

Corso di Dottorato di ricerca

in Informatica
ciclo 31°

Tesi di Ricerca

Information Retrieval and Extraction

from Forums, Complaints and
Technical Reviews

SSD: INF/01

Coordinatore del Dottorato

ch. prof. Riccardo Focardi

Supervisore

ch. prof. Salvatore Orlando

Dottorando

Bruno Quintavalle

Matricola 761617

ii

Many thanks to prof. Salvatore Orlando
 for the patience and for the precious indications provided,

and to prof. Fidel Cacheda and prof. Renato Fileto
for the corrections and very useful suggested ideas.

iii

__

Preface
__

This thesis is about a query language that, in my view, should allow an average computer technician to
easily deal with Natural Language Processing tasks, without the understandable fear for its technicalities.
In the company I work for I see everyday lots of people naturally playing with complicated SQL queries
involving heterogeneous systems, about which I would be scared myself. On the other hand, it is very easy
to frighten them with any simple expression containing mathematical symbols or otherwise strange
characters. My guess is that a query language like SPARQL should do the job, provided I can manage to fit
all the most useful NLP task into simple triple patterns.
Mining complaints is a necessity of many companies nowadays, and to make it simple is one of the main
focuses of this research.

iv

__

Abstract
__

Complaints and technical reviews often describe complex problems, most of the times in very
articulated ways. Over that kind of corpora, we are considering here three classical tasks:
Information Retrieval, Text Classification and Information Extraction. In this context however,
these tasks should take into special consideration the structure of the sentence, with special
attention to verbal phrases, as complaints are usually descriptions of actions that have been
performed whilst they shouldn’t (or the other way around). We want to leverage results from
traditional NLP tasks like Semantic Role Labeling and Dependency Parsing, but also to employ the
most recent advances in the field of Word and Sentence Embedding. Moreover, Semantic Web
technologies should be employed when background knowledge is required. In order to deal with
these three heterogenous approaches, a particular implementation of the SPARQL query
language has been developed. It provides a language for template extraction that seamlessly
mixes the state of the art of the above-mentioned tasks. Its main difference from SPARQL is the
ability to deal with similarity and uncertainty. However, its syntax is strictly a subset of the
SPARQL 1.1 one, simplifying the integration with OWL ontologies and allowing its use as an
endpoint for other engines in a federated query context. The case studies illustrated here focuses
mainly on problems related to telecommunication companies, using publicly available corpora
and forums threads extracted from the web. However, the language has been designed to be
used in any context that requires extracting information from corpora of complex or technical
descriptions.

v

__

Table of contents
__

Table of contents
• Preface

• Abstract

• 1 - Introduction

• 2 - Comparison to Knowledge Extraction tools

• 3 - Related Work
o 3.1 Knowledge Extraction tools
o 3.2 Tools that employ SPARQL syntax
o 3.3 Annotation Ontologies

• 4 - Neural Models
o 4.1 - Word Embeddings

▪ 4.1.1 Introduction
▪ 4.1.2 Embedding Evaluation
▪ 4.1.3 Meta Embeddings / Domain Adaption
▪ 4.1.4 N-grams and Collocations
▪ 4.1.5 Lemmatization
▪ 4.1.6 Effect of the corpus size on the embedding quality
▪ 4.1.7 Custom embeddings
▪ 4.1.8 Chapter Conclusions

• 5 - SPARQL/T Language Introduction

• 6 - SPARQL/T Conceptual Model
o 6.1 About Conceptual Models
o 6.2 Principles of Operation
o 6.3 Ambiguity of language vs Uncertainty of results

▪ 6.3.1 Some (open) issues due to similarity comparisons

o 6.4 Main Differences between the Text and the RDF Models
▪ 6.4.1 Results are Text References and not URIs
▪ 6.4.2 Input Objects
▪ 6.4.3 OPTION & MINUS (positive and negative Re-ranking)
▪ 6.4.4 UNION vs Ranking Aggregation
▪ 6.4.5 GROUP BY clause
▪ 6.4.6 Memory Constrained Search
▪ 6.4.7 Machine Learning Classification of the results
▪ 6.4.8 Indexing

o 6.5 Core Conceptual Model
▪ 6.5.1 Definitions
▪ 6.5.2 SPARQL/T Algebra

vi

▪ 6.5.3 Extraction Scopes
▪ 6.5.4 Query Evaluation

o 6.6 SPARQL/T peculiar concepts
▪ 6.6.1 Hybrid Queries
▪ 6.6.2 Reasoning Interface (RI)

• 7 - Functions List
o 7.1 Search for Words, Lemmas and Embeddings
o 7.2 Regular Expressions
o 7.3 Named Entities
o 7.4 Dependency Parsing
o 7.5 Semantic Role Labeling
o 7.6 Word Net
o 7.7 Sentence Embeddings
o 7.8 Snippet concatenation and score threshold
o 7.9 Lucene Queries
o 7.10 Unimplemented Functions

▪ 7.10.1 Constituency Parsing
▪ 7.10.2 Negations
▪ 7.10.3 Textual Entailment
▪ 7.10.4 Sentiment Analysis
▪ 7.10.5 OpenIE

• 8 - Architecture

• 9 – Evaluation
o 9.1 Example 1
o 9.2 Performance Measures

• 10 – Future Work

o 10.1 CV-NLP Task Comparison
o 10.2 Related Work
o 10.3 Practical Approach

• 11 – References

1

__

Chapter 1 – Introduction
__

When dealing with a dataset of complaints and technical reviews, there are basically three things that
we want to be able to do:

• retrieve some of them, according to some information need

• count them, to measure the importance of a specific area of problem

• extract detailed information from them, for example to gain some insights about how to correct
the problem

Retrieval of complaints and technical reviews need a special approach. Complaints are usually convoluted
descriptions of very complex problems. Moreover, they often implicitly refer to some “obvious”
background knowledge that we need to represent. Clearly, in order to correctly retrieve them, the
structure of the sentence and of the discourse cannot be disregarded, as instead is normally the case in
classical Information Retrieval (IR) approaches. Classical IR systems, having to focus on speed and to deal
with huge amounts of documents, makes some necessary simplifications, almost always considering an
entire document as an unstructured Bag Of Word (BOW). Here we cannot do the same, and certainly, the
burden of employing Natural Language Processing (NLP) techniques will make the things much slower and
less scalable. But from the perspective of a company that wants to explore a specific area of interest,
speed and scalability may not be a major concern: datasets may be big, but not huge (certainly not the
size of the web), and results are not necessarily expected in real time (few hours of computation are easily
acceptable).
The second thing that we want to be able to do with a set of complaints is to count the instances of a
specific class of problem, within a reasonable margin of error, to measure its entity. This is clearly a
classification problem. However, the difficult here is the creation of the training set. It is unlikely that a
company is willing to spend the necessary time and effort to collect thousands of examples for each case
of interest before having the first results. Also, for most specific problems, these thousands of examples
may not exist at all, not even in the web. Therefore, we need to find classification methods that focus on
minimizing the number of instances and the user involvement, rather than just considering evaluation
metrics like precision and recall.
The third requirement is the ability to perform Information Extraction (IE) on the retrieved documents.
The user may want to know things like “what gets broken” more often, or “how much has been payed”
on the average for something. The problem here is that there are obviously many different ways to
express all those things in natural language. Fortunately, this issue has been studied from a very long time,
and tools are already available off-the-shelf that tackle the problem from different theoretical
perspectives (Syntactic Parsing, Semantic Role Labeling, Sentence Similarity). However, none of these
tools alone seem to provide a solution that works in all cases. At the moment, the best option from the
user perspective is probably an environment that allows the choice of any of them, and possibly also their
seamless interaction.

With these three goals in mind, instead of creating a pipeline specifically tailored for the purpose of
complaint analysis, we built a flexible tool that may be used by others to tackle similar problems.
Interestingly, an area with very similar problems is the field of clinical research, and in particular the
analysis of clinical narrative, thanks to the rapid growth in the implementation of electronic health records
(EHRs). We report here the words of a very recent article [Zhang et al 2018]: “psychiatric symptoms often

2

consist of subjective and individualized descriptions, which are presented in details of the patient’s
experience. Instead of a single word or simple noun phrase, psychiatric symptoms have tremendous
syntactic and semantic variability. […] Therefore, it is quite challenging for traditional natural language
processing (NLP) techniques to automatically extract such diverse mentions of psychiatric symptoms from
text.”
In the hope to be useful also to this and other applications, we wrote a tool that aim at unifying the state
of the art of traditional NLP tools, including the newest Neural Embeddings ones. Ideally, this tool should
be intuitive and easy to use, allowing persons without a strong background in NLP to achieve the above-
mentioned goals with little coding and very little effort. It is a query language derived from SPARQL
(named SPARQL/T, like “SPARQL over Text”), whose syntax is a strict subset of SPARQL 1.1 one, but that
works directly on the document’s (pre-annotated) text instead of on a set of RDF triples. It allows to
seamlessly mix inside the same query clauses that refer to traditional NLP tasks with others that involves
uncertainty and similarity measures. For this reason, we had to write its engine from scratch, as existing
SPARQL implementations cannot deal very well with uncertainty. However, keeping the syntax exactly the
same, besides avoiding the introduction of a dialect, also simplifies its integration with Semantic Web
technologies. (for example, SPARQL/T can act as a standard SPARQL endpoint, i.e. it can participate to a
federated query initiated by another SPARQL engine).

3

__

Chapter 2 – Comparison to Knowledge Extraction tools
__

The triple patterns of a query in SPARQL/T acts directly on the text and its annotations, extracting
knowledge during query execution. An obvious alternative is to extract all possible useful triples
from the documents into a triple store, and then employ a standard SPARQL engine. This is
exactly what Knowledge Extraction (KE) tools allows to do. This chapter explores the pro and cons
of both solutions. In short: at run time pre-extracted knowledge has the advantage of speed.
However, the KE task is a very difficult one. Similar documents do not always result in structurally
similar graphs, making it difficult to write the queries. Thus, from the user point of view,
SPARQL/T similarity-based approach is definitely much easier.

Knowledge Extractors tools transform Natural Language documents into machine-interpretable
formats, often into RDF/OWL graphs than can be stored into standard triple stores (and thus
efficiently indexed) and queried in standard SPARQL (see chapter 3.1 for more details). It is
therefore natural to ask what advantages can be achieved with the SPARQL/T approach, i.e. by
working directly on the documents and their NLP annotations, and thus giving up (at least for the
moment) the advantages of indexing.
What lacks in SPARQL (but not in general in the KE tools themselves) is the ability to deal with
uncertainty. SPARQL queries are crispy, the graphs extracted by KE tools have many different
structures, even when extracted from sentences apparently very similar, and thus the user is
forced to write very complex queries to achieve even just reasonable recall. SPARQL/T on the
other hand relies a lot on the concept of similarity. Words and sentences can be compared using
Embeddings, the Join operations consider (among other things) proximity measures and,
whenever possible, soft operations that perform a re-ranking of the result are preferred against
others with crispy behavior. Obviously, this approach makes SPARQL/T less precise than using
SPARQL over KE results, but much more flexible and easier to use.
Figure 1 shows a SPARQL/T triple pattern that employs Universal Sentence Encoder (USE) [Cer at
al. 2018]. The EMB:USE triple pattern simply extracts from the documents all the snippets of text
similar to a given phrase (“They increased the price”).
As can be seen from Table 1 (containing some results of its application to the Comcast Consumer
Complaints dataset1 available on Kaggle.com), sometimes Google USE gives surprisingly good
results in finding sentences that are structurally very different from the query ones (albeit with
some noise), and its implementation in SPARQL/T requires no effort from the user point of view.

?i EMB:USE ‘They increased the price’

Figure 1: A triple pattern that extracts snippets similar to the given phrase, using Universal Sentence Embedding

1 Comcast Consumer Complaints. Public complaints made about Comcast internet and television service.
https://www.kaggle.com/archaeocharlie/comcastcomplaints

https://www.kaggle.com/archaeocharlie/comcastcomplaints

4

For comparison, we have extracted the graphs of those sentences using the online version2 of
Pikes [Corcoglioniti et al. 2016], which is a frame-based Knowledge Extraction framework, that
produce instances of frames and relations between them in RDF format.
Actually, we have started with three handcrafted very similar sentences, slightly varying the
sentence 1 of Table 1, to check if they would be transformed into similar graphs (see Table 2).

Rank
Index

Score Snippet

1 0.895 they raised the prices

7 0.851 they changed the deal

8 0.85 the pricing went up

9 0.846 they implemented the extra charges

21 0.834 They lied about the pricing

22 0.833 They doubled the rates

23 0.833 not only did the prices become exorbitant

24 0.832 They increased the equipment fee

36 0.823 They have consistently offered temporary rates

40 0.822 they have jacked up prices

44 0.82 They simply tick up the cost
Table 1: Some results of the query in Figure 1 from the COMCAST database

1 Telecom Italia has raised the price of the lines.

2 Vodafone has increased the cost of the equipment.

3 British Telecom has doubled the rent expenses.
Table 2: three handcrafted very similar sentences

In fact, as expected, graphs 2 and 3 have very similar structures. Graph 1 instead, maybe because
of an error, is quite different from both.
Disregarding thus for the moment graph 1, a possible graph path that encompasses the
structures of the other two is depicted in Figure 3: a chain of four nodes (indicated by four
variables), linked by some relations (any possible relation is accepted), but with specific
constraints on the classes that these nodes belong to. Of course, this is just one of many
possibilities. We have chosen here, for the sake of a higher recall, of not caring about the kind of
relations, hoping to identify, by watching graphs 2 and 3, four classes of objects to be used as
constraints.
Table 3 shows all the classes to which the verbs of the three sentences belong (“raise”,”increase”
and “double”). Here, the choice of the constraint for the verb variable seems quite

2 http://pikes.fbk.eu/

http://pikes.fbk.eu/

5

straightforward: all three nodes are instances of the class sumo:Increasing (defined in the

SUMO ontology, see [Niles & Pease 2001], [Pease 2011]). For the cost variable however (Table
4: “price”, ”cost” and “expenses”) the situation is not so lucky: in graphs 2 and 3 the object is an
instance of the class pm:fn15-expensiveness (frame “Expensiveness” of FrameNet 1.5),
but this is not true for graph 1. For the obj variable (Table 5: “lines”, ”equipment” and “rent”),
there is no class that includes any two of them and that looks reasonably small to be used as a
constraint. Of course, exploring the involved ontologies it may be possible to find a suitable
superclass, or we can just manually create one for the purpose. However, this would be time
consuming and quite error prone.

Figure 2: graphs extracted by PIKES from the three handcrafted sentences of Table 2

Figure 3: The structure of the graph we may expect to be extracted from the three handcrafted sentences reported above.

6

Turning now to the other sentences retrieved by the USE pattern (Table 1), they are semantically
similar texts that have different syntactic structures. This means that, besides the same
difficulties in identifying the proper constraints for the nodes, we are faced with a much larger
variety of graph structures to take into account, which makes quite hard to write a SPARQL query
that can encompass them all. Figure 4 shows some examples.
In summary, Knowledge Extraction is a difficult problem, and not surprisingly, the resulting
graphs are, so to speak, not very easy to recall with a query. To be able to query them easily,
pieces of text with similar meaning should result in reasonably similar graphs, and this is often
not the case. SPARQL/T on the other hand, leaves to the user the burden of figuring out how the
knowledge is expressed in the text. However, the user does not need to be very precise in doing
that: the language provides the flexibility necessary to cope with errors and uncertainty.
In general, as just shown, from the user point of view (albeit certainly not from the computational
one), SPARQL/T queries on text require much less effort than SPARQL ones on RDF graphs
extracted from the same text.
For the sake of fairness, it should also be said that, besides the fact that this test is far to be
exhaustive, it can be argued that it is not the data produced by the Knowledge Extraction tool
that is difficult to use with SPARQL, but that is the SPARQL language that is not flexible enough
for the purpose. A new Conceptual Model of SPARQL/T that introduces a degree of truth also in
graph pattern matching is probably worth to be studied.

raised (graph 1) increased (graph 2) doubled (graph 3)

Table 3: triples associated with the Verb nodes in the three graphs. In all three cases the node is an instance of the class

sumo:Increasing.

7

price (graph 1) cost (graph 2) expenses (graph 3)

Table 4: triples associated with the Price nodes in the three graphs. In graphs 2 and 3 the node is an instance of the class

pm:fn15-expensiveness, whilst the same node in graph 1 has no (reasonably small) class in common with the other two.

lines (graph 1) equipment (graph 2) rent (graph 3)

Table 5: triples associated with the Obj nodes in the three graphs. There is no reasonably small class in common to be used as a

filter for this kind of object.

8

Figure 4: graphs extracted from some other sentences of Table 1

9

__

Chapter 3 - Related Work
__

SPARQL/T is fundamentally a language for both Information Retrieval and Information Extraction
from text, whose syntax is a strict subset of the SPARQL 1.1 one. It works directly on the
documents and on their NLP (pre-extracted) annotations, can deal with uncertainty and allows
the use of Word Embeddings. An alternative approach is provided by Knowledge Extraction tools,
described in Chapter 3.1. In Chapter 3.2 we will see some other works that, like SPARQL/T,
employ SPARQL syntax for IR/IE tasks. Chapter 3.3 is about the idea of using the Relational
Algebra for IE, independently from the syntax employed. Finally, Chapter 3.4 explores the
Annotation Ontologies, i.e. some guidelines on how to represent NLP annotations in RDF format.

3.1 Knowledge Extraction tools

Knowledge Extractors (KE) tools transform Natural Language documents into machine-
interpretable formats. FRED and Pikes generates RDF/OWL graphs that can be stored into
standard triple stores (and thus indexed) and queried with standard SPARQL. This approach can
be seen as an alternative to the SPARQL/T one. However, as discussed in Chapter 2, queries that
access those graphs are more difficult to write than the SPARQL/T ones. OpenIE generates triple
of strings (i.e. not proper graphs), and is going to be implemented into SPARQL/T model
(hopefully) soon.

FRED [Gangemi 2017] automatically generates RDF/OWL ontologies from (multilingual) natural
language text. It employs Named Entity Recognition (NER) to link its output to semantic web
knowledge and Word Sense Disambiguation (WSD) to align with WordNet and BabelNet. Among
FRED points of strength is its ability to represent the structure of the discourse, according to the
Discourse Representation Theory [Kamp 1981].
PIKES [Corcoglioniti et al 2016] extracts entities and relations between them by identifying
semantic frames, i.e., events and situations describing n-ary relations between entities. In the
resulting knowledge graph each node uniquely identifies an entity of the world, event or
situation, and arcs represent relations between them. The PIKES tool implements a rule-based
knowledge distillation technique using SPARQL-like rules formulated as SPARQL Update INSERT.
. . WHERE. . . statements that are repeatedly executed until a fixed-point is reached.
OpenIE is an Information Extraction philosophy that aim at avoiding human intervention like
hand crafted extraction rules or large hand annotated training sets. Besides being time
consuming, these activities become problematic when large heterogeneous corpora are
considered. [Banko 2007] proposed a first solution based on a self-supervised approach, using a
parser to train an extractor. Over more than ten years of developments, different solutions have
been proposed, sometimes with slightly different goals. See [Niklaus 2018] for a recent survey.
The result of an OpenIE extraction is a set of triples of strings (subject, predicate, object), a textual

10

approximation to an entity-relationship graph called the Extraction Graph [Cafarella 2006]. The
elements of an Extraction Graph are just strings. Many entities and relations may appear in
different forms (“Einstein” / “Albert Einstein”). No effort is spent to relate entities to some
ontology, nor to put relations into a canonical form (like invented(X, Y)). Also, it is accepted that
the extractor makes errors, and inconsistent information contained in the source text is not tried
to be solved. However, a confidence degree of each triple is calculated based on the number of
times it has been extracted from the corpus.

3.2 Tools that employ SPARQL syntax

Andrian [Andrian et al. 2009] introduce iDocument, an Ontology Based Information Extraction
tool (OBIE) that employs SPARQL syntax in the extraction templates in place of the traditional
regular expressions. In iDocument the following query extracts persons and organizations and
facts about memberships from text:

SELECT * WHERE

{ ?person rdf:type foaf:Person.

?person foaf:member ?org.

?org rdf:type foaf:Organisation.

}

Figure 5: an example of iDocument query

The annotations, that are pre-extracted by a NLP pipeline, are potentially quite rich, and include
Named Entity Recognition, Structured Entity Recognition, Fact Extraction and Scenario
Extraction. Andrian’s is perhaps the tool closer to SPARQL/T in terms of using SPARQL syntax for
Information Extraction templates. However, the tool does not include Word Embeddings.

QLever SPARQL+Text [Bast & Buchhold 2017] is another tool that employs SPARQL syntax. It
allows to efficiently search on text corpus combined with an RDF knowledge base. It only
considers Named Entities annotations, that are linked to some Knowledge Bases (Freebase Easy
[Bast et al. 2014], Clue-Web3 2012). QLever can mix standard SPARQL triple patterns, referring
to the knowledge base, with others that can reference the text and its NE annotations (with two
built-in predicates: ql:contains-entity and ql:contains-word). QLever approach
for joining results employs the notion of co-occurrence: the results of each triple pattern are
joined when they occur inside the same text segment (i.e. a crispy version of SPARQL/T
approach). Different kinds of text segmentations are expected to give different results. Figure 6
gives an example of QLever SPARQL+Text query.

3 The Lemur Projekt http://lemurproject.org/clueweb12.

http://lemurproject.org/clueweb12

11

SELECT ?astronaut ?agency TEXT(?text)

WHERE

{ ?astronaut <is-a> <Astronaut>.

 ?astronaut <SpaceAgency> ?agency .

 ?text ql:contains-entity ?astronaut .

 ?text ql:contains-word ”walk∗” .
 ?text ql:contains-word ”moon” .

}

ORDER BY DESC(SCORE(?text))
Figure 6: an example of QLever SPARQL+Text query

Mìmir [Tablan et al 2015] is an open-source framework for integrated semantic search over text,
document structure, linguistic annotations, and formal semantic knowledge. It allows search
constraints against a knowledge base, by accessing at run time a predefined SPARQL endpoint.
Then the following Mìmir semantic query retrieves documents mentioning scientists born in
London:

{ Person

sparql="SELECT DISTINCT ?inst WHERE {

?inst :birthplace

<http://dbpedia.org/resource/London>.

?inst a :Scientist.

}"

}

Figure 7: an example of Mìmir query

3.3 Annotation Ontologies

Although it isn’t strictly a related work, it is useful to point out here that some standards
proposals exist that suggest the way in which NLP annotations should be written in RDF stores.
OLiA (Ontologies of Linguistic Annotation) is a set of ontologies designed to deal with the
heterogeneity of linguistic annotations [Chiarcos 2015]. According to the author, the ontology-
based descriptions are comparable across different corpora and/or NLP tools, across different
languages, and even across different types of language resources. OLiA defines a Reference
Model that specifies a common terminology (like olia:Determiner and

olia:Accusative), and Annotation Models that include individuals (i.e. concrete tags). OLiA
Reference Model provides a hierarchy of classes (ex: DemonstrativeDeterminer
subclassOf Determiner subclassOf PronounOrDeterminer subclassOf
Morphosyntactic Category). This makes it easier to combine results of different NLP

modules, in case they return tags at different levels of the hierarchy. In fact, as the authors
suggest, this may lead to the development of novel ontology based NLP algorithms, for example
by simply applying a majority based combination of the different results. OLiA is integrated inside
the NLP Interchange Format (NIS), an RDF/OWL-based format that aims to achieve
interoperability between different NLP tools, language resources and annotations. In turn, NIS

12

format has been adopted inside an even broader initiative, the Linguistic Linked Open Data
(LLOD) cloud , that focuses on the usage of linked data to represent linguistic resources, like for
example DBPedia (in different language versions), WordNet and FrameNet

13

__

Chapter 4 - Neural Models
__

This chapter reviews the state of the art of Word and Sentence Embeddings. Although SPARQL/T
employs pre-trained models, the answer the literature provides to some questions motivate
some choices taken in SPARQL/T design.

4.1 - Word Embeddings

The peculiarity of SPARQL/T, if compared with other languages for Information Extraction, is the
ability to employ Word Embeddings, and to smoothly mix them with traditional NLP techniques
and Semantic Web technologies. Word Embeddings provide a measure of semantic similarity
between words, and can be used in a query to (fuzzy) specify a set of words to consider (instead
of using a crisp list of words or lemmas, or in place of a WordNet synset).
In this chapter we are not focusing on how to extract Word Embedding from corpora, as many
off the shelf good ones are already available online. In fact, being the quality of a Word
Embedding largely dependent on the size of the corpora employed to make it (Chapter 4.1.6), it
is quite unlikely that a “home-made” Word Embedding can outperform the ones provided (for
free) for example by Google. However, a possibility remains that a domain specific Word
Embedding, extracted from a particular corpus, may be better suited for some specific purposes,
or that it can be employed somehow to improve a general purpose one (Chapter 4.1.7).
Interesting issues considered here are also how to evaluate the quality of a Word Embedding
(4.1.2), in which way they can be employed in downstream applications (text classification,
clustering) and, perhaps even more importantly, how to use them with units of text larger than
the single word (Chapter 4.1.4).

4.1.1 Introduction
Word Embeddings are vector representations of words. More specifically, Word Embeddings
associate to each word in a vocabulary a vector v such that the similarity between two words can
be measured as a function of their respective vectors.
Word Embedding vectors are relatively small, typically in the order of 50 to 300 dimensions, as
opposite to the one-hot representations that employ vectors of the size of the dictionary
(typically hundreds of thousands of elements), where all elements are zeros except for the one
in the position associated to the word. In NLP, Word Embeddings have various applications. They
can simply be used directly to assess the similarity of words or larger units of text (by comparing
the average vectors of the two units). They can be employed in classical machine learning
algorithms, for example for clustering or classification of documents, and they are largely
employed as input layers in Deep Neural Networks.
Word Embeddings are extracted from very large corpora by algorithms that, in a way or another,
leverage Harris distributional hypothesis ([Harris 1954], [Sahlgren 2008]), i.e. that similar words

14

occur in similar contexts. The context of a word can be something as simple as a fixed window of
words around it, or it can be a syntactic structure like a phrase or a sentence.
According to Mikolov [Mikolov et al. 2013], the idea of encoding words in dense vector
representations may be dated back at least to 1986 [Hinton et al. 1986].
Nowadays there are several different algorithms to extract Word Embeddings from a corpus.
Aggarwal [Aggarwal 2018] identifies three different categories: Kernel Methods, Distributional
Semantic models and Neural Networks models (actually Aggarwal lists four categories, separating
Recurrent NN from the other types of NN).
Baroni [Baroni et al 2014] has shown than Neural Embeddings outperforms Distributional
Semantic algorithms in many task (Chapter 4.1.2). The most popular and most well studied Neural
Embedding algorithm is probably Mikolov’s word2vec [Mikolov et al. 2013], but many other
Neural Networks model have been proposed for the purpose (see [White 2018] for a recent
survey), and it is probably safe to say that any Neural Network that has been successfully trained
on a specific natural language task needs to produce some form of compact vector
representation of the words in one of its internal layers, which can be extracted to generate a
valid Word Embedding.

4.1.2 Embedding Evaluation
As expressed by Schnabel in [Schnabel et al.2015]: “A good embedding provides vector
representations of words such that the relationship between two vectors mirrors the linguistic
relationship between the two words.”
Baroni in [Baroni et al 2014], in order to compare the performances of the traditional
Distributional Semantic Models (based on word counts) with those of the Neural Word
Embeddings, defined six benchmarks:

• Semantic similarity or relatedness. Similarity and relatedness are two different concepts. The
word “coffee” for example is likely to be found in the Embedding as similar to “tea”, as they
probably often occur in the same context, and for the same reason they will also be found
both related to the word “cup”. However, we cannot say that coffee is an object similar to a
cup. The datasets to assess the performance of an Embedding on this task are necessarily
manually created by asking human subjects to rate the degree of semantic similarity or
relatedness between two words on a numerical scale. The correlation between the average
scores that subjects assigned to the pairs and the cosines between the corresponding vectors
in the model space can be used as a measure of performance.

• Synonym detection: The suggested datasets contains a set of records with a target term and
an associated set of synonym candidates. The test obviously consists in comparing the vectors
of the term with those of the candidates, picking the closest one. Performance is evaluated
in terms of accuracy.

• Concept categorization: nominal concepts are clustered together. Here we expect them to
group into natural categories (e.g., helicopters and motorcycles should go to the vehicle class,
dogs and elephants into the mammal class). A set of gold categories are then employed to
measure the purity of each cluster (the extent to which each cluster contains concepts from
a single category)

• Selectional preferences: in NLP selectional preference (also known as selectional restrictions)
indicates a word’s tendency to co-occur with words that belong to certain lexical sets. For

15

example, the verb marry prefers subjects and objects that denote humans. Selectional
preference is used for example in the Word Sense Disambiguation (WSD) task [Resnik 1997].
The datasets suggested for this benchmark contain verb-noun pairs that were rated by human
subjects for the typicality of the noun as a subject (or object) of the verb (e.g., people received
a high average score as subject of to eat, and a low score as object of the same verb). For
each verb we also need a gold set of possible subjects and objects, possibly extracted from a
corpus. The vectors of those subjects are averaged to obtain a “prototype” subject of the
verb. The cosine similarity between the prototype and the subject in the pair is then
compared with the human rating.

• Analogy: a proportional analogy holds between two word pairs: a:a* :: b:b* (a is to a* as b is
to b*) For example, Tokyo is to Japan as Paris is to France. Mikolov [Mikolov et al. 2013] found
that such analogy could be solved with simple algebraic operations: let X=vector(a)-
vector(a*)+vector(b). b* is found by searching in the Embedding space the word closest to X
(according to cosine similarity). Given a dataset of 4-tuple of words (a, a*, b, b*), the task is
to find one given the other three, using the above algebraic expression. Systems are
evaluated in terms of proportion of correct answers.
A list of datasets available for the purpose is given for example in the Wiki of the Association
for Computational Linguistics4

In that article Baroni compared word2vec results with those created with classic DSM algorithms,
extracted from the same corpus of about 2.8 billion, concluding that Neural Word Embeddings
beat the current state of the art in most cases, and approached it in many more. (One exception
was the selectional preference tasks, where the two methods achieved comparable results.)
Schnabel [Schnabel et al.2015] further formalized the task of Word Embedding evaluation by
identifying two major categories: intrinsic and extrinsic ones. In extrinsic evaluation downstream
tasks like POS tagging or Named Entity Recognition are used to compare the performances of
different Word Embeddings. Intrinsic evaluations on the other hand directly test for syntactic or
semantic relationships between words, using a predefined set of query terms called query
inventory (which is what Baroni did in the above-mentioned work). Schnabel also introduced two
new tasks, both involving the judgment of a human over the results of Word Embeddings. In what
he calls Comparative Intrinsic evaluation, datasets consist of query words only. The words most
similar to the query ones are extracted according to different Word Embeddings, and users (from
Amazon Mechanical Turk in Schnabel’s work) are asked to choose the best matches, according
to their perceptions. The Coherence task on the other hand try to assess the coherence of groups
of words in a small neighborhood in the embedding space. Intuitively, good embeddings should
have coherent neighborhoods for each word (again, according to human perception), so he
presented Turkers with four words, three of which are close neighbors and one of which was the
“intruder” the human had to spot.
Schnabel observation was that extrinsic evaluation are not consistent across tasks, i.e. different
tasks tends to favor different embeddings. Moreover, they are often not consistent with intrinsic
evaluations. For these reasons, albeit recognizing the ability of extrinsic tasks to give insight into
the information encoded in the embeddings, he discouraged their use as a measure for abstract
quality.

4 https://aclweb.org/aclwiki/Analogy_(State_of_the_art), fetched September 27, 2018

https://aclweb.org/aclwiki/Analogy_(State_of_the_art)

16

4.1.3 Meta Embeddings / Domain Adaption
Meta Embedding can be defined as the task of creating new embeddings by combining existing
ones [Bollegala et al. 2017]. As noticed for example by Schnabel [Schnabel et al.2015] (see
Chapter 4.1.2) performances of different Word Embeddings vary significantly across different
tasks, suggesting that different methods may capture complementary aspects of lexical
semantics. This of course may depend both on the corpus and on the algorithm used to produce
them.
Meta embedding can also be seen as a Domain Adaption problem: assuming a corpus of a certain
domain of interest is available, there could be reasons to believe it may not be enough for the
purpose (typically, for Named Entity Recognition), for example because of its limited size or for
the possible different sub-language employed. This is frequently the case in healthcare NLP tasks,
where for privacy reasons extensive corpora may not be easily available, or that may use sub-
languages inappropriate for the problem (medical doctors tend to write telegraphic reports full
of medical terms, whilst people in forums express themselves in totally different ways). As an
example, reported in [Zhang et al 2018]: having to deal with medical reports, which corpus should
be employed? A relatively small one solely made of such reports or a much bigger general one
extracted from Wikipedia? Or can we adapt in some way the bigger one to the domain of the
smaller?
The most obvious solution to merge Word Embedding coming from different corpora is probably
to merge the corpora and then retrain the whole. However, this may be impractical, mainly for
two reasons: some of the source corpora may not be publicly available and the computational
effort may be too high. And besides that, we may still want to try to get “the best” of embeddings
coming from different algorithms.
Among the challenges in meta embedding construction there is obviously the facts that both the
vocabulary and the dimensionality of the source embeddings may be different. Dimensionality
differences in particular often rules out the possibility of a trivial sum or average. Vector
concatenation on the other hand can be a simple baseline, albeit with the drawback of drastically
increasing the dimensionality of the meta embedding. Bollegala reduced such dimensionality by
employing Singular Value Decomposition (SVD) to reduce the size of the matrix obtained with
the concatenation of the source embeddings ones (using vectors of zeros for words that did not
belong to one of the vocabularies).
Yin and Schütze [Yin and Schütze 2016] introduced three neural networks algorithms for Meta
Embeddings: 1toN, 1toN+ and MutualLearning, the last two of which are designed to works also
with vocabularies that do not overlap, i.e. in case of Out Of Vocabulary (OOV) words. Remarkably,
the last one may be used to generate vectors for OOV words of the source embeddings. The
network for the 1toN+ is shown in Figure 8, which is trained, on all the words of the intersection
of the source vocabulary, to generate the (known) vectors from the meta embedded ones. M1 to
M5 are the projection matrices from the meta embedding space to each of the source ones.
Although, at least in principle, after training them they could also be used directly to recover
source embedding OOV vectors from the meta embedding ones, this is not what is described in
the article. Their MutualLearning algorithm calculates instead projections between each of the
source embeddings, and averages the results for OOV words.

17

Finally, although the dimensionality of the source embeddings is not guaranteed to be the same,
some dimensions are very common in the pre-trained ones (usually 50,100,200 and 300). In these
cases, simple averaging can give quite good results, as Coates & Bollegala show in what they call
“Frustratingly easy meta-embedding” [Coates & Bollegala 2018].

To summarize the results of the above-mentioned articles, almost all approaches to Meta
Embedding are reported to achieve a certain improvement over the use of a single Word
Embedding. However, it has been noticed that adding more and more Word Embedding does not
always help (see also Chapter 4.1.6 on corpus size). In Yin & Schütze words: “Whether an
embedding set helps, depends on the complementarity among the sets as well as how we
measure the ensemble results”.

Figure 8: Yin and Schütze 1toN+ Meta Embedding algorithm

4.1.4 N-grams and Collocations
An n-gram is simply a sequence of words extracted from the text. A collocation is an n-gram that
correspond to some conventional way of saying things. They can be for example:

• Noun phrases (“strong tea”, “weapon of mass destruction”)

• Phrasal verbs (“to make up”)

• Stock phrases (“the rich and the powerful”)
Collocation are characterized by limited compositionality, i.e. the meaning of the collocation is
not derivable from the meaning of its parts, or at least not completely. “Boston Globe” is a
newspaper, and so it is not a natural combination of the meanings of “Boston” and “Globe”. More
subtly, the meaning of the expression “international best practice”, although derivable from the
meaning of its three components, is usually intended as “administrative efficiency”, i.e. there is
a sort of “extra” meaning added to the sum of the parts. Another characteristic of collocation is
that it is not possible to substitute its words with other with similar or same meaning, or to
grammatical transform them, for example from singular to plural forms. The classical example is
the expression “strong tea”: even if “powerful” has a meaning very similar to “strong”, the
expression “powerful tea” is uncommon and considered strange (although, interestingly, “strong
drug” and “powerful drug” are both acceptable).
Collocation are often called in different ways, like “terms”, “idiomatic phrases” or “quality
phrases”, and the task of automatically discover them from a corpus is usually called “automatic
term recognition” or “phrase mining”. See for example [Liu et al 2017] for a recent survey on the
topic. Very briefly, a statistical approach to the problem may consists in identifying in the corpus
words that occur together more often than chance (a property called concordance). However,

18

this test alone gives quite poor results. Some other quality measures must be taken into account,
like popularity (sufficient frequency), informativeness (“this paper” is not a very informative n-
gram) and completeness (“vector machine” is not considered completed, as the more common
phrase is “support vector machine”).
But how do we deal with collocations in Word Embeddings? A suggestion come from the very
beginning of the Neural Word Embedding history, in the Mikolov article [Mikolov et al. 2013]:
first we identify a large number of phrases using a data-driven approach, and then we treat the
phrases as individual tokens during the training. The obvious problem with this approach is that
it does not consider OOV collocations. Another possible approach is to simply combine the
vectors of the collocation’s words by summing or averaging it. Poliak [Poliak et al 2017] suggest
a Neural Network approach inspired by Mikolov’s word2vec that allows to deal with OOV
collocations by first creating some components, named Skip-Embeddings, and then combining
them in a way that preserve order sensitive information, to form the embedding of the
collocation.
Li [Li et al 2017] proposed a different Neural Network approach, valid for any n-grams. Vectors
are generated for every possible bi-gram and tri-gram in the corpus (experimenting with different
tasks, like trying to predict the sentiment or a certain label). The resulting n-gram embeddings,
in the view of the author, is intended for the more general purpose of Text Representation, i.e.
to code large chunks of texts (not just collocations) into a single vector.

4.1.5 Lemmatization
Is lemmatization beneficial to Word Embedding extraction? (Maybe especially when the corpus
is small). A lemma is the canonical form used to represent a set of words. The lemma of a verb
for example is its infinite form. Considering lemmas instead of all the possible inflections of a
word is a technique often used in NLP to cope with data sparsity. However, transforming all the
words in a corpus to their respective lemma (lemmatization) is an expensive task. A cheaper
alternative is to try to remove the derivational affixes employing some heuristic algorithm.
However, this second choice is not always applicable (understemming, for example: irregular
verb) or may lead to collisions (overstemming, for example {“universal”,”university”,”universe”}
→ “univers”).
Fares [Fares et al 2017] presented a pilot experiment to empirically evaluate the impact of text
pre-processing on word embeddings. Two corpora were considered (a Wikipedia dump5 and the
Gigaword Fifth Edition6). Intrinsic similarity evaluations were made on two datasets (SimLex-999
[Hill et al 2015] and Google Analogy Dataset [Mikolov, Chen et al 2013]). According to Fares, the
models trained on the lemmatized corpora are consistently better than the full-form models.

4.1.6 Effect of the corpus size on the embedding quality
Is it true that, given a certain training algorithm, the bigger is the corpus the better is the
embeddings? Zhu [Zhu et al 2017] investigated word2vec ability in deriving semantic relatedness
and similarity between biomedical terms from large publication data. Medical terms with three
semantic types were first selected from a corpus (disorders, symptoms, and drugs). The vectors

5 https://meta.wikimedia.org/wiki/Data_dumps
6 https://catalog.ldc.upenn.edu/LDC2011T07

19

extracted by word2vec were used to compare couples of such term, and the result was compared
against a gold standard built on human judgment. So, in fact, two different things were
measured: the ability of their model to identify the medical terms and the correlation between
the similarity calculated with the Word Embeddings and the one perceived by the doctors. Ten
models were trained separately by increasing the size of the dataset from 10% to 100%. The
result was that the increasing size of the corpus was always beneficial to the term identification,
whilst the correlation with human judgment had a peek (at about 3.3 million distinct
vocabularies) and then slowly deteriorate.
Fares [Fares et al 2017] made a similar study and came to exactly the same conclusion: more data
is not necessarily better.
Zhu also noticed that the model trained on abstracts produced better results on the correlation
task, whilst the one trained on the body was better in identifying the terms. The possible
explanation is that authors tend not to mention brand names of drugs in abstracts, whilst bodies
of articles contains much more terms, including irrelevant ones that may degrade the
performances. No matter why, this is a clear example of how the use of different sub-languages
may influence the result.

Figure 9: [Zhu et al 2017]: correlation with the human perception and number of identified
terms as a function of the size of the corpus employed to train their model.

4.1.7 Custom embeddings
Is a word embedding built with a specific corpus better than a one learnt on more general data?
Clearly, the corpus needs to have the information necessary for the task. A generic corpus for
example may not have enough examples to extract relations among medical terms. However, in
general, this may not always be the case. Wang [Wang et al. 2018] compared the Word
Embeddings extracted from two medical corpora (HER, containing clinical notes, and MedLit,
containing biomedical literature) with two general pre-trained Word Embeddings (Google News
and GloVe). The intrinsic evaluation was a comparison with a gold standard of 165 medical term
pairs whose similarity was assessed by professionals, finding the two domain Word Embeddings

20

performing much better than the general ones. Table 6 shows the neighborhoods of the
symptom "sore throat", according to the four Word Embeddings, partially explaining such finding.
However, extrinsic evaluations gave different results. Three downstream tasks involving the four
Word Embedding was tested: a Text Classification problem, an Information Retrieval problem
and a Relation Extraction one. The conclusion in this case was that there might be no significant
difference when word embeddings trained from an out-domain corpus are employed for a
biomedical NLP application.

Table 6: Most similar word to the symptom "sore throat", according to 4 different Word
Embeddings, from [Wang et al. 2018]

EHR MedLit GloVe Google News

scratchy runny shoulder soreness

thoat rhinorrhea stomach bruised

cough myalgia nose inflammed

runny swab fecal chest contusion

thraot nose neck sore triceps

4.1.8 Chapter Conclusions
The most important conclusion coming from this literature analysis is probably that we cannot
expect a single Word Embedding to suit all purposes. Restricted domain Word Embedding are
clearly “more focused” than the ones extracted from huge general-purpose corpora, but inflating
a corpus as much as possible by simply adding stuff to it without cognition does not lead to good
results. From the point of view of SPARQL/T language development, this is a sharp indication that
the user should be allowed to use different Word Embeddings inside the same query.
Future work will examine the Word Embedding literature in search for answers that may lead to
the implementation of useful operators. Is it possible to distinguish between semantic and
syntactic similarities, in order to consider only one of the two (typically the former)? Can we
detect modalities (necessity, possibility, …) and quantifiers? What about negations? In fact, we
believe that the next most challenging task, but also the most important for many applications,
will be exactly the one of identifying and correctly deal with the many form of negations.

21

__

Chapter 5 - SPARQL/T Language Introduction
__

In this chapter we introduce the SPARQL/T query language with an example. The exposition is
intended to be informal, easy understandable by a layman computer user, largely unaware of
most NLP technicalities. Part of the purpose of this research is exactly this, to “make it easy”. In
the next chapter a more formal description of SPARQL/T algebra will be given.

5.1 Example 1
Let’s say for example that, after skimming a few documents in our corpus of complaints7, we
notice a recurrent case: clients are noticing increases of cost, and stating that they were not
aware of them and of their reason. So, the concepts we want to identify in the text are two: <cost
increase of something> and <lack of awareness of something>. Moreover, we are interested in
those cases where the two <something> refer to the same object.
We can start with a simple dictionary search, looking inside the text for any word that may be
synonym of ‘price’. Assuming we have a list in mind (like ‘cost’, ‘bill’ and ‘charge’), we can use the
following triple pattern to assign the result to the variable p:
 ?p wrd:any 'price cost bill charge' .

However, enumerating all the possible synonyms of a word is obviously cumbersome and error
prone. Something is going to be left out for sure. We have two other options8:

1. We can use WordNet synsets. The following triple pattern searches in the document (and

assign to the variable p) all the words in the text that, according to WordNet9, are

synonyms of ‘price’:

?p wn:synonym 'price'

2. We can also use a Word Embedding. A Word Embedding is simply a dictionary that

assigns a vector of numbers to each word of a vocabulary. However, these numbers in a

certain way encode the meaning of the words, and can be used to measure the similarity

between any two words. For example, the following triple pattern assign to the variable

p all the words in the text that are similar to the word ‘price’.

 ?p emb:any 'price'

Both solutions have some drawbacks. The point is that, for practical purposes, we are not
normally looking for synonyms, we are looking for equivalent concepts, which strongly depends
on the context. Think for example at the word ‘house’. Is ‘flat’ equivalent to ‘house’? And what
about a ‘villa’? They are all buildings, and from the point of view of connecting them to the fiber
optic network, they are certainly equivalent. But from a real estate point of view, i.e. from the
perspective of someone that want to buy them, they are certainly not. WordNet can be a good

7 Or by employing some form of topic mining.
8 Actually three, when OWL ontologies will be implemented.
9 Returning any word of any synset which also contains the specified word. Word Sense Disambiguation is at the
moment not implemented.

22

option in some cases, but not in general. Word Embedding on the other hand are trained to
return a high degree of similarity for words that frequently appear in the same context, which is
exactly what we are looking for10. However, when working with similarity instead of crispy
equality tests, a new situation arises. The result is not a set of exact results, as we may desire,
but a list of results ranked (ordered) by their similarity with the given term. In other words, we
are going to have in return a few good results on top, followed by a long list of useless stuff. This
is expected: it is due to the fact that Word Embeddings use vectors to measure similarity, so any
word is semantically similar to any other, at least to some little extent. Later we are going to see
how SPARQL/T deals with this problem.
Now let’s use Word Embedding also to find the verb, that should be a synonym of ‘increase’.
 ?i emb:any 'increase raise' .

 ?i nlp:pos 'verb' .

Let’s notice two things:

• In the first clause, we suggested two words: ‘increase’ and ‘raise’. The effect is that all

the words of the text will be compared with both, and the best results will be returned

in the variable i. In principle this would not be necessary, as we expect ‘increase’ and

‘rise’ to be similar. However, in general we cannot know this for sure. It depends on the

Word Embedding employed (which, by the way, may also miss some words). With this

trick, we just try to make the query more robust.

• The second clause share the same variable i of the first. It actually behaves like a filter,

restricting the words resulting from the first clause to the verbs11.

What happen when we place the three clauses together? The result is a table with two columns,
one for each variable declared (p and i), and the rows of the table are all the possible

combinations of the rows of p with those of i. This is very similar to what happens in relational
databases when we perform a cross-product, i.e. when we join two tables together without
specifying a key. However, in this case we are dealing with natural language, not with structured
data, and we have the following desire: that p (the price) is the object of i (the increment). How
can we make sure of that? As we will see in the next examples, there are techniques that look
into the syntax of the sentence12 and of the discourse13. However, a quick and dirty method that
often gives surprisingly good result is to simply look at the distance (number of words) between
the two. Intuitively, the more far apart two words are in a document, the less likely is that they
are related to each other. Again, SPARQL/T translate this idea into a ranking, an ordered table
where the (hopefully) correct results are placed on top. So now, the order of our set of couples
of words (p,i) will be a function of three things:

• How well p represents the concept of price

• How well i represent the concept of increment

• How close is p to i.

10 Provided the corpus on which the Word Embedding has been trained is rich of the context considered
11 Technically, imposing that the Part Of Speech (POS) tag associated to the token must be a verb.
12 At the moment, Dependency Parsing and Semantic Role Labeling
13 To be implemented: Anaphora Resolution

23

Actually, what we have requested here is that p and i, besides being as close as possible, have

belong to the same sentence. This kind of requirement is so common that in SPARQL/T it is the
default behavior. However, we will see soon how to avoid it, just in case.
Proceeding in the same way we just did for the first concept (<cost increase of something>) let’s
now write the two clauses that will allow us to extract the second concept (<lack of awareness
of something>):

?k elm:any 'know notice aware' .

 ?n wrd:any 'not never without' .

Here the first row uses a Word Embedding to extract from the document words whose meaning
is similar to ‘know’, ‘notice’ or ‘aware’, whilst the second one looks for (exact) words that may
express a negation. Notice the prefix elm:, employed now in place of emb:. What we are asking
here is to consider the lemmas instead of the words. The lemma of a word is a sort of root from
which other forms are derived. It is the word that typically appears on the dictionary. For verbs
for example, it is its infinite form. If we are interested in comparing the meaning of two words,
using their lemma usually leads to better results, avoiding the Word Embedding to focus on
syntactic similarities. About the negation, just looking for a ‘not’ in proximity of our verb is
certainly not a safe procedure. The ‘not’ we find may easily refer to something else, or the
negation may be expressed in other ways. However, it often works! (But again, we will see in the
next examples how considering the structure of the sentence may help on this).
Now, let’s place together the five clauses we have written up to now, in the way that follows:
{ ?i elm:any 'increase rise' .

 ?i nlp:pos 'verb' .

 ?p elm:any 'price cost bill charge' .

}

{ ?k elm:any 'know notice aware' .

 ?n wrd:any 'not never without' .

}

Notice the use of the curly braces. As mentioned before, the default behavior of a set of
clauses14 in SPARQL/T is to force everything inside them to belong to the same sentence.
Conversely, if we want to allow two things to belong to different sentences, all we have to do is
enclose them in different blocks, i.e. in different pairs of curly braces. But how are the results of
two blocks joined together?
As stated in the beginning, we aim at documents where the two concepts (<cost increase> and
<lack of awareness>) are related. And again, we resort to proximity as a measure of relatedness
between concepts. Now, the result is going to be a table with four columns (i,p,k,n), and the

order of the rows will depend on three things:

• How well a couple (i,p) expresses the concept of <cost increase>

• How well a couple (k,n) expresses the concept of <lack of awareness>

• How close the two concepts are expressed in the document

14 Technically, of a Basic Graph Pattern (BGP)

24

To conclude our example, let’s say that we want to catch a totally different way of expressing
both concepts together: <hidden fees>. In SPARQL/T the UNION clause has exactly this purpose:
allow syntactic alternatives of the same meaning. The two clauses expressing the <hidden fee>
concept are reported at the bottom of the full query in Figure 10 , and at this point they should
need no explanation.

SELECT ?i ?p ?k ?n

WHERE

{ { { ?i elm:any 'increase rise' .

 ?i nlp:pos 'verb' .

 ?p elm:any 'price cost bill charge' .

 }

 { ?k elm:any 'know notice aware' .

 ?n wrd:any 'not never without' .

 }

 }

 UNION

 { ?k emb:equ ‘hide’ .

 ?p emb:equ ‘fee’ .

 }

}

Figure 10: an example of SPARQL-T query

Notice instead the list of four variables (i,p,k,n) included in the SELECT clause. They are the
output columns of the query and they will normally contain the information we really intended
to extract from the documents. In this case, they might have been for example “what exactly is
costing more”, and “how much”.
One final consideration remains to be done: how many results is the query going to return?
SPARQL/T examines one document at a time. For each document, at each step of execution15 it
keeps only a limited number of results, the top N of the table. When combining two tables16, if
the results are more than N, the best N are kept and the other discarded17. At the end of the
search, SPARQL/T returns only one record per document, the one on the top of each document’s
results, and then again sorts the output and keeps only the best ones. This kind of behavior is
necessary in order to avoid exponential growth and intractable queries, but unfortunately is
made at the risk of missing some good results. So, the number N of results kept at each step
should be considered with care, as both speed and efficacy highly depend on it.

15 For each triple pattern.
16 For each join operation.
17 Beam search.

25

__

Chapter 6 - SPARQL/T Conceptual Model
__

This chapter formally describes the SPARQL/T language, as opposite to the previous chapter that
introduced it with some examples. The actual formal description is given in chapter 6.5, which is
preceded by some subchapters that explain some issues and motivate some choices.
Chapter 6.1 briefly discusses the idea of Conceptual Model itself, trying to establish what it should
contain and what not. Chapter 6.2 gives an overview of the main principles of operation of the
language, and briefly exposes the main differences from the SPARQL for RDF ones. Chapter 6.3
introduces the concept of uncertainty, which is not present in SPARQL, the Fuzzy Set approach
adopted in SPARQL/T and some issues that are still debatable. Chapter 6.4 highlight some more
issues and differences between the Text and the RDF models. Then chapter 6.5 formally
illustrates the SPARQL/T conceptual model, exposing it in a side-by-side fashion with the model
of SPARQL (as reported by the W3C), allowing thus the reader to easily compare the two. Finally,
chapter 6.6 exposes the parts that are peculiar to the SPARQL/T Model, that finds no counterpart
in the SPARQL for RDF one.

6.1 About Conceptual Models

This chapter presents the Conceptual Model of SPARQL/T, highlighting for clarity the differences
from its SPARQL for RDF counterpart. But how exactly should its model look like? What should
be included, and what instead should better be excluded to get an elegant conceptualization of
the language? Some guidelines are found in the literature. In a general sense, according to
Brambilla et al. [Brambilla et al 2017], a model can be informally defined as “a simplified or partial
representation of the reality, defined in order to accomplish a task or to reach an agreement on
a topic”. More specifically, in the field of Information Systems, Griethuysen introduced in 1982
the “principle of conceptualization”, [Griethuysen 1982] stating that (as reported by Olivé [Olivé
2007]) “A conceptual model should only include conceptually relevant aspects […] of the universe
of discourse, thus excluding all aspects of […] data representation, […] message formats, data
structures, etc. “
The Object Management Group (OMG) is even more specific, suggesting also that modeling
should be organized into three levels:

• Computation Independent Model (CIM)

• Platform Independent Model (PIM)

• Platform Specific Model (PSM)

The first level (CIM) should represent what the solution is expected to do, hiding all IT-related
specification. The last level (PSM) should include all of the details necessary to produce an
implementation, and the middle level (PIM) has been introduced to deal with different platforms.

26

Because SPARQL/T current implementation is in pure Java, and thus already (almost) platform
independent, and because all the annotations are made offline18, platform is not an issue and we
will only need to focus here on the Computation Independent part of the model.
Therefore, according with the above-mentioned principle of conceptualization, all the nuisances
related to the specific NLP algorithms and tools have been left out of the model and considered
implementation details. The user should only be concerned with the high-level notions of the
different NLP tasks, available in the form of triple patterns, and thus isolated from any variation,
imposed for example by the language. This approach, besides leading to a simpler model, has
the advantage of simplifying the improvements of the product as long as new, more effective
algorithms become available. However, there are issues from which the user should not be kept
apart. It’s a matter of fact, when dealing with Natural Language, that uncertainty is present at
every corner in multiple forms, and it is my opinion that such uncertainty must be representable
in the model, and actually be a prominent part of it, as otherwise the ability of the model to
represent reality becomes seriously compromised. The user should be well aware of all the
situations that may arise uncertainty, and also of the fact that it propagates in some way all along
the query execution, up to the final result. But again, we should also be careful to avoid to commit
to a too much specific way to treat it, as it may be hard to change it in case a more effective one
is found.

6.2 Principles of Operation

SPARQL/T is basically a query language for template extraction from text that aims at presenting
the user an interface to the most useful NLP task, in an easy to write, declarative fashion. In other
words, it allows to specify what has to be extracted, hiding how it is actually done. Its syntax is a
subset of the SPARQL 1.1 one, but the semantic is slightly different. Triple patterns are evaluated
against an NLP annotated document19, and not against an RDF graph like in SPARQL. A SPARQL/T
triple pattern expresses an NLP annotation to look for in the text, not a pattern to match in a
graph. For homogeneity with the SPARQL for RDF model, we are still going to call them triple-
patterns, even though extraction-patterns would probably be more appropriate. Figure 11 gives
an example of such triple patterns.

?n wrd:any 'not never without' .

Figure 11: An example of triple pattern: 'wrd' is the NLP function group, 'any' is the subfunction, 'not never without' is the argument of
the function

Like in SPARQL, variables and literals are allowed. The formers are bound with snippets of texts
during query evaluations, are used in the join operations and becomes the output of the query.
The latter are used mainly as constant parameters of NLP functions.
Despite the different contexts and the presence of the uncertainty that characterize Natural
Language, the modus operandi of the two languages and the queries results look very similar (see
Figure 12). In a sense, we can think that SPARQL/T evaluates NLP triple patterns against a virtual

18 In a Linux environment, generating a (temporarily) proprietary format JSON file.
19 Annotation should normally be performed offline before query execution, but of course this is more an
implementation consideration, not a part of the Conceptual Model.

27

graph that is still embedded in the text (consisting of the text and its annotations), extracting
from it a table of results or some RDF subgraphs, exactly as its standard counterpart.
The SPARQL/T language has been designed to resemble as much as possible its RDF counterpart,
not only in the syntax but also in the semantic, at least as much as the different context allows.
The use of most constructs should be intuitive to the user familiar with SPARQL. For example, the
UNION keyword in the RDF case has been provided as “a means of combining graph patterns so

that one of several alternative graph patterns may match.”20. In SPARQL/T the things that the
UNION clause allows to combine are not graph patterns, but different ways to express a concept
in Natural Language words, which is anyway a very similar idea. However, due to the need to deal
with similarity instead of with exact matches, some differences from the RDF case are
unavoidable also at conceptual level. For example, the GROUP BY keyword may involve a
clustering of the results (instead of a simple aggregation), with the number of desired clusters
indicated with the LIMIT keyword, and the AVG function calculating the average of the Word

Embeddings and returning the result closed to that average.

Like in SPARQL, triple patterns in SPARQL/T generates relations, i.e. tables of up to three columns
(one for each variable) containing the results extracted from the text. Relations of different triple
patterns are combined by the Relational Algebra operations to form new ones, until the final
result set of the query is obtained. Figure 14 gives an idea of how the three major operations of
the SPARQL/T algebra, the JOIN, UNION and MINUS, work in the text case. The four relations
in Table 8 are hypothetical extractions from the documents in Table 7.
All three operations are performed in three phases:

• The tuples of two relations are matched to form the output ones. The match is performed
on the columns (variables) shared by the two input tuples (in this case, always the column
food). The weights of the output tuples are calculated according to the input ones21.
The approximate formula (that do not take into account the degree of confidence in the
match), are reported in the three cases. Assuming the standard Fuzzy norms and negator:

o The Join takes the minimum
o The Union takes the maximum
o The Minus decreases the left by the amount of the right

• The output results are sorted according to the weight

• The tail of the results is removed (see Chapter 6.4.6 about Memory Constraints)

20 https://www.w3.org/TR/rdf-sparql-query, chapter 7 Matching Alternatives
21 And to the degree of confidence in the match, not reported here for simplicity

https://www.w3.org/TR/rdf-sparql-query

28

RDF Case

RDF Graph SPARQL Query

Text Case

Text+Annotations  Graph SPARQL/T Query

Results

RDF-SPARQL Text-SPARQL/T

Figure 12: Representation of the idea of Virtual Graph embedded in the text. The queries are different, but the syntax of the two
languages is the same. The logic adopted by SPARQL/T queries to extract elements of the text is, to the user, very similar to the one
that SPARQL use to extract RDF subgraphs. Despite the very different scenario and the uncertainty of Natural Language, very similar
results are expected to be achievable.

29

idDoc Document

1 For lunch I'm going to eat a sandwich with chicken and tomatoes

2 Can I have chips with my steak please?

3 Let's take a slice of that apple pie.

4 Take the street in front of the restaurant

5 What about fish and chips for dinner?

6 I'm not used to vegetarian meals

Table 7: documents for the example in Figure 14

Table 8: Relation extracted from the documents in Table 7 and combined by the algebra operations in Figure 14. For the purpose
of explaining the algebra operations, the actual triple patterns that can be employed to extract them are not meaningful.
However, just to give the idea, Figure 13 reports a query to extract the first one (Eat-Food).

?eat ELM:ANY “eat”

?eat NLP:POS “verb”

?food ELM:ANY “food”

Figure 13: possible query for the extraction of the relation "Eat-Food" of Table 8. (Results depend on the specific Word
Embedding employed)

30

 Figure 14: Example of
how the JOIN, UNION
and MINUS Relational
Algebra operation
work, applied to the
relations in Table 8,
extracted from the
documents in Table 7

31

6.3 Ambiguity of language and Uncertainty of results

It is a very well-known fact that Natural Language is highly ambiguous. Words very often possess
different meanings, co-references between words are uncertain, sentences have different
interpretations that depend on the context, and so on. Ambiguity is part of the reality of Natural
Language, and not just the unavoidable byproduct of still imprecise algorithms. As such, in my
opinion, ambiguity should be represented in the model, and not forcefully solved as soon as
possible with a flip of a coin by choosing the most likely option. Without a way of representing
ambiguities, the model will simply be not enough expressive to represent reality. Being SPARQL/T
a query language and not a modeling one, our concerns are limited to take into consideration
ambiguity in the results, ranking them accordingly. However, we must be careful not to fall into
what Dubois & Prade call “the unfortunate confusion between degrees of belief and what
logicians call degrees of truth” [Dubois & Prade 2001]. An example that is often used to illustrate
the differences between the two is the one of the bottle [Bezdek & Pal 1996]. A bottle can be
full, empty, half-full and so on. If we consider the sentence “the bottle is full”, we can attach to
it a degree of truth between 0 and 1, say for example 0.7, to state that the bottle is not really full.
However, such degree of truth reflects the amount of liquid in the bottle, not the degree of belief
in the fact that the bottle is full. It does not mean, in other words, that the probability of finding
the bottle full is 0.7. There is no uncertainty about the amount of liquid the bottle contains, it is
more a matter of definition of what we mean for “full”. Logics that consider more than two values
of truth are called Many-valued logics. Fuzzy Logic, among these, allows infinite ones, expressed
with a real number in the range [0,1]. It seems appropriate thus, to employ Fuzzy Logic to deal
with language ambiguity and NLP tools uncertainty. But representing such things is not just a
simple matter of attaching a weight to a result (for example, the degree of confidence in an
annotation). We also need to define how such weights can be calculated when results are
combined (i.e., during the join operations). In other words, compositionality is necessary.
Formally, a weighted logic or inference system is said to be compositional if and only if the weight
of a complex formula can be calculated by combining the weights of its atomic constituents.
Unfortunately, as shown by Dubois & Prade [Dubois & Prade 2001], this may not always be
possible, or at least not with a good theoretical foundation. According to them, only partial true
can be represented in forms that allow compositionality, whilst partial belief cannot. To say it in
their own words: “[…] not only the full compositionality of any uncertainty calculus is not possible,
but retaining this property as much as mathematical consistency allows, only leads to a very
crude, almost deterministic representation of belief”.
To briefly illustrate this point (see their article for a complete demonstration), let’s show that it
is not possible for example to compute the degree of belief of a disjunction from the degrees of
belief in its components.
Let N(p) ∈ {0, 1} denote the (Boolean) degree of belief of p. By convention, let N(p) = 1 when a
certain Belief Base K proves p, and 0 otherwise. Let’s say that N(p) = 0 and N(q) = 0, i.e. an
hypothetical agent knows nothing about the values of p and q, and try to determine N(p ∨ q) .
Let’s consider two special cases:

32

• If p = q and then N(p ∨ q) = N(p ∨ p) = N(p) = 0 .

• If q = ¬p the agent must believe p ∨ ¬p (since it is a tautology), hence N(p ∨ q) = N(p ∨ ¬p)
= 1

Hence, the degree of belief in p ∨ q when N(p) = 0 and N(q) = 0 can be 0 or 1, i.e. it cannot be
calculated.

All that said, what do we need to represent in SPARQL/T? Truth values or degree of confidence?
Let’s consider the most prominent cases:

1. Annotations are subject to error, and sometimes (although not so often) a measure of
confidence may be provided by the annotation algorithm.

2. For different reasons (typically for joins), we may want to compare two snippets of text
to check if they are “almost the same” (as we do not expect them to be exactly the same).
In these cases, a measure of overlapping between the two is employed.

3. Let’s say we want to find two related words in the documents, like a verb and its subject.
In absence of a better indicator (like a parse tree) a noisy but often good enough measure
of relatedness is their relative distance (the number of words in between them).

4. Triple pattern involving Word Embeddings compares the Word Embeddings of the words
in the document with those listed in the triple pattern. The best matches (according for
example to the cosine similarity measure) are ranked higher.

The situation appears not so sharp. Confidence in annotation (example 1) is clearly more related
to uncertainty (lack of complete knowledge), whilst Word Embeddings, as a measure of similarity
between concepts, is more related to the concept of truth, or better, in Fuzzy Logic terms, to the
idea of belonging to a certain set. The two middle cases are more debatable. However, it seems
acceptable to see both of them as expressions of fuzziness (similarity in case 2 and relatedness
in case 3) instead of as a lack of knowledge. Thus, giving up the idea of keeping track of the quality
of the annotations, let’s embrace Fuzzy Logic and its notation to represent Natural Language
ambiguity.
What follows defines the three operations used in the framework of Fuzzy Logic, as defined for
example in [Beg & Ashraf 2009]

Definition (t-norm and t-conorm)
A triangular norm (t-norm) ⊗ and a triangular co-norm (t-conorm) ⊕ are increasing,
associative, commutative and [0,1] × [0,1] → [0,1] mappings satisfying 𝑥 ⊗ 1 = 𝑥 and
𝑥 ⊕ 0 = 𝑥 for all 𝑥 ∈ [0,1]

Definition (negator)
A negator ⊝ is an order reversing [0,1] → [0,1] mapping such that ⊝0 = 1 and ⊝1 = 0

The standard t-norm, t-conorm and negator are defined as follows:

Standard (Łukasiewicz) negator ⊝𝑥 = 1 − 𝑥

Standard (Gödel) t-norm 𝑥 ⊗ 𝑦 = min(𝑥, 𝑦)

Standard (Gödel) t-conorm 𝑥 ⊕ 𝑦 = max⁡(𝑥, 𝑦)

33

Other possibilities, as described for example in [Straccia 2013], are:

Gödel negator ⊝𝐺 𝑥 = {
1 𝑖𝑓⁡𝑥 = 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Bounded difference or Łukasiewicz
t-norm

𝑥 ⊗𝐿 𝑦 = max⁡(0, 𝑥 + 𝑦 − 1)

Algebraic product or product t-norm 𝑥 ⊗𝑃 𝑦 = 𝑥⁡𝑦

Drastic product 𝑥 ⊗𝐷 𝑦 = {
0 𝑖𝑓⁡(𝑥, 𝑦) ∈ [0,1[⁡× [0,1[

min⁡(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Bounded sum or Łukasiewicz t-conorm 𝑥 ⊕𝐿 𝑦 = min⁡(1, 𝑥 + 𝑦)

Algebraic sum or product t-conorm 𝑥 ⊕𝑃 𝑦 = 𝑥 + 𝑦 − 𝑥𝑦

Drastic sum 𝑥 ⊕𝐷 𝑦 = {
1 𝑖𝑓⁡(𝑥, 𝑦) ∈]0,1] ⁡×]0,1]

max⁡(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

T-norms generalize the Boolean operation of conjunction, and will be used here in the Join
operation. Intuitively, the Join operation implements a sort of conjunction of the results of two
triple patterns, so the degree of truth of the result, even without considering the fuzziness
introduced by the join itself, should not be higher than the degree of truth of any of the sources.
Formally, let t1 and t2 be the two tuples to be joined, and 𝑊(∙) be the function that returns the
weight (truth value) of a tuple. We should respect:

𝑊(𝐽𝑜𝑖𝑛(𝑡1, 𝑡2)) ≤ min(𝑊(𝑡1),𝑊(𝑡2)) = 𝑊(𝑡1) ⁡⊗𝑊(𝑡2)

Which suggest defining, for an 𝛼𝐽 ∈ [0,1] that represent the truth value of the join:

𝑊(𝐽𝑜𝑖𝑛(𝑡1, 𝑡2)) = 𝛼𝐽⊗𝑊(𝑡1) ⁡⊗𝑊(𝑡2)

Similarly, t-conorm generalizes the Boolean operation of disjunction. In SPARQL/T the UNION
clause represents the disjunction of two sets of solutions, which intuitively suggests that if a tuple
t appears in both, it should appear in the result with a weight that is not less than in any of the
two source sets. Formally, let tL and tR be two tuples belonging to the result set of the left and
the right part of the UNION clause respectively. When tL and tR are judged to refer to the same
object, a single tuple t should replace both, with a weight respecting the following:

𝑊(𝑡) = 𝑊(𝑈𝑛𝑖𝑜𝑛(𝑡𝐿 , 𝑡𝑅)) ≥ max(𝑊(𝑡𝐿),𝑊(𝑡𝑅)) = 𝑊(𝑡𝐿) ⊕𝑊(𝑡𝑅)

6.3.1 Some (open) issues due to similarity comparisons

In SPARQL for RDF, when tuples from two input relations need to be matched (by the various
Relational Algebra operators), the couples are made if and only if the values corresponding to

34

the common variables of the two relations (the keys) are exactly the same. In SPARQL/T instead,
because we are not expecting to always find exact matches, a more robust approach based on
similarity has been adopted. However, no matter what measure of similarity we choose, this
choice brings two issues:

• Which couples should we consider?

• In the output relation, what is the correct value to give to the key?

Let Ω𝐿 and Ω𝑅be the left and right relation sets involved in the operation, of cardinality M and N
respectively. For the simplicity of the exposition, let’s assume they only have one variable V in

common, and let 𝑣𝐿
𝑖 be the value of V in the i-th tuple 𝜆𝐿

𝑖 of Ω𝐿, let 𝑣𝑅
𝑗
 be the value of V in the j-th

tuple 𝜆𝑅
𝑗

of Ω𝑅, and let 𝑤𝑖,𝑗 = 𝑊𝑀(𝑣𝐿
𝑖 , 𝑣𝑅

𝑗
) be the similarity measure between the two.

The first issue is due to the fact that, switching from equality to similarity, even relationships that
were of the one-to-one kind unavoidably becomes of the many-to-many kind. With similarity

comparison instead of equality, each value 𝑣𝐿
𝑖 will match, in general, many values 𝑣𝑅

𝑗
 , with

different degree of truth. What is, then, the best way to form the output tuples 𝜆𝑂
𝑘 = (𝜆𝐿

𝑖 , 𝜆𝑅
𝑗
)?

One approach is to generate all the possible couples with similarity greater than zero, calculate

their weight (that depends also on the weight of 𝜆𝐿
𝑖 and 𝜆𝑅

𝑗
) and then choose the best ones (to

fulfill the Memory Constraints search requirement, see Chapter 6.4.6). A different approach is
to form couples by choosing only one tuple per set, trying for example to maximize the sum of
the similarities of the chosen couples. At the moment is not clear which approach is best.

The second issue can be re-stated in this way: if 𝜆𝑂
𝑘 = (𝜆𝐿

𝑖 , 𝜆𝑅
𝑗
) is kth output tuple, but the

similarity between 𝜆𝐿
𝑖 and⁡𝜆𝑅

𝑗
 is strictly less than 1, i.e. 𝑣𝐿

𝑖 ≠ 𝑣𝑅
𝑗
, which value should we use for

𝑣𝑂
𝑘? Choosing one of the two appears quite arbitrary. Let’s considering instead that such values

represent snippets of text, i.e. intervals of the document, and the fact that they are similar
already involves, in a way or another, a certain overlap between the two. Thus, only two other
choices seem reasonable: their union and their intersection. In this case the right choice exists,
at least in principle, depends on the operation considered, and is dictated by the need of
maintaining the associative and commutative properties of the operators. For the Join operation,
the key of the output relation should be the intersection between the keys of the input ones. This
become apparent if we consider the Join of three sets Ω1, Ω2 and Ω3, all of them sharing a single
variable V. In principle, we would like:

(Ω1 ⋈ Ω2) ⋈ Ω3 = (Ω1 ⋈ Ω3) ⋈ Ω2
Equation 1

As an aside, this is not going to happen anyway in practice, because of the Beam Search employed
during evaluation (see Chapter 6.4.6 about memory contraints). However, performing the Union

of the keys in the Join operation can only make the things worse. Let’s call 𝑣1
𝑖 , 𝑣2

𝑗
 and 𝑣3

𝑘 the
snippets of text corresponding to the variable V in the sets Ω1, Ω2 and Ω3 respectively. As already
stated, two snippets of text 𝑣′ and 𝑣′′ are similar, to some extent, if and only if 𝑣′ ∩ 𝑣′′ ≠ ∅.

35

Now, let’s say that the function that generates the new key of a join operation is the union of the
snippets, i.e.:

𝐾𝑒𝑦𝐽𝑜𝑖𝑛
∗ (𝑣′, 𝑣′′) = 𝑣′ ∪ 𝑣′′

Equation 2: WRONG keyword generator for the Join operation

To show that it is not a good choice, let’s say that there is no couple of similar elements between

Ω1 and Ω2 , but that exist 𝑣3
𝑘 which is similar to both, i.e.:

∀𝑖, 𝑗⁡𝑣1
𝑖 ∩ 𝑣2

𝑗
= ∅

Equation 3

∃𝑖, 𝑗, 𝑘⁡𝑣1
𝑖 ∩ 𝑣3

𝑘 ≠ ∅⁡⋀⁡𝑣2
𝑗
∩ 𝑣3

𝑘 ≠ ∅
Equation 4

Equation 3 means that, no matter the choice of the Key function, the left term of Equation 1 is
the empty set ∅, as Ω1 ⋈ Ω2 = ∅.
Equation 4 on the other hand means that Ω1 ⋈ Ω3 ≠ ∅. Let 𝑣1,3

∗ be the key generated by the

𝐾𝑒𝑦𝐽𝑜𝑖𝑛
∗ functions with the elements i and k of Ω1 and Ω3, i.e.:

𝑣1,3
∗ = 𝐾𝑒𝑦𝐽𝑜𝑖𝑛

∗ (𝑣1
𝑖 , 𝑣3

𝑘) = 𝑣1
𝑖 ∪ 𝑣3

𝑘

Obviously 𝑣1,3
∗ ∩ ⁡𝑣2

𝑗
≠ ∅, so the right term of Equation 1 has a solution, and the equality does

not hold. In simple words, with the 𝐾𝑒𝑦𝐽𝑜𝑖𝑛
∗ function a snippet of text in the Ω3 result set may act

as a “bridge” between two solutions in Ω1 and Ω2 , making the result dependent on the order of
evaluation. This doesn’t happen if we define:

𝐾𝑒𝑦𝐽𝑜𝑖𝑛(𝑣
′, 𝑣′′) = 𝑣′ ∩ 𝑣′′

Equation 5: Correct key generator for the Join operation

Similarly, we can show that for the Union operation, the key of the output relation should be the
union of the keys of the input ones.

In summary, and perhaps not surprisingly, for the Join operation the output keys should be the
intersection of the input ones, whilst for the Union operation they should be the union of the
input ones. For the Minus and Optional operations there is no new tuple generation, only a
variation of the weights, therefore the keys remain unchanged.
As a final observation however, it is likely that performing the Union of the keys add robustness
to the process, partially correcting possible annotators imprecisions (in scope). Moreover, as
already noticed, commutative and associative properties of the Join operation in SPARQL/T, from
the practical point of view, have been already given up in favor of speed and reduced memory
consumption. For these reasons, we prefer to leave as an open issue which operation is really
more suitable for the keys during the Join evaluation.

36

 6.4 Main Differences between the Text and the RDF Models

6.4.1 Results are Text References and not URIs
The major difference between the text and the RDF case, for the conceptual model point of view
at least, is that the results of a SPARQL/T SELECT query are not URIs22, but references to snippets
of text inside the document. Each single SPARQLT/T triple pattern extract snippets of text from
the document and produces a set of tuples, with one or two elements each (depending on the
number of variables involved), binding the variables with a set of references to the document
itself. Formally, adapting the W3C terminology23, a binding is here a pair (variable,
TextReferenceObject), where TextReferenceObject is an instance of a class derived from the
abstract class TextReference, which represents a snippet of text, and contains at least two things:

• The position24 (beg,end) of the snippet inside the document

• A weight that represent the confidence in the extraction (or better, its truth value, see
Chapter 6.3 about Ambiguity and Uncertainty)

TextReference has three possible implementations (see Figure 15 for the UML representation):

• TextWord: represent a single word (token)

• TextSnippet: represent a sequence of contiguous words in the text (n-grams)

• TextSnippetsSet is a set of possibly noncontiguous TextSnippets

Which implementation of TextReference is actually used depends on the NLP function employed.
For example, the Named Entity Recognition (NER) task consists in finding entities like person and
company names, which are often multi-words elements. This implies that NER triple pattern need
to returns n-grams (TextSnippet objects). A Part Of Speech tag (POS) on the other hand, is a label
applied to every single word in the text (by a POS tagger), which allows to employ TextWord
objects, that simply refers to single words in the text. The TextSnippetsSet is included here for
future uses, to represent noncontiguous snippets of text that may result from the co-reference
resolution task or from considering subtrees of non-projective parsing trees.

22 However, SPARQL/T CONSTRUCT queries generates URIs exactly like SPARQL for RDF ones
23 https://www.w3.org/TR/rdf-sparql-query/, fetched May 3, 2019
24 The position inside the text is specified in two ways: the indexes of the first and last characters in the plain text and
index of the token in the tokenized text

https://www.w3.org/TR/rdf-sparql-query/

37

Figure 15: UML representation of the classes of the objects in the result set of a pure SPARQL/T query (URI required for hybrid Text/RDF
queries not shown)

6.4.2 Input Objects
In SPARQL/T some triple patterns require an input, which means that, in some cases, some
variable needs to be bound before the triple pattern is encountered in the query string. There
are mainly two cases when this happens:

• When a search of some specific words has to be performed

• When fuzzy behaviors are not desirable (like in navigating a parse tree)

The concept of “input variable” is not present in SPARQL for RDF model, and in principle it could
be avoided here as well. However, forcing the user to specify what to look for before the search
can be performed (which, by the way, seems more than reasonable) allows for some
simplification, like avoiding the need of query reordering. Moreover,expression employing the
same variable twice would otherwise be allowed, like the following one, that can be read as
“extract words that are most similar to each other, according to some Word Embedding”:

?var EMB:ANY ?var

Figure 16: example of forbidden "same variable" triple pattern.

Although probably interesting from some point of view, that cases would require a special
treatment and, at the moment, we don’t see any practical advantage in that.
Inputs always occupies its third (object) position of the triple patterns, and are called here Input
Objects

Definition: Input Object
An Input Object in a SPARQL/T query is either a literal or a variable that must be bound before
the triple pattern is evaluated. It always occupies the third (object) position in the triple pattern

38

Being in the object position allows the input object to be either a variable or a literal. In the
latter case, when allowed by the specific triple pattern, it comes in the form of a string
containing a list of words or of n-grams.

6.4.3 OPTION and MINUS (positive and negative Re-ranking)
In SPARQL for RDF the MINUS clause evaluates both its arguments, then calculates solutions in
the left-hand side that are not compatible with the solutions on the right-hand side and remove
them. The same idea is applied by SPARQL/T to the text case, and is especially useful when
similarity measures are employed. Sentence similarity in particular (like Universal Sentence
Encoding) often lead to sets of surprisingly good results mixed with a bunch of easy identifiable
wrong ones. In this case a MINUS clause can be used, with a pattern matching the wrong ones
in its right-hand side. However, the sharp behavior of the RDF counterpart, i.e. removing from
the left-hand side results those appearing in the right-hand one, should be carefully
reconsidered. Two sources of errors are playing in this case. First of all, solution extracted from
different NLP algorithms are hardly exactly the same, which implies that trying an exact match
would be quite ineffective. Second, the definition of the wrong cases is likely to be imprecise
itself, and a sort of “smoothing effect” may be appropriate. Therefore, in SPARQL/T the MINUS
construct corresponds to a re-ranking of the solution of the left-hand side according to the
solution of the right-hand one, decreasing their weights on the left by an amount that depends
on the weights on the right and on the degree of compatibility of their match.

6.4.4 UNION vs Ranking Aggregation
In SPARQL for RDF the UNION keyword is used to allow two or more25 alternative graph patterns.
The result set of the UNION is, as expected, the union of the result sets of each of its graph
pattern. Errore. L'origine riferimento non è stata trovata. shows an example of use of the UNION
keyword taken from the W3C SPARQL 1.0 recommendations.

PREFIX dc10: <http://purl.org/dc/elements/1.0/>

PREFIX dc11: <http://purl.org/dc/elements/1.1/>

SELECT ?title

WHERE { { ?book dc10:title ?title } UNION { ?book dc11:title ?title } }
Figure 17: example of use of the UNION keyword, taken from the SPARQL 1.0 W3C recommendation. The query finds titles of the books
in the data, whether the title is recorded using Dublin Core properties from version 1.0 or version 1.1

In SPARQL/T a very similar notion is adopted: the UNION keyword is used to allow the extraction
of a concept from the text when different syntactic alternatives are expected. During query
evaluation, each graph pattern of the UNION is evaluated alone, extracting zero or more tuples
from the text, that are merged together to form the solution of the UNION statement. A possible
improvement, with respect to this classical view of the UNION clause, could be to merge similar
solutions and increase the weights of those that occur multiple times. The idea is that solutions
that match many user-specified patterns are more desirable than others, and should be ranked
higher. This resembles the concept of Ranking Aggregation in Information Retrieval. According to
Li [Li 2011], “ranking aggregation is aimed at combining multiple rankings into a single ranking,

25 UNION clauses can be concatenated, like: {} UNION {} UNION {}

39

which is better than any of the original rankings in terms of an evaluation measure”. However, it
should be noticed that the task here is different, mainly for two reasons:

• Classical Ranking Aggregation algorithms, only consider as inputs ordered lists of results.
In meta-searching for example, the results of the same query from different search
engines are combined into a single, supposedly better, one. Search engines do not return
the score of their result, just the ordered lists, and most Ranking Aggregation algorithms
are based solely on that ordering. Here instead we still have that score, a precious value
that we certainly do not want to disregard.

• We are still facing with the problem of identifying duplicate solutions that, as already
noticed, in the NLP context are just expected to be similar, and not exactly the same.

As an aside, notice that the UNION clause may allow, in some cases, to implement a sort of
conditional execution. Some triple patterns may return an empty relation, causing the depletion
of the entire BGP’s one. Se chapter 7.10.1 for an example involving a Constituency Parse tree,
that allows different paths of execution on the bases of the kind of parent (Noun/Verbal Phrase)
of a given snippet of text.

6.4.5 GROUP BY clause
Like in SQL and in SPARQL for RDF, the GROUP BY clause groups together records which have the
same values in the columns indicated in the clause. However, as with any other SPARQL/T
clauses, we cannot rely on the possibility that values extracted from text by different algorithms
comes out exactly the same. We need to consider some measure of text similarity. Moreover,
this similarity measure cannot be the same employed in the other functions, like for example in
the join operation. The GROUP BY clause is intended to be used at corpus level, involving different
documents, and therefore the idea of measuring similarity in terms of overlapping of snippets of
text (of the same document) doesn’t have sense anymore. We need to compare groups of
different words, in a way tolerant to reordering, i.e. in the classical Bag Of Words fashion.
One possibility is to consider the number of words, or even better of lemmas, that the two BOWs
share, possibly applying a weighting schema that consider stop words and the TF-IDF measure.
Another, totally different approach, is to employ the already available Word Embeddings, for
example by comparing the average of the vectors of the words of the to the two BOWs. In the
first case the groups are crisply determined: we can say that two BOWs belong to the same set if
they have some words in common. If we consider a graph G where the nodes are the BOWs and
arches between nodes indicates the sharing of some words, finding the groups becomes the
problem of finding all the connected subgraphs of G. (Some care must be taken, like stop word
removal or TF-IDF thresholding, to avoid to obtain single, huge and quite useless groups). In the
second case instead, any BOW is similar, to some extent, to any other, and the concept of
grouping becomes the one of clustering.
The idea here is to provide the user with a choice between the two approaches, to be made with
the use of the LIMIT keyword, which in SPARQL for RDF is used to limit the number of results of
a query. In SPARQL/T the use of the LIMIT keyword in conjunction with a GROUP BY one selects
the clustering approach, indicating also the number of clusters requested.

40

In a SELECT query, the GROUP BY clause specifies the list of variables used to form the groups,
while for any other variable that we want to appear in the result set we must indicate how to
aggregate the results. Figure 18 reports the seven Aggregate Functions of SPARQL. Because we
want to strictly comply with SPARQL syntax, we cannot add any more.

COUNT the number of elements

SAMPLE any element

GROUP_CONCAT concatenates all elements

MIN the minimum value

MAX the maximum value

SUM the sum all elements

AVG the average of all elements

Figure 18: SPARQL Aggregate Functions (aka Set Functions)

The COUNT, SAMPLE and GROUP_CONCAT easily find a counterpart in SPARQL/T. The MIN and
MAX functions in SPARQL/T refer to the truth value of the tuple (not of the specific column), and
return the value of the variable in correspondence respectively to the worse and the best one (If
there are many tuples with the same min/max value, one is picked at random). The AVG function
employs Word Embedding, averaging the vectors of the group and then selecting the result that
is closer to the average. The SUM function has no counterpart in SPARQL/T.

6.4.6 Memory Constrained Search
The result of a search that employs Word Embeddings, or any other similarity measure,
potentially includes all the words of the document, as they are probably all similar, albeit by a
very little amount, to the search keyword (except for the few out of vocabulary ones). Moreover,
when joining the results of two triple patterns that does not share variables, a cross join is
performed, which produces a row in output for each possible couple of rows in input. In other
words, queries involving similarity may easily become intractable. To avoid that, when
appropriate, result sets are truncated (after being ranked) to the best N ones, transforming the
query evaluation in a beam search of ray N.
To better illustrate the process, Figure 19 reports a three triple patterns BGP that should roughly
extract, using solely Word Embedding, snippets of text talking about some “payments” that have
been “raised” (without) the client “knowing” it. Figure 20 reports a possible sentence expressing
this concept, followed by an unrelated one that uses words with similar meaning. The similarity
measures between the words of the triple patterns and those of the sentence, returned by a
hypothetical Word Embedding, are reported in the matrix below the sentence itself. For the

purpose of illustration, let’s assume that the similarity is high ( 0.8) for related words and

neglectable (0.1) for any other couple of words.

?i EMB:ANY “rise”

?b EMB:ANY “payment”

?k EMB:ANY “knowing”
Figure 19: A query using only Word Embedding triple patterns. It is expected to extract snippets of text talking about some
“payments” that have been “raised” (without) the client “knowing”

41

Figure 20: Two sentences that may match the query in Figure 19. The first, with token in positions [0,6], conveys the meaning we
are looking for. The second (tokens [9,21]) does not. The last three rows report, for each word of the query, the degree of similarity
a hypothetical Word Embedding is likely to assign (low values omitted for readability).

At each cross-product join, the weight of each new row is calculated considering:

• The weights of the two input rows

• The mutual proximity between all the words in the resulting row

As a simple measure of mutual proximity between words we can use the “density of extracted
words”, roughly definable as the ratio between the number of extracted words and the number
of words of the snippet26. Then, a fuzzy value Wden in the range [0,1] is obtained by applying to
such density a fuzzy R-function with the two thresholds da and db as follow:

• Below da, Wden is 0

• Above db, Wden is 1

• In between, Wden varies linearly

Finally, the weight of the output tuple Wout is calculated as the t-norm of those of the two input
tuples and Wden (here, adopting the Standard (Gödel) t-norm min())
To account for punctuations, a penalty is introduced by increasing the distance between words
on the opposite sides of the punctuation mark (and thus the result of the density calculation).
This makes sense, as in natural language punctuations are used to separate concepts. Also, when
reading them, a pause of a certain length is normally introduced.
Figure 22 shows the beam search with da=1/20, db=1/2 and the punctuations penalty = 10 words.
The number of rows of results kept at each step is in this case N=21. In this ideal situation, the
best results appear on top at each step. The correct one is found on the very top of the output
set, together with the “almost unrelated one” just below it but with a much lower score, and
followed by all the irrelevant ones. Obviously, in reality things are not so clean, but the point here
is that the employment of a heuristic memory constraint search seems bot an unavoidable and
an acceptable choice make in order to deal with this sort of searches and joins. On the other
hand, for patterns that only involve crispy NLP annotations, the number of results is normally
much more manageable. Moreover, when joins involve variables the number of matches is also
greatly reduced. Thus, in this last two cases, the truncation of the ranked result set should be
avoided, or at least performed with a safer, much higher ray N.

26 A better measure should weight the words according for example to their part of speech, or presence in a list od stop
words.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

They increase the billing without telling you , and I believe they are going to loose a lot of clients for that .

rise 0.8 0.7

payment 0.8 0.7

knowing 0.8 0.8Si
m

ila
ri

ty

Position

Word

42

As an aside, let’s notice that the results of such Memory Constraint search depend in general on
the order of evaluation. In other words, because of the Beam Search in SPARQL/T the Join
operation is neither commutative nor associative.

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁°⁡𝑜𝑓⁡𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑⁡𝑤𝑜𝑟𝑑𝑠

𝑆𝑛𝑖𝑝𝑝𝑒𝑡⁡𝐿𝑒𝑛𝑔𝑡ℎ
=
|𝐸 ∩ 𝑆|

|𝑆|

𝑊𝑑𝑒𝑛 =

{

0 𝑖𝑓⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 𝑑𝑎
1 𝑖𝑓⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 𝑑𝑏

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑑𝑎
𝑑𝑏 − 𝑑𝑎

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑊𝑂𝑈𝑇 = 𝑊1⊗𝑊2⊗𝑊𝑑𝑒𝑛

= min⁡(𝑊1,𝑊2,𝑊𝐽𝑜𝑖𝑛)

E = set of extracted words
S = set of snippet’s words
W1, W2 = Weights of the two input tuples

Figure 21: Weight calculation of an output tuple of a Cross-Product Join. First, the density of the snippet of
text is calculated as the ratio between the number of extracted words and the snippet's length. Then, a
weight WJoin is calculated appling an R-function to the density. Finally, the weight of the output tuple is
calculate as the t-norm of WJoin and the two input weights.

43

Figure 22: Example of memory constrained Cross-Product Join. At each point of join, the set of all couples
is generated, ranked, and then truncated to the top N results, that are passed to the next stage. The
weight of the output tuples depends on the weights of the input ones and on the density of the resulting
snippet (N° Extracted Words / Snippet Length)

6.4.7 Machine Learning Classification of the results
When Word Embedding or any other similarity measure like is employed in a search, the query
behaves in a way similar to an Information Retrieval system, returning a list of possible results,
with the best ones on top, but that makes it difficult to make a crispy choice about which result
is good and which is not. Even when the query contains only crispy requests (like searching for
specific words and lemmas or POS tags) the result set may not allow a crispy classification, due
to the uncertainty introduced by join operation. Normally, manual inspection allows to spot a
threshold that allows an easy separation, with a reasonable margin of precision. Sometimes, it is
also possible to recognize categories of wrong results and remove them with a subquery included
in a MINUS clause. But what if such inspection is not feasible, because for example of a huge
number of results? And what if the separation is not so crispy, with good and bad cases highly
mixed, or if the exceptions are too many to be manually coded? We obviously need a classifier.
Classification in SPARQL/T is supported by an external tool, and accessed from within the query
with a triple pattern of the form:

parametersURL ML:algorithmName

 ?requestedPrecision

44

where:

• algorithmName is the name of a Machine Learning algorithm, known to the system

• parametersURL is the address of a file, generated with the tool, and available through
HTTP protocol. It contains the parameters of the algorithm, like for example the structure
and thresholds of a decision tree, or the weights of a Deep Neural Network.

• requestedPrecision is an input numeric variable, in the range [0,1], indicating,
when appropriate, the degree of precision requested. It may not make sense for a specific
algorithm, which is always free to ignore it, but when appropriate, it allows a certain
degree of flexibility during query execution.

Such triple acts as filters, removing from the result set all the tuples classified as negatives by the
algorithm. It can be placed anywhere inside a graph path but, in a way similar to the SPARQL
FILTER clause, it is always evaluated after all the other triple patterns of the same graph path, i.e.
when the result set is available. The algorithm is supposed to work primarily on a result set itself,
considering maybe a few words around each extracted snippet, but it has anyway access to the
entire document and to all of its annotations. Loading the algorithm implementation, i.e. the
executable code, at run time from the WEB through the HTTP protocol would obviously rise
serious security issues. Therefore, it must be somehow manually loaded in the SPARQL/T server,
identifiable by name. The algorithm’s parameters instead, typically an XML or JSON file, with the
proper precautions do not represent a threat and can be loaded from the web. This mechanism27
allows the safe and easy sharing of queries containing Machine Learning algorithms. The
generation of the training set and the training of the algorithm instead, is an implementation
detail that should be taken care of with a proper Graphical User Interface, and is not discussed
here. Suffice to say that its modus operandi, together with the choice of the algorithms, should
be carefully studied in order to minimize the user effort, i.e. the number of elements necessary
for the training set. Ideas related to the task of Adaptive Learning should seriously be considered
(see for example [Settles 2012] for a review).

6.4.8 Indexing

There is no doubt that indexing should be part of SPARQL/T Conceptual Model. However, the use
of Word Embedding introduces the problem of employing indexes in searches that involve
similarities. In the words of Lashkaria et al [Lashkaria et al. 2019]: “While the process for building
and querying keyword-based indices is quite well understood, the incorporation of semantic
information within search indices is still an open challenge.” Which means that, at the moment,
there is no well-established way of indexing Word Embeddings. But fortunately, there are already
good algorithms to explore. Briefly, the problem of efficiently finding a Word Embedding vector
v closed to a given (query) one vq is a nearest neighbor problem, stated by Indyk & Motwani
[Indyk & Motwani 1998] as follows:

27 Which admittedly need better formalization

45

Definition: Nearest Neighbor Problem
given a set of n point P={v1, …,vn} in some metric space X, preprocess P so that to efficiently

answer queries which require finding the point in P closest to the query point vqX.

Recently, Sugawara et al. [Sugawara et al. 2016] compared several algorithms that address the
problem, which can be divided into three categories:

• Hash-based: uses a hash function such that the probability of collision of two elements
are higher if, in a certain metric space, these two objects are close to each other. Locality-
Sensitive Hashing (LSH) [Gionis et al. 1999] is probably the most known of this class of
algorithms.

• Tree-based: recursively divide the search space into non-necessarily disjoint subspaces.
The search is performed hierarchically.

• Graph-based: a neighborhood graph is built, where each node is connected to its nearest
neighbors. The search can be performed in a best first mode, starting at an arbitrary node.

Sugawara et al. found that graph-based algorithms (NGT in particular, [Iwasaki 2015]) perform
better than others. Very recently, Lashkaria et al [Lashkaria et al. 2019] explored the possibility
of building inverted indexes based on the similarity of the vector representation of terms instead
of on term occurrence in documents.
Given the time constraints and the lack of well-established methods for Word Embedding
indexing, at the moment no true indexing capability has been implemented in SPARQL/T.
However, as a temporary measure, a form of document filtering is possible: a triple pattern
referring to a Lucene query can be used to retrieve the subset of document to be further analyzed
by the rest of the SPARQL/T query. (See Chapter 8 – Architecture)

6.5 Core Conceptual Model

The exposition that follows resemble the one given in chapter 12, “Definition of SPARQL”, of the
W3C Recommendation for SPARQL 1.028. Definition are given side-by-side, highlighting the
differences from the RDF and the Text cases. Here, only things that has a counterpart in the RDF
case are considered. Other things strictly related to SPARQL/T, like Hybrid Queries and the
Reasoning Interface, are exposed in the next chapters.

6.5.1 Definitions
Let:

• V be the set of all the Variables

• F be the set of the NLP Functions

• L be the set of the literals

28 SPARQL Query Language for RDF W3C Recommendation, 15 January 2008, https://www.w3.org/TR/rdf-sparql-
query/, fetched 6 Jan 2019

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/

46

Definition: Triple Pattern (for Text)
A triple pattern is member of the set:

(𝑉 × 𝐹 × 𝐿) ∪ (𝑉 × 𝐹 × 𝑉)

This means that, syntactically, there are only two possible kind of SPQRQL/T triple pattern: one
with two variables and one with a variable and a literal, both with the NLP function in the central
(predicate) position. The NLP function is specified using a prefix (recognized by the system) that
indicates the function group, followed by a subfunction code. Constant arguments of the NLP
functions are placed in the literal (see Figure 23Errore. L'origine riferimento non è stata
trovata.).

?Variable Function:SubFunction ‘Literal’

?Variable1 Function:SubFunction ?Variable2

Figure 23: the two kinds of SPARQL/T triple patterns, with one and two variables, both with the
NLP function in the central (predicate) position

The two-variable case must be further split into two different ones: patterns that extracts two
variables and patterns that require an input (see Chapter 6.4.2 about Input Objects).
In SPARQL/T the Basic Graph Pattern BGP has the same definition it has in SPARQL for RDF, but a
slightly different semantic:

Definition: Basic Graph Pattern (both for RDF and Text)
A Basic Graph Pattern is a set of Triple Patterns.

The evaluation of a BGP consists in the evaluation of each of its triple patterns followed by a
proper join of the results. In SPARQL/T this join operation must take into account a set of
measures and constraints, like the distance of the snippets in the document and the fact that
some triple patterns may share some variables. Intuitively, from the evaluation of a BGP we
expect a sort of “logical AND” of the results of each single triple pattern. In the RDF case, given a
graph, this idea of an “AND” is achieved in this way: a tuple is added to the result set if and only
if all the triple patterns of the BGP match some part of the graph. Similarly, in the text case, given
a unit of text, we want a tuple to be generated from that unit if and only if all the triple patterns
in the BGP find some match (and thus extract something) inside it, with a reasonable degree of
confidence. In SPARQL/T model such unit of text has been defined to be the sentence (and not
for example the entire document or a sliding window of fixed size), i.e. :

Rule: BGP Search inside a document
a tuple is generated from a BGP search if and only if all its triple patterns extract something
inside the same sentence

The reason for this choice is apparent when we consider languages poor of linguistic resources,
for which parsers may not be available. As a matter of fact, when concepts are expressed inside
the same sentence it is normally a simple but quite good indicator of their relatedness (think for
example the three concepts “to buy”, “expensive” and “car” in the sentence “I’m going to buy an

47

expensive car”). Therefore, in absence of better options, the BGP search rule allows a crude but
effective semantic analysis of the sentence. Obviously, for a more precise analysis, syntactic or
semantic parsers become necessary. However, they also all normally work at sentence level,
suggesting again the sentence as the best level of granularity for a BGP. (Of course, a method is
also provided in SPARQL/T to deal with searches that involves multiple sentences. See later the
section about Group Graph Patterns).

But what is the proper way to combine the results of each NLP triple patterns to form the result
of the full BGP? Because we need to merge sets of solution, following also the SPARQL for RDF
model, we appeal to a Relational Algebra.
A relational algebra is a language used in the field of relational databases that allows to formally
specify the operations of a query language. ([Date 2003], [Elmasri 2010]) It is an intermediate
language for the expression and analysis of queries, whose expressions can easily be translated
into the code that will actually perform the task. Also, and perhaps most importantly, it is
employed in the task of optimizations. Cyganiak [Cyganiak 2005] introduced the idea of
employing a relational algebra for the SPARQL query language, defining a relational model over
RDF terms. The W3C SPARQL Recommendation 29 however adopts symbols and definitions
different from those in the Cyganiak’s work. Here, in the attempt to define a relational model
over NLP functions, to simplify comparisons with SPARQL, the W3C Recommendation is mirrored
as much as possible, with the major difference being the need to consider uncertainty.
First of all, the W3C definition of Solution Mapping for the text case must be slightly changed. In
SPARQL for RDF a Solution Mapping 𝜇𝑅𝐷𝐹 is a mapping from a set of variables to a set of RDF
terms.

Definition: Solution Mapping (for RDF graphs)
A Solution Mapping 𝜇𝑅𝐷𝐹 is a partial function 𝜇𝑅𝐷𝐹: 𝑉 → 𝑅𝐷𝐹_𝑇
The domain of 𝜇𝑅𝐷𝐹 , 𝑑𝑜𝑚(𝜇𝑅𝐷𝐹), is the subset of V where 𝜇𝑅𝐷𝐹⁡is defined.

Where the RDF Terms RDF_T are defined as follows:

Definition: RDF Term
Let I be the set of all IRIs.
Let RDF_L be the set of all RDF Literals
Let RDF_B be the set of all blank nodes in RDF graphs
The set of RDF Terms, RDF_T, is I union RDF_L union RDF_B.

In SPARQL/T the mapping must be made from a set of variables V to a set of TextReference objects
(defined above). Also, to deal with uncertainty, we introduce a real number w in the range [0,1]
that indicates a degree of confidence in the mapping:

29 https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/

48

Definition: Weighted Solution Mapping (for Text)
A Weighted Solution Mapping 𝜆 is a couple (𝜇𝑇𝑋𝑇, 𝑤) where 𝜇𝑇𝑋𝑇is a partial function
𝜇𝑇𝑋𝑇: 𝑉 → 𝑇𝑒𝑥𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, and w is a real number in the range [0,1] indicating the degree of
confidence in the mapping.
The domain of 𝜇𝑇𝑋𝑇 , 𝑑𝑜𝑚(𝜇𝑇𝑋𝑇), is the subset of V where 𝜇𝑇𝑋𝑇 ⁡is defined.

When a mapping contains just a single variable, its degree of confidence w is simply the degree
of confidence in the extraction performed by the triple pattern, which is stored in the
TextReference object. For mappings with multiple variables, the degree of confidence w is
calculated when mappings are merged, during the Join or Union operations (see later), and
possibly altered by some other operations (like Minus, see also later on).
We now need to adapt the notion of compatible mappings defined in the W3C recommendation,
taking into consideration the uncertainty of NLP annotations. Basically, the idea of compatible
mapping is that two mappings are compatible when every variable that belongs to both is bound
to the same object. When dealing with RDF graphs, this simply means that the variable is bound
to the same URI, and this is expressed from the following definition, adapted30 from the W3C
recommendation:

Definition: Compatible Mappings (for RDF graphs)
Two solution mappings 𝜇1

𝑅𝐷𝐹⁡and 𝜇2
𝑅𝐷𝐹 are compatible if, for every variable v in 𝑑𝑜𝑚(𝜇1

𝑅𝐷𝐹)
and in 𝑑𝑜𝑚(𝜇2

𝑅𝐷𝐹), 𝜇1
𝑅𝐷𝐹 = 𝜇2

𝑅𝐷𝐹. To indicate such compatibility, we write
𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)

If 𝜇1

𝑅𝐷𝐹⁡and 𝜇2
𝑅𝐷𝐹 are compatible then their union is also a mapping, and we can define the

following function:
𝑚𝑒𝑟𝑔𝑒𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹) = 𝜇1

𝑅𝐷𝐹 ∪ 𝜇2
𝑅𝐷𝐹

It may seem natural now, translating this concept for the text case, to simply require that the
variable is bound to the exact same piece of text. However, when joining elements extracted by
different triple patterns, i.e. by different algorithms, it is quite naïve to expect exact matches.
Moreover, what we want to be the same here is not the piece of text itself, but the concept it
represents. A wiser and more robust approach is therefore to employ a measure of overlapping
between snippets of text. Another thing to consider is that the same entity of the world may be
represented in the text by different snippets (for example, first by its name and later by a
pronoun). Actually, this linguistic phenomenon, called Anaphora or Co-reference31, seems like a
natural counterpart of the Join operation in Natural Language and deserves a special treatment
inside SPARQL/T.
Let’s then 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑡1, 𝑡2), with 𝑡1, 𝑡2 ∈ 𝑇𝑒𝑥𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, be a number in the range [0,1] that
measures the degree of overlap between the two snippets of text 𝑡1 and 𝑡2⁡. The details of this
measure are left as implementation dependent. It can be related to chars or to tokens, and
possibly weight words differently accordingly to their Part Of Speech tag and to a TF-IDF measure.

30 𝜇⁡has been changed into 𝜇𝑅𝐷𝐹for clarity
31 They are similar concepts, but not exactly the same. See for example [Poesio et al. 2016] for a discussion

49

But for the sake of clarity of the examples that follows, let’s assume from now on that
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑡1, 𝑡2) is simply defined as the number of common tokens divided by the number of
tokens in their union.
Let’s also 𝑐𝑜𝑟𝑒𝑓(𝑡1, 𝑡2), with 𝑡1, 𝑡2 ∈ 𝑇𝑒𝑥𝑡𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, be a number in the range [0,1] that
measures the degree of confidence that the snippets of text 𝑡1 and 𝑡2 refer to the same entity of
the world, according to the annotations of some Anaphora Resolution tool.
Let’s then combine them, to define the compatibility coefficient between two snippets of text:

𝑐𝑜𝑚𝑝𝑎𝑡𝑇𝑋𝑇(𝑡1, 𝑡2) = ⁡𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑡1, 𝑡2) ⊗ 𝑐𝑜𝑟𝑒𝑓(𝑡1, 𝑡2)

We also need to change, with respect to the RDF counterpart, the definition of mapping,
associating to each mapping 𝜇𝑇𝑋𝑇 a weight w

Definition: Weighted Mapping
A weighted mapping 𝜆 is a couple (𝜇𝑇𝑋𝑇, 𝑤), where 𝜇𝑇𝑋𝑇 is a mapping and w is a real number
in the range [0,1] indicating its degree of truth
Let also define the following two functions, that extract the mapping and the weight from a
weighted mapping 𝜆 = (𝜇𝑇𝑋𝑇 , 𝑤)
Μ(𝜆) = 𝜇𝑇𝑋𝑇
𝑊(𝜆) = 𝑤

We want now to state that two weighted mappings 𝜆1 and 𝜆2 are compatible if every common
variable either overlap or refer to the same entity to some extent:

Definition: Compatible Mappings (for Text)
Two weighted solution mappings 𝜆1 = (𝜇1

𝑇𝑋𝑇, 𝑤1)⁡and 𝜆2 = (𝜇2
𝑇𝑋𝑇, 𝑤2)⁡are compatible if, for

every variable v in 𝑑𝑜𝑚(𝜇1
𝑇𝑋𝑇) and in 𝑑𝑜𝑚(𝜇2

𝑇𝑋𝑇), 𝑐𝑜𝑚𝑝𝑎𝑡𝑇𝑋𝑇(𝜇1
𝑇𝑋𝑇(𝑣), 𝜇2

𝑇𝑋𝑇(𝑣)) > 0

Continuing along the W3C recommendation, if 𝜆1 = (𝜇1

𝑇𝑋𝑇, 𝑤1)⁡and 𝜆2 = (𝜇2
𝑇𝑋𝑇, 𝑤2)⁡are

compatible then 𝜇1
𝑇𝑋𝑇 ∪ 𝜇2

𝑇𝑋𝑇 is also a mapping, and we can define the function merge as the
union of two compatible mappings:

𝜆𝑚 = 𝑚𝑒𝑟𝑔𝑒𝑇𝑋𝑇(𝜆1, 𝜆2) = (𝜇𝑚
𝑇𝑋𝑇 , 𝑤𝑚) = (𝜇1

𝑇𝑋𝑇 ∪ 𝜇2
𝑇𝑋𝑇,𝑊𝑚(𝜆1, 𝜆2))

Here Wm is a function that returns the degree of confidence in the resulting mapping. The details
of Wm should also prudently be left as an implementation specific, although some ideas related
to Fuzzy Logic are reported in Chapter 6.3. It is expected to take into consideration:

• The degree of confidence in the two source mappings w1 and w2

• The degree of compatibility (overlapping and coreference) between the two mappings.
Notice that the function compatTXT(t1,t2) just defined express such degree for a couple of
text snippet, and has been applied to (common) variables. A global degree of
compatibility for the whole mapping needs then to be defined. A good candidate is again
the t-norm function ⊗.

The following definitions is exactly the same given for SPARQL for RDF:

50

Definition: Solution Sequence (for RDF and Text)
A solution sequence is a list of solutions, possibly unordered.

Notice that, as also mentioned in the W3C recommendation, a solution sequence Ω is not a set:
it is defined as a list, i.e. a multiset, an unordered collection of elements in which each element
may appear more than once.

6.5.2 SPARQL/T Algebra
In this section the operators for the evaluation of a SPARQL/T query are defined. At the moment
they are just a limited subset of the one defined for the SPARQL for RDF algebra: only the Join
and the Union ones, plus the Minus, that is an addition of SPARQL 1.1.
The Join and the Union operations defined below are the ones that allow to merge solution
sequences in the RDF case:

Definition: Union (for RDF)
Let Ω1 and Ω2 be two solution sequences. We define:

𝑈𝑛𝑖𝑜𝑛𝑅𝐷𝐹(Ω1, Ω2) = {𝜇𝑅𝐷𝐹|𝜇𝑅𝐷𝐹 ∈ Ω1 ∨ 𝜇
𝑅𝐷𝐹 ∈ Ω2}

Definition: Join (for Text)
Let Ω1 and Ω2 be two weighted solution sequences. We define:

𝐽𝑜𝑖𝑛(Ω1, Ω2)
= {𝑚𝑒𝑟𝑔𝑒𝑇𝑋𝑇(𝜆1, 𝜆2)|Μ(𝜆1) ∈ Ω1 ∧ Μ(𝜆2) ∈ Ω2 ∧ ⁡𝑐𝑜𝑚𝑝𝑎𝑡(Μ(𝜆1),Μ(𝜆2)) > 0}

Definition: Union (for Text)
Let Ω1 and Ω2 be two weighted solution sequences. We define:

𝑈𝑛𝑖𝑜𝑛𝑇𝑋𝑇(Ω1, Ω2) = {𝜇𝑇𝑋𝑇|𝜇𝑇𝑋𝑇 ∈ Ω1 ∨ 𝜇
𝑇𝑋𝑇 ∈ Ω2}

Definition: Join (for RDF)
Let Ω1 and Ω2 be two solution sequences. We define:

𝐽𝑜𝑖𝑛𝑅𝐷𝐹(Ω1, Ω2)
= {𝑚𝑒𝑟𝑔𝑒𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)|𝜇1

𝑅𝐷𝐹 ∈ Ω1 ∧ 𝜇2
𝑅𝐷𝐹 ∈ Ω2 ∧⁡𝑐𝑜𝑚𝑝𝑎𝑡𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)}

51

Informally, the Join operation requires that, in a specific unit of text, both extraction patterns
find some match (corresponding to a logical AND), whilst the Union operation requires just one
of the two (corresponding to logical OR).
Notice that the definition of Compatible Mapping (for Text) includes the case where the two
mappings have no variables in common. In this case the Join function simply becomes a Cross
Join, i.e. the Cartesian Product of the two sets Ω1 and Ω2, defined as the set of couples
((𝜔1, 𝜔2)|𝜔1 ∈ Ω1 ∧ 𝜔2 ∈ Ω2) .
For the Cross Join however, the function Wm that calculates the degree of confidence in the
resulting mapping cannot rely anymore in measures of overlapping or coreference between
objects mapped by a common variable (as there is no common variable). A reasonable
replacement can be some measure of proximity between the snippets of text of the couples,
again left as implementation dependent.
A third operation, somewhat related to Join and Union, is the Minus one, introduced in SPARQL
1.1 and that allows to remove from a set of solution mapping Ω1 all the elements of a second
set Ω2

Definition: Minus (for RDF)
Let Ω1 and Ω2 be two solution sequences. We define:

𝑀𝑖𝑛𝑢𝑠(Ω1, Ω2) = {𝜇1
𝑅𝐷𝐹|𝜇1

𝑅𝐷𝐹 ∈ Ω1 ∧ ∀𝜇2
𝑅𝐷𝐹 ∈ Ω2⁡¬𝑐𝑜𝑚𝑝𝑎𝑡𝑅𝐷𝐹(𝜇1

𝑅𝐷𝐹, 𝜇2
𝑅𝐷𝐹)}

In words, the result of the Minus operation, in the RDF case, is the set of all the mappings
belonging to the first set that are not compatible with any of the mappings in the second.
In the case of text snippets, it is again desirable to avoid crispy tuple removal. A Fuzzy
interpretation of the Minus operation can be a sort of negative reranking, that lowers the weights
of the results in the first set that also belongs to the second. More specifically, for each weighted
solution mapping 𝜆1 = (𝜇1

𝑇𝑋𝑇, 𝑤1) ∈ Ω1, let 𝜆2
′ = (𝜇2

𝑇𝑋𝑇 , 𝑤2) ∈ Ω2⁡be the mapping of Ω2 with the
higher compatibility with 𝜆1, i.e.:

𝜆2
′ = argmax

𝜆2∈Ω2

𝑊𝑀(𝜆1, 𝜆2)

Let 𝑤1,2 = 𝑊𝑀(𝜆1, 𝜆2
′). If 𝑤1,2 > 0 we decrease the weight w1 of 𝜆1by a quantity that depends

on two things: the weight w2 of 𝜆2
′ and the degree of compatibility w1,2 between the two. Using

the Fuzzy Logic negator operator ⊝:
𝑤1 = 𝑤1⊗⊝ (𝑤2⊗𝑤1,2)

The idea is that the higher is the weight of the best match 𝜆2
′ , and the lower becomes the weight

of 𝜆1, but if 𝜆1and 𝜆2
′ are not so similar, the negative effect of 𝜆2

′ is decreased.

Definition: Minus (for Text)
Let Ω1 and Ω2 be two solution sequences. We define:

𝑀𝑖𝑛𝑢𝑠(Ω1, Ω2)

= {(Μ(𝜆1),𝑊(𝜆1) ⊗⊝ (𝑊(𝜆2) ⊗𝑊𝑀(𝜆1, 𝜆2)))|𝜆1 ∈ Ω1, 𝜆2 = argmax
𝜆2∈Ω2

𝑊𝑀(𝜆1, 𝜆2),𝑊𝑀(𝜆1, 𝜆2) > 0}

52

To deal with concepts possibly expressed in multiple sentences, it then become natural to adapt
the SPARQL for RDF notion of Group Graph Patterns, which is simply a BGP delimited with braces:
{}.
Group Graph Pattern can be used to fragment the query pattern (the outer-most graph pattern)
into a set of BGP pieces, each of which can then be evaluated against each sentence of the text.
And then again, the result of the Group Graph Pattern should be the “logical AND” of its
component. Of course, this principle can be applied recursively, allowing to query concepts of
any complexity.

6.5.3 Extraction Scopes
Intuitively, BGP are intended to represent basic concepts, things that can typically be expressed
within a sentence and that, in Frame Semantic terms, roughly resembles the idea of a frame.
During query evaluation, each BGP is therefore evaluated one sentence at the time, with the
effect that all the triple patterns in the BGP must be satisfied inside a single sentence. This
approach has been taken with languages poor of resources in mind, where we may be forced to
work with, say, just a Word Embedding and a POS tagger. In that case, a BGP that asks, for
example, for a verb like “to buy” and a word like “car”, is expected to find, with a reasonable level
of precision, sentences where a car (or similar) is the object of some purchase. Of course, this is
more likely to be true when the two words are part of the same sentence, instead of when they
are far apart in the document. For sure, good results requires more sophisticated approaches,
like the employment of a dependency or constituency parser (provided they are available for the
specific language). However, also that tools work at sentence level, suggesting again the sentence
as the most appropriate level of granularity for a BGP search.
For clarity, let’s call this idea of granularity of search the “extraction scope” of the pattern,
defined as follows:

Definition: Extraction Scope
The Extraction Scope of a SPARQL graph pattern is the unit of text inside which all the
constraints of the graph must be satisfied for a tuple of the result to be produced.

We can then say that the Extraction Scope of a BGP is the sentence, meaning that each tuple of
a solution of a BGP will pertain to a single sentence.
Of course, there are situation when we need to consider different scopes. A discourse describes
a complex concept and normally spans several sentences. Sometimes instead, we may need to
drill down inside a big chunk of already extracted text to find its components (for example, to
extract the Named Entity from a chunk of text expressing a certain sentiment). The ability of
looking for a concept that may span different sentences comes with no effort: for what has just
been said, everything that is extracted from different BGPs are allowed to pertain to different
sentences. Syntactically, BGP can be created by enclosing them in curly braces ‘{‘ and ‘}’. A portion
of a SPARQL query string delimited with braces {} that contains zero or more BGPs is called, in
the W3C SPARQL 1.0 recommendation, a Group Graph Pattern. Therefore, we can say that the
Extraction Scope of a Group Graph Pattern is the document. Figure 24 shows an example of
Group Graph Pattern, taken from that recommendation.

53

{ ?x foaf:name ?name .

 {}

 ?x foaf:mbox ?mbox .

}

Figure 24: Example of Group Graph Pattern reported in the W3C SPARQL 1.0 recommendation. It
is a group of three elements: a basic graph pattern of one triple pattern, an empty group, and
another basic graph pattern of one triple pattern.

On the other hand, to limit the extraction scope to a portion of already extracted text we need
to employ a special keyword. In SPARQL for RDF, the GRAPH keyword directs the search inside a
named graph. Figure 25 shows an example taken from the W3C recommendation. The idea there
is that a variable ?g contains an URI that specifies the graph on which the subquery that follows

(enclosed in braces) has to be performed.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?who ?g ?mbox

FROM <http://example.org/dft.ttl>

FROM NAMED <http://example.org/alice>

FROM NAMED <http://example.org/bob>

WHERE

{ ?g dc:publisher ?who .

 GRAPH ?g { ?x foaf:mbox ?mbox }

}

Figure 25: example of use of GRAPH keyword, taken from thw W3C SPARQL 1.0 reccomendation.
The first triple pattern binds the variable ?g with a set of URI taken from the default graph. The
second one performs a search inside the named graph specified by ?g.

The idea in SPARQL/T is not so different: a variable ?g contains a reference to a piece of text
inside which the extraction has to be performed. Following our metaphor of Virtual Graph, such
piece of text can be seen as a “subgraph” of the document. We then can say that the Extraction
Scope of a subquery contained inside a GRAPH ?g {} statement is the snippet of text to

which ?g refers. Table 9 summarizes the Extraction Scope possibilities.

Unit of the Query Extraction Scope

BGP Each sentence separately

Group Graph Pattern The document
GRAPH ?g {} The snippet of text g

Table 9: Extraction Scope of different units of a query

6.5.4 Query Evaluation
During query evaluation each triple pattern is applied to the document, one sentence at a time,
and extracts from it a relation containing one or two columns (depending on the number of
variables) of objects of type TextReference, plus an extra column containing the degree of truth
of the extraction.

54

Then, the relations pertaining to each BGP are formed by joining those of the triple patterns that
it contains, taking care in this particular BGP-internal join operation of not creating tuples
pertaining to different sentences. A BGP’s relation is therefore a table with Ki+1 columns of type
TextReference, where Ki is the number of distinct variables of the BGP i, plus an extra column
contains the fuzzy weight of the entire tuple, calculated by the join operation.
Different BGPs are then joined together in a similar fashion, following the structure of the algebra
tree, but this time without the constraint on sentence belonging.
Because of memory constraints and of the potentially huge number of tuples that certain queries
may generate, at each step of the process the relations are ranked, and only the best N results
are passed to the next operation. Finally, by default, the relation of the root of the tree is also
ranked and only the best solution is returned for the document.

6.6 SPARQL/T peculiar concepts

6.6.1 Hybrid Queries
A SPARQL/T query that involves access to a triple store is called here a Hybrid Query, as part of it
involves the text and part an RDF graph. SPARQL syntax provides a method to direct a portion of
the query to an external server (SERVICE …), and that syntax can in principle be used also for
Hybrid Queries construction. However, such syntactic overhead is not necessary, since the
compiler can easily distinguish an NLP triple pattern (which we will call internal) from one
intended for the triple store (external) by simply looking at the prefixes of the predicate part of
the triple. By doing so, a BGP can be divided into homogeneous chunks called BGP
(homogeneous) fragments, that are separately evaluated and joined. More formally:

Definition: Internal Triple Pattern
An Internal Triple Pattern of a SPARQL/T query is a triple pattern that evaluates against a
document

Definition: External Triple Pattern
An External Triple Pattern of a SPARQL/T query is a triple pattern that evaluates against an
RDF graph

Definition: Hybrid Query
A SPARQL/T Hybrid Query is a query that contains both internal and external triple patterns

Definition: BGP Homogeneous Fragment
A BGP Homogeneous Fragment (or BGP Fragment for simplicity) is a group of contiguous
triple patterns of a BGP that are homogeneous, i.e. that are either all internal or all external

Because External Triple Patterns returns traditional RDF objects, like URI and literals, and Internal
ones return TextReference objects, we need a way to compare these two heterogeneous results

55

in order to make the requested joins. To this purpose, a new class of object is introduced, that
contains three fields: an URI, a TextReference and a string, some of which may be null. In brief,
the idea is that a comparison between two objects of that class is performed by first comparing
the three fields separately (when present), and then merging the results. Ideally:

• URIs should be compared either crispy (exact match) or by using a reasoner that deals
with entailments (a fuzzy reasoner may also consider degrees of truth)

• TextReferences continue to be compared based on they overlapping on the document

• String similarity can be calculated using Word Embeddings, Edit Distance, or again with a
measure of overlapping

Provided that the non-trivial task of rendering these three measures comparable has been
reasonably tackled, a t-conorm (for example, the highest of the three values) can be taken to
represent the global similarity of the two objects.

6.6.2 Reasoning Interface (RI)
SPARQL/T aim to give to external OWL reasoners the ability to reason directly on the text, using
a document in place of an RDF graph. Ideally, and similarly to the RDF case, the reasoner should
be able to extract from the document facts that are not explicitly stated, but that can be entailed
from it using the axioms of a specified ontology. To illustrate the idea, let’s first see a simple
example of traditional OWL reasoning, adapted from [DuCharme 2013]. Let’s say an RDF graph
contains the OWL triples in Figure 26:

1

2

3

4

p:tony p:playInstrument p:guitar.

p:playInstrument rdf:type rdf:property;

 rdfs:domain p:Musician;

p:mario rdf:type p:Musician.

Figure 26: an OWL graph. Triple 3 can be read as “anyone who plays something is a musician”.
Prefixes declarations have been omitted for brevity.

Let q be a query containing the following triple pattern in its WHERE clause:

?x rdf:type p:Musician.

A plain query engine, without a reasoner, will only match the triple 4, binding x with p:mario.
An OWL reasoner on the other hand, from triple 3 knows that the domain of the property
p:playInstrument are objects of the class p:Musician, i.e. that any triple in the form:

s p:playInstrument o

means, among other things, that s belongs to the class p:Musician (“anyone who plays an

instrument is a musician”). Therefore, because of triple 1, the reasoner can infer from the RDF
graph that also p:tony is a valid bind for x. Basically, we want a reasoner to be able to do a
similar inference with text documents, employing the exact same ontology and extracting facts
at run time directly from the text. An example of document expressing the same facts of the
graph in Figure 26 is reported in Figure 27.

56

Mario just plays guitar from time to time . Tony instead is a great musician
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 27: an example of (tokenized) document containing, expressed in natural language, some concepts of the graph in Figure 26.

The UML Sequence Diagram in Figure 28 gives the basic idea of how the things should work. In
this example the sequence of action is started by a SPARQT/T query, that asks the reasoner how
to find instances of the class Musician (Step 1: Reasoner Request 1). However, a similar

sequence can be started by any other actor or by the Reasoner itself. The reasoner then queries
his own RDF/OWL graph, here represented by the “Triple Store” lifeline, to get information about
the class Musician (Step 2: OWL Request 1). From the Triple Store come the information that
Musician is the domain of a predicate play, that has the class Instrument as range. Now
somehow (see later on), the reasoner knows that the SPARQL/T endpoint can be the source of
triples involving the predicate play, and therefore sends it a query about that (Step 4: Text

Query 1). There are many options here, but the simplest one is to just send the name of a stored
query to run. The query succeeds, finding inside the document the sentence “Tony is playing the
guitar”, and returns such information in the form of an RDF graph, whose schema should be well
defined and known to both (see also later about this). To play safe, in step 6 the reasoner further
checks the SPARQL/T results against its own Triple Store, verifying that the object of play
actually belongs to the class Instrument, and finally closes the request with a positive answer.
In principle, by implementing a reasoner inside SPARQL/T, or by adapting an existing one, the
entire process just described could be run inside a single SPARQL/T query. However,
implementing an interface decouples the extraction task from the reasoning one, with at least
the following advantages:

• Clarity: queries are smaller and simpler, and thus also easier to maintain

• Reusability: a simple query with limited purpose can be reemployed in different contexts

• Speed: the reasoner may be able to selectively call only the queries strictly needed to
reach the conclusion

• Abstraction: once libraries of extraction queries and related ontologies will be available,
the user will be able to work at higher conceptual level, dealing with ontologies instead
of with cumbersome NLP details.

Moreover, there is the hope that a simple and well-designed reasoning interface may stimulate
reasoner’s authors to try their product in the task of reasoning with text.

57

Figure 28: UML
diagram describing
the interaction
between a SPARQL/T
engine and an
external reasoner.
Ideally, the reasoner
should be able to
work on natural
language documents
as they were RDF
graphs stored in a
triple store, with
SPARQL/T acting as
an interface between
the two.

58

In defining that interface, the primary goal must be to make it simple to adopt by the majority of
existing reasoners. However, it should be noticed that probably some categories of reasoners are
more suited than others for the task. The process just described resembles more a Backward
Chaining reasoning one (see for example [Russel & Norvig 2010] for the general case definition,
and [Curé & Blin 2014] for the RDF case). Backward Chaining works backward from the goal (in
this case, of finding instances of Musicians in the document), using rules to find facts that

support the proof. In this case, when appropriate, those facts are asked back to the SPARQL/T
endpoint. On the other hand, another big family of reasoners, the Forward Chaining one, start
instead from the facts in the knowledge base and apply rules to generate new facts until no
further inference can be made. This approach, in our case, requires to run all possible useful
queries before the reasoning process can start, which can lead to a huge waste of time when the
size of such set of queries is large (unless of course, a good machine learning algorithm could be
employed to select just the useful ones). In other words, SPARQL/T query interface seems more
suitable for Backward Chaining reasoning algorithms (or hybrid ones, like implemented for
example in Apache Jena32)
With the primary goal of minimizing the effort required to adapt existing reasoners, a major issue
to consider is to define the most suitable protocol for data exchange33. Specifically, from the
reasoner point of view:

1. What is the easiest way to formulate a request to the SPARQL/T endpoint?
2. What is the best format for the result?

Moreover, what is the best way to let the reasoner know that a certain triple pattern should be
directed to the SPARQL/T endpoint instead of matched inside its own RDF Triple Store?
SPARQL/T implements a standard SPARQL endpoint interface, allowing complete queries that
may return either CSV tables (for SELECT queries) or RDF graphs (for the CONSTRUCT ones).
However, forcing the reasoner to create or store complex queries on its side does not help
integration, and also violates the principle of decoupling the extraction and reasoning tasks. A
better, simplified approach is probably to allow the reasoner to formulate queries of just one
triple pattern at a time, and have in return the same kind of RDF triples that it could expect from
a Triple Store. If appropriate, upon receiving the results the reasoner can in this way store them
in the triple store itself, and proceed with the reasoning activity just as if they have always been
there. However, from the SPARQL/T point of view, this does not need to be just a trivial single
pattern query, but it is instead an evocation schema for a full fledge CONSTRUCT query locally
stored in the SPARQL/T endpoint itself. So, to continue with our example, two possible queries
can be:

Q1 ?x rdf:type p:Musician

Q2 ?x p:playInstrument ?y

Figure 29: Two possible single-triple pattern queries

and the results may look something like:

32 https://jena.apache.org/documentation/inference/ , fetched 18 February 2019.
33 Assuming HTTP as the low level protocol

https://jena.apache.org/documentation/inference/

59

R1
<http://.../001> rdf:type p:Musician

<http://.../001> rdfs:label “Mario”

R2

<http://.../002> p:playInstrument

<http://.../003>

<http://.../002> rdfs:label “Tony”

<http://.../003> rdfs:label “Guitar”

Figure 30: Two possible results of the queries in Figure 29

The problem with the results in this format is that we are unable to assign a degree of truth to
the triples, losing in this way possibly important information. Moreover, with the purposes of
efficiency and reusability, a SPARQL/T query may want to extract an entire frame from the
document, complete of all its possible Frame Elements, inside a single call. Therefore, we need
to return a graph in a format suitable to represent both frames and truth values, but that still
contains the triples in the form expected from a Triple Store (let’s call the latter the “main
triples”). A similar problem is faced in the Linked Open Data community, where n-ary relations
are represented with RDF triples in different ways inside different knowledge resources,
complicating their integration and ultimately reducing the queries recall. Rouces et al. [Rouces et
al. 2017] expose the problem, making a survey of the most relevant approaches, and suggest
their own solution. Figure 31 illustrates the approach suggested here, with an example of how
the result of query Q1 of Figure 29 may appear. Like the one suggested by Rouces et al., it is a
two-layered structure, with a neo-Davidsonian part representing the frame and its element, and
the main triple represented with a direct binary predicate. As suggested by Bobillo & Straccia
[Bobillo & Straccia 2011], the truth values are reported in form of annotations, which are meant
to assign human readable labels and text definitions to classes and properties, and thus to be
ignored by inference engines. Moreover, while a fuzzy reasoner can take advantage of the fuzzy
information, a crispy one can simply proceed as they do not exist. Notice that p:fuzzyLabel
is not a predefined OWL annotation34, and must be declared as one with a triple like:

p:fuzzyLabel rdf:type owl:AnnotationProperty.

34 OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax (Second Edition),
W3C Recommendation 11 December 2012, https://www.w3.org/TR/owl2-syntax/ , fetched 27 January 2019

https://www.w3.org/TR/owl2-syntax/

60

Stored
Query

?X playInstrument ?Y

Figure 31: an example of RDF graph returned by a call to a SPARQL/T stored query. The call is made passing to the
SPARQL/T endpoint a single triple pattern, in this case containing the predicate playInstrument and the two variables
X and Y. The Main Triple of the result (surrounded by the red rectangle) is in the format that should be expected from
a Triple Store, when queried with the same triple pattern. The rest of the graph contains other information extracted
by the query (in this case the entire frame) and a fuzzyLabel indicating the degree of truth of the extraction. The
snippets of text extracted from the document are reported as labels.

Clearly, this approach limits the expressivity of the communication to a single triple, and how
much this may be a problem is at the moment unclear.
Finally, a safe approach to allow the reasoner to distinguish the NLP triple patterns to send to
SPARQL/T endpoint must be decided. Probably, like in the case of the fuzzyLabels suggested by
Bobillo & Straccia, the best way is again to use RDF annotations, as they should not interfere with
any reasoning process. However, from the computational point of view, there may be better
methods to explore.

p:Musician p:nlpFunction “SPARQLT-

endpoint1” .

p:playInstrument p:nlpFunction “SPARQLT-endpoint2” .
p:nlpFunction rdf:type

owl:AnnotationProperty.

61

__

Chapter 7 – Functions List
__

7.1 Search for Words, Lemmas and Embeddings
This set of functions considers words, n-grams and lemmas of the document, allowing to search inside it
those listed in the triple pattern. The comparison can be either crispy (an exact match), or employ a
similarity measure based on a Word Embedding. The distinction between these two cases is made by the
prefix of the predicate function (second position in the triple), whilst what follows that prefix (the
subfunction code) specify how to use with the list of strings to search. This search list is given in the third
(object) position of the triple pattern, and can be specified in two ways: either with a string literal (a space
separated list of tokens) or with an input variable. As described in section 6.4.2, the concept of input
variable is specific of SPARQL/T semantic, it does not exist in SPARQL for RDF. It simply means that the
variable must already be bounded to a result before this triple pattern is encountered in the query string.
Otherwise, quite obviously, the engine doesn’t know what to search. The evaluation of the triple pattern,
i.e. the search inside the document, binds the subject variable (specified in the first position in the triple)
with a set of results. In case of Word Embedding search, to each record of the result is assigned a score
according to the similarity value. In case of crispy tests, the score is equal to 1.
Given the list of words (or lemmas) to search, the subfunction code specify how to interpret such list. In
case of crispy matches, the ANY subfunction compares the words of the document with every word of the
search list, and returns any possible exact match. The SEQ subfunctions considers the search list as a
sentence and searches inside the document all of its words in the exact same order. In this case wildcards
are allowed: starting the search list with a set of n asterisks allows the engine to skip up to n position in
the document in order to achieve the match (words can be skipped anywhere in between the first and
the last token of the match). The PER subfunction is similar to the SEQ one, but allows permutations. It is
obviously computationally more expensive, but may add flexibility when necessary. In case of Word
Embeddings, we have a very similar set of possible subfunctions. The Word Embedding version of the ANY
subfunction still compares the words of the document with every word of the search list, keeping the
matches with the highest score. The AVG subfunction calculates an average vector of the Word
Embedding of the search list, and compare it against the vectors of the document. The idea here (quite
experimental) is to allow to search for a sort of average-concept, the “center” of the concepts listed in the
search list. The SUM subfunction on the other hand, is the analogous of the crispy SEQ, interpreting the
search list as a sentence. It considers a sliding window on the document of the same size of the search list
and, at each step, compares the sum of the Word Embedding vectors of the words in the window with
the sum of those in the search list. The result is a set of snippets of text ranked accordingly to the similarity
to the searched sentence (search list). This is a basic but quite effective way to achieve sentence similarity
employing just Word Embeddings. It is outperformed by recent methods like Universal Sentence Encoder,
but unfortunately these are still not available for most languages.
All the above-mentioned function can work with words and with lemmas. A lemma is a root form of a
word, like the infinite of a verb or the singular of a noun. It should not be confused with the word’s stem,
which is a string obtained by stripping from the words its morphological suffixes and prefixes. The
stemming process is much easier and faster than the lemmatization one, often employed in Information
Retrieval for these reasons. However, just stripping the suffix from a string may lead to represent with the
same stem words with very different meaning. For example, all the words in the set {“universal",

62

"university", "universe"} are likely to be stemmed into the string "univers"35. This problem is known as
overstemming, and has a counterpart called understemming, that happens where different word
inflection of the same lemma result in different stems. For this reason, SPARQL/T only consider lemmas
and not stems. Another point to consider about lemmas is whether the kind of lemmatization process
employed only considers the inflectional morphology of the word (tense of a verb, number of a noun, …)
or if it also takes into account derivational morphology, i.e. transformations that usually involve a change
in grammatical category (for example, creating the noun worker from the verb work, or the noun loudness
from the adjective loud).
The advantage of employing lemmas (or stems) in a crispy match is obvious: we can represent with a
single string the full set of possible morphological variations of a word, involving tense, number and so
on. This is in practice more a necessity that a pure advantage, especially when dealing with verbs. With
Word Embedding instead, at least in principle, employing lemmas should not give any advantage, as we
expect that morphological variations should not substantially change the word’s meaning (and thus its
vector representation). Unfortunately, this is often not the case, and using the lemma instead of the word
in Word Embedding comparisons appears to give much better results.

?var FUNCTION:subfunction ‘searc-list’

?var FUNCTION:subfunction ?inputVar

Figure 32:the two variation of the word search triple pattern: with a constant search list and with an input variable.

FUNCTION
PREFIX

The subfunction applies to:

WRD The words in the text
LEM The lemmas of the words in the text
EMB The Word Embedding vectors of the words in the text
EML The Word Embedding vectors of the lemmas of the words in the text

Figure 33: the possible prefixes of the word search function, indicating if the comparison is made between words or between
lemmas, and if it is crispy (they are the same or not) or fuzzy, involving a Word Embedding.

Crispy Matches (WRD & LEM)
subfunction Description

ANY Returns any word or lemma in the text that matches at least one of those specified
in search-list.

SEQ
(sequence)

Considers the search-list as a sentence, and returns matching snippets of
text, i.e. sets of contiguous words of the text that matches all the words in
search-list, exactly in the same order. A number n of wildcards (*) in the
beginning of the list instruct the engine to skipping, if necessary, of a maximum of
n words, in any position of the sequence.

PER
(permutation)

Like SEQ, but does not impose the order of the words in the document to be the
same of those in the search-list

Figure 34:Possible subfunctions of the crispy (exact match) functions

35 Example reported by Wikipedia, attributed to the Porter stemmer [Porter 1980],
https://en.wikipedia.org/wiki/Stemming , fetched 28 January 2019.

https://en.wikipedia.org/wiki/Stemming

63

Word Embedding Matches (EMB & EML)
subfunction Description

ANY Each word or lemma of the document is compared, using cosine similarity, with
each words or lemmas in search-list, and the best match is taken.

SUM The sum of the vectors of the words or lemmas in search-list is compared
with the sum of the words (prefix EMB) or lemmas (prefix ELM) of a sliding window
(of the same size) in the document.

AVG The average of the vectors of the words (or lemmas) of search-list is
compared with the vector of each word (or lemma) of the document

Figure 35:Possible subfunctions of the fuzzy (Word Embedding) functions

7.2 Regular Expressions
Regular expressions in SPARQL/T can be applied to words, lemmas and sentences and have the same
syntax of the Java’s ones.

WRD:REX the regular expression is applied one token at a time
LEM:REX the regular expression is applied one lemma at a time
SEN:REX the regular expression is applied to the entire sentence

For example, the following triple pattern searches, sentence by sentence, a few possible names of
telephone offers:

?Offer SEN:REX
"(senza ?limiti|(iper|turbo) ?giga| (ten|top)

go|(tim) ?(young|special|base))|(entra in tim)" .

7.3 Named Entities
A named entity is a real-world object that can be denoted with a proper name (or proper noun). According
to Wikipedia: “A proper noun is a noun directly associated with an entity and primarily used to refer to
that entity, such as London, Jupiter, Sharon, or Microsoft, as distinguished from a common noun, which is
a noun directly associated with a class of entities (city, planet, person, corporation)”
As another example, “Theresa May” is a named entity whilst “Prime Minister” is not, as it does not refer
to a specific real life one.
The task of identifying and classifying the named entities in a document is called Named Entity Recognition
(NER). (Although sometimes in the literature NER indicates just the subprocess of finding the boundaries
of the named entity, whilst the process of classifying it is called NEC and collectively they are called NERC).
The number of classes taken into consideration by the NER task may vary from the very few of what is
often called the core set (Person, Organization, Location, and Date and Time)36 to the more recent fine-
grained ones, that may include classes like biologist, composer, or athlete [Ekbal et al 2010].
It should be mentioned that the NER task does not reduce to a simple string look-up in a table (technically,
a gazetteer), for a number of issues. Among others (see also [Maynard et al. 2016]):

• names are ambiguous: “May” can be the name or surname of a person, a month of the year or a

common noun (“you may go”)

• many companies, diseases and laws are named after people

36 developed for the shared NERC task at MUC-6, see [Grishman & Sundheim 1995]

64

• the same entity can be mentioned in different ways (John Smith, Mr. Smith, John, J. S. Smith,

Smith)

• we need to consider acronyms (U.K. / United Kingdom) and aliases (IBM / Big Blue).

The syntax of the NER triple pattern is given in Figure 36. The result is a relation, binded to the variable
?var, containing all the snippets of text of the sentence that had been annotated with the class NE-
class (specified in the object of the triple).

?var NLP:NER ‘NE-class’

Figure 36:syntax of the NER triple pattern

The present implementation of SPARQL/T employs the NER provided by the Stanford CoreNLP library 2,
with the set of NE classes listed in Figure 37

PERSON
LOCATION
ORGANIZATION
MISC
SET

MONEY
NUMBER
ORDINAL
PERCENT
DATE
TIME
DURATION

Figure 37: List of Named Entity classes provided by the Stanford CoreNLP NER

7.4 Dependency Parsing
Proximity is a good indicator of relatedness, but it obviously often fails. For example, looking for
a word that expresses a negation in proximity of the verb “to know” is a naïve (albeit sometimes
effective) way of finding expression of the concept of <not knowing something>. But it is not
enough for example to sharply distinguish between “not knowing X” (our target) and “knowing
that something is not X”. A Dependency Parser [Kubler 2009] makes this kind of distinction easier
to make, as in the first case the head of the relation “neg” is the verb “to know”, whilst in the
second is the noun “X” (see Figure 38)

?k emb:any

'know'.

?k DEP:NEG ?n

.

Figure 38: The Dependency Trees of the two sentences "I dont't know X" and "I know it is not X" 37. Both sentences contain a
negation in proximity of the verb "to know". The Dependency Trees allows to easily distinguish the two cases by looking at thehead
of the relation “neg”. On the right: the SPARQL/T triple patterns that searches in the sentence instances of the concept “not
knowing”, by using the Dependency Parsing together with the Word Embedding.

The syntax for the triple pattern is:

?head DEP:RELATION ?dependent

37 http://corenlp.run/

65

Watching only at the annotations, and not at the document, it extracts a relation of two columns,
with all the possible couples (head, dependent) found in the sentence linked by the specified
relation. The list of allowed relations depends on the parser employed. For English the Stanford
CoreNLP38 library has been adopted, which output grammatical relations in the Universal
Dependencies v1 [Nivre 2016] [Schuster 2016]. The philosophy of Universal Dependency39 (UD)
is to provide a universal inventory of categories consistent across languages. At the time of
writing UD tree banks were available for over 60 languages. For Italian the TINT library40 [Aprosio
2016] has been used.

Dependency Description Dependency Description

acl adjectival clause fixed fixed multiword expression

advcl adverbial clause modifier flat flat multiword expression

advmod adverbial modifier goeswith goes with

amod adjectival modifier iobj indirect object

appos appositional modifier list list

aux auxiliary mark marker

case case marking nmod nominal modifier

cc coordinating conjunction nsubj nominal subject

ccomp clausal complement nummod numeric modifier

clf classifier obj object

compound compound obl oblique nominal

conj conjunct orphan orphan

cop copula parataxis parataxis

csubj clausal subject punct punctuation

dep unspecified dependency reparandum overridden disfluency

det determiner root root

discourse discourse element vocative vocative

dislocated dislocated elements xcomp open clausal complement

expl expletive

7.5 Semantic Role Labeling
According to Palmer et al., the syntactic parser “… are long way from representing the full
meaning of the sentences […] they do not specify ‘Who did What to Whom and How, Where and
When?’” [Palmer et al. 2010]. A purchase event for example can be described using different
verbs (buy, sell, acquire, …) and nouns (purchase, order, …), and the purchased thing can be the

38 https://nlp.stanford.edu/software/stanford-dependencies.html
39 http://universaldependencies.org/
40 http://tint.fbk.eu/

Table 10: Universal Dependencies (http://universaldependencies.org/u/dep/index.html)

66

subject or the (indirect) object of the verb, or be in a noun compound relation [Jurafsky et al.
2008]. The purchased thing and the purchaser are called Semantic Roles of the action purchase,
and the Semantic Role Labeling (SRL) is the task of identifying them inside the text.
Compared with syntactic structures, SRL gives a much coarser representation of the sentence,
generally easier to deal with. The roles can often be quite long descriptions of places, person,
manners of behavior and events, and purely syntactic distinctions, like active vs. passive form of
the verbs, are removed. [Dagan et al. 2013]. Moreover, at least in principle Semantic Roles should
be highly independent from the language, simplifying the development of multi-language
queries. The set of roles of an SRL tool depends on the linguistic resource against which it is
trained. At the moment, there are three major resources, that differ primarily in the granularity
of the role labels:

• FrameNet41, based on Fillmore’s Frame Semantics, is the most fine-grained. Different
roles are defined for each of the 1224 (at the time of writing) different frames. For
example, the Apply-Heat frame include Cook, Food and Heating Instrument roles (Frame
Elements)

• VerbNet42 consists of hierarchically arranged verb classes, with 24 semantic roles (Agent,
Patient, Theme, Experiencer, …)

• PropBank43 [Kingsbury & Palmer 2002] , explicitly developed for the purpose of becoming
a training set for machine learning algorithms, defines semantic roles numerical (Arg0,
Arg1, …), with Arg0 normally corresponding to the Agent, Arg1 to the Patient or Theme,
and no consistent generalization across verbs for the higher numbered classes. It also
defines Argument Modifier roles (ArgM) like location, temporal and manner.

SPARQL/T adopts (for the moment) only the PropBank set of roles. The general triple pattern is
written using the SRL prefix followed by the PropBank role. For example, assuming V contains the
verbs of the sentences in the document, the following triple pattern fills R with their Arg0 roles.

?R SRL:ARG0 ?V

7.6 Word Net
The Word Net functions allows simple query expansion: the actual list of words to search inside the
document is formed by taking each word or synset44 in the list specified in the triple pattern and
augmented it with every related word, according to Word Net and depending on the relation specified in
the triple pattern itself. The possible relations are reported in Table 11.
For example, the first of the two following triple patterns will search for seven words: “telephone”,
“phone” and “telephone set” (the noun.artifact synset), but also for “telephony” (noun.communication)
and “call”, “call up” and “ring” (verb.communication) . The second one instead, having specified the synset
code, will only consider the first three.

41 https://framenet.icsi.berkeley.edu/fndrupal/
42 https://verbs.colorado.edu/verbnet/
43 https://propbank.github.io/
44 Synsets are specified with their eight digit numbers, than can be queried online at the web site of the Princeton
University: http://wordnetweb.princeton.edu/perl/webwn

http://wordnetweb.princeton.edu/perl/webwn

67

?tel1 wn:synonym “telephone”

?tel2 wn:synonym “04408223”

synonym

hyponym

hypernym

similar

member_meronym

member_holonym

part_meronym

part_holonym

instance_hyponym

instance_hypernym

domain_category

domain_member_category

also

verb_group
Table 11: relations that can be used in th Word Net triple pattern

7.7 Sentence Embeddings
The sentences specified in the triple pattern are encoded employing the current encoder, at the moment
either Google Universal Sentence Encoder or Facebook LASER. The nearest neighbors of the resulting
vectors are then searched45 and the corresponding snippets of text returned.
Like in the Word Embedding case, we can combine more than one sentence in the same triple pattern, in
this case by separating them with any character in the set {‘.’, ‘!’, ‘?’ }. The sub-function code, as indicated
in , specify what to do with the different sentences.

SEN:AVG the query string is split into sentences and the average vector is employed in the search
SEN:ANY the query string is split into sentences, the search is performed with each vector, and the

best match is taken
SEN:EQU the query string is taken as a single sentence

For example, the following triple pattern search for sentences similar to either “Change the appointment”
or “No show”.

?x SEN:ANY "Change the appointment. No show ".

7.8 Snippet concatenation and score threshold

This function performs two operations. Its main purpose is to allow the concatenation of the snippets of
text retrieved inside the same BGP, to form a single snippet that extends from the beginning of the first
to the end of the last (with respect to their position inside the document). Optionally, a threshold t>0 can
be specified, that causes the removal of the results with score below t.
The example below searches for (opposite) sentiment words near an entity representing a telephone
company, concatenates the results (variable S and O into variable C), and filters the records with lower

45 At the moment, with a sequential search inside a binary file.

68

score (which may be due to words not so similar to “love” and “hate”, or too far apart from the company
name). The threshold is arbitrary and depend on the context, which means that it has to be found
manually, and that a good one may not even exist.

SELECT *

WHERE

{ { ?S ELM:ANY 'love' . }

 UNION

 { ?S ELM:ANY 'hate' . }

 ?O NLP:NER 'TEL_COMPANY' .

 ?C NLP:CAT "0.5" .

}

7.9 Lucene Queries

?var IR:QRY “Query String”

The query string is passed to Lucene and the returned set of documents is used in place of the entire
corpus for the rest of the query. The purpose of this triple pattern is to speed up the query execution,
and it must be the first of the query.

7.10 Unimplemented Functions
This section lists some functions that are either not yet implemented or still experimental. They
are report here nevertheless because we believe they are essential for the proper use of
SPARQL/T.

7.10.1 Constituency Parsing
Constituency parser create trees that represent the sentence in term of their constituents, i.e. Noun

Phrases (NP), Verbal Phrases (VP) and so on (see for example [Jurafsky & Martin 2008]). At the
moment this kind of parsers are not as widely available as the Dependency ones, but when they
are, they allow a more practical approach to Information Extraction, especially when dealing with
multi-word concepts. A single triple pattern may be used for example to extract the full n-gram
object of a certain action (starting from the verb), or to retrieve the verb that refer to a certain
entity (starting for example from a Named Entity). Of course, we need to deal with imprecisions,
errors, and misalignments of various kind between different annotation tools. So, a first group of
triple patterns must be created for alignment purposes: we need a way to reach the first valid node of a
parse tree starting from any snippet of text. Let X be such snippet of text. The following triple patterns
allows such searches:

?Y CP_UPR:ANY ?X Y = Any Upper node The smaller node containing X entirely, of any kind
?Y CP_UPR:NP ?X Y = Upper NP node The smaller Noun Phrase containing X
?Y CP_LWR:ANY ?X Y = Any Lower node The largest node fully contained in X, of any kind
?Y CP_LWR:NP ?X Y = Lower NP node The largest Noun Phrase fully contained in X

69

Here, for simplicity of exposition, only the Noun Phrase (NP) cases have been shown, but any other kind
of node can be used in place of NP. Also, here “largest” and “smaller” obviously refer to the extension of
the snippet of text of the node.
The remaining triple patterns assume instead that X is already aligned with a node of the tree, and allow
to navigate it up and down:

?Y CP_PAR:ANY ?X Y = Any Parent of X the parent of X (can be of any kind)

?Y CP_PAR:NP ?X Y = Parent NP of X the parent of X, if it is a Noun Phrase
?Y CP_ANC:ANY ?X Y = Any Ancestor of X Al the nodes on the path from X to the root (excluding X)

?Y CP_ANC:NP ?X Y = NP Ancestors of X All the NP nodes on the path from X to the root (excluding X)

?Y CP_CHL:ANY ?X Y = children of X All the children of X

?Y CP_CHL:NP ?X Y = children of X All the Noun Phrases children of X

?Y CP_DES:ANY ?X Y = Any Descendant of X Al the X subtree (excluding X)

?Y CP_DES:NP ?X Y = NP Descendant of X All the NP nodes in the X subtree (excluding X)

?Y CP_SIB:ANY ?X Y = Any Sibling of X Al the nodes descending from the parent of X (excluding X)

?Y CP_SIB:NP ?X Y = NP Siblings of X Al the NP nodes descending from the parent of X (excluding X)

Notice that most expressions can sometimes return an empty relation. For example, the triple pattern

?Y CP_PAR:NP ?X

does not return any triple if the parent of X is not a Noun Phrase. Because the join of an empty relation
with any other relation is again an empty relation, together with the UNION clause this fact can be used
to implement a sort of conditional execution:

{ # if the parent of Y is a noun phrase

 ?Y CP_PAR:NP ?X

 …

}

UNION

{ # if the parent of Y is a verbal phrase

 ?Y CP_PAR:VP ?X

 …

}

7.10.2 Negations
Information Retrieval systems often disregards negation clues, treating them as stop words and thus
becoming unable to discriminate between cases in which things that are stated to be present and others
where the same things are stated to be absent. Although in many cases this may not be a problem, there
are situations where being able to do this kind of distinction becomes critical. Clinical reports for example,
according to Chapman et al [Chapman et al. 2001b], often contain lots of observations that denies the
presence of a particular clinical condition. In their own words: “many of the most frequently described
findings and diseases in discharge summaries, radiology reports, history and physical exams, and other
transcribed reports are denied in the patient. […] Differentiating pertinent negatives46 from positive
conditions in a clinical report is crucial to accurate indexing of the report”. More specifically, they found
([Chapman et al. 2001a]) that the number of pertinent negatives were between 39% and 83%, depending
on the type of report considered.

46 Here the term “pertinent negatives” indicates findings and diseases explicitly or implicitly described as absent in
a patient.

70

A similar situation, probably with similar figures, arises with complaints, as they are often statements
about things that the user expected to receive or achieve (and didn’t), and with technical reviews, where
similar products with different set of features are compared.
[Díaz & López 2019] provide a very recent survey on negation and speculation detection (speculations, or
“edging”, are phrases used to mark an assertion as not sure).
Correctly identifying a negation is not a simple task. With a certain approximation, it can already be done
inside SPARQL/T, by looking for the Negation Clues (words like “no”, “not”, “never”), or by using a
Dependency Tree (following the “neg” relation). However, there are many possible negation clues to
consider, like pronouns (“nobody”), determiners (“any”) and prepositions (“without”). Negation can also
be affixal (negative prefixes like “un-related”), or can be expressed by verbs (“I refuse to talk”) or adjectives
(“an imperceptible smell invaded the room”). Moreover, identifying the scope, i.e. the exact snippet of

text the negation refers to, is a highly difficult problem itself. See for example [Morante et al. 2011] (for
English) and [Altuna et al. 2017] (for Italian). At the moment (according also to [Díaz & López 2019]), the

only publicly available library for negation annotations (in English) seems to be the negtool47 [Enget et
al. 2017]. We believe that would be very important to have in the future a function in SPARQL/T
that allows the user to identify a negation and its scope with a single triple pattern:

?X NLP:NEG “negation-form”

Here, X will bind to the scope of the negation, whilst the suitable set of negation-forms need t be studied
according to usefulness and tools capabilities.

7.10.3 Textual Entailment
Being able to retrieve sentences with meaning similar to a given one, almost independently from
the way the concepts are linguistically expressed, is already a wonderful and quite surprising
result, achievable in SPARQL/T by using Sentence Embedding triple patterns, which in turn rely
on tools like Google Universal Sentence Encoder of Facebook LASER. However, similarity is quite
a vague concept, that may lead to many false positives (according to the user’s information need).
In some cases, what the user may want is to retrieve things that are equivalent from the logical
point of view, i.e. things that entail one another. A definition of Textual Entailment, also known
as Natural Language Inference (NLI), can be found for example in [Dagan et al. 2013]:

Textual Entailment is a directional relationship between pair of text expressions T and H (Text
and Hypothesis). We say that T entails H if humans reading T would typically infer that H is
most likely true

In other words, Textual Entailment consider plausibility of the hypothesis, not just certainty.
Similarly, they also define contradiction:

The hypothesis H of an entailment pair contradicts the text T if a human reader would say that
H is highly unlikely to be true given the information described in T

47 https://github.com/marenger/negtool

71

As an example, the text “The drugs that slows down or halt Alzheimer’s disease work best the
earlier you administer them” entail the hypothesis H “Alzheimer’s disease is treated using drugs”.
From the procedural point of view, three approaches to Textual Entailment are generally defined:

• Recognition Mode: given T and H, classify whether entailment holds or not

• Search Mode: given H and a corpus, find all text fragments that entails H

• Generation Mode: given a text T, generate sentences that entails H
From the SPARQL/T point of view, Search Mode is clearly what is needed. Ideally, a triple pattern
like the following one should fill the relation X extracting from the documents all the sentences
that entail the possibility of treating Alzheimer with drugs:

?X NLP:ENTAIL “Alzheimer’s disease is treated using drugs”

At the moment, results are still experimental, but promising. The Stanford Natural Language
Inference (SNLI) corpus [Bowman et al.2015] is a collection of 570152 sentence pairs labeled for
entailment, contradiction, and semantic independence. It has been manually created by about
2500 workers using Amazon Mechanical Turk, starting from the captions of the Flickr30k corpus.
According to the authors, the dataset is SNLI is large and diverse enough to be used to train Deep
Neural Networks models. In their test with a LSTM they obtained accuracy above 77%. Moreover,
having employed Word and Sentence Embeddings, there is the hope that multi-language versions
of such embeddings will allow a zero-shot transfer learning for languages where a corpus as big
as SNLI does not exist.

7.10.4 Sentiment Analysis
Although the primary aim of this work is to deal with the details of the problems exposed in
complaints and reviews, finding the snippets of text that clearly express a negative sentiment will
certainly help to focus the search. For this purpose, a simple syntax like the following should allow
the user to extract such snippets:

?X NLP:SEN “sentiment-level”

Here, sentiment-level should be a label in a restricted range to be defined, like { “Very Positive”,
“Positive”, “Neutral”, “Negative” and “Very Negative” }

7.10.5 OpenIE
OpenIE extracts from documents triples of strings in the form (subject, predicate, object), without
spending effort in trying to relate them to some ontology, nor to put them into a canonical form
(see section 3.1). However, for the SPARQL/T point of view, this will probably be a very interesting
resource. Because of their structures, we need to reserve to OpenIE triples a specific triple
pattern: a triple pattern with three variables extracts from the sentence all its OpenIE triples:

?Subject ?Predicate ?Object

(which resembles the SPARQL case, where a triple pattern with three variables retrieves the
entire graph)

72

__

Chapter 8 - Architecture
__

The actual implementation of SPARQL/T engine has three main components (see also Figure 40):

• The “core”, NLP one, that deals with natural language documents

• The RDF/OWL one, that uses Apache Jena48

• The traditional Search Engine one, implemented with Apache Lucene49
The NLP part is almost entirely written in Java, with very small Python parts that interfaces with the

Sentence Encoders. For the parsing of the queries the Antlr 4 library50 [Parr 2013] has been used,
together with an initial SPARQ 1.0 grammar available from the author repository51. The corpus of natural
language documents is stored on groups (segments) of three files each:

• The actual documents with their annotations, serialized into a JSON file

• The Sentence Embeddings, saved as a raw binary file

• A small index files that provides the links between the two
The segments are generated by the user, normally according to source, topic and dates. To focus the
search, or simply to speed up query execution, the user is allowed to restrict the set of segments to work
with52. A special segment (the Working Segment) is intended to provide a meaningful set of documents
of interest, where the user can test the queries and train the Machine Learning filters. The Working
Segment is kept in RAM, possibly with the Embedding part in the GPU RAM. Its optimal size obviously
depends on the hardware capabilities. Ideally, it should be big enough to provide a suitable number of
examples to work with, but also small enough to allow an almost real time execution of the test queries.
It can be loaded from disk or generated on the fly with a Lucene query, collecting from the Corpus
segments the document whose id is returned by Lucene. Although Lucene queries are primarily intended
for the purpose of building the Working Segment, they can also be part of the SPARQL/T query itself (see
section 7.9), allowing to quickly select at run time a limited number of documents to submit to the heavier
NLP analysis53.
An important feature of SPARQL/T is that, thanks to its SPARQL syntax, NLP triple patterns that refer to
the documents and their annotations can be seamlessly intermixed with traditional SPARQL ones that
refer to an RDF/OWL graph. This kind of hybrid queries is achieved using Apache Jena54 RDF API and ARQ.
Figure 41 shows an example of how a hybrid query is executed. The hybrid query on top left of the figure
has two BGP (Basic Graph Patterns). The first one in an NLP one, that looks inside the documents’
annotations for all the Entities of the kind ‘TEL_OFFER’. The function NLP:EL (where ‘EL’ stays for ‘Entity
Linking’) is the only one in SPARQ/T that return an URI together with the snippet of text to which it refer.

48 https://jena.apache.org/
49 https://lucene.apache.org/
50 https://www.antlr.org/
51 https://github.com/antlr/grammars-v4
52 It cannot be considered a true faceted search, as it follows the structure of different forums, that unfortunately
in general have different subdivision into topics.
53 For this reason, Lucene statements must appear in the SPARQL/T query before any NLP triple pattern. Albeit
inelegant, this choice seems acceptable for most practical purposes.
54 https://jena.apache.org/

https://jena.apache.org/

73

The second BGP is an RDF/OWL one, and is passed to Apache Jena, decorated with some prefixes and a
“SELECT {} WHERE {}” clause55. However, the two BGPs share a common variable X, which means that its
values must be taken from the result set of BGP1 and passed to Jena (Variable Bindings). Jena executes
the query and returns its result set. In this case, it checks that X is the kind of offer that gives unlimited
access to social networks, and returns its monthly cost. Finally, control returns to SPARQL/T, that performs
the JOIN operation (on X) between the results of the two BGP. Notice that in this simple case we only have
variables with associated URIs. In general, this may not be the case: we may have for example a variable
Y that represent a snippet of text in BGP1 and an RDF literal in BGP2. Jena, as any other SPARQL engine,
cannot deal with similarity measures. Therefore, text only variables must not be passed to Jena, but
treated in the JOIN operation employing string similarity measures. Figure 39 gives the pseudo-code for
the Hybrid Query execution

A=set of variables belonging solely to the input relation

B=set of variables belonging to both the query and the input relation

C=set of variables belonging solely to the query

query = QueryFactory.create(QueryString) ;

model = RDFDataMgr.loadModel(RdfFile);

foreach(row in InputRelation)

{ QuerySolutionMap qsm=new QuerySolutionMap();

 foreach(var in B)

 { if(var contains URI)

 { Resource res =model.createResource(sURI);

 qsm.add(var.Name,res);

 }

 }

 QueryExecution qx=QueryExecutionFactory.create(query,model,qsm))

 ResultSet rs=qexec.execSelect();

 while(rs.hasNext())

 { QuerySolution qs=rs.nextSolution();

 float score=row.score;

 foreach(var in B)

 { RDFNode nd=qs.get(var.Name);

 if(nd.isLiteral())

 { sim=similarity(nd.asLiteral(),var.Value);

 score=adjustScore(score,sim);

 }

 }

 if(score>0)

 addSolution(ABC,score);
 }

}

Figure 39: Pseudo-code of Hybrid Query execution

55 Notice that, for the sake of clarity but also for simplicity of implementation, triple patterns of two different kinds
(NLP or RDF) must form homogeneous groups, syntactically enclosed in curly braces.

74

In general, the hybrid query execution proceeds along the NLP triple patterns, producing the usual relation
(result set RSTXT), until an RDF group is encountered. Then, the result set produced up to that point is
passed to the Jena engine, together with a SPARQL SELECT query containing the RDF triple patterns in the
BGP. The result set RSRDF returned by Jena is then joined with the previous RSTXT to produce the output
one RSOUT, and the execution continues.
The values of the variables of RSTXT that are also used inside the RDF query are passed to Jena through a
QuerySolutionMap object56. Unfortunately, it seems that this has to be done one record at a time,

i.e. it is not possible to pass the entire relation to Jena, but we need to run the RDF query for each of the
RSTXT records. However, query compilation can be placed outside the loop (QueryFactory.create

function). Moreover, being Jena an open source project, higher performances can probably be achieved
in the future by tackling inside its code. As already mentioned, because SPARQL engines cannot deal with
similarity measures, we only pass them the variables containing URIs. More specifically, let T be the set of
variables that appears in RSTXT and R those of RSRDF.
We split T and R into three sets:

• Let A = T \ R be the set of variables of RSTXT that are not present in RSRDF.

• Let B = T  R be the set of variables present in both RSTXT and RSRDF.

• Let C = R \ T be the set of variables of RSRDF that are not present in RSTXT.
B is then the set of variables involved in the JOIN operation, and is further divided into:

• BURI : the subset of variables in B that contains URIs

• BSTR : the subset of variables in B that contains strings (snippets of text in RSTXT, RDF literals in
RSRDF)

The values of the BURI variables are passed to Jena inside a QuerySolutionMap object, whilst the BSTR

ones are used to calculate the score of the output record. The output record is formed by the
concatenation of the values of the input record for the variables in the sets A and B, and the values of the
Jena query for the variables in the set C57.

56 An obvious optimization, omitted in Figure 39 for simplicity, is to group records with the same values
57 Which means that when literals variables from the input records differs from those of the query, we (arbitrarily)
keep the former.

75

Figure 40: SPARQL/T Engine Architecture

76

Figure 41: Example of Hybrid Query execution

77

__

Chapter 9 - Evaluation
__

This chapter evaluates the present implementation of SPARQL/T. Section 9.1 shows an example
of its simplicity of use; section 9.2 measures its performances for the most common operations.

9.1 - Example – Low Effort Queries

This example shows the ease of use of SPARQL/T, which does not require the users to be aware
of many of the available triple patterns to do something useful. The expressivity of the language
is indeed illustrated by two very simple option allowed by SPARQL/T:

• Enter an entire sentence in a single triple pattern and rely on sentence similarity

• Pick only a few words for each concept of interest and compose a simple query, with a
triple pattern for each concept, relying then on the internal join operation to properly
combine the results

Suppose that we need to identify mentions of hard disk failures within a group of
sentences/documents. By googling “hard disk failure” it is easy to spot a few web sites that make
their own list of such possible symptoms. We have picked one of those, and quite mindlessly
collected the major points, reported in Table 12. We can think at Table 12 as the limited initial
knowledge that the user may have on a subject before starting an exploration.

SYSTEM

S1 system fails to boot

S2 system freezes

S3 black screen appears

S4 sudden shutdown

S5 force restart

FILES & DIRECTORIES

F1 hard disk is not recognized

F2 files and folders become invisible and corrupt

F3 bad sectors and block appear in the hard disk

F4 system files are altered

ELECTRONICAL

E1 power source is unreliable

E2 power supply too high or too low

MECHANICAL

M1 hard drive does not spin

M2 hardware makes noise

HEAT

H1 fans do not work

H2 computer get heated
Table 12: Possible symptoms of Hard Disk Failure

78

We have then collected, from the same Google query, a set of 60 HTML documents (excluding
the one used to build Table 12), kept the initial 5000 character of the text of each one, and
manually labeled them with the labels of Table 12 (It is obviously a multi-label classification
problem, as the same document may report more than a symptom). A random sample of 20 of
those documents has been used for exploration and to trim the query parameters. Let’s call it,
quite improperly58, the training set. All the remaining documents constitute the test set.
Three kinds of queries have been made:

1. Trivial queries of just one triple pattern: the EMB:USE triple pattern accepts in input a
sentence and, employing Google Universal Sentence Encoder (USE) [Cer at al. 2018], fills
a relation with the sentences of the document similar to the given one. Here, the
sentences of Table 12 have been used exactly as they are.

2. To improve precision, to the same queries a simple filter has been added (NLP:CUT),
which applies a threshold to the score of each result. Results below the threshold are
discarded. Instead of manually choosing the best threshold for each case, for the sake of
comparison, the thresholds have been arbitrarily chosen as the ones that maximize the
F1 score in the training set.

3. We finally manually tried to improve over that precision with simple queries of two or
three triple patterns. The LEM:ANY triple pattern accepts a list of lemmas of words and
fills a relation with any word in the document whose lemma is contained in the list. (As a
reminder, a result is returned from a sequence of triple patterns59 when the elements
extracted by each pattern co-occur inside the same sentence. Results are then scored
according to their distance). Again, for the sake of comparison, only triple patterns of this
kind have been used in these queries, whilst the lists of lemmas have been manually
collected from the documents of the training set.

The following figures report examples of queries of type 2 and 3, for the label E1 (power source
unreliable) together with their respective results on the test set.

SELECT *

WHERE

{ ?E1 EMB:USE 'power source is unreliable' .

 ?TH NLP:CUT '0.750' .

}
Figure 42: query of type 2 for case E1 (power source is unreliable). It consists of a triple pattern using Universal Sentence
Encoder to measure sentence similarity, followed by one that specifies a threshold. The threshold is the value that maximizes, in
the training set, the F1 score.

58 There is no Machine Learning involved here, so the terminology Test/Training Set is quite abused. However, in a
sense, in selecting the words to use and in trimming the threshold of the score we are still “teaching” the query
what to return. In a more realistic set, many trial and error test would probably need to be performed in a limited
number of examples, also involving different graph patterns, before running the lengthy job on the full dataset.
59 In the case that, like here, they belong to the same BGP

79

Score Extracted snippet

0.797
while an electronic failure is often due to external issues such as a power spike, electrical
surge or a major fluctuation in voltage.

0.793 lightning or power surges.

0.757
in reality, this is not something that computer fixers do, and the cost could be in the 1000 's
if you can find the appropriate experts.

0.757 sudden power surges due to power outages will cause hard drive failure
Figure 43: Results of query of Figure 42, applied to the Test Set

SELECT *

WHERE

{ ?PW LEM:ANY 'power voltage electricity electrical'.

 ?FA LEM:ANY 'surge outages lighting strikes failure'.

}
Figure 44: Query of type 3 for case E1 (power source is unreliable). It consists of few (in this case 2) triple patterns that search for
the lemmas of some specific words. Proper words are most likely found by skimming the training set.

Score Extracted snippet

1.000 electrical failure.

1.000 strikes, can cause electrical failure.

1.000 functions, then an electrical failure may be the source

0.889 power surges due to power outages will cause hard drive failure.

0.741 while an electronic failure is often due to external issues such as a power spike, electrical
surge

Figure 45: Results of query of Figure 44, applied to the Test Set

The limited number of documents employed in this test does not allow to say a lot on the results.
However, as shown in Table 13 and quite as expected, when applied to the Test Set, queries of
type 2 give better recall, whilst queries of type 3 gives in general better precision. Overall, even
this trivial approach, that totally disregards the structure of the sentence, often gives acceptable
results, at least in an exploratory context.

Single triple
'USE' query

with threshold

Simple Query
with 2 or 3

triple patterns

 Pre Rec Pre Rec

E1 power source is unreliable 16.7 100 50 50

F1 hard disk is not recognized 33.3 80 50 80

F2 files and folders become invisible and corrupt 50 66.7 80 44.4

H2 computer get heated 100 75 75 75

M2 hardware makes noise 100 38.5 100 46.2

S1 system fails to boot 62.5 71.4 20 14.3

S2 system freezes 62.5 62.5 100 62.5
Table 13:Precision and Recall of some queries of type 2 and 3 applied to the TEST set

80

9.2 Performance Measures

The following tests have been performed on an “average” PC, mounting an AMD Athlon X4 880k at 4GHz,
with 16 GB of RAM, SSD disk and no GPU60. The dataset consists of 20293 messages downloaded from a
single Italian forum on Telephony, mostly regarding the TIM telephone company, and related to the year
2018. The Word Embedding employed is a 300 vector one trained with fastText61 and downloaded from
the fastText web site62. Time is measured in millisecond, using java System.currentTimeMillis(), averaged
over 10 trials. In many circumstances execution time depends on the memory constraint imposed, i.e. on
the size of the window used to extract the relation (see chapter 6.4.6). Therefore, two kinds of
measurement are here reported:

• With a small window size of 10 elements (indicated by S)

• With a large window size of 1000 elements (indicated by L)
The L window is large enough to perform unrestricted crispy searches (like words or lemma), but is still a
limiting factor for Embedding searches: almost any word is similar to almost any other, albeit by a very
small amount, which imply that the relations are fully filled at each step of execution.

The first test is a simple search of a word in the entire corpus (function WRD:ANY). Four words have been

chosen, with an (almost) exponential decreasing frequency (measured on the corpus itself). As expected,
with the memory constrained search S, which is supposed to be the normal case, we have a time that is
almost independent from the size of the result63. Obviously, for the unconstrained search L the
dependency is evident.

word freq Avg Time S Avg Time L

ho 1.0567% 35 169

attivata 0.1010% 32 46

richieste 0.0100% 31 34

usate 0.0010% 31 32

For the Word Embedding case instead (EMB:ANY), for the reason just explained, time does not depend

on the word frequency.

word freq Avg Time S Avg Time L

ho 1.057% 780 1563

attivata 0.101% 777 1540

richieste 0.010% 779 1543

usate 0.001% 781 1556

A basic form of Sentence Embedding can be achieved by calculating the sum of the vectors over a sliding
window on the text (function EMB:SUM). As the following table shows, this can be achieved without
performance concerns.

60 With the present implementation, the only timing that could benefit from GPU are those involving Sentence
Encodings, but only during the encoding of the encoding of the query sentences.
61 https://fasttext.cc/
62 fasttext-italian-cc.it.300.vec, from https://fasttext.cc/docs/en/crawl-vectors.html, fetched May 30, 2019
63 Which also means, as discussed in section 6.4.6, that some potentially useful results can be missed.

https://fasttext.cc/docs/en/crawl-vectors.html

81

words Avg Time S Avg Time L

ho 780 1563

ho attivato 1003 1780

ho attivato una 1073 1831

ho attivato una sim 1140 1899

ho attivato una sim vodafone 1191 1969

The following table and graph show the execution time when a CROSS JOIN operation is involved between
the results of two consecutive triple patterns, i.e. in the case that they have no variable in common. As
expected for the memory constrained case, time grows linearly with the number of triple patterns
involved.

Triple Pattern Avg Time S

?X1 EMB:ANY "attivare". 777

?X2 EMB:ANY "richiesta" . 1885

?X3 EMB:ANY "sim" . 2903

?X4 EMB:ANY “vodafone” 3694

?X5 EMB:ANY “ieri” 4516

?X6 EMB:ANY "pomeriggio" 5444

The last following table show the performances when an INNER JOIN is involved, i.e. when triple patterns
shares some variables. The time becomes almost constant, as the increasing number of patterns to extract
is compensated by the decreasing number of matches found at each step.

Triple Pattern Avg Time

?x LEM:ANY "attivare" . 109

?x NLP:POS "verb" . 129

?x DEP:NSUBJ ?y . 117

?y NLP:POS "noun" . 118

?y DEP:DET ?z . 138

In conclusion, albeit in absolute terms there is still a lot of space for improvement, the actual SPARQL/T
implementation does not present more than linear behavior on the most common and useful operations.

82

__

10 – Future Work
__

For time constraints, many things described in the Conceptual Model, like the GRAPH and the
OPTIONAL clauses, are not yet properly implemented. Many useful NLP functions, detailed in
section 7.10, are also missing, and the Reasoning Interface described in section 6.6.2 must be
focused more, and more precisely defined. However, an even greater and more exciting
development goes into the direction of Computer Vision (CV). Compared with the analysis of
Natural Language texts, the analysis of images presents similar aims, employs similar techniques
and ultimately reveals very similar problems. This suggest that SPARQL/T can have with CV a role
very similar to the one it has in Natural Language Processing (NLP), allowing the user to employ
the same query language to retrieve, classify and extract information from both text and images
(or videos). It should also allow to refer to both modalities together, for example by working with
a video and its commentary audio at the same time. Moreover, it should hopefully avoid the user
to make explicit distinctions between the two modalities, allowing (some) triple patterns to
seamlessly match either images regions or text snippets, whichever is more similar to the query
pattern. The rest of the chapter is organized as follows: section 10.1 analyzes various CV tasks,
comparing them with their NLP counterparts; section 10.2 consider related works; section 10.3
briefly exposes a possible practical approach.

10.1 CV-NLP Task Comparison
Object Detection and Recognition is the CV task of detecting objects inside images, finding their
spatial location (for example, their bounding boxes) and classifying them into a certain number
of predefined categories. A very recent survey of the field is given in [Liu et al. 2019]. Actually,
there are two types of object detection: detection of categories (human, dog, bicycles …), and
detection of specific instances, like a specific actor, building and so on. The former resembles the
NLP task of Named Entity Recognition (NER), whilst the latter is the CV equivalent of the Entity
Linking / Named Entity Disambiguation one (see for example [Nouvel et al. 2016]). Although
Object Detection is still an open problem, nowadays, according again to [Liu et al. 2019], precision
above 70% can be reached with detectors trained for almost one hundred classes, which is
already clearly a good result.
Krizhevsky et al. observed that the vectors produced by the last hidden layer of a Convolutional
Neural Network trained for image classification are similar (in terms of Euclidean distance) for
similar images (as judged by humans) [Krizhevsky et al 2012]. Babenko et al. successfully used
that vectors (named Neural Codes) in the context of Image Retrieval [Babenko et al. 2014]. In
other words, Neural Codes forms the CV counterpart of the NLP Word Embeddings.
The Facial Expression Recognition (FER) task64 aim at recognizing in images and video the human
face expression. Most of the times it refers to the seven expressions defined by Ekman & Friesen
(Happiness, Sadness, Surprise, Fear, Anger, Disgust, Contempt) [Ekman & Friesen 1978] [Ekman
& Friesen 2002]. In a recent survey Ko et al. compared (on a same dataset) different conventional

64 Sometimes referred as “Facial Emotion Recognition” task [Ko et al. 2018]

83

and Deep Learning approaches to the FER task, finding an average accuracy of 63.2% on the
former and 72.65% on the latter [Ko et al. 2018]. Besides facial expressions, emotions can also
be detected observing (in video and audio) nonverbal cues like the tone of voice (para-language),
body movement, and physiological changes (skin color) [Avots et al. 2018]. Moreover, the task
can be extended to identify the emotion of an entire group of people (Group-level Emotion
Recognition, GReco [Dhall et al. 2017]). These are clearly new and more difficult tasks, for which
a series of challenges exists from 2013 (Emotion Recognition in the Wild, EmotiW, [Dhall et al.
2016]). From the SPARQL/T point of view, Emotion Recognition of any kind can be considered
the CV counterparts of Sentiment Analysis.
Images normally contains more than an object, and there are actually many different tasks in CV
that consider interactions between objects of the scene. Visual Relationship Detection is the task
of detecting relationships between objects in an image, generating triples of the form (object1,
relationship, object2) [Lu et al 2016]. The task can be restricted for example to spatial
relationships (above, below, inside, around), or to human-object interaction (HOI). As pointed
out by Lu et al.: “… it is the relationship between the objects that determine the holistic
interpretation of the image […] an image with a person and a bicycle might involve the man riding,
pushing, or even falling off of the bicycle”. The NLP counterpart of the CV Relationship Detection
is probably the OpenIE philosophy of Information Extraction. HOI task can be limited to classify
the coarse activity of the person (“playing baseball”, “cooking”), or can go into the details,
considering the possible semantic roles of the specific action (“hitting the ball with a bat”,
“chopping onions with a knife”). In the latter case it is called Visual Semantic Role Labeling [Gupta
& Malik 2015]. Finally, objects, attributes and relationships of a scene can be combined in a Scene
Graph [Johnson et al. 2015], which is the CV form of the NLP Knowledge Extraction task.
Table 14 reports the CV task listed here together with their NLP counterparts.

Computer Vision task Natural Language Processing task

Object Detection and Recognition Named Entity Recognition / Disambiguation

Neural Codes Word Embeddings

Emotion Recognition Sentiment Analysis

Visual Relationship Detection Open Information Extraction

Visual Semantic Role Labeling Semantic Role Labeling

Scene Graph Knowledge Extraction
Table 14: CV - NLP task analogy

10.2 Related Work
Image and Video captioning is the task of generating a natural language description of an image
or portion of video. In fact, if the captioning contains a complete description of the image there
would be no need to adapt SPARQL/T to CV. However, this is often not the case. Captioning is
expected to capture the salient features of a scene, leaving out most details. But what is relevant
is a matter of what we are looking for, and cannot in general be predicted before-hand.
Scene Graphs can also be an approach alternative to SPARQL/T. They are meant to formally
represent the scene, typically in RDF form. Although in this case there is no limit to the level of
detail represented, the problem of extracting the semantic graph from a scene looks not easier

84

than the problem of extracting it from a document, i.e. to the task of Knowledge Extraction
described in Chapter 2. Therefore, it is likely to suffer from the same issues we have described:
semantically similar scenes are likely to generate graphs with very different structures, making
the query construction very cumbersome from the user point of view.

10.3 Practical Approach
As observed for example by Barnard in [Barnard 2016], the relation between visual and linguistic
information can be from largely intersecting to largely disjoint. Informally, he defines two
extremes:

• Redundant: the two modalities are informative about each other

• Orthogonal: they completely independent from each other
In between these two extremes lies a continuum of complementary possibilities, where both
modalities provide information about the same things, but are not entirely redundant.
As an example, a video intended for didactic purposes and its auditory comments will probably
be highly redundant, whilst annotations intended for colleagues tends to be highly orthogonal,
like some short notes about what to do.
To allow the user to easily deal with different degrees of orthogonality, we would like a query to
seamlessly adapt to both modalities. He should not be forced to write different triple patterns to
express the same concept in visual and textual terms. Let’s say for example that we want to
retrieve all the scenes from a set of movies where someone is cooking broccoli. The following
query, albeit with some uncertainty, should do the job:

1 ?X NLP:POS “verb”

2 ?X LEM:ANY “cook”

3 ?Y EMB:ANY “broccoli”

Notice that, for the sake of explanation, both crispy (using lemma) and fuzzy (using Word
Embedding) Triple Patterns have been employed.
We expect three cases:

A. The information is fully contained in the text (subtitles), for example in a sentence like
“Mom is cooking broccoli”. Here the classical SPARQL/T rules apply:

1. All the words xi that are tagged as verbs and whose lemma is “cook” are inserted
into X (Triple Patterns 1 and 2)

2. All the words yj similar to “broccoli”, according to a certain Word Embedding, are
inserted into Y (Triple Pattern 3)

3. All the possible couples (xi,yj) are generated, provided xi and yj belong to the same
sentence, and then ranked according (among other things) to the distance
between the words xi and yj (number of tokens in between the two)

B. The information is fully contained in the visual part, i.e. the picture clearly shows
somebody cooking broccoli. Then, in a way similar as before:

1. The actions xi of the scene are extracted, and the ones whose label is “cook” are
inserted into X (Triple Patterns 1 and 2)

85

2. The Neural Codes of the objects yj resulting from Object Detection are compared
against a prototype Neural Code of some broccoli. The most similar objects are
inserted into Y (Triple Pattern 3)

3. All the possible couples (xi,yj) are generated, this time ranked according to the
geometric distance between xi and yj in the scene

C. The information is distributed among modalities. For example, a video may clearly show
somebody cooking, but ingredients may not be easily distinguishable. However, a
someone is saying “… we first cut the broccoli …”. In this case:

1. The first two Triple Patterns find a match in the image (xi extracted like in B1)
2. The last one finds a match in the text (yj extracted like in A2)
3. The couples (xi,yj) are ranked according to overlap in time between image and

voice
From the query engine point of view thus, it is just a matter of trying both modalities and keep
the best results. What really changes are the three different way of performing the join: based
on word distance in the text, on geometrical distance in the video, and on time distance when
considering both together.

86

__

10 – References
__

[Aggarwal 2018] Aggarwal C.C. (2018), Machine Learning for Text. Springer

[Altuna et al. 2017] B. Altuna, A.L. Minard, M. Speranza. 2017. The Scope and Focus of Negation:A
Complete Annotation Framework forItalian. InProceedings of the WorkshopComputational
Semantics Beyond Eventsand Roles, pages 34–42.

[Andrian 2009] B. Adrian, J. Hees, L. van Elst and A. Dengel, iDocument: using ontologies for
extracting and annotating information from unstructured text. In: Proceedings of the 32nd
Annual German Conference on AI, (Springer-Verlag, Heidelberg, 2009).

[Angeli 2014][OIE?006] G. Angeli, C. D. Manning, “NaturalLI: Natural logic inference for common
sense reasoning,” in Proceedings of the 2014 Conference on Emprical Methods in Natural
LanguageProcessing, Doha, Qatar, 25 to 29 October 2014 (Association for Computational
Linguistics, Stroudsburg, PA, 2014), pp. 534–545

[Angeli 2015] Gabor Angeli, Melvin Johnson Premkumar, and Christopher D. Manning. 2015.
Leveraging linguistic structure for open domain information extraction. In ACL.

[Aprosio 2016] Italy goes to Stanford: a collection of CoreNLP modules for Italian By Alessio
Palmero Aprosio and Giovanni Moretti. eprint arXiv:1609.06204.

[Avots et al. 2018] Avots, E.; Sapinski, T.; Bachmann, M.; Kaminska, D. Audiovisual emotion
recognition in wild. Mach. Vis. Appl. 2018, 1–11.

[Corcoglioniti et al 2016] Corcoglioniti, F., Rospocher, M., Palmero Aprosio, A.: A 2-phase
frame-based knowledge extraction framework. In: Proc. of ACM Symposium on Applied
Computing (SAC'16)

[Babenko et al. 2014] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. Neural codes for
image retrieval. InProc. ECCV, 2014

[Baroni et al 2014] Baroni M., Dinu G., Kruszewski G., 2014, Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of ACL,
238–247.

[Banko 2007] M. Banko, M.J. Cafarella, S. Soderland, M. Broadhead, O. Etzioni, Open information
extraction from the Web, in: Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, 6–12 January 2007, pp. 2670–2676.

[Barnard 2016] Barnard, K. (2016). Computational Methods for Integrating Vision and Language.
Morgan and Claypool Publishers.

[Bast 2012] H. Bast, F. B¨aurle, B. Buchhold, E. Haussmann, A case for semantic full-text search,
in: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search,
JIWES ’12, ACM, 2012, pp. 4:1–4:3.

87

[Bast et al. 2014] H. Bast, F. Baurle, B. Buchhold, and E. Haußmann. 2014. Easy access to the
Freebase dataset. In WWW. 95–98

[Bast 2015] H. Bast, F. Baurle, B. Buchhold, E. Haussmann, Broccoli: Semantic full-text search at
your fingertips, CoRR abs/1207.2615.

[Bast & Buchhold 2017] Bast, H., Buchhold, B.: Qlever: A query engine for efficient sparql+text
search. In:CIKM. pp. 647–656. ACM (2017)

[Beekhuizen 2018] Beekhuizen, Barend, Sasa Milic, Blair Armstrong & Suzanne Stevenson (2018).
What Company Do Semantically Ambiguous Words Keep? Insights from Distributional Word
Vectors. Proceedings of the 40th Annual Conference of the Cognitive Science Society

[Beg & Ashraf 2009] I. Beg and S. Ashraf, Similarity measures for fuzzy sets, Appl. and Comput.
Math., 8(2)(2009), 192-202.

[Bezdek & Pal 1996] J.C. Bezdek and S. Pal, Fuzzy Models for Pattern Recognition (IEEE Press, New
York, 1996) chapter 1.

[Bhagdev 2008] R. Bhagdev, S. Chapman, F. Ciravegna,V. Lanfranchi, and D. Petrelli. Hybrid
search: Effectively combining keywords and semantic searches. In ESWC, pages 554-568, 2008.

[Bobillo & Straccia 2011] Fernando Bobillo and Umberto Straccia. Fuzzy ontology representation
using OWL 2. International Journal of Approximate Reasoning 52, 7 (2011), 1073–1094.

[Bollegala et al. 2017] Danushka Bollegala, Kohei Hayashi, and Ken-ichi Kawarabayashi. 2017.
Think globally, embed locally—locally linear meta-embedding of words. arXiv preprint
arXiv:1709.06671.

[Bowman et al.2015] S.R Bowman, G. Angeli,C. Potts, C.D. Manning. 2015.A large annotated
corpus for learning natural languageinference. InProceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing.

[Brambilla et al 2017] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software
engineering in practice. Synthesis Lectures on Software Engineering, 3(1):1–207, 2017.

[Buitelaar 2005] P. Buitelaar, P. Cimiano, and B. Magnini 2005. Ontology learning from text: An
overview. In Ontology Learning from Text: Methods, Evaluation and Applications, P. Buitelaar, P.
Cimiano, and B. Magnini, Eds. IOS Press, Amsterdam.

[Cafarella 2006] Cafarella, M. J., Banko, M., & Etzioni, O. (2006). Relational web search. Tech.
rep., University of Washington, Department of Computer Science and Engineering. Technical
Report 2006-04-02.

[Cer at al. 2018] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Céspedes, Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian
Strope, Ray Kurzweil. Universal Sentence Encoder. arXiv:1803.11175, 2018.

[Chambers 2007][OIE?007] Nathanael Chambers, Daniel Cer, Trond Grenager, David Hall, Chloe
Kiddon, Bill MacCartney, Marie-Catherine de Marneffe, Daniel Ramage, Eric Yeh, and Christopher
D. Manning. 2007. Learning Alignments and Leveraging Natural Logic. In ACL-07 Workshop on
Textual Entailment and Paraphrasing.

88

[Chapman et al. 2001a] Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG.
Evaluation of negation phrases in narrative clinical reports. Proc AMIA Symp 2001; 105–9.

[Chapman et al. 2001b] Chapman W, Bridewell W, Hanbury P et al. A simple algorithm for
identifying negated findings and diseases in discharge summaries. J Biomed Inform 2001;34:301–
10.

[Chen et al 2018] Chen Z, He Z, Liu X, Bian J. Evaluating semantic relations in neural word
embeddings with biomedical and general domain knowledge bases. BMC Med Inform Decis Mak.
2018;18(Suppl 2):65. https://doi.org/10.1186/s12911-018-0630-x.

[Chiarcos 2015] Christian Chiarcos and Maria Sukhareva. 2015. Olia – ontologies of linguistic
annotation. Web Semantics: Science, Services and Agents on the World Wide Web, 6(4):379–
386.

[Cleverdon 1966] Cleverdon, C. W.,Keen, E. M. Factors Determining the Performance of Indezing
Systems, Vol. 1,2. Cranfield,England. Aslib Cranfield Research Project, 1966.

[Coates & Bollegala 2018] Joshua Coates and Danushka Bollegala. 2018. Frustratingly easy meta-
embedding – computing meta-embeddings by averaging source word embeddings. In Proc. of
NAACL-HLT.

[Corcoglioniti et al. 2016] Frame-based Ontology Population with PIKES. By Francesco
Corcoglioniti, Marco Rospocher, and Alessio Palmero Aprosio. In IEEE Transactions on Knowledge
and Data Engineering, 2016, vol. 28, no. 12, pp. 3261-3275.

[Corcoglioniti et al. 2016A] F. Corcoglioniti, M. Rospocher, and A. Palmero Aprosio, “A 2-phase
frame-based knowledge extraction framework,” ACM SAC, 2016

[Corcoglioniti et al. 2016B] F. Corcoglioniti, M. Dragoni, M. Rospocher, A.P. Aprosio, Knowledge
extraction for information retrieval, in: The Semantic Web. Latest Advances and New Domains -
13th International Conference, ESWC 2016, Heraklion, Crete, Greece, May 29, - June 2, 2016,
Proceedings, 2016, pp. 317–333, doi: 10.1007/ 978- 3- 319- 34129- 3 _ 20.

[Croft 1991] Croft, W.B., Turtle, H.R. and Lewis,D.D. The use of phrases and structured queries in
information retrieval.In Proceedings of the ACM SIGIR Conference on Research and Development
in Information Retrieval, (1991), pp. 32-45.

[Curé & Blin 2014] O. Curé and G. Blin. RDF Database Systems: Triples Storage andSPARQL
Query Processing, 1st Edition. Morgan Kaufmann, Nov. 2014

[Cyganiak 2005] Cyganiak, R. 2005. A relational algebra for sparql. Tech. rep. HPL-2005-170, HP-
Labs. http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html

[Date 2003] C. J. Date. An Introduction to Database Systems. Addison Wesley, eighth edition,
2003.

[Dagan et al. 2013] I. Dagan, D. Roth, M. Sammons, F.M. Zanzotto. 2013.Recognizing Textual
Entailment: Models and Applications. Synthesis Lectures on Human Language Technologies.
Morgan & Claypool Publishers.

89

[Dhall et al. 2016] Dhall, Abhinav & Goecke, Roland & Gedeon, Tom & Sebe, Nicu. (2016). Emotion
recognition in the wild. Journal on Multimodal User Interfaces. 10. 10.1007/s12193-016-0213-z.

[Dhall et al. 2017] Abhinav Dhall, Roland Goecke, Shreya Ghosh, Jyoti Joshi, Jesse Hoey, Tom
Gedeon. 2017. From Individual to Group-level Emotion Recognition: EmotiW 5.0. In Proceedings
of the 19th ACM International Conference on Multimodal Interaction.

[Díaz & López 2019] Noa P. Cruz Díaz, Manuel J. Maña López, Negation and Speculation
Detection, John Benjamins Publishing Company 2019

[DuCharme 2013] B. DuCharme. Learning SPARQL, second edition. O’Reilly, 2013.

[Dubois & Prade 2001] D. Dubois, H. Prade, Possibility theory, probability theory and multiple-
valued logics: a clarification Ann. Math. Artif. Intell. 32 (1–4) (2001) 35–66.

[Ekbal et al 2010] Asif Ekbal, Eva Sourjikova, Anette Frank, and Simone Paolo Ponzetto. Assessing
the challenge of fine-grained named entity recognition and classification. In A. Kumaran and
Haizhou Li, Eds., Proc. of the Named Entities Workshop, pages 93–101, Uppsala, Sweden,2010.
Association for Computational Linguistics. 25

[Ekman & Friesen 1978] Paul Ekman, Wallace V. Friesen, Facial Action Coding System:
Investigator’s Guide, 1st ed.; Consulting Psychologists Press: Palo Alto, CA, USA, 1978; pp. 1–15,
ISBN 9993626619.

[Ekman & Friesen 2002] Paul Ekman, Wallace V. Friesen, and Joseph C. Hager. Facial Action
Coding System: The Manual on CD ROM. A Human Face, Salt Lake City, 2002.

[Elmasri 2010] Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison-Wesley, 6th
edn. (2010)

[Enger et al. 2017] M. Enger, E. Velldal, L. Øvrelid, An open-source tool for negation detection: a
maximum-margin approach, Proceedings of the Workshop Computational Semantics Beyond
Events and Roles, SemBEaR 2017, Valencia, Spain

[Etzioni2006] O. Etzioni, M. Banko, and M. J. Cafarella. Machine reading. In AAAI, 2006.

[Etzioni 2011] Etzioni, Oren, e. a. 2011. Open information extraction: The second generation. In
Proc. of IJCAI.

[Fares et al 2017] Fares, M., Kutuzov, A., Oepen, S., & Velldal, E. (2017). Word vectors, reuse, and
replicability: Towards a community repository of large text resources. In Proceedings of the 21st
Nordic Conference on Computational Linguistics.

[Gangemi 2017] A. Gangemi, V. Presutti, D. R. Recupero, A. G. Nuzzolese, F. Draicchio, and M.
Mongiovì. Semantic web machine reading with FRED. Semantic Web, 8(6) 2017.

[Gionis et al. 1999] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of the 25th International Conference on Very Large
Data Bases (VLDB 2009), pages 518–529. Morgan Kaufmann Publishers Inc.

[Giunchiglia 2009] F. Giunchiglia, U. Kharkevich, and I. Zaihrayeu. Concept search. In ESWC, pages
429-444, 2009.

90

[Grave et al 2017] Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T. (2017). Bag of tricks for
efficient text classification. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics (EACL).

[Griethuysen 1982] Griethuysen JJ van (ed) (1982) Concepts and terminology for the conceptual
schema and the information base. ISO TC97/SC5/WG3.

[Grishman & Sundheim 1995] R. Grishman and B. Sundheim. Message understanding conference-
6: A brief history. In Proc. of COLING. Association for Computational Linguistics, 1995. DOI:
10.3115/992628.992709. 25, 26, 38

[Groth 2013] A, Groth P, Biemann C, Parreira JX, Aroyo L, Noy N, Welty C, Janowicz K (eds) Proc.
12th International Semantic Web Conference (ISWC 2013), Springer, Sydney, Australia, Lecture
Notes in Computer Science, vol 8219, pp 98–113

[Gupta & Malik 2015] S. Gupta and J. Malik, “Visual semantic role labeling” CoRR, vol.
abs/1505.04474, 2015.

[Harris 1954] Harris, Z. (1954). Distributional structure. Word, 10(23): 146-162.

[Hellmann 2013] Hellmann S, Lehmann J, Auer S, Brümmer M (2013) Integrating NLP using Linked
Data. In: Alani H, Kagal L, Fokoue

[Hill et al 2015] Hill, F., Reichart, R., & Korhonen, A. (2015). SimLex-999: Evaluating Semantic
Models With (Genuine) Similarity Estimation. Computational Linguistics, 41(4), 665–695.

[Hinton et al,1986] G.E. Hinton, J.L. McClelland, D.E. Rumelhart. Distributed representations. In:
Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1:
Foundations, MIT Press, 1986.

[Indyk & Motwani 1998] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In 30th Ann. ACM Symp. on Theory of Computing , 1998.

[Iwasaki 2015] Masajiro Iwasaki. 2015. NGT : Neighborhood Graph and Tree for Indexing.
http://research-lab.yahoo.co.jp/software/ngt/.

[Johnson et al. 2015] J. Johnson, R. Krishna, M. Stark, L.J. Li, D.A. Shamma, M. Bernstein, L. Fei-
Fei, (2015). Image retrieval using scene graphs. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[Jurafsky & Martin 2008] D. Jurafsky, J. Martin, Speech and Language Processing. 2nd edition.
Prentice Hall 2008

[Kamp 1981] H. Kamp. A theory of truth and semantic representation. In J. A. G. Groenendijk, T.
M. V. Janssen, and M. B. J. Stokhof, editors, Formal Methods in the Study of Language, Part I,
pages 277–322. Mathematisch Centrum, 1981.

[Kingsbury & Palmer 2002] P. Kingsbury, M. Palmer. From Treebank to PropBank. 2002. In
Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC-
2002), Las Palmas, Spain.

[Ko et al. 2018] Ko, B. A Brief Review of Facial Emotional expression recognition Based on Visual
Information. Sensors 2018, 18, 401.

91

[Krizhevsky 2012] Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classificationwith deep
convolutional neural networks. InNIPS, 2012.

[Kubler 2009] Sandra Kubler, Ryan McDonald, and Joakim Nivre. 2009. Dependency Parsing.
Synthesis Lectures on Human Language Technologies. Morgan & Claypool.

[Lashkaria et al. 2019] Fatemeh Lashkaria, Ebrahim Bagherib, Ali A. Ghorbania. Neural
Embedding-based Indices for Semantic Search. Elsevier. Information Processing & Management,
Volume 56, Issue 3, May 2019, Pages 733-755

[Li 2011] Learning to rank for information retrieval and natural language processing, Synthesis
Lectures on Human Language Technologies, Morgan & Claypool, 2011.

[Li 2017] Bofang Li, Tao Liu, Zhe Zhao, Puwei Wang, and Xiaoyong Du. 2017. Neural bag-of-
ngrams. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence

[Liu et al 2017] Liu Jialu, Jingbo Shang and Jiawei Han. “Phrase Mining from Massive Text and Its
Applications.” Synthesis Lectures on Data Mining and Knowledge Discovery (2017).

[Liu et al. 2019] Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., et al. (2019). Deep
learning for generic object detection: A survey. arXiv:1809.02165v2

[Lu et al 2016] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual relationship detection with
language priors,” in European Conference on Computer Vision. Springer, 2016, pp. 852–869.

[MacCartney 2007] Bill MacCartney, Christopher D. Manning. 2007. Natural logic for textual
inference. In ACL-07 Workshop on Textual Entailment and Paraphrasing.

[Major et al. 2017] Major, Vincent & Surkis, Alisa & Aphinyanaphongs, Yin. (2017). Utility of
general and specific word embeddings for classifying translational stages of research.
arXiv:1705.06262

[Manning 2014] Manning, Christopher D., Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language Processing Toolkit
In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pp. 55-60

[Manning and Schütze 1999] Manning, C. D., & Schütze, H. (1999). Foundations of statistical
natural language processing. Cambridge Massachusetts: MIT Press.

[Marcus 1994] Mitchell P. Marcus, Beatrice Santorini, and Mary A. Marcinkiewicz. 1994. Building
a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19:313–
330.

[Maynard et al. 2016] Diana Maynard, Kalina Bontcheva, and Isabelle Augenstein. Natural
Language Processing for the Semantic Web. Morgan & Claypool, 2016.

[Miller 1995] George A. Miller (1995). WordNet: A Lexical Database for English. Communications
of the ACM Vol. 38, No. 11: 39-41.

[Mikolov et al. 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed
representations of words and phrases and their compositionality. In Proc. Advances in Neural
Information Processing Systems 26 3111–3119 (2013).

92

[Mikolov, Chen et al 2013] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient
Estimation of Word Representations in Vector Space.

[Morante et al. 2011] R. Morante, S. Schrauwen, W. Daelemans. 2011. Annotation of negation
cues and their scope: Guidelines v1. Computational linguistics and psycholinguistics technical
report series, CTRS-003.

[Niklaus 2018] Niklaus C, Cetto M, Freitas A, Handschuh S, A Survey on Open Information
Extraction, arXiv:1806.05599

[Niles & Pease 2001] Niles, I., & Pease, A., (2001), Toward a Standard Upper Ontology, in
Proceedings of the 2nd International Conference on Formal Ontology in Information Systems
(FOIS-2001), Chris Welty and Barry Smith, eds, pp2-9.

[Nivre 2016] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut
Tsarfaty, and Daniel Zeman. 2016. Universal Dependencies v1: A Multilingual Treebank
Collection. In LREC 2016.

[Nouvel et al. 2016] Nouvel, D., Ehrmann, M. & Rosset, S. (2016), Named Entities for
Computational Linguistics, John Wiley & Sons

[Olivé 2007] A. Olivé, Conceptual Modeling of Information Systems, Springer, 2007.

[Palmer et al. 2010] M. Palmer, D. Gildea, N. Xue. 2010. Semantic role labeling. Synthesis Lectures
on Human Language Technologies.

[Parr 2013] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf,2013.

[Pease 2011] Pease, A., (2011). Ontology: A Practical Guide. Articulate Software Press, Angwin,
CA. ISBN 978-1-889455-10-5.

[Petasis 2011] Georgios Petasis et al., Ontology Population and Enrichment: State of the Art,
Knowledge-Driven Multimedia Information Extraction and Ontology Evolution, LCNS, vol. 6050,
Springer, 2011, pp. 134-166.

[Poesio et al. 2016] Poesio, M.; Stuckardt, R.; and Versley, Y. (Eds.). 2016. Anaphora Resolution:
Algorithms, Resources, and Evaluation. Springer Verlag.

[Poliak et al 2017] Adam Poliak, Pushpendre Rastogia, M. Patrick Martin, Benjamin Van Durme.
2017. Efficient, compositional, order-sensitive n-gram embeddings. In Proc. EACL

[Porter 1980] M. F. Porter. An algorithm for suffix stripping. Program, 14(3),pages 130–137, 1980.
DOI: 10.1108/eb046814. 19

[Reiss 2008] F. Reiss, S. Raghavan, R. Krishnamurthy, H. Zhu, S. Vaithyanathan. An algebraic
approach to rule-based information extraction.ICDE, 2008.

[Resnik 1997] Resnik, P. 1997. Selectional preference and sense disambiguation. In Proceedings
of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and How?
(Washington, D.C.). 52–57.

93

[Rouces et al. 2017] Rouces, J.; de Melo, G.; Katja, H. FrameBase: Enabling integration of
heterogeneous knowledge. Semant. Web 2017, 8, 817–850.

[Russell & Norvig 2010] S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. Third
edition. Prentice Hall, 2010.

[Sahlgren 2008] Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics,
20(1):33–54.

[Salton 1968] Salton, G. Automatic Information Organization and Retrieval. McGraw-Hill, New
York; 1968.

[Schmitz 2012] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, and others, “Open language learning
for information extraction,” in Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning. Association for
Computational Linguistics, 2012, pp. 523–534.

[Schnabel et al.2015] Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. 2015.
Evaluation methods for unsupervised word embeddings. In Proc. of EMNLP.

[Schuster 2016] Sebastian Schuster and Christopher D. Manning. 2016. Enhanced English
Universal Dependencies: An Improved Representation for Natural Language Understanding
Tasks. In LREC 2016.

[Settles 2012] B. Settles. Active learning.Synthesis Lectures onArtificial Intelligence and Machine
Learning,6(1):1–114, June 2012

[Straccia 2013] U. Straccia, Foundations of Fuzzy Logic and Semantic Web Languages, CRC Studies
in Informatics Series, Chapman & Hall, 2013.

[Sugawara et al. 2016] Sugawara, K., Kobayashi, H., Iwasaki, M., 2016. On approximately
searching for similar word embeddings. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume
1: Long Papers.

[Tablan et al 2015] Tablan, V., K. Bontcheva, I. Roberts, and H. Cunningham (2015). Mímir: An
open-source semantic search framework for interactive information seeking and discovery. In: J.
Web Sem. 30, pp. 52–68.

[Wang et al. 2018] Yanshan Wang, Sijia Liu, Naveed Afzal, Majid Rastegar Mojarad, Liwei Wang,
Feichen Shen, Paul Kingsbury, Hongfang Liu. A Comparison of Word Embeddings for the
Biomedical Natural Language Processing. arXiv preprint arXiv:1802.00400 [cs.IR], 2018

[Wang et al. 2013] Wang, M., & Manning, C. D. (2013). Effect of Non-linear Deep Architecture in
Sequence Labeling. In IJCNLP, pp. 1285 1291.

[White 2018] Lyndon White, Roberto Togneri, Wei Liu, Mohammed Bennamoun, Neural
Representations of Natural Language, Springer 2018

[Wimalasuriya 2010] D. Wimalasuriya and D. Dou, “Ontology-Based Information Extraction: An
Introduction and a Survey of Current Approaches,” J. Information Science, vol. 36, no. 3, 2010,
pp. 306–323.

94

[Wu et al.2015] Yonghui Wu, Jun Xu, Min Jiang, Yaoyun Zhang, Hua Xu. 2015. A study of neural
word embeddings for named entity recognition in clinical text. In AMIA Annual Symposium
Proceedings, volume 2015.

[Xu et al., 2018A] Hu Xu, Bing Liu, Lei Shu, Philip S. Yu. Lifelong domain word embedding via
meta-learning. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence. AAAI Press

[Xu et al. 2018B] Hu Xu, Sihong Xie, Lei Shu, and Philip S.Yu. Dual attention network for product
compatibility and function satisfiability analysis. In AAAI, 2018.

[Yin and Schutze 2016] Yin, W., and Schutze, H. 2016. Learning meta-embeddings by using
ensembles of embedding sets. In Proc. of ACL, 1351–1360.

[Zhang et al 2018] Yaoyun Zhang, Ph.D., Hee-Jin Li, Ph.D., Jingqi Wang, M.S., Trevor Cohen,
MBChB, Ph.D., Kirk Roberts, Ph.D., and Hua Xu, Ph.D., Adapting Word Embeddings from Multiple
Domains to Symptom Recognition from Psychiatric Notes, AMIA Jt Summits Transl Sci Proc. 2018;
2017: 281–289. Published online 2018 May 18. PMCID: PMC5961810 PMID: 29888086

[Zhu et al 2017] Zhu Y, Yan E, Wang F. Semantic relatedness and similarity of biomedical terms:
examining the effects of recency, size, and section of biomedical publications on the performance
of word2vec. BMC Med Inform Decis Mak. 2017 Jul 3;17(1):95. doi: 10.1186/s12911-017-0498-1.

