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a b s t r a c t 

Background and objectives: Myocardial infarction scar (MIS) assessment by cardiac magnetic resonance 

provides prognostic information and guides patients’ clinical management. However, MIS segmentation is 

time-consuming and not performed routinely. This study presents a deep-learning-based computational 

workflow for the segmentation of left ventricular (LV) MIS, for the first time performed on state-of-the- 

art dark-blood late gadolinium enhancement (DB-LGE) images, and the computation of MIS transmurality 

and extent. 

Methods: DB-LGE short-axis images of consecutive patients with myocardial infarction were acquired at 

1.5T in two centres between Jan 1, 2019, and June 1, 2021. Two convolutional neural network (CNN) mod- 

els based on the U-Net architecture were trained to sequentially segment the LV and MIS, by processing 

an incoming series of DB-LGE images. A 5-fold cross-validation was performed to assess the performance 

of the models. Model outputs were compared respectively with manual (LV endo- and epicardial border) 

and semi-automated (MIS, 4-Standard Deviation technique) ground truth to assess the accuracy of the 

segmentation. An automated post-processing and reporting tool was developed, computing MIS extent 

(expressed as relative infarcted mass) and transmurality. 

Results: The dataset included 1355 DB-LGE short-axis images from 144 patients (MIS in 942 images). 

High performance ( > 0.85) as measured by the Intersection over Union metric was obtained for both the 

LV and MIS segmentations on the training sets. The performance for both LV and MIS segmentations was 

0.83 on the test sets. Compared to the 4-Standard Deviation segmentation technique, our system was five 

times quicker ( < 1 min versus 7 ± 3 min), and required minimal user interaction. 

Conclusions: Our solution successfully addresses different issues related to automatic MIS segmentation, 

including accuracy, time-effectiveness, and the automatic generation of a clinical report. 

© 2022 Elsevier B.V. All rights reserved. 

Abbreviations: BB, bright-blood; BB-LGE, bright-blood late gadolinium enhancement; b-SSFP, balanced-steady-state free precession; CNN, convolution neural network; 

CMR, cardiovascular magnetic resonance; CV, cross validation; DB-LGE, dark-blood late gadolinium enhancement; DL, deep learning; ICC, intra class correlation; IOU, inter- 

section over union; LV, left ventricle; MIS, myocardial infraction scar; n-SD, n-standard deviation; PSIR, phase-sensitive inversion recovery; ReLU, rectified linear unit; RIM, 

relative infracted mass; ROI, region of interest; TI, inversion time. 
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. Introduction 

Cardiovascular magnetic resonance (CMR) is the most advanced 

on-invasive cardiac imaging test, providing a broad range of 

nformation on the heart, and is considered the gold standard for 

hambers’ size, function, and non-invasive tissue characterization. 

 challenge with CMR is delivery - making it cheaper, more 

tandardized, and faster while retaining accuracy. Solutions will 

eed to address all parts of the imaging chain, including image 

cquisition, image segmentation (analysis), and reporting processes 

1–3] . 

Deep Learning (DL) approaches have been successfully em- 

loyed for CMR segmentation tasks, tackling multiple issues simul- 

aneously - accuracy, reproducibility, time effectiveness, and auto- 

atic reporting. Examples include ventricular volumes, mass, wall 

hickness segmentation, and left ventricle (LV) landmarking, where 

L-based systems have shown similar accuracy and better repro- 

ucibility than human experts [4–6] . 

The segmentation of ischemic scar is one CMR analysis task 

hat has not been properly addressed. CMR late-gadolinium en- 

ancement (LGE) imaging accurately detects the location, size, and 

xtent of myocardial infarction scar (MIS) [ 7 , 8 ]. These data are

inked with prognosis, and provide information about myocardial 

iability used to guide revascularization. Overall, scar burden 

orrelates with arrhythmia risk [9–12] , and the likelihood of seg- 

ental functional recovery has an inverse relationship with scar 

ransmurality (i.e., the extension of the scar in the myocardial wall 

hickness), with a significantly lower likelihood of benefit from 

he revascularization in those segments with transmural extent of 

IS higher than 50% [13] . MIS may also be used for drug devel-

pment as a primary endpoint in clinical trials of cardioprotective 

edication, an area of need [14] . 

An “optimal” method for CMR LGE quantification has not 

een identified yet [15] . Both visual assessment and manual 

ontouring lack reproducibility and accuracy against histology [16] . 

emi-automated techniques, e.g., the “full-width-half-maximum”

r the “n -Standard Deviation” ( n -SD) techniques, may produce 

idely differing results for fibrosis quantification but, given ade- 

uate standardization, they can improve reproducibility [16–18] . 

till, these analyzes are time-consuming, operator-dependent 

nd require training and quality assurance processes. DL-based 

olutions for MIS segmentation can provide high performances 

nd full automatization. Convolutional Neural Networks (CNNs) 

ith a U-Net architecture [19] , which are particularly suited for 

egmentation tasks in medical imaging thanks to their ability to 

erform fast and precise segmentation using a reduced amount 

f learning data, have been successfully applied to the task 

 20 , 21 ]. Examples include MIS segmentation performed indepen- 

ently [22] , matched with the LV segmentation on short-axis 

GE images [ 23 , 24 ], or in a cascaded multi-view U-Net [25] .

he generalizability of these studies is limited though, because 

hey are often monocentric and based on small, private datasets. 

urthermore, they are all performed on conventional bright-blood 

BB) LGE images, where low contrast between blood pool and 

car may determine variability on LV boundaries annotation, 

nd increased difficulty in identifying thin, subendocardial MIS 

26] . Alternative heuristics previously exploited for LGE segmen- 

ation include thresholding (e.g., using Otsu’s algorithm) and 

lustering [17] . 

We here for the first time explore the use of dark-blood (DB) 

GE, the current gold standard sequence for the detection of 

ubendocardial scar [26] , combined with two CNNs with U-Net ar- 

hitecture, to perform an automated, time-efficient and accurate 

IS segmentation [27] . 
2 
. Methods 

.1. Ethics approval and informed consent 

Patients’ images were collected retrospectively at IRCCS Istituto 

uxologico Italiano (Milan, Italy) and Barts Heart Center (London, 

K). The local Ethics Committees of both centres approved the 

tudy. All patients provided written consent for anonymized use 

f data for research purposes at the time of the CMR. 

.2. Imaging and MRI acquisition 

State-of-the-art free-breathing, motion-corrected, dark blood 

DB) phase-sensitive inversion recovery (PSIR) LGE short-axis im- 

ges were retrospectively collected on three 1.5T scanners (1x 

vantoFit, 2x Aera; Siemens, Erlangen, Germany), from 1 Jan- 

ary 2019 to 1 June 2021, as previously described [26] . LV 

hort-axis stacks with at least one slice displaying subendocar- 

ial/transmural scar were included. Images of non-diagnostic qual- 

ty due to any reason and stacks showing only non-ischemic LGE 

atterns were excluded. Prior to analysis, images were entirely 

nonymized. 

.3. Ground truth labeling and image pre-processing 

LV and MIS segmentations were performed by IRCCS Istituto 

uxologico Italiano investigators with a dedicated open-source 

oftware (Horos Purview, Annapolis, USA). Two issues had to be 

ddressed: DB-LGE images windowing, and the MIS segmenta- 

ion technique. With regards to windowing, a level range (WL: 

100 ± 100; WW: 1300 ± 50; see Fig. 1 , panel A and panel B) 

as chosen visually, to provide an optimal visualization of the my- 

cardium and the blood pool. The choice was corroborated in a 

ample of 6 patients (56 slices), in whom LV mass calculated on 

indowed DB-LGE images was compared to LV mass calculated 

n matching bright-blood Magnitude-IR LGE (BB-LGE) images and 

alanced-steady-state free precession (b-SSFP) cine images by two 

ndependent observers (manual LV endo- and epicardial borders 

egmentation, mass calculation by Simpson’s disk stack technique). 

To choose a scar segmentation technique, MIS was assessed 

n the same set of 56 DB-LGE slices with different techniques 

2-SD, 3-SD, 4-SD, 5-SD, 6-SD); the results were then compared 

gainst MIS segmented on matching BB-LGE images with the 5-SD 

echnique as the gold standard [28] . Interobserver reproducibility 

as evaluated on DB-LGE MIS segmentation (all techniques) by In- 

ra Class Correlation (ICC). Normality of data was tested with the 

olmogorov-Smirnov test of normality. 

Eventually, LV endo- and epicardial borders were manually 

raced on windowed images on the whole dataset, and the 4-SD 

echnique was applied to segment MIS. Briefly, a region of interest 

ROI) was selected in the remote myocardium; then, the mean and 

he SD of the selected ROI were calculated, and pixels with an in- 

ensity greater than 4-SD above the mean were defined as scarred 

16] . Fig. 1 details the labeling and mask creation process; Fig. S1 

etails examples of different n -SD segmentation. 

All images were exported in TIFF format (300dpi), and the cen- 

ral field of view (512 × 512 pixels) was cropped in each. A 2-fold 

ata augmentation process was performed by means of contrast 

tretching (i.e., as generated by the magnetic resonance scanner 

nd windowed, as described above - see Fig. 1 , panels A and B). 

The area between the endo- and epicardial border, i.e. the LV 

yocardium, was converted into a shape to create the LV mask for 

he CNN. 
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Fig. 1. Labelling and mask creation example. The original image (panel A) was windowed for a better definition of the heart wall (WL: 4100 ± 100; WW: 1300 ± 50) (panel 

B). Endo- and epicardial borders (respectively, red and green contours) were manually traced on the windowed image; papillary muscles were included in the blood volume 

(panel C). The ischemic scar was segmented with the 4-Standard Deviation technique, with a region of interest (ROI) drawn in the remote myocardium (panel D). The remote 

ROI was selected to be as close as possible to the scar while avoiding the insertion points, the basal septum, and any area of non-ischemic late gadolinium enhancement. 

A mask for myocardium (panel E) and a mask for scar segmentation (panel F) were generated. The myocardium mask was then converted into a shape (panel G) prior to 

being fed to the CNNs. 

2

T

a  

c

i

w

h

m

t

p

l

f

r

o

t

S

t

b

t

t

a

F

d

e

d

r

w

o

c  

p

d

l  

p

e

p

t

d

t

m

s

p  

e

t

i

t

t

d

T

o

a

d

o

2

i  

a

t

t

p

m

(

(

l

.4. CNN models and training 

We trained two CNNs based on the same U-Net architecture. 

he CNNs were developed using Python 3.7.11, NumPy 1.21.2 

nd PyTorch 1.10 with CUDA 11.3 [ 29 , 30 ]. The U-Net architecture

onsists of a set of contraction blocks followed by a set of expand- 

ng blocks, whereby the size of the input image is first reduced 

hile extracting the hidden features information; then, these 

igh-resolution features are combined again with the spatial infor- 

ation to reconstruct an output image that represents the ROI of 

he input image. In this work, contraction blocks consist of a max 

ooling operator followed by two 2-dimensional convolutional 

ayers. Each convolutional layer is provided with an activation 

unction and a regularization operator (see Supplementary Mate- 

ial, Table S1). A batch normalization layer is also used to reduce 

verfitting [29] . Expanding blocks consist of a transpose convolu- 

ional layer followed by two convolutional layers, as reported in 

upplementary Material, Table S2. Each expanding block receives 

wo inputs: the first one is a tensor generated by the previous 

lock (whichever the type) and fed into the transpose convolu- 

ional layer; the second one is an output of a contraction block 

hat is concatenated with the output of the transpose convolution 

long with the filters, and fed into the first convolutional layer. 

The overall topology of the CNNs used in this work is shown in 

ig. 2 . Before and after the building blocks of the U-Nets, two 2- 

imensional convolutional layers, activated by ReLU functions, are 

mployed (see Supplementary Material, Table S3). For a layer-wise 

escription of the architecture, we refer to Supplementary Mate- 

ial, Table S4. 

The CNNs receive as input a 512 × 512 gray shaded image, 

hose pixels are normalized in the [0, 1] interval, and provide as 

utput a 512 × 512 matrix of real values in the [0, 1] interval that 

an be converted into a 512 × 512 gray shaded image (see Fig. 3 ,

anel A). The pixels of the output images are gray shaded: each 

ark pixel represents the respective pixel in the input image be- 

onging to a ROI, that is, an LV region or scar tissue (see Fig. 3 ,

anels B and C). To compute all the performance metrics consid- 
3 
red in this work, the values of the output matrix are rounded to 

roduce binary values. 

The weights of the CNNs were initialized according to PyTorch’s 

runcated normal distribution with mean equal to 0 and standard 

eviation equal to 
√ 

2 
fan in 

, where fan in is the number of inputs to 

he layer [31] . Both the model to detect the LV region and the 

odel to detect the MIS were trained for 100 epochs, and an early 

topping criterion was applied if the loss function did not im- 

rove of at least 5 · 10 −4 for 5 epochs in a row. In the case the

arly stopping criterion was satisfied, the training process was in- 

errupted and the model was restored to the best model found, 

.e., the weights were reset to the weights of the last epoch when 

he loss function improved. During each epoch, prior to feeding 

he images of the training set to the CNNs, such images were ran- 

omly perturbed by means of shift, rotation, and zoom operators. 

he shift operator shifts both horizontally and vertically the image 

f a maximum of 26 pixels, the rotation operator rotates the im- 

ge to a maximum of 5 ° either in a clockwise or counterclockwise 

irection, while the zoom operator can zoom the image either in 

r out of a 10% scale. 

.5. Performance analysis 

The dataset was split into a training set and a test set accord- 

ng to a 90-10 policy, that is, 90% of the images were used to train

nd validate the CNN models and the remaining 10% to monitor 

heir generalization capability as a test set. The performance of 

he CNNs was assessed by means of a 5-fold cross-validation (CV) 

rocess performed by leveraging the training set. Six performance 

etrics were evaluated during the training: binary cross-entropy 

loss function), accuracy, precision, recall, Intersection over Union 

IoU), and Dice score. 

The binary cross-entropy is defined as: 

 

BCE 
k = − 1 

K 

K ∑ 

k =0 

[ y k · log ( x k ) + ( 1 − y k ) · log ( 1 − x k ) ] , 
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Fig. 2. Topology of the Convolutional Neural Networks (U-Net architecture) employed in this work for automatic MIS segmentation. Contraction blocks (on the left) reduce 

the size of the input image and extract multiple hidden features represented in the different layers. Expanding blocks (on the right) reconstruct an image representing 

the ROI of the input image by composing the extracted hidden features. The convolutional layers of contracting and expanding blocks are based on a 3 × 3 kernel with 

padding equal to 1. In this type of architecture, the output of a contraction block is propagated as input to the next contraction block, and as one of the two inputs of the 

respective expanding block. The output of the transpose convolution is padded to match the same width and height of the output of the respective contraction block. The 

resulting tensor and the second input tensor are concatenated along with the filters. The resulting tensor is fed into the first convolutional layer of the expanding block. In 

our architecture, the last contraction block does not double the number of filters. 

Fig. 3. Scar segmentation prediction example. Panel A: original image. Panel B: scar mask obtained using the 4-Standard Deviation segmentation technique. Panel C: Deep 

Learning prediction. 
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here K is the number of images in the batch, x k is the predic-

ion of the k th image, and y k is the respective ground truth. Since 

oth x k and y k are images, pixel-wise operations were performed 

o compute the loss function. The accuracy, precision and recall 

cores are evaluated on the prediction of LV or MIS, according to 

he CNN task. 

The IoU evaluates the ratio between the intersection of the 

round truth and the predicted ROI over the union of such regions 

see Supplementary Material, Fig. S2). The ROI is the set of pixels 

hat share the same label value, e.g., all pixels that are predicted 

s 0. In this case, the ROIs are the pixels predicted either as LV or

IS, according to the CNN model. Similarly, the Dice score com- 

utes the ratio between the intersection of the ground truth and 

he predicted ROI over the combined number of pixels classified 

s a ROI in both images. 
4 
The precision, recall and Dice scores were computed only on 

he images presenting a LV or a MIS. At the end of the training 

rocess with the whole dataset, we labelled the LV slices from 30 

atients from the test set as “basal”, “mid-ventricular” and “api- 

al”, and we evaluated the performance of the two CNNs in the 

ifferent LV locations. 

.6. Clinical report 

The resulting DL segmentations were processed using Python 

.8.5 and OpenCV 4.5.5.62 to generate a clinical report. This report 

onsisted of two metrics describing MIS extent, both with demon- 

trated prognostic implications [9–12] : 

1) Relative infarcted mass (RIM), i.e., MIS mass as a percentage of 

the LV mass, calculated on the DB-LGE images. 
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Table 1 

Interobserver variability. LV mass and MIS quantification performed using different techniques by two independent operators on dark-blood late gadolinium 

enhancement images (56 slices, 6 patients). Interobserver variability is measured by Intra Class Correlation (ICC). Data are expressed as mean (SD). LV: left 

ventricle; SD: standard deviation. 

N = 56 slices LV Mass 2-SD 3-SD 4-SD 5-SD 6-SD 

Observer 1, g 13.1 (2.2) 5.2 (2.2) 3.8 (1.7) 3.1 (1.7) 2.5 (1.6) 2.3 (1.3) 

Observer 2, g 13.2 (2.0) 5.2 (2.0) 3.9 (1.9) 3.0 (1.8) 2.6 (1.5) 2.3 (1.3) 

ICC 0.94 0.90 0.88 0.95 0.96 0.95 

Fig. 4. Transmurality assessment. The centroid of the contour is given by the coor- 

dinates (x c , y c ) (panel A). From there, the left ventricle is divided into 360 chords 

(panels B and C). In the presence of MIS (panel C and D), the coordinates of the 

intersection points between the endo- and epicardial contour are used to calculate 

the LV wall thickness (panel D, respectively x En , y En and x Ep , y Ep ), and the coor- 

dinates of the intersection points between the segmented scar borders (x s , y s ) are 

used to calculate MIS thickness. Transmurality percentage is then calculated as (MIS 

thickness/LV wall thickness) ∗ 100 for each cord intersecting the scar, resulting in 

an average transmurality percentage for the MIS. 

(

3

3

4

e

F

D

1

1

3

t

Table 2 

LV mass measured on different sequences on 6 patients. Data are expressed 

as mean (SD). Significance is tested by one-way ANOVA for repeated mea- 

sures. b-SFFP cine: balanced-steady-state free precession cine; DB: dark 

blood; BB: bright blood; LGE: late gadolinium enhancement. 

N = 6 patients b-SSFP cine DB-LGE BB-LGE p 

Mean mass, g 116.7 (31.6) 120.4 (34.2) 121.6 (38.4) 0.33 

f

L
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Table 3 

Segmentation techniques comparison. Each technique of MIS segmentation on 

DB-LGE is compared against the gold standard 5-SD BB-LGE. Data are reported 

as mean (SD). MIS: myocardial infarction scar; BB: bright blood; DB: dark blood; 

ICC: Intra Class Correlation; SD: standard deviation. 

MIS/slice MIS/patient ICC 

BB 5-SD g 3.1 (1.9) 24.9 (12.8) 

DB 2-SD g 5.1 (2.1) 45.3 (14.8) 0.47 

DB 3-SD g 3.6 (1.8) 32.9 (11.6) 0.86 

DB 4-SD g 2.9 (1.6) 25.9 (12.0) 0.94 

DB 5-SD g 2.4 (1.4) 20.8 (10.7) 0.89 

DB 6-SD g 2.1 (1.6) 18.3 (10.2) 0.77 
2) Transmurality. Each LV slice was segmented into 360 chords 

where, for each chord, the transmural extent of MIS - that is, 

the percentage of the wall thickness which is infarcted - was 

computed (see Fig. 4 ) [32] . When present, the average MIS 

transmural extent was categorized as < 25%, 25–50%, 50–75% or 

> 75%, and the distribution of MIS, expressed as the percentage 

of the LV over the four categories and averaged over the num- 

ber of LV slices, was reported. 

. Results 

.1. Images dataset 

A total of 2704 DB-LGE anonymized images were collected from 

41 patients. Among those, 1454 images from 297 patients were 

xcluded (quality issues in 74 images; see Supplementary Material, 

ig. S3, for details). The final sample consisted of 1355 short-axis 

B-LGE images from 144 patients; MIS was present in 942 images, 

00% of patients. On average, 4-SD semi-automated analysis of a 

0-slices short-axis stack took 7 ± 3 min. 

.2. Segmentation technique and interobserver reproducibility 

LV mass and MIS were normally distributed, irrespectively of 

echnique and sequence. 
5 
Interobserver variability was good for LV mass calculation and 

or all MIS segmentation techniques on DB-LGE images ( Table 1 ). 

LV mass did not differ significantly when calculated from DB- 

GE (WL: 4100 ± 100; WW: 1300 ± 50), BB-LGE and cine images 

 Table 2 ). 

Mean MIS volume increased as the threshold varied from 6- 

o 2-SD from mean remote myocardium signal (see Supplemen- 

ary Material, Figs. S1 and S3). Among all the tested segmentation 

echniques, DB 4-SD showed the best agreement by the ICC when 

ompared to the gold standard BB 5-SD ( Table 3 ). 

.3. Performance of the convolutional neural networks 

In all tests for LV and MIS segmentation, the training processes 

ere performed by using an NVIDIA RTX 3090. While each training 

equired more than 2 h and 30 min, the time required for predict- 

ng the segmentation of a 10-slices short-axis is approximately 8 s. 

.3.1. LV segmentation CNN 

We adopted a 5-fold CV, online data augmentation and an early 

topping criterion for the training of both CNNs to prevent over- 

tting. This strategy was successful in all 5 iterations, with an IoU 

round 0.82 (see Fig. 5 A), an accuracy of 0.99 and a Dice score 

round 0.73 (see Supplementary Material, Table S5). During the 

raining, the loss decreased by an order of magnitude after a few 

pochs, as shown in Supplementary Material, Fig. S4 (panel A). The 

erformance obtained by the networks on the held-out fold (i.e., 

he validation set) shows that the CNNs did not overfit, as reported 

n Supplementary Material, Table S5. After assessing the perfor- 

ance of the CNN for the LV segmentation task, we trained the 

NN using the whole training set. The training set was split ac- 

ording to a 90–10 policy: 90% assigned to the training, and 10% 

ssigned to the validation set to monitor the generalization ca- 

ability of the models. We performed online data augmentation 
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Fig. 5. IoU (panel A) computed on the validation set during the 5-fold CV process for LV segmentation. Loss and IoU (panel B) computed on both the training and validation 

sets during the training of the CNSs for LV segmentation. The y axis is log-scaled for the loss function. 

Fig. 6. IoU (panel A) computed on the validation set during the 5-fold CV process for LV segmentation. Loss and IoU (panel B) computed on both the training and validation 

sets during the training of the CNNs for MIS segmentation. The y axis is log-scaled for the loss function. 
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s described above, which was applied during each epoch of the 

raining. Fig. 5 B shows the performance metrics computed for each 

poch during the training process. The results confirm what was 

bserved with the 5-fold CV: the loss quickly decreases by an or- 

er of magnitude, while the IoU computed on the validation set 

mproves to 0.84. At the end of the training process, the CNN was 

valuated on test set images. The performance in terms of IoU, ac- 

uracy and Dice score (see Supplementary Material, Table S6) are 

imilar to the performance obtained with the 5-fold CV, with an 

oU equal to 0.84, thus confirming the generalization capability of 

he models. 

Concerning the performance in different LV locations, the CNN 

odel is slightly better on the mid-cavity images with an IoU of 

.88 against an IoU of 0.85 on apical and basal images. 

.2.2. MIS segmentation CNN 

The evolution of the performance metrics computed on the 

raining sets during the 5-fold CV process is shown in Fig. 6 . Data
6 
ugmentation and early stopping criterion were applied as in the 

V segmentation CNN. This strategy was successful in 4 out of 5 it- 

rations, with an IoU around 0.8 (see Fig. 6 A), an accuracy of 0.99 

nd a Dice score of 0.76 (see Supplementary Material, Table S7). 

uring these 4 iterations of the CV, the loss dropped to an order 

f magnitude lower after a few epochs, as shown in Supplementary 

aterial, Fig. S3 (panel B). Such a decrease does not immediately 

ield a better performance in terms of IoU. As shown in Fig. 6 A, the

NNs required several epochs to improve the segmentation quality 

f the image, reaching an IoU around 0.8 on the validation set. The 

etrics computed on the validation sets during the 5-fold CV are 

eported in Supplementary Material, Table S7. Finally, Fig. 6 B shows 

he performance of the CNN for MIS segmentation using the whole 

raining set. During the training, the loss slightly decreased while 

he IoU computed on the validation set improved to 0.8. Also in 

his case, the training set was split according to the 90–10 policy, 

nd the validation set was used to monitor the generalization per- 

ormance of the CNN during the training process. The trained CNN 
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Fig. 7. Reporting output (I). Panel A: pre-processed late-gadolinium enhancement (LGE) images; Panel B: Deep Learning-predicted segmentations (post-processed) for the 

left ventricle (LV) (blue) and the myocardial infarction scar (MIS) (red). Panel C: transmurality metrics: the number of considered LV slices, the RIM, and transmurality 

distribution of MIS over the slices, are reported. RIM: Relative Infarcted Mass, i.e. LGE mass as a percentage of the LV mass. 
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as used to predict the MIS in the test set images. Also in this 

ase, the performance on the test set (see Supplementary Material, 

able S6), with an IoU equal to 0.83, confirms the generalization 

apability of the CNN. 

The performance of the CNN was evaluated on different loca- 

ions of the heart for 30 patients. The results show that the CNN 

qually performs for basal and mid-cavity regions of the LV with 

n IoU around 0.79, while an IoU of 0.72 is obtained on the apical

egions. 

.4. Reporting 

The generation of the clinical report took, on average, 12 s 

AMD Ryzen 5800H, 16GB RAM, NVIDIA RTX 3060) for a 10-slices 

hort-axis stack. The report displayed the original DB-LGE images 
7 
ed to the CNNs, the DL-segmentation overlapped on the original 

mages, and a summary table of RIM and average MIS transmu- 

ality ( Fig. 7 ). Inaccuracies were addressed through simple post- 

rocessing (OpenCV 4.5.5.62) of the predictions, where noise in the 

V segmentation (retaining the largest segmentation) and scar seg- 

entations (only including segmentations that overlap with the LV 

egmentation) outside the LV were automatically removed ( Fig. 8 ). 

isual comparison of the predictions against the original image al- 

owed immediate quality control by the clinician. 

. Discussion 

In this study, we developed a CNN-based workflow for semiau- 

omatic MIS segmentation on DB-LGE CMR images, demonstrated 

ts accuracy, and proposed an ad hoc clinical reporting output. 
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Fig. 8. Reporting output (II). Panel A: pre-processed late-gadolinium enhancement (LGE) images. Panel B: ground-truth labels for the left ventricle (LV) (blue) and the 

myocardial infarction scar (MIS) (red). Panel C: Deep Learning-predicted LV and MIS segmentations; from left to right, top to bottom, MIS segmentation inaccuracies (yellow 

bounding boxes) can be found in the fourth (papillary muscles segmented as MIS), seventh (a digestive tract region segmented as MIS), and ninth image (right ventricle 

segmented as MIS). These were removed through manual post-processing. Panel D: reporting metrics as described in Fig. 7 . RIM: Relative Infarcted Mass, i.e. LGE mass as a 

percentage of the LV mass. 

8 
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The proposed solution has several strengths. First, to the best 

f our knowledge, this is the first attempt to perform DL-based 

egmentation on state-of-the-art DB-LGE imaging, which opti- 

izes the contrast between blood pool and subendocardial LGE, 

nd thus guarantees the maximum sensitivity in the detection of 

IS [33] . 

Due to the novelty of DB-LGE imaging, there is no standard- 

zed method to perform the LV/MIS segmentation tasks. Win- 

owing strongly affects subendocardial boundaries contouring, 

hich in turn strongly affects MIS size. Here, we selected a win- 

owing range that looked visually satisfactory to distinguish LV 

rom blood pool, and we corroborated this threshold by com- 

aring LV mass calculated on windowed DB-LGE against cine 

mages. 

Regarding MIS segmentation, in a recent animal study by Nies 

t al. [28] 5-SD was found to be the most accurate semi-automated 

echnique against histology to segment MIS both on standard BB- 

SIR and in PSIR with TI set to nullify the blood, i.e., with “dark 

lood”. In our sample, 4-SD DB-LGE segmentation was the most 

onsistent with 5-SD BB-LGE segmentation, with an excellent inter- 

bserver reproducibility for all n -SD DB-LGE techniques with n ≥ 4. 

e argue that this discrepancy may depend on the different pulse 

equence used, and on the small sample size (24 LGE slices by Nies 

t al., 56 LGE slices in the present study). Indeed, also on visual as- 

essment, the 5-SD technique seems to miss some thin and faded 

ubendocardial MIS on DB-LGE images (see Supplementary Mate- 

ial, Fig. S1) [15] . 

With these caveats, our system performs accurately against 

round truth, and requires 80% less computational time and min- 

mal user interaction compared to n -SD techniques. Indeed, the 

L computational time was lower than 1 min/patient for segmen- 

ation and clinical report elaboration versus ∼5–10 min/patient 

eeded by a doctor to perform segmentation only. Image cropping 

nd, only if needed, manual correction of scar segmentation out- 

ut were the only inputs required by the operator. Thus, our pro- 

osed solution overcomes the limitations of both visual assessment 

nd semiautomatic techniques: the poor reproducibility of visual 

ssessment, as well as the time needed for the manual LV seg- 

entation and delineation of ROIs for threshold computation, are 

ndeed the main factors determining, respectively, reporting inac- 

uracies and under-usage of quantitative tools in clinical routine. 

ur solution has significant potential for clinical usage, already of- 

ering an automatic clinical reporting tool. Such a report consists of 

 table that summarizes all the findings. The display of DL-based 

V and MIS segmentation results allows immediate visual checking 

f accuracy (as shown in Figs. 7 and 8 ) and the localization of the

nfarcted areas. The table also displays the RIM, and describes the 

nfarction burden by transmurality, providing prognostic informa- 

ion and data to guide management, and a suitable end-point for 

linical trials [34] . 

From a development perspective, our solution is based on the 

-Net architecture, which is extensively adopted in the medical 

maging field thanks to its ability to successfully perform image 

egmentation in the presence of highly noisy images. The medium- 

ized dataset we used, consisting of 1355 images, represents a 

ompromise between the need to provide an adequate number of 

xamples for the CNNs to learn and the time required to perform 

mage labeling (in this study, approximately 24 person-hours of 

rained operators). Performing a 2-fold data augmentation by con- 

rast stretching on the whole dataset, the dataset was expanded to 

710 images. Such a dataset was split into a training set and test 

et according to a 90–10 policy. A different training set was ob- 

ained for each training epoch by applying shift, rotation and zoom 

perators. U-Nets for myocardial scar segmentation were previosly 

xploited [ 24 , 32 ] but, differently from our work, the authors were

iming at volumetric visualization and did not exploit DB-LGE, 
9

hich does not allow to carry out a direct comparison of the per- 

ormance of the two DL frameworks. To the best of our knowledge, 

ur work represents the first attempt at segmenting human DB- 

GE images using DL. Alternative heuristics for LGE segmentations 

nclude thresholding (e.g., using Otsu’s algorithm) and clustering 

32] . 

During the 5-fold CV process used to evaluate the CNNs, we 

ncountered a potential issue regarding the weights’ initialization. 

or some folds, the CNNs started with a greater loss and required 

 higher number of epochs to converge - or they did not converge 

t all, as in the case of the LV segmentation - possibly because of 

he stochasticity of weights’ initialization. We handled this issue 

y early detection and restarting the training with a better initial- 

zation. A test set, independent from both the training and valida- 

ion sets, was used to check whether the trained CNN models were 

ossibly biased towards the training and/or the validation sets. Our 

esults show that both models converged and could generalize the 

asic structures in the data - without learning specific structures 

bout the data presented to the CNNs - being thus able to per- 

orm well on new data samples characterized by a feature space 

imilar to the input data. The CNNs also show a comparable per- 

ormance in the different locations of the heart (apical, basal and 

id-cavity). 

The computational training time (about 2.5 h per CNN) was 

onsistent with the optimized architecture. 

We are aware of a few current limitations of our study, and plan 

o solve them soon. 

First, as already discussed, further research is needed to stan- 

ardize LV/MIS segmentation on DB-LGE images. It must be noted, 

hough, that MIS detection is independent of LV detection in our 

orkflow, and that the reporting tool is still a proof-of-concept. It 

as not possible to test our system on a publicly available dataset, 

r directly compare it to other systems already available, because 

his is the first experience on DG-LGE images. Also, training and 

alidation has been performed on the whole dataset, so it is not 

urrently possible to assess the multicenter/multiscanner general- 

zability. Although we did not train our system to identify the dif- 

erent LV segments, an essential knowledge for any CMR doctor, 

he available reporting output provides quantitative information 

ith a prognostic value and the potential to guide clinical decision- 

aking. Future developments will include training the LV CNN to 

dentify the 16 segments according to the American Heart Associ- 

tion classification. 

Finally, although the computational process is fast, our system 

urrently works as a stand-alone. Images must be exported from 

he MR scanner and fed to the CNNs, limiting the full integration 

f our system in current clinical workflows. To overcome this lim- 

tation and promote the clinical adoption of the proposed tool, we 

lan to integrate our methodology into MR scanners, as it already 

appened for other DL-based solutions [4] . Inline processing would 

nsure immediately available results, prior to the next image se- 

ies. 

. Conclusion 

Our solution successfully addresses different issues related 

o automatic MIS segmentation, including accuracy, time- 

ffectiveness, and the automatic generation of a clinical report. 

urther research is needed to standardize segmentation on DB-LGE 

mages. 
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