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Abstract: In medicine, dynamic treatment regimes (DTRs) have emerged to guide personalized
treatment decisions for patients, accounting for their unique characteristics. However, existing
methods for determining optimal DTRs face limitations, often due to reliance on linear models
unsuitable for complex disease analysis and a focus on outcome prediction over treatment effect
estimation. To overcome these challenges, decision tree-based reinforcement learning approaches
have been proposed. Our study aims to evaluate the performance and feasibility of such algorithms:
tree-based reinforcement learning (T-RL), DTR-Causal Tree (DTR-CT), DTR-Causal Forest (DTR-CF),
stochastic tree-based reinforcement learning (SL-RL), and Q-learning with Random Forest. Using
real-world clinical data, we conducted experiments to compare algorithm performances. Evaluation
metrics included the proportion of correctly assigned patients to recommended treatments and the
empirical mean with standard deviation of expected counterfactual outcomes based on estimated
optimal treatment strategies. This research not only highlights the potential of decision tree-based
reinforcement learning for dynamic treatment regimes but also contributes to advancing personalized
medicine by offering nuanced and effective treatment recommendations.
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1. Introduction

In various clinical practices, it is frequently required to modify treatment over time
because of the considerable differences in individual responses to treatment and to accom-
modate the progressive, often cyclical, nature of many chronic diseases and conditions. For
example, in managing diabetic kidney disease, treatment plans must be regularly updated
to address how patients respond to medication and the progression of kidney damage that
can vary over time. Adjustments might include changing medication types, and dosages,
or incorporating new therapies as the disease advances or stabilizes [1]. In this regard, pre-
cision medicine [2–4] is becoming the most relevant and innovative approach in healthcare
that considers the patient’s individual and unique characteristics, such as their genetics, en-
vironment, and lifestyle, to tailor treatments to their specific needs. Personalized therapies
are based on decision rules that consider the patient’s state of health, such as symptoms, test
results, and medical history. Hence, the growing interest in developing dynamic treatment
regimes (DTRs) can guide clinical decision-making by providing personalized treatment
recommendations to individual patients. Unlike traditional one-size-fits-all approaches,
DTR [5–9] aims to optimize patient disease progression by identifying treatment strategies.
This approach holds great promise for improving patient conditions and advancing the
field of precision medicine.

Dynamic treatment regimes (DTRs) are predetermined sequences of treatment decision
rules. They are strategically devised to provide clinicians with informed guidance on the
decision of whether and how to modify, and subsequently re-modify, treatment strategies
over time in response to the evolving condition of an individual. The DTR encompasses
several treatment stages, with each stage utilizing patient-specific medical history and
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current disease status information to formulate individualized treatment recommenda-
tions for the subsequent phase [10]. DTRs are particularly useful for managing chronic
conditions [11], in which patients may respond differently to different treatments over time.

DTR can be defined as a set of rules that map a patient’s individual characteristics
and treatment history to a recommended treatment [8]. The rules in a DTR can be based
on a variety of factors, including patient demographics, medical history, laboratory test
results, and genetic information. DTRs can be implemented in different ways, including
through clinical decision support systems, electronic health records, and mobile apps. The
identification of optimal DTRs offers an effective vehicle for the personalized management
of diseases and helps physicians to identify the best treatment strategies dynamically
and individually based on clinical evidence, thus providing a key foundation for better
healthcare [11].

Research on DTRs dates back to Robins et al. [7,12]. Most of the developed approaches
relied on linear low-dimensional parametric models [8,13–16]. Due to the limitations
of standard regression methods in capturing the complexities of DTRs, more advanced
statistical methods, such as dynamic conditional models (DCMs) and dynamic marginal
structural models (DMSMs), have been proposed to estimate the causal effects of DTRs in
observational data [17]. A dynamic conditional model (DCM) is a statistical model that
estimates the average effects of treatments on patients, conditional upon their medical
history. This indicates that the predicted effects are specifically tailored to individuals with
similar medical backgrounds. Dynamic conditional models track a patient’s medical history
over time to estimate the effect of a treatment on the patient’s outcome at a given point
in time. There are a number of different methods that can be used to estimate treatment
effects in dynamic conditional models, including Q-learning [18,19], the parametric G-
formula [5,9,20], and G-estimation [8,12].

Recently, machine learning methods, especially reinforcement learning (RL) have
been proposed for addressing the complexities in learning DTRs [21] from observational
clinical data. Thus, there has been considerable interest in converting dynamic conditional
models (DCMs) into reinforcement learning (RL) problems using observational clinical
data. Ref. [22] proposed a method called adaptive contrast weighted learning (ACWL)
to estimate the average effects of different treatments on patients. ACWL uses a type of
machine learning called decision tree rules to learn how different treatments affect patients
with different characteristics, such as their age, sex, and medical history. ACWL also
combines two other statistical methods, doubly robust augmented inverse probability
weighting (AIPW) estimators and classification algorithms, to improve the accuracy of its
estimates. Ref. [23] introduced a tree-based method known as LZ, which aims to directly
estimate optimal treatment strategies. LZ adapts the reinforcement learning task to a
decision tree framework, incorporating an unsupervised purity measure. Simultaneously,
it retains the benefits of decision trees, including their simplicity for comprehension and
interpretation. It also maintains its ability to handle various treatment options and outcome
types (e.g., continuous or categorical) without making assumptions about data distribution.
However, LZ is designed for single-stage decision problems and may be susceptible to
model misspecification. More recently, refs. [24–26] applied decision lists to construct
interpretable DTRs, which comprise a sequence of “if–then” clauses that map patient
covariates to recommended treatments. A decision list can be viewed as a special case of
tree-based rules, where the rules are ordered and learned one after another [27]. These
list-based approaches prove highly advantageous when the aim is not only to optimize
health outcomes but also to reduce the expenses associated with covariate measurements.
However, without cost information, a list-based method may be more restrictive than a tree-
based method. Then again, in order to achieve simplicity and interpretability, refs. [24,25]
limited each rule to encompass a maximum of two covariates, a limitation that could pose
challenges when dealing with more intricate treatment strategies.

Tao et al. [28] expanded upon the research conducted by [22,23]. They developed
a tree-based reinforcement learning (T-RL) method used to estimate optimal DTRs in a
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multi-stage, multi-treatment setting. Another tree-based method that has been proposed for
providing explainable treatment recommendations is Stochastic Tree Search for Estimating
Optimal Dynamic Treatment Regimes (ST-RL) by [29]. ST-RL builds decision trees at
each stage by modeling counterfactual outcomes through nonparametric regression and
then uses a stochastic approach with a Markov chain Monte Carlo algorithm to find the
best tree-structured decision rule. However, the aforementioned tree-based methods do
not explicitly model causal effects. To overcome this aspect [21] proposed a causal tree-
based reinforcement learning method that directly estimates treatment effects with a causal
interpretation via a specific splitting criterion for the decision trees.

Hybrid algorithms have been also developed using a combination of Q-learning
and other regression algorithms such as Random Forest and decision trees. Regression
algorithms are used to approximate the Q-function and predict the Q-value for each possible
action in the current state [30].

In this study, we conducted several experiments on observational clinical data to
evaluate the performance of algorithms in identifying the optimal treatment regime. Obser-
vational clinical data provides a rich source of information for developing and evaluating
DTRs. These data consist of real-world patient information collected in routine clinical prac-
tice, offering a comprehensive view of patients’ characteristics, treatments received, and
their associated outcomes. Leveraging observational clinical data also allows researchers to
analyze large and diverse patient populations, capturing the complexity and heterogeneity
of real-world healthcare settings. This heterogeneity can arise from various factors, includ-
ing differences in patient characteristics, common diseases, treatment approaches, genetic
variations, environmental factors, and other variables [31]. Hence, this heterogeneity in
the progression of the disease will have several implications in precision medicine; such as
treatment effectiveness [32], disease progonosis [33], and risk stratification [34,35].

The algorithms evaluated in this experimental study are tree-based reinforcement
learning (T-RL), Stochastic Tree Search for Estimating Optimal Dynamic Treatment Regimes
(ST-RL), the causal tree-based reinforcement learning method, and Q-learning with Random
Forest. The experiment involves analyzing the observational data of the patient popula-
tion affected by diabetic kidney disease (DKD) and leveraging their medical history and
treatment outcomes to generate personalized treatment recommendations. By comparing
the predicted treatment outcomes against the observed outcomes in the clinical data, we
assessed the effectiveness of each algorithm in identifying optimal treatment strategies.

The results of this study have implications for the advancement of precision medicine
and individualized treatment approaches. By leveraging observational clinical data and
advanced algorithms, we aim to contribute to the growing body of knowledge on DTRs
and their potential for improving patient outcomes. This research can inform future
investigations and guide clinical practice in tailoring treatments to individual patients,
ultimately leading to better patient care and outcomes.

2. Dynamic Treatment Regimes
Concept and Notation

Let i = 1, ..., N refer to patients, t = 1, ..., T refer to decision stages, and Ot denote the
vector of patient characteristics accumulated during the treatment period t. Let At denotes a
multi-categorical treatment indicator variable with the observed value at ∈ At = {1, ..., Kt},
where Kt (Kt ≥ 2) is the number of treatment options at the tth stage. OT+1 denotes the
entire clinical observation history of a patient up to the end of T. We denote Y as the chosen
response to the treatment, with higher values of Y being preferred. Hence, the observed
data on patients are HT = {(A1i, ..., ATi, O⊤

T+1,i)}N
i=1, which describes the complete patient

history through time T.
The concept of compiling patient history over time can be conceptualized as a sequen-

tial process. Initially, at baseline, O1 is collected, such as demographic, clinical, and lifestyle
patient characteristics. Subsequently, the first treatment decision A1 is then determined.
Thus, the patient history at stage 1 is simply represented as H1 = O1. Following this, the
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patient’s response to the first treatment is recorded as O2, and the response variable Y1
is evaluated. Consequently, the history at stage 2 becomes H2 = {O1, A1, Y1, X2}. This
continues until the last stage.

A Dynamic Treatment Regimen (DTR) model defines a sequence of individualized
decision treatment rules, r = (r1, ..., rT), where rt is a mapping of patient history at stage t
to the domain of treatment assignment At. One of the many ways to define and identify
optimal DTR is to consider a counterfactual framework for causal inference [5] and start
from the last treatment stage in reverse sequential order. The counterfactual framework
used involves comparing what happened (the observed outcome) to what would have
happened if a different treatment had been applied (the counterfactual or unobserved
outcome). In this framework, the idea is to construct counterfactual scenarios that represent
what would have occurred under different conditions.

To illustrate the concept of counterfactuals, consider a practical example in the context
of evaluating a new antihypertensive drug designed to reduce blood pressure in patients
with hypertension. In an ideal randomized clinical trial, participants are assigned to either
receive the new drug or a placebo (an inactive substance), ensuring that the comparison
between treatments is rigorous and unbiased. In the actual scenario, Patient A is assigned
to receive the new drug and experiences a significant reduction in blood pressure. This
observed outcome provides a direct measure of the drug’s effect on the patient’s blood
pressure under the treatment condition. The counterfactual scenario, however, involves
estimating what would have happened to Patient A’s blood pressure if they had been
assigned to the placebo group instead of receiving the new drug. This hypothetical outcome,
known as the counterfactual outcome, represents the blood pressure level that Patient A
would have experienced had they received the placebo. By comparing the actual outcome
(the reduction in blood pressure observed with the new drug) to this counterfactual outcome
(the hypothetical blood pressure level with the placebo), we can estimate the causal effect
of the new drug. This comparison provides insights into the drug’s efficacy by highlighting
the difference between the observed effect and the potential effect had the patient been
given an alternative treatment.

Typically, counterfactuals are not directly observable, but they serve as a reference point
for assessing the causal impact of a treatment. At the final stage T, let Y∗(A1, ..., AT−1, aT),
or Y∗(aT) for brevity, denote the counterfactual outcome of a patient treated with aT ∈ AT
conditional on previous treatments (A1, ..., AT−1), and define Y∗(rT) as a counterfactual
outcome under regime rule rT and history of a patient HT. That is,

Y∗(rT) =
KT

∑
aT=1

Y∗(aT)I{rT(HT) = aT} (1)

The performance of the treatment rule rT is measured by the counterfactual mean
outcome E{Y∗(rT)} when all patients followed rT , and the optimal treatment rule ropt

T
satisfies E{Y∗(ropt

T )} ≥ E{Y∗(rT)} for all potential classes of treatment regimes RT , where
rT ∈ RT .

To establish a link between counterfactual outcomes and the observed data, we rely
on three well-established assumptions as outlined in the literature [36,37]:

■ The first assumption, known as consistency, posits that a patient’s actual outcome
corresponds to what their outcome would have been if the patient had received the
treatment they were actually administered. In essence, the treatment received by a
patient is the sole factor influencing their outcome.

■ The second assumption concerns the concept of stable unit treatment value, asserting
that an individual’s outcome remains unaffected by the treatments administered to
other patients.

■ The third assumption pertains to sequential exchangeability, indicating that the treat-
ment assignment at each time point is assumed to be independent of future potential
outcomes given past treatment and the covariate history.
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These assumptions state that the observed outcomes are a good reflection of the poten-
tial outcomes, that the outcomes of any patient are not affected by the treatments received
by other patients, that the treatment assignment is not predetermined, and assuming no
confounding by unmeasured factors, treatment assignment at the current time point is
independent of potential future outcomes, given the patient’s complete past treatment
history and medical history up to that point. The propensity score method is used to
strengthen this assumption (sequential exchangeability) in the longitudinal data analysis.

Under these assumptions, the optimal rule at the final stage T can be written as:

ropt
T = arg max

rT∈RT
E

[
KT

∑
aT=1

E(Y|AT = aT , HT)I{rT(HT) = aT}
]

, (2)

where the outer expectation is taken with respect to the joint distribution of the observed
data HT . Similarly, under the above assumptions, the optimal rule ropt

t at stage t can be
defined as:

ropt
t = arg max

rt∈Rt
E

[
Kt

∑
at=1

E(Ŷt|At = at, Ht)I{rt(Ht) = at}
]

, (3)

where Rt is the set of all potential rules at stage t. ŶT = Y at stage T, and at t, Ŷt can be
defined recursively using Bellman’s optimality:

Ŷt = E
{

Ŷt+1|At+1 = ropt
t+1(Ht+1), Ht+1

}
, t = 1, ..., T − 1,

that is, the expected outcome assuming optimal rules are followed at all future stages.

3. Machine Learning Models for DTRs

The ability to predict how a patient might respond to medication would shift treatment
decisions away from trial and error and reduce disease-associated health and financial
burdens. In this regard, machine learning approaches applied to clinical observational
datasets offer great promise to deliver personalized medicine [38]. In this section, we
will discuss tree-based reinforcement learning algorithms that have been chosen for the
experimental study.

3.1. Tree-Based Reinforcement Learning

The tree-based reinforcement learning (T-RL) algorithm directly estimates optimal
dynamic treatment regimes (DTRs) in a multi-stage multi-treatment setting [28,39] from
observational clinical data to determine the optimal treatment. The algorithm uses a
decision tree structure, where a node represents a point in the decision tree where a
decision is made based on the value of a specific feature, by splitting a parent node into
two child nodes repeatedly, starting with the root node which contains the entire learning
sample [40].

Estimating the dynamic treatment regime (DTR) presents a significant challenge. This
challenge centers around identifying the optimal treatment for a patient using clinical data
that are inaccessible through direct observation. The optimal treatment at stage t, ropt

t , can only
be inferred indirectly through the observed treatments and outcomes. This can be achieved by
estimating the counterfactual mean outcomes given all possible treatments using the causal
framework and the three assumptions stated in Section 2. The selected split at each node
should increase the counterfactual mean result, which can serve as a metric of purity in DTR
trees, with the overall objective of maximizing the counterfactual mean outcome in the whole
population of interest. Hence, the T-RL approach constructs decision trees at each stage,
managing the optimization process involving multiple treatment comparisons through a
purity metric which is constructed using augmented inverse probability weighted estimators
(AIPW) as outlined in the work of [22,41]. This process is used recursively using backward
induction, which can handle multiple decision stages effectively.
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To maximize the overall outcome for the entire population, each node in a DTR tree
should split in a way that improves the outcome for the population, and this can be
used to measure the purity of the node split as mentioned above. To put it in notation,
let ηa(H) = E(Ŷ|A = a, H) be the counterfactual outcome and π(H) be the estimated
propensity score [36]. The AIPW estimator for the counterfactual mean outcome under a
given treatment a is calculated as:

P
[

I(A = a)
πa(H)

Y +
{

1 − I(A = a)
πa(H)

}
ηa(H)

]
, (4)

where P is the empirical expectation operator. For stage T, the estimation for the counter-
factual outcome under a treatment rule rT (E(Y∗

T(rT))) is defined as:

P
[

I(AT = rT(HT)

πT,AT (HT)
Y +

{
1 − I(AT = rT(HT)

πT,AT (HT)

}
ηT,rT (HT)

]
, (5)

where πT,AT (HT) is the propensity score, and ηT,rT (HT) is the estimated conditional mean.
Thus, T-RL maximizes the counterfactual mean outcome through each of the nodes by
optimizing Equation (5).

3.2. Stochastic Tree-Based Reinforcement Learning

In a multi-stage multi-treatment setting, the Stochastic Tree Search for Estimating
Optimal Dynamic Treatment Regimes (ST-RL) method as introduced by [29] is applied to
data from either randomized trials or observational studies. ST-RL adopts a stochastic tree-
based approach to estimate DTRs. This means that it constructs a decision tree at each stage
of treatment, where each node in the tree represents a possible treatment decision. To build
a decision tree, ST-RL first models the mean of counterfactual outcomes via non-parametric
regression models. Then, it considers a Markov chain Monte Carlo algorithm [42,43]
to search for the optimal tree-structured decision rule stochastically. This means that it
randomly selects a treatment decision at each stage and then evaluates the outcomes of this
decision rule. The decision rule with the best outcomes is then selected as the optimal DTR.

To fit E(Y∗|At = at, Ht), SL-RL uses Bayesian additive regression trees (BART) and
predicts the counterfactual outcomes for each patient. In the backward induction imple-
mentation of SL-RL at the final stage T, the final response variable is used to estimate DTR.
At each intermediate stage 1 < t < T, the counterfactual outcome depends on the optimal
treatment regimes in all future stages and needs to be predicted.

To mitigate the accumulation of bias from the multi-stage backward induction, the
intermediate outcome (also called pseudo-outcome) incorporates both the real observed
intermediate response variable value at stage t and the projected future loss resulting from
sub-optimal treatments. The pseudo-outcome (PO) will be:

PO = Y +
T

∑
t=t+1

{E[Y∗|ropt
t (Ht), Ht]− E[Y|At = at, Ht]},

where the pseudo-outcome (PO) is used as the outcome for stage t − 1 in the backward
induction process.

3.3. Causal Tree-Based Method

Tree-based methods proposed for deriving treatment recommendations have been
constructed using Classification and Regression Trees (CART) or Random Forests, thus
without modeling causal effects. However, to understand the impact of various therapeutic
interventions on a patient, it is crucial to investigate the causal consequences of these
treatments. Hence, ref. [21] introduced a causal tree approach designed to directly assess
treatment effects while providing a causal interpretation. This is achieved through the
implementation of a customized splitting criterion for decision trees.
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Causal tree learning, designed for estimating treatment effects, employs the optimiza-
tion of distinct criteria compared to decision tree learning, which focuses on prediction and
classification. While decision trees utilize splitting criteria focused on accuracy in predict-
ing a target variable, causal tree learning necessitates the incorporation of two essential
heuristics. The first heuristic pertains to the achievement of a balance between treated
and untreated individuals within each leaf for a given treatment. This balance is crucial to
accurately estimate outcome differences and subsequently calculate an unbiased treatment
effect estimation. The second heuristic entails the partitioning of leaves into distinct groups
with different outcomes. This division ensures that the accuracy of the estimated treatment
effects remains uncompromised.

The causal tree learning algorithm addresses these challenges by employing a modified
splitting criterion as a heuristic for determining optimal splits. Instead of relying on
conventional decision tree splitting measures such as Gini impurity and information gain,
causal tree learning employs the Expected Mean Squared Error for Treatment Effects
(EMSE). This metric is explicitly designed for the estimation of heterogeneous treatment
effects as introduced by [44].

Given the propensity score and patient medical history, at stage t, EMSE can be
formulated as:

EMSE =
T

∑
t=1

K

∑
i=1

πt(Ht)(Y(at)− Y∗(rt))
2 + τ2, (6)

where τ is the causal effect of treatment on outcome. It is the difference in the expected
outcome between patients who receive the treatment and patients who do not receive the
treatment. The value of τ is added to the squared difference between the true outcome
under the optimal treatment allocation rule and the outcome under the actual treatment
allocation rule. This means that the EMSE is increased by the amount of the causal effect of
treatment on the outcome. This is because the optimal treatment allocation rule is the one
that maximizes the difference in the expected outcome between patients who receive the
treatment and patients who do not receive the treatment.

To obtain the expected counterfactual mean, we first calculate the expected squared
error for each possible treatment rule given a patient history

Expected squared error =
K

∑
i=1

πt(Ht)(Yat − Y∗(rt))
2

We choose the treatment rule with the lowest expected squared error and calculate the
expected counterfactual mean for the chosen treatment assignment as

Expected counterfactual mean =
K

∑
i=1

πat Y
∗(rt),

where Y∗(rt) is the counterfactual outcome under the optimal treatment.
The EMSE (Expected Mean Squared Error) formula, applied when splitting causal tree

nodes for identifying dynamic treatment regimes, chooses the treatment assignment that
minimizes the anticipated squared error. This selection takes into account the current state
of the data, the estimated causal effect of treatment on the outcome, and the probabilities
of assigning each treatment. The optimal treatment assignment, therefore, minimizes the
expected squared error.

Ref. [21] uses the EMSE splitting criterion in the binary treatment option scenario, and we
modify it for our experiment as in Equation (6) above to fit it for the multi-treatment environment.

4. The Experimental Study: DTRs for Diabetic Kidney Disease

In this study, we perform an experimental analysis of data specifically centered around
patients exhibiting a distinct state of diabetic kidney disease (DKD) to deduce optimal treat-
ment strategies. The dataset under consideration was meticulously gathered from disparate
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prospective observational studies, notably, the PROVALID studies, encompassing a diverse
spectrum of chronic kidney disease (CKD) states as documented by [45,46].

4.1. The Dataset

The PROVALID (PROspective cohort study in patients with type 2 diabetes mellitus
for VALIDation of biomarkers) study prospectively collected data on 4000 individuals
with type 2 diabetes mellitus (DM2). The data encompass detailed information on the
participants’ medical history, physical examination findings, laboratory measurements,
and prescribed medications. Data collection was conducted sequentially, including the
documentation of treatment regimens [47]. Notably, treatment selection was restricted to a
predefined set of four medications. These are as follows:

■ Renin-Angiotensin-System-inhibitor (RASi)-only treatment;
■ A combination of the Sodium-Glucose Transporter 2 inhibitor (SGLT2i) and the

RASi treatment;
■ A combination of the Glucagon-Like Peptide 1 receptor agonist (GLP1a) and the

RASi treatment.
■ A combination of the MineraloCorticoid Receptor Antagonist (MCRa) and the

RASi treatment.

Patients receiving RASi monotherapy or RASi in combination with another drug either
remained on their current treatment or were transitioned to a different combination therapy.

In our experimental investigation, we consider a subset of patients from the PROVALID
dataset, which consists of longitudinal data (covariates of the dataset are listed in Appendix A
Table A1). The primary objective is to evaluate the performance of algorithms in determining
optimal treatment decisions. By only selecting patients having at least three consecutive
visits, the dataset comprises 241 patients, with 125 male and 116 female participants. Patient
histories are constructed using 30 selected variables derived from the longitudinal data with
the Bayesian Network approach as outlined in the next subsection. The selected variables are
displayed in Appendix B Table A2. The outcome for each stage is determined by the estimated
Glomerular Filtration Rate (eGFR) value recorded each visit, denoted by t = 0, 1, 2, 3 for the
baseline, year one, year two, and year three, respectively.

Treatments for diabetic kidney disease (DKD) are prescribed annually. At each stage,
patients are offered one of four treatment options: RASi, a combination of SGLT2i and RASi,
a combination of GLP1a and RASi, and a combination of MCRa and RASi.

During the first year, 92% of patients received a RASi-only drug, while in year 2, 81%
of patients were treated with RASi, and the rest with other drug combinations. At year 3,
patients who received RASi treatment decreased to 79%. The primary outcome of interest
is the estimated glomerular filtration rate (eGFR) observed after each treatment year. In
this context, a higher eGFR value is expected to indicate improvement in the disease.

4.2. Variable Selection

To address the high dimensionality of the PROVALID dataset and elucidate the net-
work of relationships underlying diabetic kidney disease (DKD) pathophysiology, we adopt
the approach of Bayesian Networks (BNs) [2,48] considering the properties of the Markov
Blanket (MB) of the target variable Y. BNs are a well-established method in the medical
field for representing and reasoning under uncertainty [49–51]. They are structured as
directed acyclic graphs (DAGs), where nodes represent variables within the system, and
directed arcs depict probabilistic dependencies between them.

BN estimation entails two key steps: structure learning, which identifies the network’s
topological structure, and parameter learning, which determines the probability distri-
butions. Notably, various data-driven approaches exist for BN estimation [52], many of
which allow the incorporation of prior knowledge from the literature and clinical practice.
This integration enhances model informativeness and mitigates the effects of data noise
and variability.
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Within a BN framework, the Markov Blanket (MB) of a node (variable) encompasses
directly dependent nodes. This approach to variable selection identifies the minimal
subset of variables containing all information necessary for predicting the target variable,
rendering additional variables redundant. Importantly, this methodology is theoretically
optimal, guaranteeing the selection of the most effective variable subset. This approach
not only achieves dimensionality reduction but also enhances model interpretability and
computational efficiency.

4.3. Experimental Setup

We perform our experimental evaluation by splitting the PROVALID dataset into a
70:20:10 train–test–validation split through stratified sampling using the drug option as
a subgroup, ensuring samples include patients from every subgroup. Since there is no
straightforward way to assess purity in tree-based reinforcement learning methods, we
include the concept of maximizing the counterfactual average result by utilizing a 10-fold
cross-validation estimator to determine the counterfactual mean outcome. Specifically, we
use nine sub-samples as training data and the remaining sub-sample as test data. We repeat
the process 10 times, with each sub-sample being the test data once.

Due to the absence of verifiable ground-truth data containing unequivocally accurate
information regarding true treatments, this study operates under the assumption that the
validation set serves as a surrogate ground-truth dataset. Consequently, the treatments
delineated at each stage of this set are postulated to represent medically validated optimal
interventions. This assumption is made in recognition of the inherent challenge posed by
the unavailability of an absolute reference dataset, and it serves as a pragmatic approach to
approximating the most efficacious treatments within the scope of this investigation. It is
acknowledged that this reliance on the validation set introduces an element of uncertainty,
and efforts have been undertaken to mitigate biases and ensure robustness in the analysis
and interpretation of the results.

In addition to the previously explained algorithms, we add the Q-learning with
Random Forest approach to compare these different tree-growing strategies with a classic
well-known tree-growing strategy.

Measurement Metrics

Diabetic kidney disease (DKD), a complication of diabetes, significantly impacts kid-
ney function. eGFR (estimated Glomerular Filtration Rate) serves as a critical indicator
of kidney health in DKD patients. Identifying optimal treatment regimes is essential for
managing eGFR decline and slowing disease progression. However, due to the complex
and dynamic nature of DKD, pinpointing the most effective treatment pathway for indi-
vidual patients can be challenging. To assess the effectiveness of machine learning models
discussed in Section 3 in the context of DKD treatment, we need robust evaluation metrics.
Here, we introduce two key metrics for evaluating their performance:

1. Expected Mean and Standard Deviation value of eGFR (E{Y∗(ropt)})—calculated
from the counterfactual eGFR under the estimated optimal treatment regime selected
at a given stage. This is the average eGFR value that we would expect if the patient
were to receive the estimated optimal treatment regime. A higher expected mean eGFR
suggests that the optimal treatment regime is likely to be more effective in preserving
kidney function. If the mean eGFR under the optimal treatment is significantly higher
compared to the expected mean eGFR under the current or other regimes, it indicates
that the optimal treatment is better at maintaining eGFR levels.

2. Optimal Classification Rate (Optimality Percentage)—a comprehensive comparison
with the corresponding ground-truth treatments, which reveals the percentage rate
of subjects accurately classified (assigned) into their respective optimal treatment
categories, providing a quantitative measure of the model’s accuracy and predictive
validity. In other words, this is the percentage of subjects correctly assigned to their
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optimal treatment categories based on the model’s predictions, compared to the
ground truth.

These two metrics are interconnected. A high optimality percentage indicates the
model is accurately assigning patients to the optimal treatment categories, which, ideally,
translates to better health outcomes reflected in a higher expected mean eGFR and lower
standard deviation. This signifies the effectiveness of the model in identifying treatment
regimes that maintain or improve kidney function.

4.4. Experimental Results

In this section, we present a comprehensive evaluation of algorithmic performance via
a series of experiments conducted to assess both single-stage and two-stage reinforcement
learning methodologies in determining optimal treatment decisions for individual patients.
In each distinct scenario, the training datasets are employed to ascertain the optimal regime.
Subsequently, the model is executed on the test datasets to validate the impartiality of
the estimated models. The validation set is then utilized to compute the optimality and
counterfactual mean, leveraging the known underlying truth.

4.4.1. Single Stage

In this scenario, we consider a single stage with T = 1 and four treatment options
with K = 4. The treatment A is denoted as 1, 2, 3, 4 to represent RASi, RASi + SGLT2i,
RASi + GLP1a, and RASi + MCRA treatment options, respectively.

Table 1 presents the performance measurements of all algorithms considered in a
single-stage scenario with baseline covariates. For the tree-based reinforcement learning
(T-RL), DTR-Causal Tree (DTR-CT), and DTR-Causal Forest (DTR-CF) algorithms that
rely on treatment assignment probabilities, we employ multinomial logistic regression
with the observed treatment as the dependent variable and all baseline covariates as
explanatory variables. Additionally, T-RL also requires the specification of an outcome
regression model for E(Y|X), for which we choose a Random Forest regression model. The
experimental results presented in the table compare the performance of the methods in
terms of the optimality percentage (Opt%) and the expected mean eGFR E{Y∗(ropt)} with
their respective standard deviations.

Table 1. Evaluation results for one-stage scenario. Opt% presents the mean of the percentage of
patients correctly classified to their optimal treatments on the validation set. E{Y∗(ropt)} represents
the empirical mean and empirical standard error estimates of the expected counterfactual outcome
under the estimated optimal regime.

Method Optimality (Opt)% E{Y∗(ropt)}
Q-learning with Random Forest (Q-RF) 51 60.6 (18.5)
DTR-Causal Tree (DTR-CT) 76.5 64 (16.4)
DTR-Causal Forest (DTR-CF) 78 65.8 (16.04)
Stochastic tree-based reinforcement learning (SL-RL) 73 63.8 (16.1)
Tree-based reinforcement learning (T-RL) 61 61.3 (17.7)

Among these methods, the DTR-Causal Forest (DTR-CF) demonstrates the highest
optimality percentage at 78%, indicating its superior capability in assigning optimal treat-
ments compared to other methods. This method also shows a high expected mean outcome
of 65.8 with a relatively low standard deviation of 16.04, further signifying its consistency
and reliability of how the optimal treatment from this algorithm slows down eGFR decline.
DTR-Causal Tree (DTR-CT) follows closely with an optimality of 76.5% and an expected
mean outcome of 64, suggesting that while slightly less optimal than DTR-CF, it remains a
strong contender in terms of performance and stability (standard deviation of 16.4).

Stochastic tree-based reinforcement learning (SL-RL) and tree-based reinforcement
learning (T-RL) present moderate performance with optimality percentages of 73% and
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61%, respectively. The expected mean outcomes for these methods are 63.8 (standard
deviation 16.1) for SL-RL and 61.3 (standard deviation 17.7) for T-RL, indicating that
while they perform reasonably well, their variability is slightly higher compared to DTR-
based methods, further indicating the unreliable effect of the treatments assigned by
the algorithms.

Q-learning with Random Forest (Q-RF) shows the lowest optimality percentage at
51% and an expected mean outcome of 60.6, with a higher standard deviation of 18.5. This
suggests that Q-RF is less effective in assigning optimal treatments and exhibits greater
variability in its outcomes compared to the other methods evaluated.

In summary, the DTR-Causal Forest (DTR-CF) and DTR-Causal Tree (DTR-CT) meth-
ods outperform the other methods in terms of both optimality and expected mean outcomes,
with DTR-CF being the most stable and reliable method. The SL-RL and T-RL methods
provide moderate performance, while Q-RF demonstrates the least optimality and highest
variability, indicating its relative inefficiency in this context.

4.4.2. Two Stage

We extend our experiment to encompass four treatment options in a two-stage scenario.
To establish a baseline, we utilize the initial two years of clinical observations, incorporating
sixty covariate values. Subsequently, we delineate the disease progression from the second
year to the third year as the first stage, characterized by the utilization of thirty covariate
values. Similarly, the transition from year three to year four constitutes the second stage,
with an analogous configuration of thirty covariates. This staged approach allows for
a nuanced examination of the evolving dynamics in the clinical data over the specified
temporal intervals, facilitating a comprehensive understanding of the treatment landscape
for patients within the designated study period.

The results described in Table 2 confirm that DTR-CF has better performance in
assigning optimal treatments to patients. The DTR-Causal Forest (DTR-CF) algorithm
demonstrates the highest optimality percentage at 85%, indicating its superior efficacy
in identifying optimal treatments across the two stages. Correspondingly, it achieves the
highest expected mean outcome of 78.03 with a standard deviation of 13.9, showcasing
both its stability and consistency. The DTR-Causal Tree (DTR-CT) algorithm follows closely
with an optimality percentage of 82.3% and an expected mean outcome of 74, along with a
standard deviation of 14.2, confirming its strong performance and stability in this multi-
stage context.

Table 2. Evaluation results for the two-stage scenario. Opt% presents the mean of the percentage of
patients correctly classified to their optimal treatments on the validation set. E{Y∗(ropt)} represents
the empirical mean and empirical standard error estimates of the expected counterfactual outcome
under the estimated optimal regime.

Algorithm Optimality (Opt)% E{Y∗(ropt)}
Q-learning with Random Forest (Q-RF) 57 68.34 (16.5)
DTR-Causal Tree (DTR-CT) 82.3 74 (14.2)
DTR-Causal Forest (DTR-CF) 85 78.03 (13.9)
Stochastic tree-based reinforcement learning (SL-RL) 73 72.43 (15.81)
Tree-based reinforcement learning (T-RL) 71.5 69.7 (16.2)

Stochastic tree-based reinforcement learning (SL-RL) and tree-based reinforcement
learning (T-RL) show moderate performance levels with optimality percentages of 73% and
71.5%, respectively. SL-RL achieves an expected mean outcome of 72.43 with a standard
deviation of 15.81, while T-RL achieves an expected mean outcome of 69.7 with a standard
deviation of 16.2. These results indicate that while these algorithms perform reasonably well
in a two-stage reinforcement learning setting, their variability is slightly higher compared
to the DTR-based methods.
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The Q-learning with Random Forest (Q-RF) algorithm shows the lowest optimality
percentage at 57% and an expected mean outcome of 68.34, with a standard deviation of
16.5. This suggests that Q-RF is less effective in identifying optimal treatments and exhibits
greater variability in its outcomes compared to the other algorithms evaluated, particularly
in a multi-stage context.

The two-stage scenario generally shows improved performance metrics across all
methods. The optimality percentages and expected mean outcomes are higher in the
two-stage setting compared to the one-stage setting, indicating that the additional decision
stage contributes to better optimization.

5. Conclusions

This study evaluated the effectiveness of various tree-based reinforcement learning
algorithms in identifying optimal, multi-stage multi-treatment regimes for patients with
diabetic kidney disease (DKD). We applied a multi-stage, multi-treatment framework
on a clinical observational dataset. To assess the algorithms’ ability to learn optimal
treatment sequences and predict their impact on patient outcomes, we utilized two key
metrics: the optimality percentage and expected counterfactual outcome with its standard
deviation. The optimality percentage metric reflects the model’s accuracy in assigning
patients to the treatment regime that would have resulted in the best possible outcome,
compared to a predefined ground truth (e.g., expert-recommended treatment plan or
data from clinical trials). A high optimality percentage indicates the model’s ability to
replicate established best practices or identify even more effective treatment pathways.
The Expected Counterfactual Outcome with Standard Deviation metric delves into the
counterfactual scenario, which represents the predicted outcome (e.g., eGFR) that a patient
would experience if they receive the treatment regime identified by the model as optimal.

The experimental results in Tables 1 and 2 indicate that both DTR-CF and DTR-CT
algorithms hold significant promise for optimizing treatment regimes in diabetic kidney
disease (DKD). These algorithms achieved the highest optimality percentages, indicating
their superior accuracy in assigning patients to the most beneficial multi-stage treatment
sequences compared to other methods. Additionally, the low standard deviations in the ex-
pected eGFR for both DTR-CF and DTR-CT suggest consistent treatment recommendations
across the patient population. This consistency implies that these algorithms are likely to
lead to similar improvements in kidney function for a broader range of DKD patients.

Furthermore, incorporating the Bayesian Network methodology significantly en-
hanced the analysis by enabling us to identify the most relevant variables influencing
treatment decisions for DKD patients. Unlike traditional methods that might analyze all
available variables, Bayesian Networks leverage the concept of Markov Blankets. Relevant
variable clusters represent sets of variables that shield a specific variable from the influence
of all other variables in the network. By focusing on the variables within a patient’s Markov
blanket for treatment decisions, the Bayesian Network approach streamlines the analysis
and reduces the risk of incorporating irrelevant or redundant factors.

This focus on truly relevant variables strengthens the study’s robustness in two key
ways. First, it minimizes the potential for overfitting, which can occur when models become
too reliant on specific details within the dataset and struggle to generalize to new data.
Second, it clarifies the causal relationships between variables, providing a more transparent
understanding of how different factors interact and influence treatment outcomes.

Looking forward, exploring these algorithms on larger datasets and including addi-
tional clinical factors could further refine treatment recommendations for DKD patients.
Additionally, employing advanced model selection techniques can pinpoint the most im-
pactful features, leading to even more precise and robust findings.

Overall, this study contributes to the development of personalized treatment strate-
gies for diabetic kidney disease by showing the potential of tree-based reinforcement
learning algorithms.
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Appendix A. Covariates in the PROVALID Study

Table A1. Covariates in the PROVALID study.

Variable ACRONYM Variable DESCRIPTION

GE Gender

HEIGHT Height

ADMD Age at DM2 diagnosis

AHDT Age at HT diagnosis

SDMAV Severity of DM2 at first visit in PROVALID

DDMAV DM2 duration at the first visit in PROVALID (first for the patient sequence)

DDMT Duration of DM2 pharmacological treatment at first visit in PROVALID
(first for the patient sequence)

HTDAV HT duration at first visit in PROVALID (first for the patient sequence)

SHTAV Severity of HT at visit in PROVALID (+1 for each HT drug)

DHTT Duration of HT pharmacological treatment at firt visit in PROVALID
(first for the patient sequence)

PHDRB Personal history of diabetic retinopathy at baseline

PHRDB Personal history of renal disease at baseline

PHHFB Personal history of heart failure stage III or IV at baseline

https://dc-ren.eu/
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Table A1. Cont.

Variable ACRONYM Variable DESCRIPTION

PHCADB Personal history of coronary artery disease (any angina, myocardial
infarction, coronary intervention) at baseline

PHPADB Personal history of peripheral artery disease (Claudicatio, amputation,
etc) at baseline

PHCVDB Personal history of cerebrovascular disease (stroke, TIA, PRIND)

SMOK Smoking

FHRD Family history of renal disease

FHHT Family history of hypertension

FHDM Family history of type 2 diabetes

FHCVD Family history of cardiovascular disease

FHM Family history of malignancy

BW Body weight [kg]

SBP Systolic BP

DBP Diastolic BP

AGEV Age at visit

BMI Body Mass Index

MABP Mean arterial blood pressure

PP Pulse pressure

BG Blood glucose

HBA1C HbA1C

SCR Serum creatinine

TOTCHOL Serum cholesterol (total)

LDLCHOL Serum cholesterol (LDL)

HDLCHOL Serum cholesterol (HDL)

STRIG Serum triglycerides

SPOT Serum potassium

HB Hemoglobin

SALB Serum albumin

CRP CRP

EGFR eGFR

UACR mean UACR

LDLHDLR LDL/HDL cholesterol ratio

EVLDLCHOL (new) estimated VLDL based on the Friedewald equation—only for
STRIG < 400

ELDLCHOL (new) estimated LDL based on the Friedewald equation—only for
STRIG < 400

ELDLHDLR (new) LDL/HDL cholesterol ratio based on data—when
available—or estimation

UCREA Urinary creatinine

CA_CL_num Calcium concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

PHOS_CL_num Phosphate concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max
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Table A1. Cont.

Variable ACRONYM Variable DESCRIPTION

CST3_num Cystatin C concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

CPEP_CL_num C-peptide concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

FFA_CL_num Free Fatty Acids concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

UA_CL_num Uric Acid concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

SO_CL_num Sodium concentration in urine—NA below min and above max replaced
by 0.5 ∗ min and 1.5 ∗ max

POT_CL_num Potassium concentration in urine—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

CHL_CL_num Chloride concentration in urine—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

UNA24H 24 h urinary sodium excretion

NIDR New incidence of diabetic retinopathy (DR)

NIMI New incidence of non fatal myocardial infarction (NFMI)

NIS New incidence of non fatal stroke (NFS)

NIHF New incidence of heart failure (stage III/IV)

NICAD New incidence of coronary artery disease (CAD)

NICVD New incidence of cerebrovascular disease (CD)

NIPAD New incidence of peripheral artery disease (PAD)

AHBB Beta-receptor blockers

AHCA Calcium antagonists

AHCAAH Centrally acting antihypertensives

AHARB Alpha-receptor blockers

AHDV Direct vasodilators

ADSU Sulfonylureas

ADPPI Meglitinides (glinides)

ADGL DPPIV inhibitors or GLP1 analogs

ADGLIT Thiazolinediones (glitazones)

ADMET Biguanides (metformin)

ADAGI Alpha-Glucosidase inhibitors

ADI Insulins

LLCFA Clofibric acid derivative

LLSTAT Statins

LLOTHER Other lipid-lowering drugs (ezetimibe, omega 3 acid)

APASA ASA

APTPD Thienopyridine derivatives

APDIP Dipyridamole

APGPI GPIIb/IIIa inhibitors

APOTHER Other platelet aggregation inhibitors (ticagrelor)

VDAC Alfacalcidol
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Table A1. Cont.

Variable ACRONYM Variable DESCRIPTION

VDCCF Colecalciferol

EPODA DarbEpoetin alfa

EPOEA Epoetin alfa

EPOEB poetin beta

IO Oral iron

PBCB Calcium-based

DLOOP Loop diuretics

DTH Thiazides

DPS Potassium-saving diuretics

AC Analgesics combinations

ASC Single-component analgesics

TAH Group “TAH”

TAD Group “TAD”

TADI TADI

TLL Group “TLL”

TEPO Group “TEPO”

TDIU Group “TDIU”

MMP7_LUM_num Matrix Metallopeptidase 7 concentration in serum—NA below min
and above max replaced by 0.5 ∗ min and 1.5 ∗ max

VEGFA_LUM_num Vascular Endothelial Growth Factor A concentration in serum—NA
below min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

AGER_LUM_num
Advanced Glycosylation End-Product Specific Receptor concentration in
serum—NA below min and above max replaced by 0.5 ∗ min and
1.5 ∗ max

LEP_LUM_num Leptin concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

ICAM1_LUM_num Intercellular Adhesion Molecule 1 concentration in serum NA below
min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

TNFRSF1A_LUM_num TNF Receptor Superfamily Member 1A concentration in serum—NA
below min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

IL18_LUM_num Interleukin 18 concentration in serum—NA below min and above
max replaced by 0.5 ∗ min and 1.5 ∗ max

DPP4_LUM_num Dipeptidyl Peptidase 4 concentration in serum—NA below min and
above max replaced by 0.5 ∗ min and 1.5 ∗ max

LGALS3_LUM_num Galectin 3 concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

SERPINE1_LUM_num Serpin Family E Member 1 concentration in serum—NA below min
and above max replaced by 0.5*min and 1.5*max

ADIPOQ_LUM_num
Adiponectin, C1Q And Collagen Domain Containing concentration
in serum—NA below min and above max replaced by 0.5 ∗ min
and 1.5 ∗ max

EGF_MESO_num_norm
epidermal growth factor concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min
and 1.5 ∗ max
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Table A1. Cont.

Variable ACRONYM Variable DESCRIPTION

FGF21_MESO_num_norm
fibroblast growth factor 21 concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min
and 1.5 ∗ max

IL6_MESO_num_norm Interleukin 6 concentration in urine normalized by UCREA—NA
below min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

HAVCR1_MESO_num_norm
hepatitis A virus cellular receptor 1 concentration in urine
normalized by UCREA—NA below min and above max replaced
by 0.5 ∗ min and 1.5 ∗ max

CCL2_MESO_num_norm
C-C motif chemokine ligand 2 concentration in urine normalized
by UCREA—NA below min and above max replaced by
0.5 ∗ min and 1.5 ∗ max

MMP2_MESO_num_norm
matrix metallopeptidase 2 concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min
and 1.5 ∗ max

MMP9_MESO_num_norm
matrix metallopeptidase 9 concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min
and 1.5 ∗ max

LCN2_MESO_num_norm lipocalin-2 concentration in urine normalized by UCREA—NA
below min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

NPHS1_MESO_num_norm
NPHS1 adhesion molecule, nephrin concentration in urine
normalized by UCREA—NA below min and above max replaced
by 0.5 ∗ min and 1.5 ∗ max

THBS1_MESO_num_norm
thrombospondin 1 concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min
and 1.5 ∗ max

Appendix B. Covariates Selected by Bayesian Network

Table A2. Covariates after variable selection using Bayesian network in the PROVALID study.

Variable ACRONYM Variable DESCRIPTION

GE Gender

DLOOP Loop diuretics

SCR Serum creatinine

CST3_num Cystatin C concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

PHRDB Personal history of renal disease at baseline

EGF_MESO_num_norm
epidermal growth factor concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min and
1.5 ∗ max

FGF21_MESO_num_norm
fibroblast growth factor 21 concentration in urine normalized by
UCREA—NA below min and above max replaced by 0.5 ∗ min and
1.5 ∗ max

HB Hemoglobin

HDLCHOL Serum cholesterol (HDL)

ICAM1_LUM_num Intercellular Adhesion Molecule 1 concentration in serum NA
below min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

LEP_LUM_num Leptin concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max
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Table A2. Cont.

Variable ACRONYM Variable DESCRIPTION

MMP7_LUM_num Matrix Metallopeptidase 7 concentration in serum—NA below min
and above max replaced by 0.5 ∗ min and 1.5 ∗ max

SPOT Serum potassium

TNFRSF1A_LUM_num TNF Receptor Superfamily Member 1A concentration in serum—NA
below min and above max replaced by 0.5 ∗ min and 1.5 ∗ max

UACR mean UACR

CRP CRP

LDLCHOL Serum Cholesterol (LDL)

HBA1C HbA1C

BG Blood glucose

ADMET Biguanides (metformin)

GE Gender

UCREA Urinary creatinine

DBP Diastolic BP

LGALS3_LUM Galectin 3 concentration in serum—NA below min and above max
replaced by 0.5 ∗ min and 1.5 ∗ max

ADMD Age at DM2 diagnosis

STRIG Serum triglycerides

TOTCHOL Serum cholesterol (total)

ADIPOQ_LUM_num
Adiponectin, C1Q, And Collagen Domain Containing concentration
in serum—NA below min and above max replaced by 0.5*min and
1.5*max

AGEV Age at visit

BMI Body Mass Index
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