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________________________________________________________________________________ 
 

Preface  
________________________________________________________________________________ 
 
This thesis is about a query language that, in my view, should allow an average computer technician to 
easily deal with Natural Language Processing tasks, without the understandable fear for its technicalities. 
In the company I work for I see everyday lots of people naturally playing with complicated SQL queries 
involving heterogeneous systems, about which I would be scared myself. On the other hand, it is very easy 
to frighten them with any simple expression containing mathematical symbols or otherwise strange 
characters. My guess is that a query language like SPARQL should do the job, provided I can manage to fit 
all the most useful NLP task into simple triple patterns. 
Mining complaints is a necessity of many companies nowadays, and to make it simple is one of the main 
focuses of this research. 
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________________________________________________________________________________ 
 

Abstract 
________________________________________________________________________________ 

 
Complaints and technical reviews often describe complex problems, most of the times in very 
articulated ways. Over that kind of corpora, we are considering here three classical tasks: 
Information Retrieval, Text Classification and Information Extraction. In this context however, 
these tasks should take into special consideration the structure of the sentence, with special 
attention to verbal phrases, as complaints are usually descriptions of actions that have been 
performed whilst they shouldn’t (or the other way around). We want to leverage results from 
traditional NLP tasks like Semantic Role Labeling and Dependency Parsing, but also to employ the 
most recent advances in the field of Word and Sentence Embedding. Moreover, Semantic Web 
technologies should be employed when background knowledge is required. In order to deal with 
these three heterogenous approaches, a particular implementation of the SPARQL query 
language has been developed. It provides a language for template extraction that seamlessly 
mixes the state of the art of the above-mentioned tasks. Its main difference from SPARQL is the 
ability to deal with similarity and uncertainty. However, its syntax is strictly a subset of the 
SPARQL 1.1 one, simplifying the integration with OWL ontologies and allowing its use as an 
endpoint for other engines in a federated query context. The case studies illustrated here focuses 
mainly on problems related to telecommunication companies, using publicly available corpora 
and forums threads extracted from the web. However, the language has been designed to be 
used in any context that requires extracting information from corpora of complex or technical 
descriptions.   
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______________________________________________________________________________ 
 

Chapter 1 – Introduction 
________________________________________________________________________________ 
 
When dealing with a dataset of complaints and technical reviews, there are basically three things that 
we want to be able to do:  

• retrieve some of them, according to some information need 

• count them, to measure the importance of a specific area of problem 

• extract detailed information from them, for example to gain some insights about how to correct 
the problem 

 
Retrieval of complaints and technical reviews need a special approach. Complaints are usually convoluted 
descriptions of very complex problems. Moreover, they often implicitly refer to some “obvious” 
background knowledge that we need to represent. Clearly, in order to correctly retrieve them, the 
structure of the sentence and of the discourse cannot be disregarded, as instead is normally the case in 
classical Information Retrieval (IR) approaches. Classical IR systems, having to focus on speed and to deal 
with huge amounts of documents, makes some necessary simplifications, almost always considering an 
entire document as an unstructured Bag Of Word (BOW). Here we cannot do the same, and certainly, the 
burden of employing Natural Language Processing (NLP) techniques will make the things much slower and 
less scalable. But from the perspective of a company that wants to explore a specific area of interest, 
speed and scalability may not be a major concern: datasets may be big, but not huge (certainly not the 
size of the web), and results are not necessarily expected in real time (few hours of computation are easily 
acceptable). 
The second thing that we want to be able to do with a set of complaints is to count the instances of a 
specific class of problem, within a reasonable margin of error, to measure its entity. This is clearly a 
classification problem. However, the difficult here is the creation of the training set. It is unlikely that a 
company is willing to spend the necessary time and effort to collect thousands of examples for each case 
of interest before having the first results. Also, for most specific problems, these thousands of examples 
may not exist at all, not even in the web. Therefore, we need to find classification methods that focus on 
minimizing the number of instances and the user involvement, rather than just considering evaluation 
metrics like precision and recall.  
The third requirement is the ability to perform Information Extraction (IE) on the retrieved documents. 
The user may want to know things like “what gets broken” more often, or “how much has been payed” 
on the average for something. The problem here is that there are obviously many different ways to 
express all those things in natural language. Fortunately, this issue has been studied from a very long time, 
and tools are already available off-the-shelf that tackle the problem from different theoretical 
perspectives (Syntactic Parsing, Semantic Role Labeling, Sentence Similarity). However, none of these 
tools alone seem to provide a solution that works in all cases. At the moment, the best option from the 
user perspective is probably an environment that allows the choice of any of them, and possibly also their 
seamless interaction.  
 
With these three goals in mind, instead of creating a pipeline specifically tailored for the purpose of 
complaint analysis, we built a flexible tool that may be used by others to tackle similar problems. 
Interestingly, an area with very similar problems is the field of clinical research, and in particular the 
analysis of clinical narrative, thanks to the rapid growth in the implementation of electronic health records 
(EHRs). We report here the words of a very recent article [Zhang et al 2018]: “psychiatric symptoms often 
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consist of subjective and individualized descriptions, which are presented in details of the patient’s 
experience. Instead of a single word or simple noun phrase, psychiatric symptoms have tremendous 
syntactic and semantic variability. […] Therefore, it is quite challenging for traditional natural language 
processing (NLP) techniques to automatically extract such diverse mentions of psychiatric symptoms from 
text.” 
In the hope to be useful also to this and other applications, we wrote a tool that aim at unifying the state 
of the art of traditional NLP tools, including the newest Neural Embeddings ones. Ideally, this tool should 
be intuitive and easy to use, allowing persons without a strong background in NLP to achieve the above-
mentioned goals with little coding and very little effort. It is a query language derived from SPARQL 
(named SPARQL/T, like “SPARQL over Text”), whose syntax is a strict subset of SPARQL 1.1 one, but that 
works directly on the document’s (pre-annotated) text instead of on a set of RDF triples. It allows to 
seamlessly mix inside the same query clauses that refer to traditional NLP tasks with others that involves 
uncertainty and similarity measures. For this reason, we had to write its engine from scratch, as existing 
SPARQL implementations cannot deal very well with uncertainty. However, keeping the syntax exactly the 
same, besides avoiding the introduction of a dialect, also simplifies its integration with Semantic Web 
technologies. (for example, SPARQL/T can act as a standard SPARQL endpoint, i.e. it can participate to a 
federated query initiated by another SPARQL engine).  
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________________________________________________________________________________ 
 

Chapter 2 – Comparison to Knowledge Extraction tools 
________________________________________________________________________________ 

 
The triple patterns of a query in SPARQL/T acts directly on the text and its annotations, extracting 
knowledge during query execution. An obvious alternative is to extract all possible useful triples 
from the documents into a triple store, and then employ a standard SPARQL engine. This is 
exactly what Knowledge Extraction (KE) tools allows to do. This chapter explores the pro and cons 
of both solutions. In short: at run time pre-extracted knowledge has the advantage of speed. 
However, the KE task is a very difficult one. Similar documents do not always result in structurally 
similar graphs, making it difficult to write the queries. Thus, from the user point of view, 
SPARQL/T similarity-based approach is definitely much easier. 
 
Knowledge Extractors tools transform Natural Language documents into machine-interpretable 
formats, often into RDF/OWL graphs than can be stored into standard triple stores (and thus 
efficiently indexed) and queried in standard SPARQL (see chapter 3.1 for more details). It is 
therefore natural to ask what advantages can be achieved with the SPARQL/T approach, i.e. by 
working directly on the documents and their NLP annotations, and thus giving up (at least for the 
moment) the advantages of indexing.  
What lacks in SPARQL (but not in general in the KE tools themselves) is the ability to deal with 
uncertainty. SPARQL queries are crispy, the graphs extracted by KE tools have many different 
structures, even when extracted from sentences apparently very similar, and thus the user is 
forced to write very complex queries to achieve even just reasonable recall. SPARQL/T on the 
other hand relies a lot on the concept of similarity.  Words and sentences can be compared using 
Embeddings, the Join operations consider (among other things) proximity measures and, 
whenever possible, soft operations that perform a re-ranking of the result are preferred against 
others with crispy behavior. Obviously, this approach makes SPARQL/T less precise than using 
SPARQL over KE results, but much more flexible and easier to use.  
Figure 1 shows a SPARQL/T triple pattern that employs Universal Sentence Encoder (USE) [Cer at 
al. 2018]. The EMB:USE triple pattern simply extracts from the documents all the snippets of text 
similar to a given phrase (“They increased the price”).  
As can be seen from Table 1 (containing some results of its application to the Comcast Consumer 
Complaints dataset1 available on Kaggle.com), sometimes Google USE gives surprisingly good 
results in finding sentences that are structurally very different from the query ones (albeit with 
some noise), and its implementation in SPARQL/T requires no effort from the user point of view. 
  
?i  EMB:USE  ‘They increased the price’ 

Figure 1: A triple pattern that extracts snippets similar to the given phrase, using Universal Sentence Embedding 

                                                           
1 Comcast Consumer Complaints. Public complaints made about Comcast internet and television service. 
https://www.kaggle.com/archaeocharlie/comcastcomplaints 
 

https://www.kaggle.com/archaeocharlie/comcastcomplaints
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For comparison, we have extracted the graphs of those sentences using the online version2 of 
Pikes [Corcoglioniti et al. 2016], which is a frame-based Knowledge Extraction framework, that 
produce instances of frames and relations between them in RDF format. 
Actually, we have started with three handcrafted very similar sentences, slightly varying the 
sentence 1 of Table 1, to check if they would be transformed into similar graphs (see Table 2). 
 
 
 
 

Rank 
Index 

Score Snippet 

1 0.895 they raised the prices 

7 0.851 they changed the deal 

8 0.85 the pricing went up 

9 0.846 they implemented the extra charges 

21 0.834 They lied about the pricing 

22 0.833 They doubled the rates 

23 0.833 not only did the prices become exorbitant 

24 0.832 They increased the equipment fee 

36 0.823 They have consistently offered temporary rates 

40 0.822 they have jacked up prices 

44 0.82 They simply tick up the cost 
Table 1: Some results of the query in Figure 1 from the COMCAST database 

 
 

1 Telecom Italia has raised the price of the lines. 

2 Vodafone has increased the cost of the equipment. 

3 British Telecom has doubled the rent expenses. 
Table 2: three handcrafted very similar sentences 

In fact, as expected, graphs 2 and 3 have very similar structures. Graph 1 instead, maybe because 
of an error, is quite different from both.  
Disregarding thus for the moment graph 1, a possible graph path that encompasses the 
structures of the other two is depicted in Figure 3:  a chain of four nodes (indicated by four 
variables), linked by some relations (any possible relation is accepted), but with specific 
constraints on the classes that these nodes belong to. Of course, this is just one of many 
possibilities. We have chosen here, for the sake of a higher recall, of not caring about the kind of 
relations, hoping to identify, by watching graphs 2 and 3, four classes of objects to be used as 
constraints. 
Table 3 shows all the classes to which the verbs of the three sentences belong (“raise”,”increase” 
and “double”). Here, the choice of the constraint for the verb variable seems quite 

                                                           
2 http://pikes.fbk.eu/ 
 

http://pikes.fbk.eu/
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straightforward: all three nodes are instances of the class sumo:Increasing (defined in the 

SUMO ontology, see [Niles & Pease 2001], [Pease 2011]). For the cost variable however (Table 
4: “price”, ”cost” and “expenses”)  the situation is not so lucky: in graphs 2 and 3 the object is an 
instance of the class pm:fn15-expensiveness (frame “Expensiveness” of FrameNet 1.5), 
but this is not true for graph 1. For the obj variable (Table 5: “lines”, ”equipment” and “rent”), 
there is no class that includes any two of them and that looks reasonably small to be used as a 
constraint. Of course, exploring the involved ontologies it may be possible to find a suitable 
superclass, or we can just manually create one for the purpose. However, this would be time 
consuming and quite error prone. 
 

 

Figure 2: graphs extracted by PIKES from the three handcrafted sentences of Table 2 

 
 

 

Figure 3: The structure of the graph we may expect to be extracted from the three handcrafted sentences reported above. 
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Turning now to the other sentences retrieved by the USE pattern (Table 1), they are semantically 
similar texts that have different syntactic structures. This means that, besides the same 
difficulties in identifying the proper constraints for the nodes, we are faced with a much larger 
variety of graph structures to take into account, which makes quite hard to write a SPARQL query 
that can encompass them all. Figure 4 shows some examples.  
In summary, Knowledge Extraction is a difficult problem, and not surprisingly, the resulting 
graphs are, so to speak, not very easy to recall with a query. To be able to query them easily, 
pieces of text with similar meaning should result in reasonably similar graphs, and this is often 
not the case. SPARQL/T on the other hand, leaves to the user the burden of figuring out how the 
knowledge is expressed in the text. However, the user does not need to be very precise in doing 
that: the language provides the flexibility necessary to cope with errors and uncertainty. 
In general, as just shown, from the user point of view (albeit certainly not from the computational 
one), SPARQL/T queries on text require much less effort than SPARQL ones on RDF graphs 
extracted from the same text.   
For the sake of fairness, it should also be said that, besides the fact that this test is far to be 
exhaustive, it can be argued that it is not the data produced by the Knowledge Extraction tool 
that is difficult to use with SPARQL, but that is the SPARQL language that is not flexible enough 
for the purpose. A new Conceptual Model of SPARQL/T that introduces a degree of truth also in 
graph pattern matching is probably worth to be studied. 
 
 

raised (graph 1) increased (graph 2) doubled (graph 3) 

 

 
 

Table 3: triples associated with the Verb nodes in the three graphs. In all three cases the node is an instance of the class 

sumo:Increasing. 
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price (graph 1) cost (graph 2) expenses (graph 3) 

 

 

 

Table 4: triples associated with the Price nodes in the three graphs. In graphs 2 and 3 the node is an instance of the class 

pm:fn15-expensiveness, whilst the same node in graph 1 has no (reasonably small) class in common with the other two. 

 

lines (graph 1) equipment (graph 2) rent (graph 3) 

   

Table 5: triples associated with the Obj nodes in the three graphs. There is no reasonably small class in common to be used as a 

filter for this kind of object. 
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Figure 4: graphs extracted from some other sentences of Table 1 
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________________________________________________________________________________ 
 

Chapter 3 - Related Work 
________________________________________________________________________________ 

 
SPARQL/T is fundamentally a language for both Information Retrieval and Information Extraction 
from text, whose syntax is a strict subset of the SPARQL 1.1 one. It works directly on the 
documents and on their NLP (pre-extracted) annotations, can deal with uncertainty and allows 
the use of Word Embeddings. An alternative approach is provided by Knowledge Extraction tools, 
described in Chapter 3.1. In Chapter 3.2 we will see some other works that, like SPARQL/T, 
employ SPARQL syntax for IR/IE tasks. Chapter 3.3 is about the idea of using the Relational 
Algebra for IE, independently from the syntax employed. Finally, Chapter 3.4 explores the 
Annotation Ontologies, i.e. some guidelines on how to represent NLP annotations in RDF format. 
 
 

3.1 Knowledge Extraction tools  
 
Knowledge Extractors (KE) tools transform Natural Language documents into machine-
interpretable formats. FRED and Pikes generates RDF/OWL graphs that can be stored into 
standard triple stores (and thus indexed) and queried with standard SPARQL. This approach can 
be seen as an alternative to the SPARQL/T one. However, as discussed in Chapter 2, queries that 
access those graphs are more difficult to write than the SPARQL/T ones. OpenIE generates triple 
of strings (i.e. not proper graphs), and is going to be implemented into SPARQL/T model 
(hopefully) soon. 
 
FRED [Gangemi 2017] automatically generates RDF/OWL ontologies from (multilingual) natural 
language text. It employs Named Entity Recognition (NER) to link its output to semantic web 
knowledge and Word Sense Disambiguation (WSD) to align with WordNet and BabelNet. Among 
FRED points of strength is its ability to represent the structure of the discourse, according to the 
Discourse Representation Theory [Kamp 1981]. 
PIKES [Corcoglioniti et al 2016] extracts entities and relations between them by identifying 
semantic frames, i.e., events and situations describing n-ary relations between entities. In the 
resulting knowledge graph each node uniquely identifies an entity of the world, event or 
situation, and arcs represent relations between them. The PIKES tool implements a rule-based 
knowledge distillation technique using SPARQL-like rules formulated as SPARQL Update INSERT. 
. . WHERE. . . statements that are repeatedly executed until a fixed-point is reached. 
OpenIE is an Information Extraction philosophy that aim at avoiding human intervention like 
hand crafted extraction rules or large hand annotated training sets. Besides being time 
consuming, these activities become problematic when large heterogeneous corpora are 
considered. [Banko 2007] proposed a first solution based on a self-supervised approach, using a 
parser to train an extractor.  Over more than ten years of developments, different solutions have 
been proposed, sometimes with slightly different goals. See [Niklaus 2018] for a recent survey. 
The result of an OpenIE extraction is a set of triples of strings (subject, predicate, object), a textual 
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approximation to an entity-relationship graph called the Extraction Graph [Cafarella 2006]. The 
elements of an Extraction Graph are just strings. Many entities and relations may appear in 
different forms (“Einstein” / “Albert Einstein”). No effort is spent to relate entities to some 
ontology, nor to put relations into a canonical form (like invented(X, Y)). Also, it is accepted that 
the extractor makes errors, and inconsistent information contained in the source text is not tried 
to be solved. However, a confidence degree of each triple is calculated based on the number of 
times it has been extracted from the corpus. 
 

3.2 Tools that employ SPARQL syntax 
 

Andrian [Andrian et al. 2009] introduce iDocument, an Ontology Based Information Extraction 
tool (OBIE) that employs SPARQL syntax in the extraction templates in place of the traditional 
regular expressions. In iDocument the following query extracts persons and organizations and 
facts about memberships from text: 
 
SELECT * WHERE  

{ ?person  rdf:type   foaf:Person.  

?person  foaf:member ?org.  

?org     rdf:type   foaf:Organisation. 

}  

Figure 5: an example of iDocument query 

 

The annotations, that are pre-extracted by a NLP pipeline, are potentially quite rich, and include 
Named Entity Recognition, Structured Entity Recognition, Fact Extraction and Scenario 
Extraction. Andrian’s is perhaps the tool closer to SPARQL/T in terms of using SPARQL syntax for 
Information Extraction templates. However, the tool does not include Word Embeddings. 
 
QLever SPARQL+Text [Bast & Buchhold 2017] is another tool that employs SPARQL syntax. It 
allows to efficiently search on text corpus combined with an RDF knowledge base. It only 
considers Named Entities annotations, that are linked to some Knowledge Bases (Freebase Easy 
[Bast et al. 2014], Clue-Web3 2012). QLever can mix standard SPARQL triple patterns, referring 
to the knowledge base, with others that can reference the text and its NE annotations (with two 
built-in predicates: ql:contains-entity and ql:contains-word). QLever approach 
for joining results employs the notion of co-occurrence: the results of each triple pattern are 
joined when they occur inside the same text segment (i.e. a crispy version of SPARQL/T 
approach). Different kinds of text segmentations are expected to give different results. Figure 6 
gives an example of QLever SPARQL+Text query. 
 
 
 
 

                                                           
3 The Lemur Projekt http://lemurproject.org/clueweb12. 
 

http://lemurproject.org/clueweb12
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SELECT ?astronaut ?agency TEXT(?text) 

WHERE 

{ ?astronaut <is-a>             <Astronaut>. 

  ?astronaut <SpaceAgency>      ?agency . 

  ?text      ql:contains-entity ?astronaut . 

  ?text      ql:contains-word   ”walk∗” . 
  ?text      ql:contains-word   ”moon” . 

} 

ORDER BY DESC(SCORE(?text)) 
Figure 6: an example of QLever SPARQL+Text query 

Mìmir [Tablan  et al 2015] is an open-source framework for integrated semantic search over text, 
document structure, linguistic annotations, and formal semantic knowledge. It allows search 
constraints against a knowledge base, by accessing at run time a predefined SPARQL endpoint. 
Then the following Mìmir semantic query retrieves documents mentioning scientists born in 
London: 
 
{ Person 

sparql="SELECT DISTINCT ?inst WHERE { 

?inst :birthplace 

<http://dbpedia.org/resource/London>. 

?inst a :Scientist.  

}" 

} 

Figure 7: an example of Mìmir query 

3.3 Annotation Ontologies 
 
Although it isn’t strictly a related work, it is useful to point out here that some standards 
proposals exist that suggest the way in which NLP annotations should be written in RDF stores. 
OLiA (Ontologies of Linguistic Annotation) is a set of ontologies designed to deal with the 
heterogeneity of linguistic annotations [Chiarcos 2015]. According to the author, the ontology-
based descriptions are comparable across different corpora and/or NLP tools, across different 
languages, and even across different types of language resources. OLiA defines a Reference 
Model that specifies a common terminology (like olia:Determiner and 

olia:Accusative), and Annotation Models that include individuals (i.e. concrete tags). OLiA 
Reference Model provides a hierarchy of classes (ex: DemonstrativeDeterminer 
subclassOf Determiner subclassOf PronounOrDeterminer subclassOf 
Morphosyntactic Category). This makes it easier to combine results of different NLP 

modules, in case they return tags at different levels of the hierarchy. In fact, as the authors 
suggest, this may lead to the development of novel ontology based NLP algorithms, for example 
by simply applying a majority based combination of the different results. OLiA is integrated inside 
the NLP Interchange Format (NIS), an RDF/OWL-based format that aims to achieve 
interoperability between different NLP tools, language resources and annotations. In turn, NIS 
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format has been adopted inside an even broader initiative, the Linguistic Linked Open Data 
(LLOD) cloud , that focuses on the usage of linked data to represent linguistic resources, like for 
example DBPedia (in different language versions), WordNet and FrameNet 
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________________________________________________________________________________ 
 

Chapter 4 - Neural Models 
________________________________________________________________________________ 

 
This chapter reviews the state of the art of Word and Sentence Embeddings. Although SPARQL/T 
employs pre-trained models, the answer the literature provides to some questions motivate 
some choices taken in SPARQL/T design. 
 

 

4.1 - Word Embeddings 
 
The peculiarity of SPARQL/T, if compared with other languages for Information Extraction, is the 
ability to employ Word Embeddings, and to smoothly mix them with traditional NLP techniques 
and Semantic Web technologies. Word Embeddings provide a measure of semantic similarity 
between words, and can be used in a query to (fuzzy) specify a set of words to consider (instead 
of using a crisp list of words or lemmas, or in place of a WordNet synset). 
In this chapter we are not focusing on how to extract Word Embedding from corpora, as many 
off the shelf good ones are already available online. In fact, being the quality of a Word 
Embedding largely dependent on the size of the corpora employed to make it (Chapter 4.1.6), it 
is quite unlikely that a “home-made” Word Embedding can outperform the ones provided (for 
free) for example by Google. However, a possibility remains that a domain specific Word 
Embedding, extracted from a particular corpus, may be better suited for some specific purposes, 
or that it can be employed somehow to improve a general purpose one (Chapter 4.1.7). 
Interesting issues considered here are also how to evaluate the quality of a Word Embedding 
(4.1.2), in which way they can be employed in downstream applications (text classification, 
clustering) and, perhaps even more importantly, how to use them with units of text larger than 
the single word (Chapter 4.1.4). 
 
4.1.1 Introduction 
Word Embeddings are vector representations of words. More specifically, Word Embeddings 
associate to each word in a vocabulary a vector v such that the similarity between two words can 
be measured as a function of their respective vectors. 
Word Embedding vectors are relatively small, typically in the order of 50 to 300 dimensions, as 
opposite to the one-hot representations that employ vectors of the size of the dictionary 
(typically hundreds of thousands of elements), where all elements are zeros except for the one 
in the position associated to the word. In NLP, Word Embeddings have various applications. They 
can simply be used directly to assess the similarity of words or larger units of text (by comparing 
the average vectors of the two units). They can be employed in classical machine learning 
algorithms, for example for clustering or classification of documents, and they are largely 
employed as input layers in Deep Neural Networks. 
Word Embeddings are extracted from very large corpora by algorithms that, in a way or another, 
leverage Harris distributional hypothesis ([Harris 1954], [Sahlgren 2008]), i.e. that similar words 
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occur in similar contexts. The context of a word can be something as simple as a fixed window of 
words around it, or it can be a syntactic structure like a phrase or a sentence. 
According to Mikolov [Mikolov et al. 2013], the idea of encoding words in dense vector 
representations may be dated back at least to 1986 [Hinton et al. 1986]. 
Nowadays there are several different algorithms to extract Word Embeddings from a corpus. 
Aggarwal [Aggarwal 2018] identifies three different categories: Kernel Methods, Distributional 
Semantic models and Neural Networks models (actually Aggarwal lists four categories, separating 
Recurrent NN from the other types of NN). 
Baroni [Baroni et al 2014] has shown than Neural Embeddings outperforms Distributional 
Semantic algorithms in many task (Chapter 4.1.2). The most popular and most well studied Neural 
Embedding algorithm is probably Mikolov’s word2vec [Mikolov et al. 2013], but many other 
Neural Networks model have been proposed for the purpose (see [White 2018] for a recent 
survey), and it is probably safe to say that any Neural Network that has been successfully trained 
on a specific natural language task needs to produce some form of compact vector 
representation of the words in one of its internal layers, which can be extracted to generate a 
valid Word Embedding. 
 
4.1.2 Embedding Evaluation 
As expressed by Schnabel in [Schnabel et al.2015]: “A good embedding provides vector 
representations of words such that the relationship between two vectors mirrors the linguistic 
relationship between the two words.” 
Baroni in [Baroni et al 2014], in order to compare the performances of the traditional 
Distributional Semantic Models (based on word counts) with those of the Neural Word 
Embeddings, defined six benchmarks: 

• Semantic similarity or relatedness. Similarity and relatedness are two different concepts. The 
word “coffee” for example is likely to be found in the Embedding as similar to “tea”, as they 
probably often occur in the same context, and for the same reason they will also be found 
both related to the word “cup”. However, we cannot say that coffee is an object similar to a 
cup. The datasets to assess the performance of an Embedding on this task are necessarily 
manually created by asking human subjects to rate the degree of semantic similarity or 
relatedness between two words on a numerical scale. The correlation between the average 
scores that subjects assigned to the pairs and the cosines between the corresponding vectors 
in the model space can be used as a measure of performance. 

• Synonym detection: The suggested datasets contains a set of records with a target term and 
an associated set of synonym candidates. The test obviously consists in comparing the vectors 
of the term with those of the candidates, picking the closest one. Performance is evaluated 
in terms of accuracy. 

• Concept categorization: nominal concepts are clustered together. Here we expect them to 
group into natural categories (e.g., helicopters and motorcycles should go to the vehicle class, 
dogs and elephants into the mammal class). A set of gold categories are then employed to 
measure the purity of each cluster (the extent to which each cluster contains concepts from 
a single category) 

• Selectional preferences:  in NLP selectional preference (also known as selectional restrictions) 
indicates a word’s tendency to co-occur with words that belong to certain lexical sets. For 
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example, the verb marry prefers subjects and objects that denote humans. Selectional 
preference is used for example in the Word Sense Disambiguation (WSD) task [Resnik  1997]. 
The datasets suggested for this benchmark contain verb-noun pairs that were rated by human 
subjects for the typicality of the noun as a subject (or object) of the verb (e.g., people received 
a high average score as subject of to eat, and a low score as object of the same verb). For 
each verb we also need a gold set of possible subjects and objects, possibly extracted from a 
corpus. The vectors of those subjects are averaged to obtain a “prototype” subject of the 
verb. The cosine similarity between the prototype and the subject in the pair is then 
compared with the human rating. 

• Analogy: a proportional analogy holds between two word pairs: a:a* :: b:b* (a is to a* as b is 
to b*) For example, Tokyo is to Japan as Paris is to France. Mikolov [Mikolov et al. 2013] found 
that such analogy could be solved with simple algebraic operations: let X=vector(a)-
vector(a*)+vector(b). b* is found by searching in the Embedding space the word closest to X 
(according to cosine similarity). Given a dataset of 4-tuple of words (a, a*, b, b*), the task is 
to find one given the other three, using the above algebraic expression. Systems are 
evaluated in terms of proportion of correct answers.  
A list of datasets available for the purpose is given for example in the Wiki of the Association 
for Computational Linguistics4 

In that article Baroni compared word2vec results with those created with classic DSM algorithms, 
extracted from the same corpus of about 2.8 billion, concluding that Neural Word Embeddings 
beat the current state of the art in most cases, and approached it in many more. (One exception 
was the selectional preference tasks, where the two methods achieved comparable results.) 
Schnabel [Schnabel et al.2015] further formalized the task of Word Embedding evaluation by 
identifying two major categories: intrinsic and extrinsic ones. In extrinsic evaluation downstream 
tasks like POS tagging or Named Entity Recognition are used to compare the performances of 
different Word Embeddings. Intrinsic evaluations on the other hand directly test for syntactic or 
semantic relationships between words, using a predefined set of query terms called query 
inventory (which is what Baroni did in the above-mentioned work). Schnabel also introduced two 
new tasks, both involving the judgment of a human over the results of Word Embeddings. In what 
he calls Comparative Intrinsic evaluation, datasets consist of query words only. The words most 
similar to the query ones are extracted according to different Word Embeddings, and users (from 
Amazon Mechanical Turk in Schnabel’s work) are asked to choose the best matches, according 
to their perceptions. The Coherence task on the other hand try to assess the coherence of groups 
of words in a small neighborhood in the embedding space. Intuitively, good embeddings should 
have coherent neighborhoods for each word (again, according to human perception), so he 
presented Turkers with four words, three of which are close neighbors and one of which was the 
“intruder” the human had to spot. 
Schnabel observation was that extrinsic evaluation are not consistent across tasks, i.e. different 
tasks tends to favor different embeddings. Moreover, they are often not consistent with intrinsic 
evaluations. For these reasons, albeit recognizing the ability of extrinsic tasks to give insight into 
the information encoded in the embeddings, he discouraged their use as a measure for abstract 
quality. 

                                                           
4 https://aclweb.org/aclwiki/Analogy_(State_of_the_art), fetched September 27, 2018 

https://aclweb.org/aclwiki/Analogy_(State_of_the_art)
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4.1.3 Meta Embeddings / Domain Adaption 
Meta Embedding can be defined as the task of creating new embeddings by combining existing 
ones [Bollegala et al. 2017]. As noticed for example by Schnabel [Schnabel et al.2015] (see 
Chapter 4.1.2) performances of different Word Embeddings vary significantly across different 
tasks, suggesting that different methods may capture complementary aspects of lexical 
semantics. This of course may depend both on the corpus and on the algorithm used to produce 
them.  
Meta embedding can also be seen as a Domain Adaption problem: assuming a corpus of a certain 
domain of interest is available, there could be reasons to believe it may not be enough for the 
purpose (typically, for Named Entity Recognition), for example because of its limited size or for 
the possible different sub-language employed. This is frequently the case in healthcare NLP tasks, 
where for privacy reasons extensive corpora may not be easily available, or that may use sub-
languages inappropriate for the problem (medical doctors tend to write telegraphic reports full 
of medical terms, whilst people in forums express themselves in totally different ways). As an 
example, reported in [Zhang et al 2018]: having to deal with medical reports, which corpus should 
be employed? A relatively small one solely made of such reports or a much bigger general one 
extracted from Wikipedia? Or can we adapt in some way the bigger one to the domain of the 
smaller?  
The most obvious solution to merge Word Embedding coming from different corpora is probably 
to merge the corpora and then retrain the whole. However, this may be impractical, mainly for 
two reasons: some of the source corpora may not be publicly available and the computational 
effort may be too high. And besides that, we may still want to try to get “the best” of embeddings 
coming from different algorithms. 
Among the challenges in meta embedding construction there is obviously the facts that both the 
vocabulary and the dimensionality of the source embeddings may be different. Dimensionality 
differences in particular often rules out the possibility of a trivial sum or average. Vector 
concatenation on the other hand can be a simple baseline, albeit with the drawback of drastically 
increasing the dimensionality of the meta embedding. Bollegala reduced such dimensionality by 
employing Singular Value Decomposition (SVD) to reduce the size of the matrix obtained with 
the concatenation of the source embeddings ones (using vectors of zeros for words that did not 
belong to one of the vocabularies). 
Yin and Schütze [Yin and Schütze 2016] introduced three neural networks algorithms for Meta 
Embeddings: 1toN, 1toN+ and MutualLearning, the last two of which are designed to works also 
with vocabularies that do not overlap, i.e. in case of Out Of Vocabulary (OOV) words. Remarkably, 
the last one may be used to generate vectors for OOV words of the source embeddings. The 
network for the 1toN+ is shown in Figure 8, which is trained, on all the words of the intersection 
of the source vocabulary, to generate the (known) vectors from the meta embedded ones. M1 to 
M5 are the projection matrices from the meta embedding space to each of the source ones. 
Although, at least in principle, after training them they could also be used directly to recover 
source embedding OOV vectors from the meta embedding ones, this is not what is described in 
the article. Their MutualLearning algorithm calculates instead projections between each of the 
source embeddings, and averages the results for OOV words.  
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Finally, although the dimensionality of the source embeddings is not guaranteed to be the same, 
some dimensions are very common in the pre-trained ones (usually 50,100,200 and 300). In these 
cases, simple averaging can give quite good results, as Coates & Bollegala show in what they call 
“Frustratingly easy meta-embedding” [Coates & Bollegala 2018]. 
 
To summarize the results of the above-mentioned articles, almost all approaches to Meta 
Embedding are reported to achieve a certain improvement over the use of a single Word 
Embedding. However, it has been noticed that adding more and more Word Embedding does not 
always help (see also Chapter 4.1.6 on corpus size). In Yin & Schütze words: “Whether an 
embedding set helps, depends on the complementarity among the sets as well as how we 
measure the ensemble results”. 

 
Figure 8: Yin and Schütze 1toN+ Meta Embedding algorithm 

 
4.1.4 N-grams and Collocations 
An n-gram is simply a sequence of words extracted from the text. A collocation is an n-gram that 
correspond to some conventional way of saying things. They can be for example: 

• Noun phrases (“strong tea”, “weapon of mass destruction”) 

• Phrasal verbs (“to make up”) 

• Stock phrases (“the rich and the powerful”) 
Collocation are characterized by limited compositionality, i.e. the meaning of the collocation is 
not derivable from the meaning of its parts, or at least not completely. “Boston Globe” is a 
newspaper, and so it is not a natural combination of the meanings of “Boston” and “Globe”. More 
subtly, the meaning of the expression “international best practice”, although derivable from the 
meaning of its three components, is usually intended as “administrative efficiency”, i.e. there is 
a sort of “extra” meaning added to the sum of the parts.  Another characteristic of collocation is 
that it is not possible to substitute its words with other with similar or same meaning, or to 
grammatical transform them, for example from singular to plural forms. The classical example is 
the expression “strong tea”: even if “powerful” has a meaning very similar to “strong”, the 
expression “powerful tea” is uncommon and considered strange (although, interestingly, “strong 
drug” and “powerful drug” are both acceptable).  
Collocation are often called in different ways, like “terms”, “idiomatic phrases” or “quality 
phrases”, and the task of automatically discover them from a corpus is usually called “automatic 
term recognition” or “phrase mining”.  See for example [Liu et al 2017] for a recent survey on the 
topic. Very briefly, a statistical approach to the problem may consists in identifying in the corpus 
words that occur together more often than chance (a property called concordance). However, 
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this test alone gives quite poor results. Some other quality measures must be taken into account, 
like popularity (sufficient frequency), informativeness (“this paper” is not a very informative n-
gram) and completeness (“vector machine” is not considered completed, as the more common 
phrase is “support vector machine”). 
But how do we deal with collocations in Word Embeddings? A suggestion come from the very 
beginning of the Neural Word Embedding history, in the Mikolov article [Mikolov et al. 2013]: 
first we identify a large number of phrases using a data-driven approach, and then we treat the 
phrases as individual tokens during the training. The obvious problem with this approach is that 
it does not consider OOV collocations. Another possible approach is to simply combine the 
vectors of the collocation’s words by summing or averaging it. Poliak [Poliak et al 2017] suggest 
a Neural Network approach inspired by Mikolov’s word2vec that allows to deal with OOV 
collocations by first creating some components, named Skip-Embeddings, and then combining 
them in a way that preserve order sensitive information, to form the embedding of the 
collocation.  
Li [Li et al 2017] proposed a different Neural Network approach, valid for any n-grams. Vectors 
are generated for every possible bi-gram and tri-gram in the corpus (experimenting with different 
tasks, like trying to predict the sentiment or a certain label). The resulting n-gram embeddings, 
in the view of the author, is intended for the more general purpose of Text Representation, i.e. 
to code large chunks of texts (not just collocations) into a single vector. 
 
4.1.5 Lemmatization 
Is lemmatization beneficial to Word Embedding extraction? (Maybe especially when the corpus 
is small). A lemma is the canonical form used to represent a set of words. The lemma of a verb 
for example is its infinite form. Considering lemmas instead of all the possible inflections of a 
word is a technique often used in NLP to cope with data sparsity. However, transforming all the 
words in a corpus to their respective lemma (lemmatization) is an expensive task. A cheaper 
alternative is to try to remove the derivational affixes employing some heuristic algorithm. 
However, this second choice is not always applicable (understemming, for example: irregular 
verb) or may lead to collisions (overstemming, for example {“universal”,”university”,”universe”} 
→ “univers”). 
Fares [Fares et al 2017] presented a pilot experiment to empirically evaluate the impact of text 
pre-processing on word embeddings. Two corpora were considered (a Wikipedia dump5 and the 
Gigaword Fifth Edition6). Intrinsic similarity evaluations were made on two datasets (SimLex-999 
[Hill et al 2015] and Google Analogy Dataset [Mikolov, Chen et al 2013]). According to Fares, the 
models trained on the lemmatized corpora are consistently better than the full-form models. 
 
4.1.6 Effect of the corpus size on the embedding quality 
Is it true that, given a certain training algorithm, the bigger is the corpus the better is the 
embeddings? Zhu [Zhu et al 2017] investigated word2vec ability in deriving semantic relatedness 
and similarity between biomedical terms from large publication data. Medical terms with three 
semantic types were first selected from a corpus (disorders, symptoms, and drugs). The vectors 

                                                           
5 https://meta.wikimedia.org/wiki/Data_dumps 
6 https://catalog.ldc.upenn.edu/LDC2011T07 
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extracted by word2vec were used to compare couples of such term, and the result was compared 
against a gold standard built on human judgment. So, in fact, two different things were 
measured: the ability of their model to identify the medical terms and the correlation between 
the similarity calculated with the Word Embeddings and the one perceived by the doctors. Ten 
models were trained separately by increasing the size of the dataset from 10% to 100%. The 
result was that the increasing size of the corpus was always beneficial to the term identification, 
whilst the correlation with human judgment had a peek (at about 3.3 million distinct 
vocabularies) and then slowly deteriorate.  
Fares [Fares et al 2017] made a similar study and came to exactly the same conclusion: more data 
is not necessarily better. 
Zhu also noticed that the model trained on abstracts produced better results on the correlation 
task, whilst the one trained on the body was better in identifying the terms. The possible 
explanation is that authors tend not to mention brand names of drugs in abstracts, whilst bodies 
of articles contains much more terms, including irrelevant ones that may degrade the 
performances. No matter why, this is a clear example of how the use of different sub-languages 
may influence the result. 

 

 
Figure 9: [Zhu et al 2017]: correlation with the human perception and number of identified 
terms as a function of the size of the corpus employed to train their model.  

4.1.7 Custom embeddings 
Is a word embedding built with a specific corpus better than a one learnt on more general data? 
Clearly, the corpus needs to have the information necessary for the task. A generic corpus for 
example may not have enough examples to extract relations among medical terms. However, in 
general, this may not always be the case. Wang [Wang et al. 2018] compared the Word 
Embeddings extracted from two medical corpora (HER, containing clinical notes, and MedLit, 
containing biomedical literature) with two general pre-trained Word Embeddings (Google News 
and GloVe).  The intrinsic evaluation was a comparison with a gold standard of 165 medical term 
pairs whose similarity was assessed by professionals, finding the two domain Word Embeddings 
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performing much better than the general ones. Table 6 shows the neighborhoods of the 
symptom "sore throat", according to the four Word Embeddings, partially explaining such finding. 
However, extrinsic evaluations gave different results. Three downstream tasks involving the four 
Word Embedding was tested: a Text Classification problem, an Information Retrieval problem 
and a Relation Extraction one. The conclusion in this case was that there might be no significant 
difference when word embeddings trained from an out-domain corpus are employed for a 
biomedical NLP application.  
                                          
Table 6: Most similar word to the symptom "sore throat", according to 4 different Word 
Embeddings, from [Wang et al. 2018] 

EHR  MedLit  GloVe  Google News 

scratchy runny shoulder soreness 

thoat rhinorrhea stomach bruised 

cough myalgia nose inflammed 

runny swab fecal chest contusion 

thraot nose neck sore triceps 

 
4.1.8 Chapter Conclusions 
The most important conclusion coming from this literature analysis is probably that we cannot 
expect a single Word Embedding to suit all purposes. Restricted domain Word Embedding are 
clearly “more focused” than the ones extracted from huge general-purpose corpora, but inflating 
a corpus as much as possible by simply adding stuff to it without cognition does not lead to good 
results. From the point of view of SPARQL/T language development, this is a sharp indication that 
the user should be allowed to use different Word Embeddings inside the same query. 
Future work will examine the Word Embedding literature in search for answers that may lead to 
the implementation of useful operators. Is it possible to distinguish between semantic and 
syntactic similarities, in order to consider only one of the two (typically the former)?  Can we 
detect modalities (necessity, possibility, …) and quantifiers? What about negations? In fact, we 
believe that the next most challenging task, but also the most important for many applications, 
will be exactly the one of identifying and correctly deal with the many form of negations. 
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________________________________________________________________________________ 
 

Chapter 5 - SPARQL/T Language Introduction 
________________________________________________________________________________ 

 
In this chapter we introduce the SPARQL/T query language with an example. The exposition is 
intended to be informal, easy understandable by a layman computer user, largely unaware of 
most NLP technicalities. Part of the purpose of this research is exactly this, to “make it easy”. In 
the next chapter a more formal description of SPARQL/T algebra will be given.  
 
5.1 Example 1 
Let’s say for example that, after skimming a few documents in our corpus of complaints7, we 
notice a recurrent case: clients are noticing increases of cost, and stating that they were not 
aware of them and of their reason. So, the concepts we want to identify in the text are two: <cost 
increase of something> and <lack of awareness of something>. Moreover, we are interested in 
those cases where the two <something> refer to the same object.  
We can start with a simple dictionary search, looking inside the text for any word that may be 
synonym of ‘price’. Assuming we have a list in mind (like ‘cost’, ‘bill’ and ‘charge’), we can use the 
following triple pattern to assign the result to the variable p: 
 ?p wrd:any 'price cost bill charge' . 

However, enumerating all the possible synonyms of a word is obviously cumbersome and error 
prone. Something is going to be left out for sure. We have two other options8: 

1. We can use WordNet synsets. The following triple pattern searches in the document (and 

assign to the variable p) all the words in the text that, according to WordNet9, are 

synonyms of ‘price’: 

?p wn:synonym  'price'  

2. We can also use a Word Embedding. A Word Embedding is simply a dictionary that 

assigns a vector of numbers to each word of a vocabulary. However, these numbers in a 

certain way encode the meaning of the words, and can be used to measure the similarity 

between any two words. For example, the following triple pattern assign to the variable 

p all the words in the text that are similar to the word ‘price’.  

 ?p emb:any     'price' 

Both solutions have some drawbacks. The point is that, for practical purposes, we are not 
normally looking for synonyms, we are looking for equivalent concepts, which strongly depends 
on the context. Think for example at the word ‘house’. Is ‘flat’ equivalent to ‘house’? And what 
about a ‘villa’? They are all buildings, and from the point of view of connecting them to the fiber 
optic network, they are certainly equivalent. But from a real estate point of view, i.e. from the 
perspective of someone that want to buy them, they are certainly not. WordNet can be a good 

                                                           
7 Or by employing some form of topic mining. 
8 Actually three, when OWL ontologies will be implemented. 
9 Returning any word of any synset which also contains the specified word. Word Sense Disambiguation is at the 
moment not implemented. 
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option in some cases, but not in general. Word Embedding on the other hand are trained to 
return a high degree of similarity for words that frequently appear in the same context, which is 
exactly what we are looking for10. However, when working with similarity instead of crispy 
equality tests, a new situation arises. The result is not a set of exact results, as we may desire, 
but a list of results ranked (ordered) by their similarity with the given term. In other words, we 
are going to have in return a few good results on top, followed by a long list of useless stuff. This 
is expected: it is due to the fact that Word Embeddings use vectors to measure similarity, so any 
word is semantically similar to any other, at least to some little extent. Later we are going to see 
how SPARQL/T deals with this problem. 
Now let’s use Word Embedding also to find the verb, that should be a synonym of ‘increase’. 
 ?i emb:any 'increase raise' . 

 ?i nlp:pos 'verb' . 

Let’s notice two things: 

• In the first clause, we suggested two words: ‘increase’ and ‘raise’. The effect is that all 

the words of the text will be compared with both, and the best results will be returned 

in the variable i. In principle this would not be necessary, as we expect ‘increase’ and 

‘rise’ to be similar. However, in general we cannot know this for sure. It depends on the 

Word Embedding employed (which, by the way, may also miss some words). With this 

trick, we just try to make the query more robust. 

• The second clause share the same variable i of the first. It actually behaves like a filter, 

restricting the words resulting from the first clause to the verbs11. 

 
What happen when we place the three clauses together? The result is a table with two columns, 
one for each variable declared (p and i), and the rows of the table are all the possible 

combinations of the rows of p with those of i. This is very similar to what happens in relational 
databases when we perform a cross-product, i.e. when we join two tables together without 
specifying a key. However, in this case we are dealing with natural language, not with structured 
data, and we have the following desire: that p (the price) is the object of i (the increment). How 
can we make sure of that? As we will see in the next examples, there are techniques that look 
into the syntax of the sentence12 and of the discourse13. However, a quick and dirty method that 
often gives surprisingly good result is to simply look at the distance (number of words) between 
the two. Intuitively, the more far apart two words are in a document, the less likely is that they 
are related to each other. Again, SPARQL/T translate this idea into a ranking, an ordered table 
where the (hopefully) correct results are placed on top. So now, the order of our set of couples 
of words (p,i) will be a function of three things: 

• How well p represents the concept of price 

• How well i represent the concept of increment 

• How close is p to i.  

                                                           
10 Provided the corpus on which the Word Embedding has been trained is rich of the context considered 
11 Technically, imposing that the Part Of Speech (POS) tag associated to the token must be a verb.  
12 At the moment, Dependency Parsing and Semantic Role Labeling 
13 To be implemented: Anaphora Resolution 
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Actually, what we have requested here is that p and i, besides being as close as possible, have 

belong to the same sentence. This kind of requirement is so common that in SPARQL/T it is the 
default behavior. However, we will see soon how to avoid it, just in case. 
Proceeding in the same way we just did for the first concept (<cost increase of something>) let’s 
now write the two clauses that will allow us to extract the second concept (<lack of awareness 
of something>): 
  

?k elm:any     'know notice aware' .           

 ?n wrd:any     'not never without' .    

 
Here the first row uses a Word Embedding to extract from the document words whose meaning 
is similar to ‘know’, ‘notice’ or ‘aware’, whilst the second one looks for (exact) words that may 
express a negation. Notice the prefix elm:, employed now in place of emb:. What we are asking 
here is to consider the lemmas instead of the words. The lemma of a word is a sort of root from 
which other forms are derived. It is the word that typically appears on the dictionary. For verbs 
for example, it is its infinite form. If we are interested in comparing the meaning of two words, 
using their lemma usually leads to better results, avoiding the Word Embedding to focus on 
syntactic similarities. About the negation, just looking for a ‘not’ in proximity of our verb is 
certainly not a safe procedure. The ‘not’ we find may easily refer to something else, or the 
negation may be expressed in other ways. However, it often works! (But again, we will see in the 
next examples how considering the structure of the sentence may help on this). 
Now, let’s place together the five clauses we have written up to now, in the way that follows: 
{ ?i elm:any     'increase rise' .        

 ?i nlp:pos     'verb' .        

 ?p elm:any     'price cost bill charge' .    

}    

{    ?k elm:any     'know notice aware' .           

 ?n wrd:any     'not never without' .    

} 

 

Notice the use of the curly braces. As mentioned before, the default behavior of a set of 
clauses14 in SPARQL/T is to force everything inside them to belong to the same sentence. 
Conversely, if we want to allow two things to belong to different sentences, all we have to do is 
enclose them in different blocks, i.e. in different pairs of curly braces. But how are the results of 
two blocks joined together?  
As stated in the beginning, we aim at documents where the two concepts (<cost increase> and 
<lack of awareness>) are related. And again, we resort to proximity as a measure of relatedness 
between concepts. Now, the result is going to be a table with four columns (i,p,k,n), and the 

order of the rows will depend on three things: 

• How well a couple (i,p) expresses the concept of <cost increase> 

• How well a couple (k,n) expresses the concept of <lack of awareness> 

• How close the two concepts are expressed in the document 

                                                           
14 Technically, of a Basic Graph Pattern (BGP) 
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To conclude our example, let’s say that we want to catch a totally different way of expressing 
both concepts together: <hidden fees>. In SPARQL/T the UNION clause has exactly this purpose: 
allow syntactic alternatives of the same meaning. The two clauses expressing the <hidden fee> 
concept are reported at the bottom of the full query in Figure 10 , and at this point they should 
need no explanation.  
 
SELECT ?i ?p ?k ?n 

WHERE 

{  {  { ?i elm:any     'increase rise' .        

  ?i nlp:pos     'verb' .        

  ?p elm:any     'price cost bill charge' .    

 }    

 {    ?k elm:any     'know notice aware' .           

  ?n wrd:any     'not never without' .    

 } 

    } 

    UNION 

    { ?k emb:equ  ‘hide’ . 

      ?p emb:equ  ‘fee’ . 

    } 

} 

Figure 10: an example of SPARQL-T query 

Notice instead the list of four variables (i,p,k,n) included in the SELECT clause. They are the 
output columns of the query and they will normally contain the information we really intended 
to extract from the documents. In this case, they might have been for example “what exactly is 
costing more”, and “how much”. 
One final consideration remains to be done: how many results is the query going to return?  
SPARQL/T examines one document at a time. For each document, at each step of execution15 it 
keeps only a limited number of results, the top N of the table. When combining two tables16, if 
the results are more than N, the best N are kept and the other discarded17. At the end of the 
search, SPARQL/T returns only one record per document, the one on the top of each document’s 
results, and then again sorts the output and keeps only the best ones. This kind of behavior is 
necessary in order to avoid exponential growth and intractable queries, but unfortunately is 
made at the risk of missing some good results. So, the number N of results kept at each step 
should be considered with care, as both speed and efficacy highly depend on it. 
 

 
  

                                                           
15 For each triple pattern. 
16 For each join operation.  
17 Beam search. 
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________________________________________________________________________________ 
 

Chapter 6 - SPARQL/T Conceptual Model 
________________________________________________________________________________ 

 
This chapter formally describes the SPARQL/T language, as opposite to the previous chapter that 
introduced it with some examples. The actual formal description is given in chapter 6.5, which is 
preceded by some subchapters that explain some issues and motivate some choices. 
Chapter 6.1 briefly discusses the idea of Conceptual Model itself, trying to establish what it should 
contain and what not. Chapter 6.2 gives an overview of the main principles of operation of the 
language, and briefly exposes the main differences from the SPARQL for RDF ones. Chapter 6.3 
introduces the concept of uncertainty, which is not present in SPARQL, the Fuzzy Set approach 
adopted in SPARQL/T and some issues that are still debatable.  Chapter 6.4 highlight some more 
issues and differences between the Text and the RDF models. Then chapter 6.5 formally 
illustrates the SPARQL/T conceptual model, exposing it in a side-by-side fashion with the model 
of SPARQL (as reported by the W3C), allowing thus the reader to easily compare the two. Finally, 
chapter 6.6 exposes the parts that are peculiar to the SPARQL/T Model, that finds no counterpart 
in the SPARQL for RDF one. 
 

6.1 About Conceptual Models 
 
This chapter presents the Conceptual Model of SPARQL/T, highlighting for clarity the differences 
from its SPARQL for RDF counterpart. But how exactly should its model look like? What should 
be included, and what instead should better be excluded to get an elegant conceptualization of 
the language? Some guidelines are found in the literature. In a general sense, according to 
Brambilla et al. [Brambilla et al 2017], a model can be informally defined as “a simplified or partial 
representation of the reality, defined in order to accomplish a task or to reach an agreement on 
a topic”. More specifically, in the field of Information Systems, Griethuysen introduced in 1982 
the “principle of conceptualization”, [Griethuysen 1982] stating that (as reported by Olivé [Olivé 
2007]) “A conceptual model should only include conceptually relevant aspects […] of the universe 
of discourse, thus excluding all aspects of […] data representation, […] message formats, data 
structures, etc. “ 
The Object Management Group (OMG) is even more specific, suggesting also that modeling 
should be organized into three levels:  
 

• Computation Independent Model (CIM) 

• Platform Independent Model (PIM) 

• Platform Specific Model (PSM) 
 
The first level (CIM) should represent what the solution is expected to do, hiding all IT-related 
specification. The last level (PSM) should include all of the details necessary to produce an 
implementation, and the middle level (PIM) has been introduced to deal with different platforms. 
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Because SPARQL/T current implementation is in pure Java, and thus already (almost) platform 
independent, and because all the annotations are made offline18, platform is not an issue and we 
will only need to focus here on the Computation Independent part of the model. 
Therefore, according with the above-mentioned principle of conceptualization, all the nuisances 
related to the specific NLP algorithms and tools have been left out of the model and considered 
implementation details. The user should only be concerned with the high-level notions of the 
different NLP tasks, available in the form of triple patterns, and thus isolated from any variation, 
imposed for example by the language.  This approach, besides leading to a simpler model, has 
the advantage of simplifying the improvements of the product as long as new, more effective 
algorithms become available. However, there are issues from which the user should not be kept 
apart. It’s a matter of fact, when dealing with Natural Language, that uncertainty is present at 
every corner in multiple forms, and it is my opinion that such uncertainty must be representable 
in the model, and actually be a prominent part of it, as otherwise the ability of the model to 
represent reality becomes seriously compromised. The user should be well aware of all the 
situations that may arise uncertainty, and also of the fact that it propagates in some way all along 
the query execution, up to the final result. But again, we should also be careful to avoid to commit 
to a too much specific way to treat it, as it may be hard to change it in case a more effective one 
is found. 

 

6.2 Principles of Operation 
 
SPARQL/T is basically a query language for template extraction from text that aims at presenting 
the user an interface to the most useful NLP task, in an easy to write, declarative fashion. In other 
words, it allows to specify what has to be extracted, hiding how it is actually done. Its syntax is a 
subset of the SPARQL 1.1 one, but the semantic is slightly different. Triple patterns are evaluated 
against an NLP annotated document19, and not against an RDF graph like in SPARQL. A SPARQL/T 
triple pattern expresses an NLP annotation to look for in the text, not a pattern to match in a 
graph. For homogeneity with the SPARQL for RDF model, we are still going to call them triple-
patterns, even though extraction-patterns would probably be more appropriate.  Figure 11 gives 
an example of such triple patterns. 
 
?n wrd:any     'not never without' . 

Figure 11: An example of triple pattern:  'wrd' is the NLP function group, 'any' is the subfunction, 'not never without' is the argument of 
the function 

Like in SPARQL, variables and literals are allowed. The formers are bound with snippets of texts 
during query evaluations, are used in the join operations and becomes the output of the query. 
The latter are used mainly as constant parameters of NLP functions. 
Despite the different contexts and the presence of the uncertainty that characterize Natural 
Language, the modus operandi of the two languages and the queries results look very similar (see 
Figure 12). In a sense, we can think that SPARQL/T evaluates NLP triple patterns against a virtual 

                                                           
18 In a Linux environment, generating a (temporarily) proprietary format JSON file. 
19 Annotation should normally be performed offline before query execution, but of course this is more an 
implementation consideration, not a part of the Conceptual Model. 
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graph that is still embedded in the text (consisting of the text and its annotations), extracting 
from it a table of results or some RDF subgraphs, exactly as its standard counterpart. 
The SPARQL/T language has been designed to resemble as much as possible its RDF counterpart, 
not only in the syntax but also in the semantic, at least as much as the different context allows. 
The use of most constructs should be intuitive to the user familiar with SPARQL. For example, the 
UNION keyword in the RDF case has been provided as “a means of combining graph patterns so 

that one of several alternative graph patterns may match.”20. In SPARQL/T the things that the 
UNION clause allows to combine are not graph patterns, but different ways to express a concept 
in Natural Language words, which is anyway a very similar idea. However, due to the need to deal 
with similarity instead of with exact matches, some differences from the RDF case are 
unavoidable also at conceptual level. For example, the GROUP BY keyword may involve a 
clustering of the results (instead of a simple aggregation), with the number of desired clusters 
indicated with the LIMIT keyword, and the AVG function calculating the average of the Word 

Embeddings and returning the result closed to that average. 
 
Like in SPARQL, triple patterns in SPARQL/T generates relations, i.e. tables of up to three columns 
(one for each variable) containing the results extracted from the text. Relations of different triple 
patterns are combined by the Relational Algebra operations to form new ones, until the final 
result set of the query is obtained. Figure 14 gives an idea of how the three major operations of 
the SPARQL/T algebra, the JOIN, UNION and MINUS, work in the text case. The four relations 
in Table 8 are hypothetical extractions from the documents in Table 7. 
All three operations are performed in three phases: 
 

• The tuples of two relations are matched to form the output ones. The match is performed 
on the columns (variables) shared by the two input tuples (in this case, always the column 
food). The weights of the output tuples are calculated according to the input ones21. 
The approximate formula (that do not take into account the degree of confidence in the 
match), are reported in the three cases. Assuming the standard Fuzzy norms and negator: 

o The Join takes the minimum 
o The Union takes the maximum 
o The Minus decreases the left by the amount of the right 

• The output results are sorted according to the weight 

• The tail of the results is removed (see Chapter 6.4.6 about Memory Constraints) 
 

 

 
 
 
 
 

 

                                                           
20 https://www.w3.org/TR/rdf-sparql-query, chapter 7 Matching Alternatives 
21 And to the degree of confidence in the match, not reported here for simplicity 

https://www.w3.org/TR/rdf-sparql-query
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RDF  Case 

RDF Graph SPARQL Query 

 

 

Text Case 

Text+Annotations  Graph SPARQL/T Query 

 

 

Results 

RDF-SPARQL Text-SPARQL/T  

  

Figure 12: Representation of the idea of Virtual Graph embedded in the text. The queries are different, but the syntax of the two 
languages is the same. The logic adopted by SPARQL/T queries to extract elements of the text is, to the user, very similar to the one 
that SPARQL use to extract RDF subgraphs. Despite the very different scenario and the uncertainty of Natural Language, very similar 
results are expected to be achievable. 
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idDoc Document 

1 For lunch I'm going to eat a sandwich with chicken and tomatoes 

2 Can I have chips with my steak please? 

3 Let's take a slice of that apple pie. 

4 Take the street in front of the restaurant 

5 What about fish and chips for dinner? 

6 I'm not used to vegetarian meals 

Table 7: documents for the example in Figure 14 

 

Table 8: Relation extracted from the documents in Table 7 and combined by the algebra operations in Figure 14. For the purpose 
of explaining the algebra operations, the actual triple patterns that can be employed to extract them are not meaningful.  
However, just to give the idea, Figure 13 reports a query to extract the first one (Eat-Food). 

  

 

?eat ELM:ANY “eat” 

?eat NLP:POS “verb” 

?food ELM:ANY “food” 

 
Figure 13: possible query for the extraction of the relation "Eat-Food" of Table 8. (Results depend on the specific Word 
Embedding employed) 
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 Figure 14: Example of 
how the JOIN, UNION 
and MINUS Relational 
Algebra operation 
work, applied to the 
relations in Table 8, 
extracted from the 
documents in Table 7 
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6.3 Ambiguity of language and Uncertainty of results  
 
It is a very well-known fact that Natural Language is highly ambiguous. Words very often possess 
different meanings, co-references between words are uncertain, sentences have different 
interpretations that depend on the context, and so on. Ambiguity is part of the reality of Natural 
Language, and not just the unavoidable byproduct of still imprecise algorithms. As such, in my 
opinion, ambiguity should be represented in the model, and not forcefully solved as soon as 
possible with a flip of a coin by choosing the most likely option. Without a way of representing 
ambiguities, the model will simply be not enough expressive to represent reality. Being SPARQL/T 
a query language and not a modeling one, our concerns are limited to take into consideration 
ambiguity in the results, ranking them accordingly. However, we must be careful not to fall into 
what Dubois & Prade call “the unfortunate confusion between degrees of belief and what 
logicians call degrees of truth” [Dubois & Prade 2001]. An example that is often used to illustrate 
the differences between the two is the one of the bottle [Bezdek & Pal 1996]. A bottle can be 
full, empty, half-full and so on. If we consider the sentence “the bottle is full”, we can attach to 
it a degree of truth between 0 and 1, say for example 0.7, to state that the bottle is not really full. 
However, such degree of truth reflects the amount of liquid in the bottle, not the degree of belief 
in the fact that the bottle is full. It does not mean, in other words, that the probability of finding 
the bottle full is 0.7. There is no uncertainty about the amount of liquid the bottle contains, it is 
more a matter of definition of what we mean for “full”. Logics that consider more than two values 
of truth are called Many-valued logics. Fuzzy Logic, among these, allows infinite ones, expressed 
with a real number in the range [0,1]. It seems appropriate thus, to employ Fuzzy Logic to deal 
with language ambiguity and NLP tools uncertainty. But representing such things is not just a 
simple matter of attaching a weight to a result (for example, the degree of confidence in an 
annotation). We also need to define how such weights can be calculated when results are 
combined (i.e., during the join operations). In other words, compositionality is necessary. 
Formally, a weighted logic or inference system is said to be compositional if and only if the weight 
of a complex formula can be calculated by combining the weights of its atomic constituents. 
Unfortunately, as shown by Dubois & Prade [Dubois & Prade 2001], this may not always be 
possible, or at least not with a good theoretical foundation. According to them, only partial true 
can be represented in forms that allow compositionality, whilst partial belief cannot. To say it in 
their own words: “[…] not only the full compositionality of any uncertainty calculus is not possible, 
but retaining this property as much as mathematical consistency allows, only leads to a very 
crude, almost deterministic representation of belief”. 
To briefly illustrate this point (see their article for a complete demonstration), let’s show that it 
is not possible for example to compute the degree of belief of a disjunction from the degrees of 
belief in its components. 
Let N(p) ∈ {0, 1} denote the (Boolean) degree of belief of p. By convention, let N(p) = 1 when a 
certain Belief Base K proves p, and 0 otherwise. Let’s say that N(p) = 0 and N(q) = 0, i.e. an 
hypothetical agent knows nothing about the values of p and q, and try to determine N(p ∨ q) . 
Let’s consider two special cases: 
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• If p = q and then N(p ∨ q) = N(p ∨ p) = N(p) = 0 .  

• If q = ¬p the agent must believe p ∨ ¬p (since it is a tautology), hence N(p ∨ q) = N(p ∨ ¬p) 
= 1 

Hence, the degree of belief in p ∨ q when N(p) = 0 and N(q) = 0 can be 0 or 1, i.e. it cannot be 
calculated. 
 
All that said, what do we need to represent in SPARQL/T? Truth values or degree of confidence? 
Let’s consider the most prominent cases:  

1. Annotations are subject to error, and sometimes (although not so often) a measure of 
confidence may be provided by the annotation algorithm. 

2. For different reasons (typically for joins), we may want to compare two snippets of text 
to check if they are “almost the same” (as we do not expect them to be exactly the same). 
In these cases, a measure of overlapping between the two is employed. 

3. Let’s say we want to find two related words in the documents, like a verb and its subject. 
In absence of a better indicator (like a parse tree) a noisy but often good enough measure 
of relatedness is their relative distance (the number of words in between them).  

4. Triple pattern involving Word Embeddings compares the Word Embeddings of the words 
in the document with those listed in the triple pattern. The best matches (according for 
example to the cosine similarity measure) are ranked higher.  

The situation appears not so sharp. Confidence in annotation (example 1) is clearly more related 
to uncertainty (lack of complete knowledge), whilst Word Embeddings, as a measure of similarity 
between concepts, is more related to the concept of truth, or better, in Fuzzy Logic terms, to the 
idea of belonging to a certain set. The two middle cases are more debatable. However, it seems 
acceptable to see both of them as expressions of fuzziness (similarity in case 2 and relatedness 
in case 3) instead of as a lack of knowledge. Thus, giving up the idea of keeping track of the quality 
of the annotations, let’s embrace Fuzzy Logic and its notation to represent Natural Language 
ambiguity. 
What follows defines the three operations used in the framework of Fuzzy Logic, as defined for 
example in [Beg & Ashraf 2009] 

 

Definition (t-norm and t-conorm) 
A triangular norm (t-norm) ⊗ and a triangular co-norm (t-conorm) ⊕ are increasing, 
associative, commutative and [0,1] × [0,1] → [0,1] mappings satisfying 𝑥 ⊗ 1 = 𝑥   and   
𝑥 ⊕ 0 = 𝑥   for all 𝑥 ∈ [0,1] 

 

Definition (negator) 
A negator ⊝ is an order reversing [0,1] → [0,1] mapping such that ⊝0 = 1 and ⊝1 = 0 

 

The standard t-norm, t-conorm and negator are defined as follows: 
 

Standard (Łukasiewicz) negator ⊝𝑥 = 1 − 𝑥 

Standard (Gödel) t-norm 𝑥 ⊗ 𝑦 = min(𝑥, 𝑦) 

Standard (Gödel) t-conorm 𝑥 ⊕ 𝑦 = max⁡(𝑥, 𝑦) 
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Other possibilities, as described for example in [Straccia 2013], are: 
 

Gödel negator ⊝𝐺 𝑥 = {
1 𝑖𝑓⁡𝑥 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Bounded difference or Łukasiewicz      
t-norm 

𝑥 ⊗𝐿 𝑦 = max⁡(0, 𝑥 + 𝑦 − 1) 

Algebraic product or product t-norm 𝑥 ⊗𝑃 𝑦 = 𝑥⁡𝑦 

Drastic product 𝑥 ⊗𝐷 𝑦 = {
0 𝑖𝑓⁡(𝑥, 𝑦) ∈ [0,1[⁡× [0,1[

min⁡(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Bounded sum or Łukasiewicz t-conorm 𝑥 ⊕𝐿 𝑦 = min⁡(1, 𝑥 + 𝑦) 

Algebraic sum or product t-conorm 𝑥 ⊕𝑃 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦 

Drastic sum 𝑥 ⊕𝐷 𝑦 = {
1 𝑖𝑓⁡(𝑥, 𝑦) ∈]0,1] ⁡×]0,1]

max⁡(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
 

T-norms generalize the Boolean operation of conjunction, and will be used here in the Join 
operation. Intuitively, the Join operation implements a sort of conjunction of the results of two 
triple patterns, so the degree of truth of the result, even without considering the fuzziness 
introduced by the join itself, should not be higher than the degree of truth of any of the sources. 
Formally, let t1 and t2 be the two tuples to be joined, and 𝑊(∙) be the function that returns the 
weight (truth value) of a tuple. We should respect: 
 

𝑊(𝐽𝑜𝑖𝑛(𝑡1, 𝑡2)) ≤ min(𝑊(𝑡1),𝑊(𝑡2)) = 𝑊(𝑡1) ⁡⊗𝑊(𝑡2) 

 
Which suggest defining, for an 𝛼𝐽 ∈ [0,1] that represent the truth value of the join: 

 

𝑊(𝐽𝑜𝑖𝑛(𝑡1, 𝑡2)) = 𝛼𝐽⊗𝑊(𝑡1) ⁡⊗𝑊(𝑡2) 

 
Similarly, t-conorm generalizes the Boolean operation of disjunction. In SPARQL/T the UNION 
clause represents the disjunction of two sets of solutions, which intuitively suggests that if a tuple 
t appears in both, it should appear in the result with a weight that is not less than in any of the 
two source sets. Formally, let tL and tR be two tuples belonging to the result set of the left and 
the right part of the UNION clause respectively. When tL and tR are judged to refer to the same 
object, a single tuple t should replace both, with a weight respecting the following: 
 

𝑊(𝑡) = 𝑊(𝑈𝑛𝑖𝑜𝑛(𝑡𝐿 , 𝑡𝑅)) ≥ max(𝑊(𝑡𝐿),𝑊(𝑡𝑅)) = 𝑊(𝑡𝐿) ⊕𝑊(𝑡𝑅) 

 
 

6.3.1 Some (open) issues due to similarity comparisons 
 

In SPARQL for RDF, when tuples from two input relations need to be matched (by the various 
Relational Algebra operators), the couples are made if and only if the values corresponding to 
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the common variables of the two relations (the keys) are exactly the same. In SPARQL/T instead, 
because we are not expecting to always find exact matches, a more robust approach based on 
similarity has been adopted. However, no matter what measure of similarity we choose, this 
choice brings two issues: 
 

• Which couples should we consider? 

• In the output relation, what is the correct value to give to the key? 
 

Let Ω𝐿 and Ω𝑅be the left and right relation sets involved in the operation, of cardinality M and N 
respectively. For the simplicity of the exposition, let’s assume they only have one variable V in 

common, and let 𝑣𝐿
𝑖  be the value of V in the i-th tuple 𝜆𝐿

𝑖 of Ω𝐿, let 𝑣𝑅
𝑗
 be the value of V in the j-th 

tuple 𝜆𝑅
𝑗

of Ω𝑅, and let 𝑤𝑖,𝑗 = 𝑊𝑀(𝑣𝐿
𝑖 , 𝑣𝑅

𝑗
) be the similarity measure between the two.  

The first issue is due to the fact that, switching from equality to similarity, even relationships that 
were of the one-to-one kind unavoidably becomes of the many-to-many kind. With similarity 

comparison instead of equality, each value 𝑣𝐿
𝑖  will match, in general, many values 𝑣𝑅

𝑗
 , with 

different degree of truth. What is, then, the best way to form the output tuples 𝜆𝑂
𝑘 = (𝜆𝐿

𝑖 , 𝜆𝑅
𝑗
)? 

One approach is to generate all the possible couples with similarity greater than zero, calculate 

their weight (that depends also on the weight of 𝜆𝐿
𝑖  and 𝜆𝑅

𝑗
) and then choose the best ones (to 

fulfill the Memory Constraints search requirement, see Chapter 6.4.6).  A different approach is 
to form couples by choosing only one tuple per set, trying for example to maximize the sum of 
the similarities of the chosen couples. At the moment is not clear which approach is best. 

The second issue can be re-stated in this way: if 𝜆𝑂
𝑘 = (𝜆𝐿

𝑖 , 𝜆𝑅
𝑗
) is kth output tuple, but the 

similarity between 𝜆𝐿
𝑖  and⁡𝜆𝑅

𝑗
 is strictly less than 1, i.e. 𝑣𝐿

𝑖 ≠ 𝑣𝑅
𝑗
, which value should we use for 

𝑣𝑂
𝑘? Choosing one of the two appears quite arbitrary. Let’s considering instead that such values 

represent snippets of text, i.e. intervals of the document, and the fact that they are similar 
already involves, in a way or another, a certain overlap between the two. Thus, only two other 
choices seem reasonable: their union and their intersection. In this case the right choice exists, 
at least in principle, depends on the operation considered, and is dictated by the need of 
maintaining the associative and commutative properties of the operators. For the Join operation, 
the key of the output relation should be the intersection between the keys of the input ones. This 
become apparent if we consider the Join of three sets Ω1, Ω2 and Ω3, all of them sharing a single 
variable V. In principle, we would like: 
 

(Ω1 ⋈ Ω2) ⋈ Ω3 = (Ω1 ⋈ Ω3) ⋈ Ω2 
Equation 1 

As an aside, this is not going to happen anyway in practice, because of the Beam Search employed 
during evaluation (see Chapter 6.4.6 about memory contraints). However, performing the Union 

of the keys in the Join operation can only make the things worse.  Let’s call 𝑣1
𝑖 , 𝑣2

𝑗
 and 𝑣3

𝑘 the 
snippets of text corresponding to the variable V in the sets Ω1, Ω2 and Ω3 respectively. As already 
stated, two snippets of text 𝑣′ and 𝑣′′ are similar, to some extent, if and only if 𝑣′ ∩ 𝑣′′ ≠ ∅.  
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Now, let’s say that the function that generates the new key of a join operation is the union of the 
snippets, i.e.: 

𝐾𝑒𝑦𝐽𝑜𝑖𝑛
∗ (𝑣′, 𝑣′′) = 𝑣′ ∪ 𝑣′′ 

Equation 2: WRONG keyword generator for the Join operation 

 
To show that it is not a good choice, let’s say that there is no couple of similar elements between 

Ω1 and Ω2 , but that exist 𝑣3
𝑘 which is similar to both, i.e.: 

 

∀𝑖, 𝑗⁡𝑣1
𝑖 ∩ 𝑣2

𝑗
= ∅ 

Equation 3 

∃𝑖, 𝑗, 𝑘⁡𝑣1
𝑖 ∩ 𝑣3

𝑘 ≠ ∅⁡⋀⁡𝑣2
𝑗
∩ 𝑣3

𝑘 ≠ ∅ 
Equation 4 

  
Equation 3 means that, no matter the choice of the Key function, the left term of Equation 1 is 
the empty set ∅, as   Ω1 ⋈ Ω2 = ∅.  
Equation 4 on the other hand means that Ω1 ⋈ Ω3 ≠ ∅. Let 𝑣1,3

∗  be the key generated by the 

𝐾𝑒𝑦𝐽𝑜𝑖𝑛
∗  functions with the elements i and k of Ω1 and Ω3, i.e.:  

 

𝑣1,3
∗ = 𝐾𝑒𝑦𝐽𝑜𝑖𝑛

∗ (𝑣1
𝑖 , 𝑣3

𝑘) = 𝑣1
𝑖 ∪ 𝑣3

𝑘  

 

Obviously 𝑣1,3
∗ ∩ ⁡𝑣2

𝑗
≠ ∅, so the right term of Equation 1 has a solution, and the equality does 

not hold. In simple words, with the 𝐾𝑒𝑦𝐽𝑜𝑖𝑛
∗  function a snippet of text in the Ω3 result set may act 

as a “bridge” between two solutions in Ω1 and Ω2 , making the result dependent on the order of 
evaluation. This doesn’t happen if we define: 
 

𝐾𝑒𝑦𝐽𝑜𝑖𝑛(𝑣
′, 𝑣′′) = 𝑣′ ∩ 𝑣′′ 

Equation 5: Correct key generator for the Join operation 

Similarly, we can show that for the Union operation, the key of the output relation should be the 
union of the keys of the input ones.  
 
In summary, and perhaps not surprisingly, for the Join operation the output keys should be the 
intersection of the input ones, whilst for the Union operation they should be the union of the 
input ones. For the Minus and Optional operations there is no new tuple generation, only a 
variation of the weights, therefore the keys remain unchanged. 
As a final observation however, it is likely that performing the Union of the keys add robustness 
to the process, partially correcting possible annotators imprecisions (in scope). Moreover, as 
already noticed, commutative and associative properties of the Join operation in SPARQL/T, from 
the practical point of view, have been already given up in favor of speed and reduced memory 
consumption. For these reasons, we prefer to leave as an open issue which operation is really 
more suitable for the keys during the Join evaluation.    
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 6.4 Main Differences between the Text and the RDF Models 
 
6.4.1 Results are Text References and not URIs 
The major difference between the text and the RDF case, for the conceptual model point of view 
at least, is that the results of a SPARQL/T SELECT query are not URIs22, but references to snippets 
of text inside the document. Each single SPARQLT/T triple pattern extract snippets of text from 
the document and produces a set of tuples, with one or two elements each (depending on the 
number of variables involved), binding the variables with a set of references to the document 
itself. Formally, adapting the W3C terminology23, a binding is here a pair (variable, 
TextReferenceObject), where TextReferenceObject is an instance of a class derived from the 
abstract class TextReference, which represents a snippet of text, and contains at least two things: 
 

• The position24 (beg,end) of the snippet inside the document 

• A weight that represent the confidence in the extraction (or better, its truth value, see 
Chapter 6.3 about Ambiguity and Uncertainty) 

 
TextReference has three possible implementations (see Figure 15 for the UML representation): 
 

• TextWord: represent a single word (token)  

• TextSnippet: represent a sequence of contiguous words in the text (n-grams) 

• TextSnippetsSet is a set of possibly noncontiguous TextSnippets 

 
Which implementation of TextReference is actually used depends on the NLP function employed. 
For example, the Named Entity Recognition (NER) task consists in finding entities like person and 
company names, which are often multi-words elements. This implies that NER triple pattern need 
to returns n-grams (TextSnippet objects). A Part Of Speech tag (POS) on the other hand, is a label 
applied to every single word in the text (by a POS tagger), which allows to employ TextWord 
objects, that simply refers to single words in the text. The TextSnippetsSet is included here for 
future uses, to represent noncontiguous snippets of text that may result from the co-reference 
resolution task or from considering subtrees of non-projective parsing trees. 
 

                                                           
22 However, SPARQL/T CONSTRUCT queries generates URIs exactly like SPARQL for RDF ones 
23 https://www.w3.org/TR/rdf-sparql-query/, fetched May 3, 2019 
24 The position inside the text is specified in two ways: the indexes of the first and last characters in the plain text and 
index of the token in the tokenized text 

https://www.w3.org/TR/rdf-sparql-query/
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Figure 15: UML representation of the classes of the objects in the result set of a pure SPARQL/T query (URI required for hybrid Text/RDF 
queries not shown) 

6.4.2 Input Objects 
In SPARQL/T some triple patterns require an input, which means that, in some cases, some 
variable needs to be bound before the triple pattern is encountered in the query string. There 
are mainly two cases when this happens: 
 

• When a search of some specific words has to be performed  

• When fuzzy behaviors are not desirable (like in navigating a parse tree)  
 
The concept of “input variable” is not present in SPARQL for RDF model, and in principle it could 
be avoided here as well. However, forcing the user to specify what to look for before the search 
can be performed (which, by the way, seems more than reasonable) allows for some 
simplification, like avoiding the need of query reordering. Moreover,expression employing the 
same variable twice would otherwise be allowed, like the following one, that can be read as 
“extract words that are most similar to each other, according to some Word Embedding”: 
 
?var EMB:ANY ?var 

Figure 16: example of forbidden "same variable" triple pattern. 

Although probably interesting from some point of view, that cases would require a special 
treatment and, at the moment, we don’t see any practical advantage in that. 
Inputs always occupies its third (object) position of the triple patterns, and are called here Input 
Objects 
 

Definition: Input Object 
An Input Object in a SPARQL/T query is either a literal or a variable that must be bound before 
the triple pattern is evaluated. It always occupies the third (object) position in the triple pattern 
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Being in the object position allows the input object to be either a variable or a literal. In the 
latter case, when allowed by the specific triple pattern, it comes in the form of a string 
containing a list of words or of n-grams.  
 

6.4.3 OPTION and MINUS (positive and negative Re-ranking) 
In SPARQL for RDF the MINUS clause evaluates both its arguments, then calculates solutions in 
the left-hand side that are not compatible with the solutions on the right-hand side and remove 
them. The same idea is applied by SPARQL/T to the text case, and is especially useful when 
similarity measures are employed. Sentence similarity in particular (like Universal Sentence 
Encoding) often lead to sets of surprisingly good results mixed with a bunch of easy identifiable 
wrong ones.  In this case a MINUS clause can be used, with a pattern matching the wrong ones 
in its right-hand side. However, the sharp behavior of the RDF counterpart, i.e. removing from 
the left-hand side results those appearing in the right-hand one, should be carefully 
reconsidered. Two sources of errors are playing in this case. First of all, solution extracted from 
different NLP algorithms are hardly exactly the same, which implies that trying an exact match 
would be quite ineffective. Second, the definition of the wrong cases is likely to be imprecise 
itself, and a sort of “smoothing effect” may be appropriate. Therefore, in SPARQL/T the MINUS 
construct corresponds to a re-ranking of the solution of the left-hand side according to the 
solution of the right-hand one, decreasing their weights on the left by an amount that depends 
on the weights on the right and on the degree of compatibility of their match. 
 

6.4.4 UNION vs Ranking Aggregation 
In SPARQL for RDF the UNION keyword is used to allow two or more25 alternative graph patterns. 
The result set of the UNION is, as expected, the union of the result sets of each of its graph 
pattern. Errore. L'origine riferimento non è stata trovata. shows an example of use of the UNION 
keyword taken from the W3C SPARQL 1.0 recommendations.  
 
PREFIX dc10: <http://purl.org/dc/elements/1.0/> 

PREFIX dc11: <http://purl.org/dc/elements/1.1/> 

SELECT ?title 

WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } } 
Figure 17: example of use of the UNION keyword, taken from the SPARQL 1.0 W3C recommendation. The query finds titles of the books 
in the data, whether the title is recorded using Dublin Core properties from version 1.0 or version 1.1 

In SPARQL/T a very similar notion is adopted: the UNION keyword is used to allow the extraction 
of a concept from the text when different syntactic alternatives are expected. During query 
evaluation, each graph pattern of the UNION is evaluated alone, extracting zero or more tuples 
from the text, that are merged together to form the solution of the UNION statement. A possible 
improvement, with respect to this classical view of the UNION clause, could be to merge similar 
solutions and increase the weights of those that occur multiple times. The idea is that solutions 
that match many user-specified patterns are more desirable than others, and should be ranked 
higher. This resembles the concept of Ranking Aggregation in Information Retrieval. According to 
Li [Li 2011], “ranking aggregation is aimed at combining multiple rankings into a single ranking, 

                                                           
25 UNION clauses can be concatenated, like: {} UNION {} UNION {} 
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which is better than any of the original rankings in terms of an evaluation measure”. However, it 
should be noticed that the task here is different, mainly for two reasons: 
 

• Classical Ranking Aggregation algorithms, only consider as inputs ordered lists of results. 
In meta-searching for example, the results of the same query from different search 
engines are combined into a single, supposedly better, one. Search engines do not return 
the score of their result, just the ordered lists, and most Ranking Aggregation algorithms 
are based solely on that ordering. Here instead we still have that score, a precious value 
that we certainly do not want to disregard. 

• We are still facing with the problem of identifying duplicate solutions that, as already 
noticed, in the NLP context are just expected to be similar, and not exactly the same. 

 
As an aside, notice that the UNION clause may allow, in some cases, to implement a sort of 
conditional execution. Some triple patterns may return an empty relation, causing the depletion 
of the entire BGP’s one. Se chapter 7.10.1 for an example involving a Constituency Parse tree, 
that allows different paths of execution on the bases of the kind of parent (Noun/Verbal Phrase) 
of a given snippet of text. 

 
6.4.5 GROUP BY clause 
Like in SQL and in SPARQL for RDF, the GROUP BY clause groups together records which have the 
same values in the columns indicated in the clause. However, as with any other SPARQL/T 
clauses, we cannot rely on the possibility that values extracted from text by different algorithms 
comes out exactly the same. We need to consider some measure of text similarity. Moreover, 
this similarity measure cannot be the same employed in the other functions, like for example in 
the join operation. The GROUP BY clause is intended to be used at corpus level, involving different 
documents, and therefore the idea of measuring similarity in terms of overlapping of snippets of 
text (of the same document) doesn’t have sense anymore. We need to compare groups of 
different words, in a way tolerant to reordering, i.e. in the classical Bag Of Words fashion. 
One possibility is to consider the number of words, or even better of lemmas, that the two BOWs 
share, possibly applying a weighting schema that consider stop words and the TF-IDF measure. 
Another, totally different approach, is to employ the already available Word Embeddings, for 
example by comparing the average of the vectors of the words of the to the two BOWs. In the 
first case the groups are crisply determined: we can say that two BOWs belong to the same set if 
they have some words in common. If we consider a graph G where the nodes are the BOWs and 
arches between nodes indicates the sharing of some words, finding the groups becomes the 
problem of finding all the connected subgraphs of G. (Some care must be taken, like stop word 
removal or TF-IDF thresholding, to avoid to obtain single, huge and quite useless groups).  In the 
second case instead, any BOW is similar, to some extent, to any other, and the concept of 
grouping becomes the one of clustering. 
The idea here is to provide the user with a choice between the two approaches, to be made with 
the use of the LIMIT keyword, which in SPARQL for RDF is used to limit the number of results of 
a query. In SPARQL/T the use of the LIMIT keyword in conjunction with a GROUP BY one selects 
the clustering approach, indicating also the number of clusters requested. 
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In a SELECT query, the GROUP BY clause specifies the list of variables used to form the groups, 
while for any other variable that we want to appear in the result set we must indicate how to 
aggregate the results. Figure 18 reports the seven Aggregate Functions of SPARQL. Because we 
want to strictly comply with SPARQL syntax, we cannot add any more. 
 

COUNT the number of elements 

SAMPLE any element 

GROUP_CONCAT concatenates all elements 

MIN the minimum value 

MAX the maximum value 

SUM the sum all elements 

AVG the average of all elements 

Figure 18: SPARQL Aggregate Functions (aka Set Functions) 

The COUNT, SAMPLE and GROUP_CONCAT easily find a counterpart in SPARQL/T. The MIN and 
MAX functions in SPARQL/T refer to the truth value of the tuple (not of the specific column), and 
return the value of the variable in correspondence respectively to the worse and the best one (If 
there are many tuples with the same min/max value, one is picked at random). The AVG function 
employs Word Embedding, averaging the vectors of the group and then selecting the result that 
is closer to the average. The SUM function has no counterpart in SPARQL/T. 

 
6.4.6 Memory Constrained Search 
The result of a search that employs Word Embeddings, or any other similarity measure, 
potentially includes all the words of the document, as they are probably all similar, albeit by a 
very little amount, to the search keyword (except for the few out of vocabulary ones). Moreover, 
when joining the results of two triple patterns that does not share variables, a cross join is 
performed, which produces a row in output for each possible couple of rows in input. In other 
words, queries involving similarity may easily become intractable. To avoid that, when 
appropriate, result sets are truncated (after being ranked) to the best N ones, transforming the 
query evaluation in a beam search of ray N. 
To better illustrate the process, Figure 19 reports a three triple patterns BGP that should roughly 
extract, using solely Word Embedding, snippets of text talking about some “payments” that have 
been “raised” (without) the client “knowing” it. Figure 20 reports a possible sentence expressing 
this concept, followed by an unrelated one that uses words with similar meaning. The similarity 
measures between the words of the triple patterns and those of the sentence, returned by a 
hypothetical Word Embedding, are reported in the matrix below the sentence itself. For the 

purpose of illustration, let’s assume that the similarity is high ( 0.8) for related words and 

neglectable (0.1) for any other couple of words. 
  
?i EMB:ANY “rise” 

?b EMB:ANY “payment” 

?k EMB:ANY “knowing” 
Figure 19: A query using only Word Embedding triple patterns. It is expected to extract snippets of text talking about some 
“payments” that have been “raised” (without) the client “knowing” 
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Figure 20: Two sentences that may match the query in Figure 19. The first, with token in positions [0,6], conveys the meaning we 
are looking for. The second (tokens [9,21]) does not. The last three rows report, for each word of the query, the degree of similarity 
a hypothetical Word Embedding is likely to assign (low values omitted for readability). 

 

At each cross-product join, the weight of each new row is calculated considering: 
 

• The weights of the two input rows 

• The mutual proximity between all the words in the resulting row 
 
As a simple measure of mutual proximity between words we can use the “density of extracted 
words”, roughly definable as the ratio between the number of extracted words and the number 
of words of the snippet26. Then, a fuzzy value Wden in the range [0,1] is obtained by applying to 
such density a fuzzy R-function with the two thresholds da and db as follow:  
 

• Below da, Wden is 0 

• Above db, Wden is 1 

• In between, Wden varies linearly 
 
Finally, the weight of the output tuple Wout is calculated as the t-norm of those of the two input 
tuples and Wden (here, adopting the Standard (Gödel) t-norm min()) 
To account for punctuations, a penalty is introduced by increasing the distance between words 
on the opposite sides of the punctuation mark (and thus the result of the density calculation). 
This makes sense, as in natural language punctuations are used to separate concepts. Also, when 
reading them, a pause of a certain length is normally introduced. 
Figure 22 shows the beam search with da=1/20, db=1/2 and the punctuations penalty = 10 words. 
The number of rows of results kept at each step is in this case N=21. In this ideal situation, the 
best results appear on top at each step. The correct one is found on the very top of the output 
set, together with the “almost unrelated one” just below it but with a much lower score, and 
followed by all the irrelevant ones. Obviously, in reality things are not so clean, but the point here 
is that the employment of a heuristic memory constraint search seems bot an unavoidable and 
an acceptable choice make in order to deal with this sort of searches and joins. On the other 
hand, for patterns that only involve crispy NLP annotations, the number of results is normally 
much more manageable. Moreover, when joins involve variables the number of matches is also 
greatly reduced. Thus, in this last two cases, the truncation of the ranked result set should be 
avoided, or at least performed with a safer, much higher ray N. 

                                                           
26 A better measure should weight the words according for example to their part of speech, or presence in a list od stop 
words. 
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As an aside, let’s notice that the results of such Memory Constraint search depend in general on 
the order of evaluation. In other words, because of the Beam Search in SPARQL/T the Join 
operation is neither commutative nor associative. 
 
 

 

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁°⁡𝑜𝑓⁡𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑⁡𝑤𝑜𝑟𝑑𝑠

𝑆𝑛𝑖𝑝𝑝𝑒𝑡⁡𝐿𝑒𝑛𝑔𝑡ℎ
=
|𝐸 ∩ 𝑆|

|𝑆|
 

 

𝑊𝑑𝑒𝑛 =

{
 

 
0 𝑖𝑓⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 𝑑𝑎
1 𝑖𝑓⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 𝑑𝑏

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑑𝑎
𝑑𝑏 − 𝑑𝑎

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
𝑊𝑂𝑈𝑇 = 𝑊1⊗𝑊2⊗𝑊𝑑𝑒𝑛

= min⁡(𝑊1,𝑊2,𝑊𝐽𝑜𝑖𝑛) 

E = set of extracted words 
S = set of snippet’s words 
W1, W2 = Weights of the two input tuples 

Figure 21: Weight calculation of an output tuple of a Cross-Product Join. First, the density of the snippet of 
text is calculated as the ratio between the number of extracted words and the snippet's length. Then, a 
weight WJoin is calculated appling an R-function to the density. Finally, the weight of the output tuple is 
calculate as the t-norm of WJoin and the two input weights. 
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Figure 22: Example of memory constrained Cross-Product Join. At each point of join, the set of all couples 
is generated, ranked, and then truncated to the top N  results, that are passed to the next stage. The 
weight of the output tuples depends on the weights of the input ones and on the density of the resulting 
snippet (N° Extracted Words / Snippet Length) 
 

 
6.4.7 Machine Learning Classification of the results 
When Word Embedding or any other similarity measure like is employed in a search, the query 
behaves in a way similar to an Information Retrieval system, returning a list of possible results, 
with the best ones on top, but that makes it difficult to make a crispy choice about which result 
is good and which is not. Even when the query contains only crispy requests (like searching for 
specific words and lemmas or POS tags) the result set may not allow a crispy classification, due 
to the uncertainty introduced by join operation. Normally, manual inspection allows to spot a 
threshold that allows an easy separation, with a reasonable margin of precision. Sometimes, it is 
also possible to recognize categories of wrong results and remove them with a subquery included 
in a MINUS clause. But what if such inspection is not feasible, because for example of a huge 
number of results? And what if the separation is not so crispy, with good and bad cases highly 
mixed, or if the exceptions are too many to be manually coded? We obviously need a classifier. 
Classification in SPARQL/T is supported by an external tool, and accessed from within the query 
with a triple pattern of the form: 
 

parametersURL ML:algorithmName  

 ?requestedPrecision 
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where: 
 

• algorithmName is the name of a Machine Learning algorithm, known to the system 

• parametersURL is the address of a file, generated with the tool, and available through 
HTTP protocol. It contains the parameters of the algorithm, like for example the structure 
and thresholds of a decision tree, or the weights of a Deep Neural Network. 

• requestedPrecision is an input numeric variable, in the range [0,1], indicating, 
when appropriate, the degree of precision requested. It may not make sense for a specific 
algorithm, which is always free to ignore it, but when appropriate, it allows a certain 
degree of flexibility during query execution. 

 
Such triple acts as filters, removing from the result set all the tuples classified as negatives by the 
algorithm. It can be placed anywhere inside a graph path but, in a way similar to the SPARQL 
FILTER clause, it is always evaluated after all the other triple patterns of the same graph path, i.e. 
when the result set is available. The algorithm is supposed to work primarily on a result set itself, 
considering maybe a few words around each extracted snippet, but it has anyway access to the 
entire document and to all of its annotations. Loading the algorithm implementation, i.e. the 
executable code, at run time from the WEB through the HTTP protocol would obviously rise 
serious security issues. Therefore, it must be somehow manually loaded in the SPARQL/T server, 
identifiable by name. The algorithm’s parameters instead, typically an XML or JSON file, with the 
proper precautions do not represent a threat and can be loaded from the web. This mechanism27 
allows the safe and easy sharing of queries containing Machine Learning algorithms. The 
generation of the training set and the training of the algorithm instead, is an implementation 
detail that should be taken care of with a proper Graphical User Interface, and is not discussed 
here. Suffice to say that its modus operandi, together with the choice of the algorithms, should 
be carefully studied in order to minimize the user effort, i.e. the number of elements necessary 
for the training set. Ideas related to the task of Adaptive Learning should seriously be considered 
(see for example [Settles 2012] for a review). 

 
6.4.8 Indexing 
 
There is no doubt that indexing should be part of SPARQL/T Conceptual Model. However, the use 
of Word Embedding introduces the problem of employing indexes in searches that involve 
similarities. In the words of Lashkaria et al [Lashkaria et al. 2019]: “While the process for building 
and querying keyword-based indices is quite well understood, the incorporation of semantic 
information within search indices is still an open challenge.” Which means that, at the moment, 
there is no well-established way of indexing Word Embeddings. But fortunately, there are already 
good algorithms to explore. Briefly, the problem of efficiently finding a Word Embedding vector 
v closed to a given (query) one vq is a nearest neighbor problem, stated by Indyk & Motwani 
[Indyk & Motwani 1998] as follows:  
 

                                                           
27 Which admittedly need better formalization 
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Definition: Nearest Neighbor Problem 
given a set of n point P={v1, …,vn} in some metric space X, preprocess P so that to efficiently 

answer queries which require finding the point in P closest to the query point vqX. 

 
Recently, Sugawara et al. [Sugawara et al. 2016] compared several algorithms that address the 
problem, which can be divided into three categories: 

• Hash-based: uses a hash function such that the probability of collision of two elements 
are higher if, in a certain metric space, these two objects are close to each other. Locality-
Sensitive Hashing (LSH) [Gionis et al. 1999] is probably the most known of this class of 
algorithms. 

• Tree-based: recursively divide the search space into non-necessarily disjoint subspaces. 
The search is performed hierarchically. 

• Graph-based: a neighborhood graph is built, where each node is connected to its nearest 
neighbors. The search can be performed in a best first mode, starting at an arbitrary node. 

Sugawara et al. found that graph-based algorithms (NGT in particular, [Iwasaki 2015]) perform 
better than others. Very recently, Lashkaria et al [Lashkaria et al. 2019] explored the possibility 
of building inverted indexes based on the similarity of the vector representation of terms instead 
of on term occurrence in documents.  
Given the time constraints and the lack of well-established methods for Word Embedding 
indexing, at the moment no true indexing capability has been implemented in SPARQL/T. 
However, as a temporary measure, a form of document filtering is possible: a triple pattern 
referring to a Lucene query can be used to retrieve the subset of document to be further analyzed 
by the rest of the SPARQL/T query. (See Chapter 8 – Architecture) 
 

6.5 Core Conceptual Model  
 

The exposition that follows resemble the one given in chapter 12, “Definition of SPARQL”, of the 
W3C Recommendation for SPARQL 1.028. Definition are given side-by-side, highlighting the 
differences from the RDF and the Text cases. Here, only things that has a counterpart in the RDF 
case are considered. Other things strictly related to SPARQL/T, like Hybrid Queries and the 
Reasoning Interface, are exposed in the next chapters. 
 

6.5.1 Definitions 
Let: 

• V be the set of all the Variables 

• F be the set of the NLP Functions 

• L be the set of the literals 

 

                                                           
28 SPARQL Query Language for RDF W3C Recommendation, 15 January 2008, https://www.w3.org/TR/rdf-sparql-
query/, fetched 6 Jan 2019  

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
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Definition: Triple Pattern (for Text) 
A triple pattern is member of the set: 

(𝑉 × 𝐹 × 𝐿) ∪ (𝑉 × 𝐹 × 𝑉) 
 

This means that, syntactically, there are only two possible kind of SPQRQL/T triple pattern: one 
with two variables and one with a variable and a literal, both with the NLP function in the central 
(predicate) position. The NLP function is specified using a prefix (recognized by the system) that 
indicates the function group, followed by a subfunction code. Constant arguments of the NLP 
functions are placed in the literal (see Figure 23Errore. L'origine riferimento non è stata 
trovata.). 
 
?Variable  Function:SubFunction ‘Literal’ 

?Variable1 Function:SubFunction ?Variable2 

Figure 23: the two kinds of SPARQL/T triple patterns, with one and two variables, both with the 
NLP function in the central (predicate) position 

The two-variable case must be further split into two different ones: patterns that extracts two 
variables and patterns that require an input (see Chapter 6.4.2 about Input Objects). 
In SPARQL/T the Basic Graph Pattern BGP has the same definition it has in SPARQL for RDF, but a 
slightly different semantic: 
 

Definition: Basic Graph Pattern (both for RDF and Text) 
A Basic Graph Pattern is a set of Triple Patterns. 

 
The evaluation of a BGP consists in the evaluation of each of its triple patterns followed by a 
proper join of the results. In SPARQL/T this join operation must take into account a set of 
measures and constraints, like the distance of the snippets in the document and the fact that 
some triple patterns may share some variables. Intuitively, from the evaluation of a BGP we 
expect a sort of “logical AND” of the results of each single triple pattern. In the RDF case, given a 
graph, this idea of an “AND” is achieved in this way: a tuple is added to the result set if and only 
if all the triple patterns of the BGP match some part of the graph. Similarly, in the text case, given 
a unit of text, we want a tuple to be generated from that unit if and only if all the triple patterns 
in the BGP find some match (and thus extract something) inside it, with a reasonable degree of 
confidence. In SPARQL/T model such unit of text has been defined to be the sentence (and not 
for example the entire document or a sliding window of fixed size), i.e. : 
 

Rule: BGP Search inside a document 
a tuple is generated from a BGP search if and only if all its triple patterns extract something 
inside the same sentence 

 
The reason for this choice is apparent when we consider languages poor of linguistic resources, 
for which parsers may not be available. As a matter of fact, when concepts are expressed inside 
the same sentence it is normally a simple but quite good indicator of their relatedness (think for 
example the three concepts “to buy”, “expensive” and “car” in the sentence “I’m going to buy an 
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expensive car”). Therefore, in absence of better options, the BGP search rule allows a crude but 
effective semantic analysis of the sentence. Obviously, for a more precise analysis, syntactic or 
semantic parsers become necessary. However, they also all normally work at sentence level, 
suggesting again the sentence as the best level of granularity for a BGP. (Of course, a method is 
also provided in SPARQL/T to deal with searches that involves multiple sentences. See later the 
section about Group Graph Patterns).  
 
But what is the proper way to combine the results of each NLP triple patterns to form the result 
of the full BGP? Because we need to merge sets of solution, following also the SPARQL for RDF 
model, we appeal to a Relational Algebra. 
A relational algebra is a language used in the field of relational databases that allows to formally 
specify the operations of a query language. ([Date 2003], [Elmasri 2010]) It is an intermediate 
language for the expression and analysis of queries, whose expressions can easily be translated 
into the code that will actually perform the task. Also, and perhaps most importantly, it is 
employed in the task of optimizations. Cyganiak [Cyganiak 2005] introduced the idea of 
employing a relational algebra for the SPARQL query language, defining a relational model over 
RDF terms. The W3C SPARQL Recommendation 29 however adopts symbols and definitions 
different from those in the Cyganiak’s work.  Here, in the attempt to define a relational model 
over NLP functions, to simplify comparisons with SPARQL, the W3C Recommendation is mirrored 
as much as possible, with the major difference being the need to consider uncertainty. 
First of all, the W3C definition of Solution Mapping for the text case must be slightly changed. In 
SPARQL for RDF a Solution Mapping 𝜇𝑅𝐷𝐹 is a mapping from a set of variables to a set of RDF 
terms.  
 

Definition: Solution Mapping (for RDF graphs) 
A Solution Mapping 𝜇𝑅𝐷𝐹  is a partial function 𝜇𝑅𝐷𝐹: 𝑉 → 𝑅𝐷𝐹_𝑇 
The domain of  𝜇𝑅𝐷𝐹 , 𝑑𝑜𝑚(𝜇𝑅𝐷𝐹), is the subset of V where 𝜇𝑅𝐷𝐹⁡is defined. 

 

Where the RDF Terms RDF_T are defined as follows: 
 

Definition: RDF Term 
Let I be the set of all IRIs. 
Let RDF_L be the set of all RDF Literals 
Let RDF_B be the set of all blank nodes in RDF graphs 
The set of RDF Terms, RDF_T, is I union RDF_L union RDF_B. 

 
In SPARQL/T the mapping must be made from a set of variables V to a set of TextReference objects 
(defined above). Also, to deal with uncertainty, we introduce a real number w in the range [0,1] 
that indicates a degree of confidence in the mapping: 
 
 
 

                                                           
29 https://www.w3.org/TR/rdf-sparql-query/  

https://www.w3.org/TR/rdf-sparql-query/
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Definition: Weighted Solution Mapping (for Text) 
A Weighted Solution Mapping  𝜆 is a couple (𝜇𝑇𝑋𝑇, 𝑤) where 𝜇𝑇𝑋𝑇is a partial function 
𝜇𝑇𝑋𝑇: 𝑉 → 𝑇𝑒𝑥𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, and w is a real number in the range [0,1] indicating the degree of 
confidence in the mapping. 
The domain of  𝜇𝑇𝑋𝑇 , 𝑑𝑜𝑚(𝜇𝑇𝑋𝑇), is the subset of V where 𝜇𝑇𝑋𝑇 ⁡is defined. 

 
When a mapping contains just a single variable, its degree of confidence w is simply the degree 
of confidence in the extraction performed by the triple pattern, which is stored in the 
TextReference object. For mappings with multiple variables, the degree of confidence w is 
calculated when mappings are merged, during the Join or Union operations (see later), and 
possibly altered by some other operations (like Minus, see also later on). 
We now need to adapt the notion of compatible mappings defined in the W3C recommendation, 
taking into consideration the uncertainty of NLP annotations. Basically, the idea of compatible 
mapping is that two mappings are compatible when every variable that belongs to both is bound 
to the same object. When dealing with RDF graphs, this simply means that the variable is bound 
to the same URI, and this is expressed from the following definition, adapted30 from the W3C 
recommendation: 
 

Definition: Compatible Mappings (for RDF graphs) 
Two solution mappings 𝜇1

𝑅𝐷𝐹⁡and 𝜇2
𝑅𝐷𝐹  are compatible if, for every variable v in 𝑑𝑜𝑚(𝜇1

𝑅𝐷𝐹) 
and in 𝑑𝑜𝑚(𝜇2

𝑅𝐷𝐹), 𝜇1
𝑅𝐷𝐹 = 𝜇2

𝑅𝐷𝐹. To indicate such compatibility, we write 
𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹) 

 
If 𝜇1

𝑅𝐷𝐹⁡and 𝜇2
𝑅𝐷𝐹  are compatible then their union is also a mapping, and we can define the 

following function: 
𝑚𝑒𝑟𝑔𝑒𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹) = 𝜇1

𝑅𝐷𝐹 ∪ 𝜇2
𝑅𝐷𝐹 

 
It may seem natural now, translating this concept for the text case, to simply require that the 
variable is bound to the exact same piece of text. However, when joining elements extracted by 
different triple patterns, i.e. by different algorithms, it is quite naïve to expect exact matches. 
Moreover, what we want to be the same here is not the piece of text itself, but the concept it 
represents. A wiser and more robust approach is therefore to employ a measure of overlapping 
between snippets of text. Another thing to consider is that the same entity of the world may be 
represented in the text by different snippets (for example, first by its name and later by a 
pronoun). Actually, this linguistic phenomenon, called Anaphora or Co-reference31, seems like a 
natural counterpart of the Join operation in Natural Language and deserves a special treatment 
inside SPARQL/T. 
Let’s then 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑡1, 𝑡2), with 𝑡1, 𝑡2 ∈ 𝑇𝑒𝑥𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, be a number in the range [0,1] that 
measures the degree of overlap between the two snippets of text 𝑡1 and 𝑡2⁡. The details of this 
measure are left as implementation dependent. It can be related to chars or to tokens, and 
possibly weight words differently accordingly to their Part Of Speech tag and to a TF-IDF measure. 

                                                           
30 𝜇⁡has been changed into 𝜇𝑅𝐷𝐹for clarity 
31 They are similar concepts, but not exactly the same. See for example [Poesio et al. 2016] for a discussion 
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But for the sake of clarity of the examples that follows, let’s assume from now on that 
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑡1, 𝑡2) is simply defined as the number of common tokens divided by the number of 
tokens in their union.  
Let’s also 𝑐𝑜𝑟𝑒𝑓(𝑡1, 𝑡2), with 𝑡1, 𝑡2 ∈ 𝑇𝑒𝑥𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, be a number in the range [0,1] that 
measures the degree of confidence that the snippets of text 𝑡1 and 𝑡2 refer to the same entity of 
the world, according to the annotations of some Anaphora Resolution tool.  
Let’s then combine them, to define the compatibility coefficient between two snippets of text: 
 

𝑐𝑜𝑚𝑝𝑎𝑡𝑇𝑋𝑇(𝑡1, 𝑡2) = ⁡𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑡1, 𝑡2) ⊗ 𝑐𝑜𝑟𝑒𝑓(𝑡1, 𝑡2) 
 
We also need to change, with respect to the RDF counterpart, the definition of mapping, 
associating to each mapping 𝜇𝑇𝑋𝑇 a weight w 
 

Definition: Weighted Mapping 
A weighted mapping 𝜆 is a couple (𝜇𝑇𝑋𝑇, 𝑤), where 𝜇𝑇𝑋𝑇 is a mapping and w is a real number 
in the range [0,1] indicating its degree of truth 
Let also define the following two functions, that extract the mapping and the weight from a 
weighted mapping 𝜆 = (𝜇𝑇𝑋𝑇 , 𝑤) 
Μ(𝜆) = 𝜇𝑇𝑋𝑇  
𝑊(𝜆) = 𝑤  

 

We want now to state that two weighted mappings 𝜆1 and 𝜆2 are compatible if every common 
variable either overlap or refer to the same entity to some extent: 
 

Definition: Compatible Mappings (for Text) 
Two weighted solution mappings 𝜆1 = (𝜇1

𝑇𝑋𝑇, 𝑤1)⁡and 𝜆2 = (𝜇2
𝑇𝑋𝑇, 𝑤2)⁡are compatible if, for 

every variable v in 𝑑𝑜𝑚(𝜇1
𝑇𝑋𝑇) and in 𝑑𝑜𝑚(𝜇2

𝑇𝑋𝑇), 𝑐𝑜𝑚𝑝𝑎𝑡𝑇𝑋𝑇(𝜇1
𝑇𝑋𝑇(𝑣), 𝜇2

𝑇𝑋𝑇(𝑣)) > 0 

 
Continuing along the W3C recommendation, if 𝜆1 = (𝜇1

𝑇𝑋𝑇, 𝑤1)⁡and 𝜆2 = (𝜇2
𝑇𝑋𝑇, 𝑤2)⁡are 

compatible then   𝜇1
𝑇𝑋𝑇 ∪ 𝜇2

𝑇𝑋𝑇 is also a mapping, and we can define the function merge as the 
union of two compatible mappings:  
 

𝜆𝑚 = 𝑚𝑒𝑟𝑔𝑒𝑇𝑋𝑇(𝜆1, 𝜆2) = (𝜇𝑚
𝑇𝑋𝑇 , 𝑤𝑚) = (𝜇1

𝑇𝑋𝑇 ∪ 𝜇2
𝑇𝑋𝑇,𝑊𝑚(𝜆1, 𝜆2)) 

 
Here Wm is a function that returns the degree of confidence in the resulting mapping. The details 
of Wm should also prudently be left as an implementation specific, although some ideas related 
to Fuzzy Logic are reported in Chapter 6.3. It is expected to take into consideration: 

• The degree of confidence in the two source mappings w1 and w2 

• The degree of compatibility (overlapping and coreference) between the two mappings. 
Notice that the function compatTXT(t1,t2) just defined express such degree for a couple of 
text snippet, and has been applied to (common) variables. A global degree of 
compatibility for the whole mapping needs then to be defined. A good candidate is again 
the t-norm function ⊗. 

The following definitions is exactly the same given for SPARQL for RDF: 
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Definition: Solution Sequence (for RDF and Text) 
A solution sequence is a list of solutions, possibly unordered. 

 
Notice that, as also mentioned in the W3C recommendation, a solution sequence Ω is not a set: 
it is defined as a list, i.e. a multiset, an unordered collection of elements in which each element 
may appear more than once. 
 

6.5.2 SPARQL/T Algebra 
In this section the operators for the evaluation of a SPARQL/T query are defined. At the moment 
they are just a limited subset of the one defined for the SPARQL for RDF algebra: only the Join 
and the Union ones, plus the Minus, that is an addition of SPARQL 1.1. 
The Join and the Union operations defined below are the ones that allow to merge solution 
sequences in the RDF case: 
 

 

Definition: Union (for RDF) 
Let Ω1 and Ω2 be two solution sequences. We define: 
 

𝑈𝑛𝑖𝑜𝑛𝑅𝐷𝐹(Ω1, Ω2) = {𝜇𝑅𝐷𝐹|𝜇𝑅𝐷𝐹 ∈ Ω1 ∨ 𝜇
𝑅𝐷𝐹 ∈ Ω2} 

 

 

Definition: Join (for Text) 
Let Ω1 and Ω2 be two weighted solution sequences. We define: 
 

𝐽𝑜𝑖𝑛(Ω1, Ω2)
= {𝑚𝑒𝑟𝑔𝑒𝑇𝑋𝑇(𝜆1, 𝜆2)|Μ(𝜆1) ∈ Ω1 ∧ Μ(𝜆2) ∈ Ω2 ∧ ⁡𝑐𝑜𝑚𝑝𝑎𝑡(Μ(𝜆1),Μ(𝜆2)) > 0} 

 

 

Definition: Union (for Text) 
Let Ω1 and Ω2 be two weighted solution sequences. We define: 
 

𝑈𝑛𝑖𝑜𝑛𝑇𝑋𝑇(Ω1, Ω2) = {𝜇𝑇𝑋𝑇|𝜇𝑇𝑋𝑇 ∈ Ω1 ∨ 𝜇
𝑇𝑋𝑇 ∈ Ω2} 

 

 

Definition: Join (for RDF) 
Let Ω1 and Ω2 be two solution sequences. We define: 
 

𝐽𝑜𝑖𝑛𝑅𝐷𝐹(Ω1, Ω2)
= {𝑚𝑒𝑟𝑔𝑒𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)|𝜇1

𝑅𝐷𝐹 ∈ Ω1 ∧ 𝜇2
𝑅𝐷𝐹 ∈ Ω2 ∧⁡𝑐𝑜𝑚𝑝𝑎𝑡𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)} 
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Informally, the Join operation requires that, in a specific unit of text, both extraction patterns 
find some match (corresponding to a logical AND), whilst the Union operation requires just one 
of the two (corresponding to logical OR).  
Notice that the definition of Compatible Mapping (for Text) includes the case where the two 
mappings have no variables in common. In this case the Join function simply becomes a Cross 
Join, i.e. the Cartesian Product of the two sets Ω1 and Ω2, defined as the set of couples  
((𝜔1, 𝜔2)|𝜔1 ∈ Ω1 ∧ 𝜔2 ∈ Ω2)  .  
For the Cross Join however, the function Wm that calculates the degree of confidence in the 
resulting mapping cannot rely anymore in measures of overlapping or coreference between 
objects mapped by a common variable (as there is no common variable). A reasonable 
replacement can be some measure of proximity between the snippets of text of the couples, 
again left as implementation dependent. 
A third operation, somewhat related to Join and Union, is the Minus one, introduced in SPARQL 
1.1 and that allows to remove from a set of solution mapping  Ω1 all the elements of a second 
set Ω2 
 

Definition: Minus (for RDF) 
Let Ω1 and Ω2 be two solution sequences. We define: 
 

𝑀𝑖𝑛𝑢𝑠(Ω1, Ω2) = {𝜇1
𝑅𝐷𝐹|𝜇1

𝑅𝐷𝐹 ∈ Ω1 ∧ ∀𝜇2
𝑅𝐷𝐹 ∈ Ω2⁡¬𝑐𝑜𝑚𝑝𝑎𝑡𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)} 

 
 

In words, the result of the Minus operation, in the RDF case, is the set of all the mappings 
belonging to the first set that are not compatible with any of the mappings in the second. 
In the case of text snippets, it is again desirable to avoid crispy tuple removal. A Fuzzy 
interpretation of the Minus operation can be a sort of negative reranking, that lowers the weights 
of the results in the first set that also belongs to the second.  More specifically, for each weighted 
solution mapping 𝜆1 = (𝜇1

𝑇𝑋𝑇, 𝑤1) ∈ Ω1, let 𝜆2
′ = (𝜇2

𝑇𝑋𝑇 , 𝑤2) ∈ Ω2⁡be the mapping of Ω2 with the 
higher compatibility with 𝜆1, i.e.: 

𝜆2
′ = argmax

𝜆2∈Ω2

𝑊𝑀(𝜆1, 𝜆2) 

Let 𝑤1,2 = 𝑊𝑀(𝜆1, 𝜆2
′ ). If  𝑤1,2 > 0 we decrease the weight w1 of 𝜆1by a quantity that depends 

on two things: the weight w2 of 𝜆2
′  and the degree of compatibility w1,2 between the two. Using 

the Fuzzy Logic negator operator ⊝:  
𝑤1 = 𝑤1⊗⊝ (𝑤2⊗𝑤1,2) 

The idea is that the higher is the weight of the best match 𝜆2
′ , and the lower becomes the weight 

of 𝜆1, but if 𝜆1and 𝜆2
′  are not so similar, the negative effect of 𝜆2

′  is decreased. 
 

Definition: Minus (for Text) 
Let Ω1 and Ω2 be two solution sequences. We define: 
 
𝑀𝑖𝑛𝑢𝑠(Ω1, Ω2)

= {(Μ(𝜆1),𝑊(𝜆1) ⊗⊝ (𝑊(𝜆2) ⊗𝑊𝑀(𝜆1, 𝜆2)))|𝜆1 ∈ Ω1, 𝜆2 = argmax
𝜆2∈Ω2

𝑊𝑀(𝜆1, 𝜆2),𝑊𝑀(𝜆1, 𝜆2) > 0} 
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To deal with concepts possibly expressed in multiple sentences, it then become natural to adapt 
the SPARQL for RDF notion of Group Graph Patterns, which is simply a BGP delimited with braces: 
{}. 
Group Graph Pattern can be used to fragment the query pattern (the outer-most graph pattern) 
into a set of BGP pieces, each of which can then be evaluated against each sentence of the text. 
And then again, the result of the Group Graph Pattern should be the “logical AND” of its 
component. Of course, this principle can be applied recursively, allowing to query concepts of 
any complexity. 

 
6.5.3 Extraction Scopes 
Intuitively, BGP are intended to represent basic concepts, things that can typically be expressed 
within a sentence and that, in Frame Semantic terms, roughly resembles the idea of a frame. 
During query evaluation, each BGP is therefore evaluated one sentence at the time, with the 
effect that all the triple patterns in the BGP must be satisfied inside a single sentence. This 
approach has been taken with languages poor of resources in mind, where we may be forced to 
work with, say, just a Word Embedding and a POS tagger. In that case, a BGP that asks, for 
example, for a verb like “to buy” and a word like “car”, is expected to find, with a reasonable level 
of precision, sentences where a car (or similar) is the object of some purchase. Of course, this is 
more likely to be true when the two words are part of the same sentence, instead of when they 
are far apart in the document. For sure, good results requires more sophisticated approaches, 
like the employment of a dependency or constituency parser (provided they are available for the 
specific language). However, also that tools work at sentence level, suggesting again the sentence 
as the most appropriate level of granularity for a BGP search. 
For clarity, let’s call this idea of granularity of search the “extraction scope” of the pattern, 
defined as follows: 
 

Definition: Extraction Scope 
The Extraction Scope of a SPARQL graph pattern is the unit of text inside which all the 
constraints of the graph must be satisfied for a tuple of the result to be produced. 

 
We can then say that the Extraction Scope of a BGP is the sentence, meaning that each tuple of 
a solution of a BGP will pertain to a single sentence.  
Of course, there are situation when we need to consider different scopes. A discourse describes 
a complex concept and normally spans several sentences. Sometimes instead, we may need to 
drill down inside a big chunk of already extracted text to find its components (for example, to 
extract the Named Entity from a chunk of text expressing a certain sentiment). The ability of 
looking for a concept that may span different sentences comes with no effort: for what has just 
been said, everything that is extracted from different BGPs are allowed to pertain to different 
sentences. Syntactically, BGP can be created by enclosing them in curly braces ‘{‘ and ‘}’. A portion 
of a SPARQL query string delimited with braces {} that contains zero or more BGPs is called, in 
the W3C SPARQL 1.0 recommendation, a Group Graph Pattern. Therefore, we can say that the 
Extraction Scope of a Group Graph Pattern is the document. Figure 24 shows an example of 
Group Graph Pattern, taken from that recommendation. 
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{   ?x foaf:name ?name . 

    {} 

    ?x foaf:mbox ?mbox . 

} 

Figure 24: Example of Group Graph Pattern reported in the W3C SPARQL 1.0 recommendation. It 
is a group of three elements: a basic graph pattern of one triple pattern, an empty group, and 
another basic graph pattern of one triple pattern. 

On the other hand, to limit the extraction scope to a portion of already extracted text we need 
to employ a special keyword. In SPARQL for RDF, the GRAPH keyword directs the search inside a 
named graph. Figure 25 shows an example taken from the W3C recommendation. The idea there 
is that a variable ?g contains an URI that specifies the graph on which the subquery that follows 

(enclosed in braces) has to be performed. 
 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

PREFIX dc: <http://purl.org/dc/elements/1.1/> 

SELECT ?who ?g ?mbox 

FROM <http://example.org/dft.ttl> 

FROM NAMED <http://example.org/alice> 

FROM NAMED <http://example.org/bob> 

WHERE 

{    ?g dc:publisher ?who . 

     GRAPH ?g { ?x foaf:mbox ?mbox } 

} 

Figure 25: example of use of GRAPH keyword, taken from thw W3C SPARQL 1.0 reccomendation. 
The first triple pattern binds the variable ?g with a set of URI taken from the default graph. The 
second one performs a search inside the named graph specified by ?g. 

The idea in SPARQL/T is not so different: a variable ?g contains a reference to a piece of text 
inside which the extraction has to be performed. Following our metaphor of Virtual Graph, such 
piece of text can be seen as a “subgraph” of the document. We then can say that the Extraction 
Scope of a subquery contained inside a GRAPH ?g {} statement is the snippet of text to 

which ?g refers. Table 9 summarizes the Extraction Scope possibilities. 
 

Unit of the Query Extraction Scope 

BGP Each sentence separately 

Group Graph Pattern The document 
GRAPH ?g {} The snippet of text g 

Table 9: Extraction Scope of different units of a query 

6.5.4 Query Evaluation 
During query evaluation each triple pattern is applied to the document, one sentence at a time, 
and extracts from it a relation containing one or two columns (depending on the number of 
variables) of objects of type TextReference, plus an extra column containing the degree of truth 
of the extraction.  
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Then, the relations pertaining to each BGP are formed by joining those of the triple patterns that 
it contains, taking care in this particular BGP-internal join operation of not creating tuples 
pertaining to different sentences. A BGP’s relation is therefore a table with Ki+1 columns of type 
TextReference, where Ki is the number of distinct variables of the BGP i, plus an extra column 
contains the fuzzy weight of the entire tuple, calculated by the join operation.  
Different BGPs are then joined together in a similar fashion, following the structure of the algebra 
tree, but this time without the constraint on sentence belonging. 
Because of memory constraints and of the potentially huge number of tuples that certain queries 
may generate, at each step of the process the relations are ranked, and only the best N results 
are passed to the next operation. Finally, by default, the relation of the root of the tree is also 
ranked and only the best solution is returned for the document. 
 

 
6.6 SPARQL/T peculiar concepts 
 

6.6.1 Hybrid Queries 
A SPARQL/T query that involves access to a triple store is called here a Hybrid Query, as part of it 
involves the text and part an RDF graph. SPARQL syntax provides a method to direct a portion of 
the query to an external server (SERVICE …), and that syntax can in principle be used also for 
Hybrid Queries construction. However, such syntactic overhead is not necessary, since the 
compiler can easily distinguish an NLP triple pattern (which we will call internal) from one 
intended for the triple store (external) by simply looking at the prefixes of the predicate part of 
the triple. By doing so, a BGP can be divided into homogeneous chunks called BGP 
(homogeneous) fragments, that are separately evaluated and joined. More formally: 
 

Definition: Internal Triple Pattern 
An Internal Triple Pattern of a SPARQL/T query is a triple pattern that evaluates against a 
document 

 

Definition: External Triple Pattern 
An External Triple Pattern of a SPARQL/T query is a triple pattern that evaluates against an 
RDF graph 

 

Definition: Hybrid Query 
A SPARQL/T Hybrid Query is a query that contains both internal and external triple patterns 

 

Definition: BGP Homogeneous Fragment 
A BGP Homogeneous Fragment (or BGP Fragment for simplicity) is a group of contiguous 
triple patterns of a BGP that are homogeneous, i.e. that are either all internal or all external 

 
Because External Triple Patterns returns traditional RDF objects, like URI and literals, and Internal 
ones return TextReference objects, we need a way to compare these two heterogeneous results 
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in order to make the requested joins. To this purpose, a new class of object is introduced, that 
contains three fields: an URI, a TextReference and a string, some of which may be null. In brief, 
the idea is that a comparison between two objects of that class is performed by first comparing 
the three fields separately (when present), and then merging the results. Ideally: 

• URIs should be compared either crispy (exact match) or by using a reasoner that deals 
with entailments (a fuzzy reasoner may also consider degrees of truth) 

• TextReferences continue to be compared based on they overlapping on the document 

• String similarity can be calculated using Word Embeddings, Edit Distance, or again with a 
measure of overlapping 

Provided that the non-trivial task of rendering these three measures comparable has been 
reasonably tackled, a t-conorm (for example, the highest of the three values) can be taken to 
represent the global similarity of the two objects. 
 

6.6.2 Reasoning Interface (RI) 
SPARQL/T aim to give to external OWL reasoners the ability to reason directly on the text, using 
a document in place of an RDF graph. Ideally, and similarly to the RDF case, the reasoner should 
be able to extract from the document facts that are not explicitly stated, but that can be entailed 
from it using the axioms of a specified ontology.  To illustrate the idea, let’s first see a simple 
example of traditional OWL reasoning, adapted from [DuCharme 2013]. Let’s say an RDF graph 
contains the OWL triples in Figure 26: 
 
1 

2 

3 

4 

p:tony           p:playInstrument    p:guitar. 

p:playInstrument rdf:type            rdf:property; 

                 rdfs:domain         p:Musician; 

p:mario          rdf:type            p:Musician. 

Figure 26: an OWL graph. Triple 3 can be read as “anyone who plays something is a musician”. 
Prefixes declarations have been omitted for brevity. 

Let q be a query containing the following triple pattern in its WHERE clause: 
 

?x rdf:type        p:Musician. 

A plain query engine, without a reasoner, will only match the triple 4, binding x with p:mario. 
An OWL reasoner on the other hand, from triple 3 knows that the domain of the property 
p:playInstrument are objects of the class p:Musician, i.e. that any triple in the form: 
 

s p:playInstrument  o 

means, among other things, that s belongs to the class p:Musician (“anyone who plays an 

instrument is a musician”). Therefore, because of triple 1, the reasoner can infer from the RDF 
graph that also p:tony is a valid bind for x. Basically, we want a reasoner to be able to do a 
similar inference with text documents, employing the exact same ontology and extracting facts 
at run time directly from the text. An example of document expressing the same facts of the 
graph in Figure 26 is reported in Figure 27. 
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Mario just plays guitar from time to time . Tony instead is a great musician 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 27: an example of (tokenized) document containing, expressed in natural language, some concepts of the graph in Figure 26. 

The UML Sequence Diagram in Figure 28 gives the basic idea of how the things should work. In 
this example the sequence of action is started by a SPARQT/T query, that asks the reasoner how 
to find instances of the class Musician (Step 1: Reasoner Request 1). However, a similar 

sequence can be started by any other actor or by the Reasoner itself. The reasoner then queries 
his own RDF/OWL graph, here represented by the “Triple Store” lifeline, to get information about 
the class Musician (Step 2: OWL Request 1). From the Triple Store come the information that 
Musician is the domain of a predicate play, that has the class Instrument as range. Now 
somehow (see later on), the reasoner knows that the SPARQL/T endpoint can be the source of 
triples involving the predicate play, and therefore sends it a query about that (Step 4: Text 

Query 1). There are many options here, but the simplest one is to just send the name of a stored 
query to run. The query succeeds, finding inside the document the sentence “Tony is playing the 
guitar”, and returns such information in the form of an RDF graph, whose schema should be well 
defined and known to both (see also later about this). To play safe, in step 6 the reasoner further 
checks the SPARQL/T results against its own Triple Store, verifying that the object of play 
actually belongs to the class Instrument, and finally closes the request with a positive answer.  
In principle, by implementing a reasoner inside SPARQL/T, or by adapting an existing one, the 
entire process just described could be run inside a single SPARQL/T query. However, 
implementing an interface decouples the extraction task from the reasoning one, with at least 
the following advantages: 

• Clarity: queries are smaller and simpler, and thus also easier to maintain 

• Reusability: a simple query with limited purpose can be reemployed in different contexts 

• Speed: the reasoner may be able to selectively call only the queries strictly needed to 
reach the conclusion 

• Abstraction: once libraries of extraction queries and related ontologies will be available, 
the user will be able to work at higher conceptual level, dealing with ontologies instead 
of with cumbersome NLP details. 

Moreover, there is the hope that a simple and well-designed reasoning interface may stimulate 
reasoner’s authors to try their product in the task of reasoning with text. 
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Figure 28: UML 
diagram describing 
the interaction 
between a SPARQL/T 
engine and an 
external reasoner. 
Ideally, the reasoner 
should be able to 
work on natural 
language documents 
as they were RDF 
graphs stored in a 
triple store, with 
SPARQL/T acting as 
an interface between 
the two. 
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In defining that interface, the primary goal must be to make it simple to adopt by the majority of 
existing reasoners. However, it should be noticed that probably some categories of reasoners are 
more suited than others for the task. The process just described resembles more a Backward 
Chaining reasoning one (see for example [Russel & Norvig 2010] for the general case definition, 
and [Curé &  Blin 2014] for the RDF case). Backward Chaining works backward from the goal (in 
this case, of finding instances of Musicians in the document), using rules to find facts that 

support the proof. In this case, when appropriate, those facts are asked back to the SPARQL/T 
endpoint. On the other hand, another big family of reasoners, the Forward Chaining one, start 
instead from the facts in the knowledge base and apply rules to generate new facts until no 
further inference can be made. This approach, in our case, requires to run all possible useful 
queries before the reasoning process can start, which can lead to a huge waste of time when the 
size of such set of queries is large (unless of course, a good machine learning algorithm could be 
employed to select just the useful ones). In other words, SPARQL/T query interface seems more 
suitable for Backward Chaining reasoning algorithms (or hybrid ones, like implemented for 
example in Apache Jena32) 
With the primary goal of minimizing the effort required to adapt existing reasoners, a major issue 
to consider is to define the most suitable protocol for data exchange33. Specifically, from the 
reasoner point of view: 
 

1. What is the easiest way to formulate a request to the SPARQL/T endpoint? 
2. What is the best format for the result? 

 
Moreover, what is the best way to let the reasoner know that a certain triple pattern should be 
directed to the SPARQL/T endpoint instead of matched inside its own RDF Triple Store? 
SPARQL/T implements a standard SPARQL endpoint interface, allowing complete queries that 
may return either CSV tables (for SELECT queries) or RDF graphs (for the CONSTRUCT ones). 
However, forcing the reasoner to create or store complex queries on its side does not help 
integration, and also violates the principle of decoupling the extraction and reasoning tasks. A 
better, simplified approach is probably to allow the reasoner to formulate queries of just one 
triple pattern at a time, and have in return the same kind of RDF triples that it could expect from 
a Triple Store. If appropriate, upon receiving the results the reasoner can in this way store them 
in the triple store itself, and proceed with the reasoning activity just as if they have always been 
there. However, from the SPARQL/T point of view, this does not need to be just a trivial single 
pattern query, but it is instead an evocation schema for a full fledge CONSTRUCT query locally 
stored in the SPARQL/T endpoint itself.  So, to continue with our example, two possible queries 
can be: 

Q1 ?x  rdf:type         p:Musician 

Q2 ?x p:playInstrument  ?y 

Figure 29: Two possible single-triple pattern queries 

and the results may look something like: 

                                                           
32 https://jena.apache.org/documentation/inference/ , fetched 18 February 2019. 
33 Assuming HTTP as the low level protocol 

https://jena.apache.org/documentation/inference/
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R1 
<http://.../001>  rdf:type    p:Musician 

<http://.../001>  rdfs:label  “Mario” 

R2 

<http://.../002>  p:playInstrument 

<http://.../003> 

<http://.../002>  rdfs:label     “Tony” 

<http://.../003>  rdfs:label     “Guitar” 

Figure 30: Two possible results of the queries in Figure 29 

The problem with the results in this format is that we are unable to assign a degree of truth to 
the triples, losing in this way possibly important information. Moreover, with the purposes of 
efficiency and reusability, a SPARQL/T query may want to extract an entire frame from the 
document, complete of all its possible Frame Elements, inside a single call. Therefore, we need 
to return a graph in a format suitable to represent both frames and truth values, but that still 
contains the triples in the form expected from a Triple Store (let’s call the latter the “main 
triples”). A similar problem is faced in the Linked Open Data community, where n-ary relations 
are represented with RDF triples in different ways inside different knowledge resources, 
complicating their integration and ultimately reducing the queries recall. Rouces et al. [Rouces et 
al. 2017] expose the problem, making a survey of the most relevant approaches, and suggest 
their own solution. Figure 31 illustrates the approach suggested here, with an example of how 
the result of query Q1 of Figure 29 may appear. Like the one suggested by Rouces et al., it is a 
two-layered structure, with a neo-Davidsonian part representing the frame and its element, and 
the main triple represented with a direct binary predicate. As suggested by Bobillo & Straccia 
[Bobillo & Straccia 2011], the truth values are reported in form of annotations, which are meant 
to assign human readable labels and text definitions to classes and properties, and thus to be 
ignored by inference engines. Moreover, while a fuzzy reasoner can take advantage of the fuzzy 
information, a crispy one can simply proceed as they do not exist. Notice that p:fuzzyLabel 
is not a predefined OWL annotation34, and must be declared as one with a triple like: 
 

p:fuzzyLabel  rdf:type  owl:AnnotationProperty. 

 
 

                                                           
34 OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax (Second Edition), 
W3C Recommendation 11 December 2012, https://www.w3.org/TR/owl2-syntax/ , fetched 27 January 2019 

https://www.w3.org/TR/owl2-syntax/
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Stored 
Query 

?X playInstrument ?Y 

 

Figure 31: an example of RDF graph returned by a call to a SPARQL/T stored query. The call is made passing to the 
SPARQL/T endpoint a single triple pattern, in this case containing the predicate playInstrument and the two variables 
X and Y. The Main Triple of the result (surrounded by the red rectangle) is in the format that should be expected from 
a Triple Store, when queried with the same triple pattern. The rest of the graph contains other information extracted 
by the query (in this case the entire frame) and a fuzzyLabel indicating the degree of truth of the extraction. The 
snippets of text extracted from the document are reported as labels. 

Clearly, this approach limits the expressivity of the communication to a single triple, and how 
much this may be a problem is at the moment unclear. 
Finally, a safe approach to allow the reasoner to distinguish the NLP triple patterns to send to 
SPARQL/T endpoint must be decided. Probably, like in the case of the fuzzyLabels suggested by 
Bobillo & Straccia, the best way is again to use RDF annotations, as they should not interfere with 
any reasoning process. However, from the computational point of view, there may be better 
methods to explore. 
 
 
p:Musician      p:nlpFunction  “SPARQLT-

endpoint1” . 

p:playInstrument p:nlpFunction  “SPARQLT-endpoint2” . 
p:nlpFunction    rdf:type      

owl:AnnotationProperty. 
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________________________________________________________________________________ 

Chapter 7 – Functions List 
________________________________________________________________________________ 

 
 

7.1 Search for Words, Lemmas and Embeddings 
This set of functions considers words, n-grams and lemmas of the document, allowing to search inside it 
those listed in the triple pattern. The comparison can be either crispy (an exact match), or employ a 
similarity measure based on a Word Embedding. The distinction between these two cases is made by the 
prefix of the predicate function (second position in the triple), whilst what follows that prefix (the 
subfunction code) specify how to use with the list of strings to search. This search list is given in the third 
(object) position of the triple pattern, and can be specified in two ways: either with a string literal (a space 
separated list of tokens) or with an input variable. As described in section 6.4.2, the concept of input 
variable is specific of SPARQL/T semantic, it does not exist in SPARQL for RDF. It simply means that the 
variable must already be bounded to a result before this triple pattern is encountered in the query string. 
Otherwise, quite obviously, the engine doesn’t know what to search. The evaluation of the triple pattern, 
i.e. the search inside the document, binds the subject variable (specified in the first position in the triple) 
with a set of results. In case of Word Embedding search, to each record of the result is assigned a score 
according to the similarity value. In case of crispy tests, the score is equal to 1.  
Given the list of words (or lemmas) to search, the subfunction code specify how to interpret such list. In 
case of crispy matches, the ANY subfunction compares the words of the document with every word of the 
search list, and returns any possible exact match. The SEQ subfunctions considers the search list as a 
sentence and searches inside the document all of its words in the exact same order. In this case wildcards 
are allowed: starting the search list with a set of n asterisks allows the engine to skip up to n position in 
the document in order to achieve the match (words can be skipped anywhere in between the first and 
the last token of the match). The PER subfunction is similar to the SEQ one, but allows permutations. It is 
obviously computationally more expensive, but may add flexibility when necessary. In case of Word 
Embeddings, we have a very similar set of possible subfunctions. The Word Embedding version of the ANY 
subfunction still compares the words of the document with every word of the search list, keeping the 
matches with the highest score. The AVG subfunction calculates an average vector of the Word 
Embedding of the search list, and compare it against the vectors of the document. The idea here (quite 
experimental) is to allow to search for a sort of average-concept, the “center” of the concepts listed in the 
search list.  The SUM subfunction on the other hand, is the analogous of the crispy SEQ, interpreting the 
search list as a sentence. It considers a sliding window on the document of the same size of the search list 
and, at each step, compares the sum of the Word Embedding vectors of the words in the window with 
the sum of those in the search list. The result is a set of snippets of text ranked accordingly to the similarity 
to the searched sentence (search list). This is a basic but quite effective way to achieve sentence similarity 
employing just Word Embeddings. It is outperformed by recent methods like Universal Sentence Encoder, 
but unfortunately these are still not available for most languages.   
All the above-mentioned function can work with words and with lemmas. A lemma is a root form of a 
word, like the infinite of a verb or the singular of a noun. It should not be confused with the word’s stem, 
which is a string obtained by stripping from the words its morphological suffixes and prefixes. The 
stemming process is much easier and faster than the lemmatization one, often employed in Information 
Retrieval for these reasons. However, just stripping the suffix from a string may lead to represent with the 
same stem words with very different meaning. For example, all the words in the set {“universal", 
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"university", "universe"} are likely to be stemmed into the string "univers"35. This problem is known as 
overstemming, and has a counterpart called understemming, that happens where different word 
inflection of the same lemma result in different stems. For this reason, SPARQL/T only consider lemmas 
and not stems. Another point to consider about lemmas is whether the kind of lemmatization process 
employed only considers the inflectional morphology of the word (tense of a verb, number of a noun, …) 
or if it also takes into account derivational morphology, i.e. transformations that usually involve a change 
in grammatical category (for example, creating the noun worker from the verb work, or the noun loudness 
from the adjective loud). 
The advantage of employing lemmas (or stems) in a crispy match is obvious: we can represent with a 
single string the full set of possible morphological variations of a word, involving tense, number and so 
on. This is in practice more a necessity that a pure advantage, especially when dealing with verbs. With 
Word Embedding instead, at least in principle, employing lemmas should not give any advantage, as we 
expect that morphological variations should not substantially change the word’s meaning (and thus its 
vector representation). Unfortunately, this is often not the case, and using the lemma instead of the word 
in Word Embedding comparisons appears to give much better results.  
 
?var FUNCTION:subfunction ‘searc-list’ 

?var FUNCTION:subfunction ?inputVar 

Figure 32:the two variation of the word search triple pattern: with a constant search list and with an input variable. 

 

FUNCTION 
PREFIX  

The subfunction applies to: 

WRD The words in the text  
LEM The lemmas of the words in the text 
EMB The Word Embedding vectors of the words in the text 
EML The Word Embedding vectors of the lemmas of the words in the text 

Figure 33: the possible prefixes of the word search function, indicating if the comparison is made between words or between 
lemmas, and if it is crispy (they are the same or not) or fuzzy, involving a Word Embedding. 

 

Crispy Matches (WRD & LEM) 
subfunction Description 

ANY Returns any word or lemma in the text that matches at least one of those specified 
in search-list.  

SEQ 
(sequence) 

Considers the search-list as a sentence, and returns matching snippets of 
text, i.e. sets of contiguous words of the text that matches all the words in 
search-list, exactly in the same order. A number n of wildcards (*) in the 
beginning of the list instruct the engine to skipping, if necessary, of a maximum of 
n words, in any position of the sequence.  

PER 
(permutation) 

Like SEQ, but does not impose the order of the words in the document to be the 
same of those in the search-list 

Figure 34:Possible subfunctions of the crispy (exact match) functions 

 
 

                                                           
35 Example reported by Wikipedia, attributed to the Porter stemmer [Porter 1980], 
https://en.wikipedia.org/wiki/Stemming , fetched 28 January 2019. 

https://en.wikipedia.org/wiki/Stemming
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Word Embedding Matches (EMB & EML) 
subfunction Description 

ANY Each word or lemma of the document is compared, using cosine similarity, with 
each words or lemmas in search-list, and the best match is taken. 

SUM The sum of the vectors of the words or lemmas in search-list is compared 
with the sum of the words (prefix EMB) or lemmas (prefix ELM) of a sliding window 
(of the same size) in the document.  

AVG The average of the vectors of the words (or lemmas) of search-list is 
compared with the vector of each word (or lemma) of the document 

Figure 35:Possible subfunctions of the fuzzy (Word Embedding) functions 

 

7.2 Regular Expressions 
Regular expressions in SPARQL/T can be applied to words, lemmas and sentences and have the same 
syntax of the Java’s ones.  
 
WRD:REX the regular expression is applied one token at a time 
LEM:REX the regular expression is applied one lemma at a time 
SEN:REX the regular expression is applied to the entire sentence 

 
For example, the following triple pattern searches, sentence by sentence, a few possible names of 
telephone offers: 
 

?Offer SEN:REX 
"(senza ?limiti|(iper|turbo) ?giga| (ten|top) 

go|(tim) ?(young|special|base))|(entra in tim)" . 

 

7.3 Named Entities 
A named entity is a real-world object that can be denoted with a proper name (or proper noun). According 
to Wikipedia: “A proper noun is a noun directly associated with an entity and primarily used to refer to 
that entity, such as London, Jupiter, Sharon, or Microsoft, as distinguished from a common noun, which is 
a noun directly associated with a class of entities (city, planet, person, corporation)” 
As another example, “Theresa May” is a named entity whilst “Prime Minister” is not, as it does not refer 
to a specific real life one.  
The task of identifying and classifying the named entities in a document is called Named Entity Recognition 
(NER). (Although sometimes in the literature NER indicates just the subprocess of finding the boundaries 
of the named entity, whilst the process of classifying it is called NEC and collectively they are called NERC). 
The number of classes taken into consideration by the NER task may vary from the very few of what is 
often called the core set (Person, Organization, Location, and Date and Time)36 to the more recent fine-
grained ones, that may include classes like biologist, composer, or athlete [Ekbal et al 2010]. 
It should be mentioned that the NER task does not reduce to a simple string look-up in a table (technically, 
a gazetteer), for a number of issues. Among others (see also [Maynard et al. 2016]): 

• names are ambiguous: “May” can be the name or surname of a person, a month of the year or a 

common noun (“you may go”) 

• many companies, diseases and laws are named after people 

                                                           
36 developed for the shared NERC task at MUC-6, see [Grishman & Sundheim 1995] 
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• the same entity can be mentioned in different ways (John Smith, Mr. Smith, John, J. S. Smith, 

Smith) 

• we need to consider acronyms (U.K. / United Kingdom) and aliases (IBM / Big Blue). 

 
The syntax of the NER triple pattern is given in Figure 36. The result is a relation, binded to the variable 
?var, containing all the snippets of text of the sentence that had been annotated with the class NE-
class (specified in the object of the triple). 

 
?var NLP:NER ‘NE-class’ 

Figure 36:syntax of the NER triple pattern 

The present implementation of SPARQL/T employs the NER provided by the Stanford CoreNLP library 2, 
with the set of NE classes listed in Figure 37 
 

PERSON 
LOCATION 
ORGANIZATION 
MISC 
SET 

MONEY 
NUMBER 
ORDINAL 
PERCENT 
DATE 
TIME 
DURATION 

Figure 37: List of Named Entity classes provided by the Stanford CoreNLP NER 

7.4 Dependency Parsing  
Proximity is a good indicator of relatedness, but it obviously often fails. For example, looking for 
a word that expresses a negation in proximity of the verb “to know” is a naïve (albeit sometimes 
effective) way of finding expression of the concept of <not knowing something>. But it is not 
enough for example to sharply distinguish between “not knowing X” (our target) and “knowing 
that something is not X”. A Dependency Parser [Kubler 2009] makes this kind of distinction easier 
to make, as in the first case the head of the relation “neg” is the verb “to know”, whilst in the 
second is the noun “X” (see Figure 38) 
 

  

?k emb:any  

'know'. 

?k DEP:NEG  ?n 

. 

Figure 38: The Dependency Trees of the two sentences "I dont't know X" and "I know it is not X" 37. Both sentences contain a 
negation in proximity of the verb "to know". The Dependency Trees allows to easily distinguish the two cases by looking at thehead 
of the relation “neg”. On the right: the SPARQL/T triple patterns that searches in the sentence instances of the concept “not 
knowing”, by using the Dependency Parsing together with the Word Embedding. 

The syntax for the triple pattern is: 
 
?head DEP:RELATION ?dependent 

 

                                                           
37 http://corenlp.run/ 
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Watching only at the annotations, and not at the document, it extracts a relation of two columns, 
with all the possible couples (head, dependent) found in the sentence linked by the specified 
relation. The list of allowed relations depends on the parser employed. For English the Stanford 
CoreNLP38 library has been adopted, which output grammatical relations in the Universal 
Dependencies v1 [Nivre 2016] [Schuster 2016].  The philosophy of Universal Dependency39 (UD) 
is to provide a universal inventory of categories consistent across languages. At the time of 
writing UD tree banks were available for over 60 languages. For Italian the TINT library40 [Aprosio 
2016] has been used. 
 

 

 
Dependency Description Dependency Description 

acl adjectival clause fixed fixed multiword expression 

advcl adverbial clause modifier flat flat multiword expression 

advmod adverbial modifier goeswith goes with 

amod adjectival modifier iobj indirect object 

appos appositional modifier list list 

aux auxiliary mark marker 

case case marking nmod nominal modifier 

cc coordinating conjunction nsubj nominal subject 

ccomp clausal complement nummod numeric modifier 

clf classifier obj object 

compound compound obl oblique nominal 

conj conjunct orphan orphan 

cop copula parataxis parataxis 

csubj clausal subject punct punctuation 

dep unspecified dependency reparandum overridden disfluency 

det determiner root root 

discourse discourse element vocative vocative 

dislocated dislocated elements xcomp open clausal complement 

expl expletive     

 

 
 
7.5 Semantic Role Labeling 
According to Palmer et al., the syntactic parser “… are long way from representing the full 
meaning of the sentences […] they do not specify ‘Who did What to Whom and How, Where and 
When?’” [Palmer et al. 2010].  A purchase event for example can be described using different 
verbs (buy, sell, acquire, …) and nouns (purchase, order, …), and the purchased thing can be the 

                                                           
38 https://nlp.stanford.edu/software/stanford-dependencies.html 
39 http://universaldependencies.org/ 
40 http://tint.fbk.eu/ 

Table 10: Universal Dependencies (http://universaldependencies.org/u/dep/index.html) 
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subject or the (indirect) object of the verb, or be in a noun compound relation [Jurafsky et al. 
2008]. The purchased thing and the purchaser are called Semantic Roles of the action purchase, 
and the Semantic Role Labeling (SRL) is the task of identifying them inside the text. 
Compared with syntactic structures, SRL gives a much coarser representation of the sentence, 
generally easier to deal with. The roles can often be quite long descriptions of places, person, 
manners of behavior and events, and purely syntactic distinctions, like active vs. passive form of 
the verbs, are removed. [Dagan et al. 2013]. Moreover, at least in principle Semantic Roles should 
be highly independent from the language, simplifying the development of multi-language 
queries. The set of roles of an SRL tool depends on the linguistic resource against which it is 
trained. At the moment, there are three major resources, that differ primarily in the granularity 
of the role labels: 

• FrameNet41, based on Fillmore’s Frame Semantics, is the most fine-grained. Different 
roles are defined for each of the 1224 (at the time of writing) different frames. For 
example, the Apply-Heat frame include Cook, Food and Heating Instrument roles (Frame 
Elements) 

• VerbNet42 consists of hierarchically arranged verb classes, with 24 semantic roles (Agent, 
Patient, Theme, Experiencer, …)  

• PropBank43 [Kingsbury & Palmer 2002] , explicitly developed for the purpose of becoming 
a training set for machine learning algorithms, defines semantic roles numerical (Arg0, 
Arg1, …), with Arg0 normally corresponding to the Agent, Arg1 to the Patient or Theme, 
and no consistent generalization across verbs for the higher numbered classes. It also 
defines Argument Modifier roles (ArgM) like location, temporal and manner. 

SPARQL/T adopts (for the moment) only the PropBank set of roles. The general triple pattern is 
written using the SRL prefix followed by the PropBank role. For example, assuming V contains the 
verbs of the sentences in the document, the following triple pattern fills R with their Arg0 roles. 
 

?R SRL:ARG0 ?V 

 
 
7.6 Word Net 
The Word Net functions allows simple query expansion: the actual list of words to search inside the 
document is formed by taking each word or synset44 in the list specified in the triple pattern and 
augmented it with every related word, according to Word Net and depending on the relation specified in 
the triple pattern itself. The possible relations are reported in Table 11.  
For example, the first of the two following triple patterns will search for seven words: “telephone”, 
“phone” and “telephone set” (the noun.artifact synset), but also for “telephony” (noun.communication) 
and “call”, “call up” and “ring” (verb.communication) . The second one instead, having specified the synset 
code, will only consider the first three. 

                                                           
41 https://framenet.icsi.berkeley.edu/fndrupal/ 
42 https://verbs.colorado.edu/verbnet/ 
43 https://propbank.github.io/ 
44 Synsets are specified with their eight digit numbers, than can be queried online at the web site of the Princeton 
University: http://wordnetweb.princeton.edu/perl/webwn 

http://wordnetweb.princeton.edu/perl/webwn
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?tel1 wn:synonym “telephone” 

?tel2 wn:synonym “04408223” 

 
 
synonym 

hyponym 

hypernym 

similar 

member_meronym 

member_holonym 

part_meronym 

part_holonym 

instance_hyponym 

instance_hypernym 

domain_category 

domain_member_category 

also 

verb_group 
Table 11: relations that can be used in th Word Net triple pattern 

7.7 Sentence Embeddings 
The sentences specified in the triple pattern are encoded employing the current encoder, at the moment 
either Google Universal Sentence Encoder or Facebook LASER. The nearest neighbors of the resulting 
vectors are then searched45 and the corresponding snippets of text returned. 
Like in the Word Embedding case, we can combine more than one sentence in the same triple pattern, in 
this case by separating them with any character in the set {‘.’, ‘!’, ‘?’ }. The sub-function code, as indicated 
in , specify what to do with the different sentences. 
 
SEN:AVG the query string is split into sentences and the average vector is employed in the search 
SEN:ANY the query string is split into sentences, the search is performed with each vector, and the 

best match is taken 
SEN:EQU the query string is taken as a single sentence 

 
For example, the following triple pattern search for sentences similar to either “Change the appointment” 
or “No show”. 
 
?x SEN:ANY "Change the appointment. No show ". 

 

7.8 Snippet concatenation and score threshold 
 
This function performs two operations. Its main purpose is to allow the concatenation of the snippets of 
text retrieved inside the same BGP, to form a single snippet that extends from the beginning of the first 
to the end of the last (with respect to their position inside the document). Optionally, a threshold t>0 can 
be specified, that causes the removal of the results with score below t. 
The example below searches for (opposite) sentiment words near an entity representing a telephone 
company, concatenates the results (variable S and O into variable C), and filters the records with lower 

                                                           
45 At the moment, with a sequential search inside a binary file. 
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score (which may be due to words not so similar to “love” and “hate”, or too far apart from the company 
name). The threshold is arbitrary and depend on the context, which means that it has to be found 
manually, and that a good one may not even exist. 
 
SELECT * 

WHERE 

{  { ?S ELM:ANY 'love' . } 

   UNION 

   { ?S ELM:ANY 'hate' . } 

   ?O NLP:NER 'TEL_COMPANY' . 

   ?C NLP:CAT "0.5" . 

} 

 
 

7.9 Lucene Queries 
 
?var IR:QRY  “Query String” 

 
The query string is passed to Lucene and the returned set of documents is used in place of the entire 
corpus for the rest of the query. The purpose of this triple pattern is to speed up the query execution, 
and it must be the first of the query. 
 
 

7.10 Unimplemented Functions 
This section lists some functions that are either not yet implemented or still experimental. They 
are report here nevertheless because we believe they are essential for the proper use of 
SPARQL/T. 
 

7.10.1 Constituency Parsing 
Constituency parser create trees that represent the sentence in term of their constituents, i.e. Noun 

Phrases (NP), Verbal Phrases (VP) and so on (see for example [Jurafsky & Martin 2008]). At the 
moment this kind of parsers are not as widely available as the Dependency ones, but when they 
are, they allow a more practical approach to Information Extraction, especially when dealing with 
multi-word concepts. A single triple pattern may be used for example to extract the full n-gram 
object of a certain action (starting from the verb), or to retrieve the verb that refer to a certain 
entity (starting for example from a Named Entity). Of course, we need to deal with imprecisions, 
errors, and misalignments of various kind between different annotation tools. So, a first group of 
triple patterns must be created for alignment purposes: we need a way to reach the first valid node of a 
parse tree starting from any snippet of text. Let X be such snippet of text. The following triple patterns 
allows such searches:  
 
?Y CP_UPR:ANY ?X Y = Any Upper node The smaller node containing X entirely, of any kind 
?Y CP_UPR:NP ?X Y = Upper NP node The smaller Noun Phrase containing X 
?Y CP_LWR:ANY ?X Y = Any Lower node The largest node fully contained in X, of any kind 
?Y CP_LWR:NP ?X Y = Lower NP node The largest Noun Phrase fully contained in X 
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Here, for simplicity of exposition, only the Noun Phrase (NP) cases have been shown, but any other kind 
of node can be used in place of NP. Also, here “largest” and “smaller” obviously refer to the extension of 
the snippet of text of the node.  
The remaining triple patterns assume instead that X is already aligned with a node of the tree, and allow 
to navigate it up and down: 
 
?Y CP_PAR:ANY ?X Y = Any Parent of X the parent of X (can be of any kind) 

?Y CP_PAR:NP ?X Y = Parent NP of X the parent of X, if it is a Noun Phrase 
?Y CP_ANC:ANY ?X Y = Any Ancestor of X Al the nodes on the path from X to the root (excluding X) 

?Y CP_ANC:NP ?X Y = NP Ancestors of X All the NP nodes on the path from X to the root (excluding X) 

?Y CP_CHL:ANY ?X Y = children of X All the children of X 

?Y CP_CHL:NP ?X Y = children of X All the Noun Phrases children of X 

?Y CP_DES:ANY ?X Y = Any Descendant of X Al the X subtree (excluding X) 

?Y CP_DES:NP ?X Y = NP Descendant of X All the NP nodes in the X subtree (excluding X) 

?Y CP_SIB:ANY ?X Y = Any Sibling of X Al the nodes descending from the parent of X (excluding X) 

?Y CP_SIB:NP ?X Y = NP Siblings of X Al the NP nodes descending from the parent of X (excluding X) 

 
Notice that most expressions can sometimes return an empty relation. For example, the triple pattern  

?Y CP_PAR:NP ?X 

does not return any triple if the parent of X is not a Noun Phrase. Because the join of an empty relation 
with any other relation is again an empty relation, together with the UNION clause this fact can be used 
to implement a sort of conditional execution: 
 
{   # if the parent of Y is a noun phrase  

    ?Y CP_PAR:NP ?X 

    … 

} 

UNION 

{   # if the parent of Y is a verbal phrase  

    ?Y CP_PAR:VP ?X 

    … 

} 

 
 

7.10.2 Negations 
Information Retrieval systems often disregards negation clues, treating them as stop words and thus 
becoming unable to discriminate between cases in which things that are stated to be present and others 
where the same things are stated to be absent. Although in many cases this may not be a problem, there 
are situations where being able to do this kind of distinction becomes critical. Clinical reports for example, 
according to Chapman et al [Chapman et al. 2001b], often contain lots of observations that denies the 
presence of a particular clinical condition. In their own words: “many of the most frequently described 
findings and diseases in discharge summaries, radiology reports, history and physical exams, and other 
transcribed reports are denied in the patient. […] Differentiating pertinent negatives46 from positive 
conditions in a clinical report is crucial to accurate indexing of the report”. More specifically, they found 
([Chapman et al. 2001a]) that the number of pertinent negatives were between 39% and 83%, depending 
on the type of report considered. 

                                                           
46 Here the term “pertinent negatives” indicates findings and diseases explicitly or implicitly described as absent in 
a patient. 
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A similar situation, probably with similar figures, arises with complaints, as they are often statements 
about things that the user expected to receive or achieve (and didn’t), and with technical reviews, where 
similar products with different set of features are compared. 
[Díaz & López 2019] provide a very recent survey on negation and speculation detection (speculations, or 
“edging”, are phrases used to mark an assertion as not sure). 
Correctly identifying a negation is not a simple task. With a certain approximation, it can already be done 
inside SPARQL/T, by looking for the Negation Clues (words like “no”, “not”, “never”), or by using a 
Dependency Tree (following the “neg” relation). However, there are many possible negation clues to 
consider, like pronouns (“nobody”), determiners (“any”) and prepositions (“without”). Negation can also 
be affixal (negative prefixes like “un-related”), or can be expressed by verbs (“I refuse to talk”) or adjectives 
(“an imperceptible smell invaded the room”). Moreover, identifying the scope, i.e. the exact snippet of 

text the negation refers to, is a highly difficult problem itself. See for example [Morante et al. 2011] (for 
English) and [Altuna et al. 2017] (for Italian). At the moment (according also to [Díaz & López 2019]), the 

only publicly available library for negation annotations (in English) seems to be the negtool47 [Enget et 
al. 2017]. We believe that would be very important to have in the future a function in SPARQL/T 
that allows the user to identify a negation and its scope with a single triple pattern: 
 

?X NLP:NEG “negation-form” 

 
Here, X will bind to the scope of the negation, whilst the suitable set of negation-forms need t be studied 
according to usefulness and tools capabilities. 

 
7.10.3 Textual Entailment 
Being able to retrieve sentences with meaning similar to a given one, almost independently from 
the way the concepts are linguistically expressed, is already a wonderful and quite surprising 
result, achievable in SPARQL/T by using Sentence Embedding triple patterns, which in turn rely 
on tools like Google Universal Sentence Encoder of Facebook LASER. However, similarity is quite 
a vague concept, that may lead to many false positives (according to the user’s information need). 
In some cases, what the user may want is to retrieve things that are equivalent from the logical 
point of view, i.e. things that entail one another. A definition of Textual Entailment, also known 
as Natural Language Inference (NLI), can be found for example in [Dagan et al. 2013]: 
 

Textual Entailment is a directional relationship between pair of text expressions T and H (Text 
and Hypothesis). We say that T entails H if humans reading T would typically infer that H is 
most likely true 

 
In other words, Textual Entailment consider plausibility of the hypothesis, not just certainty. 
Similarly, they also define contradiction: 
 

The hypothesis H of an entailment pair contradicts the text T if a human reader would say that 
H is highly unlikely to be true given the information described in T 

 

                                                           
47 https://github.com/marenger/negtool 
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As an example, the text “The drugs that slows down or halt Alzheimer’s disease work best the 
earlier you administer them” entail the hypothesis H “Alzheimer’s disease is treated using drugs”.  
From the procedural point of view, three approaches to Textual Entailment are generally defined: 

• Recognition Mode: given T and H, classify whether entailment holds or not 

• Search Mode: given H and a corpus, find all text fragments that entails H 

• Generation Mode: given a text T, generate sentences that entails H 
From the SPARQL/T point of view, Search Mode is clearly what is needed. Ideally, a triple pattern 
like the following one should fill the relation X extracting from the documents all the sentences 
that entail the possibility of treating Alzheimer with drugs: 
 
?X NLP:ENTAIL “Alzheimer’s disease is treated using drugs” 

 
At the moment, results are still experimental, but promising. The Stanford Natural Language 
Inference (SNLI) corpus [Bowman et al.2015] is a collection of 570152 sentence pairs labeled for 
entailment, contradiction, and semantic independence. It has been manually created by about 
2500 workers using Amazon Mechanical Turk, starting from the captions of the Flickr30k corpus. 
According to the authors, the dataset is SNLI is large and diverse enough to be used to train Deep 
Neural Networks models. In their test with a LSTM they obtained accuracy above 77%. Moreover, 
having employed Word and Sentence Embeddings, there is the hope that multi-language versions 
of such embeddings will allow a zero-shot transfer learning for languages where a corpus as big 
as SNLI does not exist. 
 

7.10.4 Sentiment Analysis 
Although the primary aim of this work is to deal with the details of the problems exposed in 
complaints and reviews, finding the snippets of text that clearly express a negative sentiment will 
certainly help to focus the search. For this purpose, a simple syntax like the following should allow 
the user to extract such snippets: 
 

?X NLP:SEN “sentiment-level” 

 
Here, sentiment-level should be a label in a restricted range to be defined, like { “Very Positive”, 
“Positive”, “Neutral”, “Negative” and “Very Negative” } 
 

7.10.5 OpenIE 
OpenIE extracts from documents triples of strings in the form (subject, predicate, object), without 
spending effort in trying to relate them to some ontology, nor to put them into a canonical form 
(see section 3.1). However, for the SPARQL/T point of view, this will probably be a very interesting 
resource.  Because of their structures, we need to reserve to OpenIE triples a specific triple 
pattern: a triple pattern with three variables extracts from the sentence all its OpenIE triples: 
 

?Subject ?Predicate ?Object 

(which resembles the SPARQL case, where a triple pattern with three variables retrieves the 
entire graph) 
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________________________________________________________________________________ 
 

Chapter 8 - Architecture 
________________________________________________________________________________ 
 
 
The actual implementation of SPARQL/T engine has three main components (see also Figure 40): 

• The “core”, NLP one, that deals with natural language documents 

• The RDF/OWL one, that uses Apache Jena48 

• The traditional Search Engine one, implemented with Apache Lucene49 
The NLP part is almost entirely written in Java, with very small Python parts that interfaces with the 

Sentence Encoders. For the parsing of the queries the Antlr 4 library50 [Parr 2013] has been used, 
together with an initial SPARQ 1.0 grammar available from the author repository51. The corpus of natural 
language documents is stored on groups (segments) of three files each: 

• The actual documents with their annotations, serialized into a JSON file 

• The Sentence Embeddings, saved as a raw binary file 

• A small index files that provides the links between the two 
The segments are generated by the user, normally according to source, topic and dates. To focus the 
search, or simply to speed up query execution, the user is allowed to restrict the set of segments to work 
with52. A special segment (the Working Segment) is intended to provide a meaningful set of documents 
of interest, where the user can test the queries and train the Machine Learning filters. The Working 
Segment is kept in RAM, possibly with the Embedding part in the GPU RAM. Its optimal size obviously 
depends on the hardware capabilities. Ideally, it should be big enough to provide a suitable number of 
examples to work with, but also small enough to allow an almost real time execution of the test queries. 
It can be loaded from disk or generated on the fly with a Lucene query, collecting from the Corpus 
segments the document whose id is returned by Lucene. Although Lucene queries are primarily intended 
for the purpose of building the Working Segment, they can also be part of the SPARQL/T query itself (see 
section 7.9), allowing to quickly select at run time a limited number of documents to submit to the heavier 
NLP analysis53. 
An important feature of SPARQL/T is that, thanks to its SPARQL syntax, NLP triple patterns that refer to 
the documents and their annotations can be seamlessly intermixed with traditional SPARQL ones that 
refer to an RDF/OWL graph. This kind of hybrid queries is achieved using Apache Jena54 RDF API and ARQ.  
Figure 41 shows an example of how a hybrid query is executed. The hybrid query on top left of the figure 
has two BGP (Basic Graph Patterns). The first one in an NLP one, that looks inside the documents’ 
annotations for all the Entities of the kind ‘TEL_OFFER’. The function NLP:EL (where ‘EL’ stays for ‘Entity 
Linking’) is the only one in SPARQ/T that return an URI together with the snippet of text to which it refer. 

                                                           
48 https://jena.apache.org/ 
49 https://lucene.apache.org/ 
50 https://www.antlr.org/ 
51 https://github.com/antlr/grammars-v4 
52 It cannot be considered a true faceted search, as it follows the structure of different forums, that unfortunately 
in general have different subdivision into topics. 
53 For this reason, Lucene statements must appear in the SPARQL/T query before any NLP triple pattern. Albeit 
inelegant, this choice seems acceptable for most practical purposes. 
54 https://jena.apache.org/ 
 

https://jena.apache.org/
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The second BGP is an RDF/OWL one, and is passed to Apache Jena, decorated with some prefixes and a 
“SELECT {} WHERE {}” clause55. However, the two BGPs share a common variable X, which means that its 
values must be taken from the result set of BGP1 and passed to Jena (Variable Bindings). Jena executes 
the query and returns its result set. In this case, it checks that X is the kind of offer that gives unlimited 
access to social networks, and returns its monthly cost. Finally, control returns to SPARQL/T, that performs 
the JOIN operation (on X) between the results of the two BGP. Notice that in this simple case we only have 
variables with associated URIs. In general, this may not be the case: we may have for example a variable 
Y that represent a snippet of text in BGP1 and an RDF literal in BGP2. Jena, as any other SPARQL engine, 
cannot deal with similarity measures. Therefore, text only variables must not be passed to Jena, but 
treated in the JOIN operation employing string similarity measures. Figure 39 gives the pseudo-code for 
the Hybrid Query execution 
 
A=set of variables belonging solely to the input relation  

B=set of variables belonging to both the query and the input relation 

C=set of variables belonging solely to the query 

 

query = QueryFactory.create(QueryString) ; 

model = RDFDataMgr.loadModel(RdfFile); 

foreach(row in InputRelation) 

{   QuerySolutionMap qsm=new QuerySolutionMap(); 

    foreach(var in B) 

    {   if(var contains URI) 

        {   Resource res =model.createResource(sURI); 

            qsm.add(var.Name,res); 

        } 

    } 

    QueryExecution qx=QueryExecutionFactory.create(query,model,qsm)) 

    ResultSet rs=qexec.execSelect(); 

    while(rs.hasNext()) 

    {   QuerySolution qs=rs.nextSolution(); 

        float score=row.score; 

        foreach(var in B) 

        {   RDFNode nd=qs.get(var.Name); 

            if(nd.isLiteral()) 

            {    sim=similarity(nd.asLiteral(),var.Value); 

                 score=adjustScore(score,sim); 

   } 

        } 

        if(score>0)   

            addSolution(ABC,score); 
    } 

} 

 
Figure 39: Pseudo-code of Hybrid Query execution 

 
 

                                                           
55 Notice that, for the sake of clarity but also for simplicity of implementation, triple patterns of two different kinds 
(NLP or RDF) must form homogeneous groups, syntactically enclosed in curly braces. 
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In general, the hybrid query execution proceeds along the NLP triple patterns, producing the usual relation 
(result set RSTXT), until an RDF group is encountered. Then, the result set produced up to that point is 
passed to the Jena engine, together with a SPARQL SELECT query containing the RDF triple patterns in the 
BGP. The result set RSRDF returned by Jena is then joined with the previous RSTXT to produce the output 
one RSOUT, and the execution continues. 
The values of the variables of RSTXT that are also used inside the RDF query are passed to Jena through a 
QuerySolutionMap object56. Unfortunately, it seems that this has to be done one record at a time, 

i.e. it is not possible to pass the entire relation to Jena, but we need to run the RDF query for each of the 
RSTXT records. However, query compilation can be placed outside the loop (QueryFactory.create 

function). Moreover, being Jena an open source project, higher performances can probably be achieved 
in the future by tackling inside its code. As already mentioned, because SPARQL engines cannot deal with 
similarity measures, we only pass them the variables containing URIs. More specifically, let T be the set of 
variables that appears in RSTXT and R those of RSRDF. 
We split T and R into three sets: 

• Let A = T \ R be the set of variables of RSTXT that are not present in RSRDF. 

• Let B = T  R be the set of variables present in both RSTXT and RSRDF. 

• Let C = R \ T be the set of variables of RSRDF that are not present in RSTXT. 
B is then the set of variables involved in the JOIN operation, and is further divided into: 

• BURI : the subset of variables in B that contains URIs 

• BSTR : the subset of variables in B that contains strings (snippets of text in RSTXT, RDF literals in 
RSRDF) 

The values of the BURI variables are passed to Jena inside a QuerySolutionMap object, whilst the BSTR 

ones are used to calculate the score of the output record. The output record is formed by the 
concatenation of the values of the input record for the variables in the sets A and B, and the values of the 
Jena query for the variables in the set C57. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                           
56 An obvious optimization, omitted in Figure 39 for simplicity, is to group records with the same values 
57 Which means that when literals variables from the input records differs from those of the query, we (arbitrarily) 
keep the former. 
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Figure 40: SPARQL/T Engine Architecture 
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Figure 41: Example of Hybrid Query execution 
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________________________________________________________________________________ 
 

Chapter 9 - Evaluation 
________________________________________________________________________________ 

 
This chapter evaluates the present implementation of SPARQL/T. Section 9.1 shows an example 
of its simplicity of use; section 9.2 measures its performances for the most common operations. 
 

9.1 - Example – Low Effort Queries 
 

This example shows the ease of use of SPARQL/T, which does not require the users to be aware 
of many of the available triple patterns to do something useful. The expressivity of the language 
is indeed illustrated by two very simple option allowed by SPARQL/T: 

• Enter an entire sentence in a single triple pattern and rely on sentence similarity 

• Pick only a few words for each concept of interest and compose a simple query, with a 
triple pattern for each concept, relying then on the internal join operation to properly 
combine the results 

Suppose that we need to identify mentions of hard disk failures within a group of 
sentences/documents. By googling “hard disk failure” it is easy to spot a few web sites that make 
their own list of such possible symptoms. We have picked one of those, and quite mindlessly 
collected the major points, reported in Table 12. We can think at Table 12 as the limited initial 
knowledge that the user may have on a subject before starting an exploration. 

SYSTEM 

S1 system fails to boot 

S2 system freezes 

S3 black screen appears 

S4 sudden shutdown 

S5 force restart 

FILES & DIRECTORIES 

F1 hard disk is not recognized 

F2 files and folders become invisible and corrupt 

F3 bad sectors and block appear in the hard disk 

F4 system files are altered 

ELECTRONICAL 

E1 power source is unreliable 

E2 power supply too high or too low 

MECHANICAL 

M1 hard drive does not spin 

M2 hardware makes noise 

HEAT 

H1 fans do not work 

H2 computer get heated 
Table 12: Possible symptoms of Hard Disk Failure 
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We have then collected, from the same Google query, a set of 60 HTML documents (excluding 
the one used to build Table 12), kept the initial 5000 character of the text of each one, and 
manually labeled them with the labels of Table 12 (It is obviously a multi-label classification 
problem, as the same document may report more than a symptom). A random sample of 20 of 
those documents has been used for exploration and to trim the query parameters. Let’s call it, 
quite improperly58, the training set. All the remaining documents constitute the test set. 
Three kinds of queries have been made: 
 

1. Trivial queries of just one triple pattern: the EMB:USE triple pattern accepts in input a 
sentence and, employing Google Universal Sentence Encoder (USE) [Cer at al. 2018], fills 
a relation with the sentences of the document similar to the given one. Here, the 
sentences of Table 12 have been used exactly as they are. 

2. To improve precision, to the same queries a simple filter has been added (NLP:CUT), 
which applies a threshold to the score of each result. Results below the threshold are 
discarded. Instead of manually choosing the best threshold for each case, for the sake of 
comparison, the thresholds have been arbitrarily chosen as the ones that maximize the 
F1 score in the training set. 

3. We finally manually tried to improve over that precision with simple queries of two or 
three triple patterns. The LEM:ANY triple pattern accepts a list of lemmas of words and 
fills a relation with any word in the document whose lemma is contained in the list. (As a 
reminder, a result is returned from a sequence of triple patterns59 when the elements 
extracted by each pattern co-occur inside the same sentence. Results are then scored 
according to their distance). Again, for the sake of comparison, only triple patterns of this 
kind have been used in these queries, whilst the lists of lemmas have been manually 
collected from the documents of the training set.  

 
The following figures report examples of queries of type 2 and 3, for the label E1 (power source 
unreliable) together with their respective results on the test set. 
 
SELECT * 

WHERE 

{ ?E1 EMB:USE  'power source is unreliable' . 

 ?TH  NLP:CUT  '0.750' . 

} 
Figure 42: query of type 2 for case E1 (power source is unreliable). It consists of a triple pattern using Universal Sentence 
Encoder to measure sentence similarity, followed by one that specifies a threshold. The threshold is the value that maximizes, in 
the training set, the F1 score. 

 
 

                                                           
58 There is no Machine Learning involved here, so the terminology Test/Training Set is quite abused. However, in a 
sense, in selecting the words to use and in trimming the threshold of the score we are still “teaching” the query 
what to return. In a more realistic set, many trial and error test would probably need to be performed in a limited 
number of examples, also involving different graph patterns, before running the lengthy job on the full dataset. 
59 In the case that, like here, they belong to the same BGP 
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Score Extracted snippet 

0.797 
while an electronic failure is often due to external issues such as a power spike, electrical 
surge or a major fluctuation in voltage. 

0.793 lightning or power surges. 

0.757 
in reality, this is not something that computer fixers do, and the cost could be in the 1000 's 
if you can find the appropriate experts. 

0.757 sudden power surges due to power outages will cause hard drive failure 
Figure 43: Results of query of Figure 42, applied to the Test Set 

 
SELECT * 

WHERE 

{ ?PW LEM:ANY  'power voltage electricity electrical'. 

 ?FA LEM:ANY  'surge outages lighting strikes failure'. 

} 
Figure 44: Query of type 3 for case E1 (power source is unreliable). It consists of few (in this case 2) triple patterns that search for 
the lemmas of some specific words. Proper words are most likely found by skimming the training set. 

Score Extracted snippet 

1.000 electrical failure. 

1.000 strikes, can cause electrical failure. 

1.000 functions, then an electrical failure may be the source 

0.889 power surges due to power outages will cause hard drive failure. 

0.741 while an electronic failure is often due to external issues such as a power spike, electrical 
surge 

Figure 45: Results of query of Figure 44, applied to the Test Set 

The limited number of documents employed in this test does not allow to say a lot on the results. 
However, as shown in Table 13 and quite as expected, when applied to the Test Set, queries of 
type 2 give better recall, whilst queries of type 3 gives in general better precision. Overall, even 
this trivial approach, that totally disregards the structure of the sentence, often gives acceptable 
results, at least in an exploratory context. 
 

  

Single triple 
'USE' query 

with threshold 

Simple Query 
with 2 or 3 

triple patterns 

  Pre Rec Pre Rec 

E1 power source is unreliable 16.7 100 50 50 

F1 hard disk is not recognized 33.3 80 50 80 

F2 files and folders become invisible and corrupt 50 66.7 80 44.4 

H2 computer get heated 100 75 75 75 

M2 hardware makes noise 100 38.5 100 46.2 

S1 system fails to boot 62.5 71.4 20 14.3 

S2 system freezes 62.5 62.5 100 62.5 
Table 13:Precision and Recall of some queries of type 2 and 3 applied to the TEST set 
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9.2 Performance Measures 
 
The following tests have been performed on an “average” PC, mounting an AMD Athlon X4 880k at 4GHz, 
with 16 GB of RAM, SSD disk and no GPU60. The dataset consists of 20293 messages downloaded from a 
single Italian forum on Telephony, mostly regarding the TIM telephone company, and related to the year 
2018. The Word Embedding employed is a 300 vector one trained with fastText61 and downloaded from 
the fastText web site62. Time is measured in millisecond, using java System.currentTimeMillis(), averaged 
over 10 trials. In many circumstances execution time depends on the memory constraint imposed, i.e. on 
the size of the window used to extract the relation (see chapter 6.4.6). Therefore, two kinds of 
measurement are here reported: 

• With a small window size of 10 elements (indicated by S) 

• With a large window size of 1000 elements (indicated by L) 
The L window is large enough to perform unrestricted crispy searches (like words or lemma), but is still a 
limiting factor for Embedding searches: almost any word is similar to almost any other, albeit by a very 
small amount, which imply that the relations are fully filled at each step of execution. 
 
The first test is a simple search of a word in the entire corpus (function WRD:ANY). Four words have been 

chosen, with an (almost) exponential decreasing frequency (measured on the corpus itself). As expected, 
with the memory constrained search S, which is supposed to be the normal case, we have a time that is 
almost independent from the size of the result63. Obviously, for the unconstrained search L the 
dependency is evident.  
 

word freq Avg Time S Avg Time L 

ho 1.0567% 35 169 

attivata 0.1010% 32 46 

richieste 0.0100% 31 34 

usate 0.0010% 31 32 

 
For the Word Embedding case instead (EMB:ANY), for the reason just explained, time does not depend 

on the word frequency. 
 

word freq Avg Time S Avg Time L 

ho 1.057% 780 1563 

attivata 0.101% 777 1540 

richieste 0.010% 779 1543 

usate 0.001% 781 1556 

 
A basic form of Sentence Embedding can be achieved by calculating the sum of the vectors over a sliding 
window on the text (function EMB:SUM). As the following table shows, this can be achieved without 
performance concerns. 

                                                           
60 With the present implementation, the only timing that could benefit from GPU are those involving Sentence 
Encodings, but only during the encoding of the encoding of the query sentences. 
61 https://fasttext.cc/ 
62 fasttext-italian-cc.it.300.vec, from https://fasttext.cc/docs/en/crawl-vectors.html, fetched May 30, 2019 
63 Which also means, as discussed in section 6.4.6, that some potentially useful results can be missed. 

https://fasttext.cc/docs/en/crawl-vectors.html
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words Avg Time S Avg Time L 

ho 780 1563 

ho attivato 1003 1780 

ho attivato una 1073 1831 

ho attivato una sim 1140 1899 

ho attivato una sim vodafone 1191 1969 

 
The following table and graph show the execution time when a CROSS JOIN operation is involved between 
the results of two consecutive triple patterns, i.e. in the case that they have no variable in common. As 
expected for the memory constrained case, time grows linearly with the number of triple patterns 
involved. 
 
 
 

Triple Pattern Avg Time S 

?X1 EMB:ANY "attivare". 777 

?X2 EMB:ANY "richiesta" . 1885 

?X3 EMB:ANY "sim" . 2903 

?X4 EMB:ANY “vodafone” 3694 

?X5 EMB:ANY “ieri” 4516 

?X6 EMB:ANY "pomeriggio" 5444 
  

 
The last following table show the performances when an INNER JOIN is involved, i.e. when triple patterns 
shares some variables. The time becomes almost constant, as the increasing number of patterns to extract 
is compensated by the decreasing number of matches found at each step. 
 

Triple Pattern Avg Time 

?x LEM:ANY "attivare" . 109 

?x NLP:POS "verb" . 129 

?x DEP:NSUBJ ?y . 117 

?y NLP:POS "noun" . 118 

?y DEP:DET ?z . 138 

 
In conclusion, albeit in absolute terms there is still a lot of space for improvement, the actual SPARQL/T 
implementation does not present more than linear behavior on the most common and useful operations. 
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________________________________________________________________________________ 
 

10 – Future Work 
________________________________________________________________________________ 
 

For time constraints, many things described in the Conceptual Model, like the GRAPH and the 
OPTIONAL clauses, are not yet properly implemented. Many useful NLP functions, detailed in 
section 7.10, are also missing, and the Reasoning Interface described in section 6.6.2 must be 
focused more, and more precisely defined. However, an even greater and more exciting 
development goes into the direction of Computer Vision (CV). Compared with the analysis of 
Natural Language texts, the analysis of images presents similar aims, employs similar techniques 
and ultimately reveals very similar problems. This suggest that SPARQL/T can have with CV a role 
very similar to the one it has in Natural Language Processing (NLP), allowing the user to employ 
the same query language to retrieve, classify and extract information from both text and images 
(or videos). It should also allow to refer to both modalities together, for example by working with 
a video and its commentary audio at the same time. Moreover, it should hopefully avoid the user 
to make explicit distinctions between the two modalities, allowing (some) triple patterns to 
seamlessly match either images regions or text snippets, whichever is more similar to the query 
pattern. The rest of the chapter is organized as follows: section 10.1 analyzes various CV tasks, 
comparing them with their NLP counterparts; section 10.2 consider related works; section 10.3 
briefly exposes a possible practical approach. 
 

10.1 CV-NLP Task Comparison  
Object Detection and Recognition is the CV task of detecting objects inside images, finding their 
spatial location (for example, their bounding boxes) and classifying them into a certain number 
of predefined categories. A very recent survey of the field is given in [Liu et al. 2019]. Actually, 
there are two types of object detection: detection of categories (human, dog, bicycles …), and 
detection of specific instances, like a specific actor, building and so on. The former resembles the 
NLP task of Named Entity Recognition (NER), whilst the latter is the CV equivalent of the Entity 
Linking / Named Entity Disambiguation one (see for example [Nouvel et al. 2016]). Although 
Object Detection is still an open problem, nowadays, according again to [Liu et al. 2019], precision 
above 70% can be reached with detectors trained for almost one hundred classes, which is 
already clearly a good result. 
Krizhevsky et al. observed that the vectors produced by the last hidden layer of a Convolutional 
Neural Network trained for image classification are similar (in terms of Euclidean distance) for 
similar images (as judged by humans) [Krizhevsky et al 2012]. Babenko et al. successfully used 
that vectors (named Neural Codes) in the context of Image Retrieval [Babenko et al. 2014]. In 
other words, Neural Codes forms the CV counterpart of the NLP Word Embeddings. 
The Facial Expression Recognition (FER) task64 aim at recognizing in images and video the human 
face expression. Most of the times it refers to the seven expressions defined by Ekman & Friesen 
(Happiness, Sadness, Surprise, Fear, Anger, Disgust, Contempt) [Ekman & Friesen 1978] [Ekman 
& Friesen 2002]. In a recent survey Ko et al. compared (on a same dataset) different conventional 

                                                           
64 Sometimes referred as “Facial Emotion Recognition” task [Ko et al. 2018] 
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and Deep Learning approaches to the FER task, finding an average accuracy of 63.2% on the 
former and 72.65% on the latter [Ko et al. 2018]. Besides facial expressions, emotions can also 
be detected observing (in video and audio) nonverbal cues like the tone of voice (para-language), 
body movement, and physiological changes (skin color) [Avots et al. 2018]. Moreover, the task 
can be extended to identify the emotion of an entire group of people (Group-level Emotion 
Recognition, GReco [Dhall et al. 2017]). These are clearly new and more difficult tasks, for which 
a series of challenges exists from 2013 (Emotion Recognition in the Wild, EmotiW, [Dhall et al. 
2016]). From the SPARQL/T point of view, Emotion Recognition of any kind can be considered 
the CV counterparts of Sentiment Analysis. 
Images normally contains more than an object, and there are actually many different tasks in CV 
that consider interactions between objects of the scene. Visual Relationship Detection is the task 
of detecting relationships between objects in an image, generating triples of the form (object1, 
relationship, object2) [Lu et al 2016]. The task can be restricted for example to spatial 
relationships (above, below, inside, around), or to human-object interaction (HOI). As pointed 
out by Lu et al.: “… it is the relationship between the objects that determine the holistic 
interpretation of the image […] an image with a person and a bicycle might involve the man riding, 
pushing, or even falling off of the bicycle”. The NLP counterpart of the CV Relationship Detection 
is probably the OpenIE philosophy of Information Extraction. HOI task can be limited to classify 
the coarse activity of the person (“playing baseball”, “cooking”), or can go into the details, 
considering the possible semantic roles of the specific action (“hitting the ball with a bat”, 
“chopping onions with a knife”). In the latter case it is called Visual Semantic Role Labeling [Gupta 
& Malik 2015]. Finally, objects, attributes and relationships of a scene can be combined in a Scene 
Graph [Johnson et al. 2015], which is the CV form of the NLP Knowledge Extraction task. 
Table 14 reports the CV task listed here together with their NLP counterparts. 
 

Computer Vision task Natural Language Processing task 

Object Detection and Recognition Named Entity Recognition / Disambiguation 

Neural Codes Word Embeddings 

Emotion Recognition Sentiment Analysis 

Visual Relationship Detection Open Information Extraction 

Visual Semantic Role Labeling Semantic Role Labeling 

Scene Graph Knowledge Extraction 
Table 14: CV - NLP task analogy 

 

10.2 Related Work 
Image and Video captioning is the task of generating a natural language description of an image 
or portion of video. In fact, if the captioning contains a complete description of the image there 
would be no need to adapt SPARQL/T to CV. However, this is often not the case. Captioning is 
expected to capture the salient features of a scene, leaving out most details. But what is relevant 
is a matter of what we are looking for, and cannot in general be predicted before-hand.  
Scene Graphs can also be an approach alternative to SPARQL/T. They are meant to formally 
represent the scene, typically in RDF form. Although in this case there is no limit to the level of 
detail represented, the problem of extracting the semantic graph from a scene looks not easier 



 

84 
 

than the problem of extracting it from a document, i.e. to the task of Knowledge Extraction 
described in Chapter 2. Therefore, it is likely to suffer from the same issues we have described: 
semantically similar scenes are likely to generate graphs with very different structures, making 
the query construction very cumbersome from the user point of view. 
 

10.3 Practical Approach 
As observed for example by Barnard in [Barnard 2016], the relation between visual and linguistic 
information can be from largely intersecting to largely disjoint. Informally, he defines two 
extremes: 

• Redundant: the two modalities are informative about each other  

• Orthogonal: they completely independent from each other 
In between these two extremes lies a continuum of complementary possibilities, where both 
modalities provide information about the same things, but are not entirely redundant.  
As an example, a video intended for didactic purposes and its auditory comments will probably 
be highly redundant, whilst annotations intended for colleagues tends to be highly orthogonal, 
like some short notes about what to do. 
To allow the user to easily deal with different degrees of orthogonality, we would like a query to 
seamlessly adapt to both modalities. He should not be forced to write different triple patterns to 
express the same concept in visual and textual terms. Let’s say for example that we want to 
retrieve all the scenes from a set of movies where someone is cooking broccoli. The following 
query, albeit with some uncertainty, should do the job: 
 
1 ?X NLP:POS “verb” 

2 ?X LEM:ANY “cook” 

3 ?Y EMB:ANY “broccoli” 

 

Notice that, for the sake of explanation, both crispy (using lemma) and fuzzy (using Word 
Embedding) Triple Patterns have been employed. 
We expect three cases: 

A. The information is fully contained in the text (subtitles), for example in a sentence like 
“Mom is cooking broccoli”. Here the classical SPARQL/T rules apply:  

1. All the words xi that are tagged as verbs and whose lemma is “cook” are inserted 
into X (Triple Patterns 1 and 2) 

2. All the words yj similar to “broccoli”, according to a certain Word Embedding, are 
inserted into Y (Triple Pattern 3) 

3. All the possible couples (xi,yj) are generated, provided xi and yj belong to the same 
sentence, and then ranked according (among other things) to the distance 
between the words xi and yj (number of tokens in between the two) 

B. The information is fully contained in the visual part, i.e. the picture clearly shows 
somebody cooking broccoli. Then, in a way similar as before: 

1. The actions xi of the scene are extracted, and the ones whose label is “cook” are 
inserted into X (Triple Patterns 1 and 2) 
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2. The Neural Codes of the objects yj resulting from Object Detection are compared 
against a prototype Neural Code of some broccoli. The most similar objects are 
inserted into Y (Triple Pattern 3) 

3. All the possible couples (xi,yj) are generated, this time ranked according to the 
geometric distance between xi and yj in the scene 

C. The information is distributed among modalities. For example, a video may clearly show 
somebody cooking, but ingredients may not be easily distinguishable. However, a 
someone is saying “… we first cut the broccoli …”. In this case: 

1. The first two Triple Patterns find a match in the image (xi extracted like in B1) 
2. The last one finds a match in the text (yj extracted like in A2) 
3. The couples (xi,yj) are ranked according to overlap in time between image and 

voice 
From the query engine point of view thus, it is just a matter of trying both modalities and keep 
the best results. What really changes are the three different way of performing the join: based 
on word distance in the text, on geometrical distance in the video, and on time distance when 
considering both together.  
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