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Abstract

We analyze data on abortion rate in Italy with a particular focus on different

behaviours in different regions in Italy. The aim is to try to reveal the relationship

between the abortion rate and several covariates that describe in some way the

modernity of the region and the condition of the women there. The data are mostly

underdispersed and the degree of underdispersion also varies with the covariates. To

analyze these data recent techniques for flexible modelling of a mean and dispersion

function in a double exponential family framework are further developed now in a

Generalized Additive Model context for dealing with the multivariate setup. The

appealing unified framework and approach even allow to semi-parametric modelling

of the covariates without any additional efforts. The methodology is illustrated on

ozone level data, and leads to interesting findings in the Italian abortion data.

Keywords and phrases: dispersion function, heteroscedasticity, mean function, non-

parametric estimation, overdispersion, P-splines, underdispersion.

1 Introduction

In 1978 the Italian parlement approved a very disputed law which made induced abortion

(IA) legal. Also it requested the Italian Health Ministry to provide a yearly report on

data collected on induced abortions. This allows the Italian National Statistics Institute

(ISTAT) and the Italian National Health System to regularly produce reports on the state

of induced abortion in Italy (see e.g. Boccuzzo (2000) and Spinelli et al. (2006)) and re-

searchers to study the phenomenon (e.g. Figà-Talamanca et al. (1986), Salvini Bettarini

and Schifini D’Andrea (1996) or Spinelli and Grandolfo (2001)). To our knowledge, the

study of the phenomenon has mostly focussed on a temporal perspective, on the geo-

graphical differences and on basic socio-economical characteristics of women undergoing
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IA. A brief general overview of the historical changes and the present state of induced

abortion in Italy is given in Section 6.

In this work instead we intend to study the relationship between the induced abortion

rate and other covariates via regression-type models. For such an analysis we use the very

rich ISTAT dataset that publishes, among others, for each year in each Italian province,

the induced abortion rate (AR), defined as 1000 times the number of induced abortion

over the average resident female population aged between 15 and 49. Also additional

quantities are available for different years in each Italian province. For our analysis we

focus on some of these variables in the ISTAT data base, and study the relationship

between them and the abortion rate, and this for the data for the year 2001. In that year

a general families census was held, and we can therefore use also informations coming from

those data (also made available by the ISTAT). The data for 2001 are quite complete for

most variables, although the whole information on the abortion rate for the region of

Campania is missing for that year. Therefore we excluded this region from the analysis.
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Figure 1.1: The Italian abortion data. Left panel: the data together with an estimate for

the mean function as a function of the index of uncompleted scholarity. Right panel: the

deviance residuals from the fitted mean function.

One of the variables included in the analysis is the Index of not finishing compulsory

education for the female population between 15 and 52 (computed as the ratio between

women who did not obtained the basic middle school diploma and the total female popu-

lation). We would like to investigate how this variable influences the abortion rate (AR).
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In Figure 1.1 we present a scatterplot of the data: the abortion rate data as response

variable (vertical axis) and the Index of uncompleted scholarity as covariate (horizontal

axis). Included in Figure 1.1 is also a smooth estimate of the mean regression function

depicting the mean influence that the Index of uncompleted scholarity has on the abortion

rate. This mean function has been estimated via P-splines (see Section 3), modelling the

data as coming from a Poisson distribution. The estimated function has a quadratic shape

that is strongly influenced by five data points belonging to the Puglia region which have

high levels for the index of uncompleted scholarity and also high abortion rate. Puglia is

in fact a region that shows extremely high abortion rates and in general seems to behave

differently compared to other Italian regions (see Section 6). The estimated mean func-

tion nevertheless indicates that up to a certain point the AR decreases in provinces where

women are less educated. For provinces with index of uncompleted scholarity higher than

13 the decrease stops and we see an increase, due mainly to the presence of the data of

Puglia.

The right panel of Figure 1.1 shows the deviance residuals of the fitted model. These

residuals should vary uniformly around zero, while we can see that the size of the residuals

does not seem to be constant but changes for different values of the covariate. The variance

we observe from the data in fact does not correspond to the one we would expect to find

from the theoretical model (the assumed Poisson model). Therefore we introduce an

extra dispersion parameter to model this anomaly in the variance (see Section 5). Once

we estimate the dispersion function, we can smoothly estimate the variance function and

standardize the deviance residuals by dividing them for this estimated dispersion. The

resulting estimated variance function and the standardized deviance residuals are plotted

in Figure 1.2. The standardized residuals show a more constant variance than the ones of

Figure 1.1 (right panels). The estimated variance function is in a large part of the domain

much lower than the one we would expect from the theoretical model (a phenomenon called

underdispersion), and only in the right part of the domain the estimated variance is slightly

larger than the theoretical one (a phenomenon called overdispersion). The presented

estimates have been obtained via P-splines (see Section 5.2 for a brief description or see

Gijbels et al. (2010) for a detailed study of flexible estimation of the dispersion function

in the univariate case). In conclusion, Figure 1.1 illustrates the need for extra modeling

efforts for the dispersion, in order to account for the observed over- and underdispersion

phenomenon.

So far we only briefly illustrated how one of the covariates influences the response
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Figure 1.2: The Italian abortion data. Left panel: estimated variance function in case of

a constant dispersion (dashed curve) and estimated variance obtained when also estimat-

ing an extra dispersion parameter (solid curve). Right panel: the standardized deviance

residuals from the fit with estimated dispersion.

variable (the AR). It is of interest however to find out how the AR varies as a function

of not only one covariate but more than one (Generalized Linear Models, see Section 2).

Moreover we would like to be able to obtain flexible estimates, rather than polynomial

shapes (Generalized additive models, see Section 4). As is seen from the above example

the variance of the analyzed data does not behave as one would expect from the theo-

retical model (the Poisson model) and therefore in Section 5 we introduce a new class

of models which extends the usual GLM models and allow us to also estimate the dis-

persion as a function of covariates. By applying the GAM methodology in these new

models we obtain smooth estimates for the dispersion function. In Section 6 we return

to the analysis of the abortion rate in the Italian provinces, obtaining smooth estimates

for both the mean and the dispersion as function of covariates. The analysis reveals some

very interesting findings. Finally, in Section 7 the perfomance of the proposed methods

is further investigated by means of a simulation study.
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2 A brief introduction to GLMs and GAMs

Generalized Additive Models (GAMs, Hastie and Tibshirani (1986 and 1990)) could be

described as a smooth extension of Generalized Linear Models (GLMs), a generalization

themselves of linear models (see McCullagh and Nelder (1989) for a complete discussion

of GLMs). Since the seminal book of Hastie and Tibshirani (1990) a lot of work has

been done on extending and developping GAMs; see for example the recent monograph

of Wood (2006a) and the paper by Marx and Eilers (1998), among others.

In the GLM setting one is interested in studying the relationship between the mean of a

response variable Y and a set of covariates Xd = (X1, . . . , Xd), assuming the relationship

to be linear (or polynomial). Generalized Additive Models (GAM) extend GLM by taking

the relationship between the expected value of Y and the covariates to be smooth and

unknown rather than polynomial. In both frameworks, one assumes that the response

variable Y given Xd = xd, with xd = (x1, . . . , xd) ∈ IRd, follows a distribution coming

from the Exponential Family of Distributions with conditional density function

eY (y; θ(xd), φ) = exp

{

yθ(xd)− b(θ(xd))

φ
+ c(y;φ)

}

, (2.1)

where b(·) and c(·;φ) are known functions, identifying specific distributions and φ is a

scale parameter. We denote this as (Y |Xd = xd) ∼ EF(b(θ(xd)), φ). It can be shown

that µ(xd) = E[Y |Xd = xd] = b′(θ(xd)) and Var[Y |Xd = xd] = φb′′(θ(xd)). In GLM

and GAM one more generally models E[Y |Xd = xd] by introducing a link function g(·)

which links the expected value of the conditional distribution to η(xd): η(xd) = g(µ(xd)).

A link function is called a canonical link when η(xd) = g(b′(θ(xd))) = θ(xd), i.e. when

g(·) = (b′)−1(·). In the remainder of the paper we will use, unless otherwise stated,

canonical link functions. In a GLM setting the function η(xd) is taken to be a linear

function of the covariates. In GAM finally η(xd) is modelled as a linear combination of

smooth (unknown) functions of the explanatory variables:

g(µ(xd)) = η(xd) = α0 + η1(x1) + . . .+ ηd(xd) = α0 +
d

∑

j=1

ηj(xj) , (2.2)

where ηj(xj) is a smooth function which needs to be determined. When taking all the

ηj(xj) to be of a parametric linear shape, we fall back into the standard GLM setting.

Of particular interest is the situation in which we have some variables entering the model

(2.2) in a parametric linear fashion (e.g. as a polynomial), and others entering in a

nonparametric fashion (i.e. via a smooth unknown function). The latter situation leads
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to a semi-parametric model. Generally, the model in (2.2) is defined up to a constant

and is not identifiable, in the sense that we could add and substract the same constant

β0 from two ηi(xi) and ηj(xj) components (with i 6= j), without this affecting the final

fit. In order to avoid this identifiability issue we introduce a constraint on the expected

value of each smooth component: E[ηj(Xj)] = 0. Different smoothing methods can be

used to estimate the smooth (unknown) functions. In this paper we follow Marx and

Eilers (1998) by using a direct modelling via penalized splines to estimate the smooth

functions. With this modelling approach Generalized Additive Models are reduced to

penalized Generalized Linear Models, with a relatively small number of parameters to

be estimated. Moreover, P-splines allows to fit smooth function with a very easy set

up and have attractive numerical properties. See Eilers and Marx (1996) or Section

4.1 in Wood (2006a) for more extensive discussion on the advantages of P-splines on

other smoothing techniques. In the next section we briefly introduce Penalized splines

(P-splines) smoothing techniques and necessary notations.

3 Penalized splines: a brief overview

To briefly introduce Penalized splines we refer to a GLM setting with only one covariate

X . The main idea, as introduced in Eilers and Marx (1996), is to extend the traditional

GLM allowing E[Y |X = x] = µ(x) to be a smooth (unknown) function. Assuming that

(Y |X = x) ∼ EF(θ(x), φ), we model the linear predictor η(x) as a linear combination

of B-spline basis functions: η(x) = α1B1(x) + . . . + αKBK(x). For a given set of knots

{κ1, . . . , κk}, B-spline basis functions of degree p, are composed of polynomial pieces of

degree p, joined together at each knot point κj , such that the resulting function is (p− 1)

times differentiable with a continuous (p − 1)th derivative. This results into a basis of

dimension K = k + p + 1. We then can approximate the unknown η(·) function in the

space of B-spline basis functions

η(x) =

K
∑

j=1

αjBj(x) = BT (x)α , (3.1)

where we denote B(x) = (B1(x), . . . , BK(x))
T the B-splines base and α = (α1, . . . , αK)

T ,

the unknown vector of parameters. Here the superscript T denotes the transpose of a

vector or a matrix. Taking a large set of B-spline functions leads to a better approximation

in (3.1) but the resulting fit will also show a large variability. To control this overfitting
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a penalty term is introduced in the likelihood. In particular in P-splines regression we

use a penalty based on the finite differences of adjacent coefficients αj, namely a penalty

term
∑K

j=m+1(∆
mαj)

2, where m is the order of the difference operator: ∆αj = αj −αj−1,

∆2αj = ∆∆αj = αj − 2αj−1 + αj−2 and so on.

For data points (x,y) = ((x1, y1), . . . , (xn, yn))
T , an i.i.d. realisation from (X, Y ), we

obtain B(xi), for all i = 1, . . . n, and build from this the B-splines bases matrix B of

dimension n × K in which the ith row is given by BT (xi) = (B1(xi), . . . , BK(xi)). The

penalized log-likelihood is defined as

l(α;x,y, φ, λ) =
yTBα− 1T

nb(Bα)

φ
−

1

2
λαTDT

mDmα, (3.2)

where λ > 0 is the so-called smoothing parameter and 1n = (1, 1, . . . , 1)T denotes the

unit vector of length n. By b(Bα) we mean to apply the function b( ) to each element

of the vector Bα, so that b(Bα) = (b(BT (x1)α), . . . , b(BT (xn)α))T . The same notation

holds for other functions applied to a vector of values. The quantity αTDT
mDmα is the

matrix representation of
∑K

j=m+1(∆
mαj)

2. See Gijbels et al. (2010) for more details.

Maximization of (3.2) with respect to α leads to the maximum penalized likelihood

estimator of α. This estimator is obtained by using iterative procedures, like Fisher

scoring. After some algebra (for details see e.g. Eilers and Marx (1996) or Gijbels et al.

(2010)) we find that, for a given λ and for a current value α̃ of α, an updated value for

α is obtained from the updating rule

α = (BTW̃B + λDT
mDm)

−1BTW̃ z̃, (3.3)

with z̃ the current working variable vector

z̃ = Bα̃+ (y − b′(Bα̃))
1

b′′(Bα̃)
, (3.4)

and W̃ the current diagonal matrix

W̃ = diag

(

1

φ
b′′(Bα̃)

)

. (3.5)

So far, λ was supposed to be given. The choice of λ is rather crucial though: larger

values of λ correspond to smoother estimated function; lower values of λ instead, lead to

more wiggly estimates (i.e. overfitting).
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4 Direct P-Splines Generalized Additive Models

Marx and Eilers (1998) proposed to use P-splines in order to estimate the smooth compo-

nents of a GAM model. Each smooth unknown component ηj(xj) in (2.2) is modelled as a

linear combination of Kj B-splines and overfitting for the component is avoided by adding

to the likelihood a penalty term based on the finite differences of adjacent coefficients.

This modelling can be easily extended to allow for parametric modelling for a subset

of the covariates. We first illustrate this via an example. In Figure 4.1 (top panels) data

on the ozone level in Upland, California in 1976 (see Breiman and Friedman (1985)) are

depicted. We are interested in modelling the ozone level (Y ) as a quadratic parametric

function of the inversion base temperature (X1) and as a smooth unknown function of

the inversion base height (X2) and the daggett pressure gradient (X3):

g(µ(x1, x2, x3)) = η(x1, x2, x3) = α0 + η1(x1) + η2(x2) + η3(x3) , (4.1)

with η1(x1) = x1α11 + x2
1α12 = BT

1 (x1)α1, a parametric quadratic function and with

nonparametric components η2(x2) = BT
2 (x2)α2 and η3(x3) = BT

3 (x3)α3, where B2(x2) =

(B2,1(x2), . . . , B2,K2
(x2))

T (respectively B3(x3)) is a B-spline basis of dimension K2 (re-

spectively K3) and α2 (α3) is a vector ofK2 (K3) parameters which needs to be estimated.

The vectors B1(x1) = (x1, x
2
1)

T and α1 = (α11, α12)
T are the usual parametric design vec-

tor and vector of parameters found in the GLM setting. Taking xd = (x1, x2, x3), where

d = 3, defining a ‘design’ matrix B(xd) = [1,BT
1 (x1),B

T
2 (x2),B

T
3 (x3)]

T and a vector of

parameters α = (α0,α
T
1 ,α

T
2 ,α

T
3 )

T we can finally rewrite (4.1) as

g(µ(xd)) = η(xd) = α0 + η1(x1) + η2(x2) + η3(x3) = BT (xd)α , (4.2)

which is of analogous form as (3.1) in the univariate case. Similarly as in Section 3 large

sets of knots are used to build the B-splines bases B2(x2) and B3(x3), and, in order

to avoid overfitting, we add two difference penalties of order m1 and m2 and introduce

smoothing parameters λ1 and λ2 for governing the smoothness of each component. We

define the block diagonal penalty matrix P = blockdiag (0, 0, 0, λ1D
T
m1

Dm1
, λ2D

T
m2

Dm2
)

where the zeros in the first three elements reflect the fact that we do not need to introduce

any penalization for the parametric part of the fit (including the intercept).

For data points (x,y) = ((x11, x21, x31, y1), . . . , (x1n, x2n, x3n, yn))
T , an i.i.d. realisation

from (X1, X2, X3, Y ), we can build the design matrix B, in which the ith row consists of

BT (xd,i) with xd,i = (x1i, x2i, x3i). For a given set of smoothing parameters λ = (λ1, λ2),
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we find similarly as in Section 3, that the updating rule for α is

α = (BTW̃B + P )−1BTW̃ z̃, (4.3)

given the current value α̃ of α, with z̃ and W̃ defined as in (3.4) and (3.5).
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Figure 4.1: The ozone data. Top panels: scatterplots of the (centered) data; Bottom

panels: centered data together with estimates of the components η1, η2 and η3 using λ =

(0.0475, 0.0025) (dashed curves) or λ = (4.5, 3.5) (solid curves).

We model the ozone data as coming from a (conditional) normal distribution, with

canonical link the identity function. In Figure 4.1 (lower panels) we depict the estimates

for the mean components η1(·), η2(·) and η3(·) in (4.1). The estimates are centered

around zero to avoid identifiability issues. As a consequence of our modelling strategy

the estimated first component is a quadratic function whereas the two other components

are modelled via by the P-splines approach and estimated nonparametrically. The first

component shows a strong effect. The second and third component vary less around

zero but show interesting shapes. See also Section 3.1 of Buja, Hastie and Tibshirani
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(1989) for a discussion on the analysis of these data. In Figure 4.1 two different estimates

corresponding to two different choices of the smoothing parameters values λ are shown:

lower values of λ tend to give too wiggly estimates. In Section 5.3 we briefly discuss a

data-driven way to choose these parameters.

Similary in general GAMs when the expected value of Y |Xd is modelled as a function

of the covariates Xd = (X1, . . . , Xd) through the link function g(·) as in (2.2) one can al-

low both parametric and nonparametric dependencies of the covariates. More specifically

assume that dP ≤ d covariates, say XP
d = (X1, . . . , XdP

), enter the model parametrically,

while dNP = d − dP covariates, say XNP
d = (XdP+1, . . . , Xd) are modelled nonparamet-

rically (via approximations with P-splines). Denote xd = (x1, . . . , xdP
, xdP+1, . . . , xd) =

(xP
d ,x

NP
d ), and let Bj(xj) be the parametric model basis of dimension Kj for modelling

the parametric component of xj for j = 1, . . . , dP. The global basis for the parametric part

is then BP(xP
d ) =

[

BT
1 (x1), . . . ,B

T
dP
(xdP

)
]

with dimension KP =
∑dP

j=1Kj . Similarly, we

have dNP sets of B-splines basis functions for the flexible modelling of the dNP = d − dP

other covariates, denoted by Bj(xj) of dimension Kj , for j = dP + 1, . . . , d. Denote

by BNP(xNP
d ) =

[

BT
dP+1(xdP+1) . . .B

T
d (xd)

]

the global basis for this flexible (nonpara-

metric) modelling part, of dimension KNP =
∑d

j=dP+1Kj . Finally, defining B(xd) =
[

1,BP(xP
d ),B

NP(xNP
d )

]T
we obtain the model basis of dimension K = 1+KP+KNP and

can rewrite (2.2) as

g(µ(xd)) = η(xd) = α0 +BP(xP
d )α

P +BNP(xNP
d )αNP = BT (xd)α (4.4)

with α = (α0, (α
P)T , (αNP)T )T the vector of unknown parameters, of dimension K, that

need to be estimated. The B-splines bases that formBNP(xNP
d ) are built, once again, using

large sets of knots, and in order to avoid overfitting we introduce a vector of smoothing

parameters λ = (λ1, . . . , λdNP
) and difference order penalties of order (m1, . . . , mNP).

For data points (x,y) = ((x11, x21, . . . , xd1, y1), . . . , (x1n, x2n, . . . , xdn, yn))
T , an i.i.d.

realisation from (X1, . . . , Xd, Y ) we build the model matrix B = [1n BP BNP]. For

a given smoothing parameters vector λ = (λ1, . . . , λdNP
) the penalty matrix is P =

blockdiag (0, 0KP
, λ1D

T
m1

Dm1
, . . . , λdNP

DT
mdNP

DmdNP
), where the first 1 + KP zero ele-

ments reflect the fact that there is no need to penalize the parametric components of the

model. The updating rule for α is as in (4.3) with now the more general forms for B and

P .
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5 Flexible modelling of the multivariate mean and

dispersion function

When working within the GLM or GAM framework we are assuming that the response

variable Y given Xd = xd comes from a distribution belonging to the one-parameter

exponential family of distributions. This implies that the relationship between the mean

and the variance is known and is Var[Y |Xd = xd] = φb′′(θ(xd)) (see Section 2), with φ a

constant. As illustrated via the example in Section 1 (see Figures 1.1 and 1.2) the form

of the variance in the one-parameter exponential family can be too restrictive: data (es-

pecially count or proportion data) sometimes show a variance that is larger (respectively

smaller) than the one we would expect from the theoretical model. This is referred to

as overdispersion (respectively underdispersion). In addition, the amount of overdisper-

sion (underdispersion) may vary as a function of a (set of) covariate(s). Also, continuous

normal data can exhibit a variance that is not constant, as we usually assume in the

linear model context, but actually depends on a set of covariates (a problem referred to

as heteroscedasticity). Indeed, recall that for the normal model b(θ) = θ2/2, b′′(θ) = 1

and φ = σ2 leading to a constant variance for the theoretical model.

Different methods have been proposed to analyze data whose variance differs from the

theoretical one (see for example Hinde and Demétrio (1998) for a good review of some

common methods). Overdispersed proportion or count data are often analyzed via beta-

binomial or negative binomial distributions. These approaches though can only handle

overdispersed data, and no similar techniques exist for handling underdispersed data.

Another approach is to extend the original models and assume a general parametric form

for the variance function, possibly introducing extra parameters in the model. Examples of

this latter approach are the pseudo-likelihood approach (Davidian and Carroll (1987)), the

Extended Quasi-Likelihood proposed by Nelder and Pregibon (1987) and the modelling via

a Double Exponential family of distributions (Efron (1986)). These different approaches

have each their advantages and disavantages: see Nelder and Lee (1992) and Davidian

and Carroll (1988), among others, for a comparison of the different methods.

The aim of this paper is to allow for a flexible modelling of the dispersion function

in the multivariate setup. To achieve this we focus on the Double Exponential Family

framework, which allows to analyze with a unique approach heteroscedastic data and both

overdispersed and underdispersed data, or even data showing both overdispersion and

underdispersion. We will model the dispersion function, combining the GAM modelling
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approach of Section 4 with the Double Exponential Family framework, extending as such

the one-dimensional approach presented in Gijbels et al. (2010).

Previous work on flexible modelling of the mean and variance function include Chapter

14 of Ruppert et al. (2003), in which a mixed model approach for normal heteroscedastic

data is proposed. Flexible estimation of the mean and variance function for normal

heteroscedastic data is also studied by Yuan and Wahba (2004), who propose a procedure

based on penalized likelihood. Nott (2006) also works within the Double Exponential

Family of distributions and uses a Bayesian Mixed Model approach to semi-parametric

modelling. Finally Rigby and Stasinopoulos’ (2005) Generalized Additive Models for

Location Scale and Shape (GAMLSS) also tackles the issue of variance function estimation

by using hierarchical modelling and Bayesian reasoning. Hierarchical modelling is also the

basis of the work of Lee and Nelder (2006). The compactness of the approach allowed by

the Double Exponential Family framework is an advantage over an hierarchical modelling

approach. As shown in Gijbels et al. (2010) the performance of two approaches is quite

comparable, with the Double Exponential family having the advantage that it allows the

modelling of data which show overdispersion in some areas of the covariates domain and

underdispersion in others. It should also be mentioned that the direct penalized approach

that is used here has the advantage of being computationally very reasonable. Estimates

in fact are obtained via a unique Penalized Iterative Reweighted Least square, with no

need for the backfitting algorithm or the numerical approximations that would be needed

if taking a Mixed Model approach to smoothing. In this last approach in fact, one assumes

that the spline coefficients would come from a specific random distributions. This results

in the final likelihood of the problem to be an integral which can not be solved analytically

and requires numerical approximation.

Variance (or dispersion) estimation is not only needed from the point of view of cor-

recting models whose assumptions are too restrictive for real data, but in many cases the

estimation of the variance function is of interest in itself. Carroll and Ruppert (1988)

discuss the importance of variance estimation and provide a nice overview of parametric

variance estimation methods in the linear regression context.

5.1 Double Exponential Family of distribution

Efron (1986) introduced the Double Exponential Family of Distributions, which will allow

here for a unique compact framework for tackling both over- and under-dispersed data

12



and heteroscedasticity. See Section 5.2. The Double Exponential Family extends the

usual one-parameter Exponential Family by introducing an extra parameter controlling

the variance independently from the mean. For simplicity of presentation consider first the

non-regression case (i.e. absence of covariates). Given an exponential family as in (2.1),

take θS to be the choice of θ corresponding to the saturated one-parameter model, which

maximizes eY (y; θ, φ) over all possible values of θ (θS = (b′)−1(y)). The corresponding

Double Exponential Family is

f̃Y (y; θ, φ, γ) = c(θ, γ)γ−
1
2 eY (y; θ, φ)

1
γ eY (y; θS, φ)

1− 1
γ , (5.1)

where c(θ, γ) is a normalizing constant, such that
∫

∞

−∞
f̃Y (y; θ, φ, γ)dy = 1. This nor-

malizing constant can be approximated (in first order) by 1 (see Efron (1986) and Lee

and Nelder (2000) for a discussion on the quality of this approximation). Recalling that

the deviance for a one-parameter exponential family is d(y, θ) = 2[log(eY (y; θS, φ)) −

log(eY (y; θ, φ))], the approximation of (5.1) can be written as

fY (y; θ, φ, γ) = γ−
1
2 eY (y; θ, φ)

1
γ eY (y; θS, φ)

1− 1
γ = γ−

1
2

{

exp

[

1

2
d(y, θ)

]}

−
1
γ

eY (y; θS, φ).

(5.2)

We refer to this as Y ∼ DEF(b(θ), φ, γ). Efron (1986) shows that for such a Y the ap-

proximate mean and variance are respectively E(Y ) = µ = b′(θ) and Var[Y ] = γφb′′(θ).

With this the interpretation of the γ parameter becomes clear: it is an extra parameter

which governs the dispersion. When γ = 1 we fall back to the original one-parameter

Exponential Family in (2.1), while the case of γ > 1 (respectively γ < 1) corresponds to

overdispersion (underdispersion). In the case when Y is normally distributed γ coincides

with the variance parameter (usually noted with σ2), when taking φ = 1, and the normal-

izing constant c(θ, γ) has exactly value 1. For other distributions, the actual value of the

variance is the product of the variance we would have in the one-parameter exponential

family framework multiplied by the value of the γ parameter. For a given value of θ,

the estimation of γ will then lead to a unique estimation of the variance. When talking

about variance or dispersion estimation we thus basically refer to the same issue: the

estimation of γ. In particular we are interested in estimating γ as a (flexible) function

of a set of covariates (X1, . . . , Xd). For this we incorporate the GAM methods into the

Double Exponential Family approach in the next subsection.
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5.2 Flexible modelling of the mean and dispersion function

In Section 4 we have seen how to flexibly estimate the mean function of a dependent

variable Y coming from a distribution belonging to the Exponential Family via P-splines

in the GAM approach. We now wish also to obtain flexible estimates for the dispersion

function. We therefore take the dependent variable Y as coming from the Double Ex-

ponential Family and we model both the mean and the dispersion as flexible functions

of covariates via an extended GAM approach. We first explain the general framework

and the estimation method, and then illustrate the proposed procedure on the ozone data

example.

As for the flexible modelling of the mean we allow that part of the covariates Xd =

(X1, . . . , Xd) enters the modelling of the dispersion function in a parametric fashion,

whereas for the remaining part no specific parametric modelization can be justified. Given

the set of d covariates Xd = (X1, . . . , Xd), we model the mean as a function of a certain

set of dµ covariates, with dµ ≤ d. Also, we wish to have dPµ
covariates entering the mean

model in a parametric fashion and dNPµ
= dµ − dPµ

covariates entering the model in a

flexible (i.e. nonparametric) way. Similarly the dispersion function, denoted by γ(·), can

be modelled as a function of a set of dγ covariates (dγ ≤ d), possibly a different set than the

one used to model the mean. Again dPγ
covariates will enter the model parametrically and

dNPγ
= dγ−dPγ

covariates are allowed to influence the mean response in a flexible fashion.

We define Xdµ = (X1, . . . , XdPµ
, XdPµ

+1, . . . , Xdµ) = (XP
dµ
,XNP

dµ
) the set of covariates we

use to model the mean function µ(xdµ), and Xdγ = (X1, . . . , XdPγ
, XdPγ+1, . . . , Xdγ ) =

(XP
dγ
,XNP

dγ
) the set of covariates we use to model the dispersion function γ(xdγ ).

Estimation of the dispersion function γ(xdγ ) is done via a P-splines technique and the

introduction of a link function. Let h(·) be the link function such that γ(xdγ ) = h(ξ(xdγ ))

where ξ(xdγ ) will be modelled using a P-spline basis setup. Note that the link function

h(·) should be chosen in such a way that γ(xdγ ) is always non-negative.

Summarizing, we assume (Y |Xd = xd) ∼ DEF(b(θ(xdµ)), φ, γ(xdγ )), where φ is as-

sumed to be constant and known, and we model

g(µ(xdµ)) = η(xdµ) = αµ0 + η1(x1) + . . .+ ηdµ(xdµ) , (5.3)

and

h−1(γ(xdγ )) = ξ(xdγ ) = αγ0 + ξ1(x1) + . . .+ ξdγ (xdγ ), (5.4)

with αµ0 and αγ0 the two intercept parameters for the mean and the dispersion function.

The components η1(x1), . . . , ηdµ(xdµ) and ξ1(x1), . . . , ξdγ (xdγ ) for the mean and the disper-
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sion function, can then be either of a parametric or a flexible (i.e. nonparametric) type.

The components allowed to have a unknown smooth shape are modelled via P-splines,

so that we also need to introduce smoothing parameters λµ = (λµ
1 , . . . , λ

µ
dNPµ

) and λγ =

(λγ
1 , . . . , λ

γ
dNPγ

) and difference order penalties of order m1, . . . , mdNPµ
and ℓ1, . . . , ℓdNPγ

to governing the smoothness of each flexible component of the mean and the dispersion

function. Just as in Section 4 we rewrote (2.2) as (4.4), we can rewrite (5.3) and (5.4) by

defining Bµ(xdµ) =
[

1,BP
µ(x

P
dµ
),BNP

µ (xNP
dµ

)
]T

and Bγ(xdγ ) =
[

1,BP
γ (x

P
dγ
),BNP

γ (xNP
dγ

)
]T

so that we have

g(µ(xdµ)) = η(xdµ) = α0 +BP
µ(x

P
dµ
)αP

µ +BNP
µ (xNP

dµ
)αNP

µ = BT
µ (xdµ)αµ , (5.5)

and

h−1(γ(xdγ )) = ξ(xdγ ) = αγ0 +BP
γ (x

P
dγ
)αP

γ +BNP
γ (xNP

dγ
)αNP

γ = BT
γ (xdγ )αγ , (5.6)

with αµ = (αµ0, (α
P
µ)

T , (αNP
µ )T )T and αγ = (αγ0, (α

P
γ )

T , (αNP
γ )T )T the vectors of param-

eters that need to be estimated via iterative methods.

For a given sample of n observations (x,y), an i.i.d. realisation from (Xd, Y ), we

can extract from x the xµ vector in which we consider only the observed values of the

Xdµ covariates, and the xγ vector in which we consider only the observed values of the

Xdγ covariates. We then build the ‘design’ matrices Bµ = [1n BP
µ BNP

µ ] and Bγ =

[1n BP
γ BNP

γ ] similarly as in Section 4. Also, for given λµ and λγ , we can build the

two penalty matrices P µ = blockdiag (0, 0KPµ
, λµ

1D
T
m1

Dm1
, . . . , λµ

dNPµ

DT
mdNPµ

DmdNPµ

)

and P γ = blockdiag (0, 0KPγ
, λγ

1D
T
ℓ1
Dℓ1, . . . , λ

γ
dNPγ

DT
ℓdNPγ

DℓdNPγ

). Estimates of αµ and

αγ for given smoothing parameter vectors λµ and λγ, are obtained by maximizing the

penalized log-likelihood:

l(αµ,αγ;x,y,λ
µ,λγ , φ) = −

1

2
1T
n

{

log(h(Bγαγ)) +
1

h(Bγαγ)
d(y,Bµαµ)

}

−
1

2
αT

µP µαµ −
1

2
αT

γP γαγ .

(5.7)

Maximization of (5.7) is done via a two-steps iterative procedure: first we maximize

with respect to αµ and then with respect to αγ and iterate between the two steps until

convergence. Each of the two maximization steps is done via Fisher scoring. For starting

the iterative procedures one needs some starting values denoted by α
(0)
µ and α

(0)
γ . In

our implementation we take constant initial values such that µ̂(0) = n−1
∑n

i=1 yi = y

and γ̂(0) = φn, where φn is the constant value we would expect in the one-parameter

exponential family.
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Once initial values are chosen the two steps procedure is started and alternates between

the estimation of αµ (Step (a)) and the estimation of αγ (Step (b)), until both the mean

and the dispersion estimates converge. Denote the starting values at the ith iteration step

by µ̂(i−1)(xµ) and γ̂(i−1)(xγ). Each ith iteration then alternates between the following

steps:

• Step (a): estimation of αµ.

In order to obtain a maximum penalized log-likelihood estimation of αµ we rewrite (5.7)

as a function of αµ only, taking γ(xγ) = γ̂(i−1)(xγ). After some algebra (see Gijbels et

al. (2010)) it is found that the updating rule for αµ is:

αµ = (BT
µW̃ µBµ + P µ)

−1BT
µW̃ µz̃µ , (5.8)

with z̃µ = Bµα̃µ + (y − b′(Bµα̃µ))/b
′′(Bµα̃µ) the vector of working variables as in (4.3)

and W̃ µ the current diagonal matrix W̃ µ = diag
(

b′′(Bµα̃µ)
φγ(xγ)

)

in which the (estimated)

gamma values appear in the denominator.

• Step (b): estimation of αγ.

Similarly to Step (a), maximum penalized log-likelihood estimate for αγ are obtained by

rewriting (5.7) as a function of αγ only, taking θ(xµ) = θ̂(i)(xµ). The updating rule for

αγ can be found to be (Gijbels et al. (2010))

αγ = (BT
γ W̃ γBγ + P γ)

−1BT
γ W̃ γz̃γ , (5.9)

with z̃γ the working variable vector

z̃γ = Bγα̃γ + (d(y, θ(xµ))− h(Bγα̃γ))
1

h′(Bγα̃γ)
(5.10)

the vector of working variables and W̃ γ the current diagonal matrix of weights

W̃ γ =
1

2
diag

(

h′(Bγα̃γ)

h(Bγα̃γ)

)2

. (5.11)

At the final convergence we have that η̂(xµ) = Bµα̂µ = Hµẑµ and ξ̂(xγ) = Bγα̂γ =

Hγẑγ , withHµ = Bµ(B
T
µW̃ µBµ+P µ)

−1BT
µW̃ µ andHγ = Bγ(B

T
γ W̃ γBγ+P γ)

−1BT
γ W̃ γ

the hat matrices respectively of the mean and the dispersion estimation.

The algorithm has been presented until now taking λµ and λγ to be known and fixed.

Nevertheless, different choices of λµ and λγ will lead to different estimates and it would
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be desirable to be able to choose optimally the smoothing parameters values. In Section

5.3 we discuss a data-driven choice for these parameters.

We now illustrate the above procedure on the ozone data example. The need for

estimating the variance (dispersion) is clear from Figure 4.1. For example the variability

of the ozone concentration is much higher for higher inversion base temperature values.

Our new point of interest is then to estimate the variance function as a function of the

covariates. We are modelling the ozone data assuming that the ozone concentration values

(Y ) are normally distributed with mean µ and variance γ (Y ∼ N(µ, γ)), and we assume

that both µ and γ vary as a function of the covariates: Y |Xd = xd ∼ N(µ(xd), γ(xd)).

As in (4.1) the model for the mean will be:

g(µ(x1, x2, x3)) = η(xd) = αµ0 + η1(x1) + η2(x2) + η3(x3) , (5.12)

with g(·) the identity function, while for modelling γ(xd) we take

h−1(γ(x1, x2, x3)) = ξ(xd) = αγ0 + ξ1(x1) + ξ2(x2) + ξ3(x3) (5.13)

where h−1(·) is a link function such that the estimated γ(x1, x2, x3) is positive. In this and

the other examples we took h−1(γ(x1, x2, x3)) = log (γ(x1, x2, x3)). As for estimation of the

mean function, we take ξ1(x1) to be of a quadratic form, i.e. ξ1(x1) = x1α11+x2
1α12, while

both ξ2(x2) and ξ3(x3) are modelled flexibly via B-splines. Similarly to what we have done

in Section 4 we take Bγ1(x1) = (x1 x
2
1)

T , while Bγ2(x2) andBγ3(x3) are B-splines bases of

dimension Kγ2 andKγ3. We then takeKγ2 andKγ3 to be large and we avoid overfitting for

ξ2(x2) and ξ3(x3) by adding difference order penalties of order ℓ1 and ℓ2 and introducing

smoothing parameters λγ
1 and λγ

2 . Taking Bγ(xd) = [1, BT
γ1(x1), BT

2 (γx2), BT
γ3(x3)]

T

we rewrite (5.13) as:

h−1(γ(x1, x2, x3)) = ξ(xd) = αγ0 + ξ1(x1) + ξ2(x2) + ξ3(x3) = BT
γ (xd)αγ , (5.14)

with αγ the vector of parameters which needs to be estimated.

In Figure 5.1 we see the estimated mean and variance function components for the

ozone data. The points plotted in the lower panels of the figure are log d(y, θ̂(xd)). The

smoothing parameters value are λµ = (6, 20.43) and λγ = (9216.37, 18000). These values

were selected via GCV (see Section 5.3). The quadratic component ξ1(x1) seems to have

the strongest effect on the variance estimation. This partially reflects the fact that the

first component has also a strong effect on the mean estimation. In Figure 5.1 we also
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Figure 5.1: The ozone data: mean and variance estimation. Top panels: (centered) data

together with the estimated mean components η1, η2 and η3. Lower panels: (centered)

residuals are plotted with the ξ1, ξ2 and ξ3 estimates. 95% confidence bands for each

component are also drawn (dotted lines). The dashed lines in the above panels correspond

to the estimation of the mean components when taking the variance to be constant.

plot (as dashed curves) the mean component estimates we obtain when considering the

variance to be constant with smoothing parameters λµ = (6, 7.51). We see that estimating

the variance also has an impact on the mean estimation, although the general contribution

of each component to the final estimate does not change drastically. Theconfidence bands

(dotted lines) displayed in Figure 5.1 are calculated following Wood (2006b). See also

Gijbels et al. (2010) for details in a univariate context.

5.3 Choosing the smoothing parameters

The smoothing parameters λµ and λγ can have a strong impact on the final estimates. It is

therefore desirable to be able to choose these parameters in a somehow optimal way based

on the observed sample (x,y). In the context of mean estimation different techniques and
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methods have been proposed to choose the smoothing parameters optimally: see Eilers and

Marx (1996), Gu and Xiang (2001), Wood (2006a) or Wood (2008) for some discussions.

We propose to use the Generalized Cross Validation (GCV) technique for choosing the

smoothing parameter for the mean function. However, the usual GCV score needs to be

modified to account for the presence of the extra dispersion in the DEF. For a certain set

of λµ values we find a specific hat matrix Hµ(λ
µ), from which we can estimate the mean

values via θ̂λ
µ(xµ) = Hµ(λ

µ)zµ. Also we take df(λµ) = tr(Hµ(λ
µ)) to be the equivalent

degrees of freedom for the fit. We then select λµ by minimizing:

GCV(λµ) =
n 1T

n

[

d(y, θ̂λ
µ(xµ))/γ(xγ)

]

(n− df(λµ))2
, (5.15)

This quantity GCV(λµ) is a commonly used criterion to choose the smoothing param-

eters when estimating a mean function. Less work is present in the literature about

the choice of the smoothing parameter for the dispersion function estimation, and we

mimic here the ideas behind the construction of GCV(λµ). For a certain set of smoothing

parameters λγ we take γ̂λ
γ (xγ) = h(Hγ(λ

γ)zγ) to be the estimated dispersion values

and df(λγ) = tr(Hγ(λ
γ)) to be the approximation for the effective degrees of freedom

of the fit. Also, we need to define the deviance residuals for the variance estimation

dγ(γS, γ) = 2[log(fY (γS; θ, y))− log(fY (γ; θ, y))]. Since γS = d(y, θ) we can write:

dγ(d(y, θ), γ) =

{

log
γ

d(y, θ)
+

d(y, θ)

γ
− 1

}

.

An optimal choice of λγ is then given by minimizing:

GCV(λγ) =
n 1T

ndγ(d(y, θ(xµ)), γ̂λ
γ(xγ))

(n− df(λγ))2
. (5.16)

6 The Italian abortion data

6.1 An overview

Induced abortion in Italy was made legal in 1978 with a very debated law. In 1981

a national referendum rejected the repeal of the law with a large majority (80%), but

abortion is still a controversial topic in the country. With the legalization of abortion,

the ISTAT provided a form which must be filled in for each carried out induced abortion.

These forms are collected by the regions and transfered to the ISTAT and the Ministry of
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Health. Thanks to these data we can try to have a look at how the phenomenon evolved,

and what was the situation in 2001.

The first years after the legalization of induced abortion, the abortion rate showed a

general increase, probably due to the fact that clandestine abortions were diminishing in

favor of legal abortions, carried out in public or authorized private facilities. This is also

indicated by the substantial decrease of natural miscarriages, which were actually partly

the result of complications due to badly performed clandestine abortions. Moreover, some

of the regions (typically the southern regions) took longer time to provide the needed

services, so the data of the first years do not actually refer to the whole country, but only

to some regions. With time women had the possibility of performing a legal abortion in

all the national territory. In 1982 the highest national AR was registered and since then

we can observe a decline, resulting from a better information on contraceptive methods.

In the last years the abortion rate seems to be quite stable, although it should be noted

that a greater contribution to the number of IA comes from immigrated women, who tend

to have a higher abortivity rate than the women of Italian citizenship. Since the presence

of immigrated women is very different in the Italian territory, this higher abortivity rate

for immigrated women has different effects on the different Italian provinces.

The diversity of the Italian territory plays indeed a great role in the study of induced

abortion in Italy. Typically the southern regions (with the notable exception of Puglia)

took longer to create the necessary conditions to make legal abortion possible and still

in these regions the accessability to the national health system and in particular to legal

abortion services is lower. The Italian health system is in fact organized via the regions:

the same services are provided throughout the country, but the practical organization of

the health care is managed by the regions. Provinces are part of a specific region, on

which they depend for the health care organization. The actual offer of health services

is very different from region to region, with the southern regions typically showing less

accessability to health care, including legal abortion services. This partially explains why

the AR is generally lower in the southern regions, where the demand of legal abortion

is not met by the regional health institutions, and women might either fall back upon

illegal methods, or travel to other regions to perform a legal abortion or give up the idea

of abortion and give birth to an unwanted child. A notable difference in this landscape

is the case of Puglia, a southern region which, since the introduction of the 1978 law,

made an effort to offer its citizens the possibility to undergo legal abortion and has, since

the beginning, registered high abortion rates. Southern regions are also characterized by
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generally lower socio-economic conditions and by more traditional behaviours, which also

contribute to have lower AR.

A study of any social behaviour can therefore not ignore the differences among the

Italian regions. In fact in the late 90s we can recognize two main patterns in the abortivity

of Italian women (Boccuzzo (2000)). Married older women, possibly with children, might

use abortion as a final method to control the family size once the desired size of the family

has been reached and contraceptive methods have failed in avoiding the pregnancy. In fact

among married women the abortivity rate increases with the number of already present

children: abortion is seen as an extreme method to keep the family size stable. This

behaviour is more present in the southern regions where the expected family size is larger

than in the north: therefore this behaviour is typical for older women who have reached

the desired family size. This explains why, among married women, the southern regions

have the highest abortivity rates. Also among southern women between 35 and 39 married

women exhibit much higher AR than unmarried women. The other pattern which can be

identified is more frequent in the more modern central and northern regions: the abortion

is an extemporaneous event through which unmarried and may be younger women avoid

unexpected accidental pregnancy. In fact in these regions AR for unmarried women are

higher than those of married women.

6.2 The data analysis

Among the rich ISTAT dataset we consider the following variables (next to the AR vari-

able): the average age at first marriage for women, the Index of not finishing compulsory

education for the female population between 15 and 52 and the percentage of families

consisting of only one person (i.e. uniperson families). These variables might help in

characterizing the differences in provinces related to modernity and conditions for women.

We analyzed the data on the Abortion Rate as coming from a double Poisson model

(Efron 1986). As already seen in Section 1, the data show in fact a very strong underdis-

persion, with a variance that is much lower than what we would expect to find in Poisson

data (the sample mean and variance are respectively 8.75 and 4.61 to give a rough indi-

cation). A plot of the data can be seen in Figure 6.1, where we can already notice some

underdispersion. We can recognize in the data some differences in the Italian macro areas

(South, Center and North) and it is striking to see how the Abortion rate for the provinces

in Puglia is extremely high, much higher than the rest of the southern regions, with Bari
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and Foggia having the highest AR of all Italy. This might be due to the good level of

health care provided in the region, specially with regard to the possibility of having legal

abortion, but still the data for this region seem to be somehow out of the path of the

other data on Italian provinces. Therefore we will show the results of analysis done with

and without the data concerning Puglia. Other notable observations are the ones of the

provinces of Bolzano (North), Agrigento (South) and Sondrio (North): the three lowest

registered AR of Italy. Sondrio and Bolzano are both wealthy area, and Bolzano in par-

ticular is a special status province, with very good social services: the low AR rates are

possibly also due to the fact that families have the means to substain a child even if they

have already reached the desired family size. The low AR of Agrigento instead is probably

the result of the more traditional social environment and the poor health services of the

area. In Figure 6.2 we see the estimates for the mean and variance components obtained
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Figure 6.1: The Italian abortion data (raw data). A △ indicates observations from north-

ern regions, a + central regions and a × southern regions. The solid bullet • indicates

observations from Puglia.

by choosing optimal smoothing parameters as exposed in Section 5.3. In the top panels we

plot the centered logarithm of the original data (the canonical link function for a Poisson

is a logarithm: g(µ) = log(µ)), together with the estimated mean components. Similarly,

taking the link function for the dispersion to be a logarithm as well (h−1(γ) = log(γ)), we

plot in the lower panel the centered logarithm of the deviance residuals and the estimated

dispersion components. The plotted deviance residuals are obtained when estimating the

model using all the available observations, including the data of Puglia.

In Figure 6.2 we can see that including or not the data of Puglia can have an effect
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Figure 6.2: The Italian abortion data. Mean and dispersion function estimates (top and

bottom panels respectively). The solid lines correspond to the estimated mean and dis-

persion components when using all the available data, using respectively 11.56 and 7.41

degrees of freedom. The dashed lines correspond to the estimated mean and dispersion

components when not including data of Puglia, using respectively 10.62 and 7.82 degrees

of freedom.

on the estimates both for the mean and the dispersion, possibly leading to different

interpretations of the relationship between the covariates and the abortion rate. For

example, in the most left upper panel we see that, after a fast increase at the beginning,

the AR seems to slowly decrease in provinces where women marry after the age of 27. The

relationship between the abortion rate and average age at first marriages for women is

though very different depending whether we keep or not keep the data regarding Puglia in

our analysis. In the second upper panel we see how the AR changes as function of the index

of uncompleted scholarity for women: including the observation from Puglia changes the

function from being a decreasing function to a more quadratic-shaped function. For sure
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lower levels of uneducated women bring to higher abortion rate. Therefore in provinces in

which women in the last years could study, where women became more independent, AR

levels are higher. The third variable, the percentage of uniperson families is an indicator

of how modern the social environment of the province is: higher percentages indicate

provinces where the traditional family model is less present and people are less devoted

to building a family. Indeed we see that after a initial decay (of a different size according

to whether we keep or not the data from Puglia), the estimated function increases and in

areas where more families are of the uniperson type we find higher AR. The extremely high

percentages of uniperson families in the Province of Trieste and Savona though correspond

to average values of AR, and this modifies the final estimate for the component. Again,

these are northern quite wealthy provinces, that exhibit a modern behaviour but where

women choose less for abortion compared to other provinces having high percentages of

unipersonal families.

The differences in the mean estimates obtained when including or not the data from

Puglia have an impact in the computation of the deviance residuals and also the esti-

mates for the components of the dispersion will result in having different shapes. See the

lower panels of Figure 6.2 and in particular the lower left panel, where we see how the

dispersion estimate changes as a function of the average age at first marriages for women.

In provinces where women on average marry after the age of 27 the dispersion has a mild

increase. The relationship between the dispersion of the data and the Index of uncom-

pleted scholarity is decreasing up to a certain part, and has different behaviour whether

we include or not the data from Puglia. Finally the contribution of the last variable to the

dispersion is constant in the beginning, but then the dispersion diminishes with higher

percentages of uniperson families.

7 Simulation studies

To have a better understanding of how the proposed methods perform we present some

simulation studies which investigate different aspects of the estimation procedure. We

focus our attention to the Normal model with two covariates and simulate 1000 samples

with two different underlying true models: Model A and Model B. We take the true

underlying mean function for Model A (µA) and Model B (µB) to be:

µA(x1, x2) = ηA(x1, x2) = η0 + η1(x1) + η2(x2)

µB(x1, x2) = ηB(x1, x2) = η0 + η2(x1) + η1(x2)
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where we take the identity to be the link function for the mean (η(x1, x2) = µ(x1, x2)). The

difference between the two mean structure is that we exchange the η1 and η2 components.

The two components are shown as solid lines in the upper panels of Figure 7.3: the η1(·)

component is much smoother than η2(·). Contrary to what we did for the mean we took

the structure for the variance of the two models to be same. Taking the logarithm as the

link function for the variance (ξ(x1, x2) = log(γ(x1, x2))) we have

ξA(x1, x2) = ξB(x1, x2) = log(γ(x1, x2)) = ξ0 + ξ1(x1) + ξ2(x2)

with ξ1(·) and ξ2(·) to be the functions depicted as solid lines in the lower panels of Figure

7.3: again, one of the two function (ξ1(·)) is smoother than the other.
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Figure 7.3: Model A: true mean and variance components with representative estimates.

In Figure 7.3, beside the true functions we also see some representative estimates

obtained for Model A. For each simulated dataset in fact we estimated both the mean and

the variance function components with the extended GAM approach presented in Section
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5. In order to evaluate the quality of the obtained fits, we computed an approximate

integrated squared error (AISE)

AISE(s) =

∑

xgrid

(

f̂ (s)(xgrid)− ftruexgrid)
)2

∑

xgrid
(ftrue(xgrid))

2 , for s = 1, . . . , 1000,

for each of the simulations (indexed by s). Herein xgrid is an appropriate grid of values,

ftrue(·) and f̂(·) are, respectively, the true and the estimated function (either the global

mean and variance functions or the mean and variance components).
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Figure 7.4: Model A and Model B: boxplots of the AISE values for the mean and the

variance function components in the two different models.

In Figure 7.3 we present the true and the estimated components corresponding to

the 5th, the 50th and the 95th quantile of the AISE values for Model A. The estimation

procedure in general catches quite well the shape of both the mean and the variance
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components, although the estimation of the last ones is, not surprisingly, slightly less

precise. Results for Model B are not presented here but do not substantially differ from

what can be seen in Figure 7.3.

The simulation framework of two different mean structures composed by swapping the

two mean components was intended to investigate whether the smoothness of the mean

component for one covariate has an effect on the estimation of the dispersion component

for the same covariate, and vice-versa, whether the complexity of the dispersion compo-

nent affect the estimation of the mean component. In Figure 7.4 we show boxplots of the

AISE values for the mean and the variance components in both Model A and Model B.

The performance of the estimation in the two models for the general components η(x1, x2)

and ξ(x1, x2) is quite comparable, and the median value of the AISE for each component

do not differ dramatically in the two model. What we can notice is that the AISE for η1(·)

shows larger variability in Model A than in Model B. Similarly, the variability of the AISE

for η2(·) is larger in Model B. It seems then, that the estimation of a mean component as a

function of a covariate for which the dispersion component is the smooth function ξ1(·), is

somehow more variable. The performance of the estimation of the variance components

for the two models is less different, although we observe that the AISE values for the

variance components are generally higher than the one for the mean components.

Finally, to have a better understanding of what is the gain obtained by estimating the

variance function via extended GAM, for each simulated dataset we also fitted a standard

GAM in which the variance is estimated as a constant. In Figure 7.5 we see boxplots of

the AISE values for the estimation of the mean and variance functions when the variance

is estimated either as a function or as a constant. Results are presented for both Model

A and Model B and we can see that estimating the variance has a positive impact on the

quality of the mean estimation. Not surprisingly, estimating the variance function, when

the variance is indeed changing as a function of the covariates, gives much lower AISE

values than taking the variance to be constant.
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