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SUMMARY

We introduce a multiple testing procedure that controls the median of the proportion
of false discoveries in a flexible way. The procedure requires only a vector of p-values as
input and is comparable to the Benjamini–Hochberg method, which controls the mean of
the proportion of false discoveries. Our method allows free choice of one or several values
of α after seeing the data, unlike the Benjamini–Hochberg procedure, which can be very
anti-conservative when α is chosen post hoc. We prove these claims and illustrate them with
simulations. The proposed procedure is inspired by a popular estimator of the total number
of true hypotheses. We adapt this estimator to provide simultaneously median unbiased
estimators of the proportion of false discoveries, valid for finite samples. This simultaneity
allows for the claimed flexibility. Our approach does not assume independence. The time
complexity of our method is linear in the number of hypotheses, after sorting the p-values.

Some key words: Control; Estimation; False discovery proportion; False discovery rate; Post hoc.

1. Introduction

Multiple hypothesis testing procedures have the common aim of ensuring that the number
of incorrect rejections, i.e., false positives, is likely to be small. The most commonly used
multiple testing procedures control either the familywise error rate or the false discovery
rate, fdr (Dickhaus, 2014; Harvey et al., 2020). The false discovery rate is the expected value
of the false discovery proportion, fdp, which is the proportion of false positives among all
rejections of null hypotheses. Controlling the fdr means ensuring that the expected fdp is
kept below some prespecified value α (Benjamini & Hochberg, 1995; Benjamini & Yekutieli,
2001; Goeman & Solari, 2014).
©c 2024 Biometrika Trust
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The fdp, which is an unknown quantity, can vary widely about its mean when the
tested variables are strongly correlated (Efron, 2007; Schwartzman & Lin, 2011; Delattre
& Roquain, 2015). For this reason, methods have been developed that do not control the
fdr or estimate the fdp, but instead provide a confidence interval for the fdp (Hemerik
& Goeman, 2018). Some methods provide confidence intervals for several choices of the
set of rejected hypotheses that are simultaneously valid with high confidence (Genovese &
Wasserman, 2004, 2006; Meinshausen, 2006; Hemerik et al., 2019; Blanchard et al., 2020;
Katsevich & Ramdas, 2020; Goeman et al., 2021; Blain et al., 2022; Vesely et al., 2023).
There are also procedures, including the methods just mentioned, that ensure that the fdp
remains small with high confidence (van der Laan et al., 2004; Lehmann & Romano, 2005;
Guo & Romano, 2007; Romano & Wolf, 2007; Farcomeni, 2008; Roquain, 2011; Guo et al.,
2014; Delattre & Roquain, 2015; Ditzhaus & Janssen, 2019; Döhler & Roquain, 2020; Basu
et al., 2023; Miecznikowski & Wang, 2023). This is often termed false discovery exceedance
control.

Methods that ensure that the fdp remains small with high confidence can provide very
clear and useful error guarantees. The downside of these methods, however, is that under
dependence they often do not have sufficient power to reject any hypotheses, even if there
is a substantial amount of signal in the data. The reason is that these methods require not
merely that the fdp be small on average, but also that it be small with high confidence. As
a result, users may prefer approaches with weaker guarantees, such as fdr methods. An
alternative is to take α = 0.5 in fdp methods.

The most popular fdr method is the Benjamini–Hochberg method (Benjamini &
Hochberg, 1995). fdr methods generally require the user to choose α before looking at the
data. Common choices for α are 0.05 and 0.1. The methods guarantee that the fdr is kept
below α. However, researchers would often like to change α post hoc. For example, if no
hypotheses are rejected for α = 0.05, a researcher may want to increase α to 0.1, changing
the fdp target in order to obtain more rejections. In other cases, the user will want to decrease
α. However, as we show in § 3.2 and the Supplementary Material, choosing α post hoc can
severely invalidate methods such as the Benjamini–Hochberg procedure. Moreover, the user
may want to report results for several values of α, while providing a simultaneous error
guarantee. There is a need for methods that allow these types of inference.

In this article, we introduce a class of multiple testing methods that allow us to choose
the threshold freely after looking at the data. Our methodology requires only a vector of
p-values as input and is nonasymptotic. Our procedure controls the median of the fdp rather
than the mean. For this and other reasons, we denote the target fdp by γ ∈ [0, 1] instead of
α; this is inspired by Romano & Wolf (2007), Harvey et al. (2020) and Basu et al. (2023).
Controlling the median means that the fdp is at most γ with probability at least 0.5. We will
refer to this as mfdp control. We remark that mfdp control can also be achieved with several
existing fdp methods, by taking α = 0.5. Like some existing methods, our procedure is flex-
ible in the sense that γ can be freely chosen after seeing the data. Further, the procedure is
adaptive, in the sense that it does not necessarily become conservative if the fraction of false
hypotheses is large. We prove that our procedure is valid under a novel type of assumption
on the joint distribution of the p-values. In particular, our method does not require inde-
pendence. Moreover, the method was found to be valid in all simulation settings considered.
Further, we prove that the proposed procedures are often admissible, i.e., they cannot be uni-
formly improved upon (Goeman et al., 2021). Since the method of Goeman et al. (2019) is
also flexible and admissible in some settings, we compare our method with that one in simu-
lations. We also compare with the elegant and fast method of Katsevich & Ramdas (2020).
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The proposed methodology has been implemented in the R (R Development Core Team,
2024) package mFDP, available on CRAN.

Our procedure is partly inspired by an existing estimator of the fraction π0 ∈ [0, 1] of
true hypotheses among all hypotheses. This estimator is mentioned in Schweder & Spjøtvoll
(1982) and advocated in Storey (2002). We refer to it as the Schweder–Spjøtvoll–Storey
estimator. Some publications refer to it as Storey’s estimator or the Schweder–Spjøtvoll esti-
mator (Hoang & Dickhaus, 2022). The literature contains multiple π0 estimators based on
p-values (Rogan & Gladen, 1978; Hochberg & Benjamini, 1990; Langaas et al., 2005; Mein-
shausen et al., 2006; Rosenblatt, 2021). As a side result of our investigation of π0 and fdp
estimation, we add to this literature a novel π0 estimator that is slightly different from the
Schweder–Spjøtvoll–Storey estimator, unless its tuning parameter is 0.5.

The proposed methodology also draws from an idea in Hemerik et al. (2019), which is to
construct simultaneous fdp bounds, called confidence envelopes, in a manner that is partly
data-based and partly reliant on a prespecified family of candidate envelopes. The simul-
taneity of the constructed bounds allows for post hoc selection of rejection thresholds and
hence post hoc specification of γ . The methodology proposed here is applicable in many
situations, where the method of Hemerik et al. (2019) is not. The reason is that one cannot
generally use permutations if one only has p-values, which is the setting we assume.

Our mfdp-controlling approach conceptually relates to recent methods that bound the
fdr by α by finding the largest p-value threshold for which some conservative estimate of
the fdp is below α (Barber & Candès, 2015; Li & Barber, 2017; Lei & Fithian, 2018; Lei
et al., 2021; Luo et al., 2022; Rajchert & Keich, 2022). Those methods do not offer the
simultaneity provided in the present work.

2. Median unbiased estimation of the false discovery proportion

2.1. Notation

Throughout this paper we consider hypotheses H1, …, Hm and corresponding p-values
p1, …, pm, which take values in (0, 1]. Write p = (p1, …, pm). Let N = {1 � i � m :
Hi is true} be the set of indices of true hypotheses and let N = |N | be the number of
true hypotheses, which we assume to be strictly positive for convenience. The fraction of
true hypotheses is π0 = N/m. Let q1, …, qN denote the p-values corresponding to the true
hypotheses, in any order. Write q = (q1, …, qN).

If t ∈ (0, 1), we write R(t) = {1 � i � m : pi � t}. We call R = R(t) the set of rejected
hypotheses, since t will usually denote the p-value threshold. Write R = |R|. Let V = |N∩R|
be the number of true hypotheses in R, i.e., the number of false positive findings. We write
a ∧ b for the minimum of the numbers a and b.

2.2. The Schweder–Spjøtvoll–Storey estimate

Our first results, which inspired § 3, follow from a reinvestigation of the Schweder–
Spjøtvoll–Storey estimator of π0 (Schweder & Spjøtvoll, 1982; Storey, 2002). The estimator
depends on a tuning parameter in (0, 1) that is usually denoted by λ. For practical reasons
we will write the estimator in terms of t = 1 − λ. The estimator is

π̂ ′
0 = |{1 � i � m : pi > λ}|

m(1 − λ)
= |{1 � i � m : pi > 1 − t}|

mt
. (1)
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The heuristics behind the estimate (1) are as follows. The nonnull p-values, i.e., the p-
values corresponding to false hypotheses, tend to be smaller than 1 − t, so most of the
p-values larger than 1 − t are null p-values. Since for point null hypotheses the null p-values
are standard uniform, one expects approximately t × 100% of the null p-values to be larger
than 1−t. Hence, a conservative estimate of the number of null p-values is t−1|{i : pi > 1−t}|.
Thus, π̂ ′

0 is an estimate of π0. Storey’s estimator is related to the concept of accumulation
functions, used to estimate false discovery proportions (Li & Barber, 2017; Lei et al., 2021).

We remark that π̂ ′
0 can be greater than 1. Consequently, researchers often use π̂0 = π̂ ′

0∧1.
This estimate is usually no longer biased upwards, but rather biased downwards for large
values of π0, in particular π0 = 1.

2.3. Median unbiased estimation of V and π0

Here we derive estimators of V and π0 that are inspired by the Schweder–Spjøtvoll–
Storey estimator. We make the following assumption.

Assumption 1. The following holds:

pr
{∣∣{1 � i � N : qi � t}∣∣ >

∣∣{1 � i � m : pi � 1 − t}∣∣} � 0.5. (2)

Assumption 1 says that the number of small null p-values, i.e., those less than or equal to
t, tends to be smaller than the number of large p-values, i.e., those greater than or equal to
1 − t, both null and nonnull. This assumption, (2), is satisfied in particular if

pr
{∣∣{1 � i � N : qi � t}∣∣ >

∣∣{1 � i � N : qi � 1 − t}∣∣} � 0.5. (3)

Further, the probability in (3) is equal to

pr
{∣∣{1 � i � N : qi � t}∣∣ >

∣∣{1 � i � N : 1 − qi � t}∣∣}. (4)

If the null p-values q1, …, qN are independent and standard uniform, then Assumption 1
is clearly satisfied. As another example, suppose q = (q1, …, qN) is symmetric about 1/2,
i.e.,

(q1, . . . , qN)
d= (1 − q1, …, 1 − qN). (5)

Then property (4) and hence Assumption 1 also hold. The symmetry property (5) holds for
instance if q1, …, qN are left- or right-sided p-values from Z-tests based on test statistics
Z1, …, Zm with joint N(0, �) distribution. Further, the presence of null p-values that are
stochastically larger than uniform, or the presence of many nonnulls, makes it easier for
Assumption 1 to be satisfied.

If t is used as a rejection threshold, the number of false positive findings is

V(t) = ∣∣{1 � i � N : qi � t}∣∣.
Under Assumption 1, with probability at least 0.5 we have

V(t) � V̄(t) = ∣∣{1 � i � m : pi � 1 − t}∣∣. (6)
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In other words, V̄(t) is a 50% confidence upper bound for V(t). We will refer to such bounds
as median unbiased estimators for brevity, although writing ‘not downward biased’ instead
of ‘unbiased’ would be more precise.

This result also leads to a median unbiased estimator of π0. Indeed, if V � V̄ , then R
contains at least R − V̄ false hypotheses, so that π0 is at most

m − R + V̄
m

= m − |{1 � i � m : pi � t}| + |{1 � i � m : pi � 1 − t}|
m

.

A reformulation gives the following result.

THEOREM 1. Suppose that Assumption 1 is satisfied. Then V̄(t), defined in (6), is a median
unbiased estimate of V(t). As a consequence, π̄0 = π̄ ′

0 ∧ 1, where

π̄ ′
0 = |{1 � i � m : pi > t}| + |{1 � i � m : pi � 1 − t}|

m
,

is a median unbiased estimate of π0. Further, if t = 0.5 and no p-value equals t, then π̄ ′
0 is

equal to the Schweder–Spjøtvoll–Storey estimate π̂ ′
0.

Thus, if the p-values are continuous and t = 0.5, then π̄ ′
0 = π̂ ′

0 with probability 1. For
other values of λ, we obtain a median unbiased estimate π̄ ′

0 that is slightly different from π̂ ′
0.

In the Supplementary Material, we provide a theoretical comparison of E(π̄ ′
0) with E(π̂ ′

0)

and obtain the estimate π̄ ′
0 in an alternative way; in doing so, we discover a broader class of

π0 estimators.
We write π̄0 = min(π̄ ′

0, 1). In Example 1 and the corresponding Fig. 1, the Schweder–
Spjøtvoll–Storey method is applied to 500 simulated p-values.

Example 1 (Running example, part 1: estimating π0 and V ). As a toy example we gener-
ated 500 independent p-values, 400 of which were uniformly distributed on [0, 1] and 100
of which were stochastically smaller than uniform on [0, 1]. Thus we can say that N = 400.
A scatterplot of the sorted p-values is shown in Fig. 1, as well as a visual illustration of
how Storey’s estimate π̂0m of the number of true hypotheses is computed, in the case where
λ = 1 − t = 0.8. Often λ is taken to be smaller, but considering small t instead will turn
out to be useful. In this example, Storey’s estimate π̂0m was 410 and our estimate, which is
less easy to visualize, was π̄0m = 402. Thus the estimates were close, as is often the case.
Since property (5) and hence Assumption 1 are satisfied, we know that π̄0 is a median unbi-
ased estimator of π0. In particular, we know with 50% confidence that there are at least
500 − 402 = 98 false hypotheses in total.

As explained in this section, we can make this statement stronger by observing that R(t) =
180 and V̄(t) = 82. The latter means that we know with 50% confidence that there are at
least 180 − 82 = 98 false hypotheses among the hypotheses with p-values below t = 0.2.
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Fig. 1. Illustration of the computation of the Schweder–Spjøtvoll–Storey estimate π̂0,
based on 500 sorted simulated p-values. The dashed straight line is constructed in such
a way that it goes through both (500, 1) and the point where the dotted line intersects the

curve of p-values, roughly speaking.

2.4. Median unbiased estimation of the false discovery proportion

Define the fdp to be the proportion of false positives,

fdp = V
R

, fdp(t) = V(t)
R(t)

,

which is understood to be 0 when R = 0. The median unbiased estimate V̄ immediately
implies a median unbiased estimate of the fdp.

THEOREM 2. Suppose that Assumption 1 is satisfied. The variable fdp(t) = V̄(t)/R(t) is a
median unbiased estimator for the fdp, that is,

pr
{
fdp(t) � fdp(t)

}
� 0.5. (7)

To prove this, we only need to observe that if V � V̄ , then fdp � fdp.

3. Controlling the mfdp

3.1. Overview of our method and comparison with false discovery rate control

In § 2.4 we considered a fixed rejection threshold t and provided a median unbiased esti-
mate for fdp(t). In many situations, one would like to adapt the threshold t based on the
data, in such a way that one still obtains a valid median unbiased estimate. Naively choos-
ing t in such a way that an attractive, low estimate of the fdp is obtained can invalidate the
procedure, in the sense that inequality (7) no longer holds. In § 3.3, however, we derive a
method that provides median unbiased bounds for a large range of t, in such a way that
with probability at least 0.5 the bounds are simultaneously valid for all t.

Specifically, we let the user choose some range T ⊆ [0, 1] of rejection thresholds t of
interest before looking at the data. Usually a good choice for T will be [0, 1/2] or another
interval starting at 0. Then we provide 50% confidence upper bounds B(t) for V(t) that are
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simultaneously valid over all t ∈ T:

pr
[ ⋂

t∈T
{V(t) � B(t)}

]
� 0.5. (8)

It then immediately follows that the B(t)/R(t) (t ∈ T) are simultaneously valid 50%
confidence bounds for fdp(t):

pr
[ ⋂

t∈T
{fdp(t) � B(t)/R(t)}

]
� 0.5.

Since the threshold t can be chosen based on the data, it can be selected such that
B(t)/R(t) is low. In particular, one can prespecify a value γ ∈ [0, 1], for example γ = 0.05,
and take the threshold t ∈ T to be the largest value for which B(t)/R(t) � γ , if such a t
exists. This means that our method can be used to reject a set of hypotheses in such a way
that the median of the fdp is bounded by γ :

pr(fdp � γ ) � 0.5.

In other words, we can control the median of the fdp, which we will call the mfdp. Our
method is an example of false discovery exceedance control, but with the added property
that γ can be chosen post hoc, as we discuss below. Our notation using γ is in line with, e.g.,
Romano & Wolf (2007) and Basu et al. (2023).

Our method is related to the popular Benjamini–Hochberg procedure, which ensures that
E(fdp) � γ (Benjamini & Hochberg, 1995). The Benjamini–Hochberg procedure ensures
that the mean of the fdp is controlled, while our method ensures that the median of the fdp is
controlled. The mean and the median of the fdp can be asymptotically equal in some settings
where the dependencies among the p-values are not too strong (Neuvial, 2008; Ditzhaus &
Janssen, 2019), but there is no general guarantee that they are similar (Romano & Shaikh,
2006; Schwartzman & Lin, 2011). Especially under strong dependence, mfdp � γ does not
need to imply E(fdp) � γ , while the converse does hold in many practical situations. More-
over, unlike mfdp control, fdr control always implies weak control of the familywise error
rate (Romano et al., 2008, § 6.4). However, before applying any multiple testing method, we
could first perform a global test to enforce weak familywise error rate control (Bernhard
et al., 2004).

The most important advantage of our method over that of Benjamini–Hochberg is that
it provides simultaneous 50% confidence bounds for the fdp. This allows simultaneous as
well as post hoc inference, in the sense that t ∈ T can be chosen after seeing the data. Fur-
ther, we can choose multiple values of t and obtain simultaneously valid statements on the
fdp. Moreover, we can choose the target fdp γ post hoc. With the Benjamini–Hochberg
procedure, such inference is not possible: if one chooses γ after seeing the data, then the
Benjamini–Hochberg procedure can become very anti-conservative. This is discussed in
§ 3.2.

3.2. The Benjamini–Hochberg procedure is not flexible

The main advantage of the method that we propose is that it allows the user to choose
one or several rejection thresholds or target fdps after seeing the data. This contrasts our
method with the Benjamini–Hochberg procedure. Indeed, when the target fdr α, or γ in
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1136 J. Hemerik, A. Solari AND J. J. Goeman

our notation, is chosen based on the data, then the Benjamini–Hochberg procedure no
longer guarantees that E(fdp) � α, conditional on the post hoc chosen α. When testing
a single hypothesis, choosing α post hoc is not generally valid either (Hubbard, 2004; Grün-
wald, 2023). For simulations illustrating that the Benjamini–Hochberg procedure is not valid
post hoc, see the Supplementary Material. Another related result is Fig. 5 in Katsevich
& Ramdas (2020), which illustrates, based on simulations, that the Benjamini–Hochberg
procedure does not have a simultaneous interpretation. We now give some mathematical
examples showing that the Benjamini–Hochberg procedure is not valid post hoc.

Suppose all m hypotheses are true and that the p-values are mutually independent and
uniformly distributed on (0, 1]. The Benjamini–Hochberg procedure provides m adjusted
p-values and rejects all hypotheses with adjusted p-values that are at most α. Let pbh

(1)
denote

the smallest adjusted p-value. It is well known that if α ∈ [0, 1] is prespecified and all p-values
are independent and uniform on (0, 1], then the probability that the Benjamini–Hochberg
procedure rejects any hypotheses is exactly α (Goeman & Solari, 2011). The Benjamini–
Hochberg procedure rejects any hypotheses if and only if pbh

(1)
� α. Thus, pbh

(1)
is uniform on

(0, 1].
As a simple example of an α chosen post hoc, take α = pbh

(1)
. We now show that in this

case we no longer have E(fdp/α) � 1. Since α = pbh
(1)

, we know that α is uniform on (0, 1].
By definition of α, there is always at least one rejected hypothesis. Since all hypotheses are
true, this means that we always have fdp = 1. Consequently,

E(fdp/α) = E(1/α) =
∫ 1

0
x−1 dx = log(x)

∣∣∣1

0
= ∞,

i.e., E(fdp/α) is completely out of control.
Of course, this is an extreme situation, where α can take any value. We now consider a

less extreme situation, where we allow α to take only two values, say a1 and a2, with 0 <

a1 � a2 < 1. Specifically, we define α to be a1 if pbh
(1)

� a1, and otherwise α = a2. This
mimics the psychology of a researcher who uses a2 as a default value for α, but takes α to be
a1 if this still leads to at least one rejection. If pbh

(1)
> a2, then we reject nothing, so fdp = 0.

Thus, with this definition of α, we have

E(fdp/α) = pr
(
pbh
(1) � a1

)
E

(
fdp/a1

∣∣ pbh
(1) � a1

)
+ pr

(
a1 < pbh

(1) � a2
)
E

(
fdp/α

∣∣ a1 < pbh
(1) � a2

)
= a1E

(
1/α

∣∣ pbh
(1) � a1

) + (a2 − a1)E
(
1/α

∣∣ a1 < pbh
(1) � a2

)
= a1/a1 + (a2 − a1)/a2 = 1 + (a2 − a1)/a2,

which always exceeds 1, except when a1 = a2. As an example, take a1 = 0.05 and a2 = 0.1,
which are values often used in practice. This defines a rather limited set of allowed values
for α. Nevertheless, we find that E(fdp/α) = 1.5, which is already much larger than 1. The
reader can check that if we allow α to take more than two values, then E(fdp/α) can become
huge. Indeed, if we allow α to take any value in (0, 1], then E(fdp/α) can become infinity,
as we saw in the previous example where α = pbh

(1)
.

These examples show that if α depends on the data, then marginally we often have
E(fdp/α) > 1. This means in particular that conditional on α taking a certain value, we
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do not generally have E(fdp) � α. The Supplementary Material includes a simulation study
that illustrates this point in various other settings.

3.3. Simultaneous bounds for the false discovery proportion

Let N denote the set of natural numbers. We call a function B : T → N a confidence
envelope if it satisfies inequality (8) (cf. Hemerik et al., 2019). We restrict ourselves to such
50% confidence envelopes and do not consider, e.g., 95% confidence envelopes. Let B be a
set of maps T → N. Assume that B is monotone, in the sense that for all B, B′ ∈ B, either
B � B′ or B′ � B. Here B � B′ means that B(t) � B′(t) for all t ∈ T. We call B the family
of candidate envelopes (cf. Hemerik et al., 2019).

We will obtain a confidence envelope by choosing the smallest B ∈ B for which B(t) �
V̄(t) for all t ∈ T. We call this envelope B̃:

B̃ = B̃(p) = min
{

B ∈ B :
⋂
t∈T

{
B(t) � V̄(t)

}}
.

If r is a vector containing, say, lr p-values, then we write R(r, t) = {1 � i � lr : ri <

t} to make the dependence on the p-values explicit. Analogously, we define V(r, t), V̄(r, t)
and B̃(r). We use the convention that R(t) = R(p, t), V(t) = V(p, t), V̄(t) = V̄(p, t) and
B̃ = B̃(p).

We require only the following assumption.

Assumption 2. The following holds:

pr
{
B̃(p) � B̃(1 − q)

}
� 0.5. (9)

Owing to the monotonicity of the set B, we always have either B̃(q) < B̃(1−q) or B̃(q) �
B̃(1 − q). If the latter inequality has the greater probability, then (9) is always satisfied,
since B̃(p) � B̃(q). Assumption 2 is a generalization of Assumption 1, in the sense that if
T is equal to the singleton {t}, then Assumptions 1 and 2 will coincide for most reasonable
choices of B, e.g., for B as in § 3.4.

Assumption 2 always holds if property (5) is satisfied, regardless of our choice of B.
Indeed, if (5) holds, we have pr{B̃(p) � B̃(1 − q)} � pr{B̃(q) � B̃(1 − q)} = pr{B̃(1 − q) �
B̃(q)}. Since the latter two probabilities are equal, they are both at least 0.5, so Assumption 2
is satisfied. Moreover, property (5) is not necessary for Assumption 2 to hold, as confirmed
by our simulations.

Let [ · ]+ be the positive-part function. The following theorem states that B̃ provides
simultaneously valid 50% confidence bounds.

THEOREM 3. Suppose that Assumption 2 holds. Then the function B̃ is a confidence
envelope, that is,

pr
[ ⋂

t∈T
{V(t) � B̃(t)}

]
� 0.5,

pr
[ ⋂

t∈T
{fdp(t) � B̃(t)/R(t)}

]
� 0.5.
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In addition, B̃′ : T → N defined by

B̃′(t) = R(t) − max
{[R(l) − B̃(l)]+ : l ∈ T, l � t)

}
,

which satisfies B̃′ � B̃, is also a confidence envelope and potentially improves upon B̃.

The proof is presented in the Supplementary Material, but here we give the intuition
behind it. First of all, V̄(t) is a 50% confidence bound for V(t), but not simultaneously
over all t. The reason is that if multiple events have probability 0.5, then the probability
that all events happen is usually smaller than 0.5. For example, if for t1, t2 ∈ (0, 1) we have
pr{V(tj) � V̄(tj)} � 0.5 for j = 1 and j = 2, then we do not generally have pr{V(t1) �
V̄(t1) and V(t2) � V̄(t2)} � 0.5. To get a simultaneous bound for V(t), we usually need
a stricter requirement; it is not sufficient to simply define B̃(t) = V̄(t). In the proof, if
B̃(p) � B̃(1 − q), then B̃(t) � V(t) for all t. It thus follows from Assumption 2 that our B̃ is
a confidence envelope. That B̃ is chosen from a fixed, monotone family is not directly used in
the proof. However, if B̃ is chosen from such a family, then B̃(p) � B̃(q) and it follows that
if (5) holds, then Assumption 2 is satisfied. Thus, that B̃ is chosen from a fixed, monotone
family makes Assumption 2 reasonable. It also allows B̃ to be defined as a simple minimum.

In the rest of this subsection, we provide an extension of the bounds B̃′(t) and a result on
admissibility. It turns out that B̃′ coincides with an envelope obtained through a novel closed
testing-based procedure, in the sense of Goeman & Solari (2011) and Goeman et al. (2021).
This novel procedure provides a 50% confidence bound for the number of true hypotheses in
I , for every subset I ⊆ {1, …, m}. These bounds are all simultaneously valid with probability
at least 50%. We denote these bounds by B̄(I).

THEOREM 4. Write M = {I ⊆ {1, …, m} : I |= ∅}. For every I ∈ M and t ∈ T, define
RI(t) = |R(t) ∩ I| = |{i ∈ I : pi � t}|. Write

B̄(I) = max
{|A| : ∅ |= A ⊆ I and ∀t ∈ T, RA(t) � B̃′(t)

}
, (10)

where the maximum of an empty set is interpreted as 0.
Assume T ⊆ [0, 1/2) and pr{B̃(q) � B̃(1 − q)} � 0.5. Then

pr
[ ⋂

I∈M

{|N ∩ I| � B̄(I)
}]

� 0.5,

i.e., the B̄(I) are simultaneous 50% confidence bounds for the number of true hypotheses in I.
In particular, the function T → N defined by t �→ B̄{R(t)} is a confidence envelope.

If the local tests discussed in the proof of Theorem 4 are admissible, then the method of
Theorem 4 is admissible, in the sense of Theorem 3 in Goeman et al. (2021). The local tests
will usually be admissible when B is any reasonable family, such as the family considered in
§ 3.4. By Theorem 5 below, if the procedure of Theorem 4 is admissible, then the envelope
B̃′(t) from Theorem 3 is also admissible.

THEOREM 5. For every t ∈ T, the bound B̃′(t) from Theorem 3 is equal to the bound B̄{R(t)}
from Theorem 4. Moreover, if the procedure from Theorem 4 that provides bounds for all I ∈
M is admissible, then the envelope B̃′ is also admissible. Here admissibility of B̃′ means that
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there exists no envelope B : T → N such that B(t) � B̃′(t) for all t ∈ T and such that
pr{∃ t ∈ T : B(t) < B̃′(t)} > 0.

The admissibility property of our method contrasts with the Benjamini–Hochberg pro-
cedure. The latter method is not admissible, since it is uniformly improved upon by the
method of Solari & Goeman (2017), for which admissibility is not known. In the rest of this
article we will focus on bounds for rejected sets of the form R(t) = {1 � i � m : pi � t}, as
constructed in Theorem 3.

3.4. A default mfdp envelope

The envelope B̃ depends on a general family B of candidate confidence bounds. The
choice of this family can have a large influence on the bounds obtained (cf. Hemerik et al.,
2019). An important question is therefore how to choose this set B in a suitable way. Typi-
cally we want B to contain at least one function B that is a tight upper envelope of the
function t �→ V̄(t). Between t = 0 and, say, t = 0.5, the function V̄(t) tends to be roughly
linear in t, at least under independence. Thus, it can make sense to also take the candidate
envelopes B ∈ B to be roughly linear. Also, giving them a small positive intercept will often
be useful to avoid having B̃ be too sensitive to p-values near 1.

Further, it is usually appropriate to takeT = [s1, s2], where s1 � 0 is the smallest threshold
of interest and s2 < 1 is the largest threshold of interest. Based on these considerations, we
propose to use the following default family B of candidate functions:

B = {Bκ : κ ∈ (0, ∞]}, (11)

with

Bκ(t) = ∣∣{1 � i � m : iκ − c � t}∣∣ =
⌊

t + c
κ

⌋
.

Here, c � 0 is a prespecified small constant. The discrete function Bκ is roughly linear in t
and has slope 1/κ.

The choice of c influences the intercept of Bκ and hence the slope and intercept of the
resulting envelope B̃. Taking c to be 0 or very small tends to give tighter bounds B̃(t) for
very small t, while taking c a bit larger tends to yield tighter bounds for larger t. We found
in simulations that taking c = 1/(2m) usually gave good overall power.

If we take B as in expression (11), then the confidence envelope becomes

B̃ = Bκmax, κmax = max
{
κ ∈ (0, ∞] :

⋂
t∈T

{
Bκ(t) � V̄(t)

}}
. (12)

For computational implementation of this method, a useful equivalent formulation is the
following, if T is an interval.

PROPOSITION 1. Suppose T is of the form [s1, s2] with 0 � s1 < s2 � 1. We then have

κmax = κ0 ∧ min
{
κi : 1 � i � m, 1 − pi ∈ T

}
, (13)
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Fig. 2. Graph showing the number of rejections (grey solid) and two confidence envelopes
B̃ (green dashed for c = 0 and blue dotted for c = 0.004) as functions of the rejection
threshold t for the running example. The confidence envelopes B̃(t) are simultaneous 50%
confidence upper bounds for the number of false positives V(t), and the intercept and
slope depend on the user-specified constant c: for c = 0 the intercept is slightly smaller

than for c = 0.004; indeed, the intercepts are 0 and 2, respectively.

where

κ0 = s1 + c

V̄(s1)
= s1 + c

|{1 � j � m : pj � 1 − s1}| ,

κi = 1 − pi + c

V̄(1 − pi)
= 1 − pi + c

|{1 � j � m : pj � pi}| (1 � i � m).

If the denominator is zero, the expression is interpreted as ∞.

We can sometimes straightforwardly improve the envelope Bκmax by using the second part
of Theorem 3. In Example 2 we continue the running example and compute simultaneous
mfdp bounds. Figure 2 shows the confidence envelope and Fig. 3 illustrates how the envelope
was determined.

Example 2 (Running example, part 2: confidence envelopes). We continue Example 1 by
computing confidence envelopes, i.e., simultaneous 50% confidence upper bounds for V(t),
the number of false positives, which depends on the threshold t. We take T = [0, 0.2] and
define B̃ as in (12). We compute B̃ for both c = 0 and c = 2/m = 0.004. These choices for c
are somewhat arbitrary. The number of rejections R(t) and the bounds B̃(t) for both values
of c are plotted in Fig. 2. The construction of the confidence envelopes B̃ is illustrated in
Fig. 3.

Figure 2 shows that, as expected, near t = 0 the number of rejections increases quickly
with t. The reason is that there were many p-values near 0, as seen in Fig. 1. By definition
(12), the bounds B̃(t) are roughly linear in t, which can be seen in the figures. We also see
that for this specific dataset, the bound B̃(t) depends strongly on c: it is lower for c = 0.004
than for c = 0 if t is close to 0, but much higher otherwise. For most values of t ∈ [0, 1]
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Fig. 3. Illustration of the construction of the confidence envelope for the running ex-
ample. For every rejection threshold t, V̄(t) (grey solid) is a 50% confidence upper bound
for the number of false positives, V(t). The confidence envelope B̃(t) (green dashed for
c = 0 and blue dotted for c = 0.004) is constructed in such a way that it lies above
the pointwise bound V̄(t) for all t ∈ T. Owing to this construction, the bounds B̃(t) are
simultaneous 50% confidence bounds for V(t). The intercept and slope of B̃ are influenced

by the choice of c.

the envelope for c = 0.004 is better, i.e., lower, than the envelope for c = 0. On the other
hand, the smallest cut-offs are often most relevant. Finally, we remark that the bounds in the
figures can be somewhat improved by using the last part of Theorem 3. This improvement
was used to obtain Fig. 4, where simultaneous 50% confidence bounds for fdp(t) are shown.

3.5. Controlling the median of the false discovery proportion

Consider γ ∈ [0, 1]. As discussed in § 3.1, we can use any confidence envelope B to guar-
antee that pr(fdp � γ ) � 0.5. In other words, we can control the mfdp. By mfdp we mean
the median of the distribution that the fdp has, conditional on the data and conditional on
γ , which can be chosen after seeing the data. This is stated in the following theorem. The
maximum of an empty set is taken to be 0.

THEOREM 6. Let B : T → N be a confidence envelope, such as B̃. Let the target fdp
γ ∈ [0, 1] be freely chosen based on the data. Define

tmax = tmax(B, γ ) = max{pi : ∃ t ∈ T ∩ [pi, 1], B(t)/R(t) � γ }.
Reject all hypotheses with p-values at most tmax and denote the fdp by fdpγ . Then with
probability 0.5 the fdp is at most γ , i.e.,

pr{fdpγ � γ )} � 0.5. (14)

In fact,

pr
( ⋂

γ∈[0,1]
fdpγ � γ

)
� 0.5, (15)

i.e., the procedure provides mfdp control simultaneously over all γ ∈ [0, 1].
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Fig. 4. Simultaneous 50% confidence upper bounds for fdp(t), defined by fdp(t) =
B̃(t)/R(t), for two values of c (green dashed for c = 0 and blue dotted for c = 0.004).
If c = 0.004, the bound is greater than zero at t = 0; the reason is that B̃(0) > 0 for this
value of c. Roughly speaking, the bound fdp(t) then decreases for a while before it starts

to increase. If c = 0, the bound starts at zero and increases from there.

In other words, if we reject all hypotheses with p-values that are at most tmax, then a
median unbiased estimate of the fdp is γ . This follows directly from the fact that the esti-
mates fdp(t) (t ∈ T) are simultaneously valid 50% confidence upper bounds by inequality
(8). Inequality (14) holds despite the fact that γ can depend on the data. In fact, with prob-
ability at least 50%, fdpγ � γ simultaneously over all γ ∈ [0, 1]. This contrasts our method
with many other procedures, which require considering only one rejection criterion, which
moreover needs to be chosen in advance (Benjamini & Hochberg, 1995; van der Laan et al.,
2004; Lehmann & Romano, 2005; Guo & Romano, 2007; Romano & Wolf, 2007; Neuvial,
2008; Roquain, 2011; Guo et al., 2014; Delattre & Roquain, 2015; Ditzhaus & Janssen, 2019;
Döhler & Roquain, 2020; Basu et al., 2023; Miecznikowski & Wang, 2023). In Example 3
we continue the running example and apply our mfdp control method.

Example 3 (Running example, part 3: controlling the mfdp). Continuing Example 2, take
γ = 0.05 and consider the confidence envelope B̃ discussed in Example 2. To find a rejection
threshold tmax for which we can ensure mfdp � γ , we use Theorem 6. It computes tmax as
the largest t for which the estimate in Fig. 4 is at most γ .

Recall that in Example 2 we computed bounds B̃(t) for both c = 0 and c = 0.004. For
c = 0, we now find tmax = 0.002709, which is the 54th smallest p-value. Thus, we can reject
54 hypotheses. More precisely, if we reject the 54 smallest p-values, we know that the mfdp is
below γ = 0.05. We remark that tmax is about 27 times higher than the Bonferroni threshold
0.05/500 = 0.0001.

If c = 0.004 then tmax = 0.001660, so that we can only reject 53 hypotheses. The reason
why tmax is lower if c = 0.004 is that for small values of t, the bound B̃(t) is higher for
c = 0.004 than for c = 0, as can be seen in Fig. 2.
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One is allowed to change γ after looking at the data. For instance, if we decrease γ to
0.01, we reject 44 hypotheses for c = 0 and reject no hypotheses for c = 0.004.

3.6. Adjusted p-values for mfdp control

Adjusted p-values can be a useful tool in multiple testing. They are defined as the smallest
level, for example the smallest γ , at which the multiple testing procedure would reject the
hypothesis. Adjusted p-values can be problematic in, for example, fdr control and our con-
text. The reason is that the adjusted p-value does not have an independent meaning and can
easily be misinterpreted when taken out of context (Goeman & Solari, 2014, § 5.4). More-
over, an mfdp-adjusted p-value could be 0, which also shows that the interpretation is very
different than for real p-values, which cannot be 0. Nevertheless, in our context, adjusted
p-values are quite useful, because, once computed, they allow one to check quickly which
hypotheses are rejected for various values of γ .

Let B be a confidence envelope and let 1 � i � m. As discussed in § 3.5, B defines an
mfdp-controlling procedure. The mfdp-adjusted p-value for Hi is the largest γ ∈ [0, 1] for
which Hi is still rejected by the mfdp-controlling procedure. Consequently, if we reject all
hypotheses Hi with pad

i � γ , then mfdp � γ .

PROPOSITION 2. Let 1 � i � m. Then the value

pad
i = min{B(t)/R(t) : t ∈ T ∩ [pi, 1]} (16)

is an mfdp-adjusted p-value for Hi, i.e., if we reject all hypotheses Hi with pad
i � γ , then

pr(fdpγ � γ ) � 0.5. Here γ may be chosen based on the data. In fact, inequality (15) holds.
We take the minimum of an empty set to be ∞.

Suppose that T, the set of rejection thresholds of interest, is of the form [s1, s2]. Then we
have the following useful reformulation of Proposition 2.

PROPOSITION 3. Suppose that T is of the form [s1, s2] with 0 � s1 < s2 � 1. For each
1 � i � m with pi � s2, the adjusted p-value defined above is then

pad
i = min

{
B(t)/R(t) : t ∈ [

max{s1, pi}, s2
] ∩ {s1, p1, p2, . . . , pm}}.

Given the data, the adjusted p-value is a nondecreasing function of the unadjusted
p-value. As a consequence of this and Proposition 3, if T is of the form [s1, s2], Algorithm 1
can be used to efficiently compute the mfdp-adjusted p-values. The algorithm takes the m
sorted p-values p(1), …, p(m) as input and returns the corresponding sorted adjusted p-values.

The idea of the algorithm is to start with computing the largest adjusted p-value(s), con-
tinue with the second largest one and so on. The algorithm also uses the fact that if p(i) > s2,
then pad

(i) = ∞. It further uses the fact that all hypotheses with unadjusted p-values below
s1 have the same adjusted p-value. Adjusted p-values can be easily computed using the R
package mFDP.

Algorithm 1. Algorithm for computing the mfdp adjusted p-values if T = [s1, s2].

r ← |{1 � i � m : pi � s2}|.
if r < m then

pad
(r+1)

, …, pad
(m) ← ∞.
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if r > 0 then
if s1 � p(r) then

pad
(r) ← B(p(r))/R(p(r))

else
pad
(r) ← B(s1)/R(s1)

l ← r − 1
while l > 0 AND p(l) � s1 do

pad
(l) = min{pad

(l+1)
, B(p(l))/R(p(l))}

l ← l − 1
if l > 0 then

pad
(1)

, …, pad
(l) ← min{pad

(l+1)
, B(s1)/R(s1)}

return pad
(1)

, …, pad
(m)

4. Simulations

We performed simulations to assess the error control, power and speed of our method,
using R version 4.3 (R Development Core Team, 2024). We compared our approach with
three existing methods. The first is the method of Goeman et al. (2019), which exploits the
Simes inequality and closed testing and has proven admissibility, like our method. That
method is a special case of the one in Goeman & Solari (2011), but Goeman et al. (2019)
describes a faster algorithm, although its computational complexity is still not linear like
the method proposed here. If one takes α = 0.5 in that method, then it provides flexi-
ble mfdp control, just like our proposed method. The second method is the procedure for
simultaneous fdp control of Katsevich & Ramdas (2020). Taking α = 0.5 in that method
gives flexible mfdp control, although the method does assume independence. Moreover, that
method has proven validity only for α � 0.31, although the authors remark that it is prob-
ably also valid for larger α. Finally, we compare our method with the Benjamini–Hochberg
procedure (Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001), which is the most
popular method related to fdp control, although it does not control the mfdp, but rather
the fdr. Moreover, it requires choosing γ , called α in Benjamini & Hochberg (1995), before
seeing the data. We also consider two so-called adaptive fdr methods, which use an estimate
of π0 to gain power.

In the simulations we considered m = 103 or 104 hypotheses. The p-values were based
on Z statistics, computed from simulated data with various dependence structures. The
p-values were two-sided unless stated otherwise. To create signal, a number � was added to
the first (1 − π0)/m test statistics. The following dependence structures of the test statistics
were considered:

(i) independence, referred to as IN;
(ii) homogeneous positive correlations ρ = 0.5, referred to as HO;

(iii) five independent blocks, with positive dependence ρ = 0.8 within blocks, referred to
as BL;

(iv) 50 negatively dependent blocks with correlations −0.01 and with correlation 0.5 within
blocks; the p-values were right-sided so that they were negatively correlated between
blocks, referred to as NE.

Further, we varied m, π0 and the signal �.
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Table 1. The error rate of our procedure in various settings with
m = 103. The final column shows the simulation-based esti-
mate of the probability that there is a 0 < γ < 1 for which
fdpγ exceeds γ ; this probability should not be greater than 0.5.
For the settings with π0 < 1, the signal for the false hypotheses

was � = 3
π0 Setting ρ pr(error)

1 IN 0 0.499
1 HO 0.2 0.334
1 HO 0.5 0.266
1 HO 0.9 0.330
1 BL 0.5 0.335
1 BL 0.9 0.351
1 NE −0.01 0.500
0.95 IN 0 0.498
0.95 HO 0.2 0.336
0.95 HO 0.5 0.266
0.95 HO 0.9 0.327
0.95 BL 0.5 0.338
0.95 BL 0.9 0.343
0.95 NE −0.01 0.501

We computed B̃ as in § 3.4. We took T = [0, 0.1], i.e., our bounds and mfdp-adjusted
p-values were simultaneously valid with respect to all thresholds t in this interval. We took
c = 1/(2m) as recommended in § 3.4.

We first assessed whether our method provided appropriate simultaneous mfdp control.
The simulation results are shown in Table 1. For each setting, the table reports the estimate
of the probability pr{for some t ∈ T, V(t) > B̃(t)}, which is identical to the probability that
there is a 0 < γ < 1 for which fdpγ exceeds γ . Each estimate was based on 104 repeated
simulations.

The table confirms the simultaneous control of our method. It can be seen that the esti-
mated error rate is about 0.5 under independence if π0 = 1. Indeed, the true error rate is
then exactly 0.5. The reason is that in this case p = q and the equality (5) holds, so that
the probability in Assumption 2 is exactly 0.5. We see that for π0 = 0.95 the error rate is
also approximately 0.5, rather than less. This is because our method is quite adaptive. In
the setting with negative dependence, π0 = 1 and one-sided p-values, the error rate is also
exactly 0.5, again because (5) then holds. In the other cases, the method was also valid.

Next, we assessed the power of our method by comparing it with the power of the
methods of Goeman et al. (2019) and Katsevich & Ramdas (2020). The power was defined
as the average fraction of the false hypotheses that were rejected. For three values of the
target fdp γ we estimated the power for the three methods. The results are shown in Fig. 5,
where m = 103 and π0 = 0.9. Overall the method of Katsevich & Ramdas (2020) performed
least well among the three, especially for γ = 0.01. This may partly be due to the +1 in their
formula for the bound on the number of false positives. Further, for γ = 0.01, the method
of Goeman et al. (2019) had better power than our proposed method. However, as shown
in the Supplementary Material, for m = 104 and π0 = 0.9 our method was better than that
of Goeman et al. (2019) overall. Further, for m = 104 and π0 = 0.5, our method was clearly
better than both competitors, as shown in Fig. 6. This can be understood by recognizing
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Fig. 5. The power of our proposed method (blue solid) and the methods of Goeman et al. (2019) (red dashed)
and Katsevich & Ramdas (2020) (green dotted) plotted against γ for various settings with m = 103 and π0 = 0.9.

Each estimate is based on 104 simulations.

that the method of Katsevich & Ramdas (2020) is not adaptive, i.e., it is conservative when
π0 is far from 1.

Further, our method was orders of magnitude faster than the method of Goeman et al.
(2019), especially for large m. For example, in the setting of the first panel of Fig. 6, our
method took 1.7 × 10−2 seconds on average, while that of Goeman et al. (2019) took 4.8
seconds on average. The method of Katsevich & Ramdas (2020) was the fastest, taking
8.6 × 10−4 seconds on average. The reason is that the bounds for V(t) provided by that
method depend only on m and t and not on the data.

Finally, for the same simulation settings we computed the power of the Benjamini–
Hochberg procedure and two adaptive versions thereof. The results are reported in Table 2.
The first column shows the power of the standard Benjamini–Hochberg procedure. The
other columns show the power of two versions of the right-boundary procedure of Liang &
Nettleton (2012), which makes the Benjamini–Hochberg method more powerful by using an
estimate of π0. The first version, BH*, is their original procedure based on Storey’s estimator
π̂ ′

0. The second one, BH**, is the same, but based on our proposed estimator π̄ ′
0. Since the
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Fig. 6. The power of our proposed method (blue solid) and the methods of Goeman et al. (2019) (red dashed)
and Katsevich & Ramdas (2020) (green dotted) plotted against γ for various settings with m = 104 and π0 = 0.5.

Each estimate is based on 103 simulations.

Table 2. The power of the Benjamini–Hochberg procedure and two adaptive
versions of it. The target fdr α, i.e., γ , was 0.05; each estimate is based

on 104 simulations
Method

Setting ρ � BH BH* BH**

IN 0 2 0.058 0.062 0.062
IN 0 3 0.496 0.511 0.512
IN 0 4 0.879 0.886 0.886
HO 0.5 2 0.099 0.125 0.122
HO 0.5 3 0.466 0.494 0.485
HO 0.5 4 0.861 0.910 0.904
BL 0.8 2 0.129 0.153 0.150
BL 0.8 3 0.472 0.503 0.499
BL 0.8 4 0.842 0.863 0.862
NE −0.01 2 0.120 0.130 0.130
NE −0.01 3 0.598 0.617 0.617
NE −0.01 4 0.919 0.925 0.925

Benjamini–Hochberg procedure and its adaptive versions require choosing α beforehand,
we show the power only for α = 0.05, i.e., γ = 0.05.

Comparing Fig. 5 and Table 2 shows that for γ = 0.05, the power of our method was
roughly equal to that of the Benjamini–Hochberg procedure, yet often slightly lower. How-
ever, our method provides simultaneous bounds and γ can be chosen after seeing the results.
As expected, the adaptive Benjamini–Hochberg methods had a bit more power than the
Benjamini–Hochberg procedure. The adaptive methods performed similarly to each other.
We found that they provided valid fdr control in all the settings, except in HO, where the
fdr of BH* varied around 0.08 and the fdr of BH** varied around 0.07.

5. Discussion

This article has introduced an exploratory multiple testing approach, which is useful in
particular because the user is allowed to freely choose rejection thresholds based on the
data. This is what many researchers would like to do, but which many of the most popular
methods do not allow. We have presented a result on the admissibility of our approach, and
the simulations demonstrate good power, especially in settings with many false hypotheses.
Moreover, the power properties can be influenced by the user, who can select an appropriate
family of candidate envelopes B. The choice of the range T of rejection thresholds also
affects the power, since the method focuses power on the thresholds within this range.
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Since our method essentially provides estimates for the fdp without confidence intervals,
we encourage users to also compute a confidence interval using, for example, the methods
listed in § 1. However, as discussed, the methods among those that are valid under depen-
dence have limited power. This means that the confidence interval for the fdp may contain
1, even when there are several strong signals. If permutation of the data is valid, this can
often be used to construct tighter confidence intervals (Hemerik et al., 2019; Blain et al.,
2022; Andreella et al., 2023).

Our simulations illustrate that for a given γ , the Benjamini–Hochberg procedure tends
to have slightly greater power than our method, but our method has the advantage that it
provides post hoc inference. Indeed, we have shown that the Benjamini–Hochberg procedure
often becomes too liberal when α is chosen post hoc. On the other hand, we control the
median of the fdp, which may not always be as appealing as control of the mean. To further
illustrate the utility of our method, in the Supplementary Material we provide a data analysis
of real RNA-Seq data. Here we further explain how our method’s flexibility can lead to
additional insights into the data.

Both our proposed method and the Benjamini–Hochberg procedure have certain proven
finite-sample, theoretical guarantees, in particular under independence. None of the
methods are guaranteed to be valid under an unknown dependence structure. However,
there is much evidence that the Benjamini–Hochberg procedure is valid for many depen-
dence structures. Likewise, we did not find a simulation setting in which our method was
invalid.

Besides fdp estimators, we have provided a novel π0 estimator. We have conducted simu-
lations where this estimator was used within an adaptive Benjamini–Hochberg approach.
Future work may more extensively assess our estimator in such settings. Further avenues for
potential future research are discussed in the Supplementary Material. There we consider
more general estimates of π0 and V(t), which can be combined with the approach in § 3.3
of constructing simultaneous mfdp bounds.

‘Uniform’ or ‘simultaneous’ control usually means that the probability of a union of
events is kept below some value (Genovese & Wasserman, 2004; Meinshausen, 2006; Blan-
chard et al., 2020; Goeman et al., 2021). Since fdr control is not defined as controlling
a probability, simultaneous fdr control is in that sense undefined. However, interestingly,
Corollary 1 in Katsevich & Ramdas (2018) provides what might be called ‘simultaneous
fdr control’, assuming the p-values are independent. In particular, there α can be chosen
post hoc while still guaranteeing that the fdr is at most α.

Supplementary material

The Supplementary Material contains additional theory and simulations, an analysis of
RNA-Seq data and proofs of Theorems 3–6 and Propositions 1–3.
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