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SUMMARY

We investigate a class of methods for selective inference that condition on a selection
event. Such methods follow a two-stage process. First, a data-driven collection of hypoth-
eses is chosen from some large universe of hypotheses. Subsequently, inference takes place
within this data-driven collection, conditioned on the information that was used for the
selection. Examples of such methods include basic data splitting as well as modern data-
carving methods and post-selection inference methods for lasso coefficients based on the
polyhedral lemma. In this article, we take a holistic view of such methods, considering the
selection, conditioning and final error control steps together as a single method. From this
perspective, we demonstrate that multiple testing methods defined directly on the full uni-
verse of hypotheses are always at least as powerful as selective inference methods based
on selection and conditioning. This result holds true even when the universe is potentially
infinite and only implicitly defined, such as in the case of data splitting. We provide gen-
eral theory and intuition before investigating in detail several case studies where a shift to a
nonselective or unconditional perspective can yield a power gain.

Some key words: False discovery rate; Familywise error rate; Multiple testing; Simultaneous inference.

1. Introduction

When many potential research questions are considered simultaneously, researchers often
report only a subset of the findings, typically the most striking, interesting or surprising ones.
When interpreting results selected in this way, it is crucial to recognize that the evidence for
the findings may be exaggerated because of the selection process. The field of selective infer-
ence, also known as multiple testing, aims to adjust inference for this data-driven selection
of research questions. Selective inference methods ensure that the number or proportion of
incorrect findings among the final reported findings remains small. The selective inference
literature is large and well established (Benjamini, 2010; Dickhaus, 2014; Taylor & Tibshi-
rani, 2015; Taylor, 2018; Benjamini et al., 2019a; Cui et al., 2021; Kuchibhotla et al., 2021;
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Zhang et al., 2022). Classic approaches in the field control either the familywise error rate
or the false discovery rate.

Recently, a two-step approach to selective inference has gained popularity (Lee et al.,
2016; Tibshirani et al., 2016; Fithian et al., 2017; Charkhi & Claeskens, 2018; Bi et al., 2020).
In this conditional approach, the data are first used to select a small set of hypotheses of
interest from a large universe of hypotheses. Next, inference is conducted on the selected
hypotheses using the same data, but conditional on the information used for the selection.
The conditional approach can be seen as a sophisticated generalization of data splitting.
In data splitting, a portion of the subjects are used to select hypotheses, and the rest are
used for inference on them. Conditional approaches similarly use part of the information in
the data for selection and the remainder for inference. Proponents of conditional selective
inference often contrast their approach with classic methods, suggesting that the conditional
way of thinking represents the most fitting philosophy for selective inference, addressing the
problem of selection in the most effective way. For example, as stated by Kuffner & Young
(2018): ‘The appropriate conceptual framework for valid inference is that discussed in the
statistical literature as “post-selection inference”, which […] requires conditioning on the
selection event and control of the error rate of the inference given it was actually performed.’

Conditional selective inference methods return a selection-adjusted p-value for each of
the selected hypotheses, or a selection-adjusted confidence interval for each of the selected
parameters. The key property of these selection-adjusted measures, i.e., uniformity under
the null hypothesis for p-values, or coverage for confidence intervals, holds conditional on
the selection event. In the situation where more than one such p-value or confidence interval
is returned, some authors argue for a further round of adjustment for multiple testing (e.g.,
Benjamini et al., 2019b), while others consider it an option (e.g., Hyun et al., 2021) or do not
perform any further correction (e.g., Lee et al., 2016). Even when further multiple testing
is carried out, however, this is generally not considered part of the conditional selective
inference method itself, but simply a post-processing of the selection-adjusted p-values or
confidence intervals returned by the method. This detachment of the selection and inference
steps has been criticized as being circular, because the interpretation of selected but not
significant hypotheses is not always clear (Weinstein & Ramdas, 2020, § B.1, supplement).

In this article we adopt an alternative, holistic perspective on conditional selective infer-
ence. We argue that any follow-up, in terms of multiple testing or lack thereof, on the
selection-adjusted p-values should be regarded as an integral component of the selective
inference method. From this point of view, conceptual differences between conditional
selective inference and classic methods largely vanish. We argue that for every conditional
selective inference method, there exists a method that is not selective and not conditional
which always rejects all the hypotheses the original method rejects, and possibly more. We
give several general conditions under which unconditional and nonselective methods are
truly superior to selective conditional methods, and present several examples. Our results
hold for methods returning selection-adjusted p-values or selection-adjusted confidence
intervals, and apply to a variety of error rates. Proofs of all the propositions and lemmas
can be found in the Supplementary Material.

2. Conditional selective inference: basics

Let P ∈ M be a probability measure, where M, the model, is a collection of probability
measures defined on a common outcome space �. We will first focus on hypothesis testing,
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Multiple testing and selective inference 395

addressing confidence intervals in § 10. A hypothesis is a subset H ⊆ M, and H is true if
P ∈ H and false otherwise. We have data X distributed according to P.

Conditional selective inference procedures consider a random collection of hypotheses.
Sometimes we assume that we know the distribution of S, for example when S consists of
the null hypotheses corresponding to the active set of a lasso regression. In other cases we
may have only a realization of S without knowledge of its distribution, such as when S was
chosen freely by a user on the basis of the first half of the data. In both cases, however,
we assume that we know what part of the information in X was used to select S. In the
lasso example we know this information because we know how S was calculated. In the
data-splitting example we know that the user saw only part of the data.

We will illustrate our general discussion with a recurring toy example. Assume that two
p-values P1 and P2 are independent, and that P1 ∼ Un(0, 1) under hypothesis H1 and
P2 ∼ Un(0, 1) under H2. A simple selective inference procedure could discard hypotheses
for which the p-values are greater than some fixed λ. In this case we have S = {i : Pi � λ}.
This is a situation considered by Zhao et al. (2019) and Ellis et al. (2020). A similar selection
set would arise when performing inference based on the polyhedral lemma if the design is
orthogonal (Reid et al., 2017).

The collection S is drawn from a larger universe of hypotheses, which often remains
implicit in the selective inference literature. Let S = {S(ω) : ω ∈ �} be the collection of
all possible realizations of S. We define the universe U as all hypotheses that could have
been in S. Formally,

U =
⋃
ω∈�

S(ω).

Unlike S, the universe U is fixed. It can be huge, or even infinite. For example, when S con-
sists of null hypotheses for the regression coefficients of the active set of a lasso regression,
then U contains all null hypotheses for all regression coefficients for all covariates adjusted
for all possible sets of other covariates (cf. Berk et al., 2013; Bachoc et al., 2020). In other
cases U is even unknown. For example, if S was chosen freely by the user using half the data,
then U contains all hypotheses the user would have chosen if the data were different. In this
case we know nothing about U except that it is a superset of S. To avoid trivial problems,
we assume that U |= ∅. In the toy example we have U = {1, 2}.

Conditional selective inference methods define selection-adjusted p-values pH|S for H ∈
S. These have the property that for every α ∈ [0, 1],

sup
P∈H

P(pH|S � α | S) � α. (1)

The selection-adjusted p-value differs from the usual definition of the p-value pH , namely
that for every α ∈ [0, 1], supP∈H P(pH � α) � α, because it conditions on S. By condition-
ing on the selection event S, the selection-adjusted p-value discards the information used for
that selection. It uses as evidence against the selected hypothesis H only the remainder of
the information in the data. Conditioning thus provides a neat separation between the infor-
mation used for selecting S and that used for inferring on the hypotheses in S. Condition (1)
remains valid if we condition on more than just S, but Fithian et al. (2017) argued that it is
optimal to condition on the minimal amount of information under which S is measurable.
Indeed, several authors have reported a gain in power by conditioning on less information
(Jewell et al., 2022; Carrington & Fearnhead, 2023; Chen et al., 2023).
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There are many methods for calculating selection-adjusted p-values. The most straight-
forward way to achieve (1) is to separate the data into two independent components,
X = (X ′, X ′′), making sure that S is a function of X ′ only while pH|S, for every H ∈ S,
involves X ′′ only. This is the basic idea of data splitting (Moran, 1973; Cox, 1975; Rubin
et al., 2006; Dahl et al., 2008; Wasserman & Roeder, 2009; Rinaldo et al., 2019). More
sophisticated methods may use the data more efficiently by employing external randomiza-
tion (Tian & Taylor, 2018; Panigrahi et al., 2023; Panigrahi & Taylor, 2023; Dharamshi et al.,
2023; Leiner et al., 2023; Rasines & Young, 2023) or multiple data splits (Meinshausen et al.,
2009; DiCiccio et al., 2020; Schultheiss et al., 2021). Some methods split the data adaptively,
unmasking the data bit by bit until the user is ready to select the final set S and calculate
the p-values conditional on that final S (Lei & Fithian, 2018; Duan et al., 2020). If an obvi-
ous split of the data is not available, the mathematics of the conditioning can become quite
complex. The polyhedral lemma (Lee et al., 2016; Tibshirani et al., 2016), an important
breakthrough, provides machinery to condition on selected sets arising in linear regression
contexts, such as active sets from lasso regression. This result has been extended and applied
in many contexts (Lee & Taylor, 2014; Yang et al., 2016; Tian & Taylor, 2017; Hyun et al.,
2018; Liu et al., 2018; Taylor & Tibshirani, 2018; Heller et al., 2019; Panigrahi et al., 2021;
Zhao et al., 2022; Garcia-Angulo & Claeskens, 2023).

In the toy example, we can calculate selection-adjusted p-values by looking at the condi-
tional distribution of the p-values under the null hypothesis. If i ∈ S, we obtain Pi|S = Pi/λ.
With a slight abuse of notation, we will write i ∈ S instead of Hi ∈ S and Pi|S for PHi|S,
which should cause no confusion. To adjust for the selection, the p-value has been multiplied
by a factor of 1/λ. It is easy to verify that whenever i ∈ S,

P(Pi|S � t | S) = P(Pi/λ � t | Pi � λ) = λt/λ = t,

so that Pi|S satisfies (1).

3. Multiple testing adjustment of selection-adjusted p-values

Having calculated selection-adjusted p-values, the usual next step is to decide which of
the hypotheses in S can be rejected. A method must be decided for this, be it simply to
reject all hypotheses with pH|S � α for some α, or some more sophisticated multiple testing
procedure. Whatever method is chosen, the end result is a random set R ⊆ S of rejected
hypotheses.

There are different opinions as to the properties the set R should have, but generally the
focus is on avoiding false discoveries. Let

TP = {H ∈ U : P ∈ H}

be the collection of all true hypotheses in U . Rejection of R induces |R∩TP| false discoveries,
giving a false discovery proportion of

fP(R) = |R ∩ TP|
|R| ∨ 1

.

To keep false discoveries in check, we can control the expectation of some error rate eP(R),
for which there are many choices (Benjamini, 2010; Benjamini et al., 2019a), such as eP(R) =
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fP(R) to control the false discovery rate FDR, eP(R) = 1fP(R)>0 to control the familywise
error rate FWER, or eP(R) = 1fP(R)>γ to control the false discovery exceedance rate FDX-γ .
We assume that 0 � eP(R) � 1 and that eP(R) = 0 whenever R ∩ TP = ∅.

To control a chosen error rate, we bound its expectation by α. There are two flavours here.
We can control the error rate conditional on S, requiring that for every P ∈ M and every
S ∈ S,

EP{eP(R) | S} � α,

where EP(·) = ∫
�

· dP is the expectation corresponding to P. Alternatively, we can aim for
unconditional control, requiring that for every P ∈ M,

EP{eP(R)} � α.

Most researchers in conditional selective inference advocate control of the conditional error
rate (Lee et al., 2016; Fithian et al., 2017; Kuffner & Young, 2018), though it has been
shown that conditioning can sometimes be problematic (Kivaranovic & Leeb, 2021a,b).
Other authors have argued for the unconditional error rate, sometimes finding that it
leads to more power (Wu et al., 2010; Andrews et al., 2019, 2022). Indeed, the condi-
tional error rate is the more stringent one, since conditional control implies unconditional
control.

In the toy example, multiple testing is an issue only if S = {1, 2}. If we choose to control
FWER at level α, we may use the methods of Hochberg (1988) and Hommel (1988), which
are equivalent in the case of two hypotheses. This approach rejects each Hi if Pi|S � α/2
and rejects both hypotheses if P1|S and P2|S are both at most α; the resulting procedure is
displayed graphically in Fig. 1(a). Alternatively, we may choose to control FDR. With two
hypotheses, the procedure of Benjamini & Hochberg (1995) is equivalent to the Hommel
or Hochberg procedure just described and controls FWER as well as FDR. For controlling
FDR we can do uniformly better with the minimally adaptive Benjamini–Hochberg proce-
dure, MABH (Solari & Goeman, 2017). In the case of two hypotheses, this procedure also
uniformly improves upon the adaptive procedure of Benjamini et al. (2006). MABH rejects
each Hi if Pi|S � α/2; it rejects both hypotheses if either P1|S and P2|S are both at most α, or
the smaller is at most α/2 and the larger at most 2α. The procedure is displayed graphically
in Fig. 1(b).

So far we have assumed that the error rate depends only on R, but not on S. This
assumption excludes the rate

eP(R, S) = |R ∩ TP|
|S| ∨ 1

(2)

that is implied by inference based on confidence intervals controlling the false coverage rate,
FCR (Benjamini & Yekutieli, 2005). This is also the rate that is controlled if we perform
no further multiple testing adjustment on the selection-adjusted p-values, but simply reject
R = {i : Pi|S � α}. This procedure is shown in Fig. 1(c). In the next few sections we will
assume that the error rate is a function of R only, but we return to S-dependent error rates
in § 12.
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Fig. 1. A simple conditional selective inference procedure for two hypotheses inspired by Zhao et al. (2019) and
Ellis et al. (2020). The procedure in (a) controls FWER, that in (b) FDR and that in (c) the FCR-inspired error rate
(2). The set displayed in the upper right corner of each quadrant is the realization of S in that quadrant. Grey
shading indicates areas in which one hypothesis is rejected; black indicates areas in which both hypotheses are

rejected. The plot uses λ = 0.7 and α = 0.3.

4. A holistic perspective and main observation

The approaches described in the previous two sections can be seen as two-stage methods.
First, from a universe U of hypotheses a selection S ⊆ U is made. Next, within that selection
some hypotheses are rejected while others are not, and R ⊆ S is returned. The set R is the
final result of any method; it is the set we make inferential claims about.

Rather than analysing the two steps U → S and S → R separately, here we take a
holistic perspective, viewing the two steps together as a single method U → S → R, or
briefly U → R. By viewing the two steps together we stress that the selection step U → S
and the rejection step S → R are in the hands of the same analyst. The analyst chooses
a method for the selection step U → S and a method for the inference step S → R. The
analyst also chooses what part of the information in the data to use for the selection step
and what part of the data to reserve for the inference step.

From this holistic perspective, the choice of S in a procedure U → S → R is, therefore,
part of the method, and this part may be optimized. The holistic perspective implies that
such optimization should be focused on obtaining a larger or more useful set R, since R, not
S, represents the final inference of the method. In general, we would like to have as many
rejections as possible, while keeping the chosen error rate under control. Moreover, from the
holistic perspective all rejections of hypotheses in U are welcome, since every hypothesis in
U could have been in S.

In the toy example, we can visualize the holistic view of the three procedures simply by
removing all reference to S in Fig. 1, as shown in Fig. 2. This now displays three single-step
procedures, defined directly on the universe U = {1, 2} and based on the nonselection-
unadjusted P1 and P2. The rejected sets R for the procedures in Fig. 2 are trivially identical
to those of their counterparts in Fig. 1. However, in the holistic perspective of Fig. 2, the λ

that previously determined S now becomes a tuning parameter, to be chosen freely by the
analyst before seeing the data. The holistic perspective de-emphasizes the importance of S.

From the holistic perspective, we see that S plays two distinct roles in conditional selective
inference. Firstly, S focuses the attention of the multiple testing procedure on hypotheses in
S, restricting R to be a subset of S; this is the selective property of the procedure. Secondly,
by conditioning on S the procedure ignores the information used to find S for the final
inference; this is the conditional property of the procedure. We see both roles of S in the
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Fig. 2. Holistic perspective of the procedures in Fig. 1. Grey shading indicates areas in which one hypothesis is
rejected; black indicates areas in which both hypotheses are rejected.

procedures of the toy example in Fig. 1. The procedure never rejects hypotheses outside S,
so it is selective. We can see that the procedures are conditional, because the procedure in
each S-defined quadrant is a valid multiple testing procedure by itself: if we were to stretch
any quadrant so that it covers the entire unit square, we would obtain a method with valid
FWER, FDR or FCR control, respectively.

The holistic perspective allows us to decouple the selective and conditional properties of
conditional selective inference. We say that a procedure U → R is selective on S′ if surely
for all P ∈ M, R ⊆ S′. We say that U → R is conditional on S′′ if it controls its error rate
conditionally on S′′, i.e., if surely EP{eP(R, S′′) | S′′} � α. By design, a conditional selective
procedure U → S → R is selective on S and conditional on S. However, the same procedure
may be selective or conditional on sets it was not constructed around. Procedures are always
selective on sets that are surely larger than S, and every procedure is, trivially, selective on
R. Every procedure that is conditional on S is also conditional on U \ S, since S and U \ S
carry the same information. In Fig. 2 one can verify that all three procedures are conditional
and selective on, for example, S′ = {i : Pi � (1 + λ)/2}.

In an important special case, every procedure is selective on U , since R ⊆ U by definition.
Moreover, every procedure is conditional on U , since the conditional error rate for U is the
unconditional error rate, and control of any conditional error rate implies control of the
unconditional error rate. This brings us to our first main observation: for every conditional
selective multiple testing procedure on S there exists a conditional selective procedure on U ,
i.e., an unconditional, nonselective procedure that always rejects at least as many hypotheses.

Observation 1. Let U → S → R be a conditional selective inference procedure with the
properties that R ⊆ S surely and that EP{eP(R) | S} � α surely for all P ∈ M. Then there
exists a procedure U → R′ such that R′ ⊇ R surely and EP{eP(R′)} = EP{eP(R′) | U} � α

for all P ∈ M.

To prove Observation 1, simply take R′ = R and observe that EP{eP(R)} = EP[EP{eP(R) |
S}]. We call Observation 1 an observation rather than a theorem or proposition, because as
a mathematical result it is completely trivial: if we do not restrict to R ⊆ S, but allow the
method also to reject hypotheses in U \ S, it may achieve more rejections that way; if we do
not condition on S, we retain more information for finding a possibly larger R. Observation 1
is merely an immediate consequence of the holistic perspective we have adopted.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/2/393/7491593 by guest on 25 July 2024



400 J. J. Goeman AND A. Solari

λ

λα
λα / 2

2λα

λ + 2 λ α

P1

P2

Conditional

0

1

1

{1}

{2}{1, 2}

λ

λα
λα / 2

2λα

P1

P2

Conditional and selective

0

1

1

{1}

{2}{1, 2}
λ

λα
λαꞋ/ 2

2α

P1

P2

Selective

0

1

1

{1}

{2}{1, 2}

λ

α

α / 2

2α

P1

P2

MABH

0

1

1

{1}

{2}{1, 2}

Ꞌ

Ꞌ

(a) (b)

(c) (d)

Fig. 3. (a) The conditional selective procedure of the toy example, controlling FDR, with its (b) selective and
(c) conditional improvements, as well as (d) the MABH procedure shown as a reference. Grey shading indi-
cates areas in which one hypothesis is rejected; black indicates areas in which both hypotheses are rejected.

Here λ′ = 1 − λ and α′ = α/(2λ − λ2).

However, Observation 1 answers the important question of how much of the information
in the data to allocate to the selection step U → S and how much to the rejection step
S → R. According to Observation 1, the optimal choice is always simply to take S = U .
Without losing power, we can allocate zero information to the selection step and retain all
the information for the rejection step. This is an important insight.

5. First example: the toy example

Observation 1 says that a holistic method U → R′ always exists that is at least as powerful,
in the sense that R′ ⊇ R, as a conditional selective procedure U → S → R. However, it does
not show that achieving a true improvement is always possible; nor does it show how to find
such an improvement if it exists. Nevertheless, there are many cases in which substantial
improvement over a conditional selective procedure is possible.

In this section we illustrate this with the toy example of Fig. 1, focusing on its FDR-
controlling variant. The toy example will help us gain intuition for the general case. As a
preview, Fig. 3 displays in (a) the FDR-controlling conditional selective procedure, with two
uniform improvements in (b) and (c). The procedure in (c) is not selective on S, sometimes
rejecting hypotheses outside S, but it still controls FDR conditional on S. The procedure in
(b) is still selective on S, guaranteeing R ⊆ S, but only has unconditional FDR control. The
standard MABH procedure is given in (d) for comparison.
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How did we arrive at these improvements? For the conditional improvement in (c), we
continue to aim for control of FDR conditional on S, but we allow the procedure to reject
hypotheses in U \ S. To do this, we also calculate selection-adjusted p-values Pi|S for i /∈ S,
obtaining

Pi|S =
{

Pi/λ, i ∈ S,
(Pi − λ)/(1 − λ), i /∈ S.

While the selection-adjusted p-values are larger than the original ones for i ∈ S, the reverse is
true when i /∈ S. Next, we extend the procedure by continuing to test hypotheses in U\S after
all hypotheses in S are rejected. If S = {1, 2}, the procedure is not changed. If S = {1} and
H1 was rejected, we may continue to test H2, rejecting when P2|S={1} � 2α, and analogously
for S = {2}. This fixed-sequence procedure, conditional on S = {1}, is easily seen to be valid
for FDR control and is related to fixed-sequence FDR-controlling procedures proposed by
Farcomeni & Finos (2013) and Lynch et al. (2017). If S = ∅, rather than rejecting nothing,
we may use a MABH procedure on P1|S=∅ and P2|S=∅.

The resulting procedure, quite a strange one, is given in Fig. 3(c). It consists of four minia-
ture multiple testing procedures, applied to conditional p-values, that are valid conditional
on S for the four realizations of S. For S = {1, 2} and S = ∅ we have a conditional MABH;
for S = {1} and S = {2} we have a fixed-sequence FDR-controlling procedure, prioritizing
the hypothesis in S. The resulting procedure clearly uniformly improves upon the procedure
in Fig. 1. It does so by also considering hypotheses outside S for rejection. However, the
improved procedure retains the property that it controls FDR conditional on S, since each
of the miniature procedures is valid for FDR control.

A different type of improvement may be achieved if we are willing to give up on condi-
tional FDR control. This is shown in Fig. 3(b). The improvement comes in two parts. First,
we remark that the original procedure does not exhaust the α-level under the global null
hypothesis: if H1 ∩ H2 is true, FDR is controlled at level (2λ − λ2)α. We can therefore gain
power by starting the procedure at level α′ = α/(2λ−λ2) instead of at α. Secondly, after the
original procedure has rejected H1, it rejects H2 if P2|S={1,2} � 2α, i.e., when P2 � 2λα. If we
are not performing conditional control, however, there is no need to use the conditional p-
value, and we may alternatively reject H2, after we have rejected H1, simply if P2 � 2α. The
procedure resulting from these two improvements is given in Fig. 3(b). This procedure’s FDR
control is not conditional on S anymore, but it remains selective on S, assuming λ � 2α.
The validity of this new procedure may not be immediately obvious and is stated in the
following lemma.

LEMMA 1. Suppose that P1 and P2 are independent and standard uniform under H1 and
H2, respectively. Without loss of generality, assume that P1 � P2. Let 0 � λ � 1 and α′ =
α/(2λ − λ2). Define a procedure that rejects H1 when P1 � λα′/2, or when P1 � λα′ and
P2 � λα′, or when P1 � λα′ and P2 > λ, and that rejects H2 when H1 is rejected and
P2 � 2α. This procedure controls FDR at level α.

We have constructed two improvements of the conditional selective procedure we started
with. One of these procedures retains the property of the original procedure that it controls
FDR conditional on S, while the second retains the property that it only rejects hypotheses
in S. The holistic perspective, however, does not care about S or about properties relating to
S. It sees these two new methods simply as uniform improvements of the original that never
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402 J. J. Goeman AND A. Solari

reject fewer hypotheses and sometimes reject more. One of these, that in Fig. 3(c), is arguably
somewhat strange and difficult to motivate from a holistic perspective; compare with the
test of Berger (1989) improving the likelihood ratio test and the discussion in Perlman &
Wu (1999). The procedure in Fig. 3(b) seems more reasonable.

As a fourth procedure, in Fig. 3(d) we show the regular MABH procedure, which does
not attempt to be conditional or selective on S. This might be the procedure we would have
chosen if we had adopted a holistic perspective from the beginning. In this particular case,
MABH actually happens to be selective on S, as long as λ � 2α. Comparing the conditional
procedure in Fig. 3(c) with MABH, we see a massive shift of power away from S = {1, 2}
towards S = {1}, S = {2} and S = ∅. Comparing the selective procedure in Fig. 3(b) with
MABH, we see that while both procedures are selective, the original MABH still focuses
relatively more power on S = {1, 2}, whereas the procedure in 3(b) still has a relatively
strong focus on small sets S. This focus actually chimes with the motivation of the procedure
we started from: Zhao et al. (2019) and Ellis et al. (2020) advocated their method for an
application context in which null p-values tend to be near 1, so that S = {1} and S = {2} are
relatively likely.

The comparison with MABH also serves to illustrate that uniformly improving a method
U → S → R by U → U → R′, with the requirement that R′ ⊇ R, is not usually a
question of simply adjusting the tuning parameter λ in such a way that S becomes U . The
MABH procedure, resulting from the choice of λ = 1 in the conditional selective method,
will be a more powerful method in many situations, but it is not a uniform improvement of
the original method unless λ � 1/2. Generally, finding a true uniform improvement, in the
sense that R′ ⊇ R surely for all P ∈ M, involves much more work than merely adjusting a
tuning parameter.

Comparing the conditional selective procedure and its two improvements, we see that the
conditional selective procedure is exactly the intersection of its conditional and its selec-
tive improvements: it rejects either of H1 and H2 if and only if both the selective and
the conditional improvements do. Compared with the conditional selective procedure, the
selective improvement may have additional rejections if S = {1, 2}, while the conditional
improvement cannot. On the other hand, the conditional improvement may have more
rejections if S = ∅, while the selective procedure remains powerless there. If S = {1} or
S = {2}, both procedures may have additional rejections over the conditional selective pro-
cedure. However, the selective procedure has more chance of rejecting the hypothesis in S,
while the conditional procedure may additionally reject a hypothesis outside S. The two
improvements are, in this sense, disjoint.

The two improvements in Fig. 3 are easy to generalize to the case of more than two
null hypotheses. They illustrate an important general principle about selection and con-
ditioning in multiple testing. This principle says that selection and conditioning pull a
procedure in opposite directions. Conditioning forces a procedure to distribute its power
evenly over the outcome space, since the procedure must have proper error control on all
realizations of S, conditional on S. Selection, on the other hand, focuses the power of a
procedure away from hypotheses in U \ S, since it restricts rejections to S. A procedure that
is both selective and conditional must therefore necessarily focus power both away from S
and away from U \ S. Since there is nowhere for the power to go, it vanishes. The condi-
tional selective procedure in Fig. 3(a), being the intersection of a conditional and a selective
procedure, is therefore suboptimal as either. It is definitely suboptimal from the holistic
perspective.
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6. (In)admissibility conditions

Having looked in detail at a small example, we now come back to the general case. We
will give some sufficient conditions under which uniform improvements exist.

We say that a conditional selective inference procedure U → S → R is inadmissible
if U → R′ exists that uniformly improves upon U → S → R in the sense that R ⊆ R′
surely for all P ∈ M and P(R ⊂ R′) > 0 for at least one P ∈ M, while still controlling the
error rate, i.e., EP{eP(R′)} � α. We will be a bit more precise and say that U → S → R is
inadmissible as a selective method on S if the uniform improvement still satisfies R′ ⊆ S
surely. Similarly, U → S → R is said to be inadmissible as a conditional method on S if the
uniform improvement still controls its error rate conditional on S. Remember, however, that
from the holistic perspective we do not care too much about S or about these subclasses of
inadmissibility.

Our definition of a uniform improvement is very strict, as in Goeman et al. (2021), requir-
ing that R′ ⊆ R for every outcome ω ∈ �. A uniform improvement, therefore, can never
fail to reject a hypothesis that the method it improves upon does reject. This requirement
makes admissibility a very low bar to achieve. For example, a FWER-controlling method
that rejects all hypotheses in U with probability α, independently of the data, and rejects
nothing with probability 1 −α is admissible according to our definition. Since admissibility
is so easy to achieve, inadmissibility is particularly bad news.

We will give several sufficient conditions for inadmissibility of conditional selective
methods. Propositions 1–3 apply to any error rate. Proposition 4 is only for FWER control.

PROPOSITION 1. If δ > 0 is known such that P(S ∩ TP = ∅) � δ for all P ∈ M, then
U → S → R is inadmissible as a selective procedure on S, unless R = S surely for all P ∈ M.

In other words, Proposition 1 says that any conditional selective procedure is inadmissible
if, with positive probability, the selection step results in a set S without true hypotheses; for
examples see Al Mohamad et al. (2020), Ellis et al. (2020) and Heller & Solari (2023). In
this case, it is impossible to make false discoveries, and the α for such S can be better spent
elsewhere. The condition of the proposition implies that S has FWER control at level δ, but
allows δ > α. The proposition does not apply when R = S surely, but we will come back to
that case in Observation 4 in § 12.

PROPOSITION 2. If P(S = ∅) > 0 for some P ∈ M, then U → S → R is inadmissible as
a conditional procedure on S. It is inadmissible as a selective procedure on any S′ for which
S′ ⊇ S surely for all P ∈ M and S′ |= ∅ surely for all P ∈ M.

Proposition 2 says that a conditional selective procedure may be improved if it sometimes
selects S = ∅. There is a subtle but important difference from Proposition 1: if P(S = ∅) > 0
for all P ∈ M, then we would fulfil the conditions for Proposition 1, but Proposition 2
requires only that this happens for at least one P ∈ M. Intuitively, if S = ∅ sometimes, we
can make no errors in that case, and we can spend the α allocated to that case elsewhere.

PROPOSITION 3. If α′ is known such that

α′ = sup
P∈M

EP{eP(R)} < sup
P∈M

EP

[
sup
P∈M

EP{eP(R) | S)}
]

(3)

and P(R = S) < 1 for at least one P ∈ M, then U → S → R is inadmissible as a selective
method.
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To understand Proposition 3, note that the left-hand side of (3) is equal to

sup
P∈M

EP
[
EP{eP(R) | S)}],

so that (3) holds with � by definition. Unconditional control bounds the left-hand side of
(3) by α, while conditional control implies that the right-hand side of (3) is bounded by α.
Any gap between the two can be exploited by an unconditional test to gain power. Such a
gap may arise if the ‘worst case’ P, for which the conditional α-level is exhausted, depends
on S. We give an example in the Supplementary Material.

PROPOSITION 4. If U → S → R controls FWER conditional on S and there exists P ∈ M
such that P(R = S | S) > 0 for some S ⊂ U, then U → S → R is inadmissible as a
conditional procedure on S.

Proposition 4 exploits the sequential rejection principle (Goeman & Solari, 2010), which
says that if we reject all hypotheses under consideration, we may recycle the α and continue
testing with a new batch. For a conditional selective procedure, this means that if we have
exhausted all hypotheses in S, we may continue testing hypotheses in U \ S.

In the toy example, we see that the conditions of Propositions 1, 2 and 4 are all fulfilled,
provided that λ < 1. The probability that we select only false null hypotheses is (1−λ)2, 1−λ

or 1 in the situations where 2, 1 or 0 hypotheses are true, respectively, so the condition of
Proposition 1 is fulfilled with δ = (1−λ)2. Under P ∈ H1∩H2 we have P(S = ∅) = (1−λ)2 >

0, so the condition of Proposition 2 is also fulfilled. Finally, if FWER was controlled, take
S = ∅; then all hypotheses in S are rejected with positive probability for every P ∈ M,
conditional on S = ∅. It may seem from this checking of the conditions that the crucial
characteristic that makes the procedure in the toy example inadmissible is the fact that it
selects S = ∅ with positive probability. However, this is not the only driving factor. For
example, perhaps the most important improvement of the procedure in Fig. 3(a) over that
in Fig. 3(b) is the increase of the critical value from 2λα to 2α for rejecting the second
hypothesis after rejecting the first. This change is not tied to the selection of S = ∅ in any
way. The propositions of this section are sufficient conditions for inadmissibility, but they
are by no means necessary. We will see examples of improvements of procedures that never
select S = ∅ in § 7 and § 8.

The propositions in this section should be seen as examples of classes of procedures that
could be improved by letting go of selection and conditioning. The emphasis was on uni-
form improvements. Often, procedures may be constructed that do not necessarily uniformly
improve upon the original, but are substantially more powerful for relevant alternatives.
An example is the standard MABH in the toy example, which, although not a uniform
improvement over the original, has much larger rejection regions for both H1 and H2.

7. Second example: conditioning on the winner

The toy example considered thus far may seem to hinge much on the property that it
selected S = ∅ with positive probability. In this section we look at a situation where P(S =
∅) = 0 for all P ∈ M.

The hypotheses that attract the most attention in the literature are generally those with
the smallest p-values. It is of interest, therefore, to consider selection rules based on ranks.
Selective inference for such selections, so-called ‘inference on winners’, has been considered

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/2/393/7491593 by guest on 25 July 2024

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asad078#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asad078#supplementary-data


Multiple testing and selective inference 405

by Zhong & Prentice (2008), Reid et al. (2017), Fuentes et al. (2018), Andrews et al. (2022),
Zrnic & Fithian (2023) and Zrnic & Jordan (2023). We consider the simplest set-up here,
where we select only a single ‘winner’. In this set-up, we consider the question of whether
the winner is truly nonnull.

Let P1, …, Pn be independent p-values, standard uniform under their respective null
hypotheses H1, …, Hn, so that U = {1, …, n}. We consider the selection rule that selects
the single hypothesis for which the p-value is smallest, with ties broken arbitrarily, so that
|S| = 1 always.

If we want to condition on the selection event S = {i}, we cannot simply reject for small
values of Pi, adjusting the critical value for the selection event as we did in the toy example
of Fig. 1. To see why this would be problematic, consider a set-up with n = 2 in which H1
is null, but H2 is not. Then

P(P1 � t | S = {1}) = P(P1 � t, P1 � P2)

P(P1 � P2)
= P(P1 � P2 ∧ t)

P(P1 � P2)
= EP(P2 ∧ t)

EP(P2)
. (4)

Since P2 is under the alternative, its distribution is arbitrary, so it could be uniform on [0, t].
In that case, (4) evaluates to 1. Hence, for every t > 0 there exists a P ∈ M such that
P(P1 � t | S = {1}) = 1. Therefore, it is impossible to bound (4), in supremum over
P ∈ M, by α. Consequently, it is impossible to construct a conditional selective procedure
that rejects for small values of Pi.

A way around this conundrum was offered by Reid et al. (2017), who proposed using
an alternative test statistic Pi|S={i} = Pi/ minj |=i Pj. Conditional on S = {i}, we have that
Pi/ minj |=i Pj is standard uniform for all P ∈ Hi, as Lemma 2 states. Based on this lemma
we can construct a conditional selective inference procedure. It rejects Hi (i ∈ S) when
Pi/ minj |=i Pj � α. We call this Procedure A.

LEMMA 2. If n � 2 and P ∈ Hi, then Pi/ minj |=i Pj ∼ Un(0, 1) given S = {i}.
What error rate does this conditional procedure on S control? On a family S of only one

hypothesis, unadjusted testing, FCR, FWER and FDR control are all identical; Procedure A,
therefore, controls all these error rates simultaneously. To construct potential improvements
of the method, we must therefore decide which error rate to retain control of. We choose
FDR for this example.

As in § 5, we construct three alternative procedures. The first, Procedure B, retains valid-
ity conditional on S, but possibly rejects hypotheses outside S. The second, Procedure C,
will have unconditional FWER control, but still rejects only hypotheses within S. The third,
Procedure D, will be fully unconditional and defined on U .

To construct procedure B, we must extend the notion of conditional p-values for Hj with
j /∈ S. We need the following lemma.

LEMMA 3. If n � 2 and P ∈ Hj for j |= i, then (Pj − Pi)/(1 − Pi) ∼ Un(0, 1), independent
of (Pk)k |=j, given S = {i}.

We will use Pi|S = (Pj − Pi)/(1 − Pi) for j |= i. As in § 5, we see that adjustment for non-
selection results in p-values that are smaller than their unadjusted counterparts, rather than
larger. Procedure B will be a two-step method based on these selection-adjusted p-values.
Let i be such that S = {i}. Then the procedure first tests Hi, rejecting if Pi/ minj |=i Pj � α. If
it fails to reject Hi, the procedure stops. Otherwise it continues with a Benjamini–Hochberg

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/2/393/7491593 by guest on 25 July 2024



406 J. J. Goeman AND A. Solari

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6 7 8 9 10

False hypotheses

R
ej

ec
te

d
 h

y
p
o
th

es
es

Fig. 4. Expected number of rejections for the four methods defined in § 7, Procedures A (red solid line with
circles), B (green dotted line with triangles), C (blue dashed line with squares) and D (purple dashed line with

crosses), based on n = 100 hypotheses, α = 0.05 and 104 simulations.

procedure at level α′ = nα/(n−1) on the n−1 hypotheses Hj (j |= i), using (Pj−Pi)/(1−Pi) as
p-values. This procedure clearly uniformly improves upon Procedure A if n > 1; its validity
is stated in Lemma 4.

LEMMA 4. Procedure B controls FDR given S = {i}.

For Procedure C, we ignore the conditioning on S = {i}, but still restrict rejection to S
only. This means that we can simply reject Hi for small Pi. By independence of the p-values,
we may reject Hi when Pi � 1 − (1 − α)1/n. This is Procedure C. For Procedure D, the fully
unconditional procedure, we simply choose the familiar Benjamini–Hochberg procedure.

While Procedure B uniformly improves upon Procedure A, the unconditional Procedures
C and D do not. To see this, consider the situation where P2, …, Pn are always equal to 1,
which they could be under the alternative, or if null p-values are allowed to be stochastically
larger than uniform. In that case, Procedures A and B reject H1 if P1 � α, while Procedures
C and D need P1 � 1 − (1 − α)1/n and α/n, respectively.

We compared the four procedures in a simple simulation. Out of 100 hypotheses, from
0 to 10 were considered to be under the alternative, yielding a p-value based on a one-
sided normal test with a mean shift of 3; the remaining p-values were standard uniform.
Figure 4 reports the expected number of rejected hypotheses for each of Procedures A, B,
C and D. We see that the original conditional method, Procedure A, is very much directed
towards sparse alternatives, even losing power as the density of the signal increases. In con-
trast, all the other methods gain power with increasing signal. The unconditional Procedure
C, which, like Procedure A, only ever rejects the winner, rejects it with greater probability
than Procedure A for all scenarios. The fully unconditional Benjamini–Hochberg method,
although not a uniform improvement, is the clear overall winner, rejecting most hypotheses
on average even in the sparse scenarios.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/111/2/393/7491593 by guest on 25 July 2024



Multiple testing and selective inference 407

8. Data splitting and carving

Data splitting is perhaps the archetypal conditional selective inference method. It splits
the data into two parts, using one part for selecting S and the other part for inference. Stan-
dard data splitting splits the data by subjects. Data carving is a more advanced version of
data splitting (Fithian et al., 2017; Schultheiss et al., 2021; Panigrahi, 2023) that uses alter-
native ways of splitting the information in the data into independent parts, thus making
more efficient use of the data. We show that data splitting and carving are inadmissible in
general, at least for FWER control.

A special feature of data splitting is that the selection step that results in S is completely
unconstrained, as long as the selection remains independent of the second part of the data.
This implies that the universe U from which S was chosen is in principle infinite. The inad-
missibility conditions in § 4 still apply, however. We have a simple corollary to Proposition 4,
owing to the infinite nature of U . The inefficiency of data splitting has been noted by other
authors. Jacobovic (2022) established inadmissibility of Moran’s (1973) data-split test, and
Fithian et al. (2017) have shown that data splitting yields inadmissible selective tests in
exponential family models.

PROPOSITION 5. Data splitting is inadmissible as a selective method for FWER control if U
is infinite and S is almost surely finite.

Proposition 5 says that a data-splitting procedure is inadmissible because the analyst
always runs the risk of selecting too few hypotheses for S. If all hypotheses in S are rejected,
the classic data-splitting procedure must stop and loses out on some rejections it could have
made. A uniform improvement would be a procedure that selects not just S, but an infinite
sequence of pairwise-disjoint continuations S1, S2, …. This procedure would always con-
tinue testing the next selected set after the previous one has been completely rejected. All of
S1, S2, … must still be chosen using the first part of the data only. Control is therefore still
conditional on the first part of the data.

Proposition 5 pertains to FWER control only. We conjecture that the same result holds
for FDR, since FDR is by nature more lenient than FWER for making further rejections in
S2, S3, … if it has already made many rejections, i.e., all of S1. We do not have a general
proof for this, but as an example consider FDR-controlling methods of the type discussed by
Li & Barber (2017). These estimate FDR along an incremental sequence of potential rejec-
tion sets, rejecting the largest set for which the FDR estimate is less than α. Such procedures
would gain power if the sequence is continued beyond S into S1, S2, ….

With data splitting, the splitting of the data into two parts is arbitrary by nature, and the
question of how much of the data to use for the selection and inference steps arises naturally.
Some authors have proposed repeated splitting (Meinshausen et al., 2009; DiCiccio et al.,
2020). Such methods are unconditional: while inference in each random split is conditional
on the S from that split, control in the final analysis is unconditional. Multiple data splitting
can, therefore, also be seen as an unconditional improvement of a conditional method.

9. Third example: data splitting

In § 8 we showed that data splitting is inadmissible as a conditional method for FWER
control. If we are prepared to move away from conditional control, we can often improve
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methods further, although not always uniformly. We investigate a specific simple case in
more detail.

Let U = {1, …, n} be finite, and suppose that the analysis on the two parts of the data
results in pairs of independent p-values {P1,i, P2,i} for Hi (i = 1, …, n). A natural choice for
S is S = {i : P1,i � λ} for some fixed 0 � λ � 1. With this choice, a conditional Bonferroni
procedure would reject

R = {i ∈ S : P2,i � α/|S|}. (5)

We can rewrite this as R = {i ∈ U : Qi � λα/|S|}, with Qi = λP2,i if P1,i � λ and Qi = 1
otherwise. Here, Qi is a valid unconditional p-value, since P(Qi � t) = P(P1,i � λ)P(λP2,i �
t) = λ min(t/λ, 1) � t. We could also have constructed an unconditional procedure on U
based on the same Qi. This would reject

R′ = {i ∈ U : Qi � α/n}. (6)

Comparing the conditional and unconditional procedures (5) and (6), we see that R′ ⊆ R
whenever |S| � λn, and R′ ⊇ R otherwise. The conditional procedure seemingly only has
a chance to reject more than the unconditional if |S| is smaller than its expectation under
the complete null hypothesis with uniform p-values. The more signal in the data, the larger
we would expect S to be, and the smaller the conditional R becomes relative to the uncon-
ditional R′. The conditional procedure has a chance to be better only if null p-values are
stochastically larger than uniform. This argument generalizes immediately beyond Bonfer-
roni to other symmetric monotone procedures. For example, the unconditional procedure
of Benjamini & Hochberg (1995) on Qi for i ∈ U dominates its conditional equivalent on
Qi for i ∈ S if |S| > λn.

In the example just discussed, with S = {i : P1,i � λ}, if λ was fixed a priori
and P1,1, …, P1,n are independent, then we are not using all the information remaining
after selecting S. Rather than splitting the data into P1,1, …, P1,n used for finding S and
P2,1, …, P2,n used for testing, the data could be split into 1{P1,1�λ}, …, 1{P1,n�λ} used for
finding S and P1,1|S, …, P1,n|S and P2,1, …, P2,n used for testing. Such alternative splits
are known as data carving. They tune the amount of information that is allocated to the
selection and testing steps more efficiently. However, from the perspective of unconditional
procedures, this still seems a rather convoluted way of combining the information from P1,i
and P2,i. A natural and more powerful choice would be, for instance, a Fisher combination,
equivalent to rejecting for low values of P1,i × P2,i, or, even more naturally, a single p-value
calculated from a direct analysis of the combined data. Such analyses also obviate the need
for choosing λ.

10. Selective confidence intervals and the false coverage rate

So far we have discussed mostly rejection of hypotheses based on p-values. However,
a large part of the selective inference literature focuses on selection-adjusted confidence
intervals, controlling the conditional FCR. In this section we apply the holistic perspective
to selective inference based on confidence intervals.

A confidence interval is a random subset C ⊆ M of the model space M. A confidence
interval is said to have (1 − α)-coverage if for all P ∈ M,

P(P ∈ C) � 1 − α.
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We always define a confidence interval as a subset of the full parameter space. We can do
this without loss of generality. For example, if our parameter space for θ = (θ1, θ2) is R2,
we can write the confidence interval [a, b] for θ1 as the ‘interval’ C = [a, b] × R for θ . This
greatly simplifies notation. We will keep using the word interval, even though C can be any
region.

In the selective inference context, we let S ⊆ U be a random set of confidence intervals
of interest, where U , as before, is the universe from which we are selecting. The collection
of confidence intervals depends on S, and we write Ci|S for i ∈ S. The confidence intervals
should have conditional (1 − α)-coverage if for all P ∈ M and for i ∈ S,

P(P ∈ Ci|S | S) � 1 − α. (7)

If we report more than one confidence interval, we must account for multiplicity. We
can demand that the confidence intervals be (conditionally) simultaneous over the selected
event, i.e., surely for all P ∈ M,

P
(

P ∈
⋂
i∈S

Ci|S
∣∣ S

)
� 1 − α, (8)

where the unconditional variant drops the conditioning on S. Similarly, we can control FCR.
The unconditional variant demands that for all P ∈ M,

EP

[ |{i ∈ S : P ∈ Ci|S}|
|S| ∨ 1

]
� 1 − α. (9)

Conditional on S, this simplifies to the requirement that surely for all P ∈ M,

1
|S| ∨ 1

∑
i∈S

P
(
P ∈ Ci|S

∣∣ S
)
� 1 − α. (10)

An attractive property of selection-adjusted confidence intervals is that they control FCR
without further adjustment, since (7) implies (10); see also Weinstein et al. (2013, Theorem
2), Fithian et al. (2017, Proposition 11) and Lee et al. (2016, Lemma 2.1).

For confidence intervals we have the following analogue of Observation 1.

Observation 2. If Ci with i ∈ S control (8) or (10) conditionally on S, then there exist C′
i

with i ∈ U such that C′
i ⊆ Ci for i ∈ S surely and which control (8) or (10), respectively, with

S = U.

This observation is, again, trivial. We simply take C′
i = Ci if i ∈ S and C′

i = M otherwise.
Like Observation 1, Observation 2 answers the question of what the optimal choice of S is
if we are interested in confidence intervals that are as narrow as possible. The answer is that
S = U is the optimal choice.

Like Observation 1, Observation 2 does not say whether taking S = U can actually help
to shorten the confidence intervals. However, it is easy to find examples in which this is
possible, certainly for FCR control. Take, for example, the original FCR-controlling method
of Benjamini & Yekutieli (2005), which constructs marginal confidence intervals of level
1 − |S|α/|U|. For this method, taking S = U clearly results in the narrowest confidence
intervals. This observation holds generally for FCR control: as confidence intervals tend to
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become narrower as S becomes larger, there is every incentive for the analyst to choose S
as large as possible, since this would yield both more and narrower confidence intervals.
In the extreme case where S = U , FCR control reduces to average marginal coverage, an
even weaker criterion than marginal coverage, which is achieved by uncorrected confidence
intervals.

Specifically for the property of simultaneous over the selected event, we have the following
additional observation.

Observation 3. If Ci with i ∈ S are unconditionally simultaneous over the selected S, then
for every S′ ⊆ U there exist C′

i with i ∈ S′ which are unconditionally simultaneous over the
selected S′ and such that C′

i ⊆ Ci surely for all i ∈ S ∩ S′.

To see that this observation is true, simply take C′
i = Ci for i ∈ S ∩ S′ and C′

i = M for
i ∈ S′ \ S.

The observation says that any unconditional method that is simultaneous over the
selected for some S ⊆ U is also simultaneous over the selected on any other S′ ⊆ U . This
suggests, at least for unconditional methods, that simultaneous over the selected is not a
different concept from just simultaneous over U , i.e., simultaneous.

11. Fourth example: post-selection inference for the lasso

One of the major application areas of conditional selective inference is post-selection
inference on the parameters of a lasso model. A major breakthrough in this area has been
the polyhedral lemma (Lee et al., 2016), which allows calculation of p-values and confidence
intervals for regression coefficients, conditional on their selection by a lasso algorithm. The
toy example of § 5 is in fact a special case of the approach of Lee et al. (2016), and we will not
discuss it again. In this section we consider a variant due to Liu et al. (2018) of lasso-based
selective inference, in which additional interesting issues arise.

The set-up is as follows. We consider the usual linear model setting, in which we have a
fixed n×m design matrix X and assume that Y = Xβ +ε, where the m-vector β is unknown
and ε ∼ N(0, σ 2In), where σ 2 is assumed to be known. In this model we fit a lasso regression
with a fixed penalty parameter λ. Let β̃i (i = 1, …, m) be the resulting coefficient estimates.
We define the selected set as S = {i : β̃i |= 0}.

Liu et al. (2018) define selection-adjusted confidence intervals by conditioning, not on
the full selected set S, but only on the selection of the confidence interval of interest. They
require that for all P ∈ M and for i ∈ S,

P(P ∈ Ci|i∈S | i ∈ S) � 1 − α. (11)

Condition (11), although implied by (7), is substantially weaker, because it conditions on
less information. In a part of their paper, Fithian et al. (2017) considered conditioning on
i ∈ S rather than on the full S for testing, recognizing that less conditioning leads to more
information for inference. Liu et al. (2018) adopted this viewpoint for confidence intervals,
arguing that by conditioning on this minimal event, more variation remains in the data for
determining the precise value of βi. The methodology of Jewell et al. (2022) and Neufeld
et al. (2022) shares the ‘general recipe’ of Liu et al. (2018), stating that the ultimate goal is
to satisfy equation (11) rather than (7) when it comes to selective inference.

Indeed, the conceptual difference between the two properties (11) and (7) is huge, but
there is a steep price to pay for conditioning only on i ∈ S. Complications arise in subsequent
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Fig. 5. Selective conditional confidence intervals obtained using the method of Liu et al. (2018) applied to the
variables of the prostate data (Stamey et al., 1989), as a function of λ. Black intervals are conditional on selection

by the lasso, while grey ones are conditional on nonselection.

error rate control because the coverage of each Ci|i∈S is conditional on a different event
for every i ∈ S. Because of this, the property, mentioned in § 10, that selection-adjusted
coverage (7) implies FCR control (10) is lost: (11) does not imply (10) or even (9). Without
a common conditioning event, there is no hope of combining the confidence intervals into
any combined conditional error rate. For example, constructing |S| confidence intervals,
each conditional on j ∈ S, at level 1−α/|S| does not guarantee simultaneous coverage, even
unconditionally; we need confidence intervals at level 1−α/m for that. In the Supplementary
Material we give a numerical example showing lack of conditional and unconditional FCR
control of the confidence intervals of Liu et al. (2018) at confidence level 1 − α, and lack
of conditional and unconditional simultaneous control at confidence level 1 − α/|S|. Lack
of FCR control of the method of Liu et al. (2018) was also observed in Panigrahi & Taylor
(2023, Table 1), but without explanation.

By Observation 2, there is no reason to be selective and report confidence intervals for
i ∈ S only. Indeed, the premise of restricting attention to the selection of S is often that
variables not in S are not important for the outcome. Confidence intervals or p-values for
nonselected variables are an important instrument for checking this. It is straightforward
to extend the theory of Liu et al. (2018) to calculate Ci|i/∈S with i /∈ S for the nonse-
lected regression coefficients, and we give the mathematical details in the Supplementary
Material. Figure 5 displays 90% confidence intervals for all eight variables of the famous
prostate dataset (Stamey et al., 1989) as a function of λ, with intervals for selected coeffi-
cients in black and those for nonselected ones in grey. We see a similar paradoxical effect as
in the toy example: conditional intervals of selected variables tend to move towards 0, while
confidence intervals for nonselected variables tend to move away from 0; see also the Sup-
plementary Material. Both are equal to the unconditional intervals for very large or small
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λ, when the probability of selection is close to 0 or 1, but tend to become longer close to
the critical threshold for selection. Kivaranovic & Leeb (2021a,b) provide conditions under
which intervals obtained from the polyhedral lemma are either bounded or unbounded. The
intervals constructed by the method of Liu et al. (2018) have bounded lengths when they
are conditional on selection, whereas the intervals are potentially unbounded when they are
conditional on nonselection.

The intervals Ci, defined as Ci|i∈S if i ∈ S and Ci|i/∈S if i /∈ S, are unconditional intervals
and, due to the absence of a common conditioning event, have no conditional interpretation
as a collection. We may present them all as uncorrected intervals, but if we aim to present
only a selection V ⊆ {1, …, m} from these intervals we must correct for this using methods
for correcting unconditional intervals. We may use level 1 − α/m to obtain simultaneous
coverage over the selected intervals, or we may employ the method of Benjamini & Yekutieli
(2005) and use level 1 − |V |α/m to control FCR. This applies if V = S or for any other
V . There is no way in which the conditioning of the intervals on i ∈ S helped for this
correction step; in fact, it merely discarded valuable information, lengthening the intervals
and moving them towards zero. Arguably, the superior method is simply to start from regular
unconditional intervals. This does not provide a uniform improvement of the method of Liu
et al. (2018), but it avoids the paradoxes associated with conditioning and tends to produce
more attractive intervals.

12. False coverage rate for hypothesis testing

Confidence intervals can be used to test hypotheses, and the properties of confidence
intervals imply error control guarantees on the hypotheses. In this section we look briefly
into the error rate (2) implied by FCR control (10), which is used by some authors (e.g.
Fithian et al., 2017). Assume that we have a collection Hi (i ∈ S) of hypotheses, one for
every confidence interval.

If confidence intervals Ci|S (i ∈ S) have conditional FCR control, then R = {i : Hi∩Ci|S =
∅} controls the error rate (10). Observation 1 does not directly apply, since the error rate
depends not just on R in S. However, that observation immediately generalizes.

Observation 1 (continued). Observation 1 also holds for error rates eP(R, S) that depend
on S, if S ⊆ S′ implies that eP(R, S) � eP(R, S′).

The extra condition holds for the FCR rate (2). The condition implies that replacing S by
U makes the error rate more lenient, so for controlling the error rate it helps to take S = U ,
and the result is still trivial. FCR is a paradoxical error rate from the holistic perspective,
since it is decreasing in |S| for the same R. This provides an immediate incentive for an
analyst to choose S as large as possible.

FCR is sometimes motivated (Zhao & Cui, 2020) by the property that FCR control reduces
to FDR control when S = R. For this property to hold, we must have that S = R as random
variables; it is not sufficient that the realized values are identical. Regarding conditional
control of FCR, or other error rates, when S = R as random variables we have the following
observation. We say that a testing problem is trivial on S if eP(V) � α for all P ∈ M and all
V ∈ S, i.e., if the error rate is already bounded by α everywhere.

Observation 4. Suppose that a conditional selective method U → S → R has R = S
surely. Then the testing problem is trivial on S.
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To see that this observation is true, notice that conditional control requires that EP{eP(R) |
S} � α for all P ∈ M and all S ∈ S. If R = S surely, the inequality reduces to eP(S) � α.

It follows from Observation 4 that only unconditional FCR-controlling methods can be
used as a means to construct FDR-controlling methods; conditional FCR control has no
relationship to FDR control.

13. Discussion

The literature on selective inference methods based on conditioning often takes the
selected set of hypotheses S as given and presents the analyst’s task solely as providing con-
fidence intervals or p-values that are valid despite the random nature of S. In this article, we
regard this as only the middle step of a bigger procedure, which first selects S from a uni-
verse U , then corrects for this selection, and finally uses the resulting p-values or confidence
intervals to control an error rate of choice, leading to a final rejected set R. This holistic
perspective is perhaps the most important contribution of the present work. All the results
in the article are tied to this perspective.

If S is simply a step in a procedure that starts with a universe U and ends with a rejected
set R, the question arises naturally as to what is the optimal amount of information to invest
in choosing S. The simple answer is: none. For both primary roles of S, i.e., automatically
accepting hypotheses not in S and discarding all information used to select S, the optimal
choice is to choose S as large as possible.

Selection-adjusted p-values of confidence intervals are sometimes presented as the end
result of a conditional selective inference procedure, suggesting that selection adjustment
is sufficient to address the multiplicity problem. However, the error rate (2) thus controlled
is equivalent to the per-comparison error rate, i.e., unadjusted testing, on S. It does not
correct for the multiplicity of S itself. The larger S is, therefore, the more and the lower the
selection-adjusted p-values will be. From the holistic perspective, there is every incentive for
the analyst to choose S as large as possible, eventually reaching unadjusted testing when
S = U . In our view, it is appropriate to present selection-adjusted p-values or confidence
intervals without further multiple testing adjustment only if the choice of S is not under the
control of the analyst, and only if unadjusted methods would have been appropriate if S
were nonrandom and given a priori.

We have given several examples of uniform improvements of conditional methods by
unconditional ones, as well as general conditions under which such improvements are pos-
sible. Some of these improvements are useful and substantial; others are small or may appear
artificial. We do not have a general recipe for such improvements, and we emphasize that
improvements are generally not unique. In several case studies we have constructed improved
procedures that are either still selective, i.e., focusing power on a small and promising set S
of hypotheses, or still conditional, i.e., valid conditional on the information used to find
this same S. Invariably, we found that good selective procedures were not conditional, and
good conditional procedures were not selective. Apparently, prioritizing hypotheses in S and
conditioning on this prioritization are conflicting goals. A multiple testing procedure that
focuses its power on a promising set S should exploit the information that S is a promising
set; a conditional procedure discards the same information by conditioning on it.

Choosing S = U , as we advocate, essentially means reverting to unconditional, as
opposed to more stringent conditional, error rates. In our view this is good enough:
common unconditional error rates such as the familywise error are seldom criticized for
being too lenient. Some authors (e.g., Kuffner & Young, 2018) have argued that it is better
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to control conditional error rates because they avoid unwarranted use of ancillary informa-
tion. We find this difficult to accept as a general argument, since in most procedures S is
not ancillary in the usual sense, but rather based on a bona fide summary of the available
evidence in part of the data.

Finally, we remark that allowing inspection of the data prior to making inferential deci-
sions is not exclusively the domain of conditional methods. In fact, simultaneous methods
allow users to postpone some inferential decisions until after they have seen all the data
(Goeman & Solari, 2011), something conditional methods could never allow.
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