
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22804  | https://doi.org/10.1038/s41598-024-69354-y

www.nature.com/scientificreports

Fluctuations and extreme events 
in the public attention on Italian 
legislative elections
Andrea Auconi 1, Lorenzo Federico 2,3*, Gianni Riotta 2 & Guido Caldarelli 1,4,5,6

The share of social media attention to political candidates was shown to be a good predictor of 
election outcomes in several studies. This attention to individual candidates fluctuates due to 
incoming daily news and sometimes reflects long-term trends. By analyzing Twitter data in the 2013 
and 2022 election campaign we observe that, on short timescales, the dynamics can be effectively 
characterized by a mean-reverting diffusion process on a logarithmic scale. This implies that the 
response to news and the exchange of opinions on Twitter lead to attention fluctuations spanning 
orders of magnitudes. However, these fluctuations remain centered around certain average levels of 
popularity, which change slowly in contrast to the rapid daily and hourly variations driven by Twitter 
trends and news. In particular, on our 2013 data we are able to estimate the dominant timescale of 
fluctuations at around three hours. Finally, by considering the extreme data points in the tail of the 
attention variation distribution, we could identify critical events in the electoral campaign period and 
extract useful information from the flow of data.

The recent technological revolution made it possible to store unprecedented information regarding society. Data 
from all kinds of media, including e-mails, phone calls, online purchases, travel info and more, are stored, form-
ing what has been called the data deluge1. This availability of data has offered more opportunities for advanced 
mathematical techniques to be applied in the modeling of social and political phenomena, towards a quantita-
tive description of human behaviour and its multi-layer interactions within society2–4. The classical definition 
of complexity as “more is different”5 manifests here in the fact that social interactions, which typically involve 
just two or only a few individuals, can propagate their effect through a network to generate collective behaviour 
in a way that is reminiscent of phase transitions in statistical physics6,7.

Methods of statistical physics and network theory8,9 have already found application in social sciences for the 
study of information spreading and fake news10–12, and in particular to characterise the relation between news 
diffusion properties and the underlying network structure. The latter is usually inferred from interactions on 
platforms like Twitter and Facebook. On Twitter, the clustering around influential people is particularly strong13, 
as well as the emergence of closed “echo chambers” of people mutually reinforcing their opinions14,15, so that a 
coarse-grained description in terms of communities and narratives was possible. In particular, studies based on 
Twitter data elucidated contagion mechanisms in the Arab Spring demonstrations16, Occupy Wall Street17, and 
the Spanish “Indignados”18. Also, many tried to extract information from social networks to get some anticipation 
on the outcome of online electoral campaigns in various countries including USA19–25, Australia26,27, Norway28, 
Spain29, Italy30,31, France32, and UK33.

In this paper, we study the fluctuation properties of the attention towards political parties on Twitter in the 
weeks preceding the Italian political elections of 2013 and 2022. In particular our question is: how can we improve 
our models of stochastic varying attention online, so that we can better connect this to election outcomes and 
possibly other phenomena? We find that, on short timescales of minutes up to a few days, the dynamics is well 
described by a mean-reverting diffusion process on a logarithmic scale, meaning that the reaction to news and 
exchange of opinions on Twitter produces fluctuations of attention varying over orders of magnitudes but still 
anchored around some set of average levels of popularity which change only slowly compared to the daily and 
hourly variations due to news and trends on Twitter. We find that this minimal description employing just two 
parameters, one for the timescale of mean-reversion and another for the amplitude of fluctuations, is sufficient 
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to interpolate the average squared logarithmic displacement of the share of Twitter attention, which is a basic 
measure of uncertainty on the future level of attention. By calibrating this model to our time series data we find 
that the dominant timescale of fluctuations can be estimated at around three hours.

Regarding the distribution of these squared log displacements, however, we observe some larger tails than 
the Gaussian model would typically show. Indeed, like in many other social phenomena, we also find some 
extreme events, here as short periods of collective attention34. These are relatively rare and happen in a small 
absolute number in our data. Therefore, further modeling in terms of a jump-diffusion process and a fat-tailed 
distribution is not statistically feasible. Still, we investigate these individual jumps in attention and find that they 
correspond to significant unexpected events in the political campaign. Our analysis of fluctuations on short 
timescales of minutes up to a few days complements the studies of trends and inertia in the attention dynamics 
over longer timescales31,35–41.

Methods
The datasets
The first and main dataset used here consists of around 3.5 M tweets recorded from 1 January 2013 to 22 February 
2013 before the general italian political elections which took place on the 24 and 25 February 2013. This dataset 
was created and already used for a different analysis in31. Tweets were selected using the Twitter free API in stream 
mode with italian language as only filter, and then classified based on if they mention political leaders’ family 
names or their political party with or without hashtag. The free API provides only a subset of the whole tweets 
population, and this determines an increased estimation noise especially relevant for small filtering timescales 
as discussed below. Similarly the second dataset for the general italian political elections of 25 September 2022 
consists of around 2.5 M Tweets recorded from 6 September 2022 to 23 September 2022 selected according to a 
list of hashtags provided in42, and then classified based on if they mention the leaders and the six main political 
parties, such keywords provided in the Supplementary file “Keywords”.

The share of Twitter attention
Our data consists of a time series of tweets regarding politicians in Italy during the weeks preceding the political 
elections of 2013 and 2022. For a given political candidate i the time series is a list of events’ times 

[
t1, t2, . . . , tni

]
 

corresponding to tweets mentioning that particular candidate or its political party. We express this equivalently 
with a measurement process m(t) making unit jumps for each event, namely dm(t) = 1 if t is in the list of events’ 
times and dm(t) = 0 otherwise. The differentials dm(t) = 1 can be interpreted as the limit of a time discretization 
of vanishing size. We wish to estimate an instantaneous twitting rate y(t) from the measurement process m(t), 
by using known results in the field of stochastic dynamics. Indeed, this problem is generally formulated in the 
language of stochastic filtering43,44, where a likelihood function is dynamically updated with respect to a model 
for the stochastic dynamics of the unobserved process y(t) and its measurement probability p(dm|y). However, 
we wish not to make strong modeling assumptions at this stage, therefore we considered a linear filter of the kind

with a timescale β−1 which should be large enough to contain a sufficiently large number of events (for a precise 
rate estimation), but also sufficiently small compared to the natural time of tweet rate variations. As the latter is 
not yet determined, we practically fix β−1 = 20 minutes and later vary it to check that results do not significantly 
depend on it. Similarly, the results should be invariant if taking a time binning approach with size β−1 instead 
of the corresponding linear filter. Let us denote the expectation value of a quantity as E[. . . ] . We can express 
Eq. (1) equivalently in differential form as dy = β(dm− y dt) , and we see that if the twitting rate is constant, 
i.e. E[dm] = r dt , then at steady state ( E[dy] = 0 ) we have E[y] = r as expected. The fluctuations around this 
average level due to the discreteness of events is calculated as Var[y] = rβ/2.

We are here interested in the share of Twitter attention on the various political candidates, as this may indicate 
voting intentions in the population. Therefore we normalize each yi by its total among the candidates by defining 
xi = yi/

(∑
i yi

)
 . This definition of xi as a share of Twitter attention also works as a de-trending mechanism. The 

twitting rate has a prominent daylight dependence since the activity is much reduced at night. While some noise 
due to the lower rates in the night affects x, we nevertheless check the stability of our results by removing some 
of the night hours from the y integral. Finally, let us note that considering the twitting rate in relative terms has 
the consequence of showing apparent drops due to spikes in other processes.

Geometric Ornstein–Uhlenbeck process
Consider the following stochastic differential equation in the Itô interpretation45,

where dW denote Brownian motion increments satisfying E[dW(t)] = 0 , E
[
dW(t)dW(t′)

]
= δtt′dt , and the 

Dirac delta is here 
∫ T
0 δtt′ = It∈[0,T] in terms of the indicator function It∈[0,T] . Using Itô’s Lemma45 we find

(1)y(t) = β

∫ t

−∞

dm(t ′) e−β(t−t′),

(2)dx = σxdW − αx ln

(
x

µ

)
dt,

(3)d ln x = σdW − α ln

(
x

µ

)
dt −

σ 2

2
dt,



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:22804  | https://doi.org/10.1038/s41598-024-69354-y

www.nature.com/scientificreports/

that can be rewritten in terms of x̃ ≡ ln x as

where µ̃ = lnµ− σ 2

2α . We see from the definition of x̃  and its dynamics in Eq. (4) that x follows an Orn-
stein–Uhlenbeck process46 in logarithmic scale, which we here call Geometric Ornstein–Uhlenbeck (GOU) 
process. The GOU process combines the logarithmic scale diffusion of the geometric Brownian motion with 
the linear mean-reverting property of the Ornstein–Uhlenbeck process. These two features are governed by the 
volatility parameter σ and the inverse correlation time α . The Ornstein–Uhlenbeck process admits a stationary 
Gaussian density p(x̃) = N (µ̃, σ

2

2α ) with mean E[x̃] = µ̃ and variance E
[
x̃2
]
−

(
Ex̃

)2
= σ 2

2α . The average level 

of the x process is given by the Gaussian integral E[x] =
∫
dx̃ p(x̃) ex̃ = µ e−

σ2

4α .

The squared log‑displacement
Let us consider the squared log-displacement variable

where for simplicity we drop the explicit dependence on t and imagine to sample the process at t = 0 from the 
stationary density. From the above definitions we can write s(τ ) =

(
x̃(τ )− x̃(0)

)2 , consider the well-known 
solution to the Ornstein–Uhlenbeck process,

and use it to evaluate Eq. (5). Then noting that E
[(
x̃(0)− µ̃

)2]
= σ 2

2α in the stationary density, and computing 
the expectations as usual from the Brownian motion covariance, we obtain

which characterizes the scaling of the mean square log-displacement with the time interval τ and its exponential 
saturation due to the linear mean-reversion.

Fitting the data
The quantity x(t) that we choose to analyze the Twitter share of attention dynamics is the empirical average 
square log displacement. Accordingly, the model to interpret its dependence on the time interval is the GOU 
process described above. In particular, we calibrate the two parameters σ and α in the theoretical curve of Eq. 
(7), E

[
s(τj)

]
≡ E

[
s(τj)

]∣∣
σ ,α

 , from samples of the empirical average square log-displacement Ẽ
[
s(τj)

]
 for a set of 

time intervals, τj = τ0⌊1.2
j⌋ , with the shortest τ0 = 30 min taken large enough so that the impact of the discrete-

ness of events is small, and up to τj < 30 hours as to be still much smaller than the total observation period. 
We also require τ0 > β−1 to reduce the overlapping of the exponential kernels in the tweet rate estimation. The 
impact of the discreteness can then be taken into account approximately (by neglecting normalization correla-
tions) to first order in the empirical average rate Ẽ[yi] and variance Ṽar[yi] by subtracting to the empirical curve 
Ẽ
[
s(τj)

]
→ Ẽ

[
s(τj)

]
− Ẽ[s](b) a background noise

where the Log-Normal distribution for y was assumed.

The fit is then performed by minimizing the mean squared error, minσ ,α
∑

j

(
Ẽ
[
s(τj)

]
− E

[
s(τj)

]∣∣∣
σ ,α

)2

.

Once the parameters σ̃i and α̃i are fitted for each political candidate i, we study if the discrepancy from the 
fitted curve has some common structure, which would signal for improper modeling assumptions. This is done 
by normalizing the empirical expectation Ẽ

[
s(τj)

]
i
 for each candidate i by the fitted σ̃

2
i
α̃i

 , and then rescaling the 
time intervals differently for each candidate by the fitted α̃i , namely

where τj are the points in the original time intervals discretization. With this we obtain normalized samples 
[τk , z(τk)]i which are now comparable between political candidates.

(4)dx̃ = σdW − α
(
x̃ − µ̃

)
dt,

(5)s(τ ) =

[
ln

(
x(τ )

x(0)

)]2
,

(6)x̃(τ ) =
(
x̃(0)− µ̃

)
e−ατ + µ̃+ σ

∫ τ

0
e−α(τ−t)dW(t),

(7)E[s(τ )] =
σ 2

α
(1− e−ατ ),

(8)Ẽ[s](b) =
β

Ẽ[yi]

(
1+

Ṽar[yi]

(Ẽ[yi])2

)
,

(9)zi(α̃iτj) = Ẽ
[
s(τj)

]
i

α̃i

σ̃ 2
i

,
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Alternative model with jumps
The exponential saturation of the mean square log displacement does not uniquely identify the GOU pro-
cess. Indeed consider a non-diffusive process that jumps between two discrete states x ∈ {1, c} with symmet-
ric rate r. Its conditional probability p ≡ p(x(τ ) = 1| |x(0) = 1) evolves with ∂tp = r

(
1− 2p

)
 which gives 

p =
(
1+ e−2rτ

)
/2 from the initial condition p = 1 . We immediately find E[s(τ )] = (ln c)2

2 (1− e−2rτ ) , which 
means that the exponential saturation is obtained also by a qualitatively different process not based on Brownian 
motion, and potentially many more examples are possible. There is therefore a degeneracy in the models that fit 
the exponential curve of Eq. (7). This degeneracy can be resolved by the distribution of the squared log incre-
ments, as for example, this is smooth in the GOU case while it is a single peak in the jump process described 
above. In this simple jump process and also in more general processes combining diffusion with jumps of 
uncertain size, the distribution of squared log increments will be characterized by a fat tail for small intervals τ 
because jumps are statistically incompatible with continuous diffusion.

Anomalous diffusion
As mentioned above, the linear scaling of the squared log displacement for small time intervals τ is consistent 
with multiple types of diffusion and jump processes. One may ask what model processes instead do not follow 
this linear scaling law, and the answer is in the theory of anomalous diffusion47–49. We argue that this latter more 
complicated framework is not necessary for our data as we show that, if the twitting rate is filtered with a large 
enough timescale β−1 and for a sizeable range of this parameter, the process is well described by a standard dif-
fusion like the GOU process.

Checking the distribution
After the parameters σ̃i and α̃i are fitted on the empirical average square log-displacement, we can dig a bit 
deeper and check if the empirical probability distribution of the square log displacements si(τj) is comparable 
with that of the GOU, which is a chi-squared distribution being the square of a Gaussian. For looking at this on 
a comparable scale between political candidates we consider the normalized increments

Further detrending
We wish to use as few parameters as possible to keep the description simple, so we do not add additional detrend-
ing on the share of attention x(t) to realize the main text figures. For the sake of completeness, however, we 
observe that for some political candidates, and especially for the case of the 2022 elections, where our observation 
period is shorter, a non-negligible drift in popularity is found over the whole period under analysis. This could 
confound the fit to the mean-reverting process, as the long-range variation is interpreted as a longer correlation 
time α−1 . For this, we introduce a simple detrending of the form aiebi(t−t0) which improves the fit to the GOU 
as is shown in the supplementary figures. For our data this period-long drift results to be small enough that the 
GOU fit to the square log-displacement is good even without detrending when the time intervals considered are 
between a few minutes and up to a few days. This limit is taken also in order to have enough samples for estimat-
ing the parameters α and σ , and accordingly the calibration intervals τ should be much shorter compared to the 
full time span of the data. Furthermore, note that the curve calibration does not involve the average µ̃ as seen 
in Eq. (7). Therefore it seems reasonable when performing predictions to estimate µ̃ from an interval of around 
the calibration timescale rather than the whole history.

Results
Logarithmic fluctuations and mean reversion
The share of attention to Italian political parties on Twitter has already been shown to be a good indicator of 
election outcomes30,31. We here discuss how a description in terms of the simple GOU process, which is a model 
of mean-reverting diffusion in logarithmic scale discussed in the Methods section, fits the short-term empiri-
cal fluctuations in the share of attention derived from our data for the 2013 and 2022 Italian political elections.

The fit of the mean square log displacement to the GOU theoretical curve gives the parameters in table 1 for 
the four main parties in 2013 for which the statistics is sufficient. α̃ is the mean-reverting parameter and σ̃ is 
the volatility parameter controlling the amplitude of fluctuations. We see that the timescale of mean-reverting 

(10)z̃i(τj) =
si(τj)

E
[
s(τj)

]∣∣
σ̃i ,α̃i

.

Table 1.   Parameter fit for the GOU process in the 2013 italian political elections, with a filtering timescale of 
β−1 = 20 min.

Political party α̃ σ̃

PD 0.301 0.282

SC 0.298 0.235

PdL 0.255 0.239

M5S 0.297 0.368
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is around α̃−1 ≈ 3 hours for all parties, which gives an idea of the typical reaction and debate time on Twitter to 
incoming news. This mean-reverting timescale estimate of roughly three hours results to be stable under changes 
in the filtering timescale β−1 , see supplementary Fig. A1. The volatility results to be larger for the M5S five-star 
movement party, and this can partly be explained by their twitting rate being smaller and absolute variations 
being amplified in logarithmic scale.

By normalizing the twitting rate and rescaling time according to the obtained GOU fit, we visualize the struc-
ture of the fit in Fig 1. Some slight deviation from the theoretical curve suggests the presence of nonlinearities 
or some drift structure visible already at the calibration timescale. Actually, it could seem like a rather strong 
assumption for the twitting rate to fluctuate around an underlying average which is constant during the few weeks 
preceding the elections, as a political campaign typically intensifies when approaching election dates exactly to 
shift the political attention towards their candidates. Indeed our calibration is limited to timescales between a 
few minutes up to a few days so that trends on longer timescales are not considered. For our particular dataset, 
however, we find that removing the trend with a simple exponential fit does not substantially improve the GOU 
curve fit of Fig. 1, see Supplementary Fig. A2, meaning that the drift structure is more complex than our single-
timescale description. Further characterizing these effects is not statistically feasible with our small dataset, and 
we consider the minimal description in terms of the GOU process appropriate and the fit in Fig. 1 satisfactory.

Regarding the distribution of the squared log-displacement, the GOU process would prescribe it to be a chi-
squared distribution. In Fig. 2 we see some deviation from the theoretical curve at the large values tail, which 
cannot be explained from the diffusive statistics and are more properly described as jumps. Indeed, as discussed 
in the Methods section, also a jump process can have a mean square log-displacement analogous to the GOU 
process, and the degeneracy is exactly removed by looking at the distribution. However, these jumps happen in 
a relatively small number and it is not feasible to add more parameters to model a jump distribution on top of 
the diffusion from this small dataset, and we therefore consider these just as outliers or extreme events.

Let us also mention that we observe some skewness in the log-displacement distribution which is understood 
as typically the reaction to events is faster than the relaxation from the excited states.

Extreme events
Let us here consider some of these large twitting rate jump events, as they reflect the community’s reaction to 
the most impactful news.

The first one we list happened on the 12/02/2013 and affected the PdL party of Silvio Berlusconi. In particular, 
a satirical comedian well-known in Italy went to the Sanremo music festival for a comedy segment which particu-
larly targeted Berlusconi. Some in the audience started shouting and interrupted the comedian, which sparked 
a broader discussion in the public opinion ad likely also on Twitter about free speech and the appropriateness 
of political satire in the national music festival.

Another one regards the PD democratic party when on the 07/01/2013 the candidate president Pierluigi Ber-
sani was hosted in the popular television program “Otto e Mezzo” to discuss his political agenda. The following 
day Berlusconi participated in the same tv program and a comparable spike happened in the share of attention.

Figure 1.   Fit to the GOU process Empirical mean square log-displacement in normalized units for the four 
main political parties in the Italian 2013 elections, and the corresponding theoretical curves. The filtering 
timescale used for the instantaneous twitting rate is β−1 = 20 min. We see that the GOU model, a mean-
reverting diffusion process in logarithmic scale with just two parameters is able to fit the empirical curves on 
short timescales. GBM is Geometric Brownian motion. Precise definitions in the Methods section.
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From the definition we see that the events which impact most the square log-displacement on the shortest 
timescale β−1 are the unexpected news. As an example consider the very popular tv debate between Berlusconi 
and its most critical journalist Marco Travaglio, and while it provoked a massive debate and interest on Twitter, 
the program was relatively long and it was planned weeks ahead, so that the Twitter reactions spread over a longer 
period of time so that twitting rate variations were relatively moderate.

Figure 2.   Comparing the distribution. Empirical distribution of the squared log-displacement in normalized 
units and comparison to the GOU model fit from Fig. 1. The fat tails are explained by few extreme events. 
Python “powerlaw”50 package was used for plotting. The time interval is τ = 180 min, larger than the filtering 
timescale and comparable with the mean-reversion timescale.

Figure 3.   Examples of extreme events. x(t) is the share of attention at time t, and s(t, τ) is the corresponding 
squared log-displacement, here for an interval τ = 30 min and with filtering timescale β−1 = 20 min. We see 
how significant and unexpected events in the electoral campaign are reflected in spikes of x(t).
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Another event we discuss regards the SC party, that from its official Twitter account in the morning of 
15/02/2013 revealed that their candidate Mario Monti had been secretly offered important political roles from 
other parties in exchange for him renouncing to run for president. Understandably, this sparked quite an imme-
diate reaction.

We note that for the anti-establishment five star movement, which actually was the surprise of the elections 
results, Twitter was not the main platform for propaganda and discussion as they did use the movement’s website. 
As a consequence, the twitting rate was often so low that small absolute variations can have a big impact in the 
logarithmic variations, as is shown in Fig. 3 together with the other events discussed here.

What changed in 2022
We have a much shorter dataset for the 2022 elections, and only for the two weeks preceding the elections which 
were strongly characterized by two events, namely the television debate between the two main candidates Enrico 
Letta and Giorgia Meloni, and the strong personal accusations between the other two candidates Matteo Renzi 
and Giuseppe Conte. These two events concentrated much of the public attention in our data timeframe, and 
as a consequence we observe a lack of saturation and the fitted timescale of mean-reverting is larger (around 
two times) compared to the 2013 elections. The fit to the GOU process is still satisfactory but less accurate, see 
Supplementary Fig. A3.

Out‑of‑sample predictions
We study the dynamics of attention on short timescales and in this limit we identify fluctuations and mean-rever-
sion as the two main dynamical features. The GOU model can then be used for predicting the attention dynamics 
on timescales comparable to the mean-reverting timescale α , which was here estimated to be of around 3 h. As an 
example, we consider the last day before the elections 22 February 2013 (23 Feb was pre-election silence) at four 
different time instants, and visualize the expectation and standard deviation obtained from the GOU model. The 
parameters are obtained as above but only from data up to the prediction time instant, and with an instantaneous 
log-mean µ̃ for mean-reversion estimated from the previous 40 hours which is the largest calibration interval. 
The results are shown in Fig. 4. The well-known expectations of the Ornstein–Uhlenbeck process46 are such that, 
given an initial state x̃(0) , the expected state after a time interval τ is E

[
x̃(τ )|x̃(0)

]
=

(
x̃(0)− µ̃

)
e−ατ + µ̃ , and 

its variance is Var[x̃(τ )|x̃(0)] = σ 2

2α (1− e−2ατ ).

Discussion
In this paper we present an analysis on two distinct dataset of Twitter messages time series corresponding to dif-
ferent Italian political elections. Our study reveals that, on short timescales from a few minutes to a few days, the 
dynamics of political discussions on Twitter exhibit characteristics consistent with a Geometric Ornstein–Uhlen-
beck (GOU) evolution, that is a linear mean-reverting diffusion process on a logarithmic scale. Crucially, this 

Figure 4.   Predictions using the GOU model. Time series predictions based on the GOU model with the 
parameters estimated immediately before prediction, at four different times during the day of 22 February 2013. 
The scatter plot is the realized x̃ , while the three solid lines are the expectation and ± 2 standard deviations. The 
colors are as above: blue is ’PD’, orange is ’SC’, green is ’PdL’, red is ’M5S’.
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minimal description involves a single timescale which we estimate from our data to be of around three hours. 
Small discrepancies from the fitted curve reflect the non-modeled multiscale properties of the dynamics. This 
unique modeling choice enables us to capture the nuanced patterns of attention and opinion exchange in the 
ever-changing landscape of political conversations. The approach presented here contributes to the problem of 
modeling short-term fluctuations in Twitter attention by estimating a timescale of mean-reversion which enables 
the detection of changes in the location of the longer-term process net of short-lived fluctuations; how to model 
election outcomes as a function of this Twitter attention relies instead on other studies35,51. We have here been 
dealing with a politics-only dataset, therefore we cannot establish whether the GOU model is peculiar of the 
political attention or rather a more general form of attention dynamics.

One notable aspect of our analysis is the identification of extreme events within the political Twitter data. 
These events, characterized by significant deviations from the linear mean-reverting behavior, underscore the 
non-linear and unpredictable nature of political discussions on the platform. Understanding and quantifying 
these extreme events are crucial for a comprehensive analysis of the evolving political discourse. The application 
of our findings in election forecasting holds substantial promise. By incorporating the GOU evolution model, 
we gain a more nuanced understanding of how political sentiments and attention levels fluctuate over time. This 
insight can enhance the accuracy of election predictions by accounting for the inherent volatility in public opin-
ion, especially during critical periods such as debates, policy announcements, or unexpected events. Indeed, the 
GOU model allows for real-time monitoring of Twitter data, providing a dynamic and adaptive framework for 
assessing the ebb and flow of political discussions. This real-time capability enables us to identify emerging trends 
and potential turning points in public opinion, offering valuable insights for election forecasting models that seek 
to capture the zeitgeist of the electorate. Our approach complements the studies of the attention to politicians 
on longer timescales where fluctuations become negligible and the dynamics is described by trends and inertial 
effects31,35–41. While our study presents a novel framework for understanding political Twitter dynamics, there 
are challenges and avenues for further exploration. Future research could delve into refining the GOU model 
parameters and especially determining if the three hours timescale identified here changes in other datasets and 
situations, and more in general investigating the transferability of the model across different political landscapes.

Data availability
The 2013 Data are available from Figshare as published in Ref.31, http://​dx.​doi.​org/​10.​6084/​m9.​figsh​are.​14377​40. 
The 2022 dataset is available from the corresponding author on reasonable request. The python code developed 
for the data analysis in this manuscript is publicly available on https://​github.​com/​Andre​aAuco​ni/​Twitt​er_​time_​
series_​analy​sis.
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