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In a competitive industry where production entails a negative externality, a welfare- 

maximizing regulator considers, as control instruments, setting a cap on the industry out- 

put or levying an output tax. We embed this scenario within a dynamic setup where mar- 

ket demand is stochastic and market entry is irreversible. We firstly determine the industry 

equilibrium under each policy and then determine the cap level and the tax rate that max- 

imize welfare in each case. We show that a first-best outcome can be achieved through the 

tax policy while the cap policy may only qualify as a second-best alternative. 
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1. Introduction 

Weitzman (1974) has studied the dilemma concerning which policy tool to use – taxation or a cap on quantity – when 

maximizing welfare in a context where production entails a negative externality. His seminal work has led to decades of 

intense study of this dilemma within the fields of public economics and environmental economics. Koenig (1985) , in which

the adverse externality is due to the entry of foreign firms that negatively affects the domestic industry, Spulber (1985) ,

who assumes that market entries increase pollution, and Anderson (1993) , where the development of new properties harms 

residents by reducing open space, are a few examples for studies dealing with this dilemma and the wide range of topics

to which it is relevant. 

Weitzman’s model was static, and his main result was that a cap on quantity performs better than a tax if the marginal

benefit curve is steeper than the marginal cost curve, otherwise a tax does better. As per the survey by Tang et al. (2019) ,

much of the subsequent research has remained within a static framework, and in particular, very few studies have explored 
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this issue under the rather realistic assumptions of stochastic profitability, irreversibility of the investment, and flexibility 

in choosing the investment timing. The literature on the industry equilibrium under these conditions is vast, and Dixit and

Pindyck (1994) presents much of it. So far, the only study analyzing Weitzman’s “tax vs. cap” dilemma within the typical 

framework of this literature is Baldursson and von der Fehr (2004) who study the efficacy of price and quantity controls in

a setup where the investment in abatement is irreversible for some firms in the industry and reversible for others. Their

main finding repeats Weitzman’s result, as they conclude that the relative slope of the cost curve with respect to the slope

of the benefit curve determines whether tax or cap is the better policy. Yet, their modeling does not follow the standard

lines of the literature on investment under uncertainty and, in particular, the uncertainty in their model springs from the 

unorthodox assumption that the number of the firms adopting a reversible abatement technology is stochastic. 

Other studies which add adverse externalities to the typical framework of the investment under uncertainty literature 

are few and they focus either on taxes or on a cap policy, or possibly analyze the equilibrium under both policies but

not comparing the two. 1 Thus, for example, Jou and Lee (2008) who consider a real estate market assuming that newly

developed properties, by reducing open space, have an external cost, have focused on tackling this externality with a tax 

policy. Similarly, Lee and Jou (2007) show how the regulator can correct the negative externality by imposing a density 

ceiling control. Di Corato and Maoz (2019) search for the optimal cap on private firms’ entries in markets where production

has adverse externalities and the output price is stochastic, but do not consider the possibility of a tax policy. 2 

To fill this void, in this paper, we set up a model analyzing the industry equilibrium under perfect competition in a

dynamic setup where market demand is stochastic and entry is irreversible. Production generates an external cost for So- 

ciety, which is assumed increasing and convex in the industry output. We then consider the following two polar policy 

instruments for regulating the negative externality: (i) a quantity control exerted by introducing a cap on the industry out- 

put and then rationing market entries, (ii) a price control exerted by imposing an output tax. We characterize the industry

equilibrium under each policy and try to find which of the two policy tools leads to greater welfare. 

Our main findings are as follows. In the case of a cap policy, we find that optimality leads to on an internal welfare-

maximizing cap level. Rather intuitively, this level is the quantity at which the marginal market surplus is equal to the

marginal social cost, i.e., the sum of private and external costs. If the current market quantity is still below this level, then

it is optimal to set this level as a cap on market quantity and allow the market to expand towards it over time, based

on the strategic entry considerations of the firms. If, on the other hand, the current market quantity is already above this

welfare-maximizing cap level, then, due to irreversibility, the market cannot revert to this welfare-maximizing cap level, and 

it is optimal to set the cap at the current level, i.e., to immediately ban any further entry. We also find that the welfare-

maximizing cap level is increasing in the level of market uncertainty, which implies that greater profit uncertainty makes the 

policy maker allow more entries. This result is based on the same effect by which the uncertainty premium counterbalances 

the external cost as described in Di Corato and Maoz (2019) . 

The result that the optimal policy in this case is based on an internal welfare-maximizing cap level is novel because the

only other study searching for an optimal cap within a competitive environment with profit uncertainty and investment 

irreversibility is Di Corato and Maoz (2019) which reaches a different result. Specifically, they assume that the external cost 

is a linear function of the quantity produced, and therefore reach the result that it optimal to have either no cap at all, if

the uncertainty is high enough, and otherwise to set the cap at the current market quantity. In contrast, in this study we

assume that the external cost is a convex function of market quantity, as the empirical literature about pollution damages 

often suggests, and therefore reach the result of an internal welfare-maximizing cap level. 

In the case of a tax policy, we show that the output tax can be viewed as an additional cost of production for the

private firm whose impact can be studied using the model by Leahy (1993) . In his model, the price threshold triggering

market entries is increasing in the cost of production, therefore, the introduction of an output tax, by raising the entry

threshold, delays market entries with respect to the scenario where the industry is not regulated. This is because the output 

price, in its random evolution, needs more time (in expected terms) before hitting eventually a higher threshold. We then 

determine the tax rate maximizing welfare and find that it must be set equal to the marginal external cost associated with

the industry output supplied at each time point. This implies that further market entries become less and less likely as the

industry output increases since the higher the tax burden, the higher the entry threshold. 

Finally, when comparing the cap and the tax policies, a relevant trade-off emerges. With the cap, the industry output is 

bounded but the cap does not affect its temporal evolution with respect to the scenario where the industry is not regulated.

In contrast, with the output tax, there is no limit to market entries but the tax affects the temporal evolution of the industry

output by delaying market entries. 

We then show that a first-best outcome can be achieved only by adopting a tax policy and that, in this respect, the ability

to affect the entry timing is crucial. In fact, by setting the tax rate equal to the marginal external cost associated with the
1 Other studies incorporating externality control within the typical framework of investment under uncertainty, but not addressing the Weitzman’s 

dilemma are Chao and Wilson (1993) , Xepapadeas (2001) and Zhao (2003) . Chao and Wilson (1993) show that the option value affects the investment 

in abatement under uncertain permit prices. Xepapadeas (2001) studies how a firm respond to environmental policy when deciding their investment 

in abatement and location under uncertainty about the output price, the policy context and the technology. Zhao (2003) shows that when considering 

uncertainty about the abatement costs the magnitude of the option value is larger when introducing taxes rather than permits. 
2 Their model is based on Bartolini (1995) where, differently, no external damages associated with firms’ investment and production are explicitly con- 

sidered and the cap is taken as exogenous. 
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industry output supplied at each time point, the externality is fully internalized by the firms and consequently entries occur 

only when the exogenous stochastic shifts in market demand yield an associated gain in terms of market surplus covering 

the marginal social cost of an additional unit of the good. In contrast, a cap policy may only be considered as a second-best

alternative since, in the presence of a cap, market entries occur at a socially suboptimal time. In fact, when the cap is not

binding, firms keep entering the market using the same strategy that would be followed in the absence of regulation while,

when the cap is binding, market entries do not occur at all, even when they would be beneficial from a welfare perspective.

The main reason for the difference between our result of tax superiority and Weitzman’s result springs from the dynamic 

setting that we portray, in contrast to the static analysis provided by Weitzman (1974) . Due to that, while the uncertainty

that policy makers face in Weitzman’s model is about the current situation, in our model they have a perfect view of current

situation and the uncertainty they face is about its future development. Thus, at each point in time, the policy makers in

our model can fit the best tax rate for the current situation. With a cap policy, this is not possible because, by the very

nature of this policy tool, the cap level is assumed to be fixed credibly over a sufficiently long time period. In that sense,

the dynamic setting gives an advantage to the tax policy. 

To shed more light on the role of the dynamic modelling in making the tax policy better than the cap policy, we study,

in the final section of this article, a case in which the tax rate is constant as in Weitzman (1974) and much of the related

literature. We have taken the resemblance to the static Weitzman’s model to the extreme by assuming also that the tax

is levied immediately at time 0. This Weitzman-like modeling of the tax policy has indeed led to a result that resembles

Weitzman result that the cap policy may be the better one if, as a function of the industry output, the external cost curve

is sufficiently steeper than the benefit (market surplus) function. Yet, the analysis of this case within a dynamic framework 

allows us to show the time inconsistency of such a policy. Moreover, it takes very little deviating from this extreme case

to make the tax policy doing, once again, better than the cap policy in terms of welfare maximization. We demonstrate it

with allowing the government the freedom to choose the time at which the tax is imposed. We show that, once again, this

makes the tax policy dominate the cap policy regardless of the specifics of the benefit and cost functions. 

As a side product of that analysis, we also develop a dynamic version of the measure for the relative steepness of the

external cost function with respect to that of the benefit curve. The need for that arises because in a static model this

measure is based on the slopes at the single equilibrium point while in our dynamic model the equilibrium moves from

one point to another as firms endogenously enter the market over time. 

The paper remainder is as follows. In Section 2 , we present our model set-up. In Section 3 , we determine the industry

equilibrium under no policy intervention. In Section 4 , we introduce the two policy instruments for externality control and

determine the optimal entry strategy under each policy. We determine the optimal cap and the optimal tax rate, compare 

the two policies and discuss our findings. In Section 5 , we provide some final remarks and conclude. 

2. The basic model 

Within a continuous time setting, we consider a competitive industry comprised of a large number of identical firms 

that producing a certain good. Their individual size, dn , is infinitesimally small with respect to the market and they are all

price takers. 3 

At each time point t ≥ 0 , the demand for this good is given by: 

P t = X t · ϕ ( Q t ) , (1) 

where P t and Q t are the market price and quantity of the good, respectively, ϕ( Q t ) is a deterministic component of the

market demand with ϕ( Q t ) > 0 and ϕ 

′ ( Q t ) < 0 for any Q t > 0 , and lim 

Q t →∞ 

ϕ( Q t ) = 0 . The term X t , is a demand shift factor

that evolves stochastically over time according to the following Geometric Brownian Motion: 

dX t = μ · X t · dt + σ · X t · dZ t , (2) 

where μ > 0 is the drift parameter, σ is the instantaneous volatility, and dZ t is the increment of a standard Wiener process

satisfying E( dZ t ) = 0 , E ( dZ t ) 
2 = dt at each t . 

Each firm rationally forecasts the future evolution of the whole market. Market entry is free and an idle firm can enter

the market at any time. By entering the market, the firm commits to offer permanently one unit of the good at each t . This

implies that the industry output, Q t , equals the number of active firms in the industry. Producing one unit of the good has

a cost equal to M > 0. 

Production entails a negative externality that firms do not incur. Its cost for Society, D ( Q t ), is a function of the industry

output Q t . We take the standard assumptions that D 

′ ( Q t ) > 0 and D 

′′ ( Q t ) > 0 for any Q t > 0 and D (0) = 0 , implying that

the external cost is positive, increasing and convex in the industry output. 

Last, firms are risk-neutral profit maximizers and discount future payoffs using the interest rate r . 4 As standard in the

literature, we assume that r > μ to secure that the firm’s value is finite. 
3 Assuming that firms are of infinitesimally small size is standard in models investigating the competitive equilibrium in a dynamic setting. See for 

instance Jovanovic (1982) , Hopenhayn (1992) , Lambson (1992) , Leahy (1993) , Dixit and Pindyck (1994 , Ch. 8), Bartolini (1993 , 1995 ) and Moretto (2008) . 
4 Note that introducing risk aversion would not affect our results, but merely require the development of the analysis under a risk-neutral probability 

measure. See Cox and Ross (1976) for further details. 

3 



L.D. Corato and Y.D. Maoz Journal of Economic Dynamics & Control 150 (2023) 104640 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Industry equilibrium under no policy intervention 

Let start by considering a scenario where no control policies are present. Under our model setup, a firm contemplating 

market entry is facing the same situation as the investors in Leahy (1993) . Therefore, in the following, we use Leahy’s

analysis in order to determine the optimal entry strategy. 5 

At each time t , an idle firm has to decide whether to enter the market or not. By assumption, a firm entering the market

commits to produce permanently one unit of the good at a cost equal to M . The present value of the associated flow of

production costs, i.e. M/r, can be viewed as the irreversible investment that a firm must undertake in order to enter the

market. As future revenues are uncertain, market entry will occur when the expected profitability of such investment is 

sufficiently high. 

Let V ( X, Q ) be the value of an active firm given the current levels of X and Q . The standard no-arbitrage analysis in

Appendix A shows that 

V ( X, Q ) = Y ( Q ) · X 

β + 

P ( X, Q ) 

r − μ
− M 

r 
, (3) 

where β > 1 is the positive root of the quadratic equation 

1 
2 

· σ 2 · x 2 + 

(
μ − 1 

2 
· σ 2 

)
· x − r = 0 . (3.1) 

In (3) , the term 

P( X,Q ) 
r−μ − M 

r represents the expected present value of the flow of the firm’s future profits conditional on

Q remaining forever at its current level. Therefore, the first term, Y (Q ) · X β , accounts for how future market entries reduce

the value of the firm, as the firm’s profit falls when the industry output Q increases. 

Two boundary conditions are required for finding the threshold function X ∗(Q ) triggering market entry. The first one is 

the Value Matching Condition : 

V [ X 

∗( Q ) , Q ] = 0, (4) 

and the second one is the Smooth Pasting Condition : 

V X [ X 

∗( Q ) , Q ] = 0. (5) 

Condition (4) is a standard zero-profit condition at the entry requiring that the value of an idle firm, which is null under

free entry, 6 must equal the value of an active one. Condition ( (5) , in contrast, is an optimality condition that concerns the

evolution of the demand shift, X t , over time. Each time the process { X t , t ≥ 0 } hits the threshold X ∗(Q ) a new firm enters

the market and the price of the good, P ( Q ), lowers since the supplied market quantity output has increased (see Dixit and

Pindyck, 1994 , Ch. 8, pp. 252–260). Thus, X ∗(Q ) is an upper reflecting barrier regulating the process { X t , t ≥ 0 } by keeping

its level over time below X ∗(Q ) . 

Solving the system [4–5] yields the following result: 

Proposition 1. Entry in a perfectly competitive market occurs every time the process { X t , t ≥ 0 } hits the threshold: 

X 

∗( Q ) = 

ˆ β · ( r − μ) · M 

r 

ϕ ( Q ) 
, (6) 

where ˆ β ≡ 1 + 

1 
β−1 

> 1 . 

Proof. Follows from applying (3) in (4) and (5) . 

From ϕ 

′ ( Q t ) < 0 it follows that the threshold X 

∗( Q ) is an increasing function of Q , implying that the larger the market

quantity supplied, the stronger the competition and then, ceteris paribus, the higher the profitability required for entering 

the market. Fig. 1 schematically shows the entry dynamics based on the threshold X ∗(Q ) . 

In time intervals where Q is not changed, the changes in X are translated, via (1) , to changes in P . Based on standard

properties of Brownian Motions, in such time intervals the proportional connection between X and P , as captured by (1) ,

implies that P is also a Geometric Brownian Motion, and with the same parameters as X . On the other hand, at time instants

when X hits the threshold function X 

∗( Q ), then a rise in X is not translated into a rise in P but leads to an increase in Q

which keeps P unchanged. This occurs at the following level of P : 

P ∗ = X 

∗( Q ) · ϕ ( Q ) = 

ˆ β · ( r − μ) · M 

r 
, (7) 

Which makes P ∗ an upper reflecting barrier regulating the process { P t , t ≥ 0 } and preventing the price from going above

the level P ∗. Fig. 2 provides an illustration of these dynamics. 
5 In the following, we will drop the time subscript for notational convenience. 
6 The option to wait is valueless under free-entry since, as entry is attractive for other firms, the firm, by postponing its entry, may lose the investment 

opportunity Dixit and Pindyck, 1994 , Ch. 8, pp. 256-258). 

4 
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Fig. 1. Demand swings and entry dynamics in a competitive industry. When the market is at a point like A, below the entry threshold, the swings in 

the demand shit factor, X , do not affect the market quantity. When X hits the threshold function X ∗(Q ) , firm entry leads to an incremental increase in Q 

making X once again below the threshold line. 

Fig. 2. Price dynamics in a competitive industry. 

 

 

 

 

 

 

 

 

Note that, by the Marshallian rule, a firm should enter the market as long as P = X · ϕ(Q ) ≥ ( r − μ) · M 

r . Hence, by (6) ,

the term 

1 
β−1 

> 0 in 

ˆ β is the wedge by which the entry threshold should be adjusted in order to take the uncertainty

and irreversibility into account (see Dixit and Pindyck, 1994 , Ch. 5, Section 2 ). Last, note that dP ∗
dσ 2 > 0 which follows from

(7) taken together with the definition of ˆ β and d β/d σ < 0 which is established in appendix A . This means that the higher

the demand volatility, the higher the price threshold triggering firm’s entry, which implies that market entry is delayed. 

This is because the output price, in its random evolution, needs more time (in expected terms) before hitting eventually a

higher threshold. 

4. Industry equilibrium under policy intervention 

The optimal entry strategy based on Eq. (6) does not account for the external cost associated with the negative externality

that production entails once the firm has entered the market. In this section, we consider two policies for the reduction of

the external cost: i) a cap on the industry output and ii) a tax on each unit of output. We first determine the industry

equilibrium under each policy and then the level of the cap and the tax rate, respectively, maximizing welfare. 
5 



L.D. Corato and Y.D. Maoz Journal of Economic Dynamics & Control 150 (2023) 104640 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Industry equilibrium and welfare under a cap on the industry output 

Assume that the regulator sets a cap on the industry output. Further, assume that entry licenses are distributed when 

the cap is announced. Each license allows producing one unit of output and their number is equal to difference between

the cap, Q̄ , and the current level of the industry output, Q . We abstract from how the licenses are distributed since for our

purposes their distribution has no other implications than providing to each firm owning a license the right to enter the

market. 7 

4.1.1. The optimal entry strategy 

The analysis of the firm’s optimal entry under rationing is technically similar to the analysis in Section 3 . The relevant

difference between the two cases is that in this case the option to enter is an asset having a positive value that the firm

gives up by entering the market. Thus, alongside the function V ( X, Q ) that represents the value of an active firm, we define

the function F ( X, Q ) that stands for the value of the option to enter the market. A standard no-arbitrage analysis, similar

to the one conducted in Appendix A for determining the value of an active firm, yields: 

F ( X, Q ) = H ( Q ) · X 

β, (8) 

V ( X, Q ) = Y ( Q ) · X 

β + 

P ( X, Q ) 

r − μ
− M 

r 
, (9) 

where H(Q ) is to be found alongside the threshold X ∗(Q ) by imposing the following Value Matching Condition : 

V [ X 

∗( Q ) , Q ] = F [ X 

∗( Q ) , Q ] , (10) 

and Smooth Pasting condition : 

V X [ X 

∗( Q ) , Q ] = F X [ X 

∗( Q ) , Q ] . (11) 

Condition (10) asserts that the value of the option to enter, that is, the implicit cost of market entry, equals the value of

an active firm, that is, the implicit return associated with market entry. Condition (11) secures optimality by imposing that

the marginal cost of market entry equals its marginal return. As shown by Dixit (1993) , Condition (10) holds for any entry

threshold and merely reflects a no arbitrage assumption, while Condition (11) is an optimality condition that holds only at 

the optimal threshold. 

Proposition 2. In a perfectly competitive market with a cap on the industry output, as long as the quantity in the market, Q, is

below the cap, new entries to the market occur every time the process { X t , t ≥ 0 } hits the threshold: 

X 

∗( Q ) = 

ˆ β · ( r − μ) · M 

r 

ϕ ( Q ) 
, (12) 

or, equivalently, when the process { P t , t ≥ 0 } hits the barrier P ∗, as captured by (7) . 

Proof. Follows from applying (8) and (9) in (10) and (11) . 

Notably, the threshold function (12) does not depend on Q̄ and is equal to the threshold function (6) determined under

no policy intervention. The relevant difference here is that X ∗(Q ) applies only until the cap Q̄ is reached. 

By Proposition 2 and (7) , a new firm enters the market every time the process { P t , t ≥ 0 } hits the upper reflecting barrier

P ∗. As explained above, this prevents the price from going above the level P ∗. However, under a cap policy, the regulation of

the price through the barrier control applies only until the cap Q̄ is reached and, once there, the output price starts moving

freely over time following only the evolution dictated by (2) . Fig. 3 provides an illustration of these dynamics. 

4.1.2. Welfare and the optimal cap 

Once determined the industry equilibrium, in this section we determine the cap level maximizing welfare. This optimal 

level will trade off the welfare gains associated with lower negative externalities and the losses, in terms of market surplus, 

due to a lower quantity of the good available on the market once the cap has been reached. 

Following a procedure similar to the one conducted in Appendix A for determining the value of an active firm, the

expected discounted social welfare, given the current levels of X , and Q and the cap set at Q̄ , is: 

W 

(
X, Q, Q̄ 

)
= C 

(
Q, Q̄ 

)
· X 

β + 

Q ∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq , (13) 

The integral in (13) represents the expected present value of welfare if the current industry output level, Q , will never

change. For each unit supplied, the term 

P( X,q ) 
r−μ is the expected present value of the flow of market surplus associated with
7 Note that, as shown by Bartolini (1995) , the government may fully extract the producer’s surplus by allocating licenses through a competitive auction. 

6 
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Fig. 3. Price dynamics under a cap on the industry output. 

 

 

 

 

 

 

 

 

 

 

the supply of each unit of the good, whereas the term 

M+ D ′ (q ) 
r is the present value of the flow of social costs associated with

its production, i.e. private production costs plus external costs. The first term, C( Q, Q̄ ) · X β , captures instead the contribution

of future market entries to welfare. 

At X 

∗( Q ) the following Value Matching Condition must hold: 

W Q 

[
X 

∗( Q ) , Q, Q̄ 

]
= 0 (14) 

Condition (14) is a standard boundary condition stating that each market entry raises welfare by P[ X ∗(Q ) , Q ] 
r−μ − M+ D ′ (Q ) 

r via 

the supply of an additional unit of the good, but at the same time, it also lowers welfare by C Q ( Q, Q̄ ) · X ∗(Q ) β in that the

forgone market entry lowers the value of the contribution to welfare by future market entries. 

Further, at Q = Q̄ we must impose that: 

C 
(
Q, Q̄ 

)
= 0 (15) 

The intuition behind Condition (15) is that the term C( Q, Q̄ ) · X β in (12) captures the welfare associated with future

entries to the market. No such changes are possible once Q has reached the cap Q̄ and thus C( Q, Q̄ ) must be null at Q = Q̄ .

Based on (13) , (14) and (15) we show in Appendix B that: 

C 
(
Q, Q̄ 

)
= 

Q̄ ∫ 
Q 

[
P ∗

r − μ
− M + D 

′ ( q ) 
r 

]
· 1 

X 

∗( q ) β
· dq . (16) 

Differentiating C( Q, Q̄ ) with respect to Q̄ yields: 

C Q̄ 
(
Q, Q̄ 

)
= 

[ 

P ∗

r − μ
−

M + D 

′ (Q̄ 

)
r 

] 

· 1 

X 

∗
(
Q̄ 

)β
. (17) 

Eq. (17) leads to the following Proposition: 

Proposition 3. (a) If the current industry output level, Q, is sufficiently large so that P ∗
r−μ ≤ M+ D ′ (Q ) 

r then it is optimal to set the

cap at the current Q, i.e., to immediately ban any further market entry; (b) otherwise, if the current industry output level, Q, is

sufficiently small so that P ∗
r−μ > 

M+ D ′ (Q ) 
r then the optimal level of the cap, denoted by Q̄ 

∗, is the root of the following equation: 

P ∗

r − μ
= 

M + D 

′ (Q̄ 

∗)
r 

, (18) 

Proof. Follows from (17) and the convexity of D ( Q ). 

By Proposition 3 , if P ∗
r−μ ≤ M+ D ′ (Q ) 

r , a ban deterring any further market entry is optimal. This is because the expected

present value of the flow of market surplus added by the firm entering the market, i.e. P ∗
r−μ , does not cover the present

value of the flow of social costs, i.e. M+ D ′ (Q ) , associated with the production of one more unit of the good. Otherwise, if
r 

7 
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P ∗
r−μ > 

M+ D ′ (Q ) 
r , it is optimal setting a cap at a level higher than the current industry output level Q . Firms will then be

allowed to enter the market until the industry output level Q̄ 

∗ is reached and where P ∗
r−μ = 

M+ D ′ ( ̄Q ∗) 
r . 

Implicit differentiation of (18) yields that: 

d Q̄ 

∗

dσ 2 
= − 1 

D 

′′ (Q̄ 

∗
) · M 

( β − 1 ) 
2 

· dβ

dσ 2 
> 0 , (19) 

where the inequality follows from D 

′′ (Q ) > 0 , β > 1 and 

dβ
dσ 2 < 0 . Thus, the higher the demand uncertainty the larger the

optimal cap and the larger the industry output that the regulator is going to allow for. The reason for that is that a higher

σ 2 leads, via its effect on the option wedge ˆ β , to a higher P ∗ and, consequently, to a slower entry process in expected terms.

This implies that while, on the one hand, the external cost increases at a slower speed, on the other hand, we incur into

losses of market surplus since, having a higher entry barrier, P ∗, market prices may reach relatively higher levels before a

new firm enters the market. Further, one must account for the fact that, even tough, once reached the cap, the external cost

stops increasing, there is a loss of market surplus in that the output price evolves freely being absent, as no firms may enter

the market, the barrier control preventing it from going above the level P ∗. The loss of market surplus may be relevant and

consistently, 

lim 

σ 2 →∞ 

Q̄ 

∗ = ∞ , (20) 

which means that setting an internal cap, Q̄ 

∗, is not optimal since restricting firms’ entry is too costly in the presence of

high levels of market uncertainty. 

Implicit differentiation of (18) also yields: 

d Q̄ 

∗

dM 

= 

1 

D 

′′ (Q̄ 

∗
) · 1 

β − 1 

> 0 , (21) 

where the inequality follows from D 

′′ (Q ) > 0 and β > 1. Thus, the higher the production cost the larger the optimal cap

and therefore the larger the market size that the regulator is going to allow for. The reason for that is that the larger M , the

higher the price that triggers entry, i.e. P ∗, and, consequently, the slower the entry process in expected terms. This has, as

above, implications for the speed at which the external cost increases and the magnitude of the flow of market surplus. 

Last, based on Proposition 3 and (13) , in the case where the optimal cap is at the current Q , the expected discounted

social welfare is equal to: 

W 

cap ( X, Q ) = 

Q ∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq (22) 

otherwise, when the optimal cap is Q̄ 

∗, the expected discounted social welfare is: 

W 

cap ( X, Q ) = 

Q̄ ∗∫ 
Q 

[ 
P ∗

r−μ − M+ D ′ ( q ) 
r 

] 
·
[

X 
X ∗( q ) 

]β · dq + 

+ 

Q ∫ 
0 

[ 
P ( X,q ) 
r−μ − M+ D ′ ( q ) 

r 

] 
· dq 

(23) 

As Dixit and Pindyck (1994, pp. 315–316) show, the term [ X 
X ∗(q ) 

] 
β

is equal to the discount factor E[ e −r·T (q ) ] , where T ( q ) 

is the time when process { X t , t > 0}, starting from its current level X , hits the threshold level X ∗(q ) for the first time. This

insight enables the following, rather intuitive, view of the resulting formula for the welfare function, as captured by (23) : 

• The last term 

Q ∫ 
0 

[ P( X,q ) 
r−μ − M+ D ′ (q ) 

r ] · dq is the integral, over the already supplied Q units of the good, of the expected 

present value of the flow of social welfare associated with each of those units, i.e. the flow of market surplus P( X,q ) 
r−μ

minus the flow of social costs M+ D ′ (q ) 
r . 

• The first term, therefore, represents the expected present value of the flow of social welfare associated with future 

entries, those that will add units from the current quantity Q , to the maximum allowed by the cap, that is Q̄ 

∗. The

value of each future entry comprises two parts: 

◦ P ∗
r−μ − M+ D ′ (q ) 

r which is the expected present value of the flow of social welfare that the added unit of the good would

yield, from the moment in which the firm producing it enters the industry, i.e. when the market price is equal to P ∗.

◦ [ X 
X ∗(q ) 

] 
β

the factor by which the payoff P ∗
r−μ − M+ D ′ (q ) 

r is discounted back to current time. 

4.2. Industry equilibrium and welfare under an output tax 

Assume that the regulator levies a tax τ > 0 per unit of output. 
8 
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Fig. 4. Price dynamics under an output tax. 

 

 

 

 

 

 

 

 

4.2.1. Optimal entry strategy 

The analysis of the industry equilibrium under an output tax is technically identical to the one conducted in Section 3 .

The only difference is that here the cost for producing one unit of output is equal to M + τ . Hence: 

Proposition 4. Entry in a perfectly competitive market under an output tax occurs every time the process { X t , t ≥ 0 } hits the

threshold: 

X 

∗∗( Q ) = 

ˆ β · ( r − μ) · M+ τ
r 

ϕ ( Q ) 
> X 

∗( Q ) , (24) 

or, equivalently, the process { P t , t ≥ 0 } hits the barrier: 

P ∗∗ = 

ˆ β · (r − μ) · M + τ

r 
> P ∗ (25) 

Proof. Follows from repeating the proof of Proposition 1 , this time with a private production cost equal to M + τ . 

Fig. 4 provides an illustration of the dynamics of the price process in the presence of an output tax policy. 

4.2.2. Welfare and the optimal tax rate 

The expected discounted social welfare, given the current levels of X and Q , is: 

W ( X, Q, τ ) = C ( Q, τ ) · X 

β + 

Q ∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq (26) 

The tax payments from the firms to the government lower their profits but raise the government revenues by the same

amount and therefore cancel out of the social welfare. Thus, the only remaining channel by which the output tax affects

social welfare is via its effect on the firms’ entry thresholds and therefore on entry times. Thus, when setting an optimal

tax policy, the regulator is in fact setting an optimal threshold policy. We find that the optimal tax should be set at a level

such that both the following Value Matching Condition : 

W Q [ X 

∗∗( Q ) , Q ] = 0 , (27) 

and Smooth Pasting Condition : 

W QX [ X 

∗∗( Q ) , Q ] = 0 (28) 

hold. 

As above, Condition (27) is a boundary condition stating that at each market entry we have an increase in welfare

associated with the supply of an additional unit of the good, i.e. P[ X ∗∗(Q ) , Q ] 
r−μ − M+ D ′ (Q ) 

r , minus the welfare loss associated 

with the just foregone market entry, i.e. C Q ( Q, τ ) · X ∗∗(Q ) β . Condition (28) , on the other hand, is an optimality condition

that leads to the entry pattern that is optimal from the regulator’s perspective and to the tax rate that induces it. 
9 



L.D. Corato and Y.D. Maoz Journal of Economic Dynamics & Control 150 (2023) 104640 

Fig. 5. Price dynamics under optimal output taxation. 

 

 

 

 

 

 

Proposition 5. The government maximizes the expected discounted social welfare by levying the Pigouvian tax: 

τ ∗(Q ) = D 

′ (Q ) , (29) 

and, consequently, each market entry raises welfare. 

Proof. (29) follows from applying (26) in (27) and (28) . Substituting (29) in (24) yields that the optimal entry threshold

satisfies: 

X 

∗∗( Q ) = 

ˆ β · ( r − μ) · M+ D ′ ( Q ) 
r 

φ( Q ) 
, (30) 

which, applying (29) in (25) , leads to 

P ∗∗

r − μ
= 

ˆ β · M + D 

′ ( Q ) 

r 
> 

M + D 

′ ( Q ) 

r 
, (31) 

which implies that in the equilibrium, market entries are always beneficial since the expected present value of the flow 

of market surplus added by a new firm entering the market, i.e. P ∗∗
r−μ , covers always the present value of the flow of social

costs, i.e. M+ D ′ (Q ) 
r , associated with the production of one more unit of the good. This is because at each entry the price at

entry, P ∗∗, is adjusted upward as τ ∗(Q ) rises with Q . 

Fig. 5 provides an illustration of the dynamics of the price process that follows from the optimal tax policy. 

Conditions (27) and (28) also yield: 

C Q ( Q, τ ∗) = −
[

P ∗∗

r − μ
− M + D 

′ ( Q ) 

r 

]
· 1 

X 

∗∗( Q, τ ∗) β
(32) 

To integrate (32) we use the following boundary condition: 

lim 

Q→∞ 

C ( Q, τ ) = 0 (33) 

The intuition behind Condition (33) is immediate. In (26) , the term C( Q, τ ) · X β captures the welfare associated with

future increases of the industry output. No such changes are expected when Q → ∞ because in that case the entry threshold

(24) goes to infinity since, by assumption, lim 

Q→∞ 

ϕ(Q ) = 0 . 

Integrating (32) and applying (33) yields: 

C ( Q, τ ∗) = 

∞ ∫ 
Q 

[
P ∗∗

r − μ
− M + D 

′ ( q ) 
r 

]
· 1 

X 

∗∗( q, τ ∗) β
· dq. (34) 

Applying (34) and (1) in (26) yields that the expected discounted social welfare when the tax rate is optimally set is

equal to: 

W 

tax ( X, Q ) = 

∞ ∫ 
Q 

[
P ∗∗

r − μ
− M + D 

′ ( q ) 
r 

]
·
[

X 

X 

∗∗( q, τ ∗) 

]β

· dq + 

Q ∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq (35) 
10 
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As in (23) , the second integral is the expected present value of the flow of social welfare associated with the already

supplied Q units of the good. The first integral represents, therefore, the expected present value of the social welfare asso-

ciated with future entries that will add units from the current quantity, Q , up to infinity. The expected discounted value of

the welfare generated by each future entry is P ∗∗
r−μ − M+ D ′ (q ) 

r , and it is discounted back to current time through the stochastic

discount factor [ X 
X ∗∗( q, τ ∗) 

] 
β

. 

4.3. Social optimum and industry equilibrium under the two policies 

We start by characterizing the social optimum in the considered industry. For the social planner, the relevant problem 

concerns whether and when to expand the quantity of the good supplied so as to maximize the social welfare (see Dixit and

Pindyck, 1994 , Chapter 9, Section 1.A). 

The expected discounted social welfare, given the current levels of X and Q , is: 

W ( X, Q ) = C ( Q ) · X 

β + 

Q ∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq (36) 

Denoting the socially optimal threshold for market entry by X SP (Q ) and maximizing (36) subject to: 

W Q 

[
X 

SP ( Q ) , Q 

]
= 0 ( Value Matc hing Cond ition ) , (37) 

W QX 

[
X 

SP ( Q ) , Q 

]
= 0 ( Smoo th Past ing Cond ition ) , (38) 

lim 

Q→∞ 

C ( Q ) = 0 , (39) 

yields: 

X 

SP ( Q ) = 

̂ β · ( r − μ) · M+ D ′ ( Q ) 
r 

ϕ ( Q ) 
= X 

∗∗( Q, τ ∗) > X 

∗( Q ) . (40) 

By (40) , it immediately follows that: 

Proposition 6. A first-best outcome can be achieved through the optimal tax policy while the optimal cap policy may serve only

as a second-best alternative . 

The optimal tax policy found in the previous section in a decentralized setting leads to the same supply path { Q t , t ≥ 0 }
that the social planner would choose in a centralized setting. This is because in the decentralized case of a regulator choos-

ing an optimal tax policy, the only effect the tax has on welfare is via the timing of market entries. Formally, the correspon-

dence can be easily proven by substituting τ ∗ = D 

′ (Q ) into Conditions (27) and (28) which would then yield Conditions

(37) and (38) . 

The result above deserves some further comment. For a social planner maximizing welfare, a market entry is desirable as 

far as the associated gain in terms of market surplus covers its marginal social cost. In our set-up where firms may enter the

market at any time point over an infinite time horizon, there is always a time point where this condition is met. Therefore,

in a decentralized setting, a first-best policy should be one able to delay market entries so that they occur at the “right”

time from the social planner’s perspective. Our analysis shows that this is feasible only via price control and, specifically, 

by equating the tax rate to the marginal external cost associated with the industry output supplied at each time point.

This allows a complete internalization of the external cost by the firm when setting the entry strategy and, consequently, 

the industry equilibrium secures a first-best outcome. In contrast, quantity control exerted through a cap policy may only 

qualify as a second-best alternative. This is because the resulting industry equilibrium is suboptimal for two reasons. First, 

the cap has no impact on the timing of market entries since firms keep setting their entry strategy without internalizing

the associated external cost and, second, once the cap has been reached, there is a loss of potential welfare gains associated

with blocked market entries. 

From Proposition 6 , it follows, as a corollary, that 

Proposition 7. The welfare achieved through the optimal tax policy, as captured by ( 35 ) is higher than the welfare achieved

through the optimal cap policy, as captured by ( 23 ), where the welfare gap between the two policies is positive and equal to: 

W 

tax ( X, Q ) − W 

cap ( X, Q ) 

= 

∞ ∫ 
Q̄ ∗

[ 
P ∗∗

r−μ − M+ D ′ ( q ) 
r 

] 
·
[

X 
X ∗∗( q,τ ∗) 

]β · dq 

+ 

Q̄ ∗∫ 
Q 

{ [ 
P ∗∗

r−μ − M+ D ′ ( q ) 
r 

] 
·
[

X 
X ∗∗( q,τ ∗) 

]β

−
[ 

P ∗
r−μ − M+ D ′ ( q ) 

r 

] 
·
[

X 
X ∗( q ) 

]β
} 

· dq > 0 

(41) 
11 
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Proof. See Appendix C . 

Eq. (41) illustrates the sub-optimality of the cap policy. By Proposition 5 , the first term in (41) is positive. This term

represents the welfare that is created only under a tax policy as it springs from units of the good added after the cap level,

Q̄ 

∗, is reached. The second integral refers to market entries until Q̄ 

∗ is reached, therefore to units added under both policies.

The expression inside the integral shows the welfare trade-off between the two policy tools for units in that range: 

• The expected present value of the flow of social welfare is higher under the tax policy because the tax makes firms raise

their entry threshold and thus leads, via (7) and (25) , to P ∗∗
r−μ − M+ D ′ (q ) 

r > 

P ∗
r−μ − M+ D ′ (q ) 

r . 

• The expected pace at which these units are added is faster under a cap policy, and therefore under the cap policy the

welfare generated by each unit is expected to be less heavily discounted, as reflected by [ X 
X ∗∗( q, τ∗) ] 

β
< [ X 

X ∗(q ) 
] 
β

. 

As shown in Appendix C , the expression inside the second integral is positive as well, implying that for these units the

surplus effect dominates the discounting effect. 

We now wish to explore the excess external cost induced by the tax policy with respect to the external costs arising

under a cap policy. We denote this gap by ECG , which stands for “external cost gap”, and based on the analysis so far it

satisfies: 

ECG = 

∞ ∫ 
Q 

∗

D ′ (q ) 
r 

·
[

X 
X ∗∗(q, τ ∗(q )) 

]β · dq 

−
Q 

∗∫ 
Q 

D ′ (q ) 
r 

·
{ 

1 −
[

X ∗(q ) 
X ∗∗(q, τ ∗(q )) 

]β
} 

·
[

X 
X ∗(q ) 

]β · dq 

(42) 

The first term on the RHS of (42) represents the external cost that the tax policy adds by allowing the production of

more units, i.e. from Q 

∗
onward. The second term in (42) represents the external cost that the tax policy reduces by delaying

market entries in the interval (Q, Q 

∗
) . The higher the tax rate τ ∗(q ) , the higher X ∗∗[ q, τ ∗(q ) ] , the longer the delay, and the

higher the resulting reduction in the external cost. 

Similarly, we now wish to explore the excess market surplus induced by the tax policy with respect to the market surplus

generated under a cap policy. We denote this excess surplus by MSG , which stands for “market surplus gap”, and based on

the analysis so far it satisfies: 

MSG = 

∞ ∫ 
Q 

∗

(
P ∗∗

r−μ − M 

r 

)
·
[

X 
X ∗∗(q, τ ∗(q )) 

]β · dq 

−
Q 

∗∫ 
Q 

{ (
P ∗

r−μ − M 

r 

)
−

(
P ∗∗

r−μ − M 

r 

)
·
[

X ∗(q ) 
X ∗∗(q, τ ∗(q )) 

]β
} 

·
[

X 
X ∗(q ) 

]β · dq 

(43) 

On the RHS of (43) , the first term represents the market surplus associated with units of the good added from Q 

∗

onward. The second term represents the loss, in terms of lower expected discounted flow of market surplus, which occurs 

since market entries in the interval (Q, Q 

∗
) are delayed under a tax policy more than they would under a cap policy. In

this respect, it is worth highlighting the role played by the term [ X ∗(q ) 
X ∗∗(q, τ ∗(q )) 

] 
β

that lowers the payoff P ∗∗
r−μ − M 

r received 

from each unit under the tax policy. This term is the stochastic discount factor accounting for the time that the process { X t }
needs in order to reach the barrier X ∗∗(q, τ ∗(q )) moving from X ∗(q ) , that is, in other words, the additional discounting due

to the entry delay induced by taxation. Note that, consistently, the higher the tax rate τ ∗(q ) , the higher X ∗∗(q, τ ∗(q )) , the

longer the delay and the higher the loss. 

From Proposition 5 it follows that the first term of MSG exceeds the first term in ECG , implying that (with respect to

the cap policy) within the range of quantities above Q̄ 

∗ the excess market surplus induced by the tax policy exceeds the

additional external cost that this policy brings. 

Comparing market surplus gain and loss from the tax policy (with respect to the cap policy) in the interval (Q, Q 

∗
) , we

show in Appendix C , that: 

Q 
∗∫ 

Q 

D ′ (q ) 
r 

·
{ 

1 −
[

X 
X ∗∗(q, τ ∗(q )) 

]β
} 

·
[

X 
X ∗(q ) 

]β · dq 

> 

Q 
∗∫ 

Q 

{ (
P ∗

r−μ − M 

r 

)
−

(
P ∗∗

r−μ − M 

r 

)
·
[

X ∗(q ) 
X ∗∗(q, τ ∗(q )) 

]β
} 

·
[

X 
X ∗(q ) 

]β · dq 

(44) 

which implies that the gain in terms of lower expected flow of external costs dominates the loss in terms of lower expected

flow of market surplus. Thus, the tax policy does better than the cap policy both in the range (Q, Q 

∗
) and in the range

above Q 

∗
. 

Last, it is important to note that the comparative advantage of a tax over a cap policy in terms of welfare does not imply

that the tax policy yields a lower expected discounted value of the flow of external costs, i.e., that ECG < 0. It only implies

that even tough, by allowing further entries, the external cost increases under a tax policy (with respect to the cap policy),

these entries increase the market surplus by more than they increase the external cost. 
12 
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4.3.1. The model in the absence of uncertainty 

In this sub-section, we show that the results so far, and in particular the superiority of the tax policy over the cap policy,

do not depend on the presence of market uncertainty. 

In our model, the price volatility σ captures market uncertainty, so analyzing the case where uncertainty vanishes re- 

quires looking at the limit for σ → 0. It should be noted though that the uncertainty associated with σ > 0 is about future

levels of market demand and, in that sense, it does not produce only uncertainty but it is also responsible for part of the

dynamics in the model. Thus, if σ → 0, the dynamics in our model are only due to the drift in the demand process. 

Following the analysis undertaken in the previous sections, from 3.1 ) it follows that lim 

σ→ 0 
β = r/μ and then, from ( (12) ,

that lim 

σ→ 0 
X ∗(Q ) = M/ϕ(Q ) . This leads, via (7) , to P ∗ = M, which implies that firms enter when the market price is equal to

the private marginal cost and that the “uncertainty wedge” between the two, captured by (12) , vanishes. 

Although new entries take place at P ∗ = M, they are associated with rising market surplus, as they spring from rising

demand in expected terms since μ > 0. Yet, with rising quantity, the external cost rises too, and at an increasing pace,

hence, introducing a cap may increase welfare. In the current limit case, the analysis in sub- Section 4.1 is valid and leads,

via (18) , to a finite level of Q 

∗
that can be determined solving the equation D 

′ ( Q 

∗
) = M · μ

r−μ . 

The analysis in sub- Section 4.2 of the tax policy case is not affected when considering the limit case of σ → 0, and,

in particular, the result that the optimal tax rule given by (39) is still valid and leads to a complete internalization of the

externality. This, while repeating the analysis of sub- Section 4.3 , i) makes the tax policy based on (39) a first-best in this

limiting case too and ii) keeps the welfare gap between the two policies, as captured by (41) , strictly positive. 8 

4.4. Industry equilibrium and welfare under a constant output tax 

In the previous sub-sections, we have assumed that the tax rate could be changed freely and we found that it is optimal

levying a Pigouvian tax with a rate increasing in the industry output. In the current section, we examine the extreme case

where the policy maker commits to a tax rate that will remain constant from time 0 onwards. 

We find that implementing this static-like tax policy in a dynamic setting and comparing it with a cap policy, comple-

ments the findings in Weitzman (1974) by determining in a dynamic setting the circumstances under which a cap (tax) 

policy may do better than a tax (cap) policy from a welfare maximizing perspective. Specifically, we find that the cap policy

does better if, as the market quantity changes, the external damage grows sufficiently more rapidly than the benefit in terms

of market surplus. Otherwise, the tax policy does better than the cap policy. 

The analysis of this case is similar to the one in Section 4.2 . In Appendix D , we show that the optimal tax rate is equal

to: 

τ opt = 

∞ ∫ 
Q 

ϕ ( q ) 
β · D 

′ ( q ) · dq 

∞ ∫ 
Q 

ϕ ( q ) 
β · dq 

(45) 

The optimal tax rate, τ opt , is a function of the initial Q and does not vary as the industry output increases due to further

market entries. Differentiating with respect to the initial Q yields: 

dτ opt 

dQ 

= 

ϕ ( Q ) 
β

∞ ∫ 
Q 

ϕ ( q ) 
β · dq 

·
[
τ opt − D 

′ ( Q ) 
]

> 0 , (46) 

This means that the larger the initial industry output, the larger the external cost and, therefore, the higher should be

the tax rate levied in order to control the externality. 

It also follows from (45) that τ opt can be infinitely large. More specifically, as q grows, ϕ( q ) falls and D ’( q ) rises, and,

in particular, ϕ( q ) → 0 and D ’( q ) → ∞ as q → ∞ . Due to that, whether τ opt is infinite or finite depends on the specific

functions chosen for ϕ( q ) and D ( q ). 

Rearranging (45) yields: ∫ ∞ 

Q 

τ opt 

r 
·
[

X 

X 

∗∗( q, τ opt ) 

]β

· dq = 

∫ ∞ 

Q 

D ′ ( q ) 
r 

·
[

X 

X 

∗∗( q, τ opt ) 

]β

· dq · (47) 

Recall that the term [ X 
X ∗∗(q, τ opt ) 

] 
β

represents the expected discount factor for payoffs associated with each market entry. 

Thus, (47) shows that at the initial time point where the industry output is Q , the expected discounted flow of tax revenue 

equals the expected discounted flow of external costs associated with future market entries. It follows that, as τ opt does 

not vary, this equality will cease to hold as soon a new firm enters the market, with the gap between the tax collection

and the external cost expanding at every new entry. This implies that the tax policy chosen is time inconsistent. As there is
8 See Appendix C for further details. 
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no reason for not adjusting the tax rate as Q varies so that (47) holds over time, it becomes then doubtful that a constant

output tax policy would ever be implemented (see Kydland and Prescott, 1977 ). 

Comparing welfare under the optimal tax policy to welfare under the optimal cap policy, as captured by (23) , yields: 

W 

tax ( Q, X ) − W 

cap ( Q, X ) 

= 

∞ ∫ 
Q 

(
ˆ β−1 

)
·M 

β

r·X ∗( q ) β ·( M+ τ opt ) 
β−1 · dq · X 

β −
Q 

∗∫ 
Q 

(
ˆ β−1 

)
·M−D ′ ( q ) 

r·X ∗( q ) β · dq · X 

β (48) 

Recall from Proposition 3 that by the definition of Q̄ 

∗ the integrand within the second integral is positive throughout the 

integration range. Let then examine how the gap between the welfare under the two policies changes as the externality 

function becomes steeper with respect to the benefit function. From (45) it follows that τ opt is a natural measure for this

relative steepness within the dynamic setting of our model where the equilibrium moves over time from one quantity to 

the other as demand rises and firms enter the market. This can be viewed as a generalization of the case of a static model,

like, for instance, the one in Weitzman (1974) , where the relative steepness is measured at the single market quantity in

which the equilibrium rests. 

We start with the case where τ opt approaches its lower limit. This happens when the external cost is almost linear, 

implying that D ’( Q ) is almost constant and that τ opt converges to D ’( Q ). In Appendix E , we show that in this limiting case

the welfare gap, as captured by (48) , is positive, implying that the tax policy is better than the cap policy. 

At its opposite extremity, τ opt is infinite, therefore, the first integral in (48) goes to 0 and the welfare gap is negative.

This implies that the cap policy is better than the tax policy due to the high relative speed at which the external damage

grows with quantity. 

To analyze further the comparative advantage of a policy over the other, we rearrange the integral in (48) as follows: 

W 

tax ( Q, X ) − W 

cap ( Q, X ) = 

∞ ∫ 
Q̄ ∗

( ̂ β−1) ·(M+ τ opt ) 
r 

·
[

X 
X ∗∗(q,τ opt ) 

]β · dq 

+ 

Q̄ ∗∫ 
Q 

( ̂ β−1) ·(M+ τ opt ) 
r 

·
[

X 
X ∗∗(q,τ opt ) 

]β · dq 

−
Q̄ ∗∫ 
Q 

( ̂ β−1) ·M−D ′ ( q ) 
r 

·
[

X 
X ∗(q ) 

]β · dq 

(49) 

The first term is positive and shows the welfare that the tax policy yields by allowing entries above the quantity of

Q̄ 

∗. The two other terms refer to the range (Q, Q 

∗
) . In that range the terms ( ̂ β−1) ·(M+ τ opt ) 

r and 

( ̂ β−1) ·M−D ′ (q ) 
r , represent

the additional welfare from each additional market entry, under the tax policy and the cap policy, respectively. The terms 

[ X 
X ∗∗(q, τ opt ) 

] 
β

and [ X 
X ∗(q ) 

] 
β

represent, for each policy, the expected discount factor for the welfare generated by each market 

entry. Note that ( ̂  β − 1) · (M + τ opt ) > ( ̂  β − 1) · M − D 

′ (Q ) which implies that the welfare that each additional unit supplied

yields is greater under the tax policy. However, this welfare is also more heavily discounted under the tax policy, as the tax

makes firms delay their entries and raises the entry threshold so that X ∗∗(q, τ opt ) > X ∗(q ) . Thus, depending on the assumed

functions and parameter values, either one of the two policies can be the better one in the range ( Q , Q̄ 

∗). 

4.4.1. Welfare under a constant output tax imposed at optimal timing 

In the previous sub-section, we have examined a case where the tax policy setting is highly limited, in the sense that the

tax rate cannot vary over time in response to changed market conditions. This extreme limitation has revived Weitzman’s 

result that a cap policy can do better than the tax policy if the external cost, as a function of market quantity, is sufficiently

steeper than the benefit (market surplus) function. In this sub-section, we mildly relax this constraint and, although we still 

impose the use of a constant tax rate over time, we let the government choose when the output tax should be levied. As

we will now show, this makes the tax policy once again better than the cap policy irrespective of the shape of benefit and

cost functions. 

To see that, we are not going to search for the optimal timing of action but merely consider the case in which the tax

is levied when market quantity reaches Q̄ 

∗. As we will show, even in this case the welfare under the tax policy is better

than under the cap policy. Note that the Government may of course do better by choosing optimally when the tax should

be levied. 

Since under this policy there is no tax until Q̄ 

∗ is reached, the welfare associated with both policies is the same. Thus,

the comparative advantage of a policy over the other must spring from what happens when the market quantity reaches 

the level Q̄ 

∗. Based on (25) , the optimal welfare level under a cap policy is equal to: 

W 

cap 
[
X 

∗(Q̄ 

∗), Q̄ 

∗] = 

Q̄ ∗∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq (50) 

As for the tax policy, the tax rate is determined considering Q̄ 

∗ as initial market quantity in (45) . The rest of the anal-

ysis repeats the analysis carried out in Appendix D for the case of a constant output tax with just one difference, that is,
14 
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considering Q̄ 

∗ as initial market quantity. Applying the resulting C(Q, τ opt ) in (35) yields: 

W 

tax 
[
X 

∗(Q̄ 

∗), Q̄ 

∗] = 

∞ ∫ 
Q̄ ∗

( ̂  β − 1) · (M + τ opt ) 

r · X 

∗∗(q, τ opt ) 
β

· dq + 

Q̄ ∗∫ 
0 

[
P ( X, q ) 

r − μ
− M + D 

′ ( q ) 
r 

]
· dq (51) 

The first term in (51) is positive and the second term equals W 

cap [ X ∗( ̄Q 

∗) , Q̄ 

∗] , implying that W 

tax [ X ∗( ̄Q 

∗) , Q̄ 

∗] >

 

cap [ X ∗( ̄Q 

∗) , Q̄ 

∗] . 

5. Conclusions 

In this paper, we have presented a model of endogenous market structure under uncertainty, with production external- 

ities regulated by a cap on the industry output or via an output tax. The main result is that the tax policy dominates the

cap policy when aiming at the maximization of the welfare. In particular, we show that the tax policy allows achieving a

first-best outcome since the external cost associated with production is fully internalized. 

In the case of a cap policy, we have assumed that entry licenses are distributed when the cap is announced. As

Bartolini (1995) shows, in the presence of entry licenses, firms holding a license may optimally exercise their option to 

invest since the threat of being preempted by others is absent. This creates a dynamic entry pattern in which until the

cap is reached firms gradually enter the market at time points in which the entry threshold, based on a sufficiently large

profitability, is reached. Otherwise, as Bartolini (1993 , 1995 ) shows, if firms are not licensed, this gradual process last only

until a certain quantity is reached, and then a competitive run leading the market quantity instantly to the cap is ignited.

We do not consider this case since Di Corato and Maoz (2019) have already shown, in a frame similar to ours, that due to

the run it yields lower welfare than under rationed entry. Thus, the superiority of the tax policy over the cap policy in the

case of licensing implies that it is also better than the cap policy with no licensing. 

It should be noticed that the assumption of perfectly competitive firms is crucial for the complete internalization of the 

external cost. In that respect, our analysis differs from the strand of the literature that investigates the impact of environ-

mental policy showing, mostly using static models, that the internalization of the external cost depends on the degree of 

market competition. This is because the regulator must take into account the welfare losses that under imperfect competi- 

tion may be due to distortions of the industry output and suboptimal market entries (see e.g. Spulber, 1985 ; Katsoulacos and

Xepapadeas, 1995 , 1996 ; Shaffer, 1995 ; Requate, 1997 ; Lee, 1999 ; Lahiri and Ono, 2007 ; Fujiwara, 2009 ; Lambertini et al.,

2017 ; and the survey by Millimet et al., 2009 ). 

It would be of interest, as a potential lead for future research, to extend the analysis in order to study how market

power impacts, by distorting the industry output, the degree of internalization, and then to examine whether it also alters 

the result that the tax policy yields more welfare than the cap policy. In this respect, following Grenadier (2002) , it would

be immediate developing our analysis in a continuous-time Cournot-Nash framework where firms may invest over time in 

additional capacity to increase their output. However, as shown by Back and Paulsen (2009) , the investment equilibrium 

in Grenadier (2002) is in open-loop strategies, that is, strategies set by a firm regardless of other firms’ strategies. This is

problematic since, as the investment strategies are not mutually best responses, the equilibrium is not subgame perfect. 9 

One should then look for a closed-loop equilibrium but, unfortunately, as far as we know, this question is still open in the

literature. 

We have shown that the endogenous entry by firms leads implicitly to a barrier capping the market price. In that sense,

the introduction of an output tax is equivalent to a price cap regulation and relates the current study to previous research

on the impact of a price cap on irreversible investment under uncertainty in the presence of competition ( Dixit, 1991 ),

monopoly ( Dobbs, 2004 ) and oligopoly ( Roques and Savva, 2009 ). The main difference is that while in these papers the

price cap is a control used for keeping prices low, in the current study, the policy makers adjust this control upwards in

order to delay and not foster the market expansion. 

Finally, the results of our model are robust to the modification of adding a firm specific production cap alongside the cap

on the industry output. More specifically, assume that the regulator announces a cap Q̄ on the industry output and impose

that each firm may produce not more than 0 < λ < 1 units. As one may immediately see, introducing this variation in our

model set-up would have no impact on our results. The only thing that one should keep in mind is that in this case i) the

number of active firms in the industry is equal to Q/λ and ii) the maximum number of firms entering the market is equal

to Q̄ /λ. 

Appendix A – The value of an active firm 

In this Appendix, we present the derivation of the value function in (3) , i.e. V ( X, Q ) . By a standard no-arbitrage argument

(see e.g. Dixit, 1989 ), V ( X, Q ) is the solution of the following Bellman equation: 

r · V ( Q, X ) · dt = [ P (X, Q ) − M ] · dt + E [ dV ( X, Q ) ] , (A.1) 
9 Concerning our model (à la Leahy, 1993 ), note that the issue does not arise since, as shown by Back and Paulsen (2009) , perfectly competitive invest- 

ment strategies are mutually best response and, consequently, the equilibrium is closed-loop 
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which states that the instantaneous profit, [ P (X, Q ) − M ] · dt , along with the expected instantaneous capital gain, E[ dV ( X, Q ) ] ,

from a change in X , must be equal to the instantaneous normal return, r · V ( X, Q ) · dt . 

Itô’s lemma states that since X is a geometric Brownian motion with parameter μ and σ then V ( X, Q ) , being a twice-

differentiable function of X satisfies: 

d V ( X, Q ) = 

[
1 
2 

· σ 2 · X 

2 · V XX ( X, Q ) + μ · X · V X ( X, Q ) 
]

· d t + σ · X · dZ. (A.2) 

Applying ( A.2 ) in ( A.1 ), taking the expectancy recalling that E ( dZ ) = 0, and rearranging, yields: 

1 
2 

· σ 2 · X 

2 · V XX ( X, Q ) + μ · X · V X ( X, Q ) − r · V ( X, Q ) + P (X, Q ) − M = 0 . (A.3) 

Trying a solution of the type x b for the homogenous part of ( A.3 ) and a linear form as a particular solution to the entire

equation yields: 

V ( X, Q ) = Z ( Q ) · X 

α + Y ( Q ) · X 

β + 

P ( X, Q ) 

r − μ
− M 

r 
, (A.4) 

where α < 0 and β > 1 are the roots of the quadratic equation: 

1 
2 

· σ 2 · x · (x − 1) + μ · x − r = 0 . (A.5) 

Applying x = 0 and then x = 1, and bearing in mind that r > μ asserts that ( A.5 ) has two roots, one of them negative

and the other exceeds 1. 

The first term in ( A.4 ), i.e. P( X,Q ) 
r−μ − M 

r , represents the expected present value of the flow of profits conditional on Q

remaining forever at its current level. Therefore, the first and second term on the RHS of ( A.3 ) should capture the impact

that changes in Q over time have on the value of the firm in expected terms. 

By the properties of the Geometric Brownian Motion, when X goes to 0 the probability of ever hitting the barrier trig-

gering a new entry, i.e., X 

∗( Q ), and, consequently, an increase in Q , tends to 0. This leads to the following limit condition: 

lim 

X→ 0 

[
Z ( Q ) · X 

α + Y ( Q ) · X 

β
]

= 0 . (A.6) 

Note that as α < 0, A.6 ) holds only if Z(Q ) = 0 for any Q > 0 . Hence, substituting Z(Q ) = 0 into ( A.3 ) gives ( (3) . 

Finally, applying β for x in ( A.5 ) leads to: 

dβ
dσ 2 = − 1 

2 ·β ·(β−1) 
1 
2 ·σ 2 ·(2 ·β−1)+ μ = −

1 
2 

·β2 ·(β−1) 

1 
2 

·σ 2 ·β2 + 1 
2 

·σ 2 ·β ·(β−1)+ μ·β

= − 1 
2 ·β2 ·(β−1) 

1 
2 

·σ 2 ·β2 + r 
< 0 

(A.7) 

where the third equality follows from ( A.4 ), evaluated at β , and the inequality springs from β > 1. 

Appendix B – Welfare maximization under a cap on the industry output 

Substituting the derivative of (13) with respect to Q in (14) , applying (12) , and rearranging terms, yields: 

C Q 
(
Q, Q 

)
= −

[
P ∗

r − μ
− M + D 

′ ( Q ) 

r 

]
· 1 

X 

∗( Q ) 
β

, (B.1) 

Integrating ( B.1 ) yields: 

C 
(
Q , Q 

)
− C 

(
Q, Q 

)
= −

Q ∫ 
Q 

[
P ∗

r − μ
− M + D 

′ ( q ) 
r 

]
· 1 

X 

∗( q ) β
· dq (B.2) 

The term C( Q, Q̄ ) · X β in (13) captures the welfare associated with future increases of the industry output. No such

changes are possible if Q has reached the cap Q̄ . Therefore, the following boundary condition holds at Q = Q̄ : 

C 
(
Q̄ , Q̄ 

)
= 0 , (B.3) 

Substituting ( B.3 ) in ( B.2 ) yields: 

C 
(
Q, Q 

)
= 

Q ∫ 
Q 

[
P ∗

r − μ
− M + D 

′ ( q ) 
r 

]
· 1 

X 

∗( q ) β
· dq . (B.4) 
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Appendix C – Proof of Proposition 6 

In this appendix, we show that welfare under an output tax exceeds welfare under a cap on the industry output. We

start by noticing from (41) that: 

W 

tax ( X, Q ) − W 

cap ( X, Q ) 

> 

Q̄ ∗∫ 
Q 

{ 

M+ D ′ ( q ) 
(β−1) ·r ·

[
X ∗( q ) 

X ∗∗( q,τ ∗) 

]β − M+ D ′ ( q ) −β ·D ′ ( q ) 
(β−1) ·r 

} 

·
[

X 
X ∗( q ) 

]β · dq 

Q 
∗∫ 

Q 

M+ D ′ (q ) 
(β−1) ·r ·

{ 

h (q ) 
β − 1 + β · [1 − h (q )] 

} 

·
[

X 
X ∗(q ) 

]β · dq = > 0 , 

(C.1) 

where the first inequality follows from realizing from Proposition 5 that the first integral in (41) is positive, as well as from

applying (25) for P ∗∗. The last inequality follows from defining: 

h ( q ) ≡ X 

∗( q ) 
X 

∗∗( q, τ ∗) 
= 

M 

M + D 

′ ( q ) 
. (C.2) 

and noticing from D ’( q ) > 0 that 0 < h (q ) < 1 for any q > 0. This leads to the last inequality in ( C.1 ) which holds because

any function of the form g(x ) ≡ x β − 1 + β · ( 1 − x ) is positive within the range 0 < x < 1 since: 

◦ g(0) = β − 1 > 0 

◦ g(1) = 0 

◦ g ′ (x ) = β · ( x β−1 − 1 ) < 0 for all 0 < x < 1. 

The proof of (44) follows from realizing from C.1 ) that ( (41) is positive even without its first term, and then rearranging

the remaining two terms. 

Let consider the comparative advantage of a tax over a cap policy in the limit case where σ → 0 . By Proposition 3 ,

provided that current industry output level, Q , is such that 

lim 

σ→ 0 

(
P ∗

r − μ
− M + D 

′ (Q ) 

r 

)
> 0 , (C.3) 

the optimal level of the cap, Q 

∗
, solves the following equation 

D 

′ ( Q 

∗
) = M · μ

r − μ
. (C.4) 

As lim 

σ→ 0 
β = r/μ, Condition ( C.3 ) can be rearranged as follows: 

μ > r · (1 − M 

M + D 

′ (Q ) 
) > 0 . (C.5) 

The comparative advantage of a tax, as captured by (41) , can be rearranged as follows: 

W 

tax − W 

cap = 

∫ ∞ 

Q 
∗ M+ D ′ ( q ) 

( β−1 ) ·r ·
(

X 
X ∗∗( q,τ ∗( q ) ) 

)β+ 

+ 

∫ ∞ 

Q 
∗ M+ D ′ ( q ) 

( β−1 ) ·r ·
[
h ( q ) 

β − 1 + β · ( 1 − h ( q ) ) 
]

·
(

X 
X ( q ) 

)β · dq 
(C.6) 

Provided that Condition ( C.5 ) holds and X < lim 

β→ r/μ
X ∗(Q ) = 

M 

ϕ(Q ) 
< lim 

β→ r/μ
X ∗∗(Q, τ (Q )) = 

M+ D ’ (Q ) 
ϕ(Q ) 

, it immediately follows

that: 

lim 

β→ r/μ

∫ ∞ 

Q 
∗

M + D ′ ( q ) 
( β − 1 ) · r 

·
(

X 

X 

∗∗(q, τ ∗(q )) 

)β

> 0 

Moving to the second term in ( C.6 ), it suffices showing that 

lim 

β→ r/μ

∫ Q 
∗

Q 

M + D ′ ( q ) 
( β − 1 ) · r 

·
[
h ( q ) 

β − 1 + β · ( 1 − h ( q ) ) 
]

·
(

X 

X 

∗( q ) 

)β

· dq > 0 . 

Note that this is always the case since, as shown above, 

g(h (q )) = h (q ) 
β − 1 + β · (1 − h (q )) > 0 

in the interval 0 < h (q ) < 1 for any q and for any β > 1 . 

Therefore, summing up, we can conclude that 

lim 

σ→ 0 

(
W 

tax − W 

cap 
)

> 0 

Last, when 0 < μ ≤ r · (1 − M 

M+ D ′ (Q ) 
) , Condition ( C.4 ) does not hold. In this case, it is optimal to set the cap at the current

Q , i.e. Q 

∗ = Q , which essentially turns the cap policy into a ban. Note that also in this case lim 

σ→ 0 
(W 

tax − W 

cap ) > 0 since

lim 

β→ r/μ

∫ ∞ 

Q 
M+ D ′ (q ) 
( β−1 ) ·r · ( X 

X ∗∗( q,τ ∗( q ) ) ) 
β

> 0 while the second term in ( C.6 ) disappears. 
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Appendix D - Industry equilibrium and welfare under a constant output tax 

The analysis of this case is similar to the one in Section 4.2 and leads, once again, to the entry threshold described by

(24) and (25) and to the general form of the welfare function captured by (26) . Boundary condition (27) applies too but 

only as a mere no-arbitrage condition. 

At this point, the analysis parts ways with the one in Section 4.2 as condition (28) is not relevant to the current case.

Note that this condition helps find the optimal entry threshold function X 

∗∗( Q ) in the case where the government influences

this threshold by changing the tax level as Q changes, and it is therefore not relevant in the current case. 

Applying (26) in (27) and then using (24) yields: 

C Q ( Q, τ ) = 

D 

′ (Q ) − ( ̂  β − 1) · M − ˆ β · τ
r · X 

∗∗(Q, τ ) 
β

. (D.1) 

Integrating ( D.1 ) leads to: 

C ( Q, τ ) = 

∞ ∫ 
Q 

(
ˆ β − 1 

)
· M + 

ˆ β · τ − D 

′ ( q ) 

r · X 

∗∗( q, τ ) 
β

· dq (D.2) 

Differentiating under the integral sign with respect to τ , while noting from (24) that X ∗∗
τ ( q, τ ) = 

X ∗∗( q, τ ) 
M+ τ , and simplifying

leads to: 

C τ ( Q, τ ) = 

β

r · ( M + τ ) 
·

∞ ∫ 
Q 

D 

′ ( q ) − τ

X 

∗∗( q, τ ) 
β

· dq. (D.3) 

With the term preceding the integral positive, the sign of this derivative takes the sign of the integral. This implies that

(Q, τ ) is an inverse u-shape function of τ . Applying (24) and equating ( D.3 ) to 0 shows that C(Q, τ ) peaks at: 

τ opt = 

∞ ∫ 
Q 

ϕ ( q ) 
β · D 

′ ( q ) · dq 

∞ ∫ 
Q 

ϕ ( q ) 
β · dq 

(D.4) 

Further, our assumption that D 

′′ ( Q t ) > 0 for any Q t > 0 implies that: 

τ opt > 

∞ ∫ 
Q 

ϕ ( q ) 
β · D 

′ ( q ) · dq 

∞ ∫ 
Q 

ϕ ( q ) 
β · dq 

= D 

′ ( Q ) (D.5) 

and 

dτ opt 

dQ 

= 

ϕ ( Q ) 
β

∞ ∫ 
Q 

ϕ ( q ) 
β · dq 

·
[
τ opt − D 

′ ( Q ) 
]

> 0 , (D.6) 

Applying ( D.4 ) in ( D.2 ) leads to the following optimized version of C(Q, τ ) : 

C(Q, τ opt ) = 

∞ ∫ 
Q 

( ̂  β − 1) · M 

β

r · X 

∗(q ) 
β · (M + τ opt ) 

β−1 
· dq (D.7) 

Applying D.7 ) in the welfare function ( (26) leads to a function that captures welfare given the initial levels of X and Q

and the optimal tax rate that we denote by W 

tax ( Q, X ) . Comparing it to welfare under the optimal cap policy, as captured

by (23) , yields (48) . 

Appendix E - The welfare gap between the two policies under a linear external cost function 

In this appendix, we show that when the external cost function is almost linear, the welfare gap that (48) shows is

positive, implying that the tax policy does better than the cap policy. To see that, notice that the linearity, taken together

with D (0) = 0, implies that the externality is given by D ( Q ) = a �Q where a > 0 is a constant. Thus, D ’( Q ) = a and, by (45) ,

the optimal tax is τ opt = a. 

Two cases should be considered. In the first one, a ≥ ( ̂  β − 1) · M. In that case, the price at entry times, which was denoted

by P ∗∗ and captured by (25) , satisfies P ∗ ≤ a + M. This implies that each entry yields negative (or zero) welfare and the
18 
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optimal cap should be set at the current quantity, Q . In that case, as the second integral in (48) equals zero, the welfare gap

is positive, implying that the tax policy does better than the cap policy. 

In the second case, a < ( ̂  β − 1) · M. In this case P ∗∗ > a + M implying that each entry yields a positive welfare flow and

there should be no cap at all, i.e., Q̄ 

∗ should go to infinity. In this case, the welfare gap between the two policies, as captured

by (48) , satisfies: 

W 

tax ( Q, X ) − W 

cap ( Q, X ) = 

∞ ∫ 
Q 

a −
(

ˆ β−1 

)
·M·

[ 
1 −( M 

M+ a ) 
β
] 

r·X ∗( q ) β · dq · X 

β

> 

∞ ∫ 
Q 

(
ˆ β−1 

)
·M −

(
ˆ β−1 

)
·M ·

[ 
1 −( M 

M+ a ) 
β
] 

r·X ∗( q ) β · dq · X 

β

= 

∞ ∫ 
Q 

(
ˆ β−1 

)
·M·( M 

M+ a ) 
β

r·X ∗( q ) β · dq · X 

β > 0 . 

(E.1) 

where the first inequality follows from a < ( ̂  β − 1) · M. 
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