also, the basics of Gabor enhancement were explained to the
participants during the second seminar run. Other significant
changes are outlined in the following subsections.

1) Material used for counterfeit
The first issue was the drying time of the material used for
counterfeit creation. The glue used in the first run is a very
accessible and cheap option for many possible perpetrators.
However, the most significant disadvantage of glue is its long
drying time (several hours). In the second run, silicone Body
Double Fast was used instead, with a drying time of minutes,
enabling us to have only one hands-on seminar. Silicone Body
Double was also used for presentation attacks in [28].

2) Finger-photo
Participants struggled with taking a good finger-photo in
the first run. They also pointed out that achieving a good
finger-photo was challenging. In the second run, a summary
of recommendations on taking pictures of a fingertip was
presented to our participants (e.g., to avoid insufficient res-
olution, blurred parts, shades and angles). Also, in the second
run, participants could use a photo box painted black inside
(see Supplementary materials). Adequate lighting to the box
was provided – a ring light with warm and cold light, so ev-
erybody could choose what works best for their (smartphone)
cameras or use their camera’s built-in flash. A stock of coins
was prepared as a reference object to be at the same level as a
photographed fingertip to overcome misunderstandings and
wrong size estimation when processing. Also, participants
had to manually mark the fingertip and reference object area
in the second run since some difficulties were faced when it
was done automatically in the first run.
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FIGURE 3. Schema of scans’ processing. Black parts were done in both
runs, grey parts were done only in the second run in 2023.

3) Fingerprint enhancement
Gabor enhancement was used before printing a form onto
the foil in the first run. However, after the pilot (see Section
III-E) and our internal testing, we decided not to apply the
enhancement on the templatemade from the processed finger-
photo before printing it onto the foil. Still, the enhancement
was used on scans of genuine fingertips and counterfeits, as
shown in Figure 3.

4) Scan processing
Participants worked with the external fingerprint readers in-
dependently without seminar tutors’ assistance (assistance
was provided only where needed) in the second run, in con-
trast to the first run, where participants needed their seminar
tutors’ assistance. This change enabled participants to scan
their fingerprints (genuine and counterfeit ones) into the com-
puter multiple times – precisely ten times each to simulate
the registration phase better when a fingertip is not scanned
just once but several times. Ten attempts were set up to limit
the maximum number of attempts when simulating logging
into a system. Then, participants processed their scans with
prepared scripts, generating a file with the quality evaluation
(a result of the NFIQ tool) of all scans (of genuine fingertips
and counterfeits and their enhanced versions) and the match
score (a result of the BOZORTH3 tool) of each combination.
There is no such file and data for the first run as participants
got only a few scans, and they reported only the best-achieved
value.

5) Usability of the process
We improved the usability of the process when using the
tools, so participants could focus more on the core topic
of counterfeiting. In the first run, participants had to work
with all the tools themselves (i.e., software for finger-photo
processing and NBIS tools from the command line). In the
second run, participants used a prepared Jupyter notebook

[49] where they did not have to look for the software or copy
commands into the terminal – they were simply running the
cells in the notebook. Participants were already familiar with
them from previous seminars.

E. PILOT TESTING
After the first run for around 300 students, new challenges
were identified. Some changes described in Section III-D
were incorporated and tested with ten students of another
Master-level course taught in the autumn of 2022. Since this
pilot sample (10 students interested in IT security) differed
from our main sample group (all CS students), the pilot’s
main focus was logistics finetuning. The questionnaire was
not piloted since we asked selected questions from the first
run. We tested the influence of the Gabor enhancement in
various phases of counterfeit creation and processing. Instead,
participants were asked to create two counterfeits – one raw
and one enhanced with the Gabor filtering. Then, our par-
ticipants scanned their genuine finger, raw counterfeit, and
enhanced counterfeit. They continued processing all the scans
as they were, and they also applied enhancement on all scans.
Then, they reported quality evaluation and match scores of
their scans. Eight of ten provided us with the testing data
(automatically generated into a file), where six achieved a
true match for their counterfeits in BOZORTH3. Then, only
five shared their results of logging in to their smartphone with
their counterfeit, resulting in one successful pilot participant.
Based on the testing, we decided to use raw and enhanced
scans, but not to enhance the template for a mold.

F. MEASURES
Three data types were measured: (1) position and type of
smartphone fingerprint readers and their response to login
with and registration of counterfeits, (2) quality and match
score of genuine fingertips and counterfeits scans, and (3)
user opinions and experiences.

1) Fingerprint readers (RQ1)
Participants reported the smartphones they used for attempt-
ing to log in with counterfeits via survey, ideally as a link on a
specification of the smartphones. The links with smartphone
specifications were manually researched by us to identify
their fingerprint readers. Then, the smartphones were classi-
fied according to their type and the position of the sensor into
the following categories: optical, capacitive, and ultrasonic
for type and front, rear, and side for position.
For our analysis, we divided the participants’ achievements

into three groups (see Table 1): (1) GLog1,GReg1 as to
those who could log in with or register the counterfeits into
smartphones; (2) GLog2,GReg2 as those who could not log
in with or register their counterfeits but that the smartphones
recognized that ‘‘a finger’’ was touching the sensor; and (3)
GLog3,GReg3 as those who could not log in with or register
their counterfeits into the smartphones. The results belonging
to login are reported as GLog followed by a number (from 1
to 3 depending on what the sensor perceived during login). At
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TABLE 1. Participant group acronyms.

Stage Answer proposed in the questionnaire Group acronym
Responses when participants Yes, I was able to log into the smartphone GLog1
logged into smartphones No, but the smartphone recognized that something was touching the reader GLog2
with their counterfeit No, the smartphone did not even recognize that something was touching the reader GLog3
Responses when registering Yes, I was able to register my counterfeit into the smartphone GReg1
their counterfeits into the smart- No, but the smartphone recognized that something was touching the reader GReg2
phones as genuine finger No, the smartphone did not even recognize that something was touching the reader GReg3

the same time, the acronymGReg followed by a number (1 to
3 depending on what the sensor perceived at registration) is
used for the results regarding the counterfeit registration into
the smartphone.

2) Scan quality and match score (RQ2)
Concerning counterfeit processing, the quality of genuine fin-
gertip and counterfeit scans and match scores were measured.
Quality was measured with the NFIQ tool. The evaluation
is on a scale from 1 (the best) to 5 (the worst). The BO-
ZORTH3 algorithm computed the match score. The resulting
value (match score) indicates the number of corresponding
minutiae points. In this case, a score equal to or above 40 is
considered a true match.

3) Perception (RQ3)
An online questionnaire was used to measure perceptions of
fingerprint authentication and forgery. Since we were pri-
marily interested in changes in perception before and after
the forgery simulation, most items were measured repeatedly
before and after the simulation on a 5-point Likert scale,
where a higher value represents stronger perception. The
questionnaire items are in Supplementary materials. If not
stated otherwise, itemswere adapted from the first run. Partic-
ipants already knew the results of their counterfeit processing
when answering questions after the forgery simulation, so
their experience and achievements could influence them.

Observations are classified into two main groups: funda-
mental and other interesting. Among the fundamental ob-
servations are fingerprint security perception, perception of
difficulty in learning and performing fingerprint forgery, in-
tention to use fingerprint for unlocking smartphones, login
into mobile banking, and confirming transactions in mobile
banking. Other observations cover expected fingerprint se-
curity perception by security experts and the general public,
perceived susceptibility, the expected level of the attacker able
to do forgery, and (measured after the simulation) satisfaction
with created counterfeit and time and effort perception of the
forgery.

G. ETHICS AND REPRODUCIBILITY
Participants created a counterfeit of their own finger from
their own finger-photo. This does not reflect the real scenario,
but participants processed only their own data concerning
personal data processing. The research team did not collect
any biometric data (e.g., finger-photos or maps of the minu-
tiae points) from participants. When participants provided

the file with match scores and quality evaluations, this file
contained no biometric data. We got ethical approval from the
Institutional Review Board as a component of the research
effort consisting of several investigations centered on user
authentication.
Study participation (filling out the questionnaires and pro-

viding the file with match scores and quality evaluations)
was voluntary and done during the seminar(s). There were no
advantages or disadvantages from (non-)participation. Semi-
nar tutors were unaware of whether students participated or
not. The questionnaire started with informed consent with
participation, and all the questions could be unanswered if
the participant did not want to. We prepared a substitute task
for cases when somebody was unwilling to participate even
in the hands-on seminar.
Regarding reproducibility, the questionnaire is in Supple-

mentary materials. Nevertheless, the data from participants
cannot be published because some of our participants added
identifications to their data even though they were explicitly
asked not to do so.

H. LIMITATIONS
Due to sensitive personal data, we did not collect biometrics
data – all the analyzed data were processed or reported by our
participants. However, we still consider our study beneficial
as we achieved data from a large sample of 370 participants
and 190 distinct smartphone models, and we got quality
evaluations for 6402 scans and 59821 match scores in total.
Another limitation pertains to accurately identifying the

type and location of fingerprint readers on smartphones. Even
though participants were encouraged to put the link of the
smartphones where they tried to log in and register their
counterfeit with the smartphone specification, some reported
just the model’s name. The samemodels could differ based on
their manufacturing year, so the data do not have to be precise
in all cases. Nevertheless, this was the only practical approach
to gather such information from a large sample of currently
used smartphones.

IV. RESULTS
This section aims to comprehensively analyze the data col-
lected and the statistical analyses performed, offering in-
sights into the research questions. The primary objective is
to examine the impact of scan quality on achieved match
score and explore the relationships between location and
type of fingerprint sensors within the context of our research
framework, together with users’ perception. Python3 scipy
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stats (library dedicated to statistical analysis) was used for
data analysis [50]. Perception data were analyzed with IBM
SPSS 27 [51]. Perception data for both runs were analyzed
separately and statistically compared to each other. Due to the
outliers and data distribution, we used non-parametric tests.
The significance is considered at the level 0.05.

A. SAMPLE
Overall, data from 370 participants were analyzed. The sam-
ple is described in Table 2. Before analyzing the data, we
excluded cases where participants did not finish one of the
questionnaires or filled both questionnaires after the simu-
lation. We also excluded participants from our analysis who
failed to scan their genuine fingertip and counterfeit ten times
or did not report match scores. The participants in the first run
are different from those in the second run.

TABLE 2. Sample characteristics.

2022 [12] 2023
Variable N %* N %*
Enrolled students 295 297
Seminar tutors 16 20
Final sample 221 149
Gender
– Female 32 15 18 12
– Male 183 83 124 83
– Others 3 1 2 1
– Missing 3 1 5 3
Age M (SD) 21 (1.0) 21 (1.1)
Having a fingerprint reader
on a smartphone
– Currently 180 81 117 79
– In the past 29 13 29 20
– Never 11 5 3 2
Having (ever) a fingerprint
reader on:
– Laptop 96 43 63 42
– Other device (not
smartphone/laptop) 13 6 9 6

– Nowhere 108 49 76 51
– Missing 4 2 1 1
Fingerprint authentication
at any device
– Currently using 183 83 122 82
– Used in the past 23 10 15 10
– Tried, never used 7 3 9 6
– No experience 8 4 3 2
Own fingerprint registered on
someone else’s smartphone - - 36 24

*Percentage does not give always 100% due to rounding.

B. FINGERPRINT READERS (RQ1)
1) Counterfeit login
Based on the success of logging into smartphones with coun-
terfeits, Table 3 provides insights into the distribution of
participants. We reported only GLog1 for the first run in
[12] with a mere 0.5% of participants. However, in the first
run, we also measured GLog2, which accounted for 41%,
and GLog3 represented the majority with 58%. In the second
run, GLog1 recorded an increase, with 3% of participants.
GLog2 experienced a decrease, falling to 20% and GLog3

continued to be the predominant group, with a substantial
78%. In conclusion,GLog1 andGLog3 increased overGLog2.

2) Counterfeit registration
By examining the collected data, we aim to shed light on
the effectiveness and accuracy of the registration process
for a fingerprint. These results encompass the success of
registering counterfeits into smartphones as genuine fingers.
As Table 3 shows, GReg3 experienced growth, becoming the
predominant group with 75% in the second run, while GReg1
and GReg2 reduced.

TABLE 3. Participants divided by group for login, registration and login
after registration.

2022 2023
Group N %* N %*

Counterfeit GLog1 1 0.5 4 3
login GLog2 91 41 29 20

GLog3 129 58 116 78
Counterfeit GReg1 57 26 17 11
registration GReg2 46 21 20 13

GReg3 118 53 112 75
Counterfeit GRLog1 38 17 14 9
login after GRLog2 14 6 2 1
counterfeit GRLog3 5 2 1 1
registration NA 164 74 132 89

3) Counterfeit login after counterfeit registration
These results are for participants who were able to register
their counterfeit on a smartphone as a new ‘‘finger’’ (GReg1).
Table 3 shows how many of them were able to successfully
log in (GRLog1) or at least trigger the phone’s fingerprint
reader (GRLog2) after a successful counterfeit registration in
contrast to the overall sample. When considering only partic-
ipants with successful registration in the first run, GRLog1
rates are as follows: out of 57 participants who were able
to register their counterfeit, 67% (N = 38) unlocked the
smartphone with such counterfeit. In the second run,GRLog1
had a success rate of 83%, with 14 out of 17 attempts being
successful.

4) Types and locations of readers
Table 4 provides a thorough comparison of the different
types of fingerprint readers and where they are located on
the devices. The most prevalent type in both runs was the
capacitive one. Optical readers were the secondmost common
type, and the ultrasonic ones had the lowest representation.
Regarding fingerprint reader locations, the front was the most
common position in both runs, followed by rear and side
locations. Finally, the data indicate a notable shift in fin-
gerprint reader types and locations between runs. Capacitive
readers witnessed a slight decline in usage, while optical
readers increased. Moreover, there was a significant increase
in fingerprint readers placed on the front and a corresponding
decrease in rear placement.

Since we divided data into groups according to whether or
not there had been a success in log-in or registration, we inves-
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tigated which locations and types of fingerprint sensors be-
longed to groups 1 and 2 (GLog1,GLog2 and GReg1,GReg2)
by excluding the unsuccessful group 3 (GLog3 and GReg3).
Table 4 shows the data for different types and locations of
sensors. The comparison below shows the differences be-
tween the first and second run. The percentage of capacitive
vulnerabilities decreased forGReg1 and forGReg2. However,
during the same period, the percentage of optical vulnera-
bilities increased for GReg1 and GReg2. Additionally, the
percentage of ultrasonic vulnerabilities decreased for GReg1
and GReg2.
Regarding fingerprint sensor locations, the percentage of

vulnerabilities located in the front increased for GReg1 and
GReg2 from the first to the second run. The percentage of
vulnerabilities located in the rear decreased for GReg1 and
GReg2 during the same period. The percentage of vulnerabil-
ities of readers located on the side forGReg1 increased, while
for GReg2 it decreased.

5) Diverse responses for the same smartphone models
During the analysis, some observations emerged, revealing
diverse behaviors among smartphones of the same model
during login and registration processes. Notably, we encoun-
tered 20 distinct smartphone models comprising a total of
94 devices in the first run, while in the second run, six
models encompassed 32 devices. In the first run, most of these
devices belonged to the GReg2 and GReg3 groups. However,
the iPhone 8 model stood out due to its conflicting behaviors
during registration, being successful in one case and failing
to detect any touch input in another. In the second run, the
new smartphone models demonstrated varying registration
behaviors, with three displaying opposing responses. More-
over, these contrasting behaviors occurred more frequently
in the second run compared to the first one. Examining the
login phase, in the first run, out of the 94 smartphone models,
10 exhibited responses that surpassed the number of models
showing opposite behaviors during registration. In the second
run, only two of the four smartphone models from that year
demonstrated responses to opposites compared to the registra-
tion stage. In conclusion, the second run witnessed increased
mixed responses in both the login and registration phases. The
smartphone model that exhibited diverse behaviors in both
runs was the Huawei P Smart DS.

C. SCAN QUALITY AND MATCH SCORE (RQ2)
We noted an increase in achieving a true match in the BO-
ZORTH3 tool from 19% (N = 41) participants in the first
run to 76% (N = 113) in the second run. However, we only
measured the quality and match score of all attempts in the
second run.

In the linear regression, it is expected that NFIQ-G and
NFIQ-C are quality measures used to evaluate genuine finger
and counterfeit scans, respectively. We found a relationship
between the quality of scans and the match scores. The model
explains approximately 14.8% of the variation in the match
scores, indicating that other factors not accounted for in

the model may also influence the match scores (F = 0.531,
p < 0.001, R2 = 0.148). The k coefficients for NFIQ-G and
NFIQ-C are -0.6255 and -2.8284, respectively. These coef-
ficients represent the estimated changes in the match score
for a one-unit increase in the corresponding NFIQ measure
while holding other variables constant. The standard errors
of these coefficients (0.038 for NFIQ-G and 0.028 for NFIQ-
C) indicate the precision of the estimates. The results suggest
that both NFIQ-G and NFIQ-C have statistically significant
relationships with the match scores, meaning that changes in
the quality of scans are associated with changes in the match
scores.
To analyze the impact of scan quality further, we explored

different combinations of enhanced scans of genuine fingers
(further referred to as EG) and enhanced counterfeit scans
(further referred to as EC). Raw (non-enhanced scans) are
further referred to as RG for genuine fingers and RC for coun-
terfeits. Table 5 contains the average match scores for these
combinations, indicating that EG and EC have the highest
average match scores.
To compare the score distribution of the match score be-

tween the groups, a Kruskal Wallis test was applied for each
category, and the results are as follows: match score is not
affected by RG and RC (H(4) = 5.97, p = 0.113) or by
RG and EC (H(4) = 4.44, p = 0.217). The match score is
affected by EG and EC (H(4) = 34.62, p < 0.001), and by
EG and RC (H(4) = 8.88, p = 0.030).
Regarding enhanced scans of genuine fingertips and en-

hanced scans of counterfeits, the Mann-Whitney test revealed
a significant difference between EG with good quality (2,
further referred to as EG2) – EC2 and EG with best quality
(1, further referred to as EG1) – EC2 (U = 249.5, p <
0.001) as well as between EG2 – EC2 and EG1 – EC1
(U = 24.0, p = 0.015). Additionally, a highly significant
difference was observed between EG2 – EC1 and EG1 – EC2
(U = 11.5, p < 0.001) and a significant difference between
EG2 – EC1 and EG1 – EC1 (U = 0.0, p = 0.011). Regarding
enhanced scans of genuine (EG) and raw counterfeits (RC),
there is a significant difference in the matching score between
EG2 – RC with bad quality (4, further referred to as RC4)
(U = 108.5, p = 0.014) and EG1 – RC4 (U = 51.0, p =
0.033) differ significantly from the EG2 – RC with medium
quality (3, further referred to as RC3) (see Table 6 for more
details).

D. PERCEPTION (RQ3)
First, we separately compared the possible differences in
perception before and after the simulation for each run with
the Wilcoxon signed-rank test. Then, the differences between
each run for the effect of the forgery simulation were com-
pared. Next, we compared the variables measured before the
forgery simulation in both runs to assess the population’s
perception change before the simulation due to other factors
outside of this study (with the Mann-Whitney test). Results in
Table 7 present the two-year observations, where the follow-
ing could occur:
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TABLE 4. Locations and types of fingerprint readers divided by groups 1 and 2 (login and registration).

No division GLog1 GLog2 GReg1 GReg2
2022 2023 2022 2023 2022 2023 2022 2023 2022 2023

Sensor N %* N %* N %* N %* N %* N %* N %* N %* N %* N %*
Capacitive 154 70 96 64 1 100 0 0 55 60 9 31 29 50 6 35 35 76 7 35

Type Optical 52 23 44 32 0 0 4 100 24 26 18 62 20 35 10 58 7 15 12 60
Ultrasonic 15 6 7 4 0 0 0 0 12 13 2 6 8 14 1 6 4 9 1 5
Front 78 35 68 46 1 100 3 75 41 45 22 75 31 54 12 70 11 23 16 80

Location Rear 133 60 53 36 0 0 0 0 43 47 4 13 23 40 2 12 30 65 3 15
Side 10 4 26 17 0 0 1 25 7 7 3 10 3 5 3 18 5 10 1 5

*Percentage does not give always 100% due to rounding.

TABLE 5. Mean match scores based on combining genuine fingerprints
and counterfeits (2023 only).

Combination Mean SD
Raw Genuine – Raw Counterfeit 23.73 7.05
Raw Genuine – Enhanced Counterfeit 28.86 6.71
Enhanced Genuine – Raw Counterfeit 25.70 5.54
Enhanced Genuine – Enhanced Counterfeit 33.39 7.97

TABLE 6. Mean match score (BOZORTH3) between scans of genuine
fingertips and counterfeits (E = Enhanced, R = Raw) based on the quality
assessment (1 = best, 2 = good, 3 = mean, 4 = bad, 5 = worst). ‘‘-’’ implies
no matches. (2023 only.)

Genuine
1 2 3

E R E R E R

1
E

M=27.67
SD=2.62

M=28.00
SD=0.00

M=39.57
SD=5.57 - -

M=28.33
SD=5.60

R -
M=28.89
SD=6.31 - - - -

C
ou

nt
er
fe
it 2

E
M=26.48
SD=5.36 -

M=35.94
SD=7.21 - -

M=29.41
SD=6.85

R -
M=24.56
SD=4.90 - - - -

3 E - - - - - -

R
M=20.00
SD=2.16

M=25.00
SD=0.00

M=21.14
SD=4.39 - -

M=21.33
SD=5.03

4 E - - - - - -

R
M=25.48
SD=4.64 -

M=26.57
SD=5.69 - -

M=23.41
SD=7.09

• no difference found between runs, so the results corre-
spond with expectations (further referred to as corre-
spondence),

• difference between runs based on our expectations due
to a change (intervention) of the process (shift),

• and the unexpected difference between runs (difference).

1) Intention to use

Participants differed in their intention to use fingerprint au-
thentication after the forgery simulation (correspondence) –
they intended to use fingerprint authentication less often for
logging into mobile banking and confirming transactions in
mobile banking.

2) Perceived security
Participants’ perceptions of fingerprint security after the
forgery simulation differ – the expected shift to perceiving
fingerprint authentication as less secure after the simulation
was observed only in the first run (difference). They expected
to perceive fingerprint security as less secure after the sim-
ulation by the IT security experts only in the first run and
by the general public in only the second run (difference).
When considering only the perception before the simulation
(‘‘initial’’ values) in both runs, participants of the second run
expected IT security experts to perceive fingerprints as less
secure than a year before (U = 11191.5, p < 0.001).
Concerning IT security experts vs general public, partic-

ipants expected that the general audience would perceive
fingerprint authentication as more secure than IT security
experts (2022: Tbefore = 292.5, pbefore < 0.001, Tafter = 54,
pafter < 0.001, 2023: Tbefore = 217.5, pbefore < 0.001, Tafter =
306, pafter < 0.001), (correspondence).

3) Perceived susceptibility
Participants were less susceptible after the forgery simulation
than before (correspondence). Also, they were slightly more
susceptible before the simulation in the first run than in the
second one (U = 12504, p = 0.007).

4) Forgery perception
Participants perceived fingerprint forgery as easier to learn af-
ter the simulation (correspondence). Before the changesmade
to the process, participants perceived fingerprint forgery as
easier (but still slightly hard) (difference) and expected more
advanced attackers (but still somewhat competent) to create a
counterfeit before experiencing the simulation than after (dif-
ference). Also, participants initially expected less experienced
attackers to be successful in forgery in the second run (U =
13306, p = 0.018).

5) Forgery evaluation/reflection
Regarding satisfaction, participants were more satisfied with
their counterfeit (shift) and perceived the shorter time needed
to create it after the changes made to the procedure (shift).
There was no difference in effort perception of forgery (cor-
respondence).
Possible differences in perception between successful and

unsuccessful groups for each run after the forgery simu-
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TABLE 7. Median (~x) results of perception changes in years 2022 and
2023 and statistics for differences between both years (results of
Mann-Whitney test in Difference column).

2022 [12] 2023
Variable Before After Before After Difference
Unlocking smartphone x̃=5 x̃=5 x̃=5 x̃=5 U=14002

p = 0.021 p = 0.099 p = 0.661
Login into banking x̃=4 x̃=3.5 x̃=4 x̃=4 U=12764.5

p < 0.001 p < 0.001 p = 0.140
Transactions in banking x̃=4 x̃=3 x̃=4 x̃=3 U=12918

p < 0.001 p < 0.001 p = 0.309
Fingerprint security x̃=4 x̃=3 x̃=4 x̃=4 U=12317
perception p < 0.001 p = 0.604 p < 0.001
Expected fingerprint security x̃=3 x̃=2 x̃=2 x̃=2 U=10235.5
perception by security experts p < 0.001 p = 0.259 p < 0.001
Expected fingerprint security x̃=4 x̃=4 x̃=4 x̃=4 U=16288
perception by general public p = 0.544 p = 0.008 p = 0.006
Perceived susceptibility x̃=3 x̃=2.7 x̃=2.7 x̃=2.3 U=10294.5

p < 0.001 p < 0.001 p = 0.245
Forgery perception x̃=3 x̃=2 x̃=3 x̃=2 U=12758.5
– easy/hard to learn p < 0.001 p < 0.001 p = 0.204
Forgery perception x̃=3 x̃=4 x̃=3 x̃=3 U=15919
– easy/hard to perform p = 0.022 p = 0.569 p = 0.023
Attacker level x̃=3 x̃=3 x̃=3 x̃=3 U=11911.5

p < 0.001 p = 0.583 p = 0.003
Satisfaction with counterfeit x̃=3 x̃=3 H(1)=20.473

p < 0.001
Time perception of forgery x̃=3 x̃=2 H(1)=26.860

p < 0.001
Effort perception of forgery x̃=3 x̃=3 H(1)=3.386

p = 0.066
*Statistics for the Wilcoxon signed-rank test for the first run are provided
in [12] and for the second run in Supplementary materials.

lation were compared. Participants considered a successful
group for perception analysis achieved a true match (in BO-
ZORTH3) or registered their counterfeit into the smartphone
or unlocked a smartphone with their counterfeit. In the first
run, there were 89 successful participants, and the number
increased to 116 in the second run. All observations were
consistent in no change of perception based on their achieve-
ment (correspondence) except one: successful participants
also perceived less effort needed to create counterfeits when
the forgery process was already simplified (shift). The only
consistent difference in perception was that the successful
group was satisfied with their counterfeits more than the
unsuccessful group (correspondence). During the simulation
run with more successful participants, these successful ones
were even more satisfied with their counterfeits (see Supple-
mentary materials).

V. DISCUSSION AND IMPLICATIONS
This section provides a discussion of our results in the three
areas. Firstly, observations regarding behavior of various
smartphone fingerprint readers are discussed. Subsequently,
the focus shifts to the quality of scans. Lastly, user percep-
tion regarding the forgery process and fingerprint security is
considered.

A. FINGERPRINT READERS (RQ1)
During the two-year observations, five participants in total
were able to log into a smartphone with their counterfeits.

This demonstrates that it is possible to create a high-quality
counterfeit from a finger-photo taken by a standard camera
and done even by inexperienced impostors, which is effective
on some current smartphones. However, we do not consider
this a high-level risk because of the low success rate of inexpe-
rienced impostors. On the other hand, this also shows that this
is a real risk considering motivated and expert imposters and
professionally taken photos including detail on a fingertip,
with expert-made molds and cast fingertip counterfeits.
Even though our inexperienced imposters usually did not

achieve counterfeits of such quality to be recognized as reg-
istered genuine fingers, our results demonstrate that current
smartphone fingerprint readers often recognize the counter-
feit as a human finger because around 20% of the partici-
pants were able to register their counterfeits as a ‘‘finger’’
into their smartphones. This leads to questioning security of
smartphone fingerprint sensors since manufacturers do not
publish technical details about the sensors they use.
Fewer participants could register their counterfeit as a ‘‘fin-

ger’’ into a smartphone in the second run, which could be
because of different materials used for counterfeits (glue in
the first run, silicone in the second run). In the second run, it
was observed that optical fingerprint sensors had a slightly
higher vulnerability rate in contrast to capacitive sensors
which was found as the most vulnerable in the first run.
Capacitive and ultrasonic sensors are typically more secure
than optical ones since they capture more detailed fingerprint
data [13]. However, we found some successful registrations of
counterfeit smartphones with capacitive readers even though
silicon usually seems not to be working on them [9].
Furthermore, we achieved a higher success rate after log-

ging in with counterfeits after registering them as newfingers.
Around 67% of participants in the first run and 83% in the
second run were able to login with their counterfeit after reg-
istration as a genuine finger. This demonstrates that the coun-
terfeits were realistic enough to be identified as human fingers
but not accurate enough to match registered genuine fingers.
The performance of a fingerprint reader can be affected by its
size, which can impact accuracy and convenience.
Over the years, some participants’ smartphones demon-

strated conflicting behavior for the same model. The reasons
could be (a) environmental conditions (i.e., humidity or tem-
perature) affecting the sensors’ detection and registration of
counterfeits and (b) defects or variations in the fingerprint
sensor – even if the same smartphone model, there may be
defects or variations in the fingerprint sensor. There could
be a discrepancy in the characteristics or calibration of the
sensor between group cases, affecting its ability to detect
and register counterfeits. Also, differences in manufacturing
or updates to the production process can cause variations
in smartphones’ hardware or software configurations from
different batches. This can result in differences in how the
touch input is responded to, such as differences in the touch
screen’s sensitivity or the fingerprint reader’s accuracy.
It is essential that the fingerprint reader is tightly integrated

into the device security framework. Manufacturers should

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3446034

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

also provide software updates regularly to fix any security
vulnerabilities that may be discovered in the reader or related
software. The security of the fingerprint authentication also
depends on the user’s behavior. Educating users on best prac-
tices for fingerprint security, such as not sharing their finger-
photos, regularly cleaning the sensor, and setting strong
backup authentication methods, can ultimately improve the
security of the device.

B. SCAN QUALITY AND MATCH SCORE (RQ2)

Our results demonstrate that it is possible to create fingertip
patterns from a finger-photo of good quality. We found that
the match score is affected by the quality of scans, suggesting
that the quality plays a non-negligible role in affecting the
accuracy of the matching process. Enhanced scans of genuine
fingertips and enhanced scans of counterfeits combination
achieved the highest mean score. Even though some infor-
mation was lost while taking a finger-photo and during the
papillary line extraction on a computer, the enhancement can
improve the scan when the counterfeit is of good quality.

It is challenging to make a counterfeit of good quality from
the whole photographed fingertip, so only a part of a counter-
feit corresponds to the genuine fingertip [20]. However, this
can simulate partial scanning on smartphones, even though
scans are processed via an external reader on a computer with
NBIS tools.

Good quality finger-photo is a core part of the overall
process [29]. The group achieving a true match probably had
better finger-photos than the unsuccessful group. We leave it
to future work to investigate the differences between finger-
photos and successful and unsuccessful groups since we did
not have finger-photos of our participants to conduct such
an analysis due to ethical constraints. Taking a good quality
finger-photo was a challenging part of the process, whichmay
not be affected by the actions of participants – e.g., if partic-
ipants did not have very nicely visible ridges on their fingers
[18], had destroyed fingerprints because of skin disease [14],
or had a worse smartphone camera for taking finger-photos.
Since our participants employed various devices to capture
images of their fingers, we cannot offer consistent sugges-
tions regarding lighting.We observed that certain participants
obtained superior finger-photos when using our photography
environment, while others achieved better results with the
flash feature on their devices. However, in a real-life scenario,
an attacker has no control over the finger-photo quality – the
photo, including detailed information about the fingertip, is
published online andmay have been taken professionallywith
high-quality equipment.

Finally, participants experienced a big increase in achiev-
ing a true match between runs (19% → 76%). This could
be affected by scanning genuine fingers and counterfeits ten
times each during the second run in contrast to the first
run, where participants processed only (usually) one scan for
genuine fingers and one for counterfeits. Also, there were
no issues with size estimation as before, which could also

contribute to a higher success rate of participants in the second
run.

C. PERCEPTION (RQ3)
Results show that not all perceptions changed consistently in
both runs. We consider results marked as correspondence or
shift for fundamental differences based on forgery simulation.
We provide only hypothetical explanations for results marked
as difference, so more focus should be on this in future work.
Intention to use: The results on the intention to use fin-

gerprint authentication less often after the forgery simulation
for unlocking a smartphone, login into banking, and transac-
tion confirmation are consistent (correspondence). However,
participants reported lower intent to use fingerprint authen-
tication after the simulation in the first run but not in the
second run for unlocking smartphones. Nevertheless, even in
the previous run, the effect was weak. Weaker results regard-
ing unlocking smartphones, in contrast to banking-related
actions, reflect that users prioritize their accounts. Users are
looking for some balance between usability and security [32],
so they care to use more secure authentication methods for
more sensitive services such as mobile banking.
Perceived security: No consistent shift in fingerprint se-

curity perception was observed in participants themselves or
their expected perception shift of the general public and IT
security professionals in the second run (difference). Even
though the initial security perception of fingerprint authen-
tication was the same in both runs, the fingerprint was per-
ceived as less secure after the forgery simulation only in the
first run. It could be due to the lecture modification between
runs, which placedmore emphasis on fingerprint insecurity in
the second run. Participants expected that IT security experts
would perceive fingerprints as less secure than in the first
run. This explains why the expectation of IT security experts’
perception of fingerprint security shifted in the first run but
not in the second one. The expectation that the general public
perceives fingerprints as less secure than IT security experts,
which aligns with [32], was consistent across both runs.
Also, the forgery simulation ran in 2022 for the first time,

so participants had no information about what to expect from
resources other than lecturers and seminar tutors. In the sec-
ond run, participants could get some information from their
schoolmates who had already taken this course the previous
year.
Smartphone manufacturers integrating fingerprint readers

into their models can influence participants’ security percep-
tions. Since fingerprint readers have been in smartphones
more often recently and manufacturers responsible for them
integrate the reader there, the users believe it is secure.
Although the success rate was higher in the second run, our

simulation did not shift participants’ security perception of
fingerprint security in the second run. Success in registering
their counterfeits into smartphones or achieving a true match
does not affect security perception, which was a consistent
result for both runs (correspondence). On the other hand,
our participants’ lack of security perception change may be
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caused by an inability to log into smartphones with their
counterfeit. Only 3% of our participants could log into a
smartphone with their counterfeits in the second run. So,
most successful cases were registering their counterfeit into
smartphones or achieving a true match in BOZORTH3. Since
we do not expect our participants to use the BOZORTH3 tool
in real life and it is necessary to have authorized access to
register counterfeit into the smartphones, these risks could be
perceived as irrelevant.

Perceived susceptibility: Perception shift was consistent
regarding lower susceptibility after the forgery simulation in
both runs (correspondence). As explained above, participants
could mostly not log in with their counterfeit into a smart-
phone, so they could not ‘‘perceive the risk as very probable’’
[12, p. 6]. However, participants were less susceptible in the
second run than in the first one.

Forgery perception: Regarding forgery perception, par-
ticipants consistently perceived forgery as easier to learn
after the simulation than before (correspondence). However,
in the second run, participants expected forgery to be as
hard to perform before as after the simulation and expected
competent attackers to be able to do forgery regardless of
the simulation (difference). Since we simplified the process
in several areas the current form of the simulation reflected
participants’ expectations.

Also, there were struggles with size estimation in the pre-
vious run [12], resulting in possible issues related to improper
size scaling. Since seminar tutors explained the issue of size
estimation to the participants, this might have resulted in
different expectations and consequent perceptions based on
the accuracy of the scaling. Most of the participants whose
smartphones detected that the counterfeits were touching
the sensor could be expected to log into smartphones with
their counterfeits when having the correct size. Since there
were no issues with size estimation in the second run, some
participants interpreted their inability to log in with their
counterfeits as they did high-quality ones, but smartphone
fingerprint readers had liveness detection. However, smart-
phones do not detect a ‘‘finger’’ in most cases because of the
type of contact. For example, in the case of capacitive readers,
a conductive material (not silicone-based) is needed. When
using a capacitive ink for a counterfeit, such an artifact would
work on capacitive readers [8], [45].

Since participants saw during the simulation that the
forgery was ineffective for logging into a smartphone, that
could increase their trust in fingerprint security because they
did not consider other threats related to fingerprint authenti-
cation [12].

Forgery evaluation/reflection: Since more participants
achieved true match in BOZORTH3 in the second run, they
were also more satisfied with their counterfeits than in the
first run (shift). However, their satisfaction with counterfeits
was still relatively moderate. Also, participants perceived the
time needed to create counterfeits as shorter in the second run
(shift), which reflects that the simulation was shortened from
two seminars to one even though the participants knew about

this change. However, the effort was perceived as similar in
both runs (correspondence). That could be since participants
still had to do all the steps needed to complete the forgery
process, so even though it was easier to perform, the effort
required to conduct it was still relatively low.

VI. CONCLUSIONS
We demonstrated the feasibility of fingerprint spoofing: a
hands-on fingerprint forgery simulation from a finger-photo
could be performed within two hours by inexperienced im-
postors without any professional equipment. To show how
real is the risk of such spoofing, we investigated a success rate
(1) for computer processing in NBIS tools (a true match) and
(2) on smartphones (login with counterfeit and counterfeit
registration as a new ‘‘finger’’). In contrast to the first run,
we achieved a higher success rate in both scenarios: (1) more
participants achieved true match on a computer (19% →
76%), and (2) more participants were able to login with their
counterfeit into a smartphone (0.5%→ 3%). However, fewer
participants were able to register their counterfeit into a smart-
phone (26% → 11%), and nearly half of the smartphones
did not recognize that not a finger but a counterfeit was
touching the sensor. This points out the inability of current
smartphone fingerprint readers to recognize counterfeit items
from a human finger. Since a few inexperienced impostors
could create a first-ever-made counterfeit from a finger-photo
from a standard camera that unlocked a smartphone, the risk
is real (mostly to the optical scanners when using glue or
silicone for a cast), but currently not high-risk level.
Quality plays an important role during the forgery process

– from the quality of a finger-photo to the quality of scans of
genuine fingers and counterfeits. We demonstrated that it is
possible to achieve sufficient quality counterfeits. Since some
information is lost during the forgery process (when taking
a finger-photo, papillary line extraction, and printing on the
foil), the most effective combination regarding match score is
a high-quality counterfeit enhanced scan and a little bit lower-
quality genuine finger-enhanced scan.
Regarding the perceptions, participants reported an inten-

tion to use fingerprint authentication less often for banking-
related operations, regardless of their achievements in fin-
gerprint reader fooling. However, we identified mixed results
regarding the perception of fingerprint authentication security
before and after the forgery simulation. We leave the investi-
gation of this for future work.
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