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Abstract
In this work we show how it is possible to derive a new set of nudging equations, a tool still used in many data assimilation 
problems, starting from statistical physics considerations and availing ourselves of stochastic parameterizations that take into 
account unresolved interactions. The fluctuations used are thought of as Gaussian white noise with zero mean. The derivation 
is based on the conditioned Langevin dynamics technique. Exploiting the relation between the Fokker–Planck and the Lan-
gevin equations, the nudging equations are derived for a maximally observed system that converges towards the observations 
in finite time. The new nudging term found is the analog of the so called quantum potential of the Bohmian mechanics. In 
order to make the new nudging equations feasible for practical computations, two approximations are developed and used 
as bases from which extending this tool to non-perfectly observed systems. By means of a physical framework, in the zero 
noise limit, all the physical nudging parameters are fixed by the model under study and there is no need to tune other free 
ad-hoc variables. The limit of zero noise shows that also for the classical nudging equations it is necessary to use dynamical 
information to correct the typical relaxation term. A comparison of these approximations with a 3DVar scheme, that use a 
conjugate gradient minimization, is then shown in a series of four twin experiments that exploit low order chaotic models.
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1 Introduction

Nudging, or Newtonian relaxation, (Hoke and Anthes 1976; 
Kistler 1974) is an empirical technique that consists in add-
ing to the prognostic equations a term that nudges the solu-
tion towards the observations (Kalnay 2002). It is a widely 
used method for data assimilation to avoid more complex 
schemes since it is easy to implement and computationally 
more efficient than variational and ensemble methods (Asch 
et al. 2016).

The model equations, discretized in space, can be written 
in the form of a multi-dimensional dynamical system

(1)

{
d�(t)

dt
= −

1

2
� (�(t)), t ∈ [0, tf ],

�(0) = �0,

with the state vector and the model dynamics, � and � ∈ ℝ
n , 

respectively. Here we consider an arbitrary constant factor 
−1∕2 on the right hand side of (1) in order to simplify the 
results that will follow in the next section. When observa-
tions are available at a discrete time, say e.g. at t = tf  , the 
nudging equation can be written as

where �(tf ) ∈ ℝ
d are the observations, H  is the operator 

that transforms the state vector in the observational space, 
�(tf − t) is the Dirac delta function, and � ∈ �

n×d is the 
nudging, or gain, matrix. In practical application, where the 
observations are discrete in time and space, the delta func-
tion in (2) is neglected and the the same observations are 
used for longer time intervals and they can also be interpo-
lated in space.

It is important to remark that the simplicity of the nudg-
ing method brings advantages and drawbacks. As a coun-
terpart of the ease of implementation, the nudging method 
gives suboptimal results, in the sense that it does not satisfy 
any minimum error criterion. The Kalman gain matrix, for 
example, is chosen in order to minimize the a posteriori error 

(2)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

d�(t)

dt
= −

1

2
� (�(t)) +�(�(tf ) −H[�(t)])�(tf − t), t ∈ [0, tf ]

�(0) = �0
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covariance, assuming that the analysis can be written as a 
linear weighted sum of a background field and observations. 
This pure statistical viewpoint can be perfectly reproduced 
also in the 3DVar framework (Asch et al. 2016). Neverthe-
less, in many applications where the temporal and/or spatial 
homogeneity of the nudged dataset is a primary concern, 
e.g. initialization of long-term prediction systems, multi-
decadal reanalyses, nudging may provide more consistent 
trajectories with respect to sequential schemes. Compared 
to variational methods, nudging does not require any adjoint 
model computation, notably simplifying the computational 
scheme, compared to the Kalman filter it does not require 
any complex computation of covariance matrices.

The implementation of the nudging consists in, essen-
tially, coding the observation operator, as for variational 
and Kalman schemes, slightly modifying the model equa-
tions to incorporate the relaxation term, and tuning the � 
matrix, which can be chosen diagonal or even scalar. The 
gain matrix, that can also depend on the state variable, con-
tains information about the relaxation time scales for the 
components of the state vector. There are several ways to 
choose the gain matrix, its tuning could be automated and 
optimized, however the ease of implementation would be 
lost. Usually its coefficients are determined via numerical 
experimentation so that the nudging term is kept small with 
respect to the model equations, but large enough to force the 
model towards the observations (Hoke and Anthes 1976; 
Stauffer and Seaman 1990). If � is very small, then � would 
solve only the model equations (1) without nudging the 
observations. If � is too large then H[�(t)] remains close to 
�(tf ) , but the dynamics of the model would be neglected. The 
gain matrix can be chosen to be diagonal and the relaxation 
time scales can be statistically estimated by means of the 
correlation time scales of the variables studied. The differ-
ence between (2) and the Kalman filter lies in the choice of 
� . If this matrix is chosen to be equal to the Kalman gain 
matrix the solution for (2) is optimal for linear and Gaussian 
model, but its implementation would be more time consum-
ing. Then, the gain matrix can be seen as a simplified version 
of the Kalman filter gain matrix.

The parameters of � , can also be explored by means of 
optimal parameters estimation (Zou et al. 1992; Stauffer and 
Bao 1993). An iterative variant of the nudging equations 
is the Back and Forth Nudging (BFN; Auroux and Blum 
2005, 2008). In the BFN algorithm, the model is integrated 
repeatedly forwards and backwards by means of the relaxa-
tion terms, which change their sign in the direct and inverse 
integration to stabilize the algorithm. The BFN has some 
common features with the 4DVar algorithm (Le Dimet and 
Talagrand 1986) which also consists of a series of forwards 
and backwards integrations using the adjoint of the model. 
The comparison between the Kalman filter (Kalman 1960) 
and the optimal nudging has been studied by Vidard et al. 

(2003). It is important to mention that the nudging method 
has been known since the 1960s in the context of automatic 
control theory, in the linear case, where it is called Luen-
berger observer (Luenberger 1964) or asymptotic observer. 
In fact, under some hypotheses, it is possible to show that the 
error between the true model state and the nudging equation 
solution tends to zero when t goes to infinity. Auroux and 
Blum (2005) proved, in a very elementary case, the conver-
gence in finite time of the iterative BFN algorithm.

Due to the wide use of the nudging technique in the geo-
physical sciences it is legitimate to ask: 

 (i) Is there a physical framework that allows for the 
theoretical derivation of the nudging equations ?

 (ii) What happens if for example unresolved processes, 
uncertain model parameters, boundary conditions, 
are explicitly taken into account in (1) by means of 
stochastic parameterizations? Can these fluctuations 
be used in order to determine the classical nudging 
equations in the zero-noise limit? 

 (iii) Why, in the nudging system, can we assume that the 
adjustment of the state vector is correct just because 
we force the system towards the observations? In 
order to simulate a realistic adjustment through the 
observations, when we add a new forcing term into 
the equations, like a relaxation, we could also need 
to modify the model operator � adding other correc-
tions.

 (iv) Is there a formulation that allows for the convergence 
in finite time to the true evolution?

The purpose of this work is to answer these questions.
Question (ii) automatically leads to the choice of a sta-

tistical physics framework as a candidate answer for (i). For 
this reason the equations derived could be thought as the 
physical nudging system of equations. Indeed, in this context 
we derive a modified version of the nudging equation, also 
answering to (iii), and then we explore the limit for negligi-
ble noise to recover the deterministic model limit, that can 
be thought as the limit for which there are not unresolved 
scales interactions. Stochastic parameterization is commonly 
used in geophysical dynamics for example in turbulent clo-
sure problems (Farrell and Ioannou 2007), for large eddy 
simulation of geophysical flow (Duan and Nadiga 2007), or 
to explain zonostrophic instability (Srinivasan and Young 
2012). In the limit of zero-noise then we can also gain 
insight on the classical nudging equations. The procedure 
we present is also called conditioned Langevin dynamics 
(Delarue et al. 2017) and it is used as a method to generate 
conditioned Brownian paths. It makes use of the relation 
between the Langevin and Fokker–Planck equations, the lat-
ter playing the role of a bridge equation that connects the 
probability space with the model space, and it exploits the 
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path integral formalism for the probability density function 
to express the final bridge equation in a simpler manner. 
For our purposes, we extend the formalism to multidimen-
sional spaces subjected to general forcing terms not nec-
essarily derived from a potential function. For the use of 
path integral and Fokker–Planck equation in the context of 
climate dynamics or data assimilation we refer to for exam-
ple Navarra et al. (2013a, b) and Abarbanel et al. (2017). 
The general system of equations found, by construction, 
converges in finite time through the observations, partially 
answering to (iv). In fact the observations bring errors due 
to the measurement process, so the final state of the evolu-
tion of the system we find may differ from the truth up to the 
observational errors.

However, solving the derived nudging equation would 
imply the knowledge of a probability density function that 
could be computed by means of a Kolmogorov backward 
equation, or directly by the evaluation of a path integral. The 
computation of such a function in an operational system, 
with many degrees of freedom, is basically impossible. In 
order to make the computation feasible we perform a small 
time approximation of the probability density function that 
allows for an easier analytical evaluation of the path integral 
emerging from the computation. The effect of neglecting 
the dynamical part in the path integral evaluation is also 
considered.

An important consequence of this derivation is that in the 
final system of equations all the physical nudging param-
eters, when noise tends to zero, are fixed by the model and 
there are not free physical parameters that must be tuned 
such as the choice of the correct relaxation time scales. 
Clearly, all the other technical parameters regarding for 
example the discretization of the equation studied, the evo-
lution algorithm adopted, the number of the observations 
used, still remain.

It is important to point out that the conditioned Langevin 
dynamics have been used over the past decade in order to 
derive a linear theory for filtering with model error from 
unresolved scales. In particular Harlim (2017) provides an 
in-depth discussion of the subject. An elegant way to formu-
late the problem makes use of the Mori–Zwanzig formalism 
(Zwanzig 1961; Mori 1965; Zwanzig 1973). In this framework 
a system of differential equations, involving variables repre-
senting different scales processes, can be rewritten in a closed 
form known as Generalized Langevin Equation (GLE) involv-
ing only the coarse grained variables. The resulting equation 
requires a terms resulting from the projection of the dynam-
ics onto a function of the coarse grained variables only. The 
projection is not-unique in general. It also appears a memory 
terms in the form of an integral that represents the feedback 

from unresolved scales. This memory terms can be seen as 
a sort of nudging component also if the information of the 
observations in this case is not explicitly required. Finally, 
the last term in the GLE describes the orthogonal dynamics, 
introduced as noise that depends on the randomness of the 
initial conditions of the unresolved scales. In our derivation 
we assume that the unresolved scales interactions and feedback 
can be directly parameterized with small noise. In this way we 
can avoid the non unique projection procedure, and a possible 
lack of information, about neglecting the explicit feedback 
information of unresolved scales dynamics, can be mitigated 
by means of the observations information propagated back-
wards in time thanks to a new forcing term that constrains the 
dynamics. Then, since the dynamics is explicitly constrained 
by the observations, the new nudging term does not take only 
into account unresolved scale interactions, but also other pos-
sible missing interaction in the coarse grained space due to 
an excessive model simplification. In the zero-noise limit, 
that should be interpreted as the limit in which all the scales 
interactions are resolved, the memory term for the unresolved 
scales interactions does not represent a problem anyway.

It is worth remarking that the set of equations we explore 
are derived for a maximally observed system, i.e. a perfect sys-
tem, in which we can observe all the components. We propose 
a possible way to extend the new sets of approximated physi-
cal nudging equations to the study of non-perfect systems, for 
which the components are only partially observed. Numeri-
cal comparisons between these approximations and a 3DVar 
data assimilation scheme are performed using low order mod-
els, the Lorenz system (Lorenz 1963, hereafter L63) and the 
Molteni system (Molteni et al. 1993, hereafter M93). The L63 
system, being a simplification of the convection model, shows 
important characteristics that also impact the atmosphere. The 
M93 system can be seen as a simplification of the coupled 
ocean-atmosphere model. Although simplistic, this model has 
allowed to address in physical terms important issues related 
to predictability (Palmer 1993).

In Sect. 2, we present the statistical framework for the 
derivation of the physical nudging system of equations and 
we consider the zero-noise limit. We explore the analytical 
approximations of the path integral involved in the defini-
tion of the equations and propose how to extend the use 
of these equations to non-perfect systems. Furthermore we 
consider the reduction to the zero noise limit, the determin-
istic scheme. Section 3 is devoted to the application of the 
approximated physical nudging equations to simple dynami-
cal systems relevant for the geoscience, the L63 nd M93 
models. Finally the discussions and conclusions are given 
in Sect. 4.



1462 G. Conti et al.

1 3

2  Fokker–Planck bridge and nudging 
equations

In order to address the issue (ii), we start by considering 
the following stochastic system of first order in time dif-
ferential equations, Langevin equations, here given in terms 
of components

where ẋ = dx

dt
 , �(t) is a trajectory in ℝn , f i(�) a differentiable 

function of � , � ∈ ℝ
m is a set of rapidly fluctuating stochastic 

terms to which we will refer as noise, and �a are column 
vectors that belong to a matrix � ∈ ℝ

n×m . The Einstein sum-
mation over repeated lower and upper indices is implied, 
with the first letters of the alphabet, a, b,… indicating indi-
ces corresponding to Euclidean metric and letters i, j,… to 
represent tensor indices. In particular, we specialize on 
Gaussian white noise, that is

with �ab the Kronecker delta, Ω the noise correlation 
strength, and ⟨⟩� denotes the average over the noise. We also 
assume for the moment that every component of the system 
is observed, and since it is easier to work in the model space 
using the following tools, we set H−1[�(tf )] = �f  , where �f  
then represents the final state vector at time tf  and is entirely 
observed. The initial state vector is �(0) = �0 . Hereafter, to 
simplify the computation, we will consider the diffusion 
matrix � as constant, that is independent from the state vec-
tor �(t) , in the time interval investigated. In this way the Ito 
and Stratonovich interpretations of the stochastic equation 
(3) coincide (Jazwinski 1970; Gardiner 1985).

A Langevin equation implies a partial differential equa-
tion (e.g. Risken and Haken 1989; Zinn-Justin 2002; Navarra 
et al. 2013a, b), for the time-dependent distribution P(�, t) . 
This function represents the probability function for a par-
ticle to be at point � at time t starting from �0 at time t = 0 . 
This equation for the probability distribution is known by 
several names, Kolmogorov Forward Equation, Smolu-
chowsky Equation, and Fokker–Planck equation ( Gardiner 
1985, for more details). Without assessing the merit of this 
terminology, we will refer to this equation in the rest of the 
manuscript with the term Fokker–Planck equation.

Introducing the positive symmetric matrix Gij , that can be 
seen as a metric tensor, and its inverse determinant so that

and set the inverse metric tensor Gij such that

(3)ẋi(t) = −
1

2
f i(�(t)) + ei

a
(�(t))𝜈a(t), t ∈ [0, tf ],

(4)⟨�a(t)⟩� = 0 and ⟨�a(t)�b(t�)⟩� = Ω �ab �(t� − t),

Gij = ei
a
ej
a
,

g = 1∕ det(Gij),

the evolution equation for the probability is then

This equation must be completed with the following initial 
condition

since we assume that the initial state vector is in �0 at t = 0 . 
The probability function P must be intended as a conditioned 
probability density, that is P(�, t) = P(�, t|�0, 0) . Then, the 
probability P(�, t) to find the system in � at time t ∈ [0, tf ] , 
over all possible paths starting in �0 at time t = 0 and con-
ditioned to end at a given, observed, state vector �f  at time 
tf  , is nothing more than the product between two probability 
functions opportunely normalized. Setting

leads to

in other words, P is the product between the probability to 
go to � at time t starting in �0 at time t = 0 by the probability 
for the system to end in �f  at time tf  , conditioned to start at 
� at time t. We need to find an evolution equation for P , 
and to do this, at first we introduce the evolution for Q, also 
called adjoint equation, or Kolmogorov backward equation 
(Jazwinski 1970; Risken and Haken 1989)

that is the formal adjoint of a forward equation. Equation (8) 
must be completed with

From Eqs. (5) and (8) we can derive an evolution equation 
satisfied by the conditional probability P(�, t),

The latter equation plays the role of a bridge between the 
space of probability functions and the configuration space 

GijGjk = �i
k
,

(5)
�P(�, t)

�t
=

1

2

�

�xi

[
ΩGij �P(�, t)

�xj
+ f i(�)P(�, t)

]
.

(6)P(�, 0) = �(� − �0),

P(�, t) = P(�, t|�0, 0)
Q(�, t) = P(�f , tf |�, t),

(7)P(�, t) =
Q(�, t)P(�, t)

P(�f , tf |�0, 0)
,

(8)�Q(�, t)

�t
=

−ΩGij

2

�2Q(�, t)

�xi�xj
+ f i(�)

�Q(�, t)

�xi
,

(9)Q(�, tf ) = �(� − �f ).

(10)

�P(�, t)

�t
=
1

2

�

�xi

[
ΩGij �P(�, t)

�xj

+

(
f i(�) − 2ΩGij � logQ(�, t)

�xj

)
P(�, t)

]
.
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spanned by paths that satisfy the following set of Langevin 
equations

The system above is nothing more than the system represent-
ing the nudging equation when unresolved scales interac-
tions are taken into account by means of additive stochastic 
parameterizations. Note that the original system is modified 
by the presence of an additional force. This new forcing is 
the analog of the so called quantum potential of the Bohmian 
mechanics, see for example (Benseny et al. 2016; Stauffer 
and Seaman 1990). It plays the role of transporting the infor-
mation of the observations backwards in time constraining 
the solution of the dynamical system to converge to the 
observations in finite time. Although the observations are 
retrieved at discrete time, they influence the trajectory of the 
model also at previous time. This feature makes the physical 
nudging more similar to smoothers algorithms than filters.

Since we are treating a stochastic system, to properly 
simulate the true trajectory we have to employ an ensemble 
of simulations. We are interested not only in the final state, 
the observed state that is known here, but also in the rest of 
the trajectory between the observations. We can start with an 
ensemble of initial conditions, obtained by means of a Gauss-
ian perturbation of the observed system, and consider the aver-
aged trajectory evolution as a closer approximation of the true 
trajectory. The Gaussian perturbation, after every observation 
convergence, can be seen as a sort of the inflation used in 
the algorithms for the Ensemble Kalman Filters (Anderson 
and Anderson 1999) to prevent the collapsing of the ensemble 
spread.

In order to derive a more familiar form for the nudging 
equations system, and possibly to reduce Eq. (11) to the usual 
form in the limit of negligible noise, we need to explicitly 
introduce a solution for the conditional probability Q. This 
procedure is also necessary in order to approach realistic mod-
els with several degrees of freedoms. The computations of Q 
could be difficult, if not impossible, making (11) a purely for-
mal system of equations. The analytical investigation of Q can 
be done by means of the path integral formalism, that is with 
an integral over all the possible configurations of a system, but 
in our case, with fixed initial and final conditions.

The conditional probability Q can be formally written as 
(Zinn-Justin 2002)

with

(11)ẋi(t) = −
1

2
f i(�(t)) + ΩGij 𝜕 logQ(�(t), t)

𝜕xj
+ ei

a
𝜈a(t).

(12)
Q(�, t) =P(�f , tf |�, t) = ∫

�(tf )=�f

�(t)=�

[
d�(�)g1∕2

]

exp(−S[�]∕Ω),

and 
[
d�(�)g1∕2

]
 an opportunely normalized functional 

measure of the path integral so that we can interpret (12) 
as the ratio between all the possible s-steps paths with 
fixed initial and final points, � and �f  , and the s-steps 
paths that originate in � . Here s indicates the discretiza-
tion with which we have to interpret the functional meas-
ure, 

[
d�(�)g1∕2

]
= g1∕2 d�1 … �s−1N  , with N  the right 

normalization as described above. The solution of the path 
integral (12) is only formal, it is difficult to find a solution 
of the multidimensional integral due to the presence of the 
usually non-linear force f in Eq. (13). Introducing the free 
Lagrangian function

and the so called interacting Lagrangian

we can define P0 , the probability distributions for the free 
particle, as

This probability does not depend on Lint and then on the 
dynamical forcing � . Note that if we use Q0 in (11) instead 
of the whole Q we obtain

that has the same form of (2). To obtain (17) all the informa-
tion deriving from the interaction Lagrangian Lint has been 
totally neglected. Other terms correcting the Gaussian shape 
of the Q0 distribution must be taken into account.

It is interesting to note that in (12) all the information 
coming from the observations is hidden in the bound-
ary term of the path integral. In this physical derivation 
a term in the action that weights the innovations does 

(13)
S[�] =

1

2 ∫
tf

t

d𝜏
[(

ẋi +
1

2
f i(�)

)
Gij

(
ẋj +

1

2
f j(�)

)

−
1

2
Ω

𝜕f i(�)

𝜕xi

]
,

(14)Lfree(�) = ẋiGijẋ
j,

(15)Lint(�) = ẋiGijf
j(�) +

1

4
f i(�)Gijf

j(�) −
1

2
Ω

𝜕f i(�)

𝜕xi
,

(16)

Q0(�, t) = P0(�f , tf |�, t)

= ∫
�(tf )=�f

�(t)=�

[
d�(𝜏)g1∕2

]

exp

(
−

1

2Ω ∫
tf

t

d𝜏Lfree

)
,

=
1

g1∕2
[
2𝜋Ω(tf − t)

]n∕2

exp

[
−

1

2Ω(tf − t)
(�f − �)⊤�−1(�f − �)

]
.

(17)ẋi(t) = −
1

2
f i(�(t)) +

xi
f
− xi

tf − t
+ ei

a
𝜈a(t),
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not appear, similarly to the one used in the variational 
schemes and derived by pure statistical, although reason-
able, assumptions.

Note that the relaxation term in (17) diverges in time as 
1∕

√
t as the derivative of a Wiener process. Since we inter-

pret the stochastic equation above by means of the frame-
work by Ito or Stratonovich for the stochastic differential 
equation, this divergence does not generate any problem.

2.1  The small time approximation

If � is linear, or if the evolution window is small enough 
to allow a linear approximation of the dynamics, the path 
integral (12) is still Gaussian and an attempt to solve it can 
be done. However, the evaluation of the determinants ris-
ing from the computation is not always feasible for practi-
cal/operational purposes. If the linear approximation of the 
dynamics is not valid and the non-linear terms can not be 
absorbed in the noise forcing, the computation of the path 
integral is also more difficult.

In order to exploit the information contained in (15) 
avoiding difficult, if not impossible, computation of deter-
minant of large matrices, or Monte Carlo integrations in 
space with billions of dimensions, we need a compromise, 
an approximation that makes the computation suitable for a 
possible operational use.

An attempt to find an approximated analytical solution for 
Q(�, t) can still be done considering a small (tf − t) evolution. 
In fact, in this case the solution of (8) will still be sharply 
peaked and we could drop the time dependence from the 
drift term. Then, for a small time evolution we are reduced 
to solving

subject to the initial (final) condition Q(�, t) = �(� − �f ) . This 
backwards equation for Q(�, t) = P(�f , tf |�, t) is related to a 
correspondent forward equation, for P(�f , tf ) = P(�f , tf |�, t) 
that can be written as

where for the same reason explained above we have 
neglected the derivatives of the drift term, being small com-
pared to the derivatives of the sharply peaked distribution. 
The solutions for the two equations (18) and (19) are related 
(Risken and Haken 1989), and we can get one solution from 
the other one just interchanging the set of variables consid-
ered � , or �f  . In particular we have

(18)�Q(�, t)

�t
=

−GijΩ

2

�2Q(�, t)

�xi�xj
+

f i(�f )

2

�Q(�, t)

�xi
,

(19)
�P(�f , tf )

�tf
=

GijΩ

2

�2P(�f , tf )

�xi
f
�x

j

f

+
f i(�f )

2

�P(�f , tf )

�xi
f

This solution is a Gaussian with a covariance matrix given 
by �Ω(tf − t) and a mean given by �f − �(�f )(tf − t)∕2 . We 
have the picture of the system moving with a systematic 
drift, whose velocity is −�(�f )∕2 , on which a Gaussian 
fluctuation is superimposed (Gardiner 1985). By using this 
result in (11) we obtain another correction to the nudging 
equations system, that is

The new constant term introduces a systematic drift, depend-
ent on the dynamics, that helps the system adjustment 
towards the observations. The new constant terms can be 
seen as the answer to (iii), so along with the relaxation terms 
other corrections must be taken into account. Clearly (21) 
is just an approximation of (11), and we can not expect that 
in finite time the solution of the model converges exactly 
towards the observations. Note that, although the physical 
nudging has to be considered an ensemble method, no huge 
covariance matrices must be computed. What is required 
is the evolution of N members with the additional terms in 
(21).

In reality we have access only to portions of the system, 
that is we can measure only a limited amount of compo-
nents of the whole state vector. The presented formulation 
is strictly derived only for a perfect system. The constant 
term f i(�f )∕2 , that adjusts the relaxation of the i compo-
nent of the state vector in (21), depends on the whole state 
vector at time tf  , that must be interpreted as the time for 
which we have the observations of the system. In order to 
extend the formulation we have presented to non-perfect 
systems, we need to introduce another assumption.

It is reasonable to think that if only p out of n compo-
nents, xi with i = 1,… , p , are observed, but the variability 
of the system is slow enough, we can attempt, at a first 
guess, to approximate the non observed n − p components 
with their mean values computed on the last assimilation 
window, that is x̄j with j = p + 1,… , n . Defining a new 
state vector computed at the observational time as 
�̃f = (x1

f
,… , x

p

f
, x̄p+1,… , x̄n) and introducing the further 

assumption that

(20)

Q(�, t) =
1

g1∕2
[
2𝜋Ω(tf − t)

]n∕2

exp

[
−

1

2Ω(tf − t)

(
� − �f +

1

2
� (�f )(tf − t)

)⊤

�−1

(
� − �f +

1

2
� (�f )(tf − t)

)]
.

(21)ẋi(t) = −
f i(�(t))

2
+

xi
f
− xi

tf − t
−

f i(�f )

2
+ ei

a
𝜈a(t).

(22)�f ≈ �̃f and � (�f ) ≈ �(�̃f )
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we can still directly drive the p observed components, and 
indirectly the remaining n − p components, with the approxi-
mated nudging equation, adding the guessed nudging terms 
only on the observed components. The slow variability can 
be obtained reducing the time interval between assimila-
tions, if the frequencies of the observations permit it. This 
procedure, that exploits the average information for each 
component computed during the last forecast evolution, can 
be thought as a background regularization, similarly to the 
one used, for example, in the usual variational methods.

2.2  A note on the zero‑noise limit 
and the observational error treatment

In the zero-noise limit we consider Ω → 0 and we can 
neglect the noise appearing in Eq. (21). Nevertheless, part 
of the new forcing term still remains, and a clear reduction 
to the usual empirical system is not possible. It is interest-
ing to remark that the remaining relaxation term in (17) and 
(21) diverges in time as 1∕

√
t , and the deterministic version 

of the equation is then only formal. In order to give some 
meaning to this approximation we need to consider again the 
discretized version of the equation as in the pure stochastic 
context. Note also that since the fluctuations appearing in 
(17) and (21) are Gaussian with zero mean (4), the average 
of the ensemble evolution for these systems of perturbed 
equations gives the same results of the zero-noise limit con-
sidered above. To study a deterministic model, or if you 
prefer a model where the dynamics of the unresolved scales 
can be neglected, there is no need for an ensemble of simu-
lations and the computational cost of the schemes can be 
largely reduced.

In reality the observations possesses an uncertainty. An 
extension to the observational error treatment is however, 
at least formally, straightforward. In fact, if we assume that 
the observations are distributed according to the distribution 
O(�, �f , �) at time tf  , where � are parameters of the distribu-
tion, the final condition for the Kolmogorov backward equa-
tion is no longer a delta function centered on �f  , but

If we indicate the fundamental solution (20) with 
Qd(�f , tf |�, t) , the new solution is then

Using this expression, we could recover a nudging equation 
for a small time that also exploits the observational error. 
Although the procedure is simple, unless we manage par-
ticular situations, in which for example the dynamic is linear 
� (�) = �� with � symmetric and O Gaussian, (24) can not 
be easily solved.

(23)Q(�, tf ) = O(�, �f , �).

(24)Q(�, t) = ∫ O(�, �f , �)Qd(�, tf |�, t) d�.

3  Twin experiments with low dimensional 
models

3.1  Experiments with the L63 model

In the following we explore the quality of the physical 
nudging approximations derived in the previous sections by 
means of a well known low dimensional L63 model

which exhibits chaotic behavior when, for example, � = 10 , 
� = 28 and � = 8∕3 . This system represents a simplifica-
tion for the convection in atmosphere, and due to its chaotic 
behavior there is lack of predictability.

For our purpose, to test the GN/PN approximations, 
the system is augmented with a stochastic forcing. For 
simplicity let us consider � = � , where � is the identity 
matrix, and then also � = � . The stochastic system can 
then be written simply adding a fast fluctuating term, the 
noise �(t) satisfying Eq. (4), to the three components of 
the system (25).

This relatively simple model enables us to compare the 
approximated physical nudging (hereinafter, PN) (21) with 
the physical nudging approximation that does not consider 
the dynamical correction but only the gaussian terms of 
the free Lagrangian (hereinafter, GN) (17), with the deter-
ministic physical nudging (hereinafter, PND), that is Eq. 
(21) in the limit of zero noise, and finally with a robust 
and well known data assimilation technique, 3DVar. The 
aim of this section is not to make a list of the best nudg-
ing methods, that should be done using more realistic 
models, but to understand the behavior of the physical 
nudging approximations under different situations, such 
as, for example, the partial knowledge of the components 
of the system at fixed times. We propose three different 
experiments.

In the first experiment, E1 , we consider a maximally 
observed system, that is at the analysis times we observe 
all the components of the system. In the second experi-
ment E2 , we take into account only partial information 
about the observed system components at analysis time, 
that is we observe only two components of the system, 
in particular y and z. The first component, x, is not con-
strained by the observations, but it is constrained directly 
by y that appears in the first equation (25), and indirectly 
by z that does not appear in the first equation if not only 
through y. Finally we consider the worst case, the mini-
mally observed system, E3 , in contrast with E1 . In this last 
experiment we study the behavior of the system observing 
only the z component. This means that the y component is 

(25)

ẋ(t) = 𝜎(y(t) − x(t))

ẏ(t) = x(t)(𝜌 − z(t)) − y(t)

ż(t) = x(t)y(t) − 𝛽z(t),
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constrained directly by the presence of z into the second 
equation, although there are not direct observation for this 
second component, and the x component is constrained 
only indirectly by the observations. Experiments E2 and E3 
allow to test the regularization introduced in order to man-
age non-maximally observed systems. The experiments 
differ in the number of the observed components, but the 
rest of the configuration is kept fixed, including the obser-
vations. In particular, we use a simple Euler-Maruyama 
scheme for the evolution of the stochastic ensemble of 
the PN and GN procedure, and a forward Euler scheme to 
evolve the true solution and the PND and 3DVar trajecto-
ries. For the stochastic evolutions, we fix Ω = 4 ⋅ 10−1 and 
we make use of Nens = 50 ensemble members. The time 
step is dt = 2.5 ⋅ 10−3 and the analysis window length is 
ΔtA = 6 ⋅ 10−2 . We explore NA = 100 assimilation cycles 
and a forecast of the same duration after the last assimila-
tion. Starting from an initial condition inside the strange 
attractor of the system, we evolve the dynamical system 
(25) in order to find the true solution around which we 
measure the quality of the different assimilation proce-
dures. The observations are created perturbing, every 
ΔtA time interval, the true solution by means of Gauss-
ian noise with standard deviation � = 2 , the same order 
of magnitude used also in (Lei and Bickel 2011; Tandeo 
et al. 2015; Goodliff et al. 2015). After each assimilation 
cycle the PN and GN ensemble are recreated perturbing 
the mean of the ensemble analysis using a standard devia-
tion �inf = 2 ⋅ 10−1 . This parameter acts as a sort of infla-
tion that restores the ensemble collapsed near to the last 
assimilated observations. This process helps to explore the 
possible true trajectory of the system better. The covari-
ance matrix � , proper of the 3DVar scheme, is computed 
directly from the covariances between the system compo-
nents after a long evolution run inside the strange attractor, 
and is kept fixed for all the experiments. The observations 
error covariance matrix is � = �2 ⋅ � . We use a conjugate 
gradient method for the minimization of the 3DVar cost 
function. The initial conditions for the single trajectory of 
3DVar and PND are computed as the mean of the initial 
conditions for the ensemble of PN/GN.

Since we are performing Observing System Simulation 
Esperiments (OSSEs) we know the true trajectory of the 
system. For each experiment we compute, for every time 
step, the squared root of the quadratic distance between the 

analysis trajectory of 3DVar/PND, or the mean of the analy-
sis trajectories for PN/GN, and the true trajectory. The error 
is computed for each component separately and also as an 
aggregate quantity, that is as the squared root of the mean 
of the variances between the components and the truth. This 
approach allows us to compare the quality of the analysis 
between experiments with a variable number of observed 
components. A summary of the experiments is depicted in 
table 1 where we also show the ratio between the root mean 
square error (rmse) computed for the PND scheme and the 
rmse of the 3DVar method. The bold numbers in the table 
underline where PND performs better that 3DVar. The ratio 
between the rmse of the PN method and 3DVar is not shown 
because it gives the same results up to two digits. The rmse 
is computed for the single components and as an aggregate 
quantity as described above. For the experiment E1 we also 
explore the effect of the ensemble size, the impact of the 
noise correlation strength Ω and the residuals at the assimila-
tion time, that is the square of the quadratic distance between 
analysis and observations.

3.2  E
1

In the first experiment, all the explored assimilation methods 
behave similarly in terms of the ability to give a reliable long 
forecast close to the true trajectory (Fig. 1a). However, if we 
give a closer look at the evolution during the assimilation 
period, for example zooming as in Fig. 1b in the time win-
dow t = [3.6, 4] , the differences can be noticed more clearly. 
The GN approximation, that does not use the dynamical term 
that brings backwards the information related to the observa-
tions, generates big jumps in the evolution at the assimila-
tion time. This seesaw, although reduced, is present also 
for 3DVar. It is enough to add the constant dynamical term 
depending on the observed state to correct this bad behavior. 
In fact, the mean trajectory given by the PN approximation 
gives much smoother results compared to the ones obtained 
with the 3DVar. The deterministic version, PND, gives a 
trajectory that is almost overlapped to the mean trajectory 
of the PN methods that remain hidden in the first panel of 
Fig. 1. Although the full Eq. (11) is approximated using only 
the linear term in the small time expansion, the results of 
the assimilation are interesting. Figure 1c shows the behav-
iour in time of the error between the true trajectory and the 

Table 1  Summary of the 
experiments’ configuration and 
results

Exp. Observations rmse PND / rmse 3DVar

x y z x y z tot.

E
1

✓ ✓ ✓ 1.22 0.94 0.93 1.00

E
2

– ✓ ✓ 0.62 0.87 0.91 0.82

E
3

– – ✓ – – – –
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different analysis trajectories at every time step for the single 
system components. In particular for this experiment, as also 
highlighted in Table 1, PN/PND and 3DVar have comparable 
performance in terms of rmse. Values smaller than one for 
the rmse ratio are found for y and z, indicating that for these 
two components the PN/PND schemes give better results 
than 3DVar. Nevertheless it is important to remind that this 
is a maximally observed system. Note that the error axis in 
Fig. 1c is in logarithmic scales.

The improvements of the PN/PND approximation with 
respect to GN are still more evident looking at the residual, 
computed at the observations times, Fig. 2a. The residuals 
generated by the GN approximation are comparable with 
the one generated by means of 3DVar and they are always 
bigger than the residual derived with the PN/PND schemes. 

For completeness, in order to emphasize the effects of the 
ensemble size and of the noise correlation strength on the 
PN method, we show in Fig. 2b the behaviour of the total 
rmse varying the ensemble size for different Ä values. The 
rmse quickly reach a plateau increasing the number of the 
instances in the ensemble, nevertheless the convergence 
speed and the size of the error depend on the magnitude of 
Ä . The worst result, in terms of rmse, is obtained using only 
one member. It is important to stress that the PN method 
with one member is not equivalent to PND. Indeed, although 
both methods give a single trajectory, the one obtained with 
the PN scheme is affected by noise, that is a non-perfect 
model taken into account.
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Fig. 1  Summary of E
1
 . In panel a it is shown the evolution of the tra-

jectories for the assimilation period and the long forecast run with-
out assimilation. The two time windows are separated by the vertical 
dashed line. The true solution is in black, the observations that are 
present only in the first part of the evolution are depicted as filled cir-
cle, and the red, green, gray, blue lines represent respectively the evo-
lution of the mean trajectory for GN, PN, the deterministic physical 
nudging trajectory and the evolution for the system that uses 3DVar. 

The green and the gray lines are almost overlapped. In panel b there 
is a zoom of the evolution of the z component during t = [3.6, 4] to 
highlight the jumps of the GN method and 3DVar, and the smoother 
trajectories from PN, PND. Finally, in panel c is shown the squared 
root of the quadratic distance between the true trajectory and the tra-
jectories obtained with the different assimilation schemes for every 
single component at every time step
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3.3  E
2

In this experiment only two components, y and z, out 
of three are observed. This means that the x component 
evolves being constrained only indirectly by the observa-
tions through the y component, as highlighted by the first 
equation of the system (25). As shown in Fig. 3 all the 
three methods are able to describe the evolution of the true 
solution during the assimilation period, the first evolution 
window of 6 time units. The x component is also well 
driven, but the trajectory of 3DVar exhibits strong correc-
tions and the path it is not smooth at all. It is interesting to 
note that the PN/PND analysis trajectories are closer to the 
observations at the end of the assimilation window with 
respect to 3DVar. However, since the observations dur-
ing the last assimilation cycle are particularly perturbed, 

the 3DVar analysis, that remains closer to the truth, gives 
a better forecast. The errors, Fig. 3b, at every time step 
show that the performance of the different assimilation 
schemes are still comparable. This is also highlighted by 
means of the rmse ratio appearing in Table 1. For this 
experiment, generally, for all the components, the PN/PND 
schemes work better than 3DVar. This suggests that the 
regularization procedure introduced, based on the slow 
variability assumption, can be used in order to manage 
non-maximally observed systems, extending the usability 
of the developed tool that was strictly derived for maxi-
mally observed system.

3.4  E
3

This experiment represents the extreme case, opposed to E1 , 
in which we have a minimally observed system. In this case 
only the z component is observed. This is the worst case 
we can imagine since the y component is driven indirectly 
by the observations through z, while x is not affected by z. 
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Fig. 2  On the top panel there is a comparison of the squared root 
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While the z component tends to pass towards the observa-
tions, the other two components are poorly constrained, and 
they tend to drift away from the true solution. This implies 
big jumps for the z component, that wants to restore the right 
dynamics, creating the instability that makes the full trajec-
tory of the system diverge from the truth. For some set of 
observations the PN/PND schemes exhibit particular insta-
bilities that sometimes drive the system outside the strange 
attractor region, not shown here. When the assimilation 
is switched off the trajectory still collapses on the strange 
attractors, but the possibility to do a forecast is clearly null. 
Also 3DVar exhibits a clear seesaw in the z trajectory during 
the assimilation period, Fig. 4b. This makes the other two 
components drift away from the true trajectory. For this par-
ticular experiment none of the assimilation schemes used in 
this work is able to perform a correct analysis, and therefore 
neither the regularization procedure can be tested.

3.5  An example with a simplified coupled model 
for “atmosphere” and “ocean”, M93

Using the L63 model we explored the behavior of PN/
PND applied to a low order chaotic dynamical system that 
mimics the main features of the atmosphere. However, the 
climate system is characterized by several different inter-
acting components which dynamics span different time 
and spatial scales. The aim of the following example is 
the investigation of the PN/PND behavior applied to the 
L63 model forced by a system evolving with a different 
temporal scale. Once again these methods are compared 
with the 3DVar scheme. For completeness, in the plots the 
GN is also shown, although its performance is worse than 
the one of the PN/PND schemes.

The low dimensional system under examination has 
been introduced in Molteni et al. (1993). The L63 system 
is coupled with a two dimensional linear set of equations 
in order to simulate the equatorial sea surface tempera-
ture (SST) anomalies influence on the global system. The 
resulting system is the following

where � = 10 , � = 30 , � = 8∕3 , k = 0.1 , Ω = 2�∕20 and w∗ 
will assume three different values for the tests we perform 
as described in the following. While the L63 model does not 
correspond directly to large scale motion there are important 
qualitative similarities with the large scale dynamics of the 
atmosphere. The linear system introduced by Molteni et al. 
(1993) can be seen as a conceptual model for the coupling 
of the tropical SST to the chaotic extratropics. Although it 
may not be straightforward to establish a strict connection 
between variables of the simplified model with the compo-
nents that represent the general circulation of the atmosphere 
and ocean, this simple system of equations allows one to 
address, in physical terms, important questions related to 
the predictability (Palmer 1993), and to investigate the asyn-
chronous coupling of the ocean-atmosphere system (Dubois 
1999).

We explore what happens to PN/PND methods when 
applied only to a L63 system forced by a slower dynami-
cal system in three different configurations. Since w∗ can 
be thought as a representation of the Pacific SST anom-
aly, conceptually, we mimic the effect of a positive SST 
anomaly in the Pacific, El Niño condition with w∗ = 2 , a 
neutral state with w∗ = 0 and finally a negative anomaly, 
La Niña condition with w∗ = −2 . We call these three cases 

(26)

ẋ(t) = 𝜎(y(t) − x(t)) + v(t)

ẏ(t) = x(t)(𝜌 − z(t)) − y(t) + w(t)

ż(t) = x(t)y(t) − 𝛽z(t)

ẇ(t) = 𝛾v(t) − k (w(t) − w ∗) − y(t)

v̇(t) = 𝛾(w(t) − w ∗) − kv(t) − x(t),
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respectively as E+ , E0 and E− . Only the fast components, 
that are x, y, and z, now affected by the forcing due to w 
and v, are observed. This is another way to test the regu-
larization procedure based on the slow variability assump-
tion. Their comparison and results are discussed in the 
experiment E4 in the next section.

The probability density function of the L63 model 
in the x − y plane is represented by a symmetric double 
peaked function. This shape is still maintained coupling 
the L63 system with the two linear equations when w∗ = 0 , 
that is when a neutral configuration is considered. In case 
of positive or negative SST anomalies, that is the case of 
El Niño ( w∗ > 0 ) or La Niña ( w∗ < 0 ) events, the symme-
try is broken and the probability density function becomes 
asymmetric. The oceanic forcing pulls away the trajecto-
ries of the L63 system towards preferred regions of the 
attractor. These changes, modifying the statistics proper 
of the system under study, could have some impact on the 
capabilities of the data assimilation algorithms to make 
the right corrections.

As before for our purpose the system is augmented with 
a stochastic forcing. For simplicity all the components are 
subjected to the same Gaussian white noise with � = � . The 
stochastic system can then be written simply by adding a fast 
fluctuating term, the noise �(t) satisfying Eq. (4), to the five 
components of the system (26). The other parameters used 
for the integration of the trajectories are as in the previous 
experiments.

3.5.1  E
4

In this experiment we compare the performance of PN/PND 
against the 3DVar in three different configuration of the M93 
model, namely E+ , E0 and E− , characterized by different 
values of w∗ . The three configurations differ with the shape 
of the strange attractor generated and then in the probability 
density function characterizing the systems. Despite the fact 
we observe only three components (x, y, z) out of the five that 
describe the complete M93 model, we obtain for all the three 
cases similar results to the ones obtained for E1 , though, 
with interesting differences. Here we are considering only a 
partially observed system, however, all the fast components, 
the L63 components, are observed as in the E1 experiment 

. The similarity with the E1 experiment can be appreciated 
looking at the rmse ratio reported in Table 2. The bold 
numbers in the table underline where PND performs better 
that 3DVar.  As before the x component is generally better 
assimilated with 3DVar. Panel (a) of Figs. 5, 6, 7 shows the 
behaviour in time of the analysis residuals in semilog scale 
for different assimilation methods. At the assimilation time 
the PN/PND schemes bring the analysis trajectories closer 
to the observations than 3DVar. Thanks to the forcing terms 
in the PN/PND schemes, the information of the observations 
propagated backwards in time generally allows smoothers 
and more accurate evolution of the system, see panel (b) 
of Figs. 5, 6, 7 which is a zoom of the z component of the 
system in the time interval [3.6, 4] as before. The “oceanic 
forcing”, generally improves the assimilation of the PN/PND 
schemes with respect to 3DVar, in particular in the case of 
La Niña experiment, E− , and increase the seesaw pattern in 
the 3DVar analysis with respect to E1.

For the PN/PND method the analysis residuals are clearly 
similar to the innovations, but this is not true for 3DVar for 
which the trajectories before the correction at the assimila-
tion time tend to diverge from the truth. Then, the innovation 
of 3DVar is a few orders of magnitude bigger than the one 
for PN/PND.

Also this experiment suggest that, by means of the regu-
larization procedure, the derived tools can be used for par-
tially observed system. Indeed, although the w and v compo-
nents are introduced in the new nudging terms as averaged 
quantities, computed during the last forecast evolution, the 
results are encouraging. Panel (c) of Figs. 5, 6, 7 shows the 
square of the quadratic distance between the analysis and 
the true trajectory, at every time step, for each component. 
Although the residuals are smaller for the PN/PND schemes, 
the global behaviour, as already highlighted by Table 2, is 
comparable between the different assimilation methods. It 
should be noted that although as before the assimilation of 
the z component alone is not possible, in the new forced 
system PN/PND no longer produce trajectories that leave 
the attractor as before (not shown here).

4  Discussions and conclusions

In this work we derive a new set of nudging equations start-
ing from a statistical physics point of view.

We explicitly consider the unresolved scales interactions 
as stochastic parameterization in the form of Gaussian white 
noise, and we derived a nudging equations system highlight-
ing the strong relation between these equations and physics. 
The derivation is strictly valid only for maximally observed 
systems in which we can observe all the components of the 
state vector. Nevertheless this was a starting point from 
which we looked for approximated nudging equations 

Table 2  Results of the rmse 
ratio for E

4

All the components of the 
forced L63 model are observed

E
4

rmse PND/rmse 3DVar

x y z tot.

E+ 1.06 0.92 0.94 0.96

E
0

1.20 0.96 0.93 1.01
E− 1.20 0.89 0.83 0.96
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system valid also for non-maximally observed systems. We 
also explored the approximated schemes in the limit of zero-
noise in order to check the differences with the classical 
nudging schemes.

The derivation was based on the conditioned Langevin 
dynamics technique (Delarue et al. 2017). Exploiting the 
relation between the Fokker–Planck and the Langevin equa-
tions, we defined the evolution equation for a probability 
distribution of a multidimensional system, conditioned to 
start from a specific point of the state space at t = 0 , and to 
arrive at a specific location, the observations, at t = tf  . From 

this evolution equation in the probability space we could 
then recognize the related Langevin equation in the coordi-
nate space, the physical nudging set of equations searched.

The new nudging term found is the analog of the so called 
quantum potential of the Bohmian mechanics (Benseny et al. 
2016; Stauffer and Seaman 1990). It involves a probability 
related to a backwards Kolmogorov equation that plays the 
role of transporting the observations’ information backwards 
in time, and constraining the solution of the dynamical sys-
tem to converge towards the observations in finite time. 
Although the observations are retrieved at a discrete time, 
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Fig. 5  Results from the test E+ . a Shows the residual for the sin-
gle components x, y and z. b Shows a zoom of the evolution during 
t = [3.6, 4] for the z component. c Shows the squared root of the 

quadratic distance between the truth and the trajectories computed 
with the other schemes for all the time steps
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they influence the trajectory of the model also at a previous 
time, making the physical nudging, ideally, more similar to 
smoothers rather than filters. The physical nudging itself 
should be regarded as an ensemble method.

The computation of the physical nudging term is costly 
for high dimensional numerical models and in order to 
simplify its use, we explored a few approximations of the 
original physical nudging system. The first approxima-
tion attempt, GN, to reduce the new system to the usual 
nudging equation, exploited a strong truncation of the path 

integral that is used to define, at least formally, the new 
nudging term. This truncation neglected all the effects of 
the model dynamics in the backwards evolution and trans-
lated in a simple relaxation term that must be added to the 
original model equations. The second approximation, PN, 
exploited an expansion for small time of the backwards 
probability, and it allowed keeping some dynamical infor-
mation other than the typical relaxation term introducing 
differences with the usual nudging schemes. A determinis-
tic version of the PN scheme has also been derived taking 
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Fig. 6  As in Fig. 5 but for E
0
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the zero noise limit, namely the PND approximation. A 
consequence of this derivation is that in the final system 
of equations all the physical parameters are fixed by the 
model and there is no need to tune any ad hoc free physical 
parameters such as the relaxation time scales. The deter-
ministic approximation, PND, that has good performance 
with respect 3DVar/PN in the experiments taken into 
account, also solves a major issue of the PN scheme, that 
is the computational cost. Indeed, PND does not require 
the evolution of any ensemble, and the implementation 

of the new nudging terms is straightforward. The PND 
approximation is then a good candidate scheme to be taken 
into account for problems involving nudging equations.

We also addressed another weakness of the derived 
scheme, that is the perfectly observed scenario assumption. 
In real world problems it is unthinkable to have a maxi-
mally observed system at certain time interval. However, the 
approximations of (11), formed the basis of an extension of 
the tool to non-maximally observed systems. This required a 
further assumption of slow variability of the studied system. 
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Fig. 7  As in Fig. 5 but for E−
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Indeed the physical nudging corrections, also in the two 
approximations described above, involve the information of 
the whole state vector at t = tf  . To overcome this issue, the 
physical nudging corrections, in this case applied only to the 
observed components, can be computed exploiting both the 
observations and the mean values computed in the forecast 
evolution window for the non-observed state vector compo-
nents. This procedure can be seen as a sort of regularization 
as the one used, for example, in the variational methods. 
Since the number of observations are usually much less that 
the number of the state vector components studied, the data 
assimilation problems are usually ill posed. For this reason 
empirical regularization techniques, as the introduction of 
the background state and the background covariance matrix 
in the variational cost functions are needed. In this sense our 
correction method, that exploits the average information for 
each component in the last forecast window, can be thought 
of as a background regulator.

It is important to remark that no uncertainties for the 
observations were taken into account. A straightforward 
extension, at least formally, to the observational error treat-
ment was proposed. Assuming that the observations posses 
an error, the final condition of the Kolmogorov backward 
equation is no longer a delta function, and the backward 
probability distribution could be expressed as an integral of 
the product between the distribution that describe the obser-
vations and the approximated backward probability derived 
by means of the small time approximation. Although the 
procedure is simple, unless we manage particular situations, 
in which for example the dynamic is governed by a linear 
symmetric operator and the uncertainty of the observations 
is Gaussian, an analytical solution can not be easily found.

Then, the approximations found were compared with a 
3DVar by performing twin experiments using low-dimen-
sional models that exhibit chaotic behaviour, the Lorenz 
(Lorenz 1963) and the Molteni (Molteni et al. 1993) systems.

For the first three experiments, based on the L63 model, 
all the model parameters were kept fixed, but the number of 
the observed components was different. In the first experi-
ment, E1 , we considered a fully observed system, while in 
the second experiment, E2 we observed only the y and z 
components. The first component, x, was not constrained 
by the observations but it was constrained directly by y, 
that appears in the first equation of the system (25), and 
indirectly by z that does not appear in the first equation if 
not only through y. Finally, we explored the case, E3 , in 
which the system is observed minimally in contrast with 
E1 . In this experiment, we observed only the z component. 
This means that the y component was constrained directly 
by the presence of z into the second equation, although there 
were no direct observations for this second component, and 
the x component was constrained only indirectly by the 
observations.

As summarized in Table 1, the PND approximation and 
the 3DVar scheme have comparable performances. The 
PN scheme was not considered in the table because it gave 
similar results, up to two digits, to PND. Looking at the 
rmse ratio in the table it emerges that, for the experiment 
E1 , PND perform a little bit better than 3DVar in the assimi-
lation of the y and z components, while it is always better 
than 3DVar in the experiment E2 where the x component was 
not observed. Although the behaviour in time of the error 
between the true and the analysis trajectories shows that the 
different schemes are comparable, the analysis residuals 
considered for E1 , the maximally observed system, show 
that at the assimilation time the PND analysis trajectories 
are closer to the observations with respect to the 3DVar tra-
jectories. Clearly, if the observations have large errors, the 
PN/PND schemes tend to push away the analysis trajectory 
from the truth, because the observations drive the evolution 
in a stronger way than 3DVar. In all cases the trajectories of 
these new nudging schemes seem to be smooth, while the 
variational method, implemented using a conjugate gradient 
minimization, exhibits strong corrections that bring out a 
clear seesaw structure in the trajectories. The first approxi-
mation of (11) that does not use the dynamical information, 
that is GN, has poorer performance than PN/PND. In the last 
experiment, E3 , in which only the z component was observed 
no one of the schemes used were able to mimic the true 
solution of the system. The experiment E2 , that mimics a 
non-maximally observed system, suggests that the regulari-
zation procedure introduced, based on the slow variability 
assumption, can be used in order to manage non-maximally 
observed systems, extending the use of the developed tool 
that was strictly derived for maximally observed system.

In the last experiment, E4 , we compared the performance 
of PN/PND against the 3DVar in three different configura-
tions of the M93 model, namely E+ , E0 and E− , characterized 
by different values of w∗ . The three configurations differ for 
the shape of the strange attractor generated and then in the 
probability density function describing the systems. The aim 
of this example was the investigation of the PN/PND behav-
iour applied to the L63 model forced by a system evolving 
with a different temporal scale. M93 is a conceptual model 
that simplifies the ocean-atmosphere interaction. In particu-
lar w∗ can be thought of as a parameter that characterizes the 
Pacific sea surface temperature anomaly and then, E+ , E0 
and E− represent the atmosphere forced by an ocean in an El 
Niño state, a neutral state, and in a La Niña state. For these 
three experiments we only partially considered observed 
systems, in particular we observed only the L63 compo-
nents, x, y and z. As before, the performance of the different 
schemes are comparable, but PN/PND perform better than 
3DVar in the assimilation of the y and z components, as 
shown in Table 2. The “oceanic forcing”, generally improves 
the assimilation of the PN/PND schemes with respect to 
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3DVar, in particular in the case of La Niña experiment, E− , 
and increases the seesaw pattern in the 3DVar analysis with 
respect to E1 . Also this experiment suggests that, by means 
of the regularization procedure, the derived tools can be used 
for partially observed system. Although the w and v compo-
nents are introduced in the new nudging terms as averaged 
quantities, computed during the last forecast evolution, the 
results are encouraging. The analysis residuals of the PN/
PND methods correspond to the innovations, but this is not 
true for 3DVar for which the trajectories before the correc-
tion at the assimilation time tend to diverge from the truth. 
For this reason, the innovations of 3DVar are a few orders 
of magnitude larger than the one for PN/PND. It should be 
noted that, although as before the assimilation of the z com-
ponent alone is not possible, in the new forced system PN/
PND no longer produce trajectories that leave the attractor 
(it is not shown here).

We note that the derivation did not take into account pos-
sible bias of the model that would also affect the nudging 
system. The 3DVar scheme used in this study also does not 
take the bias into account but only the errors in the initial 
condition. Further investigation using a bias-aware/bias-
corrective scheme is needed with care to correctly attribute 
a detected bias to its source otherwise which may degrade 
the solution (Dee 2005). It is also needed to explore fully 
the capability of the physical nudging scheme against more 
advanced techniques such as weak-constraint 4DVar or 
small-time-approximated 4DVar. The latter is shown to 
improve the analysis as much as the former one in certain 
circumstances (Carrassi and Vannitsem 2010). Parameter 
estimation through state-augmentation can also be consid-
ered to reduce the model errors. The small-time approxi-
mation that we adopt in this work helps to limit the error 
growth due to the uncertainty in the models in a reasonable 
range, especially in the non-maximally observed system 
experiments, as demonstrated by the experiment E2. How-
ever, it clearly has a limit in a chaotic dynamical systems 
such as the L63 when the observations does not constrain 
the unobserved variables directly (as in E3) through model 
equations. These aspects will be further investigated in the 
future works.

Finally, the relation between physics and physical nudg-
ing pave the way to other approximations, for example con-
sidering more terms in the small time expansion for the new 
forcing potential. In order to have a time dependent estimate 
of Q another possible approximation could exploit the Koop-
man Operator, that is suitable also for more realistic systems. 
In future works we will further explore the technique using 
more complex high dimensional models.
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