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ABSTRACT. We give another proof for Kluvanek and Knowles’ characterization of Liapounoff mea-

sures [KLUVANEK, I.—KNOWLES, G.: Vector Measures and Control Systems. North-Holland Math-
ematics Studies 20, Amsterdam, 1976] and of the fact that the range of an exhaustive measure with

values in a complete locally convex space is relatively weakly compact.
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1. Introduction

Liapounoff’s famous theorem about the range of measures says that the range of any non-atomic
σ-additive Rn-valued measure defined on a σ-algebra is convex and compact. The validity of such
a theorem also characterizes finitely dimensional Banach spaces, see [1: Corollary 6, p. 265]. More
generally, Wnuk [10] proved: If X is an F-normed linear space such that any non-atomic σ-additive
measure µ : A → X defined on a σ-algebra is convex or compact, then X is finitely dimensional.
On the other hand, for a σ-additive measure µ : A → E defined on a σ-algebra with values in a
Hausdorff complete locally convex linear space, Kluvanek and Knowles give in [4: Theorem V.1.1]
a necessary and sufficient condition for the range of µ to be convex and weakly compact. The
proof of this theorem is rather involved. Much simpler is the proof in the Banach-space-valued
case given in [1: IX.1.4]. The reason why the Banach-space-valued case is easier to handle is that
in this situation a vector measure has a real control measure by a theorem of Bartle, Dunford and
Schwartz.

In this note we give another proof of Kluvanek and Knowles’ version of Liapounoff’s convexity
theorem. Using the Frechét-Nikodým-approach we decompose an E-valued measure µ as µ =∑
γ∈Γ

µγ where each µγ has a real control measure. Based on such a decomposition the proof can

be reduced to the case of measures admitting a control measure and in this case the proof can
be done as in the Banach space-valued case. Moreover, we give in Theorem 5.3 a finitely additive
version of Kluvanek and Knowles’ theorem.

Another theorem in which we are interested in says that any exhaustive E-valued measure has
relatively weakly compact range. As Tweddle [7] showed, this is an easy consequence of James’
characterization of weakly compact sets. But James’ theorem is rather deep and therefore it is of
interest to give a proof of this theorem about the range of measures based on less deep tools. A
proof not based on James’ theorem can be found in [4]. Much easier is Bartle-Dunford-Schwartz’
proof in the Banach space-valued case, see [1: Corollary I.1.6]. In this note we prove the theorem
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about the relative weak compactness of the range of an exhaustive measure µ again using the
decomposition µ as µ =

∑
γ∈Γ

µγ where the µγ ’s are measures admitting a control measure, and thus

we can reduce the proof to the case of measures admitting a control measure which can be done
as in the Banach space-valued case.

This note is organized as follows. In Section 2 we present the mentioned theorems of Tweddle
and of Kluvanek and Knowles in the special case of measures admitting a control measure. For
completeness and convenience of the reader we include their short proofs which are almost identical
with the proofs of Diestel and Uhl [1] in the Banach space-valued case. In Section 3 we study
uniform summability. In Section 4 we prove a decomposition theorem for a measure µ of the type
µ =

∑
γ∈Γ

µγ where µγ are measures admitting a control measure and the system of all (yγ)γ∈Γ with

yγ belonging to the range of µγ is uniformly summable. In Section 5 we use the results of Sections
3 and 4 to reduce the proof of the main Theorems 5.1 and 5.3 to the case of measures admitting
a control measure, the case presented in Section 2.

Notation. Throughout, let (E, ρ) be a Hausdorff complete locally convex linear space with con-
tinuous dual E∗.

A stands for an algebra of subsets of a nonempty Ω. If R is a subring of A, then S(R) :=
span{χA : A ∈ R} denotes the linear subspace generated by the characteristic functions χA,
A ∈ R, and B(R) denotes the closure of S(R) in the Banach space of all bounded functions
f : Ω→ R endowed with the sup-norm ‖f‖s := sup

x∈Ω
|f(x)|.

Let R be a Boolean ring (not necessarily with unit). As usual we denote the symmetric dif-
ference (addition), infimum (multiplication), supremum, difference, natural order by 4,∧,∨,r,≤,
respectively. If R is a Boolean algebra, i.e., a Boolean ring with unit, we denote the unit by e and
the complement of any x ∈ R by x′ := er x.

We say that a finitely additive function µ : R → E is a measure. µ is called exhaustive if
lim
n→∞

µ(an) = 0 for any disjoint sequence (an)n∈N in R. We set N(µ) := {a ∈ R : ∀x ∈ [0, a]

µ(x) = 0}.
For any homomorphism φ we denote its kernel by N(φ).

2. The range of vector-valued measures admitting a control measure

Let µ : A → E be a bounded measure. Then there is a unique linear map Tµ : S(A) → E with
Tµ(χA) = µ(A), A ∈ A. Since {f ∈ S(A) : 0 ≤ f ≤ 1} = co{χA : A ∈ A}, we have:

{Tµ(f) : f ∈ S(A), 0 ≤ f ≤ 1} = coµ(A).

Hence {Tµ(f) : f ∈ S(A), ‖f‖s ≤ 1} is contained in coµ(A)− coµ(A) and is therefore bounded.
It follows that Tµ : (S(A), ‖ · ‖s) → E is a continuous linear map and has therefore a continuous
linear extension on (B(A), ‖ · ‖s), which we denote again by Tµ. We also write

∫
fdµ := Tµ(f) for

f ∈ B(A). By a continuity argument one sees that x∗(
∫
fdµ) =

∫
fd(x∗ ◦ µ) for any x∗ ∈ E∗ and

f ∈ B(A).

Remark 2.1. If N is an ideal in A contained in N(µ) and φ : B(A) → B(A)/B(N ) denotes the

quotient map, then B(N ) ⊆ N(Tµ) and the linear map T̂µ : (B(A), ‖ · ‖s)/B(N ) → E uniquely

determined by T̂µ ◦ φ = Tµ is continuous, too.
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Let λ : A → [0,+∞[ be a positive measure and µ : A → E a vector measure. We say that λ is a
control measure for µ (in symbols µ� λ) if lim

n→∞
µ(An) = 0 whenever (An)n∈N is a sequence in A

with lim
n→∞

λ(An) = 0. In this case, µ is exhaustive and therefore bounded. A slight generalization

of a theorem of Bartle, Dunford and Schwartz says that µ : A → E has a control measure if µ
is exhaustive and E is metrizable; hereby the control measure can be chosen σ-additive if µ is
σ-additive. If A is a σ-algebra and λ and µ are σ-additive, then µ� λ if and only if N(λ) ⊆ N(µ).

If A is a σ-algebra and λ : A → [0,+∞[ a σ-additive measure then B(A) is the space of
all bounded measurable functions and B(N(λ)) is the space of all functions of B(A) which are
λ-almost everywhere (λ-a.e.) equal to 0. This means that (B(A), ‖ · ‖s)/B(N(λ)) can be identified
with the Banach space L∞(λ), which is the continuous dual of L1(λ).

The proof of the following two propositions is taken from the book of Diestel and Uhl [1:
Corollary I.2.7 and Theorem IX.1.4] (there formulated for Banach space-valued measures).

Proposition 2.2. Let µ : A → E be a measure on a σ-algebra and λ : A → [0,+∞[ be a σ-additive
control measure for µ. Then:

(a) T̂µ : (L∞(λ), σ(L∞(λ), L1(λ))) → (E, σ(E,E∗)) is continuous (with respect to (w.r.t.) the
weak∗ topology on L∞(λ) and the weak topology on E).

(b) coµ(A) = {
∫
fdµ : f ∈ B(A), 0 ≤ f ≤ 1} is weakly compact, hence µ(A) is relatively weakly

compact.

P r o o f. We identify functions which are equal λ-a.e..

(a) Let (fγ)γ∈Γ be a net in L∞(λ) weak∗ converging to 0 and x∗ ∈ E∗. We show that
lim
γ∈Γ

x∗(
∫
fγdµ) = 0. Let g be the Radon-Nikodým derivative of x∗ ◦ µ w.r.t. λ. Then:

x∗
(∫

fγdµ

)
=

∫
fγd(x∗ ◦ µ) =

∫
fγgdλ→ 0.

(b) (i) We first observe that {
∫
fdµ : g ∈ B(A), 0 ≤ f ≤ 1} is contained in the closure of

{
∫
fdµ : f ∈ S(A), 0 ≤ f ≤ 1} which coincides with coµ(A).

(ii) Identifying functions which are equal λ-a.e., the unit ball B of B(A) becomes by the Alaoglou
theorem a weak∗ compact subset of L∞(λ), hence Tµ(B) is weakly compact by (a). Consequently
{
∫
fdµ : f ∈ B(A), 0 ≤ f ≤ 1} is a weakly compact and convex set containing µ(A), therefore it

contains coµ(A) which proves the remaining inclusion. �

The following proposition is a special case of Kluvanek-Knowles’ version of Liapounoff’s con-
vexity theorem [4: Theorem V.1.1].

Proposition 2.3. Besides the assumption of Proposition 2.2 suppose that for every A ∈ ArN(λ)
there exists a function g ∈ B(A) r B(N(λ)) such that

∫
gdµ = 0 and the support supp(g) is

contained in A. Then µ(A) is convex and weakly compact.

P r o o f. Let B0 := {f ∈ B(A) : 0 ≤ f ≤ 1}. In view of Proposition 2.2(b) it is enough to prove
that Tµ(B0) ⊆ µ(A). Let y0 ∈ Tµ(B0). Again, as in the Proposition 2.2, we identify functions
which are equal λ-a.e.. Thus, by Proposition 2.2(a), K := T−1

µ (y0)∩B0 becomes a weak∗ compact
subset of L∞(λ) and has therefore an extreme point f0 by the Krein-Milman theorem. We show
that f0(x) = χA(x) λ-a.e. for some A ∈ A. Suppose that this is not true. Then there is an
ε > 0 such that λ(Aε) > 0 where Aε := {x ∈ Ω : ε ≤ f0(x) ≤ 1 − ε}. By assumption there is
a g ∈ B(A) r B(N(λ)) such that supp(g) ⊆ Aε and

∫
gdµ = 0. We may assume that ‖g‖s ≤ ε.

Then f0 ± g ∈ K, a contradiction to the fact that f0 is an extreme point of K. This shows that
f0(x) = χA(x) λ-a.e. for some A ∈ A. Hence y0 =

∫
f0dµ = µ(A) ∈ µ(A). �
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In Proposition 2.3 the idea to use Krein-Milman (and the so called extreme point technique)
to prove Tµ(B0) = µ(A) is present in Lindenstrauss’ [5] approach to the classical Liapounoff’s
theorem and was already employed by Uhl [8] in order to generalize the theorem to measures of
finite variation whose values lie in a Banach space which is reflexive or is a separable dual space.

3. Uniformly summable families

Let G := (G,+, τ) be a Hausdorff topological commutative group, Γ an index set and F(Γ) the
system of all finite subsets of Γ.

A family (xγ)γ∈Γ ∈ GΓ is called summable if the net of finite partial sums (
∑
γ∈F

xγ)F∈F(Γ)

converges to some x ∈ G. We write then s((xγ)γ∈Γ) :=
∑
γ∈Γ

xγ := x. The set `1(Γ, G) of all

summable families of GΓ is a subgroup of GΓ and s : `1(Γ, G)→ G is a group homomorphism.

Definition 3.1. We call a subset A ⊆ GΓ uniformly summable if A ⊆ `1(Γ, G) and for any
0-neighborhood U in G there exists F0 ∈ F(Γ) such that for any F ∈ F(Γ) with F0 ⊆ F and any
a = (aγ)γ∈Γ ∈ A one has s(a)−

∑
γ∈F

aγ ∈ U (i.e.,
∑

γ∈ΓrF
aγ ∈ U).

Using that G has a 0-neighborhood base consisting of closed sets one immediately obtains:

Proposition 3.2. A subset A of GΓ is uniformly summable if and only if:

(1) A ⊆ `1(Γ, G) and

(2) for any 0-neighborhood U in G there exists F0 ∈ F(Γ) such that
∑
γ∈F

aγ ∈ U whenever

(aγ)γ∈Γ ∈ A and F ∈ F(Γ) with F ∩ F0 = ∅.

Corollary 3.3 (Cauchy’s criterion). Let G be complete and A ⊆ GΓ. Then A is uniformly
summable if and only if condition (2) of Proposition 3.2 is satisfied.

Proposition 3.4. Let G be complete and A ⊆ GΓ uniformly summable. Then the closure A of A
in (G, τ)Γ is uniformly summable, too.

P r o o f. We use Cauchy criterion 3.3. Let U be a closed 0-neighborhood in G and F0 be chosen
according to Proposition 3.2. Let F ∈ F(Γ) with F ∩ F0 = ∅. Then {

∑
γ∈F

aγ : (aγ)γ∈Γ ∈ A} is

contained in the closure of {
∑
γ∈F

aγ : (aγ)γ∈Γ ∈ A} and therefore in U = U by the choice of F0.

Thus A is uniformly summable by Corollary 3.3. �

The next example shows that in Proposition 3.4 the completeness assumption cannot be can-
celled. For this reason we have to be careful when further on we consider uniform summability
w.r.t. the weak topology of a locally convex linear space.

Remark 3.5. Suppose that a = (an)n∈N is a sequence in G which is not summable in G but
summable in the completion of G. Let an,m = am if m ≤ n and an,m = 0 if m > n. Then

A := {(an,m)m∈N : n ∈ N} is uniformly summable in G, but the closure A of A in G is not so

(since a ∈ A).

Theorem 3.6. Denote by τp the topology on `1(Γ, G) induced by the product topology of (G, τ)Γ.
Let A ⊆ GΓ be uniformly summable. Then s|A is uniformly continuous w.r.t. τp.
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P r o o f. Let U be a symmetric 0-neighborhood in G and F ∈ F(Γ) such that
∑

γ∈ΓrF
aγ ∈ U for

all a = (aγ)γ∈Γ ∈ A. Let n := |F | and V a 0-neighborhood in G with

V (n) := V + · · ·+ V (n times) ⊆ U.

Then W := {(xγ)γ∈Γ ∈ `1(Γ, G) : ∀γ ∈ F xγ ∈ V } is a 0-neighborhood in (`1(Γ, G), τp). Let
x = (xγ)γ∈Γ and y = (yγ)γ∈Γ be families in A such that x− y ∈W . Then:

s(x)− s(y) =
∑
γ∈F

(xγ − yγ) +
∑

γ∈ΓrF
xγ −

∑
γ∈ΓrF

yγ ∈ V (n) + U − U ⊆ U (3).

�

Corollary 3.7. Let Aγ ⊆ G for γ ∈ Γ such that A :=
∏
γ∈Γ

Aγ is uniformly summable.

(a) If Aγ is compact for every γ ∈ Γ, then s(A) is compact.

(b) If G is complete and Aγ is relatively compact for every γ ∈ Γ, then s(A) is relatively compact.

P r o o f. (a) If the Aγ ’s are compact, then A is compact by Tychonoff’s theorem. Hence the
continuous image s(A) is compact.

(b) By Proposition 3.4 the closure A =
∏
γ∈Γ

Aγ is uniformly summable. Therefore s(A) is

compact. Thus s(A) is relatively compact. �

We now consider uniformly summable families in Hausdorff topological linear spaces.

Proposition 3.8. Let F be a Hausdorff topological linear space. Then `1(Γ, F ) is a linear space
and s : `1(Γ, F ) → F is a linear map. Therefore, if Aγ are convex subsets of F and if A :=∏
γ∈Γ

Aγ ⊆ `1(Γ, F ), then s(A) is convex.

Theorem 3.9. Let (E, ρ) be a complete Hausdorff topological locally convex linear space, Aγ
relatively weakly compact subsets of E for γ ∈ Γ and A :=

∏
γ∈Γ

Aγ uniformly summable. Then s(A)

is relatively weakly compact.

P r o o f. (i) We first prove that
∏
γ∈Γ

co(Aγ) is uniformly summable. Let U be a closed convex

0-neighborhood in E and F0 ∈ F(Γ) chosen according to condition (2) of Proposition 3.2, i.e.,∑
γ∈F

Aγ ⊆ U for any F ∈ F(Γ) with F ∩ F0 = ∅. For such an F we then have:

∑
γ∈F

co(Aγ) ⊆
∑
γ∈F

coAγ = co
∑
γ∈F

Aγ ⊆ coU = U.

Now apply Corollary 3.3.

(ii) Let Kγ be the closure of Aγ w.r.t. σ := σ(E,E∗). Then Kγ is weakly compact. Since
K :=

∏
γ∈Γ

Kγ ⊆
∏
γ∈Γ

co(Aγ), by (i) K is uniformly summable w.r.t. ρ and therefore w.r.t. σ. We

now apply Corollary 3.7(a) with (G, τ) := (E, σ). Thus s(K) is a compact subset of (E, σ), i.e.,
s(A) is relatively weakly compact. �
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4. Measures and FN-topologies

Let u be an FN -topology on R, i.e., a group topology on (R,4) which admits a 0-neighborhood
base consisting of solid 1 sets. u is called exhaustive if xn → 0 (u) for any disjoint sequence
(xn)n∈N in R, or equivalently, if every monotone net is Cauchy in (R, u), see [9: Proposition 2.4].
u is called order continuous if every decreasing net order converging to 0 converges topologically
to 0 in (R, u), or equivalently, if every monotone net order converging to some x ∈ R converges
topologically to x in (R, u).

Proposition 4.1 ([9: Proposition 4.12]). Let u be an exhaustive Hausdorff FN -topology on R
such that (R, u) is complete (as a uniform space). Then (R,≤) is a complete Boolean algebra and
u is order continuous.

We recall the proof: If (xγ)γ∈Γ is an increasing net in R, then (xγ)γ∈Γ is a Cauchy net, hence
converges by assumption to some x in (R, u). It follows that x = supxγ (see [9: Corollary 1.8 and
Proposition 1.9]). �

If u is a Hausdorff FN -topology on R, then (R, u) is a dense subring of a Boolean ring (R̃, ũ)

endowed with a Hausdorff complete FN -topology. (R̃, ũ) is then the completion of (R, u).

Proposition 4.2 ([9: Theorem 6.1]). Let u be an exhaustive Hausdorff FN -topology on R and

(R̃, ũ) the completion of (R, u). Then R̃ is a complete Boolean algebra and ũ is order continuous.

This immediately follows from Proposition 4.1 and the fact that with u also ũ is exhaustive, see
[9: Proposition 2.5].

Let µ : R→ E be a measure. Then the sets {a ∈ R : µ([0, a]) ⊆ U}, where U is a 0-neighborhood
in E, form a 0-neighborhood base for the weakest FN -topology on R making µ (uniformly) contin-
uous. This topology is called the µ-topology. Obviously µ is exhaustive if and only if the µ-topology
is exhaustive. Adapting the terminology of [4: p. 71] we call µ closed if (R,µ-topology) is complete.
To compare the assumptions of Theorem 5.3 and of Proposition 2.3 we mention the well-known
fact that µ : A → E is closed if A is a σ-algebra and µ has a σ-additive control measure.

A measure µ : R → E induces a measure µ̂ : R̂ → E on the quotient R̂ := R/N(µ) where

µ̂(ξ) = µ(x) if x ∈ ξ ∈ R̂. Obviously N(µ̂) = {0}; moreover µ̂ is exhaustive or closed if and only if
µ is exhaustive or closed, respectively.

Proposition 4.3. Let µ : R→ E be an exhaustive measure, u the µ-topology, (R̃, ũ) the completion

of R̂ := (R, u)/N(µ) and µ̃ : (R̃, ũ) → E the continuous extension of µ̂ where µ̂(ξ) = µ(x) for

x ∈ ξ ∈ R̂. Then R̃ is a complete Boolean algebra and ũ is order continuous. Moreover, µ(R) is a

dense subset of µ̃(R̃) and µ̃ is a completely additive measure, i.e., (µ̃(ξγ))γ∈Γ is summable for any

disjoint family (ξγ)γ∈Γ in R̃ and µ̃(sup
γ∈Γ

ξγ) =
∑
γ∈Γ

µ̃(ξγ).

P r o o f. The first assertion follows from Proposition 4.2. Obviously, µ(R) = µ̂(R̂) and µ̂(R̂) is

dense in µ̃(R̃). The complete additivity of µ̃ follows from the fact that µ̃ is continuous w.r.t. an
order continuous FN -topology. �

Remark 4.4. One easily verifies that under the assumptions and notations of Proposition 4.3 the
µ̃-topology agrees with ũ (see [9: Remark 5.1.9]).

1A subset U of R is solid if x ≤ y ∈ U implies x ∈ U .
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Theorem 4.5. Let µ : R → E be a closed exhaustive measure. Then there is a family dγ ∈ R
of almost disjoint2 elements and x∗γ ∈ E∗, γ ∈ Γ, such that the measures µγ : R → E defined by
µγ(x) = µ(x ∧ dγ) have the following properties:

(1) µγ � |x∗γ ◦ µ| for γ ∈ Γ; 3

(2) µ =
∑
γ∈Γ

µγ (i.e., for any x ∈ R the family (µγ(x))γ∈Γ is summable and µ(x) =
∑
γ∈Γ

µγ(x));

(3)
∏
γ∈Γ

µγ(R) is uniformly summable;

(4) µ(R ∧ a) = s(
∏
γ∈Γ

µγ(R ∧ a)) for every a ∈ R where s has the same meaning as in Section 3.

P r o o f. Passing to the quotient R̂ = R/N(µ) we may assume that N(µ) = {0}. Indeed, if

π : R→ R̂ is the quotient map, µ̂ : R̂→ E the measure determined by µ̂ ◦ π = µ and if µ̂ =
∑
γ∈Γ

µ̂γ

is a desired decomposition of µ̂, then with µγ = µ̂γ ◦π we get the desired decomposition µ =
∑
γ∈Γ

µγ

of µ.

We now assume that N(µ) = {0}. Therefore R is a complete Boolean algebra and the µ-topology
u is order continuous (see Proposition 4.2). Let x∗ ∈ E∗. Since x∗ ◦ µ is continuous w.r.t. u,
N(x∗ ◦ µ) is a closed ideal, hence N(x∗ ◦ µ) = [0, a(x∗)] for some a(x∗) ∈ R. Let b(x∗) = a(x∗)′ be
the complement of a(x∗). Since⋂

x∗∈E∗

[0, a(x∗)] =
⋂
x∗∈E

N(x∗ ◦ µ) = N(µ) = {0},

we have inf
x∗∈E∗

a(x∗) = 0, thus sup
x∗∈E∗

b(x∗) = e. Therefore there exists a disjoint family (dγ)γ∈Γ in R

and a family (x∗γ)γ∈Γ in E∗ such that dγ ≤ b(x∗γ) for γ ∈ Γ and sup
γ∈Γ

dγ = e. Let µγ(x) := µ(x∧ dγ)

for x ∈ R and γ ∈ Γ. Then

N(|x∗γ ◦ µ|) = N(x∗γ ◦ µ) = [0, b(x∗)′] ⊆ [0, d′γ ] = N(µγ).

Therefore µγ � |x∗γ ◦ µ| since with µ also x∗γ ◦ µ and |x∗γ ◦ µ| are completely additive.

(2) immediately follows from the complete additivity of µ: If x ∈ R, then

µ(x) = µ(sup
γ∈Γ

x ∧ dγ) =
∑
γ∈Γ

µ(x ∧ dγ) =
∑
γ∈Γ

µγ(x).

To prove (3) let U be a 0-neighborhood in E. Then U∗ := {a ∈ R : µ([0, a]) ⊆ U} is a
0-neighborhood in (R, u). Since u is order continuous, the net sup

γ∈F
dγ , where F is a finite subset

of Γ, converges to e. Therefore there exists a finite F0 ⊆ Γ such that s′ ∈ U∗ where s := sup
γ∈F0

dγ .

Let F be a finite subset of Γ r F0 and aγ ∈ R, γ ∈ Γ. Then sup
γ∈F

aγ ∧ dγ ≤ s′, hence

∑
γ∈F

µγ(aγ) =
∑
γ∈F

µ(aγ ∧ dγ) = µ(sup
γ∈F

aγ ∧ dγ) ∈ U.

This proves
∑
γ∈F

µγ(R) ⊆ U .

2i.e., dα ∧ dβ ∈ N(µ) for different indexes α, β ∈ Γ.
3For a real-valued measure ν, the total variation of ν is denoted by |ν|.
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(4) By (3 )we have
∏
γ∈Γ

µγ(R ∧ a) ⊆ `1(Γ, E) and (2) then implies the inclusion ⊆ in (4). For

the inclusion ⊇ let a ∈ R and yγ ∈ µγ(R ∧ a) for γ ∈ Γ. If aγ ∈ R with yγ = µγ(aγ ∧ a), then

s((yγ)γ∈Γ) =
∑
γ∈Γ

µ(a ∧ aγ ∧ dγ) = µ(a ∧ sup
γ∈Γ

aγ ∧ dγ) ∈ µ(R ∧ a).

�

From Theorem 4.5 one can also deduce a similar decomposition theorem for an exhaustive
measure µ : R → E which is not necessarily closed: Let µ̃ be chosen as in Proposition 4.3 and
µ̃ =

∑
γ∈Γ

µ̃γ a decomposition according to Theorem 4.5. If π : R → R/N(µ) the quotient map and

µγ := µ̃γ ◦ π, then µ =
∑
γ∈Γ

µγ is a decomposition satisfying (1), (2), (3) of 4.5 and instead of (4)

the weaker condition that µ(R ∧ a) is a dense subset of s(
∏
γ∈Γ

µγ(R ∧ a)) for every a ∈ R.

5. The range of vector-valued measures

We first give a new proof of the following well-known result; more precisely, new is the reduction
to the special case presented in Proposition 2.2(b).

Theorem 5.1. Let µ : R→ E be an exhaustive measure. Then the range µ(R) is relatively weakly
compact.

P r o o f. Choose R̃, ũ, µ̃ as in Proposition 4.3. Since µ(R) ⊆ µ̃(R̃), we may assume that (R, u, µ) =

(R̃, ũ, µ̃), i.e., we may assume that the µ-topology u is Hausdorff and order continuous (hence
exhaustive), moreover that (R, u) is complete (as uniform space), (R,≤) is a complete Boolean
algebra and µ is completely additive. In particular, µ is a closed exhaustive measure (see also
Remark 4.4). Let µ =

∑
γ∈Γ

µγ be a decomposition of µ according to Theorem 4.5. We first show

that µγ(R) is relatively weakly compact for any γ ∈ Γ. By the Loomis-Sikorski representation
theorem [6: 29.1] there is a σ-algebra A and a Boolean epimorphism π : A → R such that the
kernel N(π) is a σ-ideal in A, i.e., R is isomorphic to the quotient A/N(π). Let x∗γ ∈ E∗ as in
Theorem 4.5. Then λγ := |x∗γ ◦µ|◦π : A → [0,+∞[ is a σ-additive control measure for the measure
νγ := µγ ◦ π : A → E. Therefore the range of νγ is relatively weakly compact by Proposition 2.2,
i.e., µγ(R) = νγ(A) is relatively weakly compact.

We now can apply Theorem 3.9. The relative weak compactness of µγ(R), γ ∈ Γ, implies in
view of (3) and (4) of Theorem 4.5 that µ(R) is relatively weakly compact. �

In the proof of 5.3 we are interested in the relationship of the integral w.r.t. µ and the integral
w.r.t. µ̂ where π : A → Â is an epimorphism onto an algebra of sets and µ = µ̂◦π. This relationship
is an immediate consequence of a result contained in [2: 45.D], summarized in (1) of the following
lemma.

Lemma 5.2. Let π : A → Â be a Boolean epimorphism onto an algebra Â of sets, µ̂ : Â → E a
bounded measure and µ = µ̂ ◦ π.

(1) Then there exists a unique continuous Riesz epimorphism4 π : B(A) → B(Â) such that
π(χA) = χπ(A) for any A ∈ A.

4A Riesz epimorphism is a surjective linear map which is also a lattice homomorphism.
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(2)
∫
gdµ =

∫
π(g)dµ̂ for any g ∈ B(A).

P r o o f. (1) is contained in [2: 45.D].

(2) Since µ = µ̂ ◦ π, we have Tµ(χA) = (Tµ̂ ◦ π)(χA) for any A ∈ A. By linearity and continuity
of Tµ, Tµ̂, π we obtain Tµ(g) = (Tµ̂ ◦ π)(g) for any g ∈ B(A). �

The following theorem is essentially a reformulation of [4: Theorem V.1.1] on page 82. In
Theorem 5.3 we have replaced the assumption of [4: V.1.1] that µ is a σ-additive measure on a
σ-algebra by the weaker condition that µ is an exhaustive finitely additive measure on an algebra.
Furthermore, new is here the proof to reduce (1)⇒ (5) of Theorem 5.3 to the special case presented
in Proposition 2.3.

Theorem 5.3. Let µ : A → E be a closed exhaustive measure and N := N(µ). Then the following
conditions are equivalent:

(1) For every A ∈ A r N there exists a function g ∈ B(A) r B(N ) such that
∫
gdµ = 0 and

supp(g) ⊆ A.

(2) For every A ∈ A r N there exists a function g ∈ S(A) r S(N ) such that
∫
gdµ = 0 and

supp(g) ⊆ A.

(3) For every A ∈ A r N there are sets B,C ⊆ A contained in A such that µ(B) = µ(C) and
B4C /∈ N .

(4) µ(A ∩A) is convex for every A ∈ A.

(5) µ(A ∩A) is convex and weakly compact for every A ∈ A.

P r o o f. (5)⇒ (4) and (2)⇒ (1) are obvious.

(4)⇒ (3): Let A ∈ ArN and B ∈ A ∩A with µ(B) = 1
2µ(A). Then by choosing C := ArB

the condition (3) is satisfied.

(3)⇒ (2): If A,B,C are taken as in (3), then g := χB − χC ∈ S(A) r S(N ),
∫
gdµ = 0 and

supp(g) ⊆ A.

We now prove the main implication (1)⇒ (5): Let µ =
∑
γ∈Γ

µγ be a decomposition of µ according

to Theorem 4.5. If we can prove that µγ(A∩A) is convex and weakly compact for every γ ∈ Γ and
A ∈ A then Corollary 3.7(a) and Proposition 3.8 together with Theorem 4.5 yield that µ(A ∩ A)
is convex and weakly compact. Since the µγ ’s have a control measure as stated in (1) of Theorem
4.5, it is enough to prove (1)⇒ (5) under the additional assumption that λ := |x∗ ◦ µ| is a control
measure of µ for some x∗ ∈ E∗ which we assume in the following. If A was a σ-algebra and µ
σ-additive one could immediately apply Proposition 2.3 to finish the proof. In the finitely additive
case we have still to employ Lemma 5.2.

Let π : A → A/N be the quotient map. By Stone’s representation theoremA/N is isomorphic to

an algebra Â of sets. To simplify the notation we identify A/N with Â, thus π : A → Â becomes

an epimorphism onto Â. Since by Proposition 4.1 A/N (= Â) is a complete Boolean algebra,
by the representation theorem of Loomis-Sikorski there is a σ-algebra A0 and an epimorphism

π0 : A0 → Â such that N0 := N(π0) is a σ-ideal. Define measures µ̂, λ̂, µ0, λ0 on Â and A,

respectively, by µ̂ ◦ π = µ = µ̂0 ◦ π0 and λ̂ ◦ π = λ = λ̂0 ◦ π0. Then λ̂ and λ0 are control measures,

respectively, for µ̂ and µ0. By Proposition 4.3 µ̂ and λ̂ are completely additive, therefore µ0 and
λ0 are σ-additive. Let A0 ∈ A0 r N(µ0), Â := π0(A0) and A ∈ A with π(A) = Â. Chose π

as in Lemma 5.2, and analogously let π0 : B(A0) → B(Â) be the continuous Riesz epimorphism
with π0(χA) = χπ0(A) for A ∈ A0. By assumption there is a function g ∈ B(A) r B(N ) such

that
∫
gdµ = 0 and supp(g) ⊆ A. Therefore |g| ≤ kχA for some k ∈ N. Let g0 ∈ B(A0)
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with π0(g0) = π(g). Replacing g0 by (−kχA0
∨ g0) ∧ kχA0

we may assume that |g0| ≤ kχA0
, i.e.,

supp(g0) ⊆ A0. Moreover, g ∈ B(A)rB(N ) implies π0(g0) = π(g) 6= 0, hence g0 ∈ B(A0)rB(N0).
Finally

∫
g0dµ0 =

∫
π0(g0)dµ̂ =

∫
π(g)dµ̂ =

∫
gdµ = 0. Now Proposition 2.3 yields that µ0(A0) is

convex and weakly compact. Hence µ(A) = µ0(A0) is convex and weakly compact. For any A ∈ A
the same argument can be applied to µ|A∩A. Thus µ(A ∩A) is convex and weakly compact. �

With the notation of Remark 2.1, condition (1) of Theorem 5.3 means exactly that

T̂µ : B(A)/B(N ) → E is not injective. If under the assumption of Theorem 5.3 µ is non-atomic,
then B(A)/B(N ) infinite dimensional. Therefore condition (1) of Theorem 5.3 is obviously satis-
fied if µ is non-atomic and dimE < +∞; in this way Kluvanek and Knowles [4] deduce Liapounoff’s
classical convexity theorem from their Theorem V.1.1.

We would like to give a comment to the theorem of Wnuk mentioned in the introduction which
says that an F -space X is finite dimensional if any σ-additive non-atomic measure µ : A → X
defined on a σ-algebra has compact and convex range. In this theorem the metrizability assumption
cannot be cancelled. Indeed if X = c00 is the space of all real sequences which are eventually 0
endowed with the box topology τb, then (c00, τb) is a complete locally convex linear space (see
[3: section 6.6]). If µ : A → (c00, τb) is a non-atomic σ-additive measure on a σ-algebra, then µ
is bounded; therefore µ(A) is contained in a finite dimensional subspace of c00. By the classical
version of Liapounoff’s theorem, µ(A) is both convex and compact.
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