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ABSTRACT. We give another proof for Kluvanek and Knowles’ characterization of Liapounoff mea-
sures [KLUVANEK, . —KNOWLES, G.: Vector Measures and Control Systems. North-Holland Math-
ematics Studies 20, Amsterdam, 1976] and of the fact that the range of an exhaustive measure with
values in a complete locally convex space is relatively weakly compact.
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1. Introduction

Liapounoff’s famous theorem about the range of measures says that the range of any non-atomic
o-additive R™-valued measure defined on a o-algebra is convex and compact. The validity of such
a theorem also characterizes finitely dimensional Banach spaces, see [1; Corollary 6, p. 265]. More
generally, Wnuk [10] proved: If X is an F-normed linear space such that any non-atomic o-additive
measure p: A — X defined on a g-algebra is convex or compact, then X is finitely dimensional.
On the other hand, for a o-additive measure u: A — E defined on a o-algebra with values in a
Hausdorff complete locally convex linear space, Kluvanek and Knowles give in [4: Theorem V.1.1]
a necessary and sufficient condition for the range of p to be convex and weakly compact. The
proof of this theorem is rather involved. Much simpler is the proof in the Banach-space-valued
case given in |1} IX.1.4]. The reason why the Banach-space-valued case is easier to handle is that
in this situation a vector measure has a real control measure by a theorem of Bartle, Dunford and
Schwartz.

In this note we give another proof of Kluvanek and Knowles’ version of Liapounoff’s convexity
theorem. Using the Frechét-Nikodym-approach we decompose an F-valued measure p as pu =

> 1y where each p, has a real control measure. Based on such a decomposition the proof can
yel’
be reduced to the case of measures admitting a control measure and in this case the proof can

be done as in the Banach space-valued case. Moreover, we give in Theorem a finitely additive
version of Kluvanek and Knowles’ theorem.

Another theorem in which we are interested in says that any exhaustive F-valued measure has
relatively weakly compact range. As Tweddle [7] showed, this is an easy consequence of James’
characterization of weakly compact sets. But James’ theorem is rather deep and therefore it is of
interest to give a proof of this theorem about the range of measures based on less deep tools. A
proof not based on James’ theorem can be found in [4]. Much easier is Bartle-Dunford-Schwartz’
proof in the Banach space-valued case, see [1; Corollary 1.1.6]. In this note we prove the theorem
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about the relative weak compactness of the range of an exhaustive measure p again using the

decomposition p as pt = > p., where the p,’s are measures admitting a control measure, and thus
verl
we can reduce the proof to the case of measures admitting a control measure which can be done

as in the Banach space-valued case.

This note is organized as follows. In Section [2] we present the mentioned theorems of Tweddle
and of Kluvanek and Knowles in the special case of measures admitting a control measure. For
completeness and convenience of the reader we include their short proofs which are almost identical
with the proofs of Diestel and Uhl [1] in the Banach space-valued case. In Section [3| we study
uniform summability. In Section [l we prove a decomposition theorem for a measure p of the type

= > i~y where ., are measures admitting a control measure and the system of all (y) er with
yel
y~ belonging to the range of ji is uniformly summable. In Section we use the results of Sections

and [4] to reduce the proof of the main Theorems [5.1] and to the case of measures admitting
a control measure, the case presented in Section

Notation. Throughout, let (E, p) be a Hausdorff complete locally convex linear space with con-
tinuous dual E*.

A stands for an algebra of subsets of a nonempty Q. If R is a subring of A, then S(R) :=
span{xa : A € R} denotes the linear subspace generated by the characteristic functions x4,
A € R, and B(R) denotes the closure of S(R) in the Banach space of all bounded functions
f: Q — R endowed with the sup-norm || f||s := sup | f(z)].

€N

Let R be a Boolean ring (not necessarily with unit). As usual we denote the symmetric dif-
ference (addition), infimum (multiplication), supremum, difference, natural order by A, A, V, \, <,
respectively. If R is a Boolean algebra, i.e., a Boolean ring with unit, we denote the unit by e and
the complement of any x € R by 2’ := e \ x.

We say that a finitely additive function p: R — E is a measure. p is called exhaustive if

lim p(a,) = 0 for any disjoint sequence (ap)neny in R. We set N(u) := {a € R : Vx € [0,d]

n—oo
() = 0},
For any homomorphism ¢ we denote its kernel by N(¢).

2. The range of vector-valued measures admitting a control measure

Let 41: A — E be a bounded measure. Then there is a unique linear map 7),: S(A) — E with
T.(xa) =u(A), Aec A Since {f € S(A) : 0 < f <1} =co{xa: A€ A}, we have:

(T,(f) : f € S(A), 0< f <1} = cop(A).

Hence {T,,(f) : f € S(A), ||f|ls < 1} is contained in co p1(A) — co pu(A) and is therefore bounded.
It follows that T),: (S(A),| - ||s) = E is a continuous linear map and has therefore a continuous
linear extension on (B(A), || - ||s), which we denote again by T,,. We also write [ fdu :=T,(f) for
f € B(A). By a continuity argument one sees that z*( [ fdu) = [ fd(z* o p) for any z* € E* and
f € B(A).

Remark 2.1. If AV is an ideal in A contained in N(u) and ¢: B(A) — B(A)/B(N) denotes the
quotient map, then B(NV) € N(T}) and the linear map T},: (B(A), || - ||ls)/BWN) — E uniquely
determined by Tu o ¢ =T, is continuous, too.
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Let A: A — [0, 400[ be a positive measure and p: A — E a vector measure. We say that A is a
control measure for p (in symbols p < A) if lim p(A,) = 0 whenever (Ay)nen 1S a sequence in A
n—roo

with lim A(A,) = 0. In this case, u is exhaustive and therefore bounded. A slight generalization
n— 00

of a theorem of Bartle, Dunford and Schwartz says that p: A — FE has a control measure if p
is exhaustive and FE is metrizable; hereby the control measure can be chosen o-additive if u is
o-additive. If A is a o-algebra and A and p are o-additive, then p < A if and only if N(A) C N(u).

If Ais a o-algebra and A\: A — [0,400[ a o-additive measure then B(A) is the space of
all bounded measurable functions and B(N())) is the space of all functions of B(.A) which are
A-almost everywhere (A-a.e.) equal to 0. This means that (B(A),| - ||s)/B(N())) can be identified
with the Banach space Lo (), which is the continuous dual of Ly ()).

The proof of the following two propositions is taken from the book of Diestel and Uhl [1}
Corollary 1.2.7 and Theorem IX.1.4] (there formulated for Banach space-valued measures).

PROPOSITION 2.2. Let u: A — E be a measure on a o-algebra and X: A — [0, 400 be a o-additive
control measure for p. Then:
(a) Ty (Loo(N),0(Loo(N), Li(N)) — (E,0(E, E*)) is continuous (with respect to (w.r.t.) the
weak™ topology on Loo(N\) and the weak topology on E ).
(b) cou(A) ={[ fdu: f € B(A), 0 < f <1} is weakly compact, hence pu(A) is relatively weakly
compact.

Proof. We identify functions which are equal \-a.e..

(a) Let (fy)yer be a net in Lo (\) weak* converging to 0 and z* € E*. We show that
linll z*([ fydp) = 0. Let g be the Radon-Nikodym derivative of 2* o 1 w.r.t. A. Then:
ye

v ( / fwdu) — [ £ o) = [ Fgar o

(b) (i) We first observe that {[ fdu : g € B(A), 0 < f < 1} is contained in the closure of
{[ fdu: feS(A), 0<f <1} which coincides with cou(A).

(ii) Identifying functions which are equal M-a.e., the unit ball B of B(.A) becomes by the Alaoglou
theorem a weak™ compact subset of L (\), hence T),(B) is weakly compact by (a). Consequently
{[ fdu: f € B(A), 0 < f <1} is a weakly compact and convex set containing ;(A), therefore it
contains ¢ou(.A) which proves the remaining inclusion. O

The following proposition is a special case of Kluvanek-Knowles’ version of Liapounoff’s con-
vexity theorem [4; Theorem V.1.1].

PROPOSITION 2.3. Besides the assumption of Proposition suppose that for every A € ANN(X)
there exists a function g € B(A) ~ B(N(\)) such that [gdu = 0 and the support supp(g) is
contained in A. Then u(A) is conver and weakly compact.

Proof. Let By :={f € B(A):0 < f <1}. In view of Proposition [2.2(b) it is enough to prove
that T),(Bo) C p(A). Let yo € T,(Bp). Again, as in the Proposition we identify functions
which are equal A-a.e.. Thus, by Proposition a), K := T;l(yo) N By becomes a weak* compact
subset of Lo, (A) and has therefore an extreme point fy by the Krein-Milman theorem. We show
that fo(x) = xa(x) A-a.e. for some A € A. Suppose that this is not true. Then there is an
e > 0 such that M(A;) > 0 where A; := {z € Q : e < fo(z) < 1—e}. By assumption there is
a g € B(A) ~ B(N())) such that supp(g) C A. and [ gdp = 0. We may assume that ||g||s < e.
Then fo £ g € K, a contradiction to the fact that fy is an extreme point of K. This shows that
fo(z) = xa(z) Aa.e. for some A € A. Hence yo = [ fodpu = p(A) € p(A). O
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In Proposition the idea to use Krein-Milman (and the so called extreme point technique)
to prove T,(By) = p(A) is present in Lindenstrauss’ [5] approach to the classical Liapounoff’s
theorem and was already employed by Uhl [§] in order to generalize the theorem to measures of
finite variation whose values lie in a Banach space which is reflexive or is a separable dual space.

3. Uniformly summable families

Let G := (G, +,7) be a Hausdorff topological commutative group, I' an index set and F(I") the
system of all finite subsets of I'.

A family (2,)yer € G' is called summable if the net of finite partial sums (Y. @) per(r)
YEF
converges to some x € G. We write then s((z4)yer) := Y 2z := x. The set £;(T',G) of all
vyel’

summable families of GT is a subgroup of G'" and s: £1(TI',G) — G is a group homomorphism.

DEFINITION 3.1. We call a subset A C G' uniformly summable if A C ¢,(I',G) and for any
0-neighborhood U in G there exists Fy € F(I') such that for any F € F(I') with Fy C F and any

a = (ay)yer € Aone has s(a) — > a, €U (ie., >, ay,€l).
yeEF yELNF

Using that G has a 0-neighborhood base consisting of closed sets one immediately obtains:

PROPOSITION 3.2. A subset A of G' is uniformly summable if and only if:
(1) AC4H(T,G) and

(2) for any 0-neighborhood U in G there exists Fy € F(I') such that > a, € U whenever
YEF
(ay)yer € A and F € F(T') with F N Fy = 0.

COROLLARY 3.3 (Cauchy’s criterion). Let G be complete and A C GT. Then A is uniformly
summable if and only if condition (2) of Proposition 18 satisfied.

PROPOSITION 3.4. Let G be complete and A C G¥ uniformly summable. Then the closure A of A
in (G, 1) is uniformly summable, too.

Proof. We use Cauchy criterion Let U be a closed 0-neighborhood in G and Fy be chosen
according to Proposition Let F € F(I') with FNFy = 0. Then { )" a, : (ay)yer € A} is

YEF
contained in the closure of { 3" a, : (ay)yer € A} and therefore in U = U by the choice of Fy.
vEE
Thus A is uniformly summable by Corollary |

The next example shows that in Proposition the completeness assumption cannot be can-
celled. For this reason we have to be careful when further on we consider uniform summability
w.r.t. the weak topology of a locally convex linear space.

Remark 3.5. Suppose that ¢ = (a,)nen I8 & sequence in G which is not summable in G but
summable in the completion of G. Let apm = @y if m < n and a,,, = 0 if m > n. Then
A = {(@nm)men : n € N} is uniformly summable in G, but the closure A of A in G is not so
(since a € A).

THEOREM 3.6. Denote by 7, the topology on {1(T',G) induced by the product topology of (G, 7).
Let A C GY be uniformly summable. Then s|a is uniformly continuous w.r.t. T,.
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Proof. Let U be a symmetric 0-neighborhood in G and F' € F(T') such that > a, € U for
YEDLNF

all a = (ay)yer € A. Let n :=|F| and V a 0-neighborhood in G with
V=V 4 ... 4+ V(n times) C U.

Then W := {(z4)yer € ti(I',G) : Vy € F z, € V} is a 0-neighborhood in (¢1(T',G), 7). Let
x = (2y)yer and y = (yy)yer be families in A such that x —y € W. Then:

S(x)_s(y):Z(%f—yv)"‘ Z Ly — Z y, VWU -UCUW.

YEFR ~YEDNF YEDNF

COROLLARY 3.7. Let A, C G fory €T such that A:= [] A, is uniformly summable.
yel’
(a) If A, is compact for every v € T', then s(A) is compact.
(b) If G is complete and A, is relatively compact for every vy € I', then s(A) is relatively compact.

Proof. (a) If the A,’s are compact, then A is compact by Tychonoff’s theorem. Hence the
continuous image s(A) is compact.
(b) By Proposition the closure A = [] A, is uniformly summable. Therefore s(A4) is
yerl
compact. Thus s(A) is relatively compact. O

We now consider uniformly summable families in Hausdorff topological linear spaces.

PROPOSITION 3.8. Let F be a Hausdorff topological linear space. Then £1(T', F) is a linear space
and s: (1(',F) — F is a linear map. Therefore, if A, are conver subsets of F and if A =

IT A, C4(T, F), then s(A) is convex.
yel

THEOREM 3.9. Let (E,p) be a complete Hausdorff topological locally convex linear space, A,

relatively weakly compact subsets of E fory € T' and A := [[ A, uniformly summable. Then s(A)
yel
1s relatively weakly compact.

Proof. (i) We first prove that [[ ¢6(A4,) is uniformly summable. Let U be a closed convex
yel
0O-neighborhood in E and Fy € F(I') chosen according to condition (2) of Proposition ie.,

> A, CU for any F € F(I') with F'N Fy = ). For such an F' we then have:
yeEF

> w@(A,) C Y oA, =Ty A, CwolU =U.

yeEF yeEF ~YEF

Now apply Corollary
(ii) Let K, be the closure of A, w.r.t. o := o(E,E*). Then K, is weakly compact. Since
K =[] K, C J] e(A,), by (i) K is uniformly summable w.r.t. p and therefore w.r.t. o. We

yel’ yel’
now apply Corollary 3.7(a) with (G,7) := (E,0). Thus s(K) is a compact subset of (E,0), i.e.,
s(A) is relatively weakly compact. O
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4. Measures and FN-topologies

Let u be an FN-topology on R, i.e., a group topology on (R, A) which admits a 0-neighborhood
base consisting of solid E| sets. w is called ezhaustive if x,, — 0 (u) for any disjoint sequence
(Zn)nen in R, or equivalently, if every monotone net is Cauchy in (R, u), see |9: Proposition 2.4].
u is called order continuous if every decreasing net order converging to 0 converges topologically
to 0 in (R,u), or equivalently, if every monotone net order converging to some x € R converges
topologically to = in (R,u).

PROPOSITION 4.1 (|9: Proposition 4.12]). Let u be an exhaustive Hausdorff FN-topology on R
such that (R,u) is complete (as a uniform space). Then (R, <) is a complete Boolean algebra and
u s order continuous.

We recall the proof: If (z,),er is an increasing net in R, then (z4),er is a Cauchy net, hence
converges by assumption to some x in (R,u). It follows that = sup z, (see [9: Corollary 1.8 and
Proposition 1.9]). O

If u is a Hausdorff FN-topology on R, then (R,u) is a dense subring of a Boolean ring (R, i)

endowed with a Hausdorff complete F'N-topology. (R, @) is then the completion of (R, u).

PROPOSITION 4.2 (|9 Theorem 6.1]). Let u be an exhaustive Hausdorff FN-topology on R and
(R, ) the completion of (R,u). Then R is a complete Boolean algebra and @ is order continuous.

This immediately follows from Proposition and the fact that with u also @ is exhaustive, see
[9: Proposition 2.5].

Let u: R — E be a measure. Then the sets {a € R : u([0,a]) C U}, where U is a 0-neighborhood
in E, form a 0-neighborhood base for the weakest F'N-topology on R making p (uniformly) contin-
uous. This topology is called the p-topology. Obviously p is exhaustive if and only if the p-topology
is exhaustive. Adapting the terminology of |4 p. 71] we call u closed if (R, u-topology) is complete.
To compare the assumptions of Theorem [5.3| and of Proposition we mention the well-known
fact that u: A — E is closed if A is a o-algebra and p has a o-additive control measure.

A measure p: R — E induces a measure fi: R — E on the quotient R := R/N(p) where
(&) = p(z) if 2 € € € R. Obviously N(ji) = {0}; moreover /i is exhaustive or closed if and only if
u is exhaustive or closed, respectively.

PROPOSITION 4.3. Let i: R — E be an erhaustive measure, u the u-topology, (Iji, @) the completion
of R :== (R,u)/N(p) and fi: (R,0) — E the continuous extension of fi where i(§) = u(x) for

z €& € R. Then R is a complete Boolean algebra and @ is order continuous. Moreover, w(R) is a
dense subset of [i(R) and fi is a completely additive measure, i.e., (fi(§y))~er is summable for any

disjoint family (&y)yer in R and fi(sup&,) = 3 (&)
~yel’ ~yeTl

Proof. The first assertion follows from Proposition Obviously, u(R) = ji(R) and j(R) is

dense in fi(R). The complete additivity of & follows from the fact that j is continuous w.r.t. an
order continuous F'N-topology. O

Remark 4.4. One easily verifies that under the assumptions and notations of Proposition the
fi-topology agrees with @ (see [9: Remark 5.1.9]).

LA subset U of R is solid if x <y €U implies x € U.
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THEOREM 4.5. Let u: R — E be a closed exhaustive measure. Then there is a family d, € R

of almost disjoinﬂ elements and z, € E*, v € I', such that the measures pu: R — E defined by

pry(x) = p(z A dy) have the following properties:
(1) py < |22 0 pt| for v € T[]
(2) p= > py (i.e., for any x € R the family (pu(z))er is summable and p(z) = Y py(x));

~yel’ ~el
(3) II w~y(R) is uniformly summable;
yel
(4) p(RAa)=s(]I uy(RAa)) for every a € R where s has the same meaning as in Section .
ver

Proof. Passing to the quotient R = R/N(y) we may assume that N(u) = {0}. Indeed, if

7: R — R is the quotient map, i R — E the measure determined by pfor =pandif p= > [,
yel

is a desired decomposition of ji, then with p, = fi, o7 we get the desired decomposition p = > p,
el

of u.

We now assume that N(u) = {0}. Therefore R is a complete Boolean algebra and the p-topology

w is order continuous (see Proposition . Let x* € E*. Since z* o p is continuous w.r.t. wu,

N(z* o) is a closed ideal, hence N(z* o u) = [0, a(z*)] for some a(z*) € R. Let b(x*) = a(z*)’ be

the complement of a(z*). Since

) 0.a@)] = () N@*op)=N(u) = {0},

@ €B* @*€E
we have infE a(z*) =0, thus sup b(z*) = e. Therefore there exists a disjoint family (d,),er in R
T*eER* r*cE*
and a family (22 ) er in E* such that d, < b(a%) for v € I' and supd,, = e. Let pu(v) := p(z Ads)
yeT

for x € R and v € I'. Then
N(J2% 0 pl) = N(a? o ) = [0.b(x")] € [0.d}] = N(p).

Therefore 1, < |7 o p| since with p also % o i and |23 o u| are completely additive.
(2) immediately follows from the complete additivity of p: If z € R, then

w(z) = p(supx Ad,) = Z wlxzndy) = Z pry ().
VEr ~el’ vyell

To prove (3) let U be a 0-neighborhood in E. Then U* := {a € R : u([0,a]) C U} is a
0O-neighborhood in (R, w). Since u is order continuous, the net sup d,, where F' is a finite subset

yEF
of T, converges to e. Therefore there exists a finite Fy C IT" such that s’ € U* where s := sup d,.
YEFy
Let F be a finite subset of I' \ Fj and ay € R, v € I'. Then sup a, A dy < &', hence
yEF

Z py(ay) = Z play A dy) = p(sup ay Ndy) € U.

YEF ~YEF VEF
This proves > py(R) CU.

YEF

%ie., da A dg € N(p) for different indexes o, 8 € T'.
3For a real-valued measure v, the total variation of v is denoted by |v|.
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(4) By (3 )we have [] py(RAa) C 4(T, E) and (2) then implies the inclusion C in (4). For
yel’
the inclusion D let @ € R and y, € puy(R A a) for vy € I'. If a4 € R with y, = p(ay A a), then

5((yy)vyer) = Z plaNay ANdy) = pla A su113 ay ANdy) € p(RAa).
~ver e

O

From Theorem one can also deduce a similar decomposition theorem for an exhaustive
measure p: R — FE which is not necessarily closed: Let fi be chosen as in Proposition and

fi = > [ty a decomposition according to Theorem 4.5l If 7: R — R/N(u) the quotient map and
yel

oy = fiy o7, then = > p, is a decomposition satisfying (1), (2), (3) of and instead of (4)
yel’
the weaker condition that p(R A a) is a dense subset of s( [[ py(R A a)) for every a € R.

yel’

5. The range of vector-valued measures

We first give a new proof of the following well-known result; more precisely, new is the reduction
to the special case presented in Proposition (b)

THEOREM 5.1. Let u: R — E be an exhaustive measure. Then the range u(R) is relatively weakly
compact.

Proof. Choose R, i, ji as in Proposition Since p(R) C ji(R), we may assume that (R, u, p) =
(R,u, fi), i.e., we may assume that the p-topology u is Hausdorff and order continuous (hence
exhaustive), moreover that (R, u) is complete (as uniform space), (R, <) is a complete Boolean

algebra and p is completely additive. In particular, p is a closed exhaustive measure (see also
Remark [4.4). Let u = > uy be a decomposition of p according to Theorem We first show
~yel

that py(R) is relatively weakly compact for any v € I'. By the Loomis-Sikorski representation
theorem [6; 29.1] there is a o-algebra A and a Boolean epimorphism 7: A — R such that the
kernel N(r) is a o-ideal in A, i.e., R is isomorphic to the quotient A/N (7). Let z3, € E* as in
Theorem (4.5, Then A, := [z} oulom: A — [0, +00[ is a o-additive control measure for the measure
vy = pyom: A— E. Therefore the range of v, is relatively weakly compact by Proposition
ie., py(R) = vy(A) is relatively weakly compact.

We now can apply Theorem The relative weak compactness of j(R), v € T', implies in
view of (3) and (4) of Theorem [4.5| that u(R) is relatively weakly compact. O

In the proof of we are interested in the relationship of the integral w.r.t. x4 and the integral
w.r.t. ft where 7: A — A is an epimorphism onto an algebra of sets and . = from. This relationship
is an immediate consequence of a result contained in |2t 45.D], summarized in (1) of the following
lemma.

LEMMA 5.2. Let 7: A — A be a Boolean epimorphism onto an algebra A of sets, ji: A= Ea
bounded measure and p = 1o .

(1) Then there exists a unique continuous Riesz epimorphis 7: B(A) — B(A) such that
T(xA) = Xn(a) for any A € A.

4A Riesz epimorphism is a surjective linear map which is also a lattice homomorphism.
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(2) [gdu= [T(9)dji for any g € B(A).

Proof. (1) is contained in [2} 45.D].

(2) Since p = from, we have T),(xa) = (T o7)(xa) for any A € A. By linearity and continuity
of T, T,WweobtalnT( ) = (T o7)(g) for any g € B(A). O

The following theorem is essentially a reformulation of [4: Theorem V.1.1] on page 82. In
Theorem we have replaced the assumption of [4: V.1.1] that p is a o-additive measure on a
o-algebra by the weaker condition that y is an exhaustive finitely additive measure on an algebra.
Furthermore, new is here the proof to reduce (1) = (5) of Theorem 5.3]to the special case presented
in Proposition 2:3]

THEOREM 5.3. Let u: A — E be a closed exhaustive measure and N := N(u). Then the following
conditions are equivalent:

(1) For every A € A~ N there exists a function g € B(A) \ B(N) such that [ gdp = 0 and

supp(g) € A.

(2) For every A € AN N there exists a function g € S(A) ~ S(N) such that [ gdu = 0 and
supp(g) € A.

(3) For every A € AN N there are sets B,C C A contained in A such that u(B) = u(C) and
BAC ¢ N.

(4) u(ANA) is convex for every A € A.
(5) (AN A) is conver and weakly compact for every A € A.

Proof. (5)= (4) and (2) = (1) are obvious.

(4) = (3): Let A€ ANN and B € AN A with p(B) = 1u(A). Then by choosing C := A\ B
the condition (3) is satisfied.
(3) = (2): If A, B,C are taken as in (3), then g := xg — xc € S(A) ~ SWN), [gdu = 0 and
supp(g) € A.
We now prove the main implication (1) = (5): Let p = > p, be a decomposition of y according
yel

to Theorem. If we can prove that ., (AN A) is convex and weakly compact for every v € " and
A € A then Corollary [3.7(a) and Propos1t10n [3-8] together with Theorem [4.5 yield that p(AN A)
is convex and weakly compact. Since the p.,’s have a control measure as stated in (1) of Theorem
it is enough to prove (1) = (5) under the additional assumption that X := |2* o u| is a control
measure of u for some x* € E* which we assume in the following. If A was a o-algebra and pu
o-additive one could immediately apply Proposition to finish the proof. In the finitely additive
case we have still to employ Lemma

Let 7: A — A/N be the quotient map. By Stone’s representation theorem .A/A is isomorphic to
an algebra A of sets. To simplify the notation we identify A/N with A, thus 7: A — A becomes
an epimorphism onto A. Since by Proposition E | AN (= A) is a complete Boolean algebra,
by the representation theorem of Loomis-Sikorski there is a o-algebra .Ao and an eplmorphlsm
70t Ay — A such that N := N(mp) is a o-ideal. Define measures i, A, 10, Ag on A and A,
respectively, by jiom = p = fig o mp and Nomr=A= )\0 oo. Then A and Ao are control measures,
respectively, for 4 and pg. By Proposition 4.3 /i and \ are completely additive, therefore g and
Ao are o-additive. Let Ag € Ag ~ N (o), A = m(Ap) and A € A with 7(4) = A. Chose 7
as in Lemma and analogously let 75: B(Ag) — B (/l) be the continuous Riesz epimorphism
with To(xa) = Xme(a) for A € Ag. By assumption there is a function g € B(A) \ B(N) such
that [gdp = 0 and supp(g) € A. Therefore |g] < kxa for some k € N. Let go € B(Ap)
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with T(g0) = 7(g). Replacing go by (—kxa, V go) A kx4, we may assume that |go| < kxa,, i-e.,
supp(go) C Ag. Moreover, g € B(A)\ B(N) implies T(g0) = 7(g) # 0, hence go € B(Ap)~B(Np).
Finally [ goduo = [7o(g0)dit = [7T(g)dfr = [ gdp = 0. Now Propositionyields that po(Ag) is
convex and weakly compact. Hence pu(A) = po(Ap) is convex and weakly compact. For any A € A
the same argument can be applied to p|4na. Thus u(AN A) is convex and weakly compact. O

With the notation of Remark condition (1) of Theorem means exactly that
Tu: B(A)/B(N) — E is not injective. If under the assumption of Theorem 1 is non-atomic,
then B(A)/B(N) infinite dimensional. Therefore condition (1) of Theorem [5.3|is obviously satis-
fied if i is non-atomic and dim E < +o00; in this way Kluvanek and Knowles [4] deduce Liapounoff’s
classical convexity theorem from their Theorem V.1.1.

We would like to give a comment to the theorem of Wnuk mentioned in the introduction which
says that an F-space X is finite dimensional if any o-additive non-atomic measure p: A — X
defined on a o-algebra has compact and convex range. In this theorem the metrizability assumption
cannot be cancelled. Indeed if X = ¢y is the space of all real sequences which are eventually 0
endowed with the box topology 7, then (cgp,7) is a complete locally convex linear space (see
[3: section 6.6]). If u: A — (coo,7p) is a non-atomic o-additive measure on a c-algebra, then p
is bounded; therefore u(.A) is contained in a finite dimensional subspace of ¢op. By the classical
version of Liapounoft’s theorem, ;(.A) is both convex and compact.
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