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Abstract

The vast majority of Shape-from-Polarization (SfP) methods work under the oversimplified assump-
tion of using orthographic cameras. Indeed, it is still unclear how Stokes vector projection behaves
when the incoming rays are not orthogonal to the image plane. In this paper, we try to answer this
question with a new geometric model describing how a general projective camera captures the light
polarization state. Based on the optical properties of a tilted polarizer, our model is implemented as a
pre-processing operation acting on raw images, and a scene-independent rotation of the reconstructed
normal field. Moreover, our model is consistent with state-of-the-art forward and inverse renderers
(as Mitsuba3 and ART), intrinsically enforces physical constraints among the captured channels, and
handles the demosaicing of DoFP sensors. Experiments on existing and new datasets demonstrate the
accuracy of the model when applied to commercially available polarimetric cameras.
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1 Introduction

When light reflects on a surface, its polariza-
tion changes according to well-established physical
rules that describe such interaction. Among all the
factors involved in the process, the surface’s intrin-
sic properties and its orientation also determine
the final polarization state of the captured beam.

The literature counts several works that
exploit such optical principle, aiming at recover-
ing surface properties from images taken with a
rotating linear polarizer in front of the camera (see
Wolff and Boult (1993); Atkinson and Hancock
(2006); Miyazaki et al. (2003)). Recently, the avail-
ability of Division-of-Focal-Plane (DoFP) cameras
allows to capture the polarization state of the
scene with a single shot and raised the interest of

the Computer Vision community in polarization-
related applications. Some of these consist in
using polarization cues to perform inspection in
industrial settings as shown in Meriaudeau et al.
(2008); Morel and Gorria (2006), while others
allow to perform material classification Tomi-
naga and Kimachi (2008); Wolff (1990); Chen and
Wolff (1998) or transparent objects analysis as in
Miyazaki and Ikeuchi (2007).

Moving to 3D applications, some works pro-
pose to use polarimetric data to perform relative
pose estimation Cui et al. (2019) and three-view
geometry Chen et al. (2018), while some meth-
ods propose to extend the dense monocular SLAM
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Yang et al. (2018). Finally, some works pro-
pose recovering both surface geometry and refrac-
tive index via multispectral polarimetric imaging
Huynh et al. (2013).

Among these applications, one popular task is
the so-called Shape from Polarization (SfP), where
light polarization is exploited to recover per-pixel
surface normals and proceed with subsequent sur-
face reconstruction. Such methods are designed
to recover the 3D shape of acquired objects from
a single view thanks to the information intrin-
sically encoded in the polarimetric images (see
Miyazaki et al. (2003); Shakeri et al. (2021); Baek
et al. (2018); Taamazyan et al. (2016)). Several
approaches in the SfP domain combine polarimet-
ric imaging with other cues coming from classical
techniques such as stereo Fukao et al. (2021),
multi-view Atkinson and Hancock (2005); Cui
et al. (2017); Zhao et al. (2020); Chen et al. (2018),
shading and light constraints Ngo Thanh et al.
(2015); Smith et al. (2018) or coarse depth maps
Kadambi et al. (2017). Moreover, some works
presented in the recent past propose data-driven
approaches to perform shape from polarization Ba
et al. (2020); Lei et al. (2022) exploiting specially-
made datasets that involve the use of polarimetric
cameras and 3D scanners capturing a wide range
of subjects, from small objects to entire buildings.

Despite the undeniable contribution of the
mentioned approaches in the present-day relevant
literature, almost all of them rely on the quite
unrealistic assumption of operating with an ortho-
graphic camera. Indeed, the basic equations often
presented in such works are designed for a model
where light rays hit the sensor perpendicularly:
this is pointed out in some early papers such
as in Rahmann and Canterakis (2001); Rahmann
(2000).

The majority of proposed approaches employ
pinhole cameras, in which light beams hit the
image plane with an angle that depends on the
camera geometry. In practice, assuming an ortho-
graphic model while acquiring with a projective
camera leads to non-negligible errors and deforma-
tions, especially when we are interested in areas
near the image borders or if we have short focal
lengths. The authors in Chen et al. (2022); Lei
et al. (2022) highlight such a problem and try to
formulate a solution for the perspective deforma-
tion and the representation of polarization data

for non-orthographic devices. Finally, (Lu et al.,
2019) explicitly considers perspective projection
effects but without taking into account the degree
of polarization.

1.1 Related Works

In the literature we find an abundance of Shape
from Polarization methods, but very few works
trying to understand how to deal with projective
cameras. Indeed, we are concerned that almost all
the methods assume (explicitly or even implicitly)
to observe an orthographic projection, ignoring
how much this assumption might affect the results.

Only recently two works addressed this prob-
lem, providing two different solutions. Chen
et al. (2022) gave the first geometric relation-
ship between the polarization phase angle and the
azimuth angle of the surface normal. Albeit inter-
esting, the model has two limitations. First, it
does not account for normal elevation so its appli-
cability is limited to some specific contexts (i.e.
single-view recovery of planar surfaces or multi-
view estimation of normals). Second, it does not
provide a direct description of how the full polar-
ization state (i.e. the Stokes vector) is captured,
but only how the Angle of Linear Polarization
(AoLP) is affected by the ray direction.

The second work, proposed by Lei et al. (2022),
is based on the observation that “the polariza-
tion representation is highly influenced by the
viewing direction”. Their solution consists of a
Convolutional Neural Network taking in input the
captured image and a viewing encoding providing
cues to the camera’s intrinsic properties. Accu-
racy of the resulting normal maps is currently
unmatched, but such data-driven approaches give
no explicit information on how the model works
internally. As often happens with learning-based
solutions, the resulting model is a black box that
hardly generalises to different contexts.

1.2 Our contributions

In this paper we give the first complete mathemat-
ical description of how the scene polarization state
is modelled within a projective camera. Indeed,
the main contribution of this work consists of the
formal analysis of what happens when light rays
are captured by a pinhole camera, maintaining full
compliance with optics theory.
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Our model represents light rays as Stokes vec-
tors via Mueller calculus (see Goldstein (2017) for
details), and builds on top of the optical prop-
erties of the tilted polarizer presented in Korger
et al. (2013) to describe how the polarization state
is represented and transformed when interacting
with the camera optical elements. We address
the same problem as Chen et al. (2022), but
we effectively model the incoming light as a full
Stoke vector instead of just AoLP. Unlike other
approaches, the proposed formulation is not based
on empirical evidence (i.e. data-driven) but on a
solid physical background describing how light is
transmitted. One of the key advantages of the
proposed model is that it results in an image
pre-processing operation and per-pixel fixed trans-
formation to be applied on the estimated normal
field. Therefore, it can be embedded in existing
SfP methods designed with orthographic assump-
tion. The proposed operations are straightforward
as they do not include parameters to be calibrated
or some scene-dependent adjustments since they
only depend on the camera’s intrinsic parameters.
We adopted the same conventions assumed in
popular direct and inverse renderers, believing
that this would simplify the creation of synthetic
datasets closely simulating what can be captured
with a real polarimetric camera. This topic is
of pivotal importance to training learning-based
models and testing existing methods against a
controllable Ground Truth. Finally, the model is
valid for DoFP and Division-of-Time (DoT) cam-
eras, and generalizes to any number of linear
polarizers involved in the acquisition.

2 Preliminaries

To understand the theoretical background of the
proposed model, we briefly summarize some basic
notions about light polarization. The goal here
is to highlight crucial aspects that are some-
times neglected when approaching shape-from-
polarization. Please refer to Collett (2005); Bass
et al. (2009) to learn more about these concepts.

2.1 Light polarization

Any visible light ray consists of two orthogonal
electric field components Ex, Ey oscillating in the

plane transverse to the propagation direction k⃗.

Without loss of generality, k⃗ can be set coinci-
dent with the z-axis, so that Ex, Ey, z form an
orthogonal reference system in which:

Ex(z, t) = Ax cos
(
ωt− 2π

λ
z + δx

)
Ey(z, t) = Ay cos

(
ωt− 2π

λ
z + δy

)
. (1)

Ax and Ay are two wave amplitudes, ω is
the angular frequency, λ is the wavelength
and δx, δy are two arbitrary phases. The point(
Ex(z, t) Ey(z, t)

)
traces a so called polarization

ellipse when discarding the time-space propaga-
tor ωt − 2π

λ z (i.e. when observing the two waves
“projected” in the x− y plane). Orientation angle
and eccentricity of such ellipse describe the polar-
ization state of light. For example, when Ay =
0, Ax > 0 the optical field oscillates horizon-
tally and we have a linearly horizontal polarized
light (polarization ellipse degenerates to a hori-
zontal segment). When Ax = Ay, δx − δy = 0
we have polarized light with an Angle of Linear
Polarization (AoLP) of 45◦.

An important thing has to be noted here.
When we discuss about polarization angles (hor-
izontal, 45◦, etc.) we have to make clear the
orthogonal reference system in which the electric
field components are expressed. The third axis
is implicitly known since we always assume the
z-axis being the direction of propagation. The x-
axis can be any unitary vector orthogonal to z,
thus providing a reference to which such angles
are expressed. Since the system is orthogonal, the
y-axis is uniquely determined as y = x×z. There-
fore, a light ray with an AoLP of 45◦ can be seen
as a ray with an AoLP of 0◦ if we rotate the ref-
erence system 45◦ counter-clockwise around the
z-axis.

2.2 Stokes parameters and Mueller
matrices

Ex, Ey are not directly measurable, so a differ-
ent formulation is usually preferred. Taking a time
average of Eqs. 1 yields the definition of the four
quantities:

S
(p)
0 = A2

x +A2
y

S
(p)
1 = A2

x −A2
y
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S
(p)
2 = 2AxAy cos(δy − δx)

S
(p)
3 = 2AxAy sin(δy − δx) (2)

representing the Stokes polarization parameters of
purely monochromatic coherent light radiation.

Describing light properties with a Stokes vec-
tor S is powerful because we can represent par-
tially polarized light as a mixture of unpolarized
(S0 0 0 0)T and completely polarized light:

S =


S0

S1

S2

S3

 = (1− ρ)


S0

0
0
0

+


ρS0

S1

S2

S3

 (3)

where

ρ =

√
S2
1 + S2

2 + S2
3

S0
, 0 ≤ ρ ≤ 1 (4)

is called Degree of Linear Polarization (DoLP)1.
It follows from Eq.3 that S0 is the intensity of light
and the AoLP ϕ is given by

ϕ =
1

2
atan2(S2, S1). (5)

Stokes parameters can be measured by letting
the light rays pass through special materials called
polarizers and retarders. Such elements transform
the input Stoke vector by means of a linear trans-
formation described by a 4×4 Mueller matrix M.
For example, the Mueller matrix of an ideal linear
polarizer with transmitting axis oriented with an
angle α with respect to the x-axis is:

Mα =
1

2


1 cos 2α sin 2α 0

cos 2α cos2 2α sin 2α cos 2α 0
sin 2α sin 2α cos 2α sin2 2α 0

0 0 0 0

 .

(6)
Also in this case, the reference frame matters and
cannot be chosen arbitrarily. The Mueller matrix
of a polarizing element must be defined in a system
coincident with the one in which the input/out-
put Stokes vectors are expressed. If that is not
the case, a rotator R (around the z-axis) must

1Eq.4 holds since S2
0 = S2

1+S2
2+S2

3 for completely polarized
light.

be applied to align the reference systems, thus
getting:

S′ = RTMRS
where S and S′ are input and output Stokes vec-
tors respectively. In any case, the z-axis of S, S′

and M is fixed to the direction in which the ray
travels. We stress the fact that Stokes vectors and
Muller matrices alone are meaningless without an
associated reference frame.

2.3 Polarimetric cameras

A polarimetric camera can measure the first 3
components of a Stokes vector2 using a set of lin-
ear polarizers placed in front of a standard sensor.
This can be implemented by adding fixed filters
directly onto the pixel grid (DoFP cameras), or
taking multiple pictures while rotating a linear
polarizer in front of the lenses (DoT cameras). In
both cases, the polarizers are parallel to the image
plane so that their transmitting axis is a vector

t⃗α =
(
cosα sinα 0

)T
expressed in the camera

reference frame.
Regardless ofthe intrinsic properties of the

camera (orthographic or projective), for each
pixel a set of I = {Iα0 , Iα1 , . . . , IαN

} intensi-
ties are captured by using linear polarizers with
angles A = {α0, α1, . . . αN} respectively. The task
is to recover the incoming Stokes vector S =
(S0 S1 S2 S3)

T from those observations.

2.4 Orthographic model

The orthographic camera model is simple to deal
with because all the rays are assumed to enter
perpendicularly to the image plane. Therefore, we
can conveniently set the reference frame of all the
rays such that the first two axes follow the hor-
izontal and vertical ordering of the pixels, and
the z-axis coincides with the camera optical axis
(i.e. the direction in which all the rays are prop-
agating). Note that, since the y-axis is commonly
oriented downward (following the top-down order-
ing of image pixels) and the x-axes rightward,
the polarization angles are measured clockwise
from the x-axis instead of the classical counter-
clockwise notation. So, care must be taken when
using formulas involving polarization angles.

2Circular polarization is relatively rare in nature (see Cronin
and Marshall (2011)) and therefore it is usually not accounted
for.
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Fig. 1 Sketch of the proposed model. In the camera reference system (left), the ray passing through the jth pixel (dashed
line) is not propagating parallel to the z-axis. Therefore, the effect of a polarizer with angle αi placed parallel to the image
plane cannot be described with the orthographic camera model. To solve this, we define a local reference system for each
ray (right) oriented along the direction of propagation. Since the linear polarizer is tilted, its effective angle α̂j

i is different
from the actual orientation it has on the sensor. The tilted polarizer model Korger et al. (2013) is used to compensate for
this distortion and recover the correct Stokes vector Sj in the reference frame of the jth pixel. Finally, a rotation Rj allows
us to map normal vectors estimated from Sj back to the camera reference system.

Since S0 represents the light intensity, for each
pixel we can easily relate the intensities I to the
incoming Stokes vector S by writing a set of linear
equations: 

Iα0

Iα1

...
IαN

 =


M1

α0

M1
α1

...
M1

αN



S0

S1

S2

0

 (7)

where M1
αi

is the first row of the matrix Mαi (see
Eq. 6). At this point, S can be estimated by solv-
ing Eq. 7 in a least-squares sense (see Nayar et al.
(1997); Huynh et al. (2010)). This can be done
by first expressing each equation Iαi = M1

αi
S in

terms of AoLP ϕ and DoLP ρ:

Iαi
=

Imax + Imin

2
+

Imax − Imin

2
cos(2αi − 2ϕ)

ρ =
Imax − Imin

Imax + Imin
. (8)

A special case is given by Polarimetric Filter
Array (PFA) cameras composed by four polarizers
arranged with angles α0,1,2,3 = 0◦, 45◦, 90◦, 135◦.
In this setting, the trigonometric Eqs. 8 have a
simple closed-form solution:

S0 = I0 + I90

S1 = I0 − I90

S2 = I45 − I135. (9)

Note that, due to the orthogonality of such polar-
izers, intensities are subject to the constraint
I0 + I90 = I45 + I135. So, S0 can alternatively be
computed as I45 + I135.

3 The proposed model

The problem of dealing with a projective camera
arises because rays propagate in different direc-
tions and none of them, except the central one, is
parallel to the optical axis. Therefore, we need to:

1. Define a unique reference system for each ray.
The z-axis must always point to the direction of
propagation but we still have freedom of choice
for the other two. (Sec. 3.1)

2. Understand what happens to the Stokes vector
when a ray traverses a linear polarizer tilted
with respect to the ray direction (Sec. 3.2)

3.1 Local ray reference system

We suppose to know the matrix K of intrinsic
camera parameters that can be estimated with any
calibration tool. For each pixel pj =

(
uj vj

)
in the

image plane, the corresponding exiting ray is the
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3D unitary vector:

r⃗zj =
K−1

(
uj vj 1

)T
∥K−1

(
uj vj 1

)T ∥
. (10)

The third axis of pj ’s local reference system
must be r⃗zj because it represents its direction of
propagation3. Since the other two can be chosen
freely, without loss of generality we set:

r⃗xj
=

(
0 1 0

)T × r⃗zj

∥
(
0 1 0

)T × r⃗zj∥
(11)

r⃗yj
= r⃗zj × r⃗xj

(12)

thus creating the orthogonal reference system
Pj = (r⃗xj

, r⃗yj
, r⃗zj ) shown in Fig. 1. Note that

there is no physical reason to prefer r⃗xj
as defined

in Eq. 11 since any other vector orthogonal to r⃗zj
would have been equally valid for the model. How-
ever, it makes sense to set the frame such that its
horizontal axis is aligned with the camera x-axis
(indeed, rxj

⊥ y by construction). Moreover, this
is the same convention used by the state-of-the-art
polarization aware renderers Mitsuba Jakob et al.
(2022) and ARC Wilkie (2018) so synthetically
generated images can be easily compared with
real images processed with our model. Finally, we
define the matrix:

Rj =

 | | |
r⃗xj

r⃗yj
r⃗zj

| | |

 (13)

mapping vectors from Pj to the camera reference
system.

3.2 Tilted polarizers

Polarimetric cameras are constructed so that the
array of polarizers are parallel to the image plane.
Therefore, in each local reference system Pj , such
polarizers are tilted and their transmission axis
t⃗αi

would not be orthogonal to r⃗zj . For this rea-
son, Eq. 7 is not correctly defined because each
Mαi

lies in the camera reference frame, which is
of course not aligned with the ray propagation
direction.

3To be precise, −r⃗zj is the true direction but changing the

sign will not affect the orientation and Mueller calculus still
applies.

To solve the problem, we follow the empirical
model of Korger et al. (2013) assuming to have
polarizing elements made of anisotropic absorbing
and scattering particles. According to such model,
the effective transmitting axis t̂j of a tilted polar-
izer is orthogonal to both r⃗zj and the absorbing

axis P̂Aj (see Fig. 1). In other words, the effect
of a tilted polarizer with angle α is equivalent of
a linear polarizer aligned with the ray direction
(so that its effect on the Stokes vector can be
expressed with a Mueller matrix) but with a dif-
ferent effective angle α̂. We can obtain the Mueller
matrix Mα̂j

i
of the ith tilted polarizer on in the

local frame of the jth pixel by computing the
effective angle α̂j

i as follows:

P̂αi

Aj
= RT

j

cos(αi + π/2)
sin(αi + π/2)

0

 (14)

t̂αi
j =

cos α̂j
i

sin α̂j
i

0

 =

(
0 0 1

)T × P̂αi

Aj

∥
(
0 0 1

)T × P̂αi

Aj
∥
. (15)

Equation 14 expresses the absorbing axis of the ith

polarizer in the local reference frame of the ray. We
add π

2 to the polarizer angle αi because we assume
the absorbing axis being orthogonal to the trans-
mission axis. Then, Eq. 15 computes the effective
transmitting axis t̂αi

j , which is orthogonal to the
ray direction of propagation by construction. The
angle of t̂αi

j in the local reference frame of the ray

gives the effective angle α̂j
i .

To summarise, a perspective camera can be
used like an orthographic one with the following
precautions:

1. Each computed Stokes vector is defined on a
different reference frame, depending on the ray
direction for that pixel. Consequently, surface
normal vectors computed from the Stokes lie
on different frames as well, and must be trans-
formed back to the camera reference frame
through Rj .

2. Even if the camera uses different polarizers
with angles in A, each pixel will observe equiv-
alent polarizers with a different set of angles
Âj = {α̂j

1, α̂
j
2, . . . , α̂

j
N}. This implies that a lin-

ear system like the one shown in Eq. 7 must
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be solved in any case, since simpler closed
form solutions (See Eq. 9) cannot be valid
simultaneously for all the pixels.

3.3 How to use our model

The main advantage of our model is that it
does not require a reformulation of existing SfP
methods designed with the orthographic camera
assumption. Indeed, we can synthesize new images
that would have been seen with ideal (not tilted)
polarizers rotated at angles 0◦, 45◦, 90◦, 135◦.
After this, Eq. 9 can be used to get the full Stokes
vector and consequently the AoLP and DoLP
needed to compute the normal vector field. When
normals are recovered, they will be expressed in
the local reference frame of each pixel. So, each
vector must be transformed to the common cam-
era reference frame by applying the rotation Rj

(Eq. 13). We now sketch the basic steps to be per-
formed to embed our model in existing or future
approaches for Shape-from-Polarization:

1. Calibrate the camera to get intrinsic matrix K
2. Compute per-pixel reference systems and

transformation matrices Rj using Eq. 13 (note
that these are fixed and not scene-dependent).

3. For each pixel j and for each polarizer angle αi,
compute the effective polarizer angle α̂j

i using
Eq. 15

4. Solve the linear system in Eq. 7 but using M1
α̂j

i

instead of M1
αi

to compensate the effect of the
tilted polarizers. This will produce a Stokes
vector Sj for each pixel. Note that this vector
is not expressed in the camera reference frame
but in the pixel reference frame Pj .

5. If the SfP method directly accepts the Stokes
vector, use the ones computed in the pre-
vious step. Otherwise, pre-process the data
by synthesizing a new set of images Î =
{Î0, Î45, Î90, Î135} where the image Îγ is
obtained by multiplying each Stokes vector Sj

with the Muller matrix Mγ .
6. Since Stokes vector are in local frames, the 3D

normal vectors are expressed in the local ref-
erence frames as well. Therefore, whenever a
normal n⃗j is estimated for a pixel j, it must
be transformed back to the camera reference
system computing Rj n⃗j .

Solving a small linear system for each pixel
(Step 4) is the price to pay to compensate the

effects of tilted polarizers. However, this operation
can be used to seamlessly demosaic a DoFP cam-
era. Indeed, in such cameras, each pixel can only
observe a single polarizer angle αi similar to how
a pixel observes a specific color in color cameras
with Bayer’s pattern. Typically a 2×2 macro pix-
els grouping is performed because polarizer angles
are conveniently 0, 45, 90, and 135 degrees: such
angles are however not correct when rays are tilted
so it makes sense to correct them before doing any
other operation, like computing the Stokes vector.
Eq. 7 can be slightly adapted to accept groups
of H × H neighbours of the jth pixel to produce
Sj . By doing so, we can take into account the
tilt of each individual micro-polarizer in the group
to obtain the correct Stokes vector, embedding
the described correction for tilted polarizers. The
approach is similar to Zhang et al. (2016) but can
now take into account the effective angles of micro-
polarizers. Moreover, the synthesized images (step
5) satisfy physical constraints deriving from the
orthogonality of the polarizers. Indeed, it is guar-
anteed that Î0 + Î90 = Î45 + Î135 which is not
true in general for raw images in I regardless the
effect of the tilted polarizers. This problem was
rarely addressed in the literature but can intro-
duce biases in the computation of Stokes vector
since we implicitly give more importance to some
polarizer angles (0 and 90 degrees) with respect
to the other pair. With our approach this prob-
lem completely disappears and corrections (as in
Fatima et al. (2022); Pistellato et al. (2023)) are
no longer required to obtain coherent values.

4 Experiments

In this section we present some experiments to
evaluate the ability of the proposed model to accu-
rately describe how Stokes vectors are imaged by a
projective camera. The two similar methods avail-
able in the literature are the well-known Ortho-
graphic model and the recent Perspective Phase
Angle (PPA) proposed in Chen et al. (2022).
As discussed before, PPA just relates the light
AoLP ϕ to the surface normal without giv-
ing a unified description of what happens to
the whole Stokes vector. Therefore, comparisons
against PPA are limited to specific experiments
in Sections 4.1 and 4.3. To reduce uncertainty
due to uncontrollable scene conditions (mixed
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Fig. 2 From left to right: angular distribution of plane normals in our dataset, an example of intensity image from our
dataset with the corresponding AoLP and DoLP.

Model
Our PPA Orthographic

Our dataset

MAE 1.88 2.71 18.04
RMSE 2.51 3.48 21.72
Median 1.49 2.23 16.25
Accuracy 0.99 1.00 1.00 0.99 1.00 1.00 0.65 0.84 0.91

PPA dataset

MAE 1.54 1.95 13.60
RMSE 2.10 2.52 16.13
Median 1.10 1.52 11.45
Accuracy 0.99 0.99 0.99 0.99 0.99 0.99 0.76 0.89 0.94

SfP dataset

MAE 8.63 8.77 9.52
RMSE 13.51 13.98 14.73
Median 5.05 5.16 5.91
Accuracy 0.87 0.94 0.96 0.84 0.93 0.94 0.83 0.92 0.95

Table 1 AoLP accuracy. We report errors (in degrees) of the expected AoLP computed given the normal vectors of the
datasets with respect to the observed AoLP. We tested our perspective model, PPA (Chen et al. (2022)) and Orthographic
on three different datasets, namely: our acquired dataset, PPA dataset and deep SfP dataset (see Ba et al. (2020)). The
three accuracy values refers to % of pixels with an error under 11.25◦, 22.5◦ and 30◦.

polarization, accuracy of the ground truth sur-
face normals, π

2 -ambiguity, etc.) we followed the
approach of Chen et al. (2022).

We acquired our dataset using a glossy pla-
nar plastic board with markers attached to it so
that the plane orientation (i.e. its normal in the
camera reference frame) can be accurately recov-
ered. One example of acquired image is shown in
Figure 2. We opted for such a setup for several
reasons: despite being simple, a plane is ideal to
evaluate the correctness of a model, as the surface
normal is constant and the effect of perspective
projection becomes easily detectable. Moreover,
working with complex objects and 3D scanners
would have introduced several sources of noise
in our analysis, that are not relevant to support
our claims. Thus, we created a new dataset simi-
lar to PPA dataset in Chen et al. (2022) using a
different camera and lenses. Specifically, we used
a FLIR Blackfly camera mounting a 5 Mpixel

Sony IMX250MZR DoFP sensor with 8mm lenses
(field-of-view ≈ 107◦). Intrinsics camera parame-
ters were calibrated in a standard way as described
in Zhang (2000), acquiring a planar checkerboard.
The obtained calibration RMS error was ≈ 0.5 px.
The scene was illuminated with natural light on
a very overcast day so that the DoLP of incom-
ing light is close to 0 (i.e. incoming light rays
are unpolarized). This detail is fundamental for
our experimental setup: indeed, when incoming
light is polarized, the resulting Stokes vector
after reflection is altered according to Fresnel’s
equations. The sky on a sunny day is far from
being unpolarized, as discussed in several works
(see Goldstein (2017), Strutt (1871)) and also
exploited in Ichikawa et al. (2021). The resulting
dataset is composed of 300 images of the plane
taken at different angles and distances (See Fig.2,
Right). Since our goal was to cover all camera
rays, we ensured that all camera pixels captured
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the surface multiple times and from different view-
ing points. Specular reflection for the material
is dominant in our data (as in PPA), so the π-
ambiguity is the only one that can happen on the
AoLP. Therefore, we took the best between ϕm

and ϕm + π.

4.1 AoLP accuracy

We started our evaluation by computing the AoLP
accuracy. We did that by measuring the agree-
ment between the AoLP ϕc captured by the
camera and the expected AoLP ϕm computed by
the three models (Ortho, PPA, and Our) given
the surface normals. In the Orthographic model
ϕm = atan2(ny, nx) (i.e. the AoLP is equal to the
azimuth of the surface normal n⃗ = (nx, ny, nz)

T ),
for PPA is given by Eq. 6 in Chen et al. (2022),
and in our model is computed as the Ortho-
graphic model but adding the tilted polarizer
correction and applying the per-pixel vector rota-
tion as explained in Sec. 3.3. Results are listed in
Tab. 1, where we tested the model on three dif-
ferent datasets: our acquired dataset, the dataset
proposed in Chen et al. (2022) (PPA dataset) and
the one presented in Ba et al. (2020) (SfP dataset).
Both PPA and our model return a significantly
lower error than the Orthographic model. This
result, consistent to what is declared in Chen et al.
(2022), should raise the awareness that ignoring
perspective distortion is probably not reasonable
for accurate Shape-from-polarization. Our model
performs better for all datasets because it com-
pensates the effect of tilted polarizers: both MAE
and RMSE of our model show an improvement
of ≈ 25% on PPA dataset and of ≈ 40% on
our data. The difference between our and PPA
models is mainly because the plane in PPA data
does not cover the outermost pixels of the image,
where the error is more significant (see Fig. 3
for more details). Regarding the comparison on
SfP dataset, we need to include some consider-
ations: (i) the camera estimated focal length for
this dataset is ∼2500 px, that makes the rays less
tilted with respect to our setup (that is ∼1210
px) and closer to orthographic, (ii) the captured
objects are always in the central area of the image,
again reducing the available rays angles, (iii) the
average signal DoLP is very low, and (iv) polar-
ized light sources are not excluded (as already
discussed, when incoming light is polarized, the

reflected Stokes is altered). These factors make the
dataset not suitable for our purposes: since we are
proposing a model describing how Stokes vectors
are acquired in a perspective camera, we should
assess its validity by excluding external factors
and analysing a controlled scene as we did in our
data. Nevertheless, the results on SfP dataset are
still interesting, because our model exhibits a bet-
ter angle accuracy with respect to orthographic
and PPA models. This result is an additional indi-
cation that applying a correct perspective model
for polarimetric data is far from being negligible
for any application.

In Fig. 3 we show the per-pixel Mean Absolute
Error (MAE) for the AoLP (estimated with the
three methods) obtained by putting together all
the images from our acquired dataset (first row)
and PPA dataset (second row). Excluding some
artifacts due to highlights that saturated some
pixels, we observe a strong radial pattern in both
the Orthographic and PPA images (left and cen-
ter). PPA model performs better than Ortho, but
the radial pattern is still visible, especially in our
dataset where we managed to cover all the camera
pixels, including the external areas of the image.
This is expected since rays corresponding to pix-
els farther away from the principal point are more
tilted, and in our model this effect is strongly
attenuated, showing evidence that the perspective
distortion has been effectively compensated.

In addition, in Figure 4 we show the distance
from the image principal point against the aver-
age error on the estimated AoLP for our proposed
model and PPA. The leftmost plot refers to PPA
dataset and the rightmost to our dataset. For
both datasets the plots show that when camera
rays are significantly tilted (i.e. peripheral image
areas), our model offers the best AoLP estimation.
Indeed, our perspective model is always under 3
degrees, while PPA reaches errors of 5 degrees in
regions far from the central area.

4.2 DoLP accuracy

Following the AoLP accuracy experiments, we
performed similar tests on the measured DoLP to
assess the performance of our model. In this case,
we need to compare the expected DoLP (com-
puted from the surface normal) with the DoLP
captured by the camera. The operation is not as
immediate as in the case of the AoLP, since the
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Fig. 3 Average per-pixel error (in degrees) of the predicted AoLP for three models, namely: orthographic, PPA (Chen
et al. (2022)) and ours. The first row shows errors on our dataset, while the second on the dataset presented in Chen et al.
(2022). Note that the colour bar for the Orthographic model is substantially different to avoid saturation.
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Fig. 4 AoLP estimation MAE vs. distance from the center for our dataset (left) and PPA dataset (right). The curves show
the average error of estimated AoLP with respect to the distance from the central pixel.

DoLP value is related to the zenith angle of the
surface normal in a non-linear way.

In our case the specular reflection is dominant,
so we used the function shown in Atkinson and
Hancock (2006) to relate the DoLP ρ with zenith
angle θ and the index of refraction n:

ρ(n, θ) = a
2 sin2 θ cos θ

√
n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
(16)

where a is a scale parameter we added to the orig-
inal formulation to account for a possible diffuse
component of reflection and other nonlinear con-
tribution like the Umov’s effect Kupinski et al.

(2019); Umow (1905). To apply Eq. 16 we need
first to determine the unknown parameters n and
a. We estimated such parameters with a data-
driven approach by fitting Eq. 16 to the measured
DoLP. This is possible under the assumption that:
(i) the observed geometry is indeed a plane with
a known pose, and (ii) the plane is composed of a
material with a uniform index of refraction every-
where4. Figure 5 shows the relationship of the
zenith angle θ (on x-axis) of the surface normal in

4Since our dataset uses a different plane material than the
one used for PPA, we estimated a different set of parameters
for each dataset.
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Fig. 5 Left: 2D histogram computed on our dataset displaying the relationship between the observed zenith angle of the
plane normal (in ray reference frame) with the observed DoLP. Right: the same normalized data and the fitted curve given
by Eq. 16 optimizing the parameters a and n. Moreover, the plot shows that diffuse reflection is negligible for the plastic
material under study as the measured DoLP values fit very well with the specular model (thick red curve in the right image).

Model
Our Orthographic

Our dataset
MAE 0.0350 0.1520
RMSE 0.0591 0.1857
Median 0.0201 0.1350

PPA dataset
MAE 0.0167 0.0981
RMSE 0.0225 0.1211
Median 0.0129 0.0862

Table 2 DoLP accuracy: errors of the expected
DoLP computed given the datasets normal with
respect to the observed DoLP. We tested our
perspective model and orthographic, since PPA
(Chen et al. (2022)) does not model the DoLP.

ray reference frame with respect to the measured
DoLP in the scene (y-axis) for our dataset. The
density image (i.e. 2D histogram) on the left was
produced by merging all valid pixels from all the
images in our dataset. A density plot has been cho-
sen to avoid noise and outliers that would appear
on the scattered data, allowing a better estima-
tion of the DoLP curve. The rightmost plot shows
the same data normalized by dividing by the max-
imum value of each column so that each sample on
x axis has the same weight. We then optimized an
energy function to maximize the overlap between
the function defined by Eq. 16 and the underlying
density: the final fitted curve is displayed in red.
We obtained a = 0.73 and n = 1.57 for our dataset
and a = 0.46 and n = 1.62 for PPA dataset.

After fitting the correct DoLP model, we
applied it to the data to obtain the expected DoLP
and compute the average errors, as we did for
the AoLP. Results are listed in Table 2, where

we compare our model with just the orthographic
one since PPA does not model the DoLP. Results
show that in both datasets our perspective model
exhibits a significantly higher precision in accor-
dance with the AoLP results. Figure 6 shows the
per-pixel average error for both our and ortho-
graphic model in the two datasets. Also in this
case we observe a significant improvement with
our model for both datasets. The error in our
dataset is consistently smaller than 0.05, except
for the upper-right corner of the image where we
observe higher errors due to unexpected reflections
on the surface. Errors for the orthographic model
are higher and exhibit a radial pattern similar to
what we observe for the AoLP.

4.3 Plane orientation estimation

When we observe a planar surface, the AoLP is
sufficient to recover the plane orientation n⃗. Let
ϕ be the azimuth angle of n⃗. When using the
orthographic model, the linear constraint(

sinϕ cosϕ 0
)
· n⃗ = 0 (17)

is commonly used for photo-polarimetric stereo
approaches or iso-depth contour tracing. If we
have at least K > 3 pixels observing the same
plane, we can apply our model and exploit such
constraint to recover the plane normal n⃗ (in
camera reference frame) from the (corrected) ϕj

observed at each pixel. A solution can be obtained
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Fig. 6 Average per-pixel error of the predicted DoLP for orthographic and our model. The first row shows errors on our
dataset, while the second on the PPA dataset (Chen et al. (2022)). Note that the colour bar for the Orthographic model is
substantially different to avoid saturation.

by solving:
(
sinϕ1 cosϕ1 0

)
RT

1(
sinϕ2 cosϕ2 0

)
RT

2
...(

sinϕK cosϕK 0
)
RT

K

 n⃗ = 0⃗ (18)

as a Linear Least-Squares problem where Rj are
computed as in Eq. 13 and ϕj are the corrected
AoLPs. A similar constraint is provided for PPA
model (see Eq. 7 in Chen et al. (2022)) and solved
in the same way. This idea cannot be exploited
with the orthographic model because the result-
ing system would always be under-determined.
Indeed, since all rays are parallel, the rotation
matrices R1, . . . RK will be identities, and each
pixel would observe the same ϕ. In Fig. 7 we
plotted the estimated plane normal error distri-
bution against the ground truth data for PPA
dataset (Ortho model is not present for the rea-
sons discussed before). Also in this case, our mean
absolute error is lower (1.57◦ vs. 2.89◦) and with
less variability. This reflects a better estimation

of the AoLP due to the correction applied by the
tilted polarizer model.

4.4 Normal estimation

Our work describes the relation between the
incoming Stokes vector and the Stokes vector cap-
tured by the camera: this verifies regardless of
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Fig. 7 Plane normal estimation error distributions for
our perspective model and PPA model computed on PPA
dataset.
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PPA Dataset Our Dataset
MAE RMSE MAE RMSE

Our 1.923± 1.343 2.346 3.446± 2.638 4.340
Orthographic 13.441± 6.653 14.997 18.423± 8.667 20.35
Smith 28.494± 12.379 31.067 34.848± 5.477 35.275
Smith corrected 27.396± 12.489 31.021 33.870± 6.399 34.470
Mahmoud et al. 48.19± 10.69 49.37 50.058± 8.875 50.839
SfPW 38.305± 22.915 44.637 22.819± 15.649 27.670
DeepSFP 35.243± 10.758 38.753 30.435± 9.81 33.34
DeepSFP corrected 27.967± 8.880 31.477 21.794± 4.439 21.70

Table 3 Comparison of normal estimation errors on PPA and our plane datasets between different SfP methods.
Projective (Our) and Orthographic models use an oracle to solve all the ambiguities. Since DeepSfP method uses the
orthographic model to compute normal priors, we also present a corrected version where we keep the same CNN weights
but computed the normal priors according to our model. Errors are in degrees.

the phenomena that originated the radiation (dif-
fuse/specular reflection, refraction, etc.). Instead,
solving the π-ambiguity to recover the surface nor-
mal is a task handled by SfP methods. Since we
are not proposing a SfP method, handling such
ambiguities is not our goal and thus evaluating our
model effectiveness based on how well a normal
field is reconstructed has to be done with care.

We recall that the azimuth angle of n⃗ is related
to the AoLP ϕ up to a (unavoidable) π-ambiguity,
and an additional π

2 -ambiguity depending if spec-
ular or diffuse reflection dominates.

To show the validity of our model, the idea is
to test how well it allows the recovery of surface
normals in ideal conditions, i.e. with an oracle (a
“perfect” SfP approach) that removes ambiguities
and provides a close estimate of the parameters
n, a in Eq. 16. We estimated the best values for
n, a as discussed in the previous DoLP Section,
and computed the per-pixel normal vectors from
the Stokes vector following the process described
in Sec. 3.3 and excluding all the ambiguities.

We compared the resulting normal field
against the orthographic model using the same
oracle as our method (i.e. estimated function ρ
and optimal disambiguator), Smith et al. (2018)
as in the original paper, Mahmoud et al. (2012),
deep SfP from Ba et al. (2020), and SfPW from Lei
et al. (2022), a deep CNN which embeds a view-
ing encoding “to account for non-orthographic
projection in scene-level”.

Additionally, we propose two modified versions
of the methods: in Smith corrected we corrected
the input image for tilted polarizers and applied
the proposed per-pixel rotations to the output

vectors, while in DeepSfP corrected we also cor-
rected the input image for tilted polarizers and
applied the per-pixel rotation to all the normal
priors that are given as input to the CNN (with
the same weights of the plain DeepSfP). The
DeepSfP CNN outputs a normal field taking as
input the 4 channels from the PFA camera and
three different alternatives for the normals: one
obtained applying the specular model and two
for each possible diffuse solution. Note that these
input vectors are computed with the orthographic
model, as described in Ba et al. (2020), and there-
fore it makes sense to apply our model (i.e. rotate
all the normal priors) directly in the network
input. We trained the original implementation of
DeepSfP on their dataset, and for SfPW we used
the original pre-trained model. We do not pro-
vide a ”corrected” SfPW since the method should
already take into consideration perspective effects
by encoding the pixel information in the input.
Note also that in Smith corrected we did not alter
the original method, but applied our model after-
wards. This of course is sub-optimal because the
per-pixel rotations Rj (that are fixed, thus not
unknowns to be solved) are applied only at the
end.

We listed MAE and RMSE (in degrees) of
the estimated normals in Tab. 3: normals recov-
ered with our projective model are significantly
more accurate than the others. This is not sur-
prising, since we assume to solve all the unknowns
we usually face when doing SfP. The first thing
to highlight is the improvement against the
orthographic model that uses the same oracle.
Indeed, we put the orthographic model in the
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same ideal conditions of ours and obtained more
than 13◦ MAE with respect to our perspective
model (1.9◦). This means that properly account-
ing for non-orthographic projection is crucial to
reduce the final error, no matter how sophisti-
cated the method adopted to solve the ambigu-
ities. Moreover, Smith corrected performs better
than the original one because accounts for non-
orthographic cameras but still suffers from dis-
ambiguation errors. When applying DeepSfP to
both datasets, the normal estimation errors are
higher with respect to other methods. Neverthe-
less, one very interesting thing that we highlight
is the improvement that we obtained from the
DeepSfP CNN when we simply correct the input
by applying the perspective model. By doing that,
we improved the MAE and RMSE of the CNN by
almost 10 degrees for both datasets with no par-
ticular effort. This is indeed a significant result
that shows that the proposed model is effective in
representing Stokes vectors for perspective cam-
eras. Finally, SfPW does not perform as well as the
“simple” Orthographic model. Considering that
SfPW takes into account non-orthographic cam-
eras, we expected a lower error in this experiment.
Since SfPW is designed to output a normal map
”in the wild”, the result is surprisingly bad when
tested on a scene with a simple plane. In gen-
eral, shape from polarization is difficult to solve
without posing additional strong priors to the
reconstructed scene, and learning-based methods
can only try to resolve the ambiguities based on
what is observed on the training set, with the
risk of overfitting specific 3D structures, and this
is clear from the results we obtained for both
data-driven approaches.

In Figure 8 we show some qualitative exam-
ples of the obtained normal fields for PPA dataset
and our acquired data. The captured object is a
plane for both datasets, so the normals should
be constant on the whole surface. Thanks to the
plane setup we can appreciate the radial errors
that are clearly introduced in the orthographic
model, while our perspective model produces a
constant value on the whole surface, especially on
peripheral image areas. Regarding the data-driven
approaches, SfPW fails by producing non-coherent
values on the acquired region, even if it is designed
to take into account the camera rays’ directions
as direct input. Indeed, such behaviour indicates
probable data overfitting. The DeepSfP network

is shown as the original version in Ba et al.
(2020) and with corrected prior input. As we
already noted in the comparison table, the cor-
rected input produces a different output, resulting
in a smoother normal map for the plane surface,
but still, the error is significant.

5 Conclusions

In this paper, we presented a model to describe
how a projective camera captures the light polar-
ization state. Differently than the empirical PPA
model Chen et al. (2022) or learning-based solu-
tions, our formulation directly derives from the
optical properties of the tilted polarizer and
applies Mueller algebra to model the behaviour of
incoming light as a Stoke vector. We consider it
a unifying model, equally valid for DoFP (Divi-
sion of Focal Plane) and DoT cameras (Division of
Time, i.e. with rotating polarizers above the sen-
sor or in front of the lenses) and consistent with
conventions used by polarization-aware renderers.
It allows to embedding demosaicing of DoFP cam-
eras directly in the Stokes estimation process and
can be implemented by means of a pre-processing
of raw data and rotation of the surface normals
in a scene-independent way. In the experimental
section, we observed a good agreement between
the captured Stokes vector and the expected one
in terms of AoLP and DoLP linked to surface
normals.

Moreover, the computed normal maps using
a perfect disambiguation are coherent with the
geometry of the acquired plane, and applying our
model to other SfP techniques (as a simple pre-
or post-processing) leads to a significant error
reduction. In the future, we aim to generalize our
model to include lens distortion and vignetting
on acquired DoLP due to Umov’s effect. This,
in turn, would allow a better understanding of
how the intrinsic camera parameters affect the
measurement of light polarisation state.

Supplementary information. The datasets
generated during and/or analysed during the cur-
rent study are available from the corresponding
author upon reasonable request.
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