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Abstract
In fundraising management, the assessment of the expected gift is a key point. The
availability of accurate estimates of the number of donations, their amounts, and the
gift probability is relevant in order to evaluate the results of a fundraising campaign.
The accuracy of the expected gift estimation depends on the appropriate use of the
information about Donors. In this contribution, we propose a non-parametric method-
ology for the prediction of Donors’ behavior based on Artificial Neural Networks.
In particular, Multi-Layer Perceptron is applied. In the numerical experiments, the
expected gift is then estimated based on a simulated dataset of Donors’ individual
characteristics and information on donations history.
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1 Introduction

In fundraising (FR) management, modeling the gift is crucial. The FR process can
be viewed as an optimization problem: the maximization of the overall results of a
campaign, subject to some restrictions and budget constraints.

The availability of accurate estimates of the gift expectation is relevant to evaluating
a campaign’s returns and making decisions about alternative strategies. The gift prob-
ability, the amount, number, and frequency of donations within a certain period (or for
a particular campaign), and other gift features can be estimated using parametric and
non-parametric approaches based on information about past donations and Donors’
behavior.

Nevertheless, such information is not always available or may be very limited. In
this regard, Organizations1 can be categorized based on the existence and dimension
of a structured database (DB), which may include, for each Donor, qualitative and
quantitative personal profile data, in addition to the gift history. This aspect strictly
depends on the Organization’s size.

The success of FR strategies (the achievement of a specific FR campaign’s goal and
the pursuit of theOrganization’smission) depends, amongother factors, on the efficient
use of information (see Sargeant 2001). As getting in touch with a Donor is costly, a
major problem is the selection of theContacts tomaximize the expected outcome of the
campaign and, at the same time, to minimize its variability. For instance, Duffy et al.
(2007) deal with (potential) Donors’ profiles that match some specific gift inclination
to support the effectiveness of the FR process. Economists agree that information on
potential Donors plays a strategic role in improving the FR results (see, for example,
Nudd (2003)).

Despite the relevance of these issues, business literature and professionals in the
field traditionally approached these problems with limited quantitative analysis. In
the more recent literature and in the applications, we observe an evolution and a
specialization of quantitative methods applied to FR management. These approaches
use advanced mathematical and statistical tools, soft computing, and artificial intelli-
gence techniques. An innovative approach has been suggested in this field by Barzanti
et al. (2007) that introduces the use of mathematical modeling and Decision Sup-
port Systems (DSS) techniques. The aim is to help Associations to decide the kind
of campaign to organize, the features to implement, and the Donors of the DB to
contact for the maximization of the expected return of the campaign, satisfying time
and budget constraints. This quantitative approach has been specialized for different
types of Organizations. The contribution (Barzanti et al. 2009) considers large-sized
Associations, with millions of Donors and an organizational system requiring a very
sophisticated DSS. In Barzanti and Giove (2012), the focus is on small-sized Organi-
zations and a DSS based only on essential information with no need for an organized
DB. This approach has been discussed in the literature (Verhaert and Van den Poel
2012 and Melandri 2017) and validated also in the operational world by Associations
(as documented in Barzanti et al. (2009) and Barzanti and Giove (2012)). In Barzanti
et al. (2017), DSS targeted for medium-sized Organizations are considered. It is inter-

1 In this work, we refer to the terms Organization and Association as synonymous.
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esting to note that some similarities between the FR process and some bank activities
can be set (see Moro et al. 2018); as a consequence analogous methods can be applied
in the analysis.

Quantitative studies provide evidence about the main factors influencing individu-
als’ propensity to donate. For instance, Andreoni (2006) founds that the economic and
social foundations of altruism depend also on the membership to a community or the
social network, and on the so-called enlightened self-interest. Such factors are consid-
ered by Duncan (1999) and Smith and Chang (2002). In particular, Lee et al. (1999)
analyse the impact of the network of social relationships on individual’s propensity to
assume a role-identity as a Donor. The authors identify several factors that can impact
role-identity; all these variables influence individual preferences, attitudes, and the
utility people get from their decisions on how and to what extent donate (see also
Cappellari et al. (2011)).

Factors that may influence the gift probability are related to individual character-
istics and economic constraints: gender, age, place of origin or residence, education,
number of children, financial situation, social network, personal interests, and religious
involvement. Therefore, integrating all information to define an optimal FR strategy
is complex.

However, tools using a classical DB approach can solve problems that are con-
strained by the potential of such a technology. The support to the fundraiser is limited
to giving general indications in relation to specific claims without adequately manag-
ing all data about individuals. In order to improve FR strategies, experts’ knowledge
and advanced quantitative approaches, such as artificial intelligence, can be integrated
into the process.

The analysis can be tackled at different levels.Under global perspective, one focuses
on the evaluation of a campaign’s overall result, while at individual level one canmodel
the single Donor’s behavior.

In this contribution, we aim at modeling those specific gift features which are rele-
vant to evaluate the results of anFRcampaign, in order to predict themas (approximate)
functions of other gift features and information on Donors. To this aim, we suggest a
non-parametric approach based onMachineLearning. In particular, we applyArtificial
Neural Networks (ANNs) and Multi-Layer Perceptron (MLP) to predict the expected
number and amounts of the donations, using as inputs some Donors’ characteristics.

The remainder of this paper is organized as follows. In Sect. 2we formally introduce
the definition of the gift as an individual risk and explain how to model any aspect
related to the donation. Section3 discusses the inclusion of the individual character-
istics in the Donor’s profile. In Sect. 4, the numerical analyses based on ANNs are
presented and compared to the results obtained from appropriate benchmark models.
Finally, in Sect. 5 some concluding remarks are drawn.

2 Modeling the gift

As previously discussed, assessing an FR campaign expected return is a complex task
and, to this purpose, the estimation of the expected gift is required.
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The ‘gift’ can be modeled as an individual risk (see Gourieroux and Jasiak (2007)),
in much analogy with other main domains of applications: finance, credit risk, insur-
ance, and marketing.

More precisely, the gift can be viewed from four viewpoints:

• occurrence of a donation (the outcome is either ‘yes’ or ‘no’);
• frequency or count of donations received in a period of time (for example, a year
or the duration of the campaign), so the number of gifts is zero or any positive
integer;

• timing or duration, i.e. when a donation has occurred or the interval between
donations,2 whose outcome is an interval of time, usually measured with reference
to a fixed point of origin (such as the beginning of the campaign or when the
potential Donor has been contacted for the first time);

• amount of donations (the outcome is usuallymeasured in currency units, e.g. euros,
but could be also represented by working hours or other gift).

With regard to all these features, the gift is quantifiable, defining for any aspect a
random variable: a dichotomous variable, a count variable, a duration variable, and a
continuous positive variable, respectively.

The arrival of a donation to an Association can be treated as the outcome of a
random variable, in analogy to what is done in other contexts (e.g., the arrival of a
claim to an insurer, the occurrence of default in a portfolio of risks). Either dichotomous
or count variables can be used to model the occurrence of the donation event. As a
very simple example, consider a dichotomous random variable Y . Denote with D the
gift/donation event, we have Y = 1D(ω) (where 1D is the indicator function of D),
with P[Y = 1] = p. Then the probability of gift is equal to E(Y ) = p. Let X be a
continuous random variable that represents the amount of money given by the Donor
for a single donation, or the total gift of all donations filed in the considered period.
In this case, the expected gift for each Donor can be computed by the product of the
gift probability and expected gift amount, E(Y )E(X).

Considering the whole campaign, both the number of gifts and the gift amount are
random, hence campaign’s return can be modeled as a random sum; in order to com-
pute its expectation, some assumptions need to be introduced (such as independence
amongst Donors, and independence of gifts count and gift amounts).

All these features can be modeled in alternative ways; however, the introduction
of a realistic probability distribution may be challenging. In order to estimate the
quantities of interest, both parametric and non-parametric approaches can be used,
basedon information aboutDonors andpast campaigns.Recently,Barzanti andNardon
(2024) discusses statistical methodologies for modeling the gift as an individual risk,
in order to estimate the gift probability. To this aim, a parametric approach has been
suggested. In particular, the number of gifts is modeled as a Poisson random variable
with the intensity parameter depending on Donors’ individual characteristics available
in the DB. The expected number of donations, and the probability of gift, can then be
estimated by performing a Poisson regression, which allows also to assign a score to
each Donor as a measure of their propensity to the donation.

2 In FRmanagement, the so-called recency i.e. the time length from the last donation, is particularly relevant
as it is a measure of the Donor’s “hotness”.
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3 The information on the Donor

Non-Profit Associations3 collect and manage a variety of information to optimize
their FR activity. In this process, the role of the Donor is of great importance (see,
for example, Duncan (1999) and Lee et al. (1999)), as well as the choices of actions
adopted by the Organization for efficiently managing the position and contacting the
Donor. Practitioners claim that the 70− 80% success rate of an FR campaign derives
from choosing the appropriate target of Donors to whom the strategy addresses, while
only 20 − 30% depends on motivations and creativity. The result of an FR campaign
depends not only on Donors’ profiles but also on the expertise of professionals in this
field and rules of thumb.

Once a first donation is received from aContact (i.e. a potential Donor known by the
Association) or a new subject, they are labelled as ‘Donor’ and from that moment all
the associated gift events are registered. In order to efficiently exploit the information
collected on Donors and Contacts, and the experience from the past FR campaigns,
ad hoc quantitative tools have to be developed taking into consideration the size and
structure of the available dataset, and the goals to be achieved, among other features.

To describe the mechanism that gives rise to the gift, we firstly introduce some
assumptions:

• any gift is associated with an individual, the Donor;
• a Donor can be a person, a company, or other entity;
• available individual characteristics of the Donor are collected in a DB;
• the gift history (gift events, timing and gift amounts) of the Donor is recorded.

For large and medium-sized Associations, the information may include both quan-
titative and qualitative features: information on past donations (gift history), some
personal characteristics, and advanced features of the Donors’ profile. Whereas small-
sized Associations normally store only some quantitative information and do not use
a DB to decide their strategies.

It is worth noting that using statistical methodologies, it is possible to synthesize
Donor’s individual characteristics with a score (see Barzanti and Nardon 2024). In
the context of FR, such a score can be used for measuring individual propensity to
donate (the higher the score, the higher the propensity to the gift), ranking Donors, and
distinguishing (expected) “good” Donors. This latter procedure is called segmentation
and can be useful to select potential Contacts or to address ad hoc advertising to
subclasses of Donors.

Secondly, we formally define the structure of the available information in the DB.
Let xn be the vector which collects selected observable individual characteristics of
Donor n, in a sample of N Donors. Define zn as the vector of transformed individual
characteristics, where qualitative features are properly transformed into quantitative
ones or dummy variables.4

3 With some exceptions of very small Associations.
4 A score, summarizing the information about the Donor, can be simply defined as a scalar function of
covariates z′nθ , where θ is a vector of parameters. The score can be determined using more sophisticated
approaches (see Gourieroux and Jasiak 2007).
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The FR literature and experts’ knowledge suggest that the propensity to gift depends
on some personal characteristics. Regarding the choice of personal profile variables
to be used in the analysis, these can be divided into:

• personal situation variables (gender, age, number of children, education, place of
origin, size of residence town);

• economic situation (wage, wealth, investments);
• risk aversion variables (the number of insurance5 policies subscribed by the indi-
vidual is taken as a proxy);

• other information (personal interests, religious involvement, social network, etc.).

Among these characteristics, the financial situation is the most significant one.
Other characteristics that may have an impact are: risk aversion, geographical distance
between Donor’s residence and campaign location, geographical distance between
Donor’s interests and interests involved in the campaign, and size of residence town.
The measurement of the impact of some factors can indeed be difficult, as for risk
aversion. While for other factors, their influence on the gift attitude can be debatable.
For instance, the presence of children can be a source of effects of opposite sign.

FormostOrganizations, a systematic collection of information onDonors is limited,
with the exception of large Associations. Even when a DB is managed, the quantity
and quality of information may be scarce. The lack of availability of data is a major
drawback to the analysis. Some information cannot be collected due to different causes,
depending on the instruments and theway inwhich donations are received (e.g. by post
bulletin, rather than filling a form online), strong limitations due to the law that protects
sensible data, and Donors’ reluctance to provide personal information. Mistakes in the
transcription or incompleteness of data, and also impossibility to assign a record to
a Donor univocally identified (e.g. in case of homonymy) are causes of scarse data
quality. Furthermost, managing a large DB implies for the Organizations sensible
costs, expertises, efforts, and time. However, data collected in a systematized manner
and efficiently used with advanced quantitative tools are major drivers to the success
of the FR activity.

3.1 The data

The numerical analysis in Sect. 4 is based on a simulated DB, already used in other
contributions in the literature (Barzanti et al. 2017 and Barzanti and Nardon 2024),
constructed from experts’ knowledge, and based on a realistic composition of a set of
Donors.

The Donors’ segmentation is determined by the Giving Pyramid, represented in
Fig. 1, where the ground of the pyramid is constituted by the Contacts.

Starting with about 400 000 Contacts, a set of N = 30 000 Donors is obtained.
These values constitute medium to high numbers for a medium-sized Organization, or
high numbers for a small-sized Organization. In the set of Donors, 75% are Sporadic
Donors (labeled ‘sd’). Among them, about 25% made only one donations (labeled
‘sd1’), and the rest made more than one donation (labeled ‘sd2’). The remaining 25%

5 For example, health insurance or house insurance; but also testaments are considered in this class.
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Fig. 1 Representation of the Giving Pyramid

Table 1 Distribution of some individual characteristics along the Giving Pyramid

Donors Low wealth Ins. policies Min D Max D.
≥ 1 amount amount

Sporadic (sd1) 70% 35% 20 50

Sporadic (sd2) 70% 35% 30 100

Regular (rd1) 40% 65% 50 400

Regular (rd2) 40% 65% 100 500

Large 10% 65% 300 1000

are: 19% Regular Donors6 (labeled ‘rd’), and 6% Large Donors. Legacies are not
present in the considered sample.

Besides information about gift history of the Donor, other personal profile variables
collected are: age and number of children, education7 (in four categories: Master
and Ph.D., Bachelor, High School, other/lower school level), wealth (measured in
thousands of euro), risk aversion (measured as numbers of insurance policies signed
by the Donor).

Regarding the gift history, the dataset includes for each Donor: the number of
donations, the gift amount for each donation,8 and the number of gift requests (or also
number of times when the Donor searched for information about the FR campaign).

Tables 1 and 2 report a synthesis of the data collected in the DB. In particular,
Table 1 shows the composition (segmentation) of the Donors population in the Giving
Pyramid related to some characteristics. About 70%of the Sporadic Donors have “low
wealth”; whereas, such a percentage decreases to about 40% and 10% for Regular
Donors and Large ones, respectively. In the second column, the percentage of Donors
who subscribed at least one insurance contract is reported; it can be observed that
the number increases when considering higher layers of the pyramid. In the last two
columns, the minimum and maximum Donation amounts are shown; in this case,

6 A further subdivision in “stable” (labeled rd1) and “dynamic” (labeled rd2) is possible.
7 Categorical variable transformed into values ranging from 1 to 4, assigning 4 to the highest category.
8 The average donation is used in the analysis.
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Table 2 Main statistics for the
gift history and Donors’
individual characteristics

Mean Std. Dev. Min Max

n. donations 6.4009 5.2036 1 28

Amount 133.6519 158.1974 20 1000

Gift requests 15.0988 8.3738 1 29

Age 53.4348 20.8576 18 89

n. children 1.4987 1.1166 0 3

Education 2.5077 1.1165 1 4

Wealth 398.4709 310.1731 10 1000

Risk aversion 1.0740 1.6726 0 5

Fig. 2 Empirical distribution of the number of donations

results depend on the very definition of Sporadic (low gift amount, low frequency),
Regular (low/medium gift amount, medium/high frequency), and Large (higher gift
amount) Donors.

Table 2 reports themain statistics for the gift history (number of donations, amounts,
number of requests), and some Donor’s individual characteristics (age, number of
children, education, wealth, and risk aversion).

The empirical distribution of the number of donations is shown in Fig. 2. It is worth
noting that, as we considered a sample of Donors, the number of donations range
from 1 to the maximum observed number. This choice allows us to avoid the inference
issues associated with the excess of zeros that arise when considering all the Contacts
in the DB.
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4 ANNs andMLPs in FRmanagement

In this section, we consider and apply a method for making predictions about some
Donor’ behaviors using a supervised Machine Learning (ML) approach known as
Artificial Neural Networks (ANNs). In particular, we focus on one of the simplest
ANN models, the so-called Multi Layer Perceptron (MLP).

According to a known metaphor, an ANN, and thus an MLP, can be thought of as a
computational model inspired by the structure and functioning of the biological neural
networks that make up the brain of the superior living beings.

In simple terms, anMLP can be viewed as a network of artificial neurons, or nodes,
each of which represents a unit of computation of the network itself. These nodes are
organized into layers, typically: an input layer, whose nodes receive the data from
the external environment, like a sensor does; one or more hidden layers, whose nodes
carry out the “intelligent” part of the computation; an output layer that releases the
result of the computation towards the external environment, like a device does. By the
adjective “intelligent”, we mean that MLP �architectures using arbitrary squashing
functions can approximate virtually any function of interest to any desired degree of
accuracy, provided sufficientlymany hidden units are available. These results establish
multilayer feedforward networks as a class of universal approximators.� (see Hornik
et al. 1989, p. 360). Moreover, all the nodes in one layer are fully connected to the
nodes in the next layer,9 but not among those within the same layer.

Note that in supervised ML, the ANN is trained on a labeled dataset, meaning that
during the phase of parameters estimation, the ANN is presented with a dataset

{(
z1,n, . . . , zi,n, . . . , zI ,n; o1,n, . . . , ok,n, . . . , oK ,n

)
, n = 1, . . . , N

}
,

where
(
zi,n

)
i=1,...,I is the n-th vector of input features,

(
ok,n

)
k=1,...,K is the associated

vector of output labels, and N is the dimension of the dataset (in the applications, N
is the number of Donors).

Note also that in an MLP, pairs of nodes belonging to consecutive layers are asso-
ciated with weights representing the strength of the connections. In the specific case
of an MLP with one hidden layer that we consider in the application (see Sect. 4.1),
pairs of nodes from the input layer to the hidden one and from the hidden layer to the
output one are associated with weights v j i and wk j , respectively (see Fig. 3, in which
an MLP with I inputs, K outputs, and one hidden layer with J nodes, is represented).

These weights are fine-tuned during the training process, based on the minimiza-
tion of some error metric between the MLP’s outputs and the actual outputs. In our
investigation, the outputs will be the prediction of one or more Donor’s behaviors (in
particular, the number of donations and amount of the gift), and the errors are com-
puted as deviations of such estimates from the past realised values of the same features
collected in the DB.

9 In the general case of an MLP with more hidden layers, the nodes in the input layer are fully connected to
those in the first hidden layer, the nodes in the first hidden layer are fully connected to those in the second
hidden layer, and so on, until the nodes in the last hidden layer are fully connected to those in the output
layer.
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Fig. 3 Graphical representation of anMLPwith one hidden layer, where: zi , with i = 1, . . . , I +1, indicate
the nodes belonging to the input layer; y j , with j = 1, . . . , J + 1, denote the nodes belonging to the input
layer; ok , with k = 1, . . . , K , specify the nodes belonging to the output layer; v j i , with j = 1, . . . , J + 1
and i = 1, . . . , I + 1, indicate the weights connecting the i-th node of the input layer to the j-th node of
the hidden layer; wk j , with k = 1, . . . , K and j = 1, . . . , J + 1, denote the weights connecting the j-th
node of the hidden layer to the k-th node of the output layer. Source: Engelbrecht (2007). Note that, to avoid
cluttering the figure, the squashing functions are not shown

As for the training process, it is an algorithmic procedure that adjusts in an iterative
way the aforementionedweights. This process starts with a random initialization of the
weights, then uses the inputs in the dataset for estimating the corresponding outputs
through theMLP. The differences between the so computed outputs and the actual ones
are used to appropriately update the weights in order to minimize the chosen error
metric. These two steps (the output estimations, and weights updates) are repeated
until a pre-fixed stopping criterion is satisfied.

In general, the training process is preceded by a more or less detailed hyperparam-
eter tuning process. Briefly, hyperparametrization consists in appropriately setting the
parameters and other features of the ANN. Once set, these parameters and features
will remain fixed during the training process. For example, in the case of an MLP, this
process may involve choosing the number of hidden layers, the number of nodes per
hidden layer, the functional form of the squashing funtions and so on. Note that the
setting of these parameters and features can heavily affect the training process, and
consequently the ANN’s performances.

4.1 Applications and results

The development and use of ML-based models for FR management is a very recent
research area. Contributions in this field can basically be grouped in two classes: a first
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one in which mainly methodological proposals without or with minimal applications
are presented, and a second one in which data-driven ML-based models are developed
and applied.

Papers belonging to the first class include, for instance, the contribution (Philips
2022), with a discussion on how and towhat extentArtificial Intelligence could be used
in the FR sector. In the second class, one may cite (Farrokhvar et al. 2021), where an
MLP and a Support Vector Machine are developed and applied for predicting levels of
charitable giving using publicly available data sources, and Cagala et al. (2021), where
Classification and Regression Decision Trees, and Classification Random Forests are
used for detecting the so-called net Donors (that is Donors whose expected donation
is higher than the marginal FR costs).

Our study fits into this second line of research. In particular, remembering that
getting in touch with the Donors is costly (see Sect. 1), we aim at modeling those
specific gift features which are relevant to evaluate the results of an FR campaign,
namely the count of donations and the gift amounts (see Sect. 2), in order to predict
them as (approximate) functions of other gift features and Donors’ characteristics.

In detail, we experiment the following threeMLP-based predictionmodels fMLP,h ,
with h = 1, 2, 3:

• A seven-input-one-output MLP

(cd) = fMLP,1(ga, ag, nc, ed, we, ra, gr), (1)

where cd denotes the count of donations, ga specifies the gift amount, ag, nc,
ed, we, ra and gr indicate age, number of children, education level, wealth, risk
aversion, and number of gift requests, respectively (see Sect. 3);

• A seven-input-one-output MLP

(ga) = fMLP,2(cd, ag, nc, ed, we, ra, gr). (2)

This model differs from model (1) in that its output label, i.e. the gift amount ga,
is one of the input features of fMLP,1 and, vice versa, the output label of fMLP,1,
i.e. the count of donations cd, is one of the input features of fMLP,2;

• A six-input-two-output MLP

(ga, cd) = fMLP,3(ag, nc, ed, we, ra, gr). (3)

This model differs frommodels (1) and (2) in that it is characterized by two output
labels, i.e. cd and ga, instead of one, and consequently by six input features
instead of seven. It is worth noting that fMLP,3 aims at jointly predicting both the
gift features using as inputs only the Donors’ characteristics.

4.1.1 The prediction model fMLP,1

Let us first consider model fMLP,1, defined by (1). As discussed above in this section,
we initially carried out the hyperparameter tuning process, with specific reference to
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the number of hidden layers, and the number of nodes per hidden layer. Regarding the
tuning of the other hyperparameters, we followed the suggestions of the prominent
literature (see, for example, (Alpaydin 2014, sect. 11.9)).

To this end, we initially considered MLPs with 1 to 3 hidden layers and varying
numbers of nodes per hidden layer. Next, we assessed three different squashing func-
tions for the hidden nodes: the sigmoid, the hyperbolic tangent, and the rectified linear
unit ones. As usual, we considered the linear squashing function for the output nodes.
Based on the results from the error metrics, we focused on 2I +1 = 15 distinct MLPs
with a single hidden layer, where I specifies the number of input features, having
respectively from 1 to 2I + 1 nodes in the hidden layer,10 and we decided to use the
hyperbolic tangent function.

Each of such MLPs has been trained using the dataset described in Sect. 3.1. In
particular, the training phase has been performed according to the following standard
steps:

• First, in order to avoid biased learning due to the order of the input–output pairs
in the dataset, we shuffled the positions of these pairs.

• Then, in order to avoid overfitting in the learning phase due to an excessive MLP
complexity, we used the regularization technique known as early stopping. This
technique involves the random splitting of the original dataset in three new sub-
datasets, the Training and Validation ones for training purposes, and the Testing
one for out-of-sample testing phase (for more information, see (Engelbrecht 2007,
sect. 3.2)).

• Lastly, in order to manage the stochastic nature of MLP due to the random initial-
ization of its weights, we iterated 5 times the training of each of the 2I + 1 MLPs,
and selected the best one in terms of Root Mean Square Error (RMSE) calculated
over the Validation subdataset.

In Table 3, we report the results related to this first part of the hyperparameter tuning
process for fMLP,1. Observing the second column, we can detect that the minimum
value of the RMSE on the Validation subdataset is reached in correspondence of an
MLP having 12 nodes in the hidden layer. Therefore, in the case of fMLP,1, the optimal
number of nodes for the hidden layer is 12.

As for the second part of the hyperparameter tuning process, we experimented sev-
eral configurations of MLPs with more than a single hidden layer and with different
numbers of nodes in each of these layers. But none of the so configured MLPs per-
formed better than the best one detected in the first part of the hyperparameter tuning
process. Therefore, at the end of the hyperparametrization stage, the best configuration
for the prediction model fMLP,1 turned out to be a single-hidden-layer MLP with 12
nodes in the hidden layer.

Once the setting has been chosen, the prediction model has been trained using the
dataset illustrated in Sect. 3.1. Furthermore, to manage the stochastic nature of MLP,
we iterated 25 times this Training phase and selected the best one in terms of RMSE
calculated over the Validation subdataset. In this regard, in Fig. 4, we present the

10 Note that 2I + 1 as upper bound for the number of nodes in the hidden layer of a single-hidden-layer
MLP is a known and widely applied rule of thumb.
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Table 3 Prediction model
fMLP,1. Results of the
hyperparameter tuning process
with respect to the number of
nodes belonging to the single
hidden layer

Nodes per RMSE on the Total number
hidden layer Validation sub of weights

1 2.7716 10

2 1.9598 19

3 1.7622 28

4 1.7108 37

5 1.6560 46

6 1.6680 55

7 1.6608 64

8 1.6303 73

9 1.6509 82

10 1.6495 91

11 1.6271 100

12 1.6169 109

13 1.6250 118

14 1.6330 127

15 1.6269 136

Table 4 Prediction model
fMLP,1. Statistics related to the
learning

Subdataset RMSE MAE MAPE R2

Training 1.6491 1.1989 29.3055% 0.8997

Validation 1.6145 1.1638 28.0060% 0.9004

Testing 1.6200 1.1703 28.8195% 0.9065

shapes of the RMSEs for the Training subdataset (the blue curve) and the Validation
subdataset (the green curve) for one of these 25 iterations. In particular, the behavior
of the RMSE over the Validation subdataset – specifically, a smooth decrease towards
a (hopefully global) minimum – indicates the convergence of the learning process.
Note that this specific behavior is representative of the behaviors observed in all the
learning processes which have been conducted, namely the current and the subsequent
ones.

In Table 4, we provide the following statistics related to the learning: RMSE, Mean
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and R-squared
(R2).

Regarding the use of R2 as a measure of goodness of fit of ANN-based models,
it has been and is under criticism for the partly unsuitableness of its applicability to
nonlinear models, as MLPs are (see, for instance, Sapra (2014)). Nevertheless, R2

continues to be widely used in the specialized literature on ML applications, even for
comparative purposes among the goodness of fitting of different (nonlinear) models.
In this contribution, we utilize R2 in this latter manner.

From all the results, both the in-sample ones which are associated with the Training
and Validation subdatasets, and the out-of-sample ones which are associated with the
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Fig. 4 Shapes of the RMSE curves for the Training and Validation subdatasets for one of the 25 iterations.
In this specific iteration, the RMSE for the Validation subdataset reached its minimum at epoch 90.

Testing subdataset, we can observe that the performance of the prediction model
fMLP,1 is satisfying. In particular, we highlight that the highest value of R2, i.e.
0.9065, has been reached in correspondence of the out-of-sample prediction.

4.1.2 The prediction model fMLP,2

Regarding the prediction model fMLP,2 defined in (2), we acted as for fMLP,1. At
the end of the hyperparametrization stage, the best configuration for fMLP,2 turned
out to be a single-hidden-layer MLP with 13 hidden nodes (see Table 5).

The statistics related to the learning phase are reported in Table 6. It can be observed
that the performance of model fMLP,2 in predicting the gift amount, using the count
of donations and the six Donor’s characteristics, is fine. The performance of model
fMLP,1 in predicting the number of donations using the gift amount and the sixDonor’s
characteristics (as reported in Table 4) is much better. This finding highlights that the
gift amount, ga, used as input for the prediction of the count of donations, cd, is more
informative than cd used as input for the prediction of ga.

4.1.3 The prediction model fMLP,3

With regard to the prediction model fMLP,3 defined in (3), we carried out the analysis
according to the steps followed for the fMLP,1 and fMLP,2 models. In detail, in
the case of fMLP,3, the upper bound for the number of nodes in the hidden layer is
2I + 1 = 2 · 6 + 1 = 13, since this prediction model uses as input features only
the six Donors’ characteristics. At the end of the hyperparametrization stage, the best
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Table 5 Prediction model
fMLP,2. Results of the
hyperparameter tuning process
with respect to the number of
nodes belonging to the single
hidden layer

Nodes per RMSE on the Total number
hidden layer Validation sub of weights

1 98.58 10

2 96.35 19

3 95.40 28

4 94.26 37

5 94.59 46

6 94.42 55

7 92.81 64

8 94.89 73

9 92.15 82

10 92.27 91

11 92.75 100

12 93.29 109

13 91.59 118

14 91.93 127

15 93.51 136

Table 6 Prediction model
fMLP,2. Statistics related to the
learning

Subdataset RMSE MAE MAPE R2

Training 91.1299 49.9592 47.2019% 0.6698

Validation 90.0345 48.7925 45.9331% 0.6708

Testing 89.1544 48.5719 45.9230% 0.6842

configuration for fMLP,3 turned out to be a single-hidden-layer MLP with 13 hidden
nodes (see Table 7).

We recall that this model has two outputs (gift count and amount). In light of the fact
that the model jointly predicts these two features with a reduced number of inputs, the
statistics associated to the learning phase resulted poorer when compared with those
of the prediction models fMLP,1 and fMLP,2 (see the results in Tables 8 and 4 for
the count of donations, and the results in Tables 9 and 6 for the gift amount). These
outcomes are expected, since in this setting two relevant sources of information are
not included as explanatory variables.

However, it is worth noting that even using as inputs only the six Donors’ charac-
teristics, model fMLP,3 shows predictive capability, in particular when considering
the count of donations. In fact, the values achieved by MAPE and R2 in this third
predictive application are generally in line with those attained in a variety of other
economic and financial forecasting applications (see, for instance, Zhang et al. (2019)
and the references therein).
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Table 7 Prediction model
fMLP,3. Results of the
hyperparameter tuning process
with respect to the number of
nodes belonging to the single
hidden layer

Nodes per RMSE on the Total number
hidden layer Validation sub of weights

1 105.42 11

2 103.49 20

3 102.36 29

4 102.04 38

5 102.78 47

6 102.80 56

7 103.15 65

8 102.69 74

9 102.52 83

10 103.08 92

11 102.44 101

12 102.27 110

13 101.71 119

Table 8 Prediction model
fMLP,3, output labeled “count
of donations" (cd). Statistics
related to the learning

Subdataset RMSE MAE MAPE R2

Training 3.9364 2.8854 64.0781% 0.4326

Validation 3.8362 2.8044 63.9575% 0.4274

Testing 3.9920 2.9105 65.1470% 0.4322

Table 9 Prediction model
fMLP,3, output labeled “gift
amount" (ga). Statistics related
to the learning

Subdataset RMSE MAE MAPE R2

Training 145.6249 95.4215 113.2845% 0.1683

Validation 141.3915 92.3150 110.2419% 0.1602

Testing 145.8508 95.8072 112.1512% 0.1549

4.1.4 A simple benchmark check

In this section, we compare the outcomes of the prediction models fMLP,1, fMLP,2,
and fMLP,3 with the results from suitable linear benchmark models. The choice to
use linear prediction models as benchmarks allows us to assess whether the decision
to employ nonlinear predictive models, such as MLPs, has been effective.

Regarding the selection of the specific linear benchmark predictive models, we
decided to use MLP models once again, but with linear activation functions for all
hidden nodes. As it is known, in this case, the MLP model becomes a linear approx-
imator of the function of interest (see, for instance, (Aggarwal 2018, sect. 1.5)). The
main reasons for using such an approach instead of resorting to more conventional
linear regression-based models are at least two. The first one is that MLP models do
not rely on the generally stringent assumptions typically required by linear regression-
based models. The second reason is that, in accordance with the principle of Ceteris

123



Fundraising management through ANN

Table 10 Percentage variations of the learning-related statistics for each linear benchmark predictionmodel
and for each subdataset, relative to the corresponding values for the initial nonlinear prediction models.
For each error metric, i.e., RMSE, MAE, and MAPE, a positive value indicates a worsening of the metric,
while a negative value indicates an improvement; the opposite holds for R2

Prediction model, Subdataset �RMSE (%) �MAE (%) �MAPE (%) �R2 (%)

fMLP,1 for cd, Training 79.56 77.10 71.76 −42.26

fMLP,1 for cd, Validation 79.18 76.82 75.54 −38.16

fMLP,1 for cd, Testing 82.80 80.28 72.30 −40.86

fMLP,2 for ga, Training 23.30 47.87 82.32 −25.02

fMLP,2 for ga, Validation 20.87 48.53 90.32 −24.12

fMLP,2 for ga, Testing 24.09 51.43 86.35 −24.90

fMLP,3 for cd, Training 4.46 6.30 4.90 −36.78

fMLP,3 for cd, Validation 1.18 4.79 6.76 −34.46

fMLP,3 for cd, Testing 3.04 4.91 4.39 −33.70

fMLP,3 for ga, Training −0.12 −0.49 −5.51 −1.55

fMLP,3 for ga, Validation 3.38 3.41 −5.08 −4.31

fMLP,3 for ga, Testing 0.65 0.41 −6.56 −1.71

Paribus, by doing so we conducted the comparison while maintaining the same infer-
ential process used for the initial nonlinear prediction models. Note that for each
linear benchmark prediction models, we used the same MLP architecture and number
oh hidden nodes as identified for the fMLP,1, fMLP,2 and fMLP,3, respectively.

In Table 10, we present the results of the comparisons. In detail, for each linear
benchmark prediction model and for each subdataset, we report the percentage varia-
tions in the values of the learning-related statistics, namely RMSE, MAE, MAPE and
R2, with respect to the corresponding values for nonlinear predictione models. Note
that for each error metric, i.e., RMSE, MAE, and MAPE, a positive value indicates a
worsening of themetric, while a negative value indicates an improvement; the opposite
holds for R2.

The results of the comparisons clearly show that, with a few expections, the bench-
mark linear prediction models perform considerably worse than fMLP,1, fMLP,2 and
fMLP,3. This confirms the effectiveness of the decision to employ nonlinear predic-
tion models instead of linear ones. Only for fMLP,3 with respect to ga (i.e., the gift
amount), there areminor deteriorations in themetrics, alongwith a few slight improve-
ments, indicating that in this case the benchmark linear approximation of the function
of interest behaves almost like the nonlinear one.

5 Concluding remarks

In the organization of an FR campaign, the effective use of the information on Donors
allows tooptimize the resources by selecting themost promisingDonors/Contacts from
an organized DB for the considered context, specifying both the campaign budget and

123



D. Barro et al.

the net estimated global return. The goal is to maximize the expected global gift, under
budget constraints.

The assessment of the expected gift is a crucial task, that results from the expected
number of donations and gift amounts. The accuracy of these estimates depends on the
efficient use of the information on Donors’ individual characteristics and donations
history based on past campaigns.

In this contribution, we propose the use of non-parametric models for the prediction
of Donors’ behavior. In particular, we applied one of the simplest ANNmodels, known
as MLP. The obtained results indicate that these models perform particularly well (see
Sect. 4.1.1) or well (see Sect. 4.1.2) if the quantities of interest are predicted separately.
Furthermore, they perform satisfactorily even when these quantities are predicted
jointly (see Sect. 4.1.3).

Finally, regarding future research directions, we intend to focus on the following
aspects: refining the hyperparameter tuning of the MLP models to enhance their fore-
casting capabilities, and applying these MLP models to specific donor subclasses for
tailored advertising campaigns.
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