
Exploiting effective negative curvature directions

via SYMMBK algorithm, in Newton–Krylov

methods

Giovanni Fasano1, Christian Piermarini2, Massimo Roma2*

1Dep. of Management, University Ca’ Foscari,
San Giobbe Cannaregio 873, Venezia, 30121, Italy.

2Dep. of Computer, Control and Management Engineering “A. Ruberti”,
SAPIENZA University of Rome, via Ariosto 25, Roma, 00185, Italy.

*Corresponding author(s). E-mail(s): roma@diag.uniroma1.it;
Contributing authors: fasano@unive.it; piermarini@diag.uniroma1.it;

Abstract

In this paper we consider the issue of computing negative curvature directions,
for nonconvex functions, within Newton–Krylov methods for large scale uncon-
strained optimization. In the last decades this issue has been widely investigated
in the literature, and different approaches have been proposed. We focus on the
well known SYMMBK method introduced for solving large scale symmetric pos-
sibly indefinite linear systems [5, 9, 11, 28], and show how to exploit it to yield
an effective negative curvature direction in optimization frameworks. The distin-
guishing feature of our proposal is that the computation of negative curvatures is
basically carried out as by–product of SYMMBK procedure, without storing no
more than one additional vector. Hence, no explicit matrix factorization or matrix
storage is required. An extensive numerical experimentation has been performed
on CUTEst problems; the obtained results have been analyzed also through novel
profiles (Quality Profiles) which highlighted the good capability of the algorithms
which use negative curvature directions to determine better local minimizers.

Keywords: Large scale unconstrained optimization, Newton–Krylov methods,
Negative curvature directions, Second order critical points, Quality profiles

1

1 Introduction

We focus on linesearch–based Newton–Krylov methods that are widely used for solv-
ing large scale unconstrained optimization problems, namely to determine a local
minimizer of the problem:

min
x∈Rn

f(x), (1.1)

being f : Rn → R a twice continuously differentiable function. Given an initial guess
x0 ∈ Rn, at each iteration of these methods, a new iterate is generated according to
the iterative scheme

xk+1 = xk + αkdk, (1.2)

where dk is a search direction and αk > 0 is a suited steplength. Since the
search direction is determined by means of an iterative Krylov–subspace method, a
linesearch–based scheme for a Newton–Krylov method encompasses two nested loops:

– the outer iterations, where starting from the current iterate xk, a new iterate is
generated according to the scheme (1.2), and where αk is computed by a linesearch
procedure;

– the inner iterations, namely the iterations of the Krylov–subspace method used for
approximately solving the Newton equation

∇2f(xk)d = −∇f(xk), (1.3)

at each outer iteration k. Newton–Krylov methods are also called Truncated New-
ton methods (or inexact Newton methods) since the inner iterations are usually
“truncated”, i.e. terminated according to a suited stopping criterion, still ensuring
superlinear converge rate [16, 17]. As concerns global convergence properties, conver-
gence to first order critical points is guaranteed, i.e. points which satisfies first order
necessary optimality conditions, namely towards stationary points. For a complete
overview of these methods we refer the reader to the survey paper by Nash [33].

Among the most commonly used iterative methods adopted in the inner iterations
we find the Conjugate Gradient (CG) method. In the convex case (positive definitive
Hessian), it performs stably, but in the case of indefinite Hessian it may untimely
breakdown (pivot breakdown) or become numerically unstable. This may occur when
in the CG iterations a direction s such that s⊤∇2f(xk)s < 0 is encountered before
satisfying the termination criterion. As well known, such directions are called negative
curvature directions for the function f at xk and, as we will discuss afterwards, they
may play an important rule for improving both the converge properties and the effi-
ciency of the method. To overcome the drawback of the CG untimely stopping, some
authors proposed the use of the Lanczos process in the inner iterations in place of the
CG [30, 34]. The two methods are, to some extent, equivalent in the case of convex
functions, but the iterations of the Lanczos process do not prematurely stop in the
case of indefinite Hessian.

Negative curvature directions may be fruitfully exploited within a Truncated New-
ton method for improving its convergence properties and performance. Their first use
dates back to the seminal papers [31, 32] and several methods have been then devel-
oped, based on a combination of a Newton–type direction dk and a negative curvature

2

direction sk. In such methods the iterative scheme (1.2) is replaced by

xk+1 = xk + α2
kdk + αksk, (1.4)

and αk is obtained by means of a curvilinear linesearch. The use of negative curvature
directions has a twofold importance: from the computational point of view, a move-
ment along a descent negative curvature direction allows the algorithm to escape from
regions of nonconvexity of the objective function. From the theoretical point of view,
the use of appropriate negative curvature directions enables defining methods converg-
ing to second order critical points, i.e., points which satisfy second order necessary
optimality conditions (stationary points where the Hessian is positive semidefinite).
Newton–type methods based on trust region approach naturally possess such conver-
gence property (see [11]), whilst linesearch–based methods require the following strong
assumption on used the negative curvature direction: it must be an approximation of
an eigenvector of the Hessian matrix corresponding to its most negative eigenvalue.
More precisely, to guarantee second order convergence, the negative curvature direc-
tion sk is basically required to be a bounded descent direction satisfying the following
property:

s⊤k ∇2f(xk)sk −→ 0 implies min
{
0, λmin

[
∇2f(xk)

]}
−→ 0, (1.5)

where λmin

[
∇2f(xk)

]
is the smallest eigenvalue of the Hessian matrix ∇2f(xk). Com-

puting a direction sk satisfying (1.5) is a very computationally expensive task, since it
involves the spectrum of ∇2f(xk). Moreover, most of the strategies proposed in litera-
ture for computing negative curvature directions satisfying (1.5) usually rely on matrix
factorizations (see e.g., the Bunch and Parlett decomposition proposed in [25, 32]),
so that in the large scale setting they become impracticable. On the other hand, also
iterative methods usually adopted typically need to store a large matrix, hence they
are unsuited for handling large scale problems; this is the case of the method pro-
posed in [30] where (in the framework of nonmonotone methods) the Lanczos process
is used and the storage of a matrix of the Lanczos vectors generated at each iteration
is theoretically needed to compute adequate negative curvature directions. A different
approach for computing suited negative curvature directions is proposed in [26]. In this
paper, based on the close relation between CG and Lanczos methods, the Lanczos vec-
tors are regenerated by rerunning the recurrence when needed. In this manner, matrix
storage is avoided, but a non-negligible additional computational effort is required,
due to rerunning operations.

To these authors’ knowledge, a first attempt, in the case of indefinite Hessian, to
iteratively compute negative curvature directions satisfying (1.5), without requiring
storage of any large matrix or rerunning the iterative process, is represented by the use
of the Planar-CG algorithm as proposed in [24] (we refer the reader to the papers [19,
20] for a complete description of the Planar-CG schemes). Besides providing a general
theoretical framework which guarantees convergence to second order critical points,
results of a preliminary numerical experience reported in [24] show that the proposed
approach is reliable and promising. Nevertheless, we believe that there is still need
to further investigate on how to determining effective negative curvature directions

3

to be used within a Truncated Newton method. In particular, besides guaranteeing
convergence toward second order critical points, the use of such directions should
improve the overall efficiency of the method and its capability to detect better local
minimizers.

Another issue worth investigating concerns how to combine a Newton–type direc-
tion and a negative curvature direction taking into account their possible different
scaling. As well known, Newton–type direction is well–scaled (particularly when close
to a local minimizer), while a negative curvature direction may be possibly not. Hence,
inefficiency may arise due to the use of a combination of the two directions. Based on
this remark, in [26], at each outer iteration, given a descent pair of directions (dk, sk),
instead of using the iterative scheme (1.4), only one of the two directions is selected and
a suited linesearch is performed along the chosen direction. The selection of the most
promising direction is performed by estimating the rate of decrease of the quadratic
model of the objective function in both directions. Following this approach, in [21], a
new Truncated Newton method is proposed; a test based on the quadratic model is
used to select the most promising between the two directions and an appropriate line-
search procedure is adopted depending on the selected search direction. On the same
guideline of selecting the most effective direction, in [35] the authors propose to con-
sider three alternatives: to select one of the two directions dk and sk, or possibly to
make use of a combination of both the directions. This latter choice is adopted when
both the directions are promising in terms of decrease of the quadratic model. On the
other hand, as studied in [1], it would be very beneficial to perform a scaling process
before combining the two directions. We also mention that in the recent paper [13],
a novel framework has been proposed for combining the two directions, alternating
two–step and dynamic step approaches.

It is important to point out that, even if Truncated Newton methods use second
order information on the objective function, actually they are “matrix–free” (Hessian–
free), since Hessian matrix is never stored and it is accessed by means of a routine which
provides the matrix–vector product of the Hessian times a vector. This feature, along
with the scale invariance property, makes these methods very attractive also in recently
raised machine learning applications (including deep neural networks). Hessian times
vector products can be computed at a cost which is a small multiple of the cost of a
gradient evaluation (see, e.g., [3]). Such problems arise, for instance, in training deep
neural networks, in low rank subspace clustering problems [29] and in many other
applications. Moreover, in several contexts (see, e.g., statistical physics, random matrix
theory and training multilayer perceptron neural networks [2, 4, 10, 14]) negative
curvature directions are a useful tool for an algorithm to escape from saddle points that
may represent a frequently arising obstacle. As clearly pointed out in the recent paper
by Curtis and Robinson [13], today it is really needful to design new methods able
to efficiently solve nonconvex problems by exploiting negative curvature directions,
both in deterministic and stochastic optimization. These authors also affirm that few
algorithms converging to second order critical points have been up to now developed.
They indicate that the main reasons for this rely on an excessive computational burden
due to the computation of appropriate negative curvature directions, along with a not
sufficient evidence of the full benefit of incorporating such directions.

4

Finally observe that negative curvature directions, obtained as by–product of iter-
ative optimization methods, have also been investigated within the recent literature
related to preconditioners for large scale linear systems. In particular, quasi–Newton
based updates for the construction of preconditioners were proposed, both within
Truncated Newton methods and Nonlinear CG methods, where the combined use of
both positive and negative curvature directions can be fruitfully exploited (see, e.g.,
[7] and [8]).

In this paper, we propose the use of an alternative iterative procedure to be
used within Newton–Krylov methods, for computing an effective negative curva-
ture direction. In particular, we refer to SYMMBK method for solving large scale
symmetric possibly indefinite linear systems [5, 9, 11, 28]. Such method has been
recently successfully applied within Truncated Newton methods to yield a gradient
related Newton–type direction [6]. More precisely, in the last paper a modified Bunch–
Kaufmann factorization has been proposed within SYMMBK algorithm for solving the
Newton equation, at each outer iteration. Indeed, the Bunch–Kaufmann factorization
is an effective and stable matrix decomposition, but when used for solving the Newton
equation might provide a direction which is not gradient–related. The modification
proposed in [6] enables obtaining a direction that is gradient–related and effective in
practice. Hence, the idea in the current paper to possibly use the same procedure based
on the modified SYMMBK algorithm for obtaining also a negative curvature direction
satisfying (1.5), with a minimal additional storage. The latter storage requirement is
reduced to just one additional vector, by means of replacing the use of the CG method.
We prove some theoretical achievements associated with the novel negative curvature
direction we adopt. Then we report the results of an extensive numerical experimen-
tation showing the reliability and the effectiveness of the proposed approach. Such
results have been analyzed also through a novel profiling tool, the Quality Profiles,
which highlight the good capability of the algorithms incorporating negative curvature
directions to determine better local minimizers.

The paper is organized as follows. In Section 2 we briefly recall the SYMMBK
procedure and provide some preliminaries on the use of negative curvature directions
within a Truncated Newton method. Sections 3 describe how to use SYMMBK for
defining a suited negative curvature direction. Section 4 deals with the iterative com-
putation of negative curvature directions. Theoretical results concerning the computed
negative curvature directions are included in Section 5. The results of the numerical
experimentation are reported in Section 6. Finally, Section 7 includes some concluding
remarks. As regards the notations, given a set I, |I| denotes its cardinality; vectors
{ej} indicate the canonical basis of Rn and ∥v∥ specifies the Euclidean norm of v ∈ Rn;
given a square matrix A, λmin[A] denotes its smallest eigenvalue and κ(A) its Euclidean
condition number.

2 Preliminaries

SYMMBK method was originally proposed in [9]. It iteratively solves a symmetric
linear system basically relying on the following two relevant tools: the Lanczos iterative
process for the reduction of the original system to a symmetric tridiagonal system;

5

the Bunch–Kaufmann decomposition of tridiagonal matrices, through an appropriate
pivoting strategy. Let us consider system (1.3), namely the Newton equation at the
k-th outer iteration of the Truncated Newton method, where the matrix ∇2f(xk) is
possibly indefinite. The first tool allows to transform the symmetric linear system (1.3)
into the system {

Tkyk = ∥∇f(xk)∥e1
dk = Qkyk,

(2.1)

being Tk ∈ Rm×m symmetric and tridiagonal, and Qk ∈ Rn×m, where m is the number
of iterations performed by the Lanczos process. The columns of the matrix Qk are
given by the m Lanczos vectors (see also [12])

Qk =

(
q1

...
... qm

)
, (2.2)

with q⊤ℓ qi = 0 and ∥qℓ∥ = 1, being 1 ≤ ℓ ̸= i ≤ m. We recall that, unlike the CG
method, on indefinite symmetric linear systems the Lanczos process does not suffer
for a possible pivot breakdown. A relevant property of matrix Qk is that it results

Tk = Q⊤
k ∇2f(xk)Qk. (2.3)

The Bunch–Kaufmann decomposition in SYMMBK allows for an easy factorization of
the tridiagonal matrix Tk as in

Tk = SkBkS
⊤
k , (2.4)

being Sk ∈ Rm×m a block unit lower triangular matrix, while the matrix Bk ∈ Rm×m

is block diagonal, with blocks of possible dimensions 1 × 1 or 2 × 2. By (2.1), after
m iterations of the Lanczos process, the vector dk represents an approximate solution
of (2.1) and it can be used as a search direction within an optimization framework.
Furthermore, in [6] the authors slightly modified the pivoting rule within the Bunch–
Kaufmann decomposition, so that the resulting vector dk is provably a gradient–related
direction for the optimization framework where SYMMBK is used.

Our main task here is represented by exploiting SYMMBK procedure, in order to
iteratively build an effective negative curvature direction sk ∈ Rn for f(x) at xk, so
that no more than one n–dimensional vector needs to be stored for its computation.
This will provide a general matrix–free technique to construct negative curvature
directions in large scale settings, where a popular and well renowned tool, namely
SYMMBK procedure, is adopted. The vector sk will be used within a Truncated
Newton method to solve (1.1), in order to steer the convergence towards a stationary
point where the Hessian matrix is positive semidefinite. As a more specific task, we
hereafter technically address the negative curvature direction sk such that, at each
outer iteration k, the following conditions are fulfilled:

(i) s⊤k ∇f(xk) < 0, for any sk ̸= 0;

(ii) s⊤k ∇2f(xk)sk < 0, for any sk ̸= 0; (2.5)

(iii) s⊤k ∇2f(xk)sk → 0 =⇒ min {0, λmin[∇2f(xk)]} → 0.

6

Observe that (i) in (2.5) merely imposes that sk (if any) is a descent direction for
f(x) at xk, while (ii) in (2.5) claims that sk has a nonzero projection on eigenvectors
of ∇2f(xk) associated with negative eigenvalues. Finally, (iii) in (2.5) imposes that,
broadly speaking, when we approach a region of convexity for f(x), then sk eventually
approaches a vector in the null space of∇2f(xk): this condition guarantees convergence
to second order critical points. Conditions (i)–(iii) in (2.5) allow, in our algorithmic
framework, to compute the next iterate xk+1 according with (1.4), using a modified
Armijo–type curvilinear linesearch procedure (see, e.g., [31]).

3 On computing the negative curvature direction sk

Let the vector w ∈ Rm be an eigenvector of the matrix Bk given in (2.4), associated
with a negative eigenvalue λ. Furthermore, assume that computing the vector y ∈ Rm

such that S⊤
k y = w represents a relatively simple task. Then, by (2.3) and (2.4) we

obtain

(Qky)
⊤∇2f(xk)(Qky) = y⊤

[
Q⊤

k ∇2f(xk)Qk

]
y = y⊤Tky = y⊤SkBkS

⊤
k y

= (S⊤
k y)⊤Bk(S

⊤
k y) = w⊤Bkw = λ∥w∥2 < 0.

Thus, the vector Qky represents a negative curvature direction for the function f(x)
at xk, and in the sequel we are committed to yield a reliable procedure such that the
subsequent results hold:

– the efficient (say iterative) computation of the vector sk = Qky, exploiting
SYMMBK procedure, without storing any matrix;

– the fulfillment of the conditions (i)–(iii) in (2.5) for sk.

On this purpose we preliminary consider the next result, whose proof can be easily
obtained from Lemma 4.3 in [32] and Theorem 3.2 in [24].

Lemma 3.1. Let us consider the problem (1.1), along with the sequence {xk}. Suppose
m = n iterations of the Lanczos process are performed by SYMMBK when solving
Newton’s equation (1.3) at iterate xk, for a given k ≥ 1, so that the decompositions{

Tk = Q⊤
k ∇2f(xk)Qk

Tk = SkBkS
⊤
k

(3.1)

are available. Then, Qk ∈ Rn×n is orthogonal and Tk ∈ Rn×n has the same eigenvalues
of ∇2f(xk); moreover, the matrices Sk ∈ Rn×n and Bk ∈ Rn×n are nonsingular. In
addition, if w is a unit eigenvector corresponding to the smallest negative eigenvalue
λ of Bk, and ȳ is a (bounded) solution of the linear system S⊤

k y = w, then the vector
sk = Qkȳ is a bounded direction that satisfies (i)–(iii) in (2.5).

Now, observe that the results in Lemma 3.1 assume that the Lanczos process
performs exactly n iterations to solve (1.3): this is definitely unaffordable for large n.
Hence, we need to generalize the contents in Lemma 3.1 to the case m < n. Moreover,
we highlight that to compute the vector ȳ in Lemma 3.1 we can resort to Lemma 4.3

7

in [32]. In this regard, with the next lemma we intend to rephrase Lemma 3.1, though
obtaining weaker conclusions, being possibly (iii) in (2.5) not fulfilled.

Lemma 3.2. Let us consider the problem (1.1), along with the sequence {xk}. Suppose
m < n iterations of the Lanczos process are performed by SYMMBK when solving
Newton’s equation (1.3) at iterate xk, for a given k ≥ 1, so that the decompositions
(3.1) are available. Then, we have Qk ∈ Rn×m and Tk ∈ Rm×m, along with the fact
that the matrices Sk ∈ Rm×m and Bk ∈ Rm×m are nonsingular. In addition, if w is
a unit eigenvector corresponding to the smallest negative eigenvalue λ of Bk, and ȳ
is a (bounded) solution of the linear system S⊤

k y = w, then the vector sk = Qkȳ is a
bounded direction that satisfies (i)–(ii) in (2.5).

As a further result, Lemma 4.3 in [32] ensures that the outcomes in Lemma 3.1
can be easily generalized when the linear system S⊤

k y = w is replaced by

S⊤
k y =

∑
1≤i≤m
λi<0

wi, (3.2)

being wi the eigenvector of Bk corresponding to a negative eigenvalue λi. In this
regard, some additional observations require our attention:

– computing all the unit eigenvectors of the matrix Bk may represent in general
an expensive task, so that we may limit our analysis to compute an eigenvector
associated to (one of) the smallest eigenvalues of Bk, then exploiting Lemma 3.1;

– fully computing all the eigenvectors of Bk does not ensure that an undoubtedly
more effective negative curvature direction sk will be available;

– the computation of the smallest negative eigenvalue of the matrix Bk is considerably
simplified by exploiting a diagonalization of Bk.

Now we focus on the last issue, namely a suitable diagonalization of the block diagonal
matrix Bk in (3.1), in order to simplify the computation of its eigenpairs. To this
aim, let Dk ∈ Rm×m be a diagonal matrix, with Dk = diag{λ1, . . . , λm} and where
λ1, . . . , λm are all the eigenvalues (possibly not all distinct) of Bk, and let Xk ∈ Rm×m

be an orthogonal matrix, such that its columns correspond to the eigenvectors of Bk

associated to the eigenvalues λ1, . . . , λm. Then we have Dk = X⊤
k BkXk, i.e.,

Bk = XkDkX
⊤
k . (3.3)

Hence, since Bk is a block diagonal matrix (with 1×1 and 2×2 blocks), then also Xk

will be a block diagonal matrix with blocks of dimension at most 2× 2. In particular,
for any 1 × 1 diagonal block B(i i) [2 × 2 diagonal block B(i i+1)] of matrix Bk, we
will have the corresponding 1 × 1 block X(i i) [2 × 2 block X(i i+1)] of matrix Xk,
corresponding to the number 1 [to the two eigenvectors of the sub–matrix B(i i+1)].
As an example, considering the case Bk given by all 1× 1 diagonal blocks apart from

8

the block B(i i+1); then we have:

Bk =


∗
∗
B(i i+1)

∗
∗

 , Xk =


1
1
X(i i+1)

1
1

 , (3.4)

where X(i i+1) = (vi
... vi+1) ∈ R2×2 and vi, vi+1 are the unit eigenvectors of the 2× 2

block B(i i+1). This last example shows that the computation of the eigenpairs of Bk

is relatively easy, since it is a block diagonal matrix with at most 2× 2 blocks.
Hereafter we will indicate with λℓ = λmin[Bk] the smallest (negative) eigenvalue of

Bk, and zℓ will be its corresponding unit eigenvector. Thus, ℓ will be used to denote
the row (column) index corresponding to the smallest (negative) diagonal entry of
matrix Dk. By (2.4) and (3.3) we immediately have

Tk = SkXkDkX
⊤
k S⊤

k = WkDkW
⊤
k , where Wk

def
= SkXk ∈ Rm×m. (3.5)

Now, in order to exploit the theory indicated in Lemma 3.1 and Lemma 3.2, we need
to compute the eigenvector corresponding to the smallest eigenvalue of Tk, so that a
negative curvature direction for f(x) at xk can be computed, fulfilling (i)–(ii) in (2.5)
and possibly (iii). On this purpose, we have to do nothing else but replacing in (3.2)
the matrix Sk with the matrix Wk in (3.5). Hence, on the overall the computation of
the negative curvature direction sk requires solving the linear system

W⊤
k y = zℓ. (3.6)

By simple inspection of (3.6), after exploiting the block structure of the matrix Wk we
can realize that, following the guidelines in [15] and [24], a straightforward backtrack-
ing algorithm allows the computation of the solution ȳ ∈ Rm for (3.6). However, after
some computations, (see [22]) one realizes that, following this approach, the compu-
tation of sk requires the storage of the vectors q1, . . . , qm, inasmuch as the index ℓ
will be known only at the end of the m-th Lanczos iteration. This makes the iterative
backtracking procedure to solve (3.6) impracticable for large scale problems, justifying
an alternative method proposed in the next section.

4 A better exploitation of SYMMBK to compute
negative curvature directions

In this section, following the approach adopted in [11, Section 5.2] for finding conjugate
directions from an orthonormal Krylov basis, we propose to better exploit SYMMBK
to generate ∇2f(xk)–conjugate vectors to be used for computing negative curvature
directions.

9

Observe that the matrix Wk in (3.5) has the form

Wk = SkXk =


W (1 1)

W (2 1) W (2 2)

· ·
· W (j−1 j−1)

W (j j−1) W (j j)

 , j ≥ 1, (4.1)

where the sizes (both rows and columns) of the sub–diagonal blocks W (i+1 i),
i = 1, . . . , j − 1, depend on the sizes of W (i i) and W (i+1 i+1) diagonal blocks1.
Moreover, recalling that Sk is block unit lower triangular, then the diagonal blocks
W (i i) ≡ X(i i+1) are orthogonal (see also (3.4)). Now, by combining (2.4), (3.1) and
(3.5) we can compute a set of ∇2f(xk)–conjugate directions, being indeed

Tk = WkDkW
⊤
k = Q⊤

k ∇2f(xk)Qk, (4.2)

so that
Dk = W−1

k Q⊤
k ∇2f(xk)QkW

−T
k = G⊤

k ∇2f(xk)Gk, (4.3)

where
Gk

def
= QkW

−T
k ∈ Rn×m. (4.4)

SinceDk is a diagonal matrix, by (4.3)–(4.4) the columns of Gk yield a set ofm linearly
independent (see also Proposition 2.1 of [19] and [20]) ∇2f(xk)–conjugate directions
which span the Krylov subspace K(∇2f(xk), q1,m). To efficiently compute the matrix
Gk, let us define

Gk = (G1 G2 . . . Gj−1 Gj), (4.5)

being Gi an n × 1 or an n × 2 sub–matrix, for any 1 ≤ i ≤ j. Thus, we can now
re–write equation (4.4) as

GkW
T
k = Qk

def
= (Q1 Q2 . . . Qj−1 Qj), (4.6)

where each Qi, 1 ≤ i ≤ j, represents an n × 1 or an n × 2 matrix whose columns
are given by Lanczos vectors, in accordance with the structure of Gk in (4.5). Hence,
using the expression (4.1) for matrix Wk, as well as the orthogonality of the blocks
W (i i), 1 ≤ i ≤ j, we obtain from (4.5) and (4.6)

Gi =

[
Qi −Gi−1

(
W (i i−1)

)⊤
]
W (i i), 1 < i ≤ j, (4.7)

with G1 = Q1W (1 1). Hence, we can efficiently and iteratively compute the blocks
{Gi}, whose columns represent∇2f(xk)–conjugate directions, as long as the quantities
{Qj},

{
W (i i−1)

}
and

{
W (i i)

}
are available.

1E.g., in case W (2 2) ∈ R1×1 and W (3 3) ∈ R2×2, then we will have W (3 2) ∈ R2×1.

10

5 Theoretical results for negative curvature
directions computation

Relations (4.7) indicate how to fully iteratively compute the matrix Gk in (4.4).
Moreover, (4.3) indicates that the columns of Gk represent indeed a set of ∇2f(xk)–
conjugate vectors; we denote by G(j), 1 ≤ j ≤ m, such columns2. Let us define the
index set J = {j ∈ {1, ...,m} | µj < 0}, where µj is the j-th eigenvalue of the diagonal
matrix Dk in (3.3). Now we can define the vector

z =
∑
j∈J

ajG(j), (5.1)

where the coefficients aj ∈ R, aj ̸= 0, j = 1, . . . ,m, are such that∑
j∈J

a2jµj ≤ λmin [Dk] min
j∈J

a2j . (5.2)

Our aim is to show that the vector z in (5.1) can be used as negative curvature
direction of the function f(x) at xk. In particular, in the theoretical results which
follow, in order to prove that our final negative curvature direction fulfills (i)–(iii) in
(2.5), we consider the normalized direction

sk = z/∥z∥. (5.3)

Note that the use of the direction sk, in place of z, is only for theoretical purpose;
a similar approach is used in [32], where, in the theoretical analysis, both the search
directions in (1.4) are assumed to be bounded.

Proposition 5.1. Given the function f : Rn → R, with f ∈ C2(Rn), let us consider
the sequence {xk} of approximate solutions to problem (1.1). Assume at iterate xk the
Hessian matrix ∇2f(xk) has at least one negative eigenvalue. Let Gk ∈ Rn×n be the
matrix in (4.4) after n inner iterations, and let κ(Gk) denote the condition number of
Gk. Assume {aj} (with 1 ≤ j ≤ n) is a set of real values satisfying (5.2), and {µj} is
the set of eigenvalues of the diagonal matrix Dk. Then

s⊤k ∇2f(xk)sk ≤ 1

N · [κ(Gk)]2

min
j∈J

a2j

max
j∈J

a2j
λmin

[
∇2f(xk)

]
, (5.4)

where N ≥ 1 is the number of negative eigenvalues of ∇2f(xk).

Proof. Let us consider the unit eigenvector umin of ∇2f(xk) corresponding to the
smallest eigenvalue λmin

[
∇2f(xk)

]
. Hence, u⊤

min∇2f(xk)umin = λmin

[
∇2f(xk)

]
and

therefore by (4.3)

λmin

[
∇2f(xk)

]
= u⊤

minG
−T
k DkG

−1
k umin = w⊤Dkw ≥ λmin [Dk] ∥w∥2 ,

2Again, for simplicity, we drop the dependency of G(j) on the index k.

11

where w = G−1
k umin. Now, since ∥w∥ ≤

∥∥G−1
k

∥∥ ∥umin∥ =
∥∥G−1

k

∥∥ we have

λmin

[
∇2f(xk)

]
≥ λmin [Dk] ∥w∥2 ≥ λmin [Dk]

∥∥G−1
k

∥∥2 . (5.5)

From (5.1) we have

z = Gk

∑
j∈J

ajej (5.6)

so that, from (5.2) we also obtain

z⊤∇2f(xk)z = z⊤G−T
k DkG

−1
k z =

∑
j∈J

ajej

⊤

Dk

∑
j∈J

ajej


=

∑
j∈J

a2jµj ≤ λmin [Dk] min
j∈J

a2j .

Hence, by (5.5) it follows that

z⊤∇2f(xk)z
∥∥G−1

k

∥∥2 ≤ λmin [Dk] min
j∈J

a2j
∥∥G−1

k

∥∥2 ≤ min
j∈J

a2j λmin

[
∇2f(xk)

]
< 0.

Moreover, since

∥z∥2 ≤ ∥Gk∥2
∥∥∥∑
j∈J

ajej

∥∥∥2 ≤ N ∥Gk∥2 max
j∈J

a2j ,

then by (5.6)

0 > λmin

[
∇2f(xk)

]
≥

z⊤∇2f(xk)z∥G−1
k ∥2

min
j∈J

a2j
(5.7)

≥ N∥G−1
k ∥2∥Gk∥2

max
j∈J

a2j

min
j∈J

a2j

z⊤∇2f(xk)z

∥z∥2
,

so that, recalling (5.3), condition (5.4) holds.

The last proposition evidences that in case the Lanczos process is able to perform
exactly n inner iterations within SYMMBK procedure, then a unit negative curvature
direction sk satisfying (i)–(iii) in (2.5) can be easily available as by–product from
(4.4), (5.1) and (5.3). We also remark that the computation of the vector z in (5.1)
does not require the storage of more than one additional vector, i.e. the current sum
of the contributions {ajG(j)} up to the m-th inner iteration. The latter result, to
these authors’ knowledge, represents the first example in the literature of a so cheap
computation of the vector sk fulfilling (i)–(iii) in (2.5).

12

Remark 5.2. Relation (5.4) reveals that the effectiveness of the negative curvature
direction sk requires the boundedness of κ(Gk). Nevertheless, in case the quantity
∥G−1

k ∥ is itself bounded, by (5.7) we can alternatively conclude that also the vector
z (and not only the vector sk) satisfies (iii) in (2.5). Thus, z could be used as an
alternative negative curvature direction, too, in place of sk. In this regard, by relations
(2.18) and (3.15) in [6] (where the matrix Wk plays the role of the matrix Gk in the
current paper), and recalling that Sk = −S−1

k , the proper choice of the parameter
ω in [6] can ensure that the quantity ∥G−1

k ∥ is indeed bounded. This partially fills
the gap between the current paper and [6], where a proper choice of the parameter
ω was needed in order to compute a gradient–related direction by SYMMBK. In
this regard, those values of ω selected in [6] are also worth in the current paper for
computing an effective negative curvature direction (see also Section 5.1 for additional
considerations).

Observe that the fulfillment of condition (5.2) is a preliminary requirement for the
construction of the negative curvature direction sk to be used within Proposition 5.1.
Hence, in the next result we show how to iteratively properly select the coefficients
{aj} in (5.1) so that (5.2) holds.

Lemma 5.3. Let us consider the sequence of the real coefficients {aj} in (5.1) and
(5.2). For any h = 1, . . . ,m, let us define the real quantities:

λ
(h−1)
min = min

1≤j≤h−1
µj<0

{µj}, C(h−1) = min
1≤j≤h−1

µj<0

{a2j}, A(h−1) =
∑

1≤j≤h−1
µj<0

a2jµj . (5.8)

Condition (5.2) is fulfilled provided that for any j ≥ 2, when µj > λ
(j−1)
min then we set

a2j ≤ min

{
C(j−1),

−A(j−1)

µj − λ
(j−1)
min

}
, j = 1, . . . ,m. (5.9)

Proof. The proof proceeds by induction. Relation (5.2) clearly holds when j = 1, with
no specific assumption on a1. Then, we assume that it holds for j−1, and we prove the
result for the index j. Observe that for any j in (5.1)-(5.2) we have µj < 0; moreover,
the condition

A(j−1) ≤ λ
(j−1)
min C(j−1) (5.10)

is satisfied by inductive hypothesis. Therefore, for the index j we analyze the conditions
which guarantee that the inequality (5.2), i.e.

A(j−1) + a2jµj ≤ min
{
λ
(j−1)
min , µj

}
min

{
C(j−1), a2j

}
(5.11)

is satisfied. This yields the next two cases:

13

– if µj < λ
(j−1)
min , then (5.11) yields A(j−1) + a2jµj ≤ µj min

{
C(j−1), a2j

}
, so that in

case C(j−1) < a2j , since C(j−1) ≥ 0, we obtain

A(j−1) + a2jµj ≤ µjC
(j−1) ≤ λ

(j−1)
min C(j−1)

which is always fulfilled recalling that A(j−1) + a2jµj ≤ A(j−1) and considering

relation (5.10). Conversely, in case C(j−1) ≥ a2j we obtain

A(j−1) + a2jµj ≤ µja
2
j

which is again always fulfilled inasmuch as A(j−1) < 0;

– if µj ≥ λ
(j−1)
min , then (5.11) yields A(j−1) + a2jµj ≤ λ

(j−1)
min min

{
C(j−1), a2j

}
, where

again we distinguish the case C(j−1) < a2j , for which by (5.10) we have

A(j−1) + a2jµj ≤ A(j−1) ≤ λ
(j−1)
min C(j−1),

that is always fulfilled, and the case C(j−1) ≥ a2j which yields(
µj − λ

(j−1)
min

)
a2j ≤ −A(j−1),

that holds by the condition (5.9) on the coefficient aj .

We remark that the procedure to update the coefficients {aj} in Lemma 5.3 does
not require the storage of any vector/matrix, so that on the overall the computation of
the negative curvature direction sk can be iteratively carried on in large scale settings.

Unfortunately, the assumption in Proposition 5.1 that n inner iterations (i.e., iter-
ations of the Lanczos process) are performed is far from being realistic when n is large,
so that a possible extension of the results in Proposition 5.1 would be welcome for
practical applications. In this regard, let us define

λ
(k)
min

[
∇2f(xk)

] def
= min

ν∈Rm, ∥ν∥=1

[Gkν]
⊤ ∇2f(xk) [Gkν]

∥Gkν∥2
. (5.12)

Observe that λ
(k)
min

[
∇2f(xk)

]
represents the smallest value of the Rayleigh quotient

for ∇2f(xk), where the vector Gkν spans the Krylov subspace K(∇2f(xk), q1,m).

Hence, λ
(k)
min

[
∇2f(xk)

]
can be regarded, to some extent, as an approximation from

above (on the Krylov subspace K(∇2f(xk), q1,m)) of λmin

[
∇2f(xk)

]
, as stated in the

next lemma.

14

Lemma 5.4. Let us consider the matrix Gk in (4.4) and the quantity λ
(k)
min

[
∇2f(xk)

]
in (5.12). Then for 1 ≤ h ≤ n we have

λmin

[
∇2f(xk)

]
= λ

(n)
min

[
∇2f(xk)

]
≤ · · · ≤ λ

(h)
min

[
∇2f(xk)

]
≤ · · · ≤ λ

(1)
min

[
∇2f(xk)

]
.

Moreover, if the columns of the matrix Gk =
(
G(1) · · ·G(m)

)
∈ Rn×m in (5.12) are

∇2f(xk)–conjugate vectors, then

λ
(k)
min

[
∇2f(xk)

]
= min

1≤j≤m

G⊤
(j)∇

2f(xk)G(j)∥∥G(j)

∥∥2 .

Proof. The result immediately follows from relation (5.12) and the inequality

min
ν∈Rh, ∥ν∥=1

[Gkν]
⊤ ∇2f(xk) [Gkν]

∥Gkν∥2
≥ min

ν∈Rm, ∥ν∥=1

[Gkν]
⊤ ∇2f(xk) [Gkν]

∥Gkν∥2
,

for any 1 ≤ h ≤ m. Moreover, by the conjugacy of the columns of Gk we have

λ
(k)
min

[
∇2f(xk)

]
= min

ν∈Rm, ∥ν∥=1

[Gkν]
⊤ ∇2f(xk) [Gkν]

∥Gkν∥2
= min

1≤j≤m

G⊤
(j)∇

2f(xk)G(j)∥∥G(j)

∥∥2
and this completes the proof.

Using Lemma 5.4, we can give the next generalization of Proposition 5.1 to the
case m < n iterations of the Lanczos process are performed.

Proposition 5.5. Given the function f : Rn → R, with f ∈ C2(Rn), let us consider
the sequence {xk} of approximate solutions to problem (1.1). Assume at iterate xk

the Hessian matrix ∇2f(xk) has at least one negative eigenvalue. Let Gk ∈ Rn×m be
the matrix in (4.4) after m < n inner iterations, and let σmin [σmax] be its smallest
[largest] singular value. Assume {aj}, with 1 ≤ j ≤ n, is a set of real values satisfying
(5.2). Then

s⊤k ∇2f(xk)sk ≤ 1

m

(
σmin

σmax

)2 min
j∈J

a2j

max
j∈J

a2j
λ
(k)
min

[
∇2f(xk)

]
, (5.13)

where λ
(k)
min

[
∇2f(xk)

]
is defined in (5.12).

Proof. The proof follows the guidelines of Proposition 5.1, so that we will focus only
on their differences. In particular we have from (4.3)

ν⊤G⊤
k ∇2f(xk)Gkν = ν⊤Dkν ≥ λmin[Dk], for all ν ∈ Rm, ∥ν∥ = 1, (5.14)

15

so that we can choose ν = ν̄, with ν̄ ∈ Rm, ∥ν̄∥ = 1, in (5.14) such that (see also (5.12))

λ
(k)
min

[
∇2f(xk)

]
= min

ν∈Rm, ∥ν∥=1

[Gkν]
⊤ ∇2f(xk) [Gkν]

∥Gkν∥2
=

ν̄⊤G⊤
k ∇2f(xk)Gkν̄

∥Gkν̄∥2
. (5.15)

Now, we recall that by the singular value decomposition of Gk = UΣV ⊤, with
U ∈ Rn×n, V ∈ Rm×m and Σ ∈ Rn×m, there exist m singular values3 σ1, . . . , σm such
that

0 < σmin = σ1 ≤ · · · ≤ σj ≤ · · · ≤ σm = σmax

and

GkV = U


σ1

. . .

σm

∅n−m

 ,

that is Gkvj = σjuj , j = 1, . . . ,m, being m ≤ n, U = (u1 · · ·umum+1 · · ·un) and
V = (v1 · · · vm). Hence, ∥Gkvj∥ = σj∥uj∥, for j = 1, . . . ,m. Moreover, we have from
this last relations, along with (4.3) and (5.15)

λ
(k)
min

[
∇2f(xk)

]
=

ν̄⊤Dkν̄

∥Gkν̄∥2
≥ λmin[Dk]

∥Gkν̄∥2
≥ λmin[Dk]

min
∥ν∥=1

∥Gkν∥2
=

λmin[Dk]

σ2
min

, (5.16)

where the last inequality holds recalling that λmin[Dk] < 0. Furthermore, we have

z =
∑
j∈J

ajG(j) = Gk

∑
j∈J

ajej ,

and from (4.3) and (5.2) we have

z⊤∇2f(xk)z =

∑
j∈J

ajej

⊤

G⊤
k ∇2f(xk)Gk

∑
j∈J

ajej

 =

∑
j∈J

ajej

⊤

Dk

∑
j∈J

ajej


=

∑
j∈J

a2jµj ≤ λmin [Dk] min
j∈J

a2j .

Hence, from (5.16) and the last inequality we have

z⊤∇2f(xk)z

σ2
min

≤
λmin [Dk] min

j∈J
a2j

σ2
min

≤ λ
(k)
min

[
∇2f(xk)

]
min
j∈J

a2j < 0.

3Observe that since Gk has rank m then its m singular values are positive.

16

Moreover, by (5.1) it results

∥z∥2 ≤ ∥Gk∥2
∥∥∥∑

j∈J

ajej

∥∥∥2 ≤ max
∥ν∥=1

∥Gkν∥2
∑
j∈J

a2j ≤ σ2
max

∑
j∈J

a2j ≤ m σ2
max max

j∈J
a2j .

Thus, the last couple of relations yield

z⊤∇2f(xk)z

∥z∥2
≤ σ2

min

∥z∥2
min
j∈J

a2j λ
(k)
min

[
∇2f(xk)

]
≤ σ2

min

m σ2
max

min
j∈J

a2j

max
j∈J

a2j
λ
(k)
min

[
∇2f(xk)

]
< 0,

so that (5.13) holds.

There is no difficulty to conclude that the contents in Lemma 5.3 and Remark 5.2
could be immediately extended to the results of Proposition 5.5, so that the iterative
computation of a negative curvature direction can be fully exploited also when less
than n inner iterations are performed at the k-th outer iteration of the Truncated
Newton method.

5.1 Issues on the choice of the sequence {aj}
The presence of the sequence {aj} in Propositions 5.1 and 5.5 aims at giving generality
in (5.1), when computing the negative curvature direction. In particular, on structured
Hessian problems this may give an indication about those vectors G(j) to privilege for
the computation of the negative curvature direction sk. Conversely, the choice aj = 1,
for any j ≥ 1, fulfills (5.2) and represents the most obvious one, since it also contributes
to tighten the bounds in (5.4) and (5.13). Nevertheless, the choice aℓ = 1, where

ℓ = argminj

{
G⊤

(j)∇
2f(xk)G(j)/∥G(j)∥2

}
, with aj = 0 for any j ̸= ℓ, again satisfies

(5.2) and allows to minimize the gap between λmin

[
∇2f(xk)

]
and λ

(k)
min

[
∇2f(xk)

]
(see

Lemma 5.4). Moreover, it basically encompasses also the choice for the negative cur-
vature direction adopted in [21]. Furthermore, observe that the choice of the sequence
{aj} in (5.1) is only claimed to fulfill (5.2), in order to provide a negative curvature
direction sk = z/∥z∥ satisfying either Proposition 5.1 or Proposition 5.5.

Let us consider a Truncated Newton method for solving (1.1); in case sk were either
used in a curvilinear framework (i.e. combined with a Newton–type direction) or as
a stand alone search direction, then it is expected to be at least a descent direction
and possibly a gradient–related one. Then, recalling [6, Section 3.1], we have sufficient
conditions for the choice of the test within the Bunch–Kaufmann decomposition, so
that the approximate solution d̄k of (2.1) is gradient–related. Furthermore, by Propo-
sitions 3.1 and 3.2 of [6] it is possible to show that also the vector ajG(j) in (5.1) is
gradient–related (see also Remark 5.2), provided that it is chosen exactly as the vectors
uu and vv in the Reverse–Scheme of [6]. Indeed, broadly speaking, the vector ajG(j)

in (5.1) is equivalently obtained by reducing the Lanczos process/Bunch–Kaufmann
procedure used in SYMMBK to a CG method. Thus, the proper choice of the coeffi-
cient aj makes the vector ajG(j) of descent for f(x) at xk. In this regard, note that the

17

parameter ω in the test within the Bunch–Kaufmann decomposition in [6], yet affects
also the computation of the negative curvature direction sk, through the coefficients
{aj}. Therefore, on the overall the vector ajG(j) is gradient–related, provided that
(recalling the Reverse–Scheme in [6]) the coefficient aj is chosen so that ajG(j) ≡ uu
or ajG(j) ≡ vv.

Hence, under mild assumptions on the sequence {aj} in (5.1), the vector sk can
be safely and fully used within Truncated Newton methods, to guarantee convergence
towards stationary points satisfying also second order necessary optimality conditions.

Finally, as suggested in Remark 5.2, since ∥G−1
k ∥ is bounded, then also the vector z

in (5.1) (with the positions (5.2)) may be considered an alternative negative curvature
direction fulfilling (i)–(iii) in (2.5). In the numerical experimentation we adopt the
negative curvature direction defined in (5.1), to cope with the well known drawbacks
related to carelessly combining the Newton type direction dk and a negative curvature
direction, when they show a large difference between their norms. Indeed, generally dk
is not expected to have unit norm (in this regard see the detailed discussion reported
in the next Section 6).

6 Numerical experiments

To assess the performances of a Truncated Newton method which uses negative cur-
vature directions computed according to the described approach, we carried out an
extensive numerical testing. We considered the same optimization framework adopted
in [6], namely a Truncated Newton method based on the SYMMBK procedure (imple-
mented in the routine HSL MI02 of the HSL Mathematical Software Library [28]) to
solve the Newton equation. In [6], SYMMBK pivoting rule has been slightly modi-
fied in order to provide, at each outer iteration k, a gradient–related Newton–type
direction dk. The reader can refer to [6] for any detail.

Now, as described in the previous sections, we exploit the SYMMBK routine also
for iteratively computing, at each outer iteration k, a negative curvature direction sk
(if any). Then, we implemented the iterative scheme (1.4) where the steplength αk

is computed through the standard curvilinear linesearch procedure in [31]. We are
aware (see, e.g., [26]) of the already mentioned problem which arises when combining a
Newton-type direction and a negative curvature direction in the scheme (1.4), namely
the possible different scaling of the two directions that could lead to inefficiency of
the algorithm (as we also observed in preliminary testing). However, here we do not
propose any strategy for possibly selecting the best promising direction between the
two, as also detailed in literature (see, e.g., [13, 21, 26, 35] and the discussion regarding
this issue included in the Introduction). This is motivated by the fact that we are
focusing on an assessment of the approach we propose, namely the effectiveness of the
negative curvature direction computed via SYMMBK method.

Moreover, an additional safeguard must be considered in dealing with negative
curvature directions within a Truncated Newton method. Indeed, when the iterates
approach a local minimizer (hence the Newton-type direction entails a superlinear
convergence rate), the use of negative curvature directions might partially “spoil” such

18

good convergence rate, imposing a tight exploitation of local geometries associated
with the function topology.

To overcome these two drawbacks, in the light of the conclusions proposed in
Section 5.1 and Remark 5.2, we adopted the next two zeroing rules for the negative
curvature direction: at each outer iteration k, a negative curvature direction z (if any)
is ignored when

– its norm consistently differs from the norm of dk, namely

∥z∥ > η1 ∥dk∥ or ∥z∥ < η2 ∥dk∥ , η1 > η2 > 0; (6.1)

– it results

∥∇f(xk)∥ < γ1 and
z⊤∇2f(xk)z

∥z∥2
> −γ2, γ1 > 0, γ2 > 0. (6.2)

The rationale behind the first rule (based on (6.1)) relies on the fact that, com-
puting a negative curvature direction z as described in Section 5 implies that both dk
and z are built using the same conjugate directions (the columns of the matrix Gk in
(4.4)). Hence, one would expect that both the vectors z and dk have a similar scal-
ing. If this does not occur, then the scaling problem possibly arises: we believe that
the computed negative curvature direction could introduce a detrimental effect on the
efficiency of the algorithm, hence we do not consider it.

The second zeroing rule (based on (6.2)), concerns the situation that may occur
whenever the algorithm generates iterates sufficiently close to a second order critical
point, i.e. a stationary point where the Hessian matrix is nearly positive semidefinite,
and thus the Rayleigh–Ritz quotient (along z) is negative and close to zero. Also in
this case, we do not consider the contribution of the negative curvature direction.

As concerns the values of the parameters adopted in (6.1) and (6.2), in our exper-
imentation we use the following: η1 = 102, η2 = 10−2 and γ1 = 10−3, γ2 = 10−2. More
sophisticated strategies could be certainly adopted and will be the subject of future
work (see also [23]).

Regarding the truncation criterion of the inner iterations, we adopt the stan-
dard residual based criterion [16], namely ∥∇f(xk) + ∇2f(xk)dk∥ ≤ ηk∥∇f(xk)∥,
where ηk = min

(
∥∇f(xk)∥,

√
n
k

)
is the forcing function we use. For the stop-

ping criterion of the algorithm (outer iterations) we use the standard one
∥∇f(xk)∥ ≤ 10−5 max(1, ∥xk∥). Finally, we state that an algorithm fails to solve a
problem if 3600 seconds of CPU time limit is exceeded.

To perform an extensive numerical testing, in our experimentation we considered
all the large scale unconstrained test problems from CUTEst collection [27], amounting
to 166 test problems, with sizes in the range 1,000–10,000. All the runs were performed
on a PC with Intel Core i7-4790K CPU @ 4.00GHz with 32 Gb RAM.

The results consider the number of outer iterations, the number of function evalu-
ations, the number of inner iterations, the optimal function value and the CPU time.
Moreover, in the case an algorithm incorporates negative curvature directions, their
number is also considered. For the sake of brevity, we report in the following only a

19

summary of the obtained results and we refer the reader to [22] for all the detailed
complete results.

First, we ran on the whole test set the algorithm which does not consider neg-
ative curvature directions that we named TN. The obtained results will be used as
benchmark in the subsequent comparisons.

6.1 Use of the negative curvature direction (5.1)

Now, we consider the algorithm named TN-NC1 which uses the negative curvature
direction defined in (5.1), adopting the zeroing rule in (6.1) and (6.2). We compare
the performance of TN-NC1 and TN algorithms by using the widely adopted perfor-
mance profiles [18]. Figures 1a, 1b, 1c and 1d report such performance profiles in
terms of number of outer iterations, number of function evaluations, number of inner
iterations and CPU time, respectively. These plots refer to the whole set of test prob-
lems. They clearly highlight the efficiency and the robustness in terms of iterations
and inner iterations of the algorithm TN-NC1, with respect to the algorithm TN. On
the other hand, TN-NC1 algorithm on the overall requires a larger number of func-
tion evaluations. Actually, this behaviour was expected, since it is due to the standard
curvilinear linesearch procedure used which is based on a rough combination of the
two search directions. We are convinced that a more sophisticated linesearch tech-
nique might be adopted, when second order information related to negative curvature
directions is available. In this regard, a further investigation seems mandatory in the
light of the outcomes of the present numerical experiences. As regards CPU time,
the corresponding profile shows a modest increase of the time required by algorithm
TN-NC1.

The detailed results (see [22]) provide us with some further interesting evidences.
First, it can be observed that on 9 difficult test problems both the algorithms fail
to converge within 3600 seconds of CPU time. On 1 test problem (CURLY30 with
n = 10, 000) the use of even a few negative curvature directions (say 5) enables the
algorithm TN-NC1 to converge in only 129.58 seconds, whereas TN fails to converge.
On 71 test problems negative curvature directions are actually encountered and used
by TN-NC1 algorithm; on 30 of these test problems, the two algorithms converge to
different local minimizers. Table 1 reports the optimal function values obtained by
TN and TN-NC1 algorithms on the latter test problems. This table clearly highlights
the expected capability of the algorithm TN-NC1 to converge towards better local
minimizers. The cases in which a better value is obtained by TN algorithm are com-
paratively very few. From the detailed results it can be also observed that, in many
cases, the additional effort due to the computation of negative curvature directions, is
balanced by a greater overall efficiency of the algorithm, so that CPU time required
by TN-NC1 algorithm on average shows only a modest increase.

Since on a number of test problems the two algorithms converge towards different
minimizers, in a second experiment we again plot performance profiles comparing TN
and TN-NC1 algorithms but considering only those test problems where they converge
to the same local minimizer. Figures 2a, 2b, 2c and 2d report these plots in terms of
number of outer iterations, number of function evaluations, number of inner iterations
and CPU time, respectively. A comparison of these new plots with the ones in Figure 1

20

(a) Outer iterations. (b) Function evaluations.

(c) Inner iterations. (d) CPU time.

Fig. 1: Performance profiles for the whole set of 166 test problems.

leads to an important consideration regarding the use of the performance profiles when
ranking different algorithms. Indeed, in terms of number of function evaluations and
CPU time a better performance of TN algorithm is observed both in Figures 1b, 2b,
and in Figures 1d, 2d. Conversely, in terms of number of outer iterations (see Figure 1a
and Figure 2a) and in terms of number of inner iterations (see Figure 1c and Figure 2c)
we carry out a different conclusion: the profiles referred to the whole test set do not
seem to agree with those related to test functions where both the algorithms converge
to the same local minimizer. On the other hand, one could reasonably claim that
including in the performance comparison test problems where the algorithms converge
towards different local minimizers could be unfair. Actually, the key point is that, in
comparing the performance among different algorithms, performance profiles do not
take into account the “quality” of the solution found by different algorithms, i.e., their
capability to determine better local minimizers. This drawback could be overcome
neither by adopting performance profiles nor by using the data profiles proposed in [36].

21

Table 1: Optimal function values obtained by TN and
TN-NC1 algorithms, on those test problems where they
converge to different local minimizers. For each prob-
lem the best function value obtained is highlighted in
bold.

TN algorithm TN-NC1 algorithm
Problem n function value function value

BROYDN7D 1000 5.598036E+02 3.047159E+02
BROYDN7D 5000 3.125637E+03 1.659976E+03
BROYDN7D 10000 1.233247E+00 6.883895E+03
CHAINWOO 1000 4.324322E+02 2.514980E+02
CHAINWOO 4000 2.294394E+03 1.582515E+03
CHAINWOO 10000 6.305963E+03 2.890864E+03
COSINE 1000 -9.985153E+02 -9.990000E+02
CURLY10 1000 -9.765683E+04 -1.003125E+05
CURLY10 5000 -4.665618E+05 -5.015815E+05
CURLY10 10000 -1.002761E+06 -1.003163E+06
CURLY20 1000 -9.814893E+04 -1.003093E+05
CURLY20 5000 -4.844972E+05 -5.015758E+05
CURLY20 10000 -1.002861E+06 -1.003162E+06
CURLY30 1000 -9.854450E+04 -1.000507E+05
CURLY30 5000 -4.929491E+05 -5.015808E+05
FLETCBV3 1000 -1.083664E+05 -3.189503E+03
FLETCBV3 5000 -2.221834E+07 -6.880147E+07
FLETCBV3 10000 -1.321473E+09 -1.147714E+09
GENHUMPS 1000 3.252751E+02 2.359907D-10
NCB20 1010 9.663298E+02 9.208174E+02
NCB20 5010 -1.394735E+03 -1.447533E+03
NCB20 10010 -2.642929E+03 -5.313355E+03
NONCVXUN 1000 2.405825E+03 2.327616E+03
NONCVXU2 1000 2.381367E+03 2.317103E+03
SINQUAD 10000 -2.642227E+07 -2.642315E+07
SPARSINE 1000 6.341091E+05 1.618616E+05
SPARSINE 5000 1.567241E+07 1.697258E+07
SPARSINE 10000 6.448147E+07 7.005234E+07
SPMSRTLS 1000 6.321999E+01 5.608497E-02
SPMSRTLS 10000 2.937016E+00 3.409363E-11

This motivates the use, in the current paper, of novel profiles based on the “quality”
of the solution provided by the algorithms introduced in [22]. Of course, this new
tool appears of fundamental importance for comparing algorithms which use negative
curvature directions versus algorithms that do not use them. In the next Section 6.3,
after briefly recalling the definition of the quality profiles we use them for ranking
different algorithms.

6.2 Use of alternative negative curvature directions

The numerical experimentation reported in the previous Section 6.1 relies on the use of
the negative curvature direction given by (5.1). However, to enhance our investigation
on negative curvature directions within Truncated Newton methods it might be worth
considering two alternatives for computing such directions. In place of considering the
sum in (5.1), we might select only one column of the matrix G(j) (along with the
associated coefficient aj). In particular, it is possible to consider in (5.1) the index set

22

(a) Outer iterations. (b) Function evaluations.

(c) Inner iterations. (d) CPU time.

Fig. 2: Performance profiles for test problems where both the algorithms TN and TN-
NC1 converge to the same local minimizer (136 test problems).

J such that |J | = 1, being possibly

z = ah̄G(h̄), where h̄ = argmin
h

{µh | µh < 0}, (6.3)

and
z = al̄G(l̄), where l̄ = min

h
{h | µh < 0}. (6.4)

The rationale behind the choice in (6.3) is to consider only the smallest negative
eigenvalue of the matrix Dk in (4.3). The selection (6.4) consists of considering only
the first negative eigenvalue of Dk. We name by TN-NC2 and TN-NC3 the algorithms
which use the negative curvature directions in (6.3) and (6.4), respectively. In both
the cases, we adopt again the zeroing rules in (6.1) and (6.2) for negative curvature
directions, too. Once again, the complete results are included in [22] and here we

23

only report a summary. In particular, to assess the capability of the algorithms which
incorporate negative curvature directions to determine better local minimizers, in the
next Section 6.3 we use the novel quality profiles (see [22]). The aim is to compare the
effectiveness of the negative curvature directions adopted in TN-NC1, TN-NC2 and
TN-NC3 versus TN.

6.3 Benchmarking via Quality Profiles

As we already pointed out, when ranking different algorithms which use negative
curvature directions, it is very important to assess the quality of the obtained optimal
solution. Indeed, they could have different capability of locating local minimizers with
lower value of the objective function. To this aim, a novel class of profiles named
Quality Profiles has been proposed in [22]. Now we briefly recall it and refer the reader
to [22] for any detail.

Assume the set S of iterative solvers and the set P of test problems are considered,

being |S| ≥ 2 and |P| ≥ 1 their cardinalities. Let x
(p)
0 ∈ Rn be the starting point for all

the solvers on the test problem p ∈ P, and let f (p)(x) be the objective function of the

problem p ∈ P. Let f
(p)
L be a reference value for the objective function of the problem

p. If x∗ indicates the best iterate found by the solver s ∈ S on the test problem p (for
the sake of simplicity we drop in x∗ the dependency on both s and p), different choices

are possible for f
(p)
L (see [22] for some examples). Here we adopt

f
(p)
L = min

s∈S

{
f (p)
s (x∗)

}
,

where f
(p)
s (x∗) denotes the optimal function value determined by the solver s on the

problem p. Then, for each solver s ∈ S we consider the ratio

Qs(τ) =
1

|P|
size

{
p ∈ P : f (p)

s (x∗)− f
(p)
L ≤ τ

[
f (p)(x

(p)
0)− f

(p)
L

]}
, (6.5)

being τ ≥ 0. The Quality Profile is the collection of the plots of all the ratios {Qs(τ)}
in (6.5) when4 τ ∈ [0, 1]. Quality profiles inherit from performance profiles in [18] and
from data profiles in [36] several interesting properties. Moreover, they enjoy some
additional features fundamental for thoroughly ranking different algorithms (see [22]
where quality profiles have been introduced).

In Figure 3 we report the quality profiles comparing the algorithms TN-NC1 and
TN. Plots in Figure 3 confirm that, as expected, in terms of quality of the solution
found, the algorithm TN-NC1 outperforms the algorithm TN.

Moreover, in the spirit of carrying out the investigation on the use of negative cur-
vature directions, to enhance the capability of an algorithm to determine better local
minimizers, we now include in the comparison also the results obtained by algorithms
TN-NC2, TN-NC3 described in Section 6.2 (which use alternative negative curvature

4Since for any solver s it results f(p)
s (x∗) ≤ f(p)(x

(p)
0), then for any s ∈ S we have Qs(τ) = 1 for all

τ ≥ 1. Hence it suffices to consider for the parameter τ the range [0, 1].

24

Fig. 3: Quality profile for the two solvers TN and TN-NC1.

directions). Figure 4 reports a comparison, adopting quality profiles, for the four dif-
ferent algorithms TN, TN-NC1, TN-NC2 and TN-NC3. First observe that not all the
four tracks in the last figure converge to the same value (i.e. one) when τ = 1. This
can indeed be easily explained by recalling that the piece of information related to the
number of failures associated to each solver is duly taken into account by quality pro-
files (the last consideration can be regarded as a counterpart of a similar property of
performance and data profiles). On the overall, the plots in Figure 4 confirm the fact
that algorithms which use negative curvature directions in most cases determine better
local minimizers. Moreover, TN-NC3 seems the most effective among the three codes
which incorporate negative curvature directions. We recall that in this last algorithm
the negative curvature direction is computed only selecting information associated to
the first negative eigenvalue of the diagonal matrix Dk in (3.3). The last fact con-
firms what was also pointed out in [21], and reveals that in the large scale settings the
accurate and expensive computation of a negative curvature direction can be possibly
dodged.

We finally observe that, it is possible to enhance the quality profiles in order to
expand or compress portions of the plots, for better comparing solvers when tracks
are very close. We believe that there is no further room to include this extension here.
We only refer the interested reader to [22].

25

Fig. 4: Quality profile for the four solvers TN, TN-NC1, TN-NC2 and TN-NC3.

7 Conclusions

Following the recent rekindled interest in using negative curvature directions in non-
convex optimization frameworks, in this paper we investigate on negative curvature
directions within Truncated Newton methods. In large scale settings, the use of such
directions is often dodged due to the computational effort required for generating
appropriate negative curvature directions; indeed, many approaches are often based
on matrix storage/factorization or they need the computation of eigenvalues of the
Hessian matrix. On the other hand, the adoption of appropriate negative curvature
directions, guaranteeing convergence towards second order critical points, allows an
algorithm not to get stuck at saddle points.

Here we fruitfully exploited the SYMMBK method for iteratively computing effec-
tive negative curvature directions, only requiring a minimal additional effort. This
allowed us to integrate such directions within the Truncated Newton method pro-
posed in [6]. As a result we obtain an algorithm with enhanced capability to determine
better local minimizers. The extensive numerical experimentation clearly evidenced
this important feature, and thanks to a novel benchmarking tool, namely the quality
profiles, we were able to fully show it.

As concluding remark, we believe that this paper provides evidence of the benefit of
incorporating negative curvature directions. This meets (at least partially) the specific
issue pointed out in the recent literature (see, e.g., the Introduction of [13]).

Acknowledgments. G. Fasano thanks the National Research Council–Marine
Technology Research Institute (CNR-INSEAN), Italy. G. Fasano and M. Roma

26

are grateful to the working group GNCS of INδAM (Istituto Nazionale di Alta
Matematica), Italy, for the support they received.

Declarations

� The authors have no conflict of interest.
� Data availability: no relevant data are used in the paper. All the complete results
supporting the analysis in the article are available in the Technical Report [22] that
can be accessed through the reported link.

References

[1] Avelino, C.P., Moguerza, J.M., Olivares, A., Prieto, F.J.: Combining and scaling
descent and negative curvature directions. Mathematical Programming 128, 285–
319 (2011)

[2] Baldi, P., Hornik, K.: Neural networks and principal component analysis:
Learning from examples without local minima. Neural networks 2, 53–58 (1989)

[3] Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large–scale
machine learning. SIAM Review 60, 223–311 (2018)

[4] Bray, A.J., Dean, D.S.: Statistics of critical points of Gaussian fields on large-
dimensional spaces. Physical review letters 98, 150201 (2007)

[5] Bunch, J.R., Kaufman, L.C.: Some stable methods for calculating inertia and
solving symmetric linear equations. Mathematics of Computations 31, 163–179
(1977)

[6] Caliciotti, A., Fasano, G., Potra, F., Roma, M.: Issues on the use of a mod-
ified Bunch and Kaufman decomposition for large scale Newton’s equation.
Computational Optimization and Applications 77, 627–651 (2020)

[7] Caliciotti, A., Fasano, G., Roma, M.: Novel preconditioners based on quasi–
Newton updates for nonlinear conjugate gradient methods. Optimization Letters
11, 835–853 (2017)

[8] Caliciotti, A., Fasano, G., Roma, M.: Preconditioned nonlinear conjugate gra-
dient methods based on a modified secant equation. Applied Mathematics and
Computation 318, 196–214 (2018)

[9] Chandra, R.: Conjugate gradient methods for partial differential equations. PhD
thesis, Yale University, New Haven (1978). Research Report 129

[10] Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss
surfaces of multilayer networks. In: Artificial Intelligence and Statistics, pp. 192–
204 (2015). PMLR

27

[11] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust–region Methods. MPS–SIAM Series
on Optimization, Philadelphia, PA (2000)

[12] Cullum, J.K., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric
Eigenvalue Computations. Birkhauser, Boston (1985)

[13] Curtis, F.E., Robinson, D.P.: Exploiting negative curvature in deterministic and
stochastic optimization. Mathematical Programming 176, 69–94 (2019)

[14] Dauphin, Y.N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Iden-
tifying and attacking the saddle point problem in high-dimensional non-convex
optimization. Advances in neural information processing systems 27 (2014)

[15] De Leone, R., Fasano, G., Roma, M., Sergeyev, Y.D.: Iterative grossone-based
computation of negative curvature directions in large-scale optimization. Journal
of Optimization Theory and Applications 186, 554–589 (2020)

[16] Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM
Journal on Numerical Analysis 19, 400–408 (1982)

[17] Dembo, R.S., Steihaug, T.: Truncated-Newton algorithms for large-scale uncon-
strained optimization. Mathematical Programming 26, 190–212 (1983)

[18] Dolan, E.D., Moré, J.: Benchmarking optimization software with performance
profiles. Mathematical Programming 91, 201–213 (2002)

[19] Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained
optimization, Part 1: Theory. Journal of Optimization Theory and Applications
125, 523–541 (2005)

[20] Fasano, G.: Planar–conjugate gradient algorithm for large–scale unconstrained
optimization, Part 2: Application. Journal of Optimization Theory and Applica-
tions 125, 543–558 (2005)

[21] Fasano, G., Lucidi, S.: A nonmonotone truncated Newton-Krylov method exploit-
ing negative curvature directions, for large scale unconstrained optimization.
Optimization Letters 3, 521–535 (2009)

[22] Fasano, G., Piermarini, C., Roma, M.: Exploiting SYMMBK method for
the full computation of negative curvature directions. Technical Report 06-
2023, Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A.
Ruberti”, SAPIENZA Università di Roma (2023). http://users.diag.uniroma1.it/
biblioteca/it/node/6133

[23] Fasano, G., Piermarini, C., Roma, M.: Bridging the gap between trust–region
methods (TRMs) and linesearch based methods (LBMs) for nonlinear program-
ming: Quadratic sub–problems. Department of Management, Università Ca’

28

http://users.diag.uniroma1.it/biblioteca/it/node/6133
http://users.diag.uniroma1.it/biblioteca/it/node/6133

Foscari Venezia, Working Paper (8) (2022)

[24] Fasano, G., Roma, M.: Iterative computation of negative curvature directions
in large scale optimization. Computational Optimization and Applications 38,
81–104 (2007)

[25] Ferris, M.C., Lucidi, S., Roma, M.: Nonmonotone curvilinear linesearch methods
for unconstrained optimization. Computational Optimization and Applications
6, 117–136 (1996)

[26] Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Exploiting negative curvature
directions in linesearch methods for unconstrained optimization. Optimization
Methods and Software 14, 75–98 (2000)

[27] Gould, N.I.M., Orban, D., Toint, P.L.: CUTEst: a constrained and uncon-
strained testing environment with safe threads. Computational Optimization and
Applications 60, 545–557 (2015)

[28] HSL 2013: A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/

[29] Jiang, H., Robinson, D.P., Vidal, R., You, C.: A nonconvex formulation for low
rank subspace clustering: algorithms and convergence analysis. Computational
Optimization and Applications 70, 395–418 (2018)

[30] Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for trun-
cated Newton methods in large scale unconstrained optimization. SIAM Journal
on Optimization 8, 916–939 (1998)

[31] McCormick, G.P.: A modification of Armijo’s step-size rule for negative curvature.
Mathematical Programming 13, 111–115 (1977)

[32] Moré, J.J., Sorensen, D.C.: On the use of directions of negative curvature in a
modified Newton method. Mathematical Programming 16, 1–20 (1979)

[33] Nash, S.G.: A survey of truncated-Newton methods. Journal of Computational
and Applied Mathematics 124, 45–59 (2000)

[34] Nash, S.G.: Newton-type minimization via the Lanczos method. SIAM Journal
on Numerical Analysis 21, 770–788 (1984)

[35] Olivares, A., Moguerza, J.M., Prieto, F.J.: Nonconvex optimization using negative
curvature within a modified linesearch. European Journal of Operational Research
189, 706–722 (2008)

[36] Wild, S., Moré, J.: Benchmarking derivative–free optimization algorithms. SIAM
J. Optimization 20, 172–191 (2009)

29

http://www.hsl.rl.ac.uk/

	Introduction
	Preliminaries
	On computing the negative curvature direction sk
	A better exploitation of SYMMBK to compute negative curvature directions
	Theoretical results for negative curvature directions computation
	Issues on the choice of the sequence {aj}

	Numerical experiments
	Use of the negative curvature direction (5.1)
	Use of alternative negative curvature directions
	Benchmarking via Quality Profiles

	Conclusions
	Acknowledgments

