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a b s t r a c t

We introduce new notions of bargaining set for mixed economies which rest on the idea of generalized
coalitions (Aubin, 1979) to define objections and counter-objections. We show that the bargaining
set defined through generalized coalitions coincides with competitive allocations under assumptions
which are weak and natural in the mixed market literature. As a further result, we identify some
additional properties that a generalized coalition must satisfy to object an allocation.
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1. Introduction

The core of an economy is defined as the set of feasible
llocations that are not blocked or objected by any coalition. The
ossibility for other agents to react to this objection and propose
new counter-objection is not taken into account. Aumann and
aschler (1964) propose a new solution concept according to
hich objections that are counter-objected are not credible and
herefore they should be neglected. Mas-Colell (1989) adapts this
otion to atomless economies and defines the bargaining set as
n enlargement of the core containing all the feasible alloca-
ions against which it is impossible to raise an objection with
o counter-objections. Mas-Colell (1989) proves the equivalence
etween the set of competitive equilibria and the bargaining set
nder assumptions that are close to those used to prove the exis-
ence of competitive equilibria and the Core–Walras equivalence
heorem respectively in Aumann (1966, 1964). The key idea of
as Colell’s proof consists in characterizing credible objections as

hose that are price supported. This allows him to conclude that
he set of competitive allocations and the bargaining set coincide
nd are equivalent to the core in atomless economies.
It is clear that when we move on to the case of finite economies

he previous equivalences are no longer true. In this case, in
act, the core and, a fortiori, the bargaining set, strictly contains
he set of competitive allocations. Furthermore, Anderson et al.
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(1997) show that, whereas the core shrinks to the set of com-
petitive allocations after a sufficiently large number of replicas,
the bargaining set does not. A similar investigation is conducted
by Shitovitz (1989) in mixed markets, i.e. economies in which
the measure space of agents have both atoms and an atomless
sector. An atom of a measure space (T , Σ,m) is a set A ∈ Σ

with positive measure such that m(A \ B) = 0 or m(B) = 0
or every other B ⊆ A and it represents a non-negligible agent
n the market. For example, an atom can be representative of
trader who concentrates in his hands an initial ownership of
ommodities that is sufficiently large with respect to the total
arket endowment, as in the case of monopolistic or, more
enerally, oligopolistic markets. Or else, even though the initial
ndowment is spread over a continuum of negligible traders, an
tom can be representative of a group of traders that decide to act
s a single player, as in the case of cartels, syndicates, or similar
nstitutions. Notice that in a mixed market the set of agent T
s the disjoint union of an atomless section T0 and the atomic
art T1. This allows to view as special case of mixed markets
oth atomless economies (once T1 is empty) and finite economies

(when T0 is null and T1 finite). Shitovitz (1989) proves that,
if in addition to certain assumptions there exists a commodity
owned by only one of the atoms (veto player), then the core
coincides with the bargaining set and it strictly contains the set of
competitive allocations. He also illustrates an example of mixed
market outside the class mentioned above and satisfying the
sufficient hypotheses for the Core–Walras equivalence theorem
(Shitovitz, 1973) in which the bargaining set is strictly larger than
the core.

The previous conclusions seem to suggest that it is the core,
rather than the set of competitive equilibria, to be compared with
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he bargaining set in models comprising atoms. In this work,
nstead, we go back to the original idea in Mas-Colell (1989),
ith the aim of characterizing the bargaining set also in mixed
arkets by means of competitive equilibria. Our approach con-
ists in relaxing the class of coalitions that can form an objection
nd/or a counter-objection according to the veto mechanism
f Aubin (1979). We allow agents to join a coalition with a
artial participation rate, rather than to decide only whether to
oin or not. Basically, we enlarge the class of potential blocking
oalitions to the so-called generalized coalitions. A generalized
coalition is a measurable function γ from the space of agents T
to the unit interval [0, 1] with non-null support. Intuitively, the
value γ (t) represents the share of resources employed by agent
t in the formation of the coalition γ . We define four variants
of the bargaining set depending on which class of coalitions is
involved in objections and/or counter-objections and we study
the relations among them (Proposition 2.13). In particular we
show that all four bargaining set variants coincide when the
economy is atomless, the familiar framework of Mas-Colell (1989)
(Proposition 3.7). Our main result states the equivalence between
the set of competitive allocations and a bargaining set in mixed
economies in which atoms have convex preferences (Theorem 1),
an assumption quite common in the literature of mixed markets
(see for example Hildenbrand, 1974; Shitovitz, 1973; Greenberg
and Shitovitz, 1986; Pesce, 2014; Bhowmik and Graziano, 2015;
Avishay, 2019, among the others). Our theorem extends to mixed
economies the Mas-Colell’s equivalence theorem since, as already
noticed, once the set of atoms is null, a mixed market reduces
to be an atomless economy. From a technical point of view,
we closely follow the approach of Mas-Colell (1989), since we
identify the notion of competitive objection as the one on which
to focus attention. Indeed, even if competitive objections are de-
fined as particular objections with a specific property and hence
constitute only a part of the set of all possible objections, they
are the only ones to consider when dealing with the bargaining
set. Precisely, we prove that in order to show that an allocation
belongs to the bargaining set it is enough to verify that there are
no competitive objections against it. From this result we derive
the existence of a competitive equilibrium in a mixed market
under quite mild conditions (Corollary 3.6) as done by Mas-
Colell (1989) for atomless economies. On the other hand, contrary
to Mas-Colell (1989), since the measure space of agents we con-
sider is not necessarily non-atomic, we cannot conclude that the
correspondence defined as the integral of the demand net trade
set has convex values. For this reason we work with its convex
hull, a needless step in Mas-Colell’s setting thanks to Lyapunov–
Richter’s Theorem. A further contribution of this paper is the
identification of certain properties that a generalized coalition γ

has to satisfy to object. Indeed, we show that for an allocation
f outside the bargaining set there exists a competitive objection
characterized by full participation of negligible traders as well as
of traders which are strictly better off (Proposition 4.3).

Summing up, our analysis contributes to two literatures: the
one that studies bargaining sets in exchange economies and
the literature on mixed markets. Recently Hervés-Beloso et al.
(2018), Hervés-Estévez and Moreno-García (2018a) and Hervés-
Estévez and Moreno-García (2018b) study the notion of bargain-
ing set in finite economies. They allow generalized coalitions
to form objections and counter-objections and obtain the Mas-
Colell’s equivalence theorem for finite economies. Their result
follows from ours since, as earlier observed, even a finite econ-
omy can be viewed as a special case of mixed market. At the
same time, our work differs from the previous contributions in
many respects. We consider four variants of the bargaining set
among which only one is an extension to mixed markets of

the definition they adopt. We obtain the equivalence theorem

81
directly via the notion of competitive objections and we use
existence and welfare theorem arguments, whereas in the above
papers the equivalence is obtained by associating to the finite
economy a continuum economy with a finite number of types of
agents.1 On the other hand, they also allow for production, they
also investigate on the bargaining set of replica economies and
analyze how the restriction on the formation of coalitions may
impact on the bargaining set. We defer the analysis of our model
to address these research questions to future works.

The paper is organized as follows: in Section 2 we introduce
the economic model and the main definitions. Our main theorem
is presented in Section 3 whereas further results and concluding
remarks are stated respectively in Section 4 and Section 5. All the
proofs are collected in the Appendix.

2. The model and main definitions

2.1. The economic model

We consider an exchange economy E with a finite number N
of different commodities. The commodity space is therefore the
positive orthant RN

+
of the N-dimensional Euclidean space while

∆ := {p ≫ 0 :
∑N

i=1 pi = 1} is the set of all price systems. We use
the symbol P to denote the set of all total pre-orders on RN

+
that

are continuous and strictly monotone2 and consider it endowed
with the product topology. As usual, for ≽∈ P , the relations ≻

and ∼ denote the irreflexive and symmetric components of ≽
respectively.

The agents in the economy are represented as the points of
a σ -additive, complete probability space (T , Σ,m). Each agent
t ∈ T is characterized by an initial bundle of resources e(t) ∈ RN

+

and a preference relation ≽t∈ P . An economy is thus represented
as the measurable map:

E: T → P × RN
+

defined by the relation E(t) := (≽t , e(t)), where e: T → RN
+

is
an integrable function and ≽t∈ P for all t ∈ T . We assume that∫
e(t)dt ≫ 0 meaning that each good is present in the market.
Since we do not require m to be non-atomic, it is allowed

the presence in Σ of m-atoms, i.e. sets A ∈ Σ with non-zero
measure which are such that m(A \ B) = 0 or m(B) = 0 for every
other B ⊆ A. According to the atomless-atomic decomposition
of measures, T can be partitioned into an atomless component
representative of an ocean of negligible traders that we denote by
T0, and the atomic component T1 := T \ T0, which is the union of
an at most countable family {A1, A2, . . . , Ak, . . .} of disjoint atoms.
With an abuse of notation we still denote by T1 the collection
{A1, A2, . . . , Ak, . . .} and we write A ∈ T1 instead of A ⊆ T1.
Being E: T → P × RN

+
a measurable map, for any A ∈ T1 and

t, s ∈ A we necessarily have E(s) = E(t). Therefore, every agent in
A is endowed with the same preference relation ≽A and the same
initial bundle of resources eA. This allows the usual interpretation
that each atom can be considered as a single individual concen-
trating in his hands a large amount of the total initial endowment
(oligopolistic agent) or as a group of individuals deciding to act
only together (cartels, syndicates).

An allocation is an integrable function f : T → RN
+
and it is said

to be feasible if
∫
f (t) dt ≤

∫
e(t) dt . The set of all allocations is

denoted by M(E).

1 For a similar construction see Husseinov (1994).
2 A binary relation ≽ on RN

+
is continuous if the sets {y : y ≻ x} and

y : x ≻ y} are open. It is strictly monotone if y ≻ x whenever y ≥ x and
x ̸= y.
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efinition 2.1. A feasible allocation f ∈ M(E) is competitive or
alrasian if there is a price system p ∈ ∆ such that, for almost

ll t ∈ T , p · f (t) ≤ p · e(t) and p · x > p · e(t) whenever x ≻t f (t).

We use the symbol W(E) to indicate the set of competitive
llocations in E .

.2. The objection mechanism

Following Aubin (1979), we allow agents to participate in
oalitions using only a part of their resources. This way of consid-
ring participation in a coalition actually leads to an enlargement
f the class of ordinary coalitions. Formally, a coalition is any ele-
ent of Σ with positive measure. Whereas, a generalized coalition

is any couple (S, γ ) where γ : T → [0, 1] is a non-null integrable
function and S is its support, i.e. the set {t ∈ T : γ (t) >

}. We denote by F the collection of all generalized coalitions
and we observe that, by pairing each coalition S ∈ Σ with its
correspondent characteristic function3 χS , the σ -algebra Σ can
e viewed as a subset of F . In what follows, for the sake of the

exposition, we call standard or crisp coalitions the elements of Σ

with positive measure.

Definition 2.2. Given an allocation f ∈ M(E), a general-
ized coalition (S, γ ) objects or improves upon f if there is an
allocation g ∈ M(E) such that:

(i)
∫

γ (t)g(t) dt ≤
∫

γ (t)e(t) dt ,
(ii) g(t) ≽t f (t) for almost every t ∈ S,
(iii) m({t ∈ S : g(t) ≻t f (t)}) > 0.

In this case, the triple (S, γ , g) is said to be an Aubin-objection
to f and we denote by OA(f ) the set of all the Aubin-objections
to f .

The weighted veto mechanism based on generalized coalitions
extends the ordinary one by assigning more power to coalitions.
In fact, as it has been mentioned before, any standard coalition
can be paired to its characteristic function and identified with
a generalized coalition. This allows us to adapt Definition 2.2
and say that (S, g) is a standard (or crisp) objection against f if
(S, χS, g) is an Aubin-objection against f . In this case we write
S, χS, g) ∈ O(f ), where O(f ) denotes the set of all the standard
bjections against f . Observe that the inclusion O(f ) ⊆ OA(f )
lways holds.

efinition 2.3. A feasible allocation f is in the Aubin core if
A(f ) = ∅. We denote by CA(E) the Aubin core of the economy E .
hereas f belongs to the core of E , denoted by C(E), if O(f ) = ∅.

emark 2.4. In Definition 2.2(ii) a weak improvement formu-
ation is considered, while in the definition of the Aubin-core
nd of the core, usually, coalitional improvement is formulated
s a strong notion. However, under continuity and monotonicity,
eak and strong improvement are equivalent. In particular, from
he inclusion O(f ) ⊆ OA(f ) we deduce the well known inclusion
A(E) ⊆ C(E).

efinition 2.5. Let f be an allocation and (S, γ , g) be an Aubin
bjection to f , i.e. (S, γ , g) ∈ OA(f ). A generalized coalition (Q , δ)
ounter-objects (S, γ , g) if there is an allocation h such that:

(i)
∫

δ(t)h(t) dt ≤
∫

δ(t)e(t) dt ,
(ii) h(t) ≻t g(t) for almost every t ∈ Q ∩ S,

3 For any S ∈ Σ , the characteristic function of S is the function χS : T → [0, 1]
hat assigns 1 to each t ∈ S and 0 to every other t outside S.
 w
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(iii) h(t) ≻t f (t) for almost every t ∈ Q \ S.

n this case, the triple (Q , δ, h) is said to be an Aubin-counter-
bjection to (S, γ , g) and we write (Q , δ, h) ∈ COA(S, γ , g),
enoting by COA(S, γ , g) the set of all Aubin-counter-objections
o (S, γ , g).

As done for objections, among all the counter-objections to
S, γ , g) we call (Q , h) a standard (or crisp) counter-objection to
S, γ , g) if (Q , χQ , h) is an Aubin-counter-objection to (S, γ , g).
e denote by CO(S, γ , g) the set of all standard counter-
bjections to (S, γ , g) and we identify it with a subset of
OA(S, γ , g), i.e. CO(S, γ , g) ⊆ COA(S, γ , g).
We stress that, being T = T0∪T1, any atom A ∈ T1 is treated as

single individual, thus it can belong to S and prefer h to g or it
an be outside S and prefer h to f . The same is not guaranteed in
he corresponding atomless economy obtained by splitting each
tom into a continuum of negligible individual (as in Greenberg
nd Shitovitz, 1986), because in that case there might be two non-
ull groups of identical agents t of A so that one objects being in
and the other does not being outside S.

emark 2.6 (The Allocation Induced by an Objection). Whenever
(S, γ , g) is an Aubin-objection against f ∈ M(E), our interest
n the allocation g is limited to its restriction to S, that is the
upport of γ . Indeed, outside S, g can take any value (it can
ven be unbounded) and still it does not affect (S, γ )’s capacity
f objecting the allocation f . To improve this idea, we introduce
he notion of allocation generated by the Aubin-objection (S, γ , g)
s the function g̃ ∈ M(E) defined by

˜ (t) :=

{
g(t) if t ∈ S,
f (t) otherwise.

otice that in defining a counter-objection to the Aubin-objection
S, γ , g) it is the support S of γ that is taken into account rather
han the function γ itself. Hence, the only thing that determines
hether or not (S, γ , g) is counter-objected is the pair (S, g) and,
onsequently, the allocation g̃ generated by the objection.

The following proposition clarifies the role of the allocation g̃
nduced by an objection.

roposition 2.7. Let (S, γ , g) be an Aubin-objection against f .
hen, (S, γ , g) is Aubin-counter-objected by a generalized coalition
Q , δ) if and only if there is an allocation h such that (Q , δ, h) is an
ubin-objection to the allocation g̃ induced by (S, γ , g).

roof. See Appendix A.1.

emark 2.8. From Proposition 2.7 we deduce that an Aubin-
bjection (S, γ , g) against f ∈ M(E) has no Aubin-counter-
bjection if the induced allocation g̃ belongs to the Aubin core.
he converse might not be true because, although g̃ cannot be

objected by any generalized coalition, it might be not feasible.
However, if a standard objection (S, χS, g) against f ∈ M(E)
has no Aubin counter-objection then the induced allocation g̃
restricted to S, that coincides with g , belongs to the Aubin core
of E restricted to S. A similar result has been obtained by Hervés-
eloso et al. (2018)[Proposition 3.1] for production economies
ith a finite number of agents and in terms of standard counter-
bjections and core.

emark 2.9. In a similar fashion we can observe that an Aubin-
ounter-objection (Q , δ, h) induces a new allocation h̃. Precisely,

˜
hen (S, γ , g) ∈ OA(f ), g is the induced allocation and (Q , δ, h) ∈
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OA(S, γ , g), that is (Q , δ, h) ∈ OA(g̃) (by Proposition 2.7), we can
define a new allocation h̃ by

h̃(t) :=

{
h(t) if t ∈ Q ,

g̃(t) otherwise.

Similarly to Dutta et al. (1989), we can iterate one more step the
counter-objection process and define an Aubin-counter-objection
to (Q , δ, h) as an Aubin-objection to h̃.

2.3. The bargaining sets

A bargaining set is the collection of all feasible allocations
against which it is impossible to raise an objection that is not
counter-objected itself. Different notions of bargaining sets can
therefore be obtained by specifying which classes of objections
and counter-objections are allowed at each time.

In particular, with the definitions given above, we can in-
troduce four different versions of the bargaining set depending
on whether or not Aubin or standard objections and counter-
objections are considered.

Definition 2.10. Given a feasible allocation f ∈ M(E), we say
that:

• f ∈ BSss if all the standard objections to f have a standard
counter-objection.

• f ∈ BSas if all the Aubin-objections to f have a standard
counter-objection.

• f ∈ BSsa if all the standard objections to f have an Aubin-
counter-objection.

• f ∈ BSaa if all the Aubin-objections to f have an Aubin-
counter-objection.

Remark 2.11. The notions of BSss and BSaa are an extension
to mixed markets respectively of the definitions of bargain-
ing set given by Mas-Colell (1989) and by Hervés-Estévez and
Moreno-García (2018a) (see also Hervés-Estévez and Moreno-
García, 2018b; Hervés-Beloso et al., 2018). In general, the rela-
tionship between the two sets BSaa and BSss is unclear. Indeed,
on the one hand reducing the set of potential objecting coalitions
enlarges the bargaining set, whereas, on the other hand, reducing
the set of potential coalitions that can counter-object restricts
it. Nevertheless, the trivial inclusions CO(S, γ , g) ⊆ COA(S, γ , g)
and O(f ) ⊆ OA(f ), that hold whenever f ∈ M(E) and (S, γ , g) ∈

OA(f ), can be used to prove the following inclusions:

BSas ⊆ BSaa ⊆ BSsa and BSas ⊆ BSss ⊆ BSsa.

Furthermore by Definition 2.10:

CA(E) ⊆ BSas ⊆ BSaa and C(E) ⊆ BSss ⊆ BSsa.

Our goal is to determine the relations between these four
notions of bargaining sets and the set of competitive allocations
W(E). In this perspective, we first focus on those allocations
against which it is not possible to raise any objection at all.

Proposition 2.12. For any f feasible allocation let us consider the
following statements:

(1) There is a p ≫ 0 such that p · x ≥ p · e(t) for almost every
t ∈ T and every x ∈ RN

+
for which x ≽t f (t).

(2) There is no Aubin-objection against f .

Then condition (1) implies condition (2). If, in addition, ≽t is convex
for every t ∈ T1, then the conditions (1) and (2) are equivalent.

Proof. See Appendix A.2.
 e
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The above proposition establishes the well known relation
between the set of competitive allocations and the Aubin core. A
Walrasian allocation cannot be objected, hence W(E) ⊆ CA(E) ⊆

C(E). Conversely, if atoms have convex preferences, any allocation
not objected by a generalized coalition is competitive, i.e.,W(E) =

CA(E) ⊆ C(E).4 Consequently, a Walrasian allocation must belong
to each of the bargaining sets we have defined. Furthermore, a
bargaining set shrinks whenever we allow a larger set of objec-
tions or a smaller set of counter-objections. Summing up, we can
state the following general result.

Proposition 2.13. The following inclusions always hold.

• W(E) ⊆ BSas ⊆ BSss ⊆ BSsa.
• W(E) ⊆ BSas ⊆ BSaa ⊆ BSsa.

The above inclusions may be strict. This can be shown by
means of the bargaining set Bas. In fact, as the next example
shows, it may happen that there is a feasible non-Walrasian
allocation that belongs to the Aubin core of a finite economy and
hence to the set BSas, making the inclusion W(E) ⊆ Bas strict.

Example 2.14. Consider an exchange economy with two goods
(N = 2) and three agents (T = {1, 2, 3}) whose characteristics
are given as follows:

e(t) = (0, 1) ut (x(t), y(t)) = x2(t) + y2(t) for t = 1, 2 and
e(3) = (1, 1) u3(x(3), y(3)) = x2(3) + y(3).

We now show that the initial endowment e is an Aubin core
allocation and a fortiori it belongs to BSas, whereas it is not a
Walrasian allocation.

Assume to the contrary the existence of an alternative alloca-
tion (x, y) and a generalized coalition (S, γ ) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2(1) + y2(1) > 1 if γ (1) > 0 (or 1 ∈ S),
x2(2) + y2(2) > 1 if γ (2) > 0 (or 2 ∈ S),
x2(3) + y(3) > 2 if γ (3) > 0 (or 3 ∈ S),
γ (1)x(1) + γ (2)x(2) + γ (3)x(3) ≤ γ (3)
γ (1)y(1) + γ (2)y(2) + γ (3)y(3) ≤

γ (1) + γ (2) + γ (3).

First notice that for t = 1, 2

(x(t) + y(t))2 ≥ x2(t) + y2(t) > 1 ⇒ x(t) + y(t) > 1.

Hence, γ (3) > 0, which implies that x(3) ≤ 1, and γ (1), γ (2)
can not be both null. Furthermore, from x(3) ≤ 1, it follows that
x(3) + y(3) ≥ x2(3) + y(3) > 2 and hence x(3) + y(3) > 2. By
summing the last two inequalities in the system above, we get
the following contradiction.

γ (1) + γ (2) + 2γ (3) < γ (1)[x(1) + y(1)] + γ (2)[x(2) + y(2)]
+ γ (3)[x(3) + y(3)] ≤ γ (1) + γ (2) + 2γ (3).

Hence, e ∈ CA(E) ⊆ BSas. We now show that e is not a Walrasian
allocation. To this end, let (p, q) be any price system of ∆ and
consider agent 3.

If p > q, the bundle (x(3), y(3)) =

(
0, p+q

q

)
is such that{

u3(x(3), y(3)) =
p
q + 1 > 2 = u3(1, 1) and,

px(3) + qy(3) = p + q = (p, q) · (1, 1).

4 For the equivalence with the standard core stronger conditions on T1 are
eeded as proved by Shitovitz (1973) and Greenberg and Shitovitz (1986) among
thers (see also Pesce, 2010 for asymmetric information economies and Basile
t al., 2016 for economies with public goods).
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f p ≤ q, the bundle (x(3), y(3)) = (2, 0) is such that

u3(x(3), y(3)) = 4 > 2 = u3(1, 1) and,
px(3) + qy(3) = 2p ≤ p + q = (p, q) · (1, 1).

The example above proves that with no further assumption
(E) ⊊ BSaa and W(E) ⊊ BSss. In the next section we look for

ufficient conditions to the equivalence between the set of com-
etitive allocations and the bargaining set in mixed economies.

. Equivalence results

Throughout this section we consider the following additional
ssumption on preferences which is standard in the literature on
ixed markets (see for instance Hildenbrand, 1974).

ssumption 3.1. For all A ∈ T1, ≽A is convex.

Note that, when Assumption 3.1 is met, Proposition 2.12 en-
ures that Walrasian allocations are all and only those that cannot
e objected by any generalized coalition. Our main goal is now to
haracterize the Walrasian allocations as the only allocations for
hich all the Aubin objections are counter-objected by a general-

zed coalition, i.e. W(E) = BSaa. To this end, following Mas-Colell
1989), we consider a specific class of objections obtained with
he imposition of a price system p.

efinition 3.2 (Competitive Objections). Let f ∈ M(E). An Aubin
bjection to f (S, γ , g) ∈ OA(f ) is competitive if there exists a
rice system p ≫ 0 such that for every x ∈ RN

+
and almost every

∈ T we have:

• p · x ≥ p · e(t) whenever t ∈ S and x ≽t g(t).
• p · x ≥ p · e(t) whenever t /∈ S and x ≽t f (t).

Suppose that (S, γ , g) is an objection against f and that g̃ is
he allocation it induces. The next lemma shows that (S, γ , g)
s competitive if and only if g̃ satisfies the condition (2) in
roposition 2.12.

emma 3.3. Let (S, γ , g) be an Aubin objection against a feasible
llocation f ∈ M(E) and let g̃ be the allocation it induces. Then,
S, γ , g) is competitive if and only if there is no Aubin-objection
gainst g̃ .

roof. See Appendix A.3.

By combining Proposition 2.7 and Lemma 3.3 we derive the
ollowing key result, which generalizes Propositions 1 and 3
f Mas-Colell (1989).

roposition 3.4. Let f be a feasible allocation and (S, γ , g) ∈

OA(f ). Then (S, γ , g) is competitive if and only if there is no Aubin-
counter-objection against it.

Proposition 3.4 implies that even though competitive objec-
tions represent only a small portion of all possible way that a
generalized coalition can object an allocation f , they are the only
one about which we should be concerned in the study of the
bargaining sets. Therefore, in order to prove that an allocation f
belongs to BSaa (or BSsa) it is sufficient to show that no compet-
itive Aubin (or standard) objection can be raised against f . The
next proposition is a generalization of Proposition 2 in Mas-Colell
(1989) to mixed markets with Aubin objections.

Proposition 3.5. Assume that e(t) ≫ 0 for almost all t ∈ T ,
and let f be a feasible non-Walrasian allocation. Then there is an
Aubin-objection against f that is competitive.
 c

84
Proof. See Appendix A.3.

As consequences of Proposition 3.5 we get the existence of a
Walrasian allocation for a mixed economy. The same has been
proved in Mas-Colell (1989) for atomless economies. Further-
more, Proposition 3.5 allows us to derive the desired equivalence
theorem.

Corollary 3.6. Assume that e(t) ≫ 0 for almost all t ∈ T , then
there exists a Walrasian allocation in the mixed economy E .

Proof. See Appendix A.3.

It is worthwhile to note that the existence of Walrasian al-
location in a mixed market can be obtained under weaker as-
sumptions. In particular, the requirement e(t) ≫ 0 for almost
all t ∈ T , which is used for Proposition 3.5, can be weakened
with the condition

∫
e(t)dt ≫ 0 (see Remark A.3 and Theo-

rem 2 of Hildenbrand, 1974, page 151). An alternative existence
proof is recently provided by D’Agata (2005), who dispenses with
Assumption 3.1 and imposes a condition on the measure of the
atoms (see Theorem 2 of D’Agata, 2005).

Theorem 1. Assume that e(t) ≫ 0 for almost all t ∈ T , then
W(E) = BSaa.

Proof. See Appendix A.3.

Mas-Colell (1989) proves the equivalence W(E) = BSss when
(T , Σ,m) is an atomless measure space. More precisely, he shows
that whenever T = T0 and f ∈ M(E) is a feasible non-
Walrasian allocation, it is always possible to find a standard
objection against f that is competitive (Mas-Colell, 1989, Proposi-
tion 2). In our framework, we can use this property together with
Proposition 3.4 to extend Mas-Colell’s main result and prove that
in atomless economies all the notions of bargaining set we gave
are actually equivalent.

Proposition 3.7. Suppose that T = T0. Then W(E) = BSas =

BSaa = BSss = BSsa.

Remark 3.8. Going back to the series of inclusions proved in
Proposition 2.13, Theorem 1 ensures that under Assumption 3.1
we always have the following:5

W(E) = CA(E) = BSas = BSaa ⊆ BSss ⊆ BSsa.

Hence, in particular, we derive the equilibria existence and the
Aubin-Core–Walras equivalence theorem in economies with
countably many agents.6 However, the inclusion BSaa ⊆ BSss
might be strict. This can be proved moving from the examples
provided by Shitovitz (1989) who considers the notion of the veto
player as an atom who is the unique owner of a certain good.
In one example, Shitovitz (1989) describes an economy with no
veto player and two atoms with the same initial endowment and
same utility function in which the bargaining set is strictly larger
than the core which, on the other hand, coincides with the set of
Walrasian allocations by Shitovitz (1973). Hence,

W (E) = CA(E) = Bas = BSaa = C(E) ⫋ BSss.

A second example illustrates an economy with a veto player in
which the core coincides with the bargaining set and strictly
contains the set of Walrasian allocations. Hence,

W (E) = CA(E) = Bas = BSaa ⫋ C(E) = BSss.

5 Notice that Example 2.14 does not fulfill the assumptions of Theorem 1.
6 The Aubin-core equivalence is proved by Noguchi (2000) when the

ommodity space is infinite dimensional and assuming convexity of preferences.
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rom Theorem 1 it also follows that our bargaining set is consis-
ent according to the notion of Dutta et al. (1989), for which each
bjection in a ‘‘chain’’ of objections is tested in the same way as
ts predecessor (see also Remark 2.9).7

. Further characterizations

Competitive objections have been shown to play a key role
n the study of bargaining sets. In this section we look for some
urther characterizations of competitive objections under
ssumption 3.1. To this end, the following new notations are
eeded.
Let f be a feasible allocation. For every price vector p ∈ ∆, we

denote by η(t, p) the demand set for the agent t ∈ T and define
C(p) and D(p) as follows:

C(p) := {t : η(t, p) ≻t f (t)}, D(p) := {t : η(t, p) ≽t f (t)}.

Intuitively, an agent t belongs to C(p) (respectively D(p)) if she
strictly (respectively weakly) prefers what she can obtain by
trading e(t) at price p over the bundle f (t).

emark 4.1. Being agents’ preferences continuous and mono-
one, the set C(p) defined above coincides with the set {t ∈ T :

v for which v ≽t f (t) and p · v < p · e(t)} defined in Mas-Colell
1989). Furthermore, by Proposition 2.12, OA(f ) ̸= ∅ if and only
if m(C(p)) > 0 for every p ∈ ∆.

We can now prove the following result.

Proposition 4.2. Let f be a feasible allocation such that the set
OA(f ) is not empty. Then (S, γ , g) is a competitive Aubin-objection
against f if and only if there is a price p ∈ ∆ such that:

(1) g(t) ∈ η(t, p) for almost every t ∈ S,
(2) C(p) ⊆ S ⊆ D(p),
(3)

∫
S γ (t)(g(t) − e(t)) dt = 0.

Proof. See Appendix A.4.

Pursuing the interest in the bargaining set BSaa we now present
a second result that allows us to focus on a smaller class of
Aubin-objections.

Proposition 4.3. Let f ∈ M(E) be such that f /∈ BSaa. Then there
s a competitive Aubin-objection (S, γ , g) against f such that:

1. γ is a simple function,
2. γ (t) = 1 for every t ∈ S ∩ T0,
3. γ (t) = 1 for every t ∈ S such that g(t) ≻t f (t).

The Proposition above follows directly from the Proof of
roposition 3.5 where we consider a feasible f /∈ BSaa and find a
ompetitive Aubin-objection (S, γ , g) to it. In Step 3 of the Proof,
n fact, we show how the function γ meets all the conditions of
roposition 4.3.

emark 4.4. Proposition 4.3 says that, as in the case of atom-
ess economies, small agents fully participate in a competitive
bjection. The same is true for traders which are strictly better
ff whereas agents which are indifferent can object with any
articipation rate. Notice that, even though Proposition 4.2 does
ot give a full description of all competitive Aubin-objections,
roposition 4.3 can be considered as a characterization of BSaa.
ndeed, define a new class of Aubin-objections O∗

A(f ) formed
y all the (S, γ , g) ∈ OA(f ) such that γ satisfies all the three

7 We thank an anonymous referee for pointing this out.
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conditions in Proposition 4.3. Similarly to what we did in Sub
Section 2.3, we can define a new bargaining set BS∗

aa containing
ll attainable f ∈ M(E) such that every (S, γ , g) ∈ O∗

A(f ) has an
ubin-counter-objection. Being O∗

A(f ) strictly smaller than OA(f ),
we would expect that BS∗

aa contains BSaa. However, the result
in Proposition 4.3 guarantees that whenever f /∈ BSaa we can
lways find a (S, γ , g) ∈ O∗

A(f ) that cannot be counter-objected.
ence, W (E) = BSaa = BS∗

aa. A fortiori this equivalence still
olds if we impose similar restrictions even on the counter-
bjections. Precisely, given f ∈ M(E) and (S, γ , g) ∈ O∗

A(f ), we
an define a new class of Aubin-counter-objections to (S, γ , g),
enoted by CO∗

A(S, γ ), imposing full participation to the non-
tomic part and allowing partial participation only to the atoms
f (S, γ ), i.e. CO∗

A(S, γ ) = {(Q , δ, h) ∈ COA(S, γ ) : δ(t) =

for every t ∈ Q ∩ T0}. Let BS∗∗
aa be the corresponding bargaining

et of all the feasible f ∈ M(E) such that every (S, γ , g) ∈ O∗

A(f )
as an Aubin-counter-objection in CO∗

A(S, γ ). Note that, being
(f ) ⊆ O∗

A(f ) ⊆ OA(f ) and CO(S, γ ) ⊆ CO∗

A(S, γ ) ⊆ COA(S, γ ),
e have that W (E) ⊆ BS∗∗

aa ⊆ BS∗
aa and hence W (E) = CA(E) =

Sas = BSaa = BS∗
aa = BS∗∗

aa ⊆ BSss ⊆ BSsa.

. Concluding remarks

We have based our definitions of bargaining sets on a two-
tep veto mechanism that allows agents to participate to the
ormation of coalitions with any portion of their endowments. It
s possible, however, to modify this process by imposing some
estrictions on the class of generalized coalitions that can raise
bjections and counter-objections and to analyze the conditions
nder which the corresponding veto-mechanisms can be used to
haracterize the set of Walrasian allocations. As we have observed
n Remark 4.4, Proposition 4.3 can be considered as a contribution
n this direction, when we limit the participation rates of individ-
al agents to the objections and counter-objections. We sketch
ere below in three final remarks further possible restrictions
hat can be pursued in our specific framework.

emark 5.1. The veto mechanism defining our bargaining set
an be modified considering only coalitions in which agents’
articipation rates are smaller than a given threshold. For every
∈ (0, 1) let Fε be the set formed by those (S, γ ) ∈ F such

hat γ (t) ≤ ε for almost every t ∈ S. If (S, γ , g) is an Aubin-
bjection to an allocation f , (S, εγ , g) is a new Aubin-objection to
raised by a coalition in Fε and every Aubin-counter-objection to
S, γ , g) is an Aubin-counter-objection to (S, εγ , g). Hence, from
heorem 1 we can say that for every feasible and non-Walrasian
llocation there exists an Aubin-objection that is raised by a
oalition in Fε and that cannot be counter-objected. Similar ideas
an be found in Hervés-Beloso et al. (2018) and Hervés-Estévez
nd Moreno-García (2018b).
Different scenarios follow if we impose that a generalized

oalition is allowed to raise objections and counter-objections if
nd only if belongs to FQ := {(S, γ ) ∈ F : γ (t) ∈ Q for all t ∈ S}.
his kind of restriction, that has been explored to study replica
conomies via generalized coalitions, leaves the Aubin-core un-
ltered but describes a bargaining set that is strictly larger than
Saa(E). It is in fact possible to prove with standard arguments
hat a feasible allocation is Walrasian if and only if there are no
oalitions in FQ that can object it. At the same time, the examples
resented in Hervés-Estévez and Moreno-García (2018a), page
34, show that there can be a non-Walrasian, feasible allocation
such that every Aubin-objection to f raised by a coalition in FQ
an be counter-objected.
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emark 5.2. Other developments can be obtained by limiting the
ize of the generalized coalitions entitled to raise objections and
ounter-objections. To this end, we stress that a substantial dif-
erence between the core and Mas-Colell’s bargaining set prevails
ven in the case of atomless economies. The examples in Schjødt
nd Sloth (1994) prove that it is not possible to put a bound on
he size of competitive, and hence justified, standard objections.
n other words, when we limit the size of the standard coalitions
hat are allowed to raise objections and counter-objections in an
tomless economy, we leave the core unaltered and we define a
argaining set that is strictly larger than BSss(E).
In our framework we can work on the definition of ‘‘size’’

f an objection and obtain new characterizations of Walrasian
llocations, in contrast with the results proved in Schjødt and
loth (1994). Formally, we can refer to the size of a generalized
oalition (S, γ ) as the integral

∫
S γ (t) dt and observe that for

every ε ∈ (0, 1), all the coalitions in the set Fε defined above have
size smaller than or equal to ε (see also Bhowmik and Graziano,
2015). Then, using the same arguments discussed before, one can
prove that for any choice of ε ∈ (0, 1) it is always possible to
block a feasible and non-Walrasian allocation with a generalized
coalition that has size smaller than ε and that is not counter-
objected. Similar arguments do not hold if we allow exclusively
objections raised by large coalitions (compare Examples 1 and 2
in Hervés-Estévez and Moreno-García, 2015).

Remark 5.3. A further possible restriction deals with the pref-
erences of the objecting agents. Indeed, a fundamental point in
the proof of Proposition 4.3 is that for an objection (S, γ , g) to
an allocation f there may be a group of agents in S that are
indifferent between g and f . The equivalence W (E) = BSaa(E), in
fact, is no longer true if we strengthen the definition of objections
and require that almost every t ∈ S is such that g(t) ≻t f (t).

Following the idea presented in Mas-Colell (1989)[Remark
2], one can overcome this obstacle with the introduction of a
new notion of bargaining set in which the preferences in the
definition of objections are strict and the idea of a ‘‘leader’’ a’ la
Aumann–Maschler is adapted from Geanakoplos (1978).

Formally, given any ε > 0 we say that (S, γ , g) is an ε-Aubin
objection to f with leader K if g(t) ≻t f (t) for every t ∈ S and
K is a non-null subset of S such that

∫
K γ (t) dt < ε. A feasible

f ∈ M(E) belongs to the ε-Aubin bargaining set ε − BSaa(E)
if for every ε-Aubin-objection to f with leader K there exists a
counter-objection (Q , δ, h) such that m(Q ∩ K ) > 0.

Under the Assumptions of Theorem 1, following the same pro-
cedure as in Mas-Colell (1989)[Remark 2], it can be shown that if
there exists a competitive Aubin-objection to a feasible allocation
f ∈ M(E) then f does not belong to the ε-Aubin bargaining set.
This is enough to conclude that W (E) = ε − BSaa(E).
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Appendix

A.1. Proof of Proposition 2.7

Proof. The first implication directly follows from the definition
of the allocation g̃ induced by (S, γ , g). For the converse we
use continuity and strict monotonicity of agents’ preferences.
Precisely, let h ∈ M(E) be such that (Q , δ, h) ∈ OA(g̃), that is∫ ∫
(i) δ(t)h(t)dt ≤ δ(t)e(t)dt

86
(ii) h(t) ≽t g̃(t) for almost all t ∈ Q
(iii) m(Q ′) > 0, where Q ′

= {t ∈ Q : h(t) ≻t g̃(t)}.

If m(Q \ Q ′) = 0, then (Q , δ, h) is an Aubin-counter-objection to
(S, γ , g). Otherwise, by (iii) and continuity, there exists ε ∈ (0, 1)
and Q̃ ⊆ Q ′ such that m(Q̃ ) > 0 and εh(t) ≻t g̃(t) for almost all
t ∈ Q̃ . Define

h̃(t) :=

{
εh(t) if t ∈ Q̃ ,

h(t) +
1−ε

m(Q\Q̃ )

∫
Q̃ δ(t)h(t)dt if t ∈ Q \ Q̃ .

Notice that by (i), we have that∫
δ(t)h̃(t)dt =

∫
Q̃

δ(t)εh(t)dt +

∫
Q\Q̃

δ(t)h(t)dt

+

∫
Q\Q̃

δ(t)
[

(1 − ε)

m(Q \ Q̃ )

∫
Q̃

δ(t)h(t)dt
]
dt ≤

≤ ε

∫
Q̃

δ(t)h(t)dt +

∫
Q\Q̃

δ(t)h(t)dt

+ (1 − ε)
∫
Q̃

δ(t)h(t)dt =

∫
δ(t)h(t)dt ≤

≤

∫
δ(t)e(t)dt, that is

(1)
∫

δ(t)h̃(t)dt ≤
∫

δ(t)e(t)dt .

urthermore, by strict monotonicity and (ii), h̃(t) ≻t g̃(t) for
almost all t ∈ Q , which means, by the definition of g̃ , that

(2) h̃(t) ≻t g(t) for almost all t ∈ Q ∩ S
(3) h̃(t) ≻t f (t) for almost all t ∈ Q \ S.

Therefore, the Aubin-objection (S, γ , g) against f is Aubin-
counter-objected by (Q , δ, h̃). This concludes the proof. ■

A.2. Proof of Proposition 2.12

We divide the proof of Proposition 2.12 in two separated
statements, one for each implication.

Lemma A.1 (Proposition 2.12, First Implication). Suppose that f is
feasible allocation and p ≫ 0 such that p · x ≥ p · e(t) for almost
very t ∈ T and every x ∈ RN

+
for which x ≽t f (t). Then there is no

ubin-objection against f .

roof. First of all let us observe that since p ≫ 0, by the
ontinuity and strict monotonicity of preferences, the inequality
· e(t) < p · x holds for almost every t ∈ T and x ∈ RN

+
for which

≻t f (t).
Suppose, by the way of contradiction, that there exist g ∈

(E) and (S, γ ) are such that (S, γ , g) ∈ OA(f ). Hence,
∫

γ (t)
(t)dt ≤

∫
γ (t)e(t)dt; g(t) ≽t f (t) for almost every t ∈ S and

S ′
:= {t ∈ S : g(t) ≻t f (t)} has positive measure. Using the

assumption on p we obtain the following inequalities:

p ·

∫
S\S′

γ (t)(g(t) − e(t)) dt =

∫
S\S′

γ (t) p · (g(t) − e(t)) dt ≥ 0,

p ·

∫
S′

γ (t)(g(t) − e(t)) dt =

∫
S′

γ (t) p · (g(t) − e(t)) dt > 0

which together imply

p ·

∫
S
γ (t)g(t) dt > p ·

∫
S
γ (t)e(t) dt,

that contradicts the inequality
∫

γ (t)g(t) dt ≤
∫

γ (t)e(t) dt . ■
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emma A.2 (Proposition 2.12, Second Implication). Suppose that
ssumption 3.1 is satisfied and let f be a feasible allocation such

that there are no Aubin-objections against it. Then there is p ≫ 0
such that p ·e(t) ≤ p ·x for almost every t ∈ T and x ∈ RN

+
for which

≽ f (t).

roof. By the continuity of preferences it is enough to find a
≫ 0 such that p · x ≥ p · e(t) for almost every t ∈ T and

very x ∈ RN
+

for which x ≻t f (t).
Let us define a correspondence ϕ: T → 2R

N
by setting ϕ(t) :=

x ∈ RN
+

: x ≻t f (t)} − {e(t)} for every t ∈ T . By the monotonic-
ty assumption ϕ is a non-empty valued correspondence which
dmits integrable selections. This implies that the set

:=

{∫
S
γ (t)ϕ(t) dt : (S, γ ) ∈ F

}
s non-empty. We now prove that K is convex. To this end, define
he sets

0 :=

{∫
S∩T0

γ (t)ϕ(t) dt : (S, γ ) ∈ F
}

and

1 :=

{∫
S∩T1

γ (t)ϕ(t) dt : (S, γ ) ∈ F
}

,

nd notice that K = K0 + K1, where K0 is convex thanks
o Lyapunov–Richter’s Theorem. To conclude our claim is then
nough to show that K1 is convex as well. This follows from
ssumption 3.1. Indeed, let αy1 + (1 − α)y2 be a convex com-
ination of two elements y1 and y2 of K1. Then, there exist
S1, γ1), (S2, γ2) ∈ F and z1, z2 ∈ M(E) such that

1 =

∫
S1∩T1

γ1(t)z1(t)dt and y2 =

∫
S2∩T1

γ2(t)z2(t)dt,

here zi(t) ∈ ϕ(t) for i = 1, 2 and for almost all t ∈ Si. Define now
the generalize coalition γ , with support S1 ∪ S2, and the function

: (S1 ∪ S2) ∩ T1 → RN
+

as follows:

(t) = αγ1(t) + (1 − α)γ2(t)

y(t) =
αγ1(t)
γ (t)

z1 +
(1 − α)γ2(t)

γ (t)
z2(t).

From Assumption 3.1, y(t) ∈ ϕ(t) for almost all t ∈ (S1 ∪ S2)∩ T1,
and hence

∫
(S1∪S2)∩T1

γ (t)y(t)dt ∈ K1. Since

αy1 + (1 − α)y2 =

∫
(S1∪S2)∩T1

γ (t)y(t)dt ∈ K1,

the set K1 is convex and so is K . Now, being OA(f ) empty, the
sets K and −RN

+
are disjoint and can therefore be separated by

a hyperplane. That is, there exists a p ≥ 0, p ̸= 0 such that
p ·

∫
S γ (t)(g(t) − e(t)) dt ≥ 0 whenever (S, γ ) ∈ F , g ∈ M(E)

and g(t) ≻t f (t) for almost every t ∈ S. We conclude that

p · e(t) ≤ p · x for almost every t ∈ T and x ∈ RN
+

forwhich x ≻t f (t).

(1)

We only need to show that p ≫ 0. To this end, first observe
that

∫
f (t)dt =

∫
e(t)dt , otherwise from monotonicity (T , 1, f +∫

[e(t) − f (t)]dt) ∈ OA(f ) for any y ∈ Rℓ
+

\ {0}. This together
with (1) implies that p · f (t) = p · e(t) for almost all t ∈ T . Since
by assumption

∫
e(t)dt ≫ 0 and p ≥ 0, p ̸= 0, it follows that

m({t ∈ T : p·e(t) > 0}) > 0. Take t such that p· f (t) = p·e(t) > 0
and notice that continuity implies that p · x > p · e(t) whenever
x ≻t f (t). Now, assume to the contrary that ph = 0 for some
h ∈ {1, . . . ,N} and consider the bundle g defined as gh

= f h(t) if
ph > 0 and gh

= f h(t)+y, with y > 0, if ph = 0. Then, p·g = p·f (t),
but by monotonicity g ≻t f (t) and hence p · g > p · e(t) = p · f (t),
which is a contradiction. This proves that p ≫ 0. ■
 2

87
A.3. Proofs of Section 3

Proof of Lemma 3.3. One implication directly follows from
Proposition 2.12. Precisely, if there is no Aubin-objection against
g̃ , then there exists a price p ≫ 0 such that p · x(t) ≥ p · e(t)
for almost every t ∈ T and every x ∈ RN

+
for which x ≽t

g̃ . By definition of the allocation g̃ , it follows that (S, γ , g) is
competitive. Conversely, let (S, γ , g) be competitive and assume
to the contrary that (Q , δ, h) is an Aubin-objection against g̃ . Thus,

(i)
∫

δ(t)h(t)dt ≤
∫

δ(t)e(t)dt ,
(ii) h(t) ≽t g̃(t) for almost every t ∈ Q ,
(iii) h(t) ≻t g̃(t) for almost all t ∈ Q ′

⊆ Q with m(Q ′) > 0.

By definition of g̃ , since (S, γ , g) is competitive, from (ii) it
follows that p · h(t) ≥ p · e(t) for almost all t ∈ Q , with a
strict inequality for almost all t ∈ Q ′ because agents’ preferences
are continuous and strictly monotone and p ≫ 0. Therefore,∫

δ(t)p ·h(t)dt >
∫

δ(t)p · e(t)dt which contradicts (i) above. ■

We now show Proposition 3.5. To this end, we divide the
proof in several steps, in order to simplify it and to make further
comparisons with Mas-Colell’s original work.

Proof of Proposition 3.5. Let us fix a feasible allocation f ∈ M(E)
that is not Walrasian. As in Paragraph 4, for every p ∈ ∆ we
denote by η(t, p) the demand set for the agent t ∈ T and use
C(p) and D(p) for the sets:

C(p) := {t : η(t, p) ≻t f (t)}, D(p) := {t : η(t, p) ≽t f (t)}.

Being f non-Walrasian it must be that m(C(p)) > 0.

Step 1: Let us call ϕ:∆ × T → 2R
N

the correspondence that
assigns to each p ∈ ∆ and t ∈ T the set:

ϕ(p, t) :=

⎧⎨⎩
η(p, t) − e(t), if t ∈ C(p),
η(p, t) − e(t) ∪ {0}, if t ∈ D(p) \ C(p),
{0}, otherwise.

Then define Φ:∆ → 2R
N

as the integral of ϕ, i.e. the map
Φ(p) :=

∫
T ϕ(p, t) dt , and observe that Φ satisfies all of the

following properties: (i) Φ is upper hemicontinuous and bounded
from below, (ii) Φ is non-empty for every p ∈ ∆, (iii) The Walras’
law prevails, which is saying that p · v = 0 for every p ∈ ∆

and v ∈ Φ(p), (iv) for every sequence (pn)n ⊂ ∆ converging
to some p /∈ ∆ we have ∥xn∥ → ∞ whenever (xn)n is such
that xn ∈ Φ(pn) for every n ∈ N.8 We can therefore apply the
weak form of Gale-Debreu-Nikaido Lemma to Φ and obtain the
existence of a p ∈ ∆ such that 0 ∈ coΦ(p) (a proof can be found,
for example in Hildenbrand 1974, Lemma 1 page 150).

Step 2: Since 0 ∈ coΦ(p) and the latter was defined as
∫

ϕ(p, t) dt ,
we can take g1, g2 be integrable selections of ϕ(p, ·) and θ ∈ [0, 1]
such that

θ

∫
g1(t) dt + (1 − θ )

∫
g2(t) dt = 0.

By the Lyapunov–Richter’s Theorem
∫
T0

θg1(t)+ (1− θ )g2(t) dt =

T0
g0(t) for some integrable selection g0 of ϕ(p, ·). Call S0 := {t ∈

T0 : g0(t) + e(t) ∈ η(p, t)} and, for i = 1, 2, put Si := {t ∈ T1 :

8 The proof of (i)–(iv) is almost identical to what is done for the proof of the
xistence of a competitive equilibrium. See for example Mas-Colell (1985), page
70.
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i(t) + e(t) ∈ η(p, t)}. Now define the allocation g: T → RN
+

by:

(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g0(t) + e(t), if t ∈ S0,

g1(t) + e(t), if t ∈ S1 \ S2,

θg1(t) + (1 − θ )g2(t) + e(t), if t ∈ S1 ∩ S2,

g2(t) + e(t), if t ∈ S2 \ S1,
0 otherwise.

or all t , g(t) ∈ η(p, t) if t ∈ S := S0 ∪ S1 ∪ S2 and g(t) = 0 if
/∈ S. In particular, this is true because when t ∈ S1 ∩ S2 ⊂ T1,

1(t) + e(t) and g2(t) + e(t) are both in η(p, t) and the latter is
onvex since ≽t is convex by assumption.

tep 3: Define γ as the function χS0 + θχS1 + (1 − θ )χS2 . We
laim that (S, γ , g) is a competitive Aubin-objection to f . First
e observe that (S, γ , g) is an Aubin-objection to x: in fact, by
onstruction, S is the non-null support of γ and:∫

γ (t)(g(t) − e(t)) dt =

∫
T0

g0(t) dt +

∫
T1

θg1(t) + (1 − θ )g2(t) dt =

= θ

∫
g1(t) dt + (1 − θ )

∫
g2(t) dt = 0.

urthermore, S ⊆ D(p) and hence g(t) ≽t f (t), for all t ∈ S. Finally,
since C(p) ⊂ S and m(C(p)) > 0 (because f is non-competitive)
m({t ∈ S : g(t) ≻t f (t)}) > 0. We are only left to prove that
(S, γ , g) is competitive: for any x ∈ RN

+
, if x ≽t g(t) for some

t ∈ S, then x ≽t η(p, t) and so p · x ≥ p · e(t). Similarly, if x ≽t f (t)
for some t /∈ S then x ≽t η(p, t) and so p ·x ≥ p ·e(t). We conclude
hat (S, γ , g) is a competitive Aubin-objection to f . ■

emark A.3. The proof of Proposition 3.5 follows from a close
range the proof of Proposition 2 in Mas-Colell 1989 for the case
of a non-atomic economy. In particular, Step 1 is identical to what
is done by Mas-Colell with the only exception that, since our
measure space of agents is not necessarily non-atomic, we could
not conclude that the correspondence Φ has convex values. This
is the reason why, in Step 2, we had to move from Φ to its convex
hull, an expedient that was unnecessary in Mas-Colell’s settings
thanks to Lyapunov–Richter’s Theorem. Once the triple (S, γ , g) is
defined, in Step 3 the proof that (S, γ , g) is a competitive Aubin-
objection follows, with the necessary changes in register, the last
part of Mas-Colell’s proof. The assumption e(t) ≫ 0 for almost
all t ∈ T ensures that given any p ∈ ∆ and any coalition S,
with C(p) ⊆ S ⊆ D(p), the aggregate initial endowment over S
is strictly positive, i.e.

∫
S e(t)dt ≫ 0, and consequently that the

correspondence Φ is upper hemicontinuous.

Proof of Corollary 3.6. If the initial endowment e is a Walrasian
allocation, then the Corollary is trivially proved. If e is not Wal-
rasian, then by Proposition 3.5 there exists an Aubin-objection
(S, γ , x) against e which is competitive. In particular:

(i)
∫

γ (t)x(t)dt ≤
∫

γ (t)e(t)dt ,
(ii) x(t) ≽t e(t) for almost all t ∈ S,
(iii) x(t) ≻t e(t) for almost all t ∈ S ′

⊆ S, with m(S ′) > 0.

By the proof of Proposition 3.5, we can assume that γ (t) = 1 for
almost all t ∈ (T0 ∩ S) ∪ S ′.

Consider now the allocation y(t) = γ (t)x(t) + (1 − γ (t))e(t)
for all t ∈ T and notice that by (i) it is feasible. Since (S, γ , x) is
a competitive Aubin-objection against e, there exists p ∈ ∆ such
that

(1) p · z ≥ p · e(t) whenever t ∈ S and z ≽t x(t)
(2) p · z ≥ p · e(t) whenever t /∈ S and z ≽ e(t).
t
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We show that y is a Walrasian allocation supported by p. First
note that from (1) and (i) it follows that p·x(t) = p·e(t) for almost
all t ∈ S. Hence, by definition of y we have that p · y = p · e(t)
for almost all t ∈ T . Suppose now the existence of a bundle z
preferred to y(t) by some agent t , i.e. z ≻t y(t). If t /∈ S, then
γ (t) = 0 and z ≻t y(t) = e(t). Thus, from (2), p · z ≥ p · e(t).
Actually, p · z > p · e(t) because ≽t is continuous and e(t) ≫ 0. If
t ∈ (T0 ∩ S) ∪ S ′, then γ (t) = 1 and z ≻t y(t) = x(t), whereas for
t ∈ (S \ S ′) ∩ T1, z ≻t y(t) ∼t x(t). Thus, from (1), p · z ≥ p · e(t).
Again continuity of ≽t and e(t) ≫ 0 imply that p ·z > p ·e(t). This
completes the proof. ■

Proof of Theorem 1. Let f be a feasible non-Walrasian allocation.
Proposition 3.5 implies the existence of an Aubin-objection to f
which is Walrasian and which, in addition, has no Aubin-counter-
objection because of Proposition 3.4. Then f /∈ BSaa, that is BSaa ⊆

W (E). The other inclusion is given by Proposition 2.13. ■

A.4. Proof of Proposition 4.2

Proof of Proposition 4.2. First notice that, since OA(f ) is non-
empty, it is m(C(p)) > 0 for every p ∈ ∆.

Let us assume that (S, γ , g) is competitive and call p the rela-
tive price system. Point (1) follows directly from the definition of
competitive allocation. If point (2) is violated then either m(C(p)\
S) > 0 or m(S \ D(p)) > 0. In the first case let t ∈ C(p) \ S and
take x ∈ η(t, p); by definition we have x ≻t f (t) and p · x ≤

p · e(t) and so (S, γ , g) is not competitive. On the other hand, for
t ∈ S \ D(p) then f (t) ≻t g(t) contradicts the fact that (S, γ , g)
is an Aubin-objection against f . To prove point (3) suppose that
x :=

∫
S γ (t)(g(t) − e(t)) dt < 0 and define h ∈ M(E) by:

h(t) = g(t) −
x∫

S γ (t) dt
.

But then (S, γ , h) constitutes an Aubin-counter-objection to
S, γ , g) in contradiction to Proposition 3.4.

Suppose now that (S, γ , g) satisfies conditions (1), (2) and (3).
e first need to prove that (S, γ , g) ∈ OA(f ). The requirement for
hich

∫
S γ (t)g(t) dt ≤

∫
S γ (t)e(t) dt , is guaranteed by point (3).

For every t ∈ S we have that t ∈ D(p) (point (2)) and g(t) ∈ η(t, p)
(point (1)), meaning that g(t) ≽t f (t). Furthermore, from (1) and
(2) we also derive that {t ∈ S : g(t) ≻t f (t)} = C(p) and has
non-zero measure. To prove that (S, γ , g) is competitive we pick
x ∈ RN

+
and observe that, being g(t) ∈ η(t, p), if x ≽t g(t) for

some t ∈ S we must have p · x ≥ p · e(t). On the other hand, if
x ≽t f (t) for some t /∈ S, the inclusion t /∈ C(p) allows us to write
≽t η(t, p) so that p · x ≥ p · e(t). ■
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