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Abstract

The fields of pattern recognition and machine learning are concerned with the auto-
matic discovery of regularities in data and with the use of these regularities to take
actions such as perform a data classification into different categories (supervised learn-
ing) or separates data into meaningful groups (unsupervised learning). This thesis is
focused on semi-supervised learning (SSL) algorithms, a family of methods lying in
between supervised and unsupervised learning. The main characteristic of SSL algo-
rithms is that they exploit at the same time the structure of the data (their features) and
the available labeling information, to estimates the boundaries of the classes/clusters.
For this reason, they are particularly suitable in a regime of scarcity of labeled data
or in the cases whether the data annotation is expensive or time-consuming. Here, in
particular, we will exploit a recent algorithm rooted in the evolutionary game-theory,
named “Graph Transduction Games” (GTG). The GTG algorithm explicitly models a
semi-supervised learning problem as a non-cooperative game where players represent
the data and the strategies the possible labels. A player chooses a strategy and receives
a payoff which is proportional to the choice of the other players and to their similarities.
The game is iterated until all the players have chosen their best strategy, and no one
has any incentive to change his/her choice. Such a game is modeled through a dynam-
ical system, shifting the established paradigm from local optima of a cost function to
an equilibrium condition in a non-cooperative game. During the labeling process, the
similarities between all the data are taken into account, creating a context in which sim-
ilar points affect each other in deciding the final labeling assignment. The neighboring
players (data), hence the context, help in situations in which intrinsic ambiguities in
the data may lead to inconsistent class assignments. Within this thesis, the GTG algo-
rithm and the context in which players are playing will be explored into applications
like bioinformatics, natural language processing, computer vision, and pure machine
learning problems.
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Abstract

Il riconoscimento di pattern e l’apprendimento automatico riguardano la scoperta au-
tomatica delle regolarità nei dati e dell’uso di queste regolarità per intraprendere azioni
quali la classificazione degli stessi in diverse categorie (apprendimento supervisionato)
o la separazione dei dati in gruppi significativi (apprendimento non supervisionato).
Questa tesi è incentrata sugli algoritmi di apprendimento semi-supervisionato, una
famiglia di metodi che si colloca tra l’apprendimento supervisionato e l’apprendimento
non supervisionato. La caratteristica principale degli algoritmi semi-supervisionati è
che sfruttano allo stesso tempo la struttura dei dati (le loro features) e le informazioni
di etichettatura disponibili, per stimare le zone di separazione delle classi o dei clusters.
Per questo motivo, sono particolarmente adatti in un regime di scarsità di dati etichettati
o nei casi in cui l’annotazione sia particolarmente dispendiosa in termini economici o
di tempo. Nello specifico, in questa tesi, sfrutteremo un recente algoritmo basato sulla
teoria dei giochi evoluzionistica, denominato ”graph transduction games”. Tale algo-
ritmo modella esplicitamente problemi di apprendimento semi-supervisionato come un
gioco non-cooperativo dove i gicatori sono i dati e le strategie le possibili etichette. I
giocatori ricevono un guadagno proporzionale alle similarità tra i giocatori stessi e alla
strategia scelta da loro e dai loro avversari. Il gioco prosegue finche tutti i giocatori non
avranno scelto la loro miglior strategia (etichetta) e non cambieranno piu idea. Tale
gioco viene modellato attraverso un sistema dinamico, spostando quindi il paradigma
dall’ottimizzazione di una funzione di costo alle condizioni di equilibrio in un gioco
non-cooperativo. Durante il processo di etichettatura, le similarità tra tutti i dati ven-
gono prese in considerazione, creando un contesto in cui punti simili si influenzano a
vicenda nel decidere l’assegnazione finale dell’etichettatura. I giocatori (dati) vicini tra
loro, e quindi il contesto, sono di aiuto in situazioni in cui le ambiguità intrinseche nei
dati possono portare a risultati incoerenti. All’interno di questa tesi, l’algoritmo GTG e
il contesto in cui i giocatori stanno giocando saranno esplorati in applicazioni come la
bioinformatica, l’elaborazione del linguaggio naturale, la visione artificiale, e problemi
di puro apprendimento automatico.

5



6



Contents

1 Introduction 17
1.1 Thesis Contributions and Structure . . . . . . . . . . . . . . . . . . . 18
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Semi-supervised learning 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Transductive vs Inductive learning . . . . . . . . . . . . . . . 23

2.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Graph-based models . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Low Density Region-based models . . . . . . . . . . . . . . 25
2.2.3 SSL and Deep Neural Network . . . . . . . . . . . . . . . . . 26

3 Graph Transduction Games 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Graph Transduction and Game Theory . . . . . . . . . . . . . . . . . 31

3.3.1 Graph Transduction . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Graph Transduction Game . . . . . . . . . . . . . . . . . . . 31

I Methodological Contributions 35

4 Unsupervised Domain Adaptation 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Domain Adaptation with GTG . . . . . . . . . . . . . . . . . . . . . 39
4.3 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.3 Comparing Methods . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Office 31 dataset . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Office-Caltech 10 dataset . . . . . . . . . . . . . . . . . . . . 45

7



CONTENTS CONTENTS

4.4.3 Overall analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Context-Aware Non-Negative Matrix Factorization 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 NMF Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Datasets description . . . . . . . . . . . . . . . . . . . . . . 53
5.4.2 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Games graph . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.4 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . 54
5.4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Transductive Label Augmentation for Improved Deep Network Learning 59
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Label Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 65

II Applicative Contributions 67

7 Protein Function Prediction 69
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Automatic Function Prediction Game . . . . . . . . . . . . . . . . . 71

7.2.1 Network of interactions . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Function similarity graph . . . . . . . . . . . . . . . . . . . . 73
7.2.3 Strategy space . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.4 Payoff Function . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3.2 State-of-the-art methods compared with GTG . . . . . . . . 77
7.3.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 78
7.3.4 GTG variants and settings . . . . . . . . . . . . . . . . . . . 78

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4.1 Cross-validated experimental results . . . . . . . . . . . . . . 79
7.4.2 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8



CONTENTS CONTENTS

8 Multimodal Verbe Sense Disambiguation 85
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.3 Verb Sense Disambiguation with GTG . . . . . . . . . . . . . . . . . 87

8.3.1 Feature descriptors . . . . . . . . . . . . . . . . . . . . . . . 87
8.3.2 Graph Transduction Games for VSD . . . . . . . . . . . . . . 88

8.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.6 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . . . 91

9 Ancient Coin Classification 93
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.3 Ancient Coin Classification using Graph Transduction Game . . . . . 96
9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Conclusions 101

9



CONTENTS CONTENTS

10



List of Figures

2.1 Difference between induction and transduction. Image from [155] . . 22
25figure.caption.16
2.3 The dashed line represents the hyperplane considering a standard in-

ductive SVM trained on the labeled instances. The solid line is the
separator corresponding to the transductive SVM, in which the unla-
beled data are also considered during the parameter optimization. Fig-
ure from [72]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 An example of a graph convolutional neural network. Image from [82]. 27

3.1 From left to right the starting point of the dynamical system and the
point of convergence. Evolution of the mixed strategy associated to a
player during the GTG process. As the dynamic is iterated, the entropy
progressively decreases and the distribution peaks toward the correct
class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 From left to right the starting point of the dynamical system and the
point of convergence. In this example the dynamics start from three
different classes, while in the end, thanks to the refinement of the neigh-
boring mixed strategies the correct class is chosen. . . . . . . . . . . 34

4.1 Pipeline of the proposed method. . . . . . . . . . . . . . . . . . . . . 38

5.1 The pipeline of the proposed game-theoretic refiner method: a dataset
is clustered using NMF obtaining a partition of the original data into k
clusters. A pairwise similarity matrix A is constructed on the original
set of data and the clustering assignments obtained with NMF. The
output of NMF (W) and the matrix A are used to refine the assignments.
The matrix W is also used to initialize the strategy space of the games.
In red the wrong assignment that is corrected after the refinement. Best
viewed in color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 On the left side a confusion matrix produced by NMF on the ORL
dataset and on the right side the ones produced by our method. . . . . 56

5.3 On a and b the confusion matrices produced by NMF and GTNMF on
Pie-Expr. On c the std dev of the objects merged together by GTNMF
and on d the std dev of two random clusters combined together. . . . . 56

11



LIST OF FIGURES LIST OF FIGURES

6.1 The pipeline of our method. The dataset consists of labeled and un-
labeled images. First, we extract features from the images, and then
we feed the features (and the labels of the labeled images) to graph
transduction games. For the unlabeled images, we use a uniform prob-
ability distribution as ’soft-labeling’. The final result is that the unla-
beled points get labeled, thus the entire dataset can be used to train a
convolutional neural network. . . . . . . . . . . . . . . . . . . . . . 61

6.2 Results obtained on different datasets and CNNs. Here the relative
improvements with respect to the CNN accuracy is reported. As can be
seen, the biggest advantage of our method compared to the other two
approaches, is when the number of labeled points is extremely small
(2%). When the number of labeled points increases, the difference
on accuracy becomes smaller, but nevertheless our approach continues
being significantly better than CNN, and in most cases, it gives better
results than the alternative approach. . . . . . . . . . . . . . . . . . . 65

7.1 The picture dissects the payoff function in order to understand what are
the single components (three graphs on top) and what is happening to
the assignment during the iteration of the dynamical system (eq 3.5).
Consider the following situation: two similar proteins A and C (A ∈
NC) in which C has no prior on the functions (eq. 7.4) while A has
the functions 2, 4 assigned to it (eq. 7.3). In the first iteration we can
already note that the labeling for C changes and becomes more similar
to A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Performance of GTG α and GTG δ and top-four competing methods,
on Danxen by varying the ratio of labeled examples in the training set.
First row: average Fmax results with CC, MF and BP GO ontologies.
Second row: average AUPRC results with CC, MF and BP GO on-
tologies. Error bars refer to the standard deviation across 20 hold-out
repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Performance of GTG α and GTG δ and top-four competing methods,
on Dros by varying the ratio of labeled examples in the training set.
First row: average Fmax results with CC, MF and BP GO ontologies.
Second row: average AUPRC results with CC, MF and BP GO on-
tologies. Error bars refer to the standard deviation across 20 hold-out
repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.1 Pipeline of the algorithm considering both labeled (green border) and
unlabeled images (black border). . . . . . . . . . . . . . . . . . . . . 86

8.2 GOLD results for text data, cnn and cnn+text varying the number of labeled points in
comparison with Gella et al. approach (circles). . . . . . . . . . . . . . . . . . 89

8.3 PRED results for text data, cnn and cnn+text varying the number of labeled points in
comparison with Gella et al. approach (circles). . . . . . . . . . . . . . . . . . 90

12



LIST OF FIGURES LIST OF FIGURES

9.1 Example images of two classes from the Roman coin dataset [163] that
is used in this work. First row: Images of class 387/1; Second row:
Images of class 300/1 (listed with Crawford [24] reference number). . 94

9.2 Two selected misclassifications of the proposed approach based on
GTG. First column: test image; Second column: another image from
the same class; Third column: image of selected class by the proposed
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

13



LIST OF FIGURES LIST OF FIGURES

14



List of Tables

4.1 Comparative analysis on Office-31 dataset (ResNet-50 features) . . . 44

4.2 Comparative analysis on Office-31 dataset (ResNet-50 features) . . . 44

4.3 Comparative analysis on Office-Caltech dataset (SURF features) . . . 45

4.4 Comparative analysis on Office-Caltech dataset (ResNet-50 features) . 46

5.1 Datasets description. F = the dataset has been pruned as in [87]. . . . 53

5.2 Performance of GTNMF compared to several NMF approaches. The
mean and std deviation of 20 runs are reported. . . . . . . . . . . . . 55

6.1 The results of our algorithm, compared with the results of linear SVM
and CNN, when only 2% of the dataset is labeled. We see that in all
three datasets and two different neural networks, our approach gives
significantly better results than SVM or CNN. . . . . . . . . . . . . . 63

6.2 The results of our algorithm, compared with the results of linear SVM
and CNN, when 5% of the dataset is labeled. . . . . . . . . . . . . . . 63

6.3 The results of our algorithm, compared with the results of linear SVM
and CNN, when 10% of the dataset is labeled. . . . . . . . . . . . . . 64

7.1 Data base and type of data used to construct the integrated protein similarity
network for DanXen, SacPomDic and em Dros . . . . . . . . . . . . . . . 75

7.2 Number of proteins and GO terms with at least 2 annotations in each
protein network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Variants of GTG . The column name contains the name used for the
particular setting in the chapter; neighbour size refers to the sec. 7.2.1;
symmetric if yes the neighbourhood is symmetrized; prior if yes the
k-prior defined in sec. 7.2.3 to initialize the strategy space is used,
otherwise no informative prior (uniform distribution) is used. . . . . . 79

7.4 Fmax results across the terms of the CC, MF and BP ontology for
DanXen, Dros, SacPomDic, Human and Mouse integrated protein net-
works. For each ontology and network the best results are highlighted
in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

15



LIST OF TABLES LIST OF TABLES

7.5 Mean AUPRC results averaged across the terms of the CC, MF and BP
ontology for DanXen, Dros, SacPomDic Human and Mouse integrated
protein networks. For each ontology and network the best results are
highlighted in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1 Results considering modern DNN . . . . . . . . . . . . . . . . . . . . . . . 90

9.1 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . 98

16



Chapter 1

Introduction

This thesis is centered on semi-supervised learning algorithms and their usage in dif-
ferent fields of computer science. The semi-supervised learning (SSL) is a branch of
machine learning which lies in between unsupervised and supervised learning [19].
The goal of SSL is to achieve better separation boundaries for a classifier/clustering
algorithm by exploiting, at the same time, the structure of both labeled and unlabeled
points. Thus, SSL is particularly useful when the amount of labeled data is smaller,
compared to the unlabeled one. Different SSL algorithms are explored within this
thesis (see Chapter 2), with a particular emphasis on the graph-based ones (see Sec-
tion 2.2.1) since are the direct competitors of the chosen method for this work. The
graph-based SSL methods represent both labeled and unlabeled points in terms of an
un/weighted graph, while the labeling information is spread into the graph exploiting
its connectivity. Graph-based methods have also the advantage of modeling the interac-
tion between pairs of data points through the graph edges, creating an explicit context
where data interact or not. In SSL we made a distinctions between transductive and
inductive algorithms (see Section 2.1.2): the first refers to methods that directly label
the unlabeled points using both labeled and unlabeled data jointly, while the latter re-
quires the learning of mapping (a function) between data representation (features) and
labels to perform the inference. The graph-based methods mainly belong to the family
of the transductive algorithm. In particular, the emphasis of this thesis is pointed to
a recent graph-based SSL algorithm, called called ”Graph Transduction Game” [35]
(GTG). The GTG proved to be competitive or even outperforming traditional graph-
based semi-supervised learning algorithms (see Part I, Part II and in particular the
Chapter 4). The GTG is a semi-supervised algorithm that casts a transductive process
into a non-cooperative game (see Chapter 3). In such a game, the players are divided
into labeled and unlabeled ones representing the points of a dataset. The strategies that
each player can choose are the possible labels, while the payoffs (the gain received by a
player when playing a particular strategy) are proportional to the similarity between the
opponents. Indeed, the goal of each player is to maximize his/her reward considering
the choices made by the opponents. The more two players are similar, the more they
will support each other in picking the same strategy (class). The final outcome of the
game, which is the assignment between players and strategies, is obtained through a

17



CHAPTER 1. INTRODUCTION 1.1. THESIS CONTRIBUTIONS AND STRUCTURE

dynamical system named replicator dynamic (RD). The RD simulates the interactions
between players and their preferences toward specific strategies. The game is played
until all the players are satisfied with their chosen strategy (label), and no one wants
to change the choice. The condition above is known as Nash Equilibrium (NE). The
final labeling is then the results of the interaction between all the players, explicitly
considering the context (neighbors) in which each player is playing.

1.1 Thesis Contributions and Structure
This thesis contributes the field in different directions, both methodological and ap-
plicative. From a methodological point of view, we fruitfully embed game-theory in
known methods based on SSL algorithms, obtaining remarkable results. In particu-
lar, we show the power and simplicity of modeling SSL problems in terms of non-
cooperative games and that the paradigm shift from traditional function minimiza-
tion/maximization to equilibrium condition in a dynamical system is solid and leads
to superior performances. We outperform previous state-of-the-art methodologies in
tasks like Unsupervised Domain Adaptation (Chapter 4), Non-Negative matrix factor-
ization (Chapter 5) and we propose a new model to train deep neural network in the
absence of huge amount of labeled data (Chapter 6). From an applicative perspective,
we showed that transductive methods based on games could be applied successfully
in the domains of bioinformatics, natural language processing, and computer vision.
In particular, we faced the highly complex tasks of protein function prediction (Chap-
ter 7), the disambiguation of verbs using textual and visual features (Chapter 8) and, in
the context of computer vision, offering a newer perspective in the task of ancient coin
recognition (Chapter 9).
The organization of the thesis is the following: there are two introductory chapters on
semi supervised learning, and on the graph transduction game method. In the Chap-
ter 2, we briefly review what is semi-supervised learning, its properties, and some
known models and algorithm in the state of the art. The Chapter 3 deepen the algo-
rithm used among this thesis, the GTG. Then the contributions are divided into two
parts, the methodological (see Part I) and the applicative (see Part II), respectively.

1.2 Publications
The results of this ”PhD journey” are resumed here.

International Journals (peer reviewed)

J4 M. Denitto, M. Bicego, A. Farinelli, S. Vascon, and M. Pelillo. Biclustering with
dominant sets. Pattern Recognition, 2019. under revision

J3 S. Aslan, S. Vascon, and M. Pelillo. Two Sides of the Same Coin: Improved An-
cient Coin Classification Using Graph Transduction Games. Pattern Recognition
Letters, 2019. accepted for publication
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Chapter 2

Semi-supervised learning

2.1 Introduction
Semi-supervised learning (SSL) is a class of machine learning algorithms which lies in
between unsupervised and supervised methods. Unsupervised learning regards tech-
niques in which data have no labels associated, and a typical goal is to inspect the
hidden structure of the data. For example, perform partitioning on dataset such that
similar data are into clusters [37, 122] or find a meaningful low-dimensional represen-
tation in which the core features emerge [73]. On the other side, the aim of supervised
learning methods aim at learning a mapping between data represented in terms of mul-
tidimensional features and their labels. Once trained, the algorithms in this class are
able to infer classes to objects for which a label is not provided. Examples of such
methods are the support vector machines (SVM) [156], k nearest neighbors [31], arti-
ficial neural networks, including recent deep-learning techniques [55].
The goal of SSL is to exploits, at the same time, the labeled and the unlabeled portions
of a dataset to accomplish a particular task, for example, clustering or classification.
The chapter is organized as follows: in Section 2.1.1 we review the core assumptions
of SSL, in Section 2.2 we report the more interesting method in the literature, with
particular emphasis on the graph-based ones.

2.1.1 Assumptions
The semi-supervised learning algorithm lies on particular assumptions that must hold
to make them possible to work.

Smoothness assumption

In the presence of a smoothness assumption, we assume that given two samples x1
and x2, their classes y1 and y2 are tightly related to the closeness of the samples itself.
We can say that the output of a classifier changes smoothly with the distance of the
samples. Indeed, this assumption holds particularly in the case of supervised learning,
allowing us to generalize to possibly infinite test samples. In the case of SSL, the
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Figure 2.1: Difference between induction and transduction. Image from [155]

assumption mentioned above can be rephrased in this way: ”If two points x1, x2 in
a high-density region are close, then so should be the corresponding outputs y1, y2”
[19]. This assumption implies that points belonging to the same cluster (a high-density
region in the feature space) are likely to belong to the same class. If points are separated
by a region with low-density, the output of an SSL algorithm (label or regression)
should be different.

Cluster assumption

The cluster assumption states the following: ”If points are in the same cluster, they
are likely to be of the same class.” [19]. Even if this assumption could sound similar
to the smoothness ones, here we are pointing to the notion of continuity rather than
smoothness. In fact, it is unlikely that a densely populated continuous set of objects
can be divided into different labels. In other words, objects having different labels
cannot be part of the same cluster. The cluster assumption can be seen as a special case
of the smoothness assumption [19].

Manifold assumption

Here we assume that data intrinsically lies on a manifold of lower dimension compared
to its original input representation. This assumption is important to avoid the course of
dimensionality1 problem, for which most of the statistical methods suffer.
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2.1.2 Transductive vs Inductive learning
The transductive learning was introduced by Vapnik in [48] with the idea of predicting
the labels directly for a test set, using an annotated training set. On the other hand,
an inductive process learns a model/function from the available training data, and later
perform the classification on the unlabeled data (see Figure 2.1). Although the two
approaches might look similar, they are indeed radically different because in the induc-
tive approach a general rule is learned and the test data is seeing only during inference.
Indeed, an inductive process allows generalizing to test dataset of potentially infinite
size since a general rule is learned, while a transductive one requires the entire labeled
and unlabeled data to perform inference on the unlabeled part.

2.2 Models
In the following sections, we present different semi-supervised learning algorithms
models with a particular emphasis on ones based on graph since more related to the
aim of this thesis.

2.2.1 Graph-based models
Modeling an SSL task in terms of graph is quite natural, in particular if a transduc-
tive paradigm holds. In the literature methods that use such structure are abundant,
here we report the well-known ones, the label propagation, the label spreading and
the harmonic function while the core method of this thesis, the ”graph transduction
game” [35], is deepened in the dedicated Chapter 3. In Chapter 4 the aforementioned
algorithms are empirically compared, showing the superiority of [35].
The common idea of graph-based methods is to build a graph in which nodes are both
labeled and unlabeled data points, and edges represent pairwise similarities. Label-
ing information, associated with labeled nodes, are then propagated through the graph
structure to assign a label to the unlabeled vertices. In general, graph-based methods
hold the cluster assumption for obvious reasons2 and, if the similarity function between
nodes represents the manifold where they lie (for example a path-based similarity),
then we can even state that, the particular method under exams, holds the manifold
assumption.

Label Propagation

The label propagation algorithm has been proposed by Zhu et al [181]. The underlying
idea is to propagate labeling information from a set of (small) labeled points to the
unlabeled ones. The propagation is performed considering a graph-based structure in
which the edges weight between pairs reflects their similarity. Like other graph-based
methods, the main assumption is that closer data points tend to have similar class labels.

1The space grows exponentially with the number of dimensions, hence we need an exponentially number
of samples to have a statistical coverage for the entire space. Furthermore, in high-dimensional space the
distances become meaningless.

2similar nodes tend to lies in close proximity thus forming clusters
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Being more formal, given a set of labeled points L = {(x1, y1), (x2, y2), . . . , (xl, yl)} and
a set of unlabeled ones U = {(xl+1, yl+1), . . . , (xl+u, yl+u)} the goal is to assign a class to
each xi ∈ U. Here, xi and yi are the d-dimensional descriptor (feature) and the label
of the i-th point, respectively. The labeling information is represented as a probability
vector over the possible classes. Here is assumed that the number of classes C is
known in advance, hence yi ∈ ∆C the C-dimensional simplex. Then, a weighted graph
G = (V, E, ω) is build on top of the data points. Here, V = L ∪ U, E ⊆ V × V is the set
of edges and ω : (i, j) ∈ E → R≥0. The weighting function ω quantifies the similarity
between pair of nodes:

ωi, j = e−
||xi−x j ||

2
2

σ2 (2.1)

The labels are propagated to all nodes through the edges, considering their weight. The
more a pair of node is similar the more the label will flows. A transition matrix T of
size ((l + u) × (l + u)) accounts for the likelihood of going from a node to another

Ti, j = P( j→ i) =
ωi, j∑l+u

k=1 ωk, j
(2.2)

Thus Ti, j is the probability of jumping from node j to i. The union of all labeling
assignment yi forms a stochastic matrix Y of size (l + u) × C. The propagation takes
into account the similarities between pair of nodes and their labeling preferences.
The algorithm is then composed by the following three steps

1 Compute Y ← T × Y

2 Normalize Y such that each row adds-up to 1

3 Reset the rows of Y belonging to labeled samples to one-hot vector in the correct
class.

which are repeated until convergence of matrix Y .

The final classification is then performed by argmax the rows of matrix Y .

Label Spreading

The label spreading algorithm [180] is similar in spirit to label propagation. A similar-
ity graph G = (V, E, ω) is constructed on top of both labeled and unlabeled data points,
following the same schema of [180]. Then the normalized Laplacian of the similarity
graph is computed:

S = D−1/2WD−1/2

where W is the pairwise similarity matrix of the nodes and Dii =
∑n

j=1 ωi, j.
The iterative procedure is slightly different from [180] and is composed as follow:

F(t + 1) = αS F(t) + (1 − α)Y

where S is the normalized Laplacian, Y is the stochastic matrix containing the labeling
assignment and F maintain the current labeling assignment, F(t = 0) = Y .
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a) b) c) d)

Figure 2.2: From left to right: a) the case in which no labeled data points are used
E(y) = 0, b) then a pair of labeled data are injected. The energy in presence of labeled
data points decreases (from b-d) until the minimum, E(y) = 4 in b) to E(y) = 1 in d) 3

During each update of F, every vertex i ∈ V receives the information from its direct
neighbors (first term of F: αS F(t)), while keeping the initial labeling information (sec-
ond term of F: (1 − α)Y). The parameter α has the role of balancing how much the
initial labeling information weighs compared to the one gained from the graph.
At convergence of F the final labeling is obtained by its argmax.

Gaussian Fields and Harmonic Functions

The Gaussian Fields and Harmonic Functions method [183], like in the previous
graph-based methods, relies on a similarity graph constructed on labeled and unlabeled
data points. The rationale here is that ”...we want unlabeled points that are nearby in
the graph to have similar labels.” The resulting method is similar to a nearest neigh-
bor classification approach, where the nearest labeled examples are computed in terms
of a random walk on the weighted graph. Differently from the previous algorithms, a
quadratic energy function representing nearby nodes, is constructed and further mini-
mized.

E(y) =
1
2

∑
i

∑
j

ωi j(yi − y j)2

here ωi j is the weight of the edge connecting node i and j. The variable y ∈ {0, 1}|V |
represents the assignment of all nodes to a class.
Indeed, if we consider the weights ω ∈ {0, 1} and no labeled data, the minimum of the
energy is obtained when all the nodes have the same class. If a certain amount of la-
beled information is injected, the energy at the beginning is high while decreasing until
a point of separation between classes is reached. See figure 2.2 for an example. The
authors further relax the binary constraint on y and proposes a closed form solution.

2.2.2 Low Density Region-based models
The underlying idea of models within this class is that the decision boundary lies in
regions with low density. The motivation is the following, a low-density region is an
area in which fewer samples fall, which means that it is an area that separates different
classes/clusters. To give an example, consider the task of recognizing ”cats” between
”chairs”. A sample which falls in between the two classes should be similar to both a
”cat” and a ”chair”, which is indeed something pretty unlikely to happen, that is why
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Figure 2.3: The dashed line represents the hyperplane considering a standard inductive
SVM trained on the labeled instances. The solid line is the separator corresponding
to the transductive SVM, in which the unlabeled data are also considered during the
parameter optimization. Figure from [72].

the region between the two classes will be sparsely populated.
The most common approach falling in this category is the usage of the notion of max-
imum margin, like in the Support Vector Machines (SVM). A well-known algorithm
within this family is the Transductive Support Vector Machine (TSVM) [71].

Transductive SVM

A Transductive support vector machine (TSVM) implements the idea of transductive
learning including test points in the computation of the margin. See figure 2.3 for an
example. The algorithm starts by training an (inductive) SVM on the training set which
is used to assign labels to an unlabeled set. The unlabeled points with the new labels are
then used in conjunction with the training set to retrain the margin. This is performed
multiple times while slowly increasing the weights of the unlabeled set.

2.2.3 SSL and Deep Neural Network
Recently, semi-supervised learning has seen a revival within the deep learning (DL)
field [119]. The motivations are mainly due to the fact that DL requires a lot of labeled
data, while SSL roots his assumption in a strong imbalance between labeled informa-
tion and unlabeled ones. For this reason, scientists start asking whether SSL can be
applied to DL architectures to learn models in scarcity of labeled data. In this sec-
tion, we report some recent approaches that exploit semi-supervised techniques to train
deep-neural network classifiers or that used directly unlabeled data during training:

Pseudo-labeling

Pseudo labels [94] is one of the simpler, and widely used techniques to use unlabeled
data to train a deep neural network model or, more in general, any inductive model.
The idea is to use the small amount of labeled information to train a classifier (DNN,
SVM etc.), then use the trained model to predict the classes of the unlabeled samples.
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Figure 2.4: An example of a graph convolutional neural network. Image from [82].

The newly labeled set is added to the original (small) training set, and the model is
further retrained.

Label Propagation and DNN Learning

In [69], the authors propose to use the label propagation algorithm to generate pseudo-
labels and further label the unlabeled part of a dataset. Then, the newly labeled dataset
is used to train a deep neural network.
This approach is similar to ours (see Chapter 6) with two main differences: i) the
usage of label propagation algorithm instead of the graph transduction game and ii) a
weighting mechanism for each sample which considers at the same time the confidence
towards a particular label and the classes numerosity accounting for class unbalances.
Then the weighing mechanism is used during training in the loss function

SSL and Graph Neural Networks

Another exciting area of research in which SSL is growing is the Graph Neural Net-
work [167, 179], and in particular, the Graph Convolutional Neural Network (GCNN)
[82]. The GCNNs are a very powerful neural network architecture to deal with data
structured in terms of a graph and to produce useful feature representations of its nodes.
Here we briefly report the work proposed in [82] as a seminal work combining graph
neural network and semi-supervised learning. Given a graph G = (V, E), where V is
the set of vertices of size n = |V | and E the edges connecting pair of vertices, a GCNN
takes as input a feature matrix X of size n × d0 (d0 is the dimension of the features)
and an adjacency matrix A of size n × n representing the node connectivity. Each hid-
den layer produces as output a new feature representation for all nodes Z (an n × d1

where d1 is the number of output features per node). Then this representation is aggre-
gated to generate the features for the next layer. By stacking multiple hidden layers,
the generated features become increasingly more abstract capturing the structure of the
graph.
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Ladder Network

The Ladder Network [127] (LN) combines both unsupervised and supervised learning
to jointly train a deep neural network (mainly autoencoders) using labeled and un-
labeled data. The underlying principle of the LN is to add an additional decoder to
a supervised neural network classifier in order to exploits the unlabeled data. A LN
is mainly composed by an encoder-decoder structure in which the encoder is a feed-
forward network that we want to train in a supervised way. Then a LN is made of
two encoder paths, the first clean and the latter corrupted by a Gaussian noise at each
encoder layer. Each layer of the two branches are then connected to a decoder, with
the role of reconstructing the input signal, this is the unsupervised part of the LN. The
sum of the differences between the output of the clean reconstruction and the corrupted
ones corresponds to the cost of the unsupervised branch. The cost of the supervised
branch is calculated from the output of the corrupted encoder and the output target. The
sum of the two costs represents the loss of the network which is used for the training
with the backpropagation algorithm.
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Chapter 3

Graph Transduction Games

3.1 Introduction
In this chapter, the Graph Transduction Game (GTG) algorithm is deepened and dis-
sected in its components. In Section 3.2 we provide a brief introduction to game-theory,
being the foundation of the aforementioned algorithm, while in Section 3.3 the method
is explained in detail.

3.2 Game Theory
Game theory (GT) was introduced by [162] in order to develop a mathematical frame-
work able to model the essentials of decision making in interactive situations. In its
normal-form representation, it consists of a finite set of players I = {1, .., n}, a set of
pure strategies for each player S = {s1, ..., sm}, and a utility function u : S 1 × S 2 ... ×
S n → R, which associates strategies to payoffs. Here we assume that all the players
have the same set of strategies S , but in the more general formulation this is not manda-
tory. Each player can adopt a strategy in order to play a game and the utility function
depends on the combination of strategies played at the same time by the players in-
volved in the game, not just on the strategy chosen by a single player. An important
assumption in game theory is that the players try to maximize their utility u. Fur-
thermore, in non-cooperative games, the players choose their strategies independently,
considering what other players can play in order to find the best strategy profile to em-
ploy in a game. Nash Equilibria (NE) [117] represent the key concept of game theory
and can be defined as those strategy profiles in which each strategy is the best response
to the strategy of the co-player and in which no player has the incentive to unilaterally
deviate from his decision (the players are in equilibrium). The NE of a game exists in
two forms: i) pure-strategy and ii) mixed-strategy. In a pure-strategy NE, each player
adopts only one strategy while in the latter case is a probability distribution among the
possible strategies. A mixed strategy for a player is defined as a stochastic column
vector x = (x1, . . . , xm) ∈ ∆m, where m is the number of pure strategies and each com-
ponent xh denotes the probability that a particular player chooses its h-th pure strategy.
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Each mixed strategy corresponds to a point in the m-dimensional simplex ∆m defined
as,

∆m =
{
x ∈ R :

m∑
h=1

xh = 1, xh ≥ 0,∀h
}
, (3.1)

whose corners correspond to pure strategies (pure strategy NE can be seen as an ex-
tremal case of mixed-strategies).
In a two-player game, a strategy profile can be defined as a pair (xi, x j) where xi ∈ ∆m

and x j ∈ ∆m. The expected payoff for this strategy profile is computed as:

u(xi, x j) = xT
i Ai jx j

u(x j, xi) = xT
j A jixi (3.2)

where Ai j (conversely A ji) is the m×m payoff matrix of the game between player i and
j. Each entry (h, k) of the payoff matrix Ai j corresponds to the gain received by player
i when he plays strategy h against strategy k.

The strategy space of each player i is defined as a mixed strategy xi, as defined
above. The payoff corresponding to the h-th pure strategy can be computed as:

u(xh
i ) =

n∑
j=1

(Ai jx j)h (3.3)

while the expected payoff of the entire mixed-strategy for player i is:

u(xi) =

n∑
j=1

xT
i Ai jx j (3.4)

where n is the number of players with whom i plays and Ai, is their payoff matrix of
the game. Given these two functions we can find the NE of the game, and to this end
we will use a result in the domain of Evolutionary Game Theory (EGT). The EGT,
introduced by [108], is a branch of game theory which aims to use the notions of GT
to model the evolution of behavior in animal conflicts. In EGT we have a set of agents
which play games repeatedly with their neighbors and update their beliefs on the state
of the system choosing their strategy according to what has been effective and what
has not in previous games. This loop is repeated until the system converges, which
means that no player needs to update its strategies because there is no way to do better.
To find those states, which correspond to the NE of the game, we use the replicator
dynamics [165]:

xh
i (t + 1) = xh

i (t)
u(xh

i )
u(xi)

∀h ∈ S (3.5)

The replicator equation allows better than average strategies to grow at each itera-
tion, hence each iteration can be considered as an inductive learning process, in which
the players learn from the others how to play their best strategy in a determined context
(see bottom part of Fig.7.1). The complexity of each step of the replicator dynamics
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(Eq.3.5) is quadratic but there are different dynamics that can be used with our frame-
work to solve the problem more efficiently, such as the recently introduced infection
and immunization dynamics [131] that has a linear-time/space complexity per step and
it is known to be much faster than, and as accurate as, the replicator dynamics.

3.3 Graph Transduction and Game Theory

3.3.1 Graph Transduction
Graph transduction is a semisupervised learning technique that aims at estimating a
classification function defined over a graph of labeled and unlabeled data points. Mod-
els based on this technique use a graph to represent the data, with nodes corresponding
to labeled and unlabeled points and edges encoding the pairwise similarity among each
pair of nodes. This technique works propagating the label information from labeled
nodes to unlabeled, exploiting the graph structure.

It was introduced by [156] and motivated by the fact that it is easier than inductive
learning, because inductive learning tries to learn a general function to solve a specific
problem, while transductive learning tries to learn a specific function for the problem
at hand.

Graph transduction consists of a set of labeled objects (xi, yi) (i = 1, 2, ..., l), where
xi ∈ R

n the real-valued vector describing the object i, and yi ∈ (1, ...,m) its label, for
i ∈ {1, 2, . . . , n}, and a set of k unlabeled objects (xl+1, ..., xl+k). Rather than finding a
general rule for classifying future examples, transductive learning aims at classifying
only (the k) unlabeled objects exploiting the information derived from labeled ones.

Within this framework, it is common to represent the geometry of the data as a
weighted graph. For a detailed description of algorithms and applications on this field
of research, named graph transduction, we refer to [181]. Formally we have a graph
G = (V, E,w) in which V is the set of nodes representing both labeled and unlabeled
points, E is the set of edges connecting the nodes of the graph and w : E → R≥0 is
a weight function assigning a non-negative similarity value to each edge ε ∈ E. The
task of transduction learning is to estimate the labels of the unlabeled points given the
pairwise similarity among the data points and a set of possible labels.

3.3.2 Graph Transduction Game
The graph transduction game (GTG) algorithm [35] interprets the graph transduc-
tion task as a non-cooperative multiplayer game with a solid mathematical founda-
tion rooted in game theory. Two attractive aspects of GTG drive our choice to this
algorithm: i)it does not impose any constraint on the pairwise similarity function used
to weight the graph and ii) it allows the injection of prior knowledge on the data la-
beling. Classical graph transduction algorithms are based on the homophily princi-
ple [72, 177, 183], that simply states that similar data points are expected to have the
same class. We found this assumption too strong for the more general transductive
task and for this reason we extended it using the approaches proposed in [149,150] that
is reminiscent of the Hume association principle [66], that states that similar objects
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are expected to have similar properties and hence to belong to similar classes. With
this approach we are able to exploit two sources of information: the similarity among
the data points, as in classical graph transduction approaches and the similarity among
their classes. With the latter source of information it is possible to build a structural
classifier that produce consistent labeling of the data according to information provided
by an ontology that encodes both information about the classes and their reciprocal re-
lations. In the Chapter 7 we will show that these information can be easily embedded
in a game-theoretical framework as part of the payoff function.

In graph transduction game, objects of a dataset are represented as players and their
labels as strategies. In synthesis, a non-cooperative multiplayer game is played among
the objects, until an equilibrium condition is reached, the Nash Equilibria [117]. Given
a set of players I = {1, . . . , n} and a set of possible pure strategies S = {1, . . . ,m}:

1 mixed strategy: a mixed strategy xi is a probability distribution over the possible
strategies (labels) for player (object) i. Then xi ∈ ∆m, where

∆m =

 m∑
h=1

xi(h) = 1, xi(h) ≥ 0, h = {1, . . . ,m}


is the standard m-dimensional simplex and xi(h) is the probability of player i
choosing the pure strategy h.

2 mixed strategy space: it corresponds to the set of all mixed strategies of the
players x = {x1, . . . , xn}

3 utility function: it represents the gain obtained by a player when it chooses a
certain mixed strategy, in particular u : ∆m → R≥0.

Here, it is assumed that the payoffs associated to each player are additively separable,
thus the algorithm is a member of polymatrix games [62]. In GTG, the aforementioned
definitions turns into the following:

Strategy space The strategy space x is the starting point of the game and contains all
the mixed strategies. The space x can be initialized in different ways based on the fact
that some prior knowledge exists or not. Here, we distinguish the initialization based
on the type of object, labeled or unlabeled. For the labeled object, since their class is
known, a one-hot vector is assigned:

xi(h) =

1, if i has label h
0, otherwise.

(3.6)

. For the unlabeled objects all the labels have the same probability of being associated
to an object, thus:

xi(h) =
1
m

h = {1, . . . ,m} (3.7)
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Payoff function The utility function reflects the likelihood of choosing a particular
label and considers the similarity between labeled and unlabeled players. Similar play-
ers influence each other more in picking one of the possible strategies (labels). Once
the game reaches an equilibrium, every player play their best strategies which corre-
spond to a consistent labeling [111] not only for the player itself but also for the others.
Under equilibrium conditions the label of player i is given by the strategy played with
the highest probability. Formally, given a player i and a strategy h:

ui(h) =
∑
j∈U

(Ai jx j)h +

m∑
k=1

∑
j∈Lk

Ai j(h, k) (3.8)

ui(x) =
∑
j∈U

xT
i Ai jx j +

m∑
k=1

∑
j∈Lk

xT
i (Ai j)k (3.9)

where Lk is the set of labeled points with class k, ui(x) is the utility received by player i
when it plays the mixed strategy xi and Ai j ∈ R

m×m is the partial payoff matrix between
players i and j. As in [35], Ai j = Im×ωi j whereωi j is the similarity between player i and
j and Im is the identity matrix of size m × m. The similarity function between players
(objects) can be given or computed starting from the features. Given two objects i, j
and their features fi, f j, their similarity is computed following the method proposed
by [174]:

ω(i, j) = exp
{
−
|| fi − f j||2

σi σ j

}
(3.10)

where σi corresponds to the distance between i and its 7-nearest- neighbors. Similarity
values are stored in matrix W.

Similarity sparisification In the cases that the data are particularly noisy, the above
similarities can be sparsified using, for example, a k-NN graph. The payoffs become:

Ni = k-nearest neighbors of player i (3.11)

ui(h) =
∑
j∈Ui

(Ai jx j)h +

m∑
k=1

∑
j∈Li

k

Ai j(h, k) (3.12)

ui(x) =
∑
j∈Ui

xT
i Ai jx j +

m∑
k=1

∑
j∈Li

k

xT
i (Ai j)k (3.13)

whereUi ⊆ Ni andLi
k ⊆ Ni are the unlabeled and labeled (of class k) nearest neighbors

of i, respectively.

Finding Nash Equilibria The last component of our method is an algorithm for
finding equilibrium conditions in this game. Here the Replicator Dynamics are used
(see Eq 3.5):

xi(h)t+1 = xi(h)t ui(h)t

ui(xt)
(3.14)
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where xi(h)t is the probability of strategy h at time t for player i.
The RD are iterated until convergence, this means either the distance between two
successive steps is zero (formally ||xt+1 − xt ||2 ≤ ε) or a certain amount of iterations is
reached (See [123] for a detailed analysis). In practical applications one could set the
ε to a small number but typically 10-20 iterations are sufficient.

The GTG algorithm has commonalities with harmonic labeling of graphs [9] that
should be further deepened. In fact, [9] considers the label of a node in a graph as the
average labeling of its neighbors. Indeed, this is similar in the spirit of GTG since the
final classification is the result of direct-neighbors labeling agreement. This relation
deserves further deepening. Harmonic analysis has been extensively studied in the past
also in other fields, for example in ranking methods [25].

Figure 3.1: From left to right the starting point of the dynamical system and the point
of convergence. Evolution of the mixed strategy associated to a player during the
GTG process. As the dynamic is iterated, the entropy progressively decreases and the
distribution peaks toward the correct class.

Figure 3.2: From left to right the starting point of the dynamical system and the point of
convergence. In this example the dynamics start from three different classes, while in
the end, thanks to the refinement of the neighboring mixed strategies the correct class
is chosen.
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Chapter 4

Unsupervised Domain
Adaptation

Reference: S. Vascon, S. Aslan, A. Torcinovich, T. van Laarhoven, E. Marchiori, and
M.Pelillo. Unsupervised Domain Adaptation using Graph Transduction Games. IEEE
International Joint Conference on Neural Networks, IEEE, 2019. Oral presentation

The content of this chapter is taken from the above reference.

Unsupervised domain adaptation (UDA) amounts to assigning class labels to the unla-
beled instances of a dataset from a target domain, using labeled instances of a dataset
from a related source domain. In this chapter we propose to cast this problem in a
game-theoretic setting as a non-cooperative game and introduce a fully automatized
iterative algorithm for UDA based on graph transduction games (GTG). The main ad-
vantages of this approach are its principled foundation, guaranteed termination of the
iterative algorithms to a Nash equilibrium (which corresponds to a consistent labeling
condition) and soft labels quantifying uncertainty of the label assignment process. We
also investigate the beneficial effect of using pseudo-labels from linear classifiers to
initialize the iterative process. The performance of the resulting methods is assessed
on publicly available object recognition benchmark datasets involving both shallow
and deep features. Results of experiments demonstrate the suitability of the proposed
game-theoretic approach for solving UDA tasks.

4.1 Introduction
The success of deep learning in computer vision classification tasks relies on the avail-
ability of a large amount of images annotated with their ground truths. However,
manual label annotation is typically an expensive process and may contain wrong an-
notations. In order to overcome these limitations, Semi-Supervised Learning (SSL)
approaches have been developed, usually involving the training of a classifier from a
large dataset with plenty of unlabeled data and substantially less annotated data. In
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Figure 4.1: Pipeline of the proposed method.

some cases however, it is expensive to obtain unlabeled data too, resorting instead on
data coming from a different source. This problem is best formulated in the Unsuper-
vised Domain Adaptation setting, where unlabeled data comes from a different related
distribution than that of the labeled data. Specifically, an annotated source dataset is
exploited to infer the labels of an unlabeled target dataset from a different, related do-
main. Due to the tight relation between SSL and UDA problems, it is not uncommon
to approach them with similar techniques (cf. [59] and [58] for example).

In this chapter we investigate the use of a game-theoretic graph-transductive ap-
proach, known as Graph Transduction Games, for domain adaptation (GTDA), which
has been successfully applied in SSL tasks such as in [34], [157], [151] and [5], and
we show that this approach, paired with a preprocessing step, provides overall im-
provements in three standard domain adaptation cases. Specifically we propose a fully
automatized pipeline to perform UDA with GTG, comparing our results with those of
recent methods, trying also to include prior information provided by a simple classi-
fier, i.e. Logistic Regression. We perform also a comparison of GTG with other three
standard graph-transductive algorithms. The picture that arises from the experimental
results is promising and suggests considering graph transduction as a key-module when
addressing UDA problems. The choice of using GTG as a transduction algorithm for
DA has been motivated by its theoretical properties which guarantee: i) a consistent
labeling of unknown samples at convergence, ii) the output of soft-labelings (probabil-
ity distribution over the classes) for further refinements, iii) the possibility of injecting
prior knowledge at the beginning of the transductive process.

The main contributions of this work are the following:

• We adopt the theory of label consistency of graph transduction games to propose
a principled technique for UDA. This will offer a novel perspective on the UDA
problem.

• We propose a parameter-free method for UDA based on game theory which by-
passes intensive training phase.

• We reach state-of-the-art performance results on publicly available object recog-
nition domain adaptation tasks.
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The chapter is organized as follows. To make the chapter self-contained, in Sec.
8.3.2 we introduce the GTG algorithm. In Sec. 4.2 we describe in detail the proposed
method. In Sec. 4.3 we discuss the experimental setting and the competing methods,
while in Sec. 4.4 we report and analyze our experimental results. Finally, Sec.4.5
concludes the chapter.

4.1.1 Related work

Many methods for UDA have been introduced. Here we focus on the recent approaches
used in our comparative assessment.

A number of DA models align the distributions of features from source and tar-
get domains by reducing their discrepancy. For instance, CORrelation ALignment
(CORAL) [144] finds a linear transformation that minimizes the distance between the
covariance of source and target. Subspace Alignment (SA) [38] computes a linear map
that minimizes the Frobenius norm of the difference between the source and target do-
mains, which are represented by subspaces described by eigenvectors. Feature Level
Domain Adaptation (FLDA) [85] models the dependence between the two domains
by means of a feature-level transfer model that is trained to describe the transfer from
source to target domain. FLDA assigns a data-dependent weight to each feature rep-
resenting how informative it is in the target domain. To to do it uses information on
differences in feature presence between the source and the target domain.

Recently, end-to-end UDA methods based on deep neural networks have been
shown to perform better than the aforementioned approaches. However they need large
train data [139], use target labels to tune parameters [101] and are sensitive to (hyper-
)parameters of the learning procedure [50]. Therefore, current state of the art based
on this approach start from pre-trained network architectures. Various state-of-the-art
methods considered in our comparative analysis use the ResNet pre-trained network,
like Deep Domain Confusion (DDC) [152], Deep Adaptation Network (DAN) [99],
Residual Transfer Networks (RTN) [101], Reverse Gradient (RevGrad) [49, 50], and
Joint Adaptation Networks (JAN) [100].

4.2 Domain Adaptation with GTG

In this section we present our method, GTDA. We will explain how to cast the unsu-
pervised domain adaptation problem in graph-transduction game setting. We consider
given labeled (L) and unlabeled (U) datasets from the source and target domain, respec-
tively. Then, labels from source data are propagated to the target instances by playing a
non-cooperative multiplayer game in which the players are the objects (instances) and
the labels the possible strategies.

The interaction between the players are represented in terms of a weighted undi-
rected graph in which the edges are weighted by the similarity of player pairs, hence
how much they will affect each others. In particular, the process is illustrated in Fig.
8.1 and explained in the following steps:
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Joint feature standardization Given a dataset of features D and two domains ds, dt ∈

D (source and target respectively), we normalize their features jointly as a pre-processing
step. We perform two types of normalization on the union of the features: std features
are scaled by their standard deviation or z-score subtract the mean and scaled by their
standard deviation. Depending whether the sparsity of the features should be preserved
or not, we pick the std or z-score, respectively.

Initialization of the mixed strategy profile The initial mixed strategy profile of the
players, denoted as x(0) represents the starting point of the game. If prior knowledge
is available, we can leverage it for its initialization. In our experimental settings, we
explore two different initializations: i) in which no prior information is exploited (no-
prior in the following) and ii) where an output from a logistic regression classifier is
used (+LR). In the latter case, the logistic regression classifier has been trained for
each pair of jointly normalized domains in a dataset. The training has been performed
considering only the features belonging to the source, in a 2-fold cross validation set-
ting, with an hyperparameter search for the C variable in the following log-scale range
C =

[
10−3, 104

]
. We end up with a LR model Mi, j for each pair of domains di and d j in

a dataset. Given an unlabeled observation, the LR model outputs a probability distribu-
tion over the classes which is later used as prior knowledge in the strategy space. The
choice of having as prior a probability distribution for each unlabeled object, instead of
a one-hot vector, is mandatory since the one-hot vector cannot be updated by the GTG
algorithm hence the performances would have been the same as the LR itself.

Algorithm 1 GTDA algorithm
Input: source feature matrix FS ∈ R

|S |×d, target feature matrix FT ∈ R
|T |×d, one-hot

source labels YS ∈ ∆|S |×m, minimum tolerance ε, maximum number of iterations K.
Output: target soft predictions YT ∈ ∆|T |×m

1: N = |S | + |T |
2: F̂S = normalize(FS ) . Sec. III.a
3: F̂T = normalize(FT ) . Sec. III.a
4: PT = LR(F̂S ,YS , F̂T ) . Get log. reg. priors for FT

5: x(0) =

[
YS

P̂T

]
. Init. Mixed Strategy Prof. Sec. III.b

6: W = [ω(i, j)]i j . Eq. 7.6
7: Ŵ = sparsify(W) . Sec. III.d
8: tol = +∞, t = 0
9: while tol ≥ ε and t < K do

10: for i = 1, . . . ,N do
11: xi(t + 1) =

xi(t)�(Ŵx(t))i

xi(t)(Ŵx(t))T
i

. Eq. 3.5

12: tol = ‖x(t + 1) − x(t)‖2
13: t = t + 1
14: YT = x(t − 1)|S |:N,1:m . Get the target predictions

40



4.3. EXPERIMENTAL SETTING CHAPTER 4. UNSUPERVISED DOMAIN ADAPTATION

Computation of the affinity matrix The core of the GTG is stored in the affinity
matrix W (payoff of the players), so its computation requires particular care. In our
experimental setting, we decided to rely on the following standard similarity kernel:

ω(i, j) =

exp
{
−

d( fi, f j)2

σiσ j

}
if i , j

0 else
(4.1)

where fi, f j are the features of observations i and j respectively, d( fi, f j) is the cosine
distance between features fi and f j. Here, motivated by [174] and [151], we set the
scaling parameter σi automatically, considering the local statistics of the neighborhood
of each point. Accordingly to [174], the value of σi is set to the distance of the 7-th
nearest neighbour of observation i.

Affinity sparsification The sparsification of the graph plays an important role in the
performances of the algorithm. Indeed, filtering out the small noisy similarities which
may bias the utilities in Eq. 7.6, would prevent incorrect class labelings.

Here, we follow a statistical connectivity principle in random graph, which states
that a graph is connected if each node has at least k = blog2(n)c + 1 nearest neigh-
bours [161]. The rationale of this choice is that the labels in GTG are propagated from
the labeled elements to the unlabeled ones. If the graph is not connected the propa-
gation might get stuck at a certain point. This sparsification ensures that the graph is
connected, hence all the nodes are reached at the equilibrium condition of the dynam-
ical system (cf. Eq3.5). The sparsification is performed for each node i independently
considering the distance value of the k-NN as a threshold for the other nodes in the
graph. In order to obtain a symmetric neighborhood, we include the node i in the
neighbourhood of j (and viceversa) if one of the two is in the neighborhood of the
other. Indeed, alternative sparsification methods can be considered [36, 47, 142, 143].
For example, in [36] the authors proposed a principle sparsification method based on
the notion of edge resistance, a measure accounting for edges importance. The under-
lying idea is, given a weighted graph, obtain a graph with a reduced set of edges such
that it maintains the same properties of the original one. This sparsification method
can be effectively applied to our algorithm and its effect will be deepened in our future
works.

Execution of GTG Once the affinity matrix is computed and the mixed strategy pro-
file is initialized, GTG can be finally played up to convergence. The final probabilities,
which determine then the labels for the unlabeled observations, correspond to the adap-
tation from sources to targets.

In algorithm 1 we present the pseudo-code of the entire method.

4.3 Experimental Setting
To validate our approach, we perform experiments on two publicly available popular
datasets for object recognition domain adaptation: the Office-Caltech 10 [54] and the
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Office 31 [133].

4.3.1 Datasets
In the following we present a short description of each datasets used for our experi-
ments.

Office-31 Office-31 [133] is a dataset containing 31 classes divided in 3 domains:
Amazon (A), DSLR (D) and Webcam (W). Office-31 has a total of 4110 images, with a
maximum of 2478 images per domain. In this dataset we use deep features extracted
from the ResNet-50 architecture [60] pretrained on ImageNet.

Office-Caltech Office-Caltech [54] consists in observations taken from the common
classes of Office 31 and Caltech256 (10 in total) and are divided in 4 image domains,
namely the ones of Office-Caltech and the additional Caltech (C). The features we
consider are of two kinds: 800 SURF features [8], which we preprocess by z-score
standardization, and deep features in the same fashion as the previous dataset.

4.3.2 Evaluation Criteria
We evaluate and report the accuracy on the target domain for each adaptation. Accuracy
is computed as the fraction of the correctly labeled target instances. Furthermore, we
report the average accuracy per methods and the top-3 performing by different coloring
(best performing, second and third). Along the analysis of the results we highlight also
the number of hit time that a method perform better than the competitors.

4.3.3 Comparing Methods
In order to assess our method in a broad context, the performances of GTDA has
been compared with both standard domain adaptation methods, recent deep-learning
based algorithm and baselines classifiers (SVM and LR). Furthermore, we assess the
effectiveness of GTG, replacing it with other GT methods (Label Propagation, Label
Spreading and Gaussian Fields and Harmonic Functions).

In our experiments, since we are dealing with more than two classes, we used one-
vs-all linear SVM and multi-class logistic regression. More details on the methods we
experimented for comparative analysis are given below.

Shallow Domain Adaptation Methods

The most prevalent domain adaptation methods accomplish domain adaptation task
by reducing the discrepancy between source and target distributions via computing a
feature transformation. We chose CORrelation ALignment (CORAL) [144] and Sub-
space Alignment (SA) [38] which are two popular methods following this approach.
Reported performances for both methods are appealing whereas their application to
high dimensional data might be problematic since they are not scalable to high number
of features. Another approach for domain adaptation is modeling the dependence of
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source and target domain in feature level. We experimented by a recent work, namely
Feature Level Domain Adaptation (FLDA) [85], that follows this approach. We use
published source codes of the shallow DA methods for all datasets.

DNN-based Domain Adaptation Methods

Motivated by their reported stunning performances in recent years, we compared per-
formance of GTDA with the performances of a number of Deep Neural Networks-
based domain adaptation methods reported on the Office 31 dataset based on ResNet50
features. Specifically, we make comparison with Deep Domain Confusion (DDC)
[152] where an objective function including an additional domain confusion term is
proposed for learning domain-invariant representations for classification, Deep Adap-
tation Network (DAN) [99] where more transferable features are learned by adapting
source and target distributions in multiple task-specific layers, Residual Transfer Net-
works (RTN) [101] that achieves feature adaptation and classifier adaptation simulta-
neously by deep residual learning [60], Reverse Gradient (RevGrad) [49, 50] that im-
proves domain adaptation by employing adversarial training paradigm, and Joint Adap-
tation Networks (JAN) [100] that uses an adversarial learning strategy to maximize a
joint maximum mean discrepancy such that distributions of source and target domains
be more distinguishable. Despite of high performance accuracies, some disadvantages
of DNN-based methods to be taken into account are that they require abundant training
data for improvement in performance, they use target labels for parameter tuning [101]
and their sensitivity to hyperparameters of the learning procedure is high [50]. We
refer to the performance results reported in [100] for the aforementioned DNN-based
techniques to make comparison with our technique, hence we will add results for the
Office31 dataset only.

Graph Transduction Techniques for Domain Adaptation

We compare our game-theoretic graph transduction technique against three other trans-
ductive techniques, namely Label Propagation (LP) [180], Label Spreading (LS) [178]
and Harmonic Function (HF) [183] for the domain adaptation problem. Similar to our
method, these techniques exploit the so-called smoothness principle which states that
closer instances tend to belong to the same class. LP [180] performs hard clamping of
input labels which yields to avoiding change on the original label distribution at every
iteration, while LS [178] adopts soft clamping where initial assignments are changed by
a fraction α at each iteration. Moreover, employing regularization, the cost employed in
LS differentiates from LP, which provides better robustness to noise. Gaussian Fields
and Harmonic Functions (HF) [183] tries instead to compute a function f by minimiz-
ing a corresponding energy function E( f ). The solution is harmonic and this property
can be exploited to propagate information according to the aforementioned smoothness
principle.

To make a fair comparison with our approach, we provide to these algorithms the
same affinity matrix as our, i.e. W, which is computed using the same scheme of
normalization, σ selection and sparsification. For the LS technique, we experimented
with a variety of values in the range of (0, 1) for the parameter α. Since we got the best
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Table 4.1: Comparative analysis on Office-31 dataset (ResNet-50 features)

A→D A→W D→A D→W W→A W→D avg
Baselines

Source SVM 76.9 73.8 60.3 97.5 59.4 100.0 78.0
Source LR 74.7 70.8 60.6 97.5 60.2 100.0 77.3

Shallow models
SA 76.7 75.5 62.2 97.9 60.3 100.0 78.8
FLDA-Q 76.3 75.5 59.9 97.5 58.6 99.8 77.9
CORAL 78.9 76.9 59.7 98.2 59.9 100.0 78.9

Graph-transductive methods
Lab Prop 2.4 3.6 3.3 3.6 3.3 99.8 19.3
Lab Spread 77.3 79.2 63.1 98.6 60.8 99.8 79.8
Harmonic Function 73.7 80.3 62.3 98.1 46.8 99.8 76.8

Proposed method, GTDA
GTDA 80.5 78.0 66.2 98.9 62.9 99.8 81.1
GTDA + LR 82.5 84.2 67.1 97.9 69.1 99.8 83.4

Table 4.2: Comparative analysis on Office-31 dataset (ResNet-50 features)

A→D A→W D→A D→W W→A W→D avg
Deep Neural Networks (results taken from [100])

DDC 76.5 75.6 62.2 96.0 61.5 98.2 78.3
DAN 78.6 80.5 63.6 97.1 62.8 99.6 80.4
RTN 77.5 84.5 63.6 96.8 64.8 99.4 81.6
RevGrad 79.7 82.0 68.2 96.9 67.4 99.1 82.2
JAN-A 85.1 86.0 69.2 96.7 70.7 99.7 84.6

Proposed method, GTDA
GTDA 80.5 78.0 66.2 98.9 62.9 99.8 81.1
GTDA + LR 82.5 84.2 67.1 97.9 69.1 99.8 83.4

results when α = 0.2 which is also the suggested default value we present the results
of LS with α = 0.2.

4.4 Results
We use the notation of A → B to indicate the adaptation with A as source and B as
target dataset. While we discuss the performances of the techniques, (i) we consider
the averaged accuracy over all adaptation tasks and (ii) the number of adaptation tasks
that a method outperforms.

4.4.1 Office 31 dataset
We present performances on Office 31 for the shallow and graph transductive methods
in Table 4.1 while additional comparisons with deep-learning models is outlined in
Table 4.2 reporting results from [100].

Non DL methods The results on non-DL methods are reported in Table 4.1. The
GTDA outperforms CORAL, i.e. the best performed shallow DA method on this
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dataset, by around 2% and 4% in averaged accuracy with and without prior, respec-
tively. When we compare GTDA with other GT methods, i.e. Label Prop., Label
Spread and Harmonic Function, we see that GTDA without prior outperforms all of
them with a performance of 81.1%, while Label Spread follows GTDA with the per-
formance of 79.8 %. When the prior knowledge is used in GTDA the performances
are far better, being the top performing ones. Another point to highlight from this ex-
periment is that, in general, the transductive methods outperform the shallow models.
Without considering the average results, the GTDA+LR outperforms 5 over 6 times
the shallow models. When prior is not used the GTDA is the second best performing
algorithm (still considering the GTDA+LR).

DL-based methods The results on DL-based methods are reported in Table 4.2. The
GTDA outperforms DDC, DAN, RTN and RevGrad which are end-to-end learned sys-
tem for DA. This is surprising, considering that GTDA does not require an extensive
training phase and neither a parameter optimization like in DNN. JAN-A achieves the
best averaged accuracy, i.e. 84.6%, on this dataset being for 4 times the best performing
and just once as a second. Among the other DL models no one is able to clearly out-
perform JAN-A. Our GTDA without prior outperform JAN-A on 2 cases (D-W, W-D)
while in the remaining five it becomes as third best only once. When GTDA benefits
from prior (GTDA +LR) the performances approaches to JAN-A (83.4 % vs. 84.6 %)
becoming the second best algorithm, even outperforming the other DL approaches.

Table 4.3: Comparative analysis on Office-Caltech dataset (SURF features)

A→C A→D A→W C→A C→D C→W D→A D→C D→W W→A W→C W→D avg
Baselines

Source SVM 41.0 40.1 42.0 52.7 45.9 47.5 33.0 32.1 75.9 38.4 34.6 75.2 46.5
Source LR 42.8 36.3 35.3 54.1 42.7 40.7 33.9 31.2 83.1 37.3 32.9 71.3 45.1

Shallow Models
SA 37.4 36.3 39.0 44.9 39.5 41.0 32.9 34.3 65.1 34.4 31.0 62.4 41.5
FLDA-L 41.5 45.9 42.0 49.5 48.4 44.1 31.7 34.1 75.6 35.3 33.8 72.6 46.2
FLDA-Q 43.5 43.3 40.7 53.5 44.6 45.1 30.8 31.2 73.2 35.2 32.1 75.8 45.7
CORAL 45.1 39.5 44.4 52.1 45.9 46.4 37.7 33.8 84.7 35.9 33.7 86.6 48.8

Graph-transductive methods
Lab Prop 13.4 7.6 9.8 9.6 45.9 9.8 9.6 13.4 9.8 9.6 13.4 89.8 20.2
Lab Spread 41.3 36.3 32.5 53.3 47.8 41.4 36.1 34.2 90.2 36.0 34.2 88.5 47.7
Harmonic Function 41.1 38.9 35.9 52.2 47.1 37.6 30.8 29.3 89.2 32.2 32.7 88.5 46.3

Proposed method, GTDA
GTDA 40.2 37.6 32.9 53.8 46.5 35.9 41.3 39.9 92.2 34.6 38.5 89.2 48.5
GTDA + LR 40.2 37.6 38.3 52.6 45.9 45.1 39.2 35.4 92.2 41.0 37.1 89.2 49.5

4.4.2 Office-Caltech 10 dataset

We present performances on this dataset in Tables 4.3 and 4.4 when SURF and ResNet50
features are used, respectively. In Table 4.3 we see that CORAL outperforms other
shallow DA methods, i.e. FLDA and Source SVM, by achieving the second best av-
eraged accuracy over all the methods. While we achieve almost same performance as
CORAL on average (48.8% for CORAL and 48.5% for GTDA) when we do not use

45



CHAPTER 4. UNSUPERVISED DOMAIN ADAPTATION 4.4. RESULTS

Table 4.4: Comparative analysis on Office-Caltech dataset (ResNet-50 features)

A→C A→D A→W C→A C→D C→W D→A D→C D→W W→A W→C W→D avg
Baselines

Source SVM 91.0 88.5 87.5 94.1 94.9 87.8 90.0 86.1 98.6 89.1 85.9 100.0 91.1
Source LR 89.9 91.7 88.5 94.5 93.6 85.1 90.1 85.8 98.0 89.7 85.5 100.0 91.0

Shallow models
SA 89.7 93.0 90.8 94.6 91.1 93.2 89.8 84.1 99.0 88.9 84.3 100.0 91.5
FLDA-Q 91.1 93.6 92.2 94.5 94.3 89.5 90.3 86.3 97.6 90.3 83.7 100.0 91.9
CORAL 85.9 91.1 89.8 94.3 93.0 93.2 92.8 86.8 98.6 90.9 85.5 100.0 91.8

Graph-transductive methods
Lab Prop 13.4 7.6 9.8 9.6 7.6 9.8 9.6 13.4 9.8 9.6 13.4 100.0 17.8
Lab Spread 87.1 88.5 95.9 93.4 91.1 84.1 88.0 88.6 99.7 90.1 85.6 100.0 91.0
Harmonic Function 88.6 80.9 85.4 93.5 94.9 89.2 88.1 83.2 99.7 57.4 69.2 100.0 85.8

Proposed method, GTDA
GTDA 90.0 87.9 98.0 93.5 91.7 79.7 89.4 89.4 99.3 93.2 88.8 100.0 91.7
GTDA + LR 91.5 98.7 94.2 95.4 98.7 89.8 95.2 89.0 99.3 95.2 90.4 100.0 94.8

priors. When we get benefit of the priors (GTDA+LR) we outperform CORAL by 1%
in average accuracy becoming the best one over all methods. We outperform other GT
methods both in averaged accuracy and at majority of the adaptation tasks. In partic-
ular, our best competitor is CORAL reaches 5 top results among the shallow models
while GTDA with prior outperform 6 time the shallow ones becoming the more stable
algorithm in this setting.

We see in Table 4.4 that when ResNet50 features are used the performances of
all methods are improved significantly over the ones obtained when SURF features
were used, except Label Prop. All shallow DA methods and GTDA (when not using
prior) achieve very similar performances. In particular, while FLDA-Q and CORAL
outperforms GTDA in averaged accuracy when prior was not used by 0.2% and 0.1%,
we see that GTDA reaches to 3 top results while FLDA-Q and CORAL stay at 1 and
2, respectively. Following them, baseline methods and Lab Spread achieves similar
performances in averaged accuracy. When we get benefit from prior we outperform
shallow DA methods at every adaptation task (except C → W), i.e. we reach to the
best result at 8 adaptation tasks, second best results at 3 adaptation tasks and third best
result at 1 adaptation task, and we are the best among both shallow DA and other GT
methods with 94.8% in averaged accuracy with GTDA +LR.

4.4.3 Overall analysis

The method yields competitive results in different adaptation setting. This is surprising
since the method is quite simple and the choice made by the dynamical system are
greedy. The other thing that is worth noting is the use of the prior, which significantly
improves the performance. Prior knowledge can be easily injected in the model through
the strategy space and it is of legitimate use even under unsupervised DA providing that
the training for whichever model is performed only on the source data. The proposed
GTDA is the most stable in terms of number of best DA, thereby making it an attractive
alternative.
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4.5 Conclusions
In this work we have proposed a new algorithm to tackle unsupervised domain adapta-
tion tasks. The methodology is based on graph-transduction and game-theory, offering
a principled perspective to the problem. The GTDA proposed here has two main ad-
vantages: i) it is completely parameter-free and ii) it allows the direct embedding of
prior knowledge on the target labels to be predicted. The results achieved on publicly
available benchmark datasets demonstrate the validity of the proposed approach, whose
performance is competitive with respect to state-of-the-art DA techniques with shallow
and deep features as well as to other standard graph-based transductive methods. Fur-
thermore, GTDA reaches comparable performances as that of known deep-learning
UDA methods. As a future work we plan to extend the comparison with other recent
DA techniques using more real-life datasets. As for the methodology we are interested
in investigating other aspects, like semi-supervised domain adaptation.
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Chapter 5

Context-Aware Non-Negative
Matrix Factorization

Reference: R. Tripodi∗, S. Vascon∗, and M. Pelillo. Context aware non-negative ma-
trix factorization clustering. In Proc. of the 23rd International Conference on Pattern
Recognition (ICPR), pp. 1719–1724. IEEE, 2016. ∗= equal contribution.

The content of this chapter is taken from the above reference.

In this chapter we propose a method to refine the clustering results obtained with the
nonnegative matrix factorization (NMF) technique, imposing consistency constraints
on the final labeling of the data. The research community focused its effort on the
initialization and on the optimization part of this method, without paying attention to
the final cluster assignments. We propose a game theoretic framework in which each
object to be clustered is represented as a player, which has to choose its cluster mem-
bership. The information obtained with NMF is used to initialize the strategy space of
the players and a weighted graph is used to model the interactions among the play-
ers. These interactions allow the players to choose a cluster which is coherent with the
clusters chosen by similar players, a property which is not guaranteed by NMF, since
it produces a soft clustering of the data. The results on common benchmarks show that
our model is able to improve the performances of many NMF formulations.

5.1 Introduction
Nonnegative matrix factorization (NMF) is a particular kind of matrix decomposition in
which an input matrix X is factorized into two non-negative matrices W and H of rank
k, such that WHT approximates X. The significance of this technique is to find those
vectors that are linearly independent in a determined vector space. In this way, they
can be considered as the essential representation of the problem described by the vector
space and can be considered as the latent structure of the data in a reduced space. The
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advantage of this technique, compared to other dimension reduction techniques such as
Single Value Decomposition (SVD), is that the values taken by each vector are positive.
In fact, this representation gives an immediate and intuitive glance of the importance
of the dimensions of each vector, a characteristic that makes NMF particularly suitable
for soft and hard clustering [168].

The dimensions of W and HT are n×k and k×m, respectively, where n is the number
of objects, m is the number of features, and k is the number of dimensions of the new
vector space. NMF uses different methods to initialize these matrices [15, 92, 166] and
then optimization techniques are employed to minimize the differences between X and
WHT [97].

The initialization of the matrices W and H [15], is crucial and can lead to different
matrix decompositions, since it is performed randomly in many algorithms [176]. To
the contrary, the step involving the final clustering assignment received less attention
by the research community. In fact, once W and H are computed, soft clustering ap-
proaches interpret each value in W as the strength of association among objects and
clusters and hard clustering approaches assign each object j to the cluster Ck, where:

k = arg max(W j1,W j2, ...,W jk). (5.1)

This step is also crucial since in hard clustering it could be the case that the assignments
have to be made choosing among very similar (possibly equal) values and Equation 5.1
in this case can results inaccurate or even arbitrary. Furthermore this approach does
not guarantee that the final clustering is consistent, with the drawback that very similar
objects can result in different clusters. In fact, the clusters are assigned independently
with this approach and two different runs of the algorithm can result in different parti-
tioning of the data, due to the random initializations [176].

These limitations can be overcome exploiting the relational information of the data
and performing a consistent labeling. For this reason in this chapter we use a powerful
tool derived from evolutionary game theory, which allows to re-organize the cluster-
ing obtained with NMF, making it consistent with the structure of the data. With our
approach we impose that the cluster membership has to be re-negotiated for all the ob-
jects. To this end, we employ a dynamical system perspective, in which it is imposed
that similar objects have to belong to similar clusters, so that the final clustering will be
consistent with the structure of the data. This perspective has demonstrated its efficacy
in different semantic categorization scenarios [147, 148], which involve a high number
of interrelated categories and require the use of contextual and similarity information.

5.2 NMF Clustering
NMF is employed as clustering algorithm in different applications. It has been suc-
cessfully applied in “parts-of-whole” decomposition [92], object clustering [30], face
recognition [164], multimedia analysis [16], and DNA gene expression grouping [175].
It is an appealing method because it can be used to perform together objects and feature
clustering. The generation of the factorized matrices starts from the assumption that
the objects of a given dataset belong to k clusters and that these clusters can be repre-
sented by the features of the matrix W, which denotes the relevance that each cluster
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has for each object. This description is very useful in soft clustering applications be-
cause an object can contain information about different clusters in different measure.
For example a text about a the launch of a new car model into the marked can contain
information about economy, automotive or life-style, in different proportions. Hard
clustering applications require to choose just one of these topics to partition the data
and this can be done considering not only the information about the single text, but also
the information of the other texts in the texts collection, in order to divide the data in
coherent groups.

In many algorithms the initialization of the matrices W and H is done randomly [92]
and have the drawback to always lead to different clustering results. In fact, NMF
converges to local minima and for this reason has to be run several times in order to
select the solution that approximates better the initial matrix. To overcome this limita-
tion there were proposed different approaches to find the best initializations based on
feature clustering [166] and SVD techniques [15]. These initializations allow NMF
to converge always to the same solution. [166] uses spherical k-means to partition
the columns of X into k clusters and selects the centroid of each cluster to initialize
the corresponding column of W. Nonnegative Double Singular Value Decomposition
(NNDSVD) [15] computes the k singular triplets of X, forms the unit rank matrices
using the singular vector pairs, extracts from them their positive section and singular
triplets and with this information initializes W and H. This approach has been shown
to be almost as good as that obtained with random initialization [15].

A different formulation of NMF as clustering algorithm was proposed by [87]
(SymNMF). The main difference with classical NMF approaches is that SymNMF
takes a square nonnegative similarity matrix as input instead of a n × m data matrix.
It starts from the assumption that NMF was conceived as a dimension reduction tech-
nique and that this task is different from clustering. In fact, dimension reduction aims
at finding a few basis vectors that approximate the data matrix and clustering aims at
partitioning the data points where similarity is high among the elements of a cluster
and low among the elements of different clusters. In this formulation a basis vector
strictly represents a cluster.

Common approaches obtain an approximation of X minimizing the Frobenius norm
of the difference ||X−WHT || or the generalized Kullback-Leibler divergence DKL(X||WHT )
[10] , using multiplicative update rules [93] or gradient methods [97].

5.3 Our Approach
In this section we present the Game Theoretic Nonnegative Matrix Factorization (GT-
NMF), our approach to NMF clustering refinement. The pipeline of this method is
depicted in Fig. 8.1. We extract the feature vectors of each object in a dataset then,
depending on the NMF algorithm used, we give as input to NMF the feature vectors or
a similarity matrix. GTNMF takes as input the matrix W obtained with NMF and the
similarity graph A (see Section 5.4.3) of the dataset to produce a consistent clustering
of the data.

Each data point, in our formulation, is represented as a player that has to choose
its cluster membership. The weighted graph A measures the influence that each player
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Dataset 

Payoff matrix 

NMF Clustering 
GT NMF Clustering 

GT NMF 

Strategy Space 

NMF 

X W 

H ≈ × 

S 

A 

Figure 5.1: The pipeline of the proposed game-theoretic refiner method: a dataset
is clustered using NMF obtaining a partition of the original data into k clusters. A
pairwise similarity matrix A is constructed on the original set of data and the clustering
assignments obtained with NMF. The output of NMF (W) and the matrix A are used to
refine the assignments. The matrix W is also used to initialize the strategy space of the
games. In red the wrong assignment that is corrected after the refinement. Best viewed
in color.

has on the others. The matrix W is used to initialize the strategy space S of the players.
We use the following equation si j =

wi j∑K
j=1 wi j

to constrain the strategy space of each

player to lie on the standard simplex, as required in a game theoretic framework (see
Section 3.2). The dynamics are not started on the center of the K-dimensional simplex,
as it is commonly done in unsupervised learning tasks, but on a different interior point,
which corresponds to the solution point of NMF and do not compromise the dynamics
to converge to Nash equilibria [165].

Now that we have the topology of the data A and the strategy space of the game S
we can compute the Nash equilibria of the games according to equation (3.5). In each
iteration of the system each player plays a game with its neighbors Ni according to the
similarity graph A and the payoffs are calculated as follows:

ui(eh, s) =
∑
j∈Ni

(ai js j)h (5.2)

and

ui(s) =
∑
j∈Ni

xT
i (ai js j) (5.3)

We assume that the payoff of player i depends on the similarity that it has with player j,
ai j, and its preferences, (s j). During each phase of the dynamics a process of selection
allows strategies with higher payoff to emerge and at the end of the process each player
chooses its cluster according to these constraints. Since Equation 3.5 models a dynam-
ical system it requires some criteria to stop. In the experimental part of this work we
used as stopping criteria the maximum number of iterations = 100 and δ < 104, where
δ is the Euclidean norm between the strategy space at time t and at time t + 1.
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Table 5.1: Datasets description. F = the dataset has been pruned as in [87].

Dataset Type Points Features Clusters Balance Mean Clust Min Cl Size Max Cl Size
NIPSF text 424 17522 9 0.105 47.1 15 143
NIPS text 451 17522 13 0.028 34.7 4 143
ReutersF text 8095 14143 20 0.011 404.8 42 3735
Reuters text 8654 14333 65 0 133.1 1 3735
RCV1F text 13254 20478 40 0.028 331.4 45 1587
RCV1 text 13732 20478 75 0.001 183.1 1 1587
PIE-Expr image 232 4096 68 0.75 3.4 3 4
ORL image 400 5796 40 1 10 10 10
COIL-20 image 1440 4096 20 1 72 72 72
ExtYaleB image 2447 3584 38 0.678 64.4 59 87

5.4 Experimental Setup and Results

In this section, we show the performances of GTNMF on different text and image
datasets, and compare it with standard NMF1 [79], NMF-S [79] (same as NMF but with
the similarity matrix as input instead of the features), SymNMF [87]2 and NNDSVD3

[15], which use the standard maximization technique to obtain an hard clustering of
the data. In Table 5.2 we refer to our approach as NMF-algorithm+GT which means
that the GTNMF has been initializied with the particular NMF-algorithm.

5.4.1 Datasets description

The evaluation of GTNMF has been conducted on datasets with different characteris-
tics (see Table 5.1). We used textual (Reuters, RCV1, NIPS) and image (COIL-20,
ORL, Extended YaleB and PIE-Expr) datasets. Authors in [87] discarded the objects
belonging to small clusters in order to make the dataset more balanced, simplifying the
task. We tested our method using this approach and also keeping the datasets as they
are (without reduction), which lead to situations in which it is possible to have in the
same dataset clusters with thousands of objects and clusters with just one object (e.g.
RCV1).

5.4.2 Data preparation

The datasets have been processed as suggested in [87]. Given an n × m data matrix
X, the similarity matrix A is constructed according to the type of dataset (textual and
image). With textual dataset each feature vector is normalized to have unit 2-norm and
the cosine distance is computed, A = xi

T x j. For image datasets each feature (column)
is first normalized to lie in the range [0, 1] and then it is applied the following kernel:
Ai, j = exp{− ||xi−x j ||

σiσ j
}, where σi is the Euclidean distance of the 7-th nearest neighbor

[173]. In all cases Aii = 0.

1Code: https://github.com/kimjingu/nonnegfac-matlab
2Code: https://github.com/andybaoxv/symnmf
3Code: http://www.boutsidis.org/NNDSVD_matlab_implementation.rar
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The matrix is thus sparsified keeping only the q nearest neighbors for each point.
The parameter q is set accordingly to [161] and represents a theoretical bound that
guarantees the connectedness of a graph:

q = blog2(n)c + 1 (5.4)

Let N(i) = { j s.t. x j ∈ q-NN of i} then Ai j = Ai j if i ∈ N( j) or j ∈ N(i) and 0 otherwise.
The matrix A is thus normalized in a normalized-cut fashion obtaining the final

matrix Ai j = Ai j
√

di
√

d j where di =
∑n

s=1 Ais. The matrix A is given as input to all the
compared methods, expect from NMF to which the data matrix X is given. See [87] for
further details on this phase.

5.4.3 Games graph
In Sec.5.4.2 has been explained how to create the similarity matrix for NMF, the same
methodology has been used to create the payoff matrix A for the GTNMF, with the only
difference that, in this case, we exploit the partitioning obtained with NMF in order to
identify what could be the expected size of the clusters. The assumption here is that the
clustering obtained via NMF provides a good insight on the size of the final clusters and
accordingly with this information a proper number q (see Equation 5.4) can be selected.
A cluster C can be considered as a fully connected subgraph and thus the number of
neighbors of each element in the cluster C should be at least qC = blog2(|C|)c + 1 to
guarantee the connectedness of the cluster itself. The variable q is thus chosen based
on the same principle of [161] but instead of taking into account the entire set of points
(as in Sec.5.4.2) we focused only on the subsets induced by the NMF clustering. This
results in having a different q for each point in the dataset based on the following rule:

qi = blog2(|C|)c + 1 (5.5)

where |C| is the cardinality of cluster C to which the i-th element belongs to. For
obvious reason qi ≤ q , ∀i = 1, . . . , n and thus concentrating only on the potential
number of neighbors that belong to the cluster and not in the entire graph because
we are doing a refinement. From a game-theoretic perspective this means to focus
the games only among a set of similar players which are likely to belong to the same
cluster.

5.4.4 Evaluation measures
The evaluation of oOur approach has been validated using two different measures, ac-
curacy (AC) and normalized mutual information (NMI). AC is calculated as

∑n
i=1 δ(αi,map(li))

n ,
where n denotes the total number of documents in the dataset, δ(x, y) equals to 1 if x
and y are clustered in the same class; map(Li) maps each cluster label li to the equiv-
alent label in the benchmark. The best mapping is computed using the Kuhn-Munkres
algorithm [103]. The AC counts the number of correct clusters assignments. NMI in-
dicates the level of agreement between the clustering C provided by the ground truth
and the clustering C′ produced by a clustering algorithm. The mutual information (MI)
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Table 5.2: Performance of GTNMF compared to several NMF approaches. The mean
and std deviation of 20 runs are reported.

Normalized Mutual Information
Dataset SymNMF SymNMF+GT NMF NMF+GT NMFS NMFS+GT NNDSVD NNDSVD+GT
NIPS F 0.385 (±0.011) 0.405 (±0.016) 0.375 (±0.022) 0.386 (±0.011) 0.388 (±0.006) 0.403 (±0.007) 0.388 0.399
NIPS 0.387 (±0.007) 0.418 (±0.017) 0.401 (±0.016) 0.406 (±0.016) 0.393 (±0.008) 0.412 (±0.018) 0.388 0.421
Reuters F 0.502 (±0.014) 0.51 (±0.016) 0.451 (±0.026) 0.49 (±0.02) 0.505 (±0.014) 0.511 (±0.015) 0.427 0.425
Reuters 0.517 (±0.007) 0.525 (±0.006) 0.442 (±0.006) 0.497 (±0.003) 0.518 (±0.006) 0.527 (±0.005) 0.488 0.493
RCV1 F 0.406 (±0.007) 0.422 (±0.007) 0.51 (±0.007) 0.516 (±0.005) 0.404 (±0.009) 0.42 (±0.01) 0.403 0.402
RCV1 0.411 (±0.006) 0.422 (±0.006) 0.462 (±0.009) 0.483 (±0.007) 0.413 (±0.006) 0.424 (±0.006) 0.398 0.407
PIE-Expr 0.95 (±0.004) 0.968 (±0.004) 0.939 (±0.008) 0.959 (±0.006) 0.89 (±0.005) 0.931 (±0.006) 0.86 0.889
ORL 0.888 (±0.006) 0.921 (±0.006) 0.691 (±0.015) 0.844 (±0.014) 0.889 (±0.006) 0.918 (±0.004) 0.808 0.892
COIL-20 0.871 (±0.009) 0.875 (±0.012) 0.619 (±0.017) 0.669 (±0.016) 0.877 (±0.013) 0.883 (±0.013) 0.824 0.836
ExtYaleB 0.308 (±0.005) 0.313 (±0.005) 0.356 (±0.006) 0.355(±0.007) 0.309 (±0.007) 0.314 (±0.005) 0.288 0.315

Accuracy
Dataset SymNMF SymNMF+GT NMF NMF+GT NMFS NMFS+GT NNDSVD NNDSVD+GT
NIPS F 0.462 (±0.013) 0.483 (±0.016) 0.426 (±0.02) 0.425(±0.014) 0.465 (±0.011) 0.485 (±0.017) 0.474 0.509
NIPS 0.379 (±0.01) 0.415 (±0.037) 0.396 (±0.022) 0.39(±0.018) 0.384 (±0.014) 0.407 (±0.031) 0.466 0.503
Reuters F 0.517 (±0.044) 0.528 (±0.043) 0.322 (±0.024) 0.401 (±0.026) 0.516 (±0.037) 0.525 (±0.037) 0.403 0.427
Reuters 0.324 (±0.029) 0.363 (±0.032) 0.222 (±0.011) 0.282 (±0.02) 0.339 (±0.023) 0.378 (±0.024) 0.277 0.339
RCV1 F 0.292 (±0.015) 0.289(±0.014) 0.383 (±0.009) 0.387 (±0.01) 0.298 (±0.017) 0.297(±0.017) 0.285 0.276
RCV1 0.243 (±0.008) 0.247 (±0.008) 0.279 (±0.01) 0.295 (±0.011) 0.242 (±0.01) 0.245 (±0.011) 0.239 0.24
PIE-Expr 0.81 (±0.021) 0.85 (±0.019) 0.783 (±0.023) 0.809 (±0.024) 0.617 (±0.019) 0.7 (±0.02) 0.536 0.513
ORL 0.776 (±0.017) 0.811 (±0.018) 0.465 (±0.019) 0.608 (±0.026) 0.77 (±0.013) 0.804 (±0.015) 0.653 0.71
COIL-20 0.727 (±0.036) 0.729 (±0.037) 0.478 (±0.023) 0.507 (±0.025) 0.739 (±0.046) 0.741 (±0.046) 0.674 0.672
ExtYaleB 0.235 (±0.008) 0.228(±0.007) 0.194 (±0.007) 0.197 (±0.009) 0.237 (±0.012) 0.23(±0.01) 0.229 0.242

between the two clusterings is computed as,

∑
ci∈C,c′j∈C

′

p(ci, c′j) · log2

p(ci, c′j)

p(ci) · p(c′j)
(5.6)

where p(ci) and p(c′i) are the probabilities that a document of the corpus belongs to
cluster ci and c′i , respectively, and p(ci, c′i) is the probability that the selected document
belongs to ci as well as c′i at the same time. The MI information is then normalized
with the following equation,

NMI(C,C′) =
MI(C,C′)

max(H(C),H(C′))
(5.7)

where H(C) and H(C′) are the entropies of C and C′, respectively.

5.4.5 Evaluation
The results of our evaluation are shown in Table 5.2, where we reported the mean and
standard deviation of 20 independent runs. For NNDSVD the experiments are run only
one time, since it converges always to the same solution. The performances of GTNMF
in most of the cases are higher those of the different NMF algorithms. In particular, we
can notice that despite the different settings (textual/image datasets) our algorithm is
able improve the NMI performance in 33/36 cases with a maximum gain of ' 15.3%
(which is quite impressive) and a maximum loss of 0.2%. constant gain in the NMI
means, in practice, that the algorithm is able to partition better the dataset, making the
final clustering closer to the ground truth. In terms of AC, on 27/36 cases the method
improve on the compared methods, with a maximum gain of 14.3% and maximum loss
of 2.3%. It worth noting that the negative results are very low and in most of the cases
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Figure 5.2: On the left side a confusion matrix produced by NMF on the ORL dataset
and on the right side the ones produced by our method.

the corresponding number of incorrect reallocations is low, in fact, −0.6% in the NIPS
dataset means 2.7 elements or −0.2% in COIL-20 corresponds to 2.8 elements.

The mean gain for NMI and AC are 2.68% and 2.30%, respectively, while the mean
loss are 0.16% and 0.01%. In some cases we can see that we obtain a loss in NMI and a
gain in AC, for example on ExtYaleB with NMF. In this case the similarity matrix given
as input to GTNMF tends to concentrate more objects in the same cluster, because the
dataset is not balanced and it could be the case that, in these situations, a big cluster
tends to attract many objects, increasing the probability of good reallocations, which
results in an increase in AC and in a potentially wrong partitioning of the data. To the
contrary in some experiments we have a loss in AC and a gain in NMI. For example
on PIE-Expr we noticed that we are able to put together many objects that the other
approaches tend to keep separated, but in this particular case GTNMF collected in the
same cluster all the objects belonging to four similar clusters and for this reason there
was a loss in accuracy (see Fig. 5.3).

We can see that the results of our method on well balanced datasets (ORL, COIL-
20) are almost always good. Also on very unbalanced datasets, such as Reuters and
ReutersF we have always good performances, whatever is the method used. These
datasets depict better real life situations and the improvements over them are due to the
fact that in these cases it is necessary to exploit the geometry of the data in order to
obtain a good partitioning.

Figure 5.3: On a and b the confusion matrices produced by NMF and GTNMF on Pie-
Expr. On c the std dev of the objects merged together by GTNMF and on d the std dev
of two random clusters combined together.

A positive and a negative case study are shown in Fig. 5.2 and 5.3, respectively. In
Fig. 5.2 the confusion matrix obtained with GTNMF is less sparse and more concen-
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trated on the main diagonal. Given the same cluster Id, the NMF method agglomer-
ates different clusters (red arrows) while, after the refinement, the number of elements
corresponding to the correct cluster are moved. In Fig. b the algorithm tends to ag-
glomerates the elements on a single cluster (second column of the matrix). This can
be explained on how the similarity matrix is composed and on the nature of the data:
in Fig. c the std dev of the images in the agglomerated cluster is reported, as one can
notice the std is very low meaning that all the faces in that cluster are very similar to
each other. To give a counterexample we report on Fig. d the std dev of two random
cluster joined together, is straightforward to notice that the std dev is higher than in
the previous example meaning that the elements within those two clusters are highly
dissimilar in nature and thus easily separable.

5.5 Conclusion
In this work we presented GTNMF, a game theoretic model to improve the clustering
results obtained with NMF going beyond the classical technique used to make the final
clustering assignments. The W matrix obtained with NMF can have an high entropy
which make the choice of a cluster very difficult in many cases. With our approach we
try to reduce the uncertainty in the matrix W using evolutionary dynamics and taking
into account contextual information to perform a consistent labeling of the data. In fact,
with our method similar objects are assigned to similar clusters, taking into account the
initial solution obtained with NMF.

We conducted an extensive analysis of the performances of our method and com-
pared it with different NMF formulations and on datasets with different features and of
different kind. The results of the evaluation demonstrated that our approach is almost
always able to improve the results of NMF and that when it have negative results those
results are practically non significant. The algorithm is quite general thanks to the
adaptive auto-tuning of the payoff matrix and can deal with balanced and completely
unbalanced datasets.

As future work we are planning to use different initialization of the strategy space,
to use new similarity functions to construct the games graph, to apply this method to
different problems and to different clustering algorithms.
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Augmentation for Improved
Deep Network Learning

Reference: I. Elezi∗, A. Torcinovich∗, S. Vascon∗, and M. Pelillo. Transductive label
augmentation for improved deep network learning. In Proc. of the 24rd International
Conference on Pattern Recognition (ICPR), pp. 1432-1437, IEEE, 2018.∗= equal con-
tribution.

The content of this chapter is taken from the above reference.

A major impediment to the application of deep learning to real-world problems is the
scarcity of labeled data. Small training sets are in fact of no use to deep networks
as, due to the large number of trainable parameters, they will very likely be subject
to overfitting phenomena. On the other hand, the increment of the training set size
through further manual or semi-automatic labellings can be costly, if not possible at
times. Thus, the standard techniques to address this issue are transfer learning and
data augmentation, which consists of applying some sort of “transformation” to exist-
ing labeled instances to let the training set grow in size. Although this approach works
well in applications such as image classification, where it is relatively simple to design
suitable transformation operators, it is not obvious how to apply it in more structured
scenarios. Motivated by the observation that in virtually all application domains it is
easy to obtain unlabeled data, in this chapter we take a different perspective and pro-
pose a label augmentation approach. We start from a small, curated labeled dataset
and let the labels propagate through a larger set of unlabeled data using graph trans-
duction techniques. This allows us to naturally use (second-order) similarity informa-
tion which resides in the data, a source of information which is typically neglected by
standard augmentation techniques. In particular, we show that by using known game
theoretic transductive processes we can create larger and accurate enough labeled
datasets which use results in better trained neural networks. Preliminary experiments
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are reported which demonstrate a consistent improvement over standard image classi-
fication datasets.

6.1 Introduction
Deep neural networks (DNNs) have met with success multiple tasks, and testified a
constantly increasing popularity, being able to deal with the vast heterogeneity of data
and to provide state-of-the-art results across many fields and domains [90, 137]. Con-
volutional Neural Networks (CNNs) [46, 91] are one of the protagonists of this suc-
cess. Starting from AlexNet [86], until the most recent convolutional-based architec-
tures [60, 63, 145] CNNs have proved to be especially useful in the field of computer
vision, improving the classification accuracy in many datasets [1, 27].

However, a common caveat of large CNNs is that they require a lot of training data
in order to work well. In the presence of classification tasks on small datasets, typ-
ically those networks are pre-trained in a very large dataset like ImageNet [27], and
then finetuned on the dataset the problem is set on. The idea is that the pre-trained
network has stored a decent amount of information regarding features which are com-
mon to the majority of images, and in many cases this knowledge can be transferred
to different datasets or to solve different problems (image segmentation, localization,
detection, etc.). This technique is referred as transfer learning [169] and has been an
important ingredient in the success and popularization of CNNs. Another important
technique – very often paired with the previous one – is data augmentation, through
which small transformations are directly applied on the images. A nice characteristic
of data augmentation is its agnosticism toward algorithms and datasets. [21] used this
technique to achieve state-of-the-art results in MNIST dataset [89], while [86] used
the method almost without any changes to improve the accuracy of their CNN in the
ImageNet dataset [27]. Since then, data augmentation has been used in virtually every
implementation of CNNs in the field of computer vision.

Despite the practicality of the above-mentioned techniques, when the number of
images per class is extremely small, the performances of CNNs rapidly degrade and
leave much to be desired. The high availability of unlabeled data only solves half of
the problem, since the manual labeling process is usually costly, tedious and prone to
human error. Under these assumptions, we propose a new method to perform an au-
tomatic labeling, called transductive label augmentation. Starting from a very small
labeled dataset, we set an automatic label propagation procedure, that relies on graph
transduction techniques, to label a large unlabeled set of data. This method takes ad-
vantage of second-order similarity information among the data objects, a source of
information which is not directly exploited by traditional techniques. To assess our
statements, we perform a series of experiments with different CNN architectures and
datasets, comparing the results with a first-order “label propagator”.

In summary, our contributions in this article are as follows: a) by using graph trans-
ductive approaches, we propose and develop the aforementioned label augmentation
method and use it to improve the accuracy of state-of-the-art CNNs in datasets where
the number of labels is limited; b) by gradually increasing the number of labeled ob-
jects, we give detailed results in three standard computer vision datasets and compare
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Figure 6.1: The pipeline of our method. The dataset consists of labeled and unlabeled
images. First, we extract features from the images, and then we feed the features
(and the labels of the labeled images) to graph transduction games. For the unlabeled
images, we use a uniform probability distribution as ’soft-labeling’. The final result
is that the unlabeled points get labeled, thus the entire dataset can be used to train a
convolutional neural network.

the results with the results of CNNs; c) we replace our transductive algorithm with lin-
ear support vector machines (SVM) [23] to perform label augmentation and compare
the results; d) we give directions for future work and how the method can be used on
other domains.

6.1.1 Related Work

Semi-supervised label propagation has a long history of usage in the field of machine
learning [156]. Starting from an initial large dataset, with a small portion of labeled
observations the traditional way of using semi-supervised learning is to train a classifier
only in the labeled part, and then use the classifier to predict labels for the unlabeled
part. The labels predicted in this way are called pseudo-labels. The classifier is then
trained in the entire dataset, considering the pseudo-labels as if they were real labels.

Different methods with the same intent have been previously proposed. In deep
learning in particular, there have been devised algorithms to use data with a small
number of labeled observations. [68] trained the network jointly in both the labeled
and unlabeled points. The final loss function is a weighted loss of both labeled and un-
labeled points, where in the case of the unlabeled points, the pseudo-label is determined
by the highest score proposed by the model. [59] optimized a CNN on such a way as to
produce embeddings that have high similarities for the observations that belong to the
same class. [81] used a totally different approach, developing a generative model that
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allows for effective generalization from small labeled datasets to large unlabeled ones.
In all the mentioned methods, the way how the unlabeled data has been used can

be considered as an intrinsic property of their engineered neural networks. Our choice
of CNNs as the algorithm used for the experiments was motivated because CNNs are
state-of-the-art models in computer vision, but the approach is more general than that.
The method presented in this article does not even require a neural network and in
principle, non-feature based observations (i.e graphs) can be considered, as long as a
similarity measure can be derived for them. At the same time, the method shows good
results in relatively complex image datasets, improving over the results of state-of-the-
art CNNs.

6.2 Label Generation
The previously explained framework can be applied to a dataset with many unlabeled
objects to perform an automatic labeling and thus increase the availability of training
objects. In this article we deal with datasets for image classification, but our approach
can be applied in other domains too.

Preliminary step: both the labeled and unlabeled sets can be refined to obtain more
informative feature vectors. In this article, we used fc7 features of CNNs trained on Im-
ageNet, but in principle, any type of features can be considered. Our particular choice
was motivated because fc7 features work significantly better than traditional computer
vision features (SIFT [104] and its variations). While this might seem counter-intuitive
(using pre-trained CNNs on ImageNet, while we are solving the problem of limited
labeled data), we need to consider that our datasets are different from ImageNet (they
come from different distributions), and by using some other dataset to pre-train our
networks, we are not going against the spirit of the idea of the chapter.

Step 1: the objects are assigned to initial probability distributions, needed to start
the GTG. The labeled ones use their respective one-hot label representations, while the
unlabeled ones can be set to a uniform distribution among all the labels. In presence of
previous possessed information, some labels can be directly excluded in order to start
from a multi-peaked distribution, which if chosen wisely, can improve the final results.

Step 2: the extracted features are used to compute the similarity matrix W. The
literature [174] presents multiple methods to obtain a W matrix and extra care should
be taken when performing this step, since an incorrect choice in its computation can
determine a failure in the transductive labeling.

Step 3: once W is computed, graph transduction game can be played (up to con-
vergence) among the objects to obtain the final probabilities which determine the label
for the unlabeled objects.

The resulting labeled dataset can then be used to train a classification model. This
is very convenient for several reasons: 1) CNNs are fully parametric models, so we do
not need to store the training set in memory like in the case of graph transduction. In
some aspect, the CNN is approximating in a parametric way the GTG algorithm; 2) the
inference stage on CNNs is extremely fast (real-time); 3) CNN features can be used
for other problems, like image segmentation, detection and classification, something
that we cannot do with graph-transduction or with classical machine learning methods
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accuracy
2% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.532 0.620 0.486 0.538 0.430 0.495
SVM + CNN 0.473 0.539 0.434 0.468 0.370 0.417

CNN 0.266 0.235 0.341 0.323 0.205 0.178

F score
2% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.468 0.559 0.357 0.396 0.399 0.457
SVM + CNN 0.388 0.455 0.319 0.327 0.352 0.377

CNN 0.181 0.151 0.187 0.172 0.191 0.167

Table 6.1: The results of our algorithm, compared with the results of linear SVM and
CNN, when only 2% of the dataset is labeled. We see that in all three datasets and two
different neural networks, our approach gives significantly better results than SVM or
CNN.

accuracy
5% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.625 0.698 0.568 0.613 0.563 0.621
SVM + CNN 0.605 0.675 0.516 0.580 0.511 0.601

CNN 0.457 0.444 0.456 0.466 0.408 0.438

F score
5% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.571 0.653 0.454 0.508 0.536 0.608
SVM + CNN 0.542 0.626 0.426 0.505 0.501 0.590

CNN 0.372 0.358 0.345 0.306 0.394 0.419

Table 6.2: The results of our algorithm, compared with the results of linear SVM and
CNN, when 5% of the dataset is labeled.

(like SVM). In the next section we will report the results obtained from state-of-the-art
CNNs, and compare those results with the same CNNs trained only on the labeled part
of the dataset.

6.3 Experiments
In order to assess the quality of the algorithm, we used it to automatically label three
known realistic datasets, namely Caltech-256 [57], Indoor Scene Recognition [125]
and SceneNet-100 [74]. Caltech-256 contains 30607 images belonging to 256 different
categories and it is used for object recognition tasks. Indoor Scene Recognition is a
dataset containing 15620 images of different common places (restaurants, bedrooms,
etc.), divided in 67 categories and, as the name says, it is used for scene recognition.
SceneNet-100 database is a publicly available online ontology for scene understanding
that organizes scene categories according to their perceptual relationships. The dataset
contains 10000 real-world images, separated into 100 different classes.

Each dataset was split in a training (70%) and a testing (30%) set. In addition, we
further randomly split the training set in a small labeled part and a large unlabeled one,
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accuracy
10% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.667 0.727 0.598 0.645 0.624 0.686
SVM + CNN 0.658 0.724 0.576 0.635 0.622 0.660

CNN 0.577 0.598 0.553 0.567 0.571 0.584

F score
10% labeled

caltech indoors scenenet
RN18 DN121 RN18 DN121 RN18 DN121

GTG + CNN 0.622 0.694 0.509 0.574 0.609 0.700
SVM + CNN 0.612 0.686 0.515 0.579 0.612 0.650

CNN 0.519 0.533 0.478 0.471 0.565 0.570

Table 6.3: The results of our algorithm, compared with the results of linear SVM and
CNN, when 10% of the dataset is labeled.

according to three different percentages for labeled objects (2%, 5%, 10%). For feature
representation, we used two models belonging to state-of-the-art CNN families of ar-
chitectures, ResNet and DenseNet. In particular we used the smallest models offered in
PyTorch library, the choice motivated by the fact that our datasets are relatively small,
and so models with smaller number of parameters are expected to work better. The
features were combined to generate the similarity matrix W, as described in Eq. 7.6.
The matrix for GTG model was initialized as described in the previous section. We
ran the GTG algorithm up to convergence, with the pseudo-labels being computed by
doing an argmax over the final probability vectors.

We then trained ResNet18 (RN18) and DenseNet121 (DN121) in the entire dataset,
by not having a distinction between labels and pseudo-labels, using Adam optimizer
[80] with 3 ∗ 10−4 learning rate. We think that the results reported in this section are
conservative, and can be improved with a more careful training of the networks, and
by doing an exhaustive search over the space of hyper-parameters.

For comparison, we performed an alternative approach, by replacing GTG with a
first-order information algorithm, namely linear SVM. While we experimented also
with kernel SVM, we saw that its results are significantly worse than those of linear
SVM, most likely because the features were generated from a CNN and so they are
already quite good, having transformed the feature space in order to solve the classifi-
cation problem linearly. No other transductive methods have been taken into consid-
eration, since GTG has already been compared with them in [35, 157], showing that it
performs better.

On Table I we give the results of the accuracy and F score on the testing set, in
all three datasets, while the number of labels is only 2% for each of the datasets (400
observations for Caltech-256, 200 observations for Indoor, and 140 observations for
Scenenet). In all three datasets, and both CNNs, our results are significantly better than
those of CNNs trained only in the labeled data, or the results of the alternative approach
when a linear SVM is used instead of GTG. Table II and Table III give the results of
the accuracy and F score while the number of labeled images is 5%, respectively 10%.
It can be seen that with the number of labeled points increasing, the performance boost
of our model becomes smaller, but our performance still gives better (or equal) results
to the alternative approach in all bar three cases, and it gives significantly better results
than CNN in all cases.

Figure 6.2 shows the results of our approach compared with the other approach and
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Figure 6.2: Results obtained on different datasets and CNNs. Here the relative im-
provements with respect to the CNN accuracy is reported. As can be seen, the biggest
advantage of our method compared to the other two approaches, is when the number of
labeled points is extremely small (2%). When the number of labeled points increases,
the difference on accuracy becomes smaller, but nevertheless our approach continues
being significantly better than CNN, and in most cases, it gives better results than the
alternative approach.

with the results of CNN. We plotted the relative improvement of our model and the
alternative approach over CNN. When the number of labels is very small (2%), in all
three datasets we have significantly better improvements compared with the alternative
approach. Increasing the number of labels to 5% and 10%, this trend persists. In
all cases, our method gives significant improvements compared to CNN trained on
only the labeled part of the dataset, with the most interesting case (only 2% of labeled
observations), our model gives 36.24% relative improvement over CNN for ResNet18
and 50.29% relative improvement for DenseNet121.

6.4 Conclusions and Future Work

In this chapter, we proposed and developed a game-theoretic model which can be used
as a semi-supervised learning algorithm in order to label the unlabeled observations and
so augment datasets. Different types of algorithms (including state-of-the-art CNNs)
can then be trained on the extended dataset, where the “pseudo-labels” can be treated
as normal labels.

Our method is not the only semi-supervised learning model used to train deep learn-
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ing methods, and at this stage, we do not claim that our method is the best one. How-
ever, to the best of our knowledge, the other methods are directed towards deep learning
and incorporated within the learning algorithm itself. On the contrary, we offer a dif-
ferent perspective, developing a model which is algorithm-agnostic, and which doesn’t
even need the data to be on feature-based format.

Part of the future work will consist on tailoring our model specifically towards
convolutional neural networks and to make comparisons with other semi-supervised
learning algorithms. In addition to this, we believe that the true potential of the model
can be unleashed when the data is in some non-traditional format. In particular, we
plan to use our model in the fields of bio-informatics and natural language processing,
where non-conventional learning algorithms need to be developed. A direct extension
of this work is to embed into the model the similarity between classes which has been
proven to significantly boost the performances of learning algorithms.

Acknowledgements
This work was supported by Samsung Global Research Outreach Program. We thank
the anonymous reviewers for their suggestions to improve the chapter.

66



Part II

Applicative Contributions

67





Chapter 7

Protein Function Prediction

Reference: S. Vascon, M. Frasca, R. Tripodi, G. Valentini, and M. Pelillo. Protein
function prediction as a graph-transduction game. Pattern Recognition Letters, 2018.
DOI:10.1016/j.patrec.2018.04.002.

The content of this chapter is taken from the above reference.

Motivated by the observation that network-based methods for the automatic predic-
tion of protein functions can greatly benefit from exploiting both the similarity between
proteins and the similarity between functional classes (as encoded, e.g., in the Gene
Ontology), in this chapter we propose a novel approach to the problem, based on the
notion of a “graph transduction game.” We envisage a (non-cooperative) game, played
over a graph, where the players (graph vertices) represent proteins, the functional
classes correspond to the (pure) strategies, and protein- and function-level similarities
are combined into a suitable payoff function. Within this formulation, Nash equilibria
turn out to provide consistent functional labelings of proteins, and we use classical
replicator dynamics from evolutionary game theory to find them. To test the effective-
ness of our approach we conducted experiments on five different organisms and three
ontologies, and the results obtained show that our method compares favorably with
state-of-the-art algorithms.

7.1 Introduction

The Automatic Function Prediction of proteins (AFP) consists in the computational
assignment of the biological functions to the proteins of an organism [45]. It can be
modeled as a multi-label classification task, since each protein may be associated with
multiple functions, and represents one of the most challenging problems in the con-
text of computational biology [18, 70, 126]. The increasing availability of large-scale
networks constructed from high-throughput biotechnologies, representing functional
similarities between proteins, such as co-expression networks, protein domain simi-
larities, and protein-protein interactions just to mention a few, opened the avenue of
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a large class of graph-based algorithms, able to learn from the functional similarities
between proteins [140].

These methods can transfer annotations from previously annotated (labeled) nodes
to unannotated (unlabeled) ones through a learning process inherently transductive in
nature. These learning processes exploit the so-called guilt-by-association principle
[120], also known as homophily principle, by which proteins topologically close in the
graph are likely to share their functions.

Starting from simple approaches based on local learning strategies [106], several
other methods have been proposed in the literature, able to exploit in different ways the
overall topology of the functional network. Some examples are represented by label
propagation algorithms based on Markov [28] and Gaussian Random Fields [114,177,
183], methods that integrate local learning strategies with simple weighted combina-
tion of diverse information [20], approaches based on the evaluation of the functional
flow in graphs [159], algorithms based on Hopfield networks [41, 77], methods that
exploit relationships between homologous proteins to connect networks of different
species [113], while other approaches applied random walk based methods [84, 102]
and their kernelized version by exploiting both local and global learning strategies [128,
153].

Despite their large diversity, network-based methods share the common property
of using some notion of similarity between proteins to learn protein functions. The
underlying assumption is that similar proteins tend to share the same functional class,
an idea which is reminiscent of the homophily principle widely used in social network
analysis [32] and which lies at the heart of virtually all classification algorithms.

This general approach has well-founded biological motivation [140], but also the
similarity between functional classes (i.e. the Gene Ontology – GO terms to be pre-
dicted) plays a key role in the prediction of protein functions, as outlined by the recent
CAFA2 (Critical Assessment of Functional Annotation) challenge for the AFP prob-
lem [70], since GO terms are not independent, but hierarchically related according to
a directed acyclic graph [53]. To our knowledge, no network-based method has been
proposed in the context of AFP to jointly consider the similarities between proteins
and the similarities between functional classes. We hypothesize that network-based
methods could significantly enhance their performance if they were able to contextu-
ally learn from both similarity between the examples (the proteins) and the similarity
between the GO terms associated with the proteins their selves. This corresponds to the
well-known biological principle for which a protein is fully characterized by the entire
spectrum of its structural and functional properties, coded as a set of GO terms [53].

Motivated by this observation, in this chapter we present an application to AFP
of a graph transduction model based on game-theoretic principles that conforms to a
general classification principle which prescribes that similar objects should be assigned
to similar categories, assuming the existence of a notion of similarity not only at the
object but also at the category level. This is, in fact, a generalization of the standard
homophily principle which suggests instead that similar objects should be placed in the
same category.

Along the lines set forth in [35] within a standard homophily-based transductive
setting, which ignored potential category-level similarities altogether, the AFP prob-
lem can be abstracted in terms of a multi-player non-cooperative game where the
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players represent proteins, the functional classes correspond to the (pure) strategies,
and protein- and function-level similarities are combined in a suitable payoff function.
Within this formulation, the Nash equilibrium concept for non-cooperative games turns
out to offer a principled solution to the problem of finding a “consistent” labeling as-
signment [67, 111, 123].1 In order to find Nash equilibria of our AFP games we use
(multi-population) replicator dynamics, a well-known class of dynamical systems de-
veloped and studied in evolutionary game theory [165].

Our approach gives us the possibility not only to exploit the contextual informa-
tion of a protein but also to find the most appropriate functions for the proteins in a
determined context. In other words, the proposed model exploits two different kinds
of information: structural and semantic. The structural information identifies how the
proteins are organized in an organism, semantic information identifies how the func-
tions of the proteins are structured. The integration of these two sources of information
in a game theoretic model gives us the possibility to predict the combination of func-
tions that are best suited for the proteins of a given organism. The above result is the
most important methodological contribution of our work, which distinguishes it from
existing AFP network-based algorithms.

To assess the effectiveness of the proposed game-theoretic approach, we conducted
extensive experiments over different model organisms and using the ontologies of the
GO, including thousands of functional classes and predictions for tens of thousands
of proteins. We found that our proposed algorithms systematically obtain prediction
results that are competitive with respect to the state-of-the-art network-based methods
for protein function prediction.

7.2 Automatic Function Prediction Game

In this section, the specific model for the AFP problem is explained in detail.
We represent the proteins of an organism as players and their functions as strategies.

The games are played between similar players, imposing only pairwise interactions.
The payoff matrix is computed using a similarity function among GO terms and is
weighted by the structural similarity between the proteins. The payoff function for
each player is additively separable and is computed as described in Section 3.2.

Formulating the problem in this way we can apply equation (3.5) to compute the
equilibrium state of the system, which corresponds to a consistent labeling of the data
[111]. In fact, once stability is reached, all players play the strategy with the highest
payoff. Each player arrives into this state not only considering its own strategies but
also the strategies that other players are playing.

Our framework (see Fig.7.1) requires: a) the network that describes the interactions
among the players, b) the similarity between the functions, c) the strategy space of the
game and d) the payoff function.

1See [83] for a different approach based on MRF’s.
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7.2.1 Network of interactions
The network of interactions models the interactions among the players and is repre-
sented as a weighted graph G = (V, E, ω) where the set of nodes V = {1, . . . , n} are
the players/proteins and E ⊆ V × V the affinity between them weighted by the func-
tion ω. The edges E of G represents the affinity of the players, highest the value of
an edge the more likely the two connected players will play together. The graph G is
thus represented with an affinity matrix W = n × n, and its role is to encapsulate the
similarities (structural, functional, etc.) between pairs of proteins motivated by the fact
that similar or interacting proteins should share common functional annotations, such
as the participation to the same biological process, the catalysis of similar biochemical
reactions or the location inside the same cellular organelle. The crucial point here is
having a good similarity measure sim(·, ·)→ R≥0 that represent the closeness of pairs i
and j:

wi, j = simW (i, j) ∀i, j ∈ V (7.1)

In our experiments the networks of interactions have been constructed combining
together eight different protein networks or directly using networks that natively com-
bine different sources of data (Section 7.3.1).

On top of this network, a neighboring function N is applied to each player in or-
der to sparsify the net and keeping only the more similar players for each one. The
game-theoretic rationale that guided this choice is to select the subset of best match-
ing co-players, while from a labeling perspective task this means to select the set of k
neighboring of a point that weighs more in the labeling. Deciding the number of neigh-
boring is often a tedious and stressful task which also appears in other methods, i.e. in
k-NN classifier or in k-means clustering. To deal with this problem we decided to use
two principled heuristics to select the k neighboring of a graph having n nodes/proteins:

GC which stands for Graph Connectivity. The rationale is that by fixing k = blog2(n)+

1c we guarantee that the underlying graph is statistically connected [161]. Be-
ing connected, from a game-theoretic perspective, means that all the players,
directly or indirectly through a common neighbor, have the chances to influence
the others choices.

k-NN with this heuristics we set k = b
√

nc. This rule of thumb is used in k-NN clas-
sifier to automatically tune the parameter k [31]. The rationale is that the graph-
transduction game and the k-NN classifier are based on the same homophily
principles where the labels are propagated from k labeled nodes to the unlabeled
ones. If this heuristic holds for k-NN, it should also hold for our method.

Given a value for k, found with the two methods above, the neighbors Ni of protein i
is the set of j ∈ {1...n} s.t. wi, j ≥ αi where αi is the weight of the k-th most similar
element to i 2.

The resulting neighboring set is obviously asymmetric. In order to make it sym-
metric we use the following policy: given two protein i, j if j ∈ Ni while i < N j then
N j = N j ∪ {i}.

2wi,: are sorted in descendent order and αi correspond to the value at position k
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7.2.2 Function similarity graph

The function similarity graph models the similarity between pairs of GO terms from the
used ontology. It is a weighted graph G = (V, E, ω) with self loop in which ω(i, j) →
R≥0 weighs the similarity of the GO terms i and j. The graph G is represented as an
m × m matrix Z:

Zh,k = simZ(h, k) (7.2)

For the details of our implementation see Section 7.3.1.

7.2.3 Strategy space
The role of the strategy space X is to define all the possible associations between the n
proteins and the m functions retrieved from an ontology. The space X is thus modeled
as a n × m matrix in which each row corresponds to a mixed strategy xi and each
component xh

i represents the strength of the association between the player (protein) i
and the strategy (function) h. The strategy space X is the starting point of the game
and can be initialized in different ways based on the fact that some prior knowledge
about their labeling does exist or not. For the labeled proteins, since their functions are
known, we use the following method:

xh
i =

 1
fi
, if i has function h.

0, if protein i does not have function h.
(7.3)

where fi is the number of terms associated with protein i.
For the testing proteins (the ones with no labels) we propose and evaluate two

different initialization methods:

Without priors with this initialization, all the GO terms have the same probability
of being associated to a protein:

xh
i =

1
m
∀h = {1 . . .m} (7.4)

With k-priors the rationale of this prior is to emphasize the labels assigned to the
neighboring set of a certain protein with the idea that similar protein should be assigned
to similar classes. Given a protein i and its set of neighboring proteinsNi (with labels),
the prior is composed as follow:

xh
i =

1
m

+
∑
j∈Ni

xh
j ∀h = {1 . . .m} (7.5)

then xi is normalized such that it add up to 1
(
xh

i =
xh

i∑m
h=1 xh

i

)
and remains in the m-

dimensional simplex. The first term
(

1
m

)
gives the chances also to other functionalities

to emerge. If it was set to 0, this possibility would have been lost and the method will
focus only on the functions that are assigned in the neighborhood.
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Figure 7.1: The picture dissects the payoff function in order to understand what are
the single components (three graphs on top) and what is happening to the assignment
during the iteration of the dynamical system (eq 3.5). Consider the following situation:
two similar proteins A and C (A ∈ NC) in which C has no prior on the functions (eq.
7.4) while A has the functions 2, 4 assigned to it (eq. 7.3). In the first iteration we can
already note that the labeling for C changes and becomes more similar to A.

7.2.4 Payoff Function

The payoff function has the role of assigning the gain that a certain player i receives
when plays a strategy h (in graph-theoretic terms is the compatibility of assigning the
function h to the protein i). The rationale is that we want to boost the association
between similar players and similar GO terms. What we want for i, when plays with
j, is that their labels are mutually affected, including the choice of i and j and also
the set of similar labels to the ones associated to both the proteins. The set of similar
functions is included with the idea that the correct labels could also be received from
similar functions. This turns out to be:

u(xh
i ) =

∑
j∈Ni

((
wi jZ

)
x j

)h
(7.6)
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and the expected payoff as,
u(xi) =

∑
j∈Ni

xT
i

(
wi jZ

)
x j (7.7)

In this way, we weight the influence that each protein receive from its neighbors. Ac-
cording to eq. 7.7, we assumed that the payoff of protein i depends on: wi j, i.e. the
similarity with its neighborhood proteins j ∈ Ni; Z, the similarities among the func-
tional terms; x j, the preferences of neighborhood protein j ∈ Ni and the preferences
xi of the protein i itself. With u(xh

i ) and u(xi) we can start the dynamics of the game
according to equation (3.5). During each phase of the dynamics, a process of selection
allows strategies with higher payoff to emerge and at the end of the process each player
chooses its functionalities according to these constraints, which make the labeling con-
sistent (for an example see Fig.7.1).

Table 7.1: Data base and type of data used to construct the integrated protein similarity network
for DanXen, SacPomDic and em Dros

Database Type of data
PRINTS [6] Motif fingerprints
PROSITE [65] Protein domains and families
Pfam [39] Protein domain
SMART [96] Simple Modular Architecture Research Tool (database annotations)
InterPro [115] Integrated resource of protein families, domains and functional sites
Protein Superfamilies [56] Structural and functional annotations
EggNOG [116] Evolutionary genealogy of genes: Non-supervised Orthologous Groups
Swissprot [22] Manually curated keywords describing the function of the proteins

at different degrees of abstraction

7.3 Experiments
We applied different variants of our graph transduction game method (GTG ) (see Sec-
tion 7.3.4 for more details) to the prediction of the Cellular Component (CC), Molec-
ular Function (MF) and Biological Processes (BP) ontologies of the GO considering
different model organisms, ranging from the human to the fruit fly and the zebrafish,
involving thousands of functional classes (see Table 7.2).

7.3.1 Data
We constructed five networks representing the functional similarity between proteins.
Two networks include phylogenetically related organisms: a) the DanXen network en-
compasses Danio rerio (zebrafish) and Xenopus laevis (a small austral frog); b) the
SacPomDic network includes Saccharomyces cerevisiae, Schizosaccharomyces pombe
and Dictyostelium discoideum (unicellular eukaryotes). The third network (Dros) is
reserved to Drosophila melanogaster (fruit-fly), the model organism for insects.
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Such networks are constructed by integrating 8 different sources of information
from public databases (Table 7.1), as briefly described in the following.

At first, we obtained different profiles for each protein by associating for each
source of data a binary feature vector, whose elements are 1 or 0 according to the
protein annotation for a specific feature (e.g. whether or not a protein includes a spe-
cific domain, or a specific motif). Then the protein profiles have been used to construct
a set of similarity networks (one for each data type) with edge scores based on the
computation of the classical Jaccard similarity coefficient between each possible pair
of protein profiles, thus obtaining 8 different protein networks. Finally the networks
have been combined by unweighted mean integration [154].

The remaining two networks contain proteins belonging to Mus musculus (Mouse)
and Homo sapiens (Human) organisms, and have been retrieved from the STRING
database, version 10.0 [146]. The STRING networks are highly informative networks
merging several sources of information about proteins, coming from databases collect-
ing experimental data like BIND, DIP, GRID, HPRD, IntAct, MINT or from databases
collecting curated data such as Biocarta, BioCyc, KEGG, and Reactome.

Each of these networks are then used in Sec.7.2.1 to define the interactions between
the players (proteins).

Table 7.2: Number of proteins and GO terms with at least 2 annotations in each protein
network.

Network Proteins CC terms MF terms BP terms
DanXen 6250 125 198 1502
SacPomDic 15836 858 1331 3934
Dros 3195 414 485 2985
Mouse 20648 701 1313 7309
Human 19247 860 1688 6298

As class labels (groundtruth) for the proteins included in our networks, we used the
Gene Ontology CC, MF and BP experimental annotations extracted from the Swissprot
database3.

In order to enlarge the number of GO terms to be predicted, while preserving the
minimum information needed for the functional predictions, we removed only GO
terms having less than two annotations, thus resulting in a number of classes ranging
from 125 (CC ontology in DanXen) to 7309 (BP ontology in Mouse – Table 7.2).

The similarity between the GO terms for each integrated network and each ontology
could be in principle computed using semantic similarity measures based e.g. on the
Resnick or Lin measures or other recently proposed variants [17], but to show the
applicability of our proposed method we adopted a simple Jaccard similarity measure
between the annotations of each GO term. These similarities correspond to the entries
Zi j in Eq.7.2.

3http://www.expasy.org/ checked 19th May 2016
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7.3.2 State-of-the-art methods compared with GTG
We compared GTG with several classical and state-of-the-art graph-based algorithms
just applied to the the AFP problem: Random Walk (RW) and Random Walk with
Restart (RWR), the guilt-by-association method (GBA), the label propagation algo-
rithm (LP), three methods based on Hopfield nets, the Gene Annotation using Inte-
grated Networks (GAIN), the Cost-Sensitive Neural Network (COSNet) and the COS-
Net Multi-functionality-based ranking (COSNetM), the Multi-Source k-Nearest Neigh-
bors (MS-kNN), and the RAnking of Nodes with Kernelized Score Functions (RANKS).
The compared algorithms are briefly described below.

RW A t-step random walk algorithm [102] associates a protein i ∈ V with a score
corresponding to the probability that a random walk in G starting from positive
nodes ends at node i after t random steps. The iterative procedure to update
the probabilities uses at each step a transition matrix T obtained from W by
row normalization, i.e. T = D−1W, where D is a diagonal matrix Dii|

n
i=1, with

Dii =
∑

j wi j.

RWR After many steps the random walker in the RW algorithm may forget the prior
information coded in the initial probability vector (0 for nodes in V \ V+ and
1/|V+| for nodes in V+, where V+ is the set of positive proteins for the current
GO term). Thus, the RWR algorithm at each step allows the walker to move
another random step with probability 1− θ, or to restart from its initial condition
with probability θ.

GBA Family of algorithms relying upon the guilt-by-association principle, asserting
that similar proteins are more likely to share similar functions [138]. Usually,
the GBA discriminant score of a protein i for a given GO term is obtained as the
maximum of the weights connecting i to neighboring proteins associated with
that term (that is the positive proteins).

LP The label propagation algorithm, based on Gaussian kernels, iteratively propagates
labels from labeled proteins to the unlabeled ones until convergence [183]. Dur-
ing the label propagation the initial known labels are preserved.

GAIN An algorithm assigning labels to unlabeled proteins by minimizing the energy
function of a Hopfield net [61] associated to the protein network [77]. The net
dynamics involves solely the unlabeled proteins, whose activation thresholds are
set to 0, and whose initial state is set according to the labeling provided by the
current GO term. The equilibrium point reached by the dynamics provides the
binary labeling of unlabeled proteins. To provide even a ranking of proteins, in
the present work the neuron energy at equilibrium is adopted as ranking score,
following the approach presented in [43].

COSNet Suitable for unbalanced data like the GO term annotations, this algorithm ex-
tends GAIN by substituting the classical Hopfield net with a parametric Hopfield
net [11]. The parameters, namely the neuron activation values and thresholds, are
automatically learned in order to cope with the labeling imbalance [40].
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COSNetM An extension of COSNet exploiting the multifunctional properties of genes [42].

MS-kNN One of the top-ranked methods in the recent CAFA2 international challenge.
MS-kNN integrates several proteins sources/networks by applying the k-Nearest
Neighbours algorithm [2] to each network independently, and then averages the
obtained individual scores [88].

RANKS A ranking method adopting a suitable kernel matrix so as to extend the simi-
larity between two proteins also to non neighboring proteins [128]. The score of
each protein i for a given GO term is defined through a local function that takes
into account the neighborhood of each protein in the projected Hilbert space,
according to the global topology of the underlying network.

For COSNet and RANKS we used the source code publicly available as R package [44,
153], and for the other methods we used the code provided by the authors or our in-
house software implementations. The parameters required by our GTG approach and
the other considered methods in this work have been learned through internal tuning
on a small subset of training data.

7.3.3 Experimental setup
To evaluate the generalization performance of the compared methods we applied a
5-fold cross-validation experimental setting. According to the recent CAFA2 interna-
tional challenge, to compare the results we considered both the “per class” Area Under
the Precision Recall Curve (AUPRC), and the “per-example” multiple-label F-score.
More precisely if we indicate as T P j(t), T N j(t) and FP j(t) respectively the number of
true positives, true negatives and false positives for the protein j at threshold t, we can
define the “per-example” multiple-label precision Prec(t) and recall Rec(t) at a given
threshold t as:

Prec(t) =
1
n

n∑
j=1

T P j(t)
T P j(t) + FP j(t)

Rec(t) =
1
n

n∑
j=1

T P j(t)
T P j(t) + FN j(t)

(7.8)

where n is the number of examples (proteins). In other words Prec(t) (resp. Rec(t))
is the average multi-label precision (resp. recall) across the examples. The F-score
multi-label depends on t and according to CAFA2 experimental setting, the maximum
achievable F-score (Fmax) is adopted as the main multi-label “per-example” metric:

Fmax = maxt
2Prec(t)Rec(t)

Prec(t) + Rec(t)
(7.9)

To pursue a fair comparison, the cross-validation has been performed by adopting a
non-stratified partition of proteins in folds unique for all methods. The AUPRC results
have been averaged across folds having at least one annotated protein (otherwise the
AUPRC by definition is meaningless).

7.3.4 GTG variants and settings
In our experiments we applied different variants of the GTG method, depending on the
choice of the neighboring function (Section 7.2.1) and of the priors used to initialize
the strategy space (Section 7.2.3) – see Table 7.3 for more details.
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Table 7.3: Variants of GTG . The column name contains the name used for the partic-
ular setting in the chapter; neighbour size refers to the sec. 7.2.1; symmetric if yes the
neighbourhood is symmetrized; prior if yes the k-prior defined in sec. 7.2.3 to initial-
ize the strategy space is used, otherwise no informative prior (uniform distribution) is
used.

Name Neighbour size Symmetric Prior
GTG α GC No No
GTG β GC Yes No
GTG γ GC Yes Yes
GTG δ k-NN Yes Yes

7.4 Results

In this section we performed an extended cross-validated experimental comparison be-
tween GTG and nine state-of-the-art network-based algorithms using 5 different net-
works, and successively an ”ablation study” to analyze the impact of different ratios of
labeled examples on the learning behavior of GTG .

7.4.1 Cross-validated experimental results

We performed an extended experimental comparison between GTG α , GTG β , GTG γ and
GTG δ methods and nine state-of-the-art network-based algorithms using 5 different
networks (DanXen, SacPomDic, Dros, Mouse and Human) labeled with terms of the
three GO ontologies (BP, MF and CC). In this section we present and discuss the av-
erage results across classes (using the AUPRC metric) and across proteins (using the
Fmax metric) for each network, considering separately the BP, MF and CC ontologies,
thus resulting in 15 sets of average results involving thousands of functional classes
and tens of thousands of proteins of different model organisms.

Multi-label Fmax results are summarized in Table 7.4. Independently of the model
organism and the biological ontology considered, our proposed game theory-based
transductive methods largely outperform the other methods (Table 7.4). In particu-
lar GTG γ and GTG δ achieve better results than the other methods (see the last two
rows in Table 7.4). In several cases the relative improvement with respect to the best
competing state-of-the-art method is close or larger than 50%: for instance with the
MF ontology in DanXen, Dros, SacPomDic and Mouse networks, or with the BP on-
tology in DanXen, Human and Mouse. Also with the other ontologies and the other
model organisms considered in this work the improvement with respect to the other
network-based methods is impressive.

The only method that attains comparable results (but only limited to the CC on-
tology in Human) is the MS-kNN algorithm, one of the top ranked methods in the
recent CAFA2 challenge for protein function prediction [70] (Table 7.4). Note that
GTG α and GTG β , which uses a uniform distribution to initialize the strategy space
X, usually obtain worse results than the other proposed variants GTG γ and GTG δ that
adopt “neighborhood-aware” priors to initialize X (Section 7.2.3). Nevertheless, in
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Table 7.4: Fmax results across the terms of the CC, MF and BP ontology for DanXen,
Dros, SacPomDic, Human and Mouse integrated protein networks. For each ontology
and network the best results are highlighted in bold.

Fmax Danxen Dros SacPomDis Human Mouse
CC MF BP CC MF BP CC MF BP CC MF BP CC MF BP

RANKS 0.5418 0.5075 0.4402 0.5483 0.3522 0.3201 0.6893 0.2951 0.4021 0.2804 0.1157 0.1467 0.2970 0.1354 0.1197
RWR 0.2588 0.2860 0.1156 0.1235 0.2237 0.0744 0.0718 0.1263 0.0662 0.0604 0.0374 0.0493 0.0545 0.0453 0.0367
COSNet 0.6055 0.4849 0.4542 0.5698 0.3811 0.2946 0.7128 0.4735 0.3364 0.1089 0.0847 0.0494 0.5694 0.3819 0.2292
COSNetM 0.6031 0.4831 0.4547 0.4405 0.3262 0.1820 0.5857 0.3953 0.2356 0.1953 0.1369 0.1572 0.4006 0.1958 0.1601
GAIN 0.3346 0.1796 0.2603 0.6215 0.1782 0.3642 0.7093 0.1054 0.1930 0.6015 0.5517 0.0828 0.5934 0.1118 0.0808
GBA 0.6572 0.5336 0.3314 0.5152 0.4532 0.2509 0.5002 0.5138 0.3746 0.3072 0.2365 0.1914 0.3285 0.2327 0.1544
LP 0.6678 0.5513 0.4328 0.6473 0.3687 0.4005 0.7244 0.2411 0.3006 0.6225 0.5361 0.263 0.6114 0.2535 0.2475
MS-kNN 0.3517 0.3574 0.2769 0.7120 0.5361 0.5138 0.8173 0.5386 0.5332 0.6419 0.5498 0.2276 0.6325 0.4055 0.2123
RW 0.2322 0.2767 0.0943 0.0962 0.1220 0.0562 0.0436 0.0573 0.0261 0.0481 0.0271 0.0374 0.0420 0.0335 0.0282
GTG α 0.6589 0.5516 0.3698 0.6315 0.5762 0.4037 0.7254 0.6650 0.4622 0.5856 0.5916 0.3248 0.5959 0.5730 0.3108
GTG β 0.6670 0.5602 0.3814 0.6403 0.5966 0.4119 0.7313 0.6126 0.4427 0.5852 0.5966 0.3278 0.5939 0.5832 0.3127
GTG γ 0.8107 0.7188 0.6316 0.8283 0.7627 0.5881 0.8956 0.7953 0.6830 0.6389 0.6382 0.3902 0.6531 0.6301 0.3643
GTG δ 0.8138 0.7088 0.5973 0.8184 0.7489 0.5848 0.8989 0.7728 0.6694 0.6397 0.6346 0.3804 0.6568 0.6119 0.3521

most cases, GTG α and GTG β too achieve comparable or significantly better results
than all the other competing methods (Table 7.4).

Table 7.5: Mean AUPRC results averaged across the terms of the CC, MF and BP on-
tology for DanXen, Dros, SacPomDic Human and Mouse integrated protein networks.
For each ontology and network the best results are highlighted in bold.

AUPRC Danxen Dros SacPomDis Human Mouse
CC MF BP CC MF BP CC MF BP CC MF BP CC MF BP

RANKS 0.3014 0.266 0.1672 0.2972 0.3038 0.1879 0.2808 0.2183 0.1666 0.3061 0.0988 0.1109 0.2376 0.0933 0.0848
RWR 0.2318 0.2977 0.1399 0.1060 0.2400 0.0979 0.0920 0.2260 0.0880 0.219 0.0630 0.0650 0.157 0.0630 0.0530
COSNet 0.2556 0.2409 0.1469 0.2347 0.2389 0.1398 0.2526 0.1890 0.1240 0.1894 0.0319 0.0452 0.1726 0.072 0.0575
COSNetM 0.2473 0.2400 0.1475 0.2225 0.2363 0.1373 0.2558 0.1860 0.1220 0.1870 0.0317 0.0446 0.1713 0.0716 0.0577
GAIN 0.0216 0.0271 0.0099 0.0332 0.012 0.0145 0.0186 0.0017 0.0044 0.0199 0.0027 0.0022 0.0179 0.0017 0.0024
GBA 0.3213 0.4951 0.2203 0.2746 0.4577 0.1899 0.3074 0.5036 0.2115 0.3314 0.1129 0.1293 0.2573 0.1161 0.1024
LP 0.0308 0.0302 0.0187 0.0532 0.0279 0.0359 0.0256 0.0054 0.0112 0.2228 0.0692 0.065 0.1528 0.0563 0.0447
MS-kNN 0.1550 0.1297 0.0833 0.1475 0.1724 0.083 0.2009 0.1496 0.0987 0.1837 0.0109 0.0244 0.1337 0.0105 0.0136
RW 0.1998 0.3903 0.1347 0.0744 0.1476 0.0724 0.0312 0.0903 0.0318 0.1248 0.0402 0.0382 0.0938 0.0383 0.0336
GTG α 0.4325 0.5462 0.2698 0.3904 0.5448 0.2379 0.5030 0.5735 0.3131 0.3805 0.1025 0.1194 0.2739 0.1076 0.0884
GTG β 0.4614 0.5565 0.2747 0.4151 0.5760 0.2448 0.5326 0.5002 0.2916 0.3289 0.0933 0.1046 0.2311 0.1017 0.0733
GTG γ 0.3169 0.3534 0.2357 0.2988 0.4626 0.2283 0.3632 0.3933 0.2684 0.2593 0.0692 0.0761 0.1508 0.0632 0.0427
GTG δ 0.3364 0.4068 0.2300 0.3213 0.4554 0.2349 0.4439 0.4238 0.2746 0.2878 0.0721 0.0819 0.1855 0.0674 0.0490

Considering the AUPRC per-class metric, our proposed methods and in particular
GTG α and GTG β achieve competitive results with respect to the other state-of-the-
art network based algorithms, even if the results are not so compelling as with the
per-example metric. Indeed GTG α obtains better AUPRC results with respect to all
the other competing methods (boldfaced in Table 7.5) in 11 out of the 15 pairs of
network/ontology considered in this experimental comparison, while GBA, the second
best method, is equal or better than all the other algorithms in 4 out of the 15 net-
work/ontology pairs. Nevertheless, we outline that our methods behave largely better
with the Fmax per-example metric, since both GTG γ and GTG δ achieve better av-
erage results in 14 network/ontology pairs (Table 7.4). This is not surprising, since
the proposed graph-based transductive approach is conceived for a per-example multi-
label learning: for each protein the labels (GO terms) are learned together in the same
learning process taking into account the relationships between GO terms coded in the
payoff function (eq. 7.7) used to compute the payoff ui for each protein i ∈ I (Sec-
tion 3.2). Hence it is quite natural that our approach shows better results with the
hierarchical Fmax score, by which we take into account the multi-labels (i.e. the en-
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Figure 7.2: Performance of GTG α and GTG δ and top-four competing methods, on
Danxen by varying the ratio of labeled examples in the training set. First row: average
Fmax results with CC, MF and BP GO ontologies. Second row: average AUPRC
results with CC, MF and BP GO ontologies. Error bars refer to the standard deviation
across 20 hold-out repetitions.

tire set of GO terms) correctly predicted for each protein, while reasonable but not so
compelling results are obtained with the AUPRC metric computed on a per-class basis.
Moreover, from a biological standpoint, in most cases biologists are more interested
in the set of GO terms associated with a specific protein or a set proteins, than in the
predictions for a specific term, since the functional and structural characteristics of a
given protein are captured by the entire set of functions (GO terms) associated with
the protein under study. We note that for the per-class metric we did not report the
classical AUROC (Area Under the Receiver Operating Characteristic curve), but the
AUPRC instead. Indeed in the context of the protein function prediction, most of the
GO terms are imbalanced, since positive examples usually represent a small subset of
the overall number of proteins. In this imbalanced setting, from both a machine learn-
ing [26] and a bioinformatics standpoint [134] it is well-known the AUPRC provides a
more reliable metric to assess the overall performances of the prediction methods.

7.4.2 Ablation study

Since performances of graph-transduction methods are typically affected by the num-
ber of labeled elements, we run a series of experiments to assess the behavior of the
proposed model and the ones of the competitors when the number of annotated pro-
teins (labeled elements) increases with respect to the overall available examples. To
this end we performed an hold-out evaluation with different percentage of the split
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Figure 7.3: Performance of GTG α and GTG δ and top-four competing methods, on
Dros by varying the ratio of labeled examples in the training set. First row: average
Fmax results with CC, MF and BP GO ontologies. Second row: average AUPRC
results with CC, MF and BP GO ontologies. Error bars refer to the standard deviation
across 20 hold-out repetitions.

s = {0.01, 0.05, 0.1, 0.2, ..., 0.9} between the training and test set, where s represents
the ratio of training examples. We realized the split in a stratified way in order to
maintain in both training and test set the same ratio between labeled and unlabeled
examples.

We performed 20 repetitions for each value of s in order to assess the stability of the
analyzed methods. The performances (Fmax and AUPRC) of the two more valuable
representative variants of GTG (GTG α and GTG δ ) have been evaluated in compari-
son with the other competing methods introduced in Section 7.3.2, using DanXen and
Dros networks and all the three ontologies. Figs. 7.2 and 7.3 show GTG results in
comparison with the best four performing methods for each organism, ontology and
metric considered.

Fmax results show that GTG and in particular GTG δ significantly outperforms all
the other methods across the overall range of s values (Fig. 7.2 and 7.3, first row). With
AUPRC we do not obtain so compelling results, since other methods (e.g. RANKS)
achieve better results, especially for low percentages of labeled examples in the train-
ing set (Fig. 7.2 and 7.3, second row). These results are not surprising since GTG learns
the overall set of GO labels associated with each protein, while other methods, such as
RANKS, are designed to learn the GO labels using a per-class strategy, without taking
into account the relationships between GO terms. It is worth noting that the differ-
ences between GTG α and GTG δ are stronger in terms of Fmax while in AUPRC
are close to each other. This is explained by the fact that GTG δ uses a smart initial-
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ization with priors which limits the possible ranges of labeling solutions. Analyzing
the learning behavior of the different models with respect to the percentage of avail-
able training examples, as expected, for GTG the more the number of labeled points
the better the performances, while this in not always true for the competing methods.
Hence GTG has a more stable and predictable behavior concerning performances and
percentage of the labeled samples with respect to the other methods. For example, in
the MF ontology with the AUPRC metric, while we can note a constant increment of
the performance of GTG methods when more labeled training examples are available,
for all the other methods we can observe an opposite trend for large values of s (Fig. 7.2
and 7.3). Moreover, GTG ranks as one of the top-3 methods (the lower curve of GTG is
above the worst-best competitor) independently from the organism, ontology or metric
taken into account.

Summarizing, results with different ratios of labeled examples confirm the effec-
tiveness of the proposed approach and also show that GTG provides consistent and
robust results, improving its performance when more labeled examples are available.

7.4.3 Discussion

The GTG α results in terms of AUPRC, and the ones of GTG γ and GTG δ in terms
of the multi-label Fmax score, show that our game-theoretic-based approach can in-
troduce significant improvements in network-based algorithms for AFP problems. The
motivation of the success of the proposed approach is likely due to the fact that the
game-theoretic model mimics, in a mathematical framework, the driving principle of
the “guilt-by-association”, and extends it by embedding in the learning process not
only the similarities between proteins, but also the similarities between the functional
terms of the GO. From a graph-learning standpoint this translates into a network-based
semi-supervised approach by which the transductive process contextually learns all the
labels (GO terms) associated with a specific protein, thus exploiting at the same time
the relationships between both GO terms and proteins. Furthermore, the experimental
evidence suggests us the following rule-of-thumb: if one is interested in optimizing a
per-example metric (like Fmax) prior knowledge should be added to the strategy space
(see Sec.7.2.3) and the neighborhood should be symmetric 7.2.1. To optimize a per-
class metric (like the AUPRC) using a uniform distribution in the strategy space and an
asymmetric neighboring system improve the results. In the first case, this is explained
by the fact that each testing sample is treated independently focusing more on the set
of possible functions assigned to the neighboring proteins. In the latter case we are in-
terested in a (more) global metric, so assuming no prior knowledge for each sample let
the protein-function assignment to naturally emerge from the data, thus capturing phe-
nomena that span across the samples. Moreover, the results of Sec. 7.4.2 confirms the
stability, consistency and predictability of the learning behavior of GTG across differ-
ent experimental settings, showing that our approach is able to predict GO terms even
when we may dispose of relatively few annotated proteins, and that the performances
nicely improve when more labeled examples are available.
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7.5 Conclusions
In this chapter we have introduced a new game-theoretic perspective to the protein
function prediction problem, which is motivated by the observation that network-based
methods should take advantage not only of similarity information at the level of pro-
teins, as they usually do, but also of similarities between functional classes, which are
available in the Gene Ontology. Accordingly, we set up an abstract game whereby pro-
teins (the players) have to choose a strategy (a functional class), in a non-cooperative
manner, to get a payoff which is related to both protein-level and function-level similar-
ities. It turns out that the Nash equilibria of this AFP game are related to a well-known
notion of “consistency” in a contextual labeling problem [67, 111, 123]. The results
of extensive experiments confirm our original intuition that it does pay to incorporate
functional-class similarities into network-based prediction algorithms, and demonstrate
the power of simple game-theoretic dynamics to address the Automatic protein Func-
tion Prediction problem.
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Chapter 8

Multimodal Verbe Sense
Disambiguation

Reference: S. Vascon∗, G. Bigaglia∗, L. Giudice, and M. Pelillo. Multimodal Verb
Sense Disambiguation using Graph Transduction Games. ∗= equal contribution. un-
der submission

The content of this chapter is taken from the above reference.

Verb Sense Disambiguation is a well-known task in NLP, the aim is to find the
correct sense of a verb in a sentence. Recently, this problem has been extended in a
multimodal scenario, by exploiting both textual and visual features of ambiguous verbs.
The sense of a verb is assigned by the actual content of the image paired with it. In this
work, such task will be performed in a transductive semi-supervised learning (SSL)
setting in which a small amount of labeled information is used to perform the verb-
sense classification. The SSL is performed through a game-theoretic framework, in
which each multimodal representation of a pair image-verb is a player and the possible
strategies correspond to the set of senses that the verb belongs to. A Nash Equilibria
in this non-cooperative game corresponds to a consistent labeling between verbs and
their possible senses. Experiments have been carried out on the recently published
dataset VerSe. The results achieved outperform the current state-of-the-art by a large
margin.

8.1 Introduction
Word Sense Disambiguation is a common task in NLP, its goal is to assign a sense
to each word in a sentence. When restricting to solely verb nouns, the task is known
as Verb Sense Disambiguation (VSD). For instance, considering the verb run, the most
common sense is the one related to moving quickly, but there are other common senses,
like the one related to machine operations (the washing machine is running) or to cover
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Figure 8.1: Pipeline of the algorithm considering both labeled (green border) and un-
labeled images (black border).

a distance (this train runs hundreds of miles every day); all these senses share the same
verb, but they have quite different meanings.

The VSD is thus an utmost important task, which affect different domains, for ex-
ample in an image retrieval scenario, we want that the search engine being able to find
the correct results in ambiguous queries and to group images by sense [29]. In addition
to the typical NLP task, VSD can be brought to a Computer Vision scenario, taking
into account problems like Action Recognition (AC) and Human Object Interaction
(HOI); however, such tasks typically do not consider the ambiguity of verb senses.
Typical learning paradigm in WSD/VSD context are supervised [109] and unsuper-
vised [52, 112, 118, 124].

In this chapter we tackle a specific problem: performing the multimodal VSD in a
semi-supervised (SSL) scenario. The rationale is that, by moving in a SSL framework,
the required amount of labeled information is much lower than supervised approaches.
Moreover, with a little supervision the performances increase significantly [170].

The transductive process that we choose is based on a game-theoretic model called
Graph Transduction Games (GTG) [35]. The motivations that drive our choice toward
the GTG algorithm were that it has been successfully applied in a WSD context [150]
and proved to perform better than other alternatives (like Label Propagation [182]) in
SSL tasks [158]. The VSD will be accomplished in both a unimodal and multimodal
approach, taking into account both the image, its description and tags. The experiments
are performed on the recently published VerSe dataset [51]. Our contributions are thus
four-fold:

1 we apply GTG for the first time in a Multimodal VSD setting.

2 we exploit the principle of label consistency in the verb-sense disambiguation
task, which means that we consider the similarities among all the verbs during
inference.

3 we outperform the previous state-of-the-art by considering just 2 labeled pairs
< image, verb > per sense. We further provide experimental evidence when the
labeled part increases in size.
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4 by considering senses as labels (rather than encoded entities as in [51]) we avoid
the creation of time consuming hand-crafted queries, and the consequent data
crawling to generate the multimodal represention of the senses.

8.2 Related works
Visual Sense Disambiguation for nouns has a very limited literature. One of the first
approaches is in [7] which used a statistical model based on joint probabilities between
images and words. [132] used LDA to discover a latent space by exploiting dictionaries
definitions to learn distributions that represent senses. A similar task was accomplished
in [12] that tried to solve linguistic ambiguities using multimodal data. In [14] they
used multimodal data for semantic frame labeling . However such techniques are noun-
oriented. The first attempt to perform a fully verb-oriented VSD was introduced in
[52], which designed a variation of Lesk algorithm [95] that uses the multimodal sense
encoding and the multimodal input encoding respectively as the definition and context
for the algorithm. Recently, the SSL has been used for WSD: in [150] a similar game-
theoretic model as our is used, while in [170] an LSTM and label propagation are
combined to perform inference.

8.3 Verb Sense Disambiguation with GTG
In this section, we dissect the different components of our method.

8.3.1 Feature descriptors
Image features are extracted following [51] setup. There are three possible encodings:
textual, visual and multimodal (see Fig. 8.1).

Visual features: Input images are fed into a pre-trained VGG161 model [141], and
the output of the last FC layer is used as feature representation, resulting in a vector of
4096 elements for each image. Such vector is then unit-normalised.

Textual features: As in [51], experiments on text have been run on two possible
setups: using VerSe textual data annotations (GOLD) or by generating them through
state-of-art object detectors and image descriptors (PRED). In the latter scenario, ob-
ject labels have been extracted using the VGG16 model described previously. Since the
VGG16 net classifies images without performing object detection, in [51] they thresh-
olded the output of the SoftMax layer taking only classes that had a score greater than
0.2 (or the highest in case of empty result). This allows to obtain multiple classes/objects
per image. Captions have been generated with NeuralTalk22 [78, 160].
For what concerns the encoding, either captions, objects labels or a concatenation of
the two can be used. The encoding is performed through word2vec [110] embedding in

1We used the PyTorch implementation of VGG
2https://github.com/karpathy/neuraltalk2
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a 300-dimensional space. It is based on a Gensim model [129] pre-trained on Google
News dataset. For each word composing the textual input, a word2vec is extracted.
After that, they are aggregated by mean and unit-normalised, resulting in a vector for
each image.

Multimodal features: To perform multimodal VSD, textual and visual features can
be combined. In [51], beyond the vector concatenation, Canonical Correlation Analy-
sis and Deep Canonical Correlation Analysis are explored. Nevertheless their perfor-
mances were poorer than concatenation ones, hence we explored only this last option.

8.3.2 Graph Transduction Games for VSD
The Graph-Transduction Game (GTG) [35] is a semi-supervised learning algorithm in
which the inference is performed in a transductive manner, hence considering both la-
beled and unlabeled information. The classification task is casted as a non-cooperative
game in which the players (observation of a dataset) play a game in which each of them
has to make a choice among a set of possible strategies (labels) and it receives a reward
proportional to the compatibility of the choices made by the opponents. The more the
players are similar the more likely they will affect each others, hence share the same
label. In this specific VSD setting the set of players and the strategies correspond re-
spectively to the pair <image, verb> and the possible senses of the verb. We refer the
reader to the original paper [35] for the technical and theoretical details. Briefly, the
GTG requires as input three components: i) the set of labeled players L and the unla-
beled ones U, ii) the similarity graph between the players and iii) an initial assignment
between players and labels.

Similarity between players We define the similarity between players i and j as the
cosine3 of their features embedding fi and f j respectively. The features are defined in
section 8.3.1.

Probability Initialization The initial assignment between players (<image,verb>)
and strategies (senses) is initialized distinguishing between labeled and unlabeled play-
ers. The set L represents the data for which we know the actual label hence a one-hot
vector corresponding to the actual label is assigned to them, while for U a uniform
distribution among the feasible labels is generated:

xi,h =


1 if i is labeled and have sense h

1
|S i |

if i is unlabeled and h ∈ S i

0 otherwise

where xi,h correspond to the probability that the i-th player chooses strategy h while S i

is the set of possible senses associated to the verb in i. As one can note, the matrix x is
stochastic by construction (each row adds up to one).
Then GTG iteratively refines the assignment x considering the similarities between
players. It uses a dynamical system from Evolutionary Game Theory, named Replica-
tor Dynamics (RD) [107]. The RD iterates until the initial assignment stabilizes or a

3Since the features are all non-negative with unit norm, the cosine can be computed using the dot product.
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certain amount of iterations is reached4. This stable condition is known as Nash Equi-
libria [117] and it corresponds to a consistent labeling of the data [111]. At equilibrium
every player has chosen a strategy representing their best option, considering also the
choices of the others, hence they get labeled.
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Figure 8.2: GOLD results for text data, cnn and cnn+text varying the number of labeled points in com-
parison with Gella et al. approach (circles).

8.4 Experiments
Experiments have been performed on VerSe dataset. VerSe is composed of 3488 im-
ages selected from COCO and TUHOI, 90 verbs and 163 possible senses, resulting in
3510 (image, verb) pairs. Each pair represents a player in our non-cooperative game
(see Sec. 8.3.2). Accordingly to [51] the performances have been quantified using the
accuracy of the predicted sense. Considering the different features and their combina-
tions there are 7 possible setups for the experiments: captions (C), object labels (O),
captions with object labels (C+O), CNN features (VIS), CNN features concatenated to
captions (CNN+C), CNN features concatenated to object labels (CNN+O) and CNN
features concatenated to captions with object labels (CNN+O+C). The experiments
with our method have been carried out considering an increasing number of labeled
elements per sense (from 1 to 13) and accounting for the accuracy on the unlabeled
elements. The GTG process is carried out by randomly sampling elements considered
as labeled for each possible class (verb sense). In order to have results that are con-
sistent and not influenced by the stochasticity of initial sampling, each setup has been
executed on a pool of 15 different seeds.

8.5 Results
The results are shown in Figures 8.2 and 8.3 in which means and standard deviations
for all of the 15 runs are reported alongside the results of [51]. Verb types have been
split using Levin classes (motion and non-motion verbs). The performances of GTG
are plotted varying the amount of labeled information from 1 to 13. As can be seen,
the performances with 1 labeled point per sense are comparable or better than [51]
while with 2 or more labeled points we outperform dramatically the state-of-the-art.

4We set the maximum number of iterations to 10 as suggested in [33]
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Figure 8.3: PRED results for text data, cnn and cnn+text varying
the number of labeled points in comparison with Gella et al. approach
(circles).

Verb type Textual
O C O+C

Motion 73.63 76.19 76.62
Non Motion 83.94 80.58 81.98

Verb type CNN CNN+

O C O+C
Motion 78.83 74.68 77.44 77.82
Non-Motion 80.80 83.10 80.32 81.77

Table 8.1: Results consider-
ing modern DNN
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In GOLD setting (Fig.8.2), for object labels (O) and visual features (CNN), the GTG
approach outperforms Gella et al. results with just 1 labeled point. Whereas, for caption
data they are quite aligned; especially if we take into account standard deviations. This
has an impact on all derived experiments that are based on image captions. In PRED
annotations setting (Fig.8.3), all GTG experiments outperform Gella et al. results when
two labeled points are considered. When only 1 labeled point is used, the performances
of Gella et. al. are in the range of variances of GTG. In general, we note that the higher
the number of labeled point per sense, the higher the overall accuracy and smaller the
standard deviation. The accuracy follows a logarithmic growth i.e. the variation of the
number of labels has a relevant role when they are few, whereas, with more than 6-7
labeled points per class, the accuracy starts converging.

Performances with modern DNN In this experiment we substitute the image clas-
sifier used in the PRED setting with a state-of-the-art object detector [130] which pro-
vides us the actual content of the image rather than an estimate of the possible classes
of an image. Regarding the captioning, we adopt a more recent automatic captioning
method [105].

Faster R-CNN might generate non-unique object labels, for this reason we dropped
duplicates. The results of this setting (see Table 8.1) are aligned to the ones obtained
with standard PRED.

8.6 Conclusions & Future Work
In this chapter, we showed the suitability of a game-theoretic model in the task of
multimodal verb sense disambiguation. The power of the proposed approach relies on
the transductive nature of the GTG which performs the inference for the sense of a
verb based not only on the similarity with the labeled samples but considering also the
unlabeled ones, leading to a more precise boundaries definition thus outperforming the
state-of-the-art in the VSD task. As for the future works, we will investigate the use of
prior knowledge on the possible verb senses in the system.

91



CHAPTER 8. MULTIMODAL VERBE SENSE DISAMBIGUATION8.6. CONCLUSIONS & FUTURE WORK

92



Chapter 9

Ancient Coin Classification

Reference1: S. Aslan, S. Vascon, and M. Pelillo. Ancient coin classification using
graph transduction games. In Proc. of the IEEE 4th International Conference on
Metrology for Archaeology and Cultural Heritage, IEEE, 2018. Oral presentation
. Pre-print available at https://arxiv.org/abs/1810.01091

The content of this chapter is taken from the above reference.

Recognizing the type of an ancient coin requires theoretical expertise and years of
experience in the field of numismatics. Our goal in this work is automatizing this time-
consuming and demanding task by a visual classification framework. Specifically, we
propose to model ancient coin image classification using Graph Transduction Games
(GTG). GTG casts the classification problem as a non-cooperative game where the
players (the coin images) decide their strategies (class labels) according to the choices
made by the others, which results with a global consensus at the final labeling. Exper-
iments are conducted on the only publicly available dataset which is composed of 180
images of 60 types of Roman coins. We demonstrate that our approach outperforms
the literature work on the same dataset with the classification accuracy of 73.6% and
87.3% when there are one and two images per class in the training set, respectively.

9.1 Introduction
Ancient coins, that depict cultural, political and military events, natural phenomena,
ideologies and portraits of god and emperors are important source of information for
historians and archaeologists. Recognizing the type of an ancient coin requires theoret-
ical expertise and years of experience in the field of numismatics. A common way to
detect the period of a discovered coin is searching through the manual books where an-
cient coins are indexed [24] which requires a highly time consuming labor. Our goal in
this chapter is automatizing recognition of Roman coins by employing computer vision

1Presented by S. Aslan on October, 23rd 2018 in oral session of ”Artificial Intelligence for Measurements
in Cultural Heritage” helds in conjunction with MetroArcheo 2018
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Figure 9.1: Example images of two classes from the Roman coin dataset [163] that is
used in this work. First row: Images of class 387/1; Second row: Images of class 300/1
(listed with Crawford [24] reference number).

and pattern recognition techniques. Automatizing such a manual procedure not only
provides faster processing time but also can support historians and archaeologists for a
more accurate decision. A visual classification framework for ancient coin recognition
can also be used at museums or by individual collectors to organize large collections
of coins. From the computer vision point of view, classification of ancient coin im-
ages is a highly challenging task. One of the difficulties arises from existence of high
number of types (i.e. classes) in ancient coins (e.g. Portuguese coins from medieval
period and coins from Roman Republic compose over 1500 [135] and 550 [24] differ-
ent classes, respectively), while most of the classes include few known specimens as
mentioned in [135, 172]. Moreover, intra-class variation is large due to local spatial
variations arising from missing parts and degradations on the coins, and manual manu-
facturing of coins by different engravers. Another reason of large intra-class variation
is the metallic structure of these coins yields to strong reflection and shading variations
so the appearance of the same coin changes significantly under different lighting con-
ditions. Another challenge in ancient coin classification is the typical low inter-class
variations due to high global similarity between classes [171]. Images from two coin
classes are presented in Fig. 9.1 to demonstrate the challenges of large intra-class and
low inter-class variations.

Ancient coin classification can be accomplished by adopting one of the following
approaches for classifiers [13]: (i) learning-based classifiers, where the parameters of
the classifier (e.g. Deep Neural Networks, SVM, Random Forests, etc.) are learned
from data in an intensive training phase. (ii) non-parametric classifiers, where the
classification decision is directly based on data without pursuing any training phase
(e.g. Nearest Neighbor based classifier). Although the first group proved to be superior
to the second one, they require extraction of highly discriminative features (possibly
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from abundant training data) for robust classification. Moreover, pursuing such a time
consuming training phase can be impractical for handling dynamic databases where
new classes are included continuously.

In this chapter, we adopt a non-parametric classifier for ancient coin classification,
which is preferable under existence of aforementioned challenges, i.e. large intra-class
and low inter-class variation and lack of abundant training data. We have followed
the same approach in [163, 171], i.e. our non-parametric classifier uses a dissimilarity
measurement derived from costs of dense matching of SIFT features. Similar to [163,
171], for dense feature matching we use SIFT flow [98], a flow estimation technique
developed for image alignment. SIFT flow preserves discontinuity so allows matching
objects that locate at different parts of image. This property of SIFT flow makes it well
suited for coin images [171], i.e. it helps to deal with large intra-class variation since
images from the same class has similar spatial arrangement of features. Additionally,
defining similarity between two coin images based on local matches between them
helps to deal with low inter-class variation, since two classes mostly differ from each
other in variations at local regions.

Differently from [163, 171], in this work we do not use a greedy Nearest Neighbor
(NN) based classifier where a query image is labeled with the class of its nearest (most
similar) image in the dataset. Instead, we use a semi-supervised learning approach,
namely Graph Transduction Game (GTG) [35], for ancient coin classification. The
GTG casts the classification problem as a non-cooperative game where the players (the
coin images) decide their strategies (class labels) according to the choices made by the
others, which results with a global consensus at the final labeling. Experimenting on
a small-scale ancient coin dataset having the aforementioned classification challenges,
we show that the notion of label consistency [67] provided by GTG brings significant
performance gain over the conventional NN-based classifier for this challenging prob-
lem.

9.2 Previous works
One of the main problems of ancient coin image analysis that is addressed in the lit-
erature is coin identification where the goal is recognizing a specific coin instance
instead of a coin type [64, 75]. This type of application finds usage at identification
of stolen coins. Most of the other works have focused on coin type recognition (or
coin classification) which has found a wider range of practical usage. A number of
works [76,163,171,172] employed NN-based classifier where the class of a query coin
image is assigned with the label of its most similar one in the training set. Among
these, [76] defined coin similarity by number of matched SIFT features that were de-
tected sparsely on the images, while [163,171] employed dense matching costs of SIFT
flow as dissimilarity metric. In [172], the authors used densely computed illumination-
invariant LIDRIC features and fusing several similarity scores that point out the match-
ing quality they employed an overall similarity score. High performance results are
reported in these works although the employed datasets were quite small-scale, i.e.
classification accuracies of 90% [76] and 82% [163] are obtained for the datasets with
390 images of 3 classes and 180 images of 60 classes, respectively.
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Other works employed learning-based classifiers. Earlier attempts [3, 4] relied on
Bag of Visual Words based representation of local image features where a visual dic-
tionary is learned from a training set and classification is achieved with SVM in [3] and
GMM in [4]. Recently, Schlag and Arandjelovic proposed to use a deep convolutional
neural network for Roman coin classification in [136]. They accomplish training with
a large set of images, i.e. around 20K images of 83 classes, and reported around 83%
accuracy on 10k images.

A significant obstacle at employing learning-based classifiers for this particular
research problem is deficiency of publicly available datasets. A number of works
employed datasets of Sassanian dynasty coins [121], some others focused on me-
dieval coins [135], and most of them have worked on coins of the Roman Repub-
lic [3, 4, 136, 163, 171, 172]. However, the only publicly available ancient coin dataset
is published by Zambanini and Kampel which is composed of 180 images of 60 Roman
coin classes [163] which we experimented on in this work.

9.3 Ancient Coin Classification using Graph Transduc-
tion Game

By considering the training set of coin images as the labelled players, GTG can be ap-
plied for ancient coin classification problem to estimate the labels of the test set images,
i.e. unlabelled players. We list the steps that we have employed for the application of
GTG for ancient coin classification as follows:

Feature extraction We compute two type of features on the images: (i) In order
to analyze local similarities, we compute 128-dimensional SIFT features in the local
neighborhood of every image pixel that results with a tensor named as SIFT-image [98];
(ii) In order to analyze global similarities between images we compute CNN features.
Specifically, since our dataset is quite small, which makes a CNN training unfeasible,
we apply transfer learning by using a CNN architecture pre-trained on ImageNet. Fi-
nally, for each input image we get its feature from the output of the last fully-connected
layer of the CNN.

Initialization of the strategy space Since no other knowledge on the problem ex-
ists, but only the distinction between labeled and unlabeled sets, the strategy space is
initialized using Eq.7.3 and Eq. 7.4.

Computation of similarity between objects A correct choice of computation for
the similarity between images is important to avoid a failure at label estimation. We
employ different schemes of similarity computation regarding to the extracted feature
types:

i. Similarity between local features of images: It is demonstrated in [171] that
matching scores of SIFT flow technique are powerful dissimilarity metric for ancient
coin classification. In SIFT flow, SIFT-images are matched along the flow vectors
and optimal correspondences are found by minimizing an energy function (E(w) in
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[98]) using dual-layer belief propagation [98]. Since runtime of such optimization
scales up with the image size, authors of [98] proposed to employ coarse-to-fine search
which results with faster computation and better performance of matching. Similar
to [163], in this work we used the minimum energy value, say E∗i, j, (to which SIFT Flow
algorithm converges at the finest level of the coarse-to-fine search) as a dissimilarity
metric between image i and j, i.e. we used d( fi, f j) = E∗i, j in Eq. 2.1.

ii. Similarity between global descriptions of images: Following the general trend
[34, 35], we used Euclidean distance, i.e. d( fi, f j) = || fi − f j||2 in Eq. 2.1, to compute
similarity between the CNN features.

Execution of transduction game Giving the similarities to the GTG, it starts to play
the game between players, i.e. images, until convergence. We get the final probabilities
of strategies, i.e. labels, for the unlabeled objects at the output and we assign the object
with the strategy that could get the highest maximum probability.

9.4 Experiments
Dataset We experimented on the only published2 ancient coin dataset [163] which is
acquired at Coin Cabinet of the Museum of Fine Arts in Vienna, Austria. The dataset
is composed of 180 images (reverse sides of the coins that includes motifs and legends)
of 60 classes with 3 images in each class. Images are resized to 150 × 150 pixels as
in [163].

Experimental setup Since we have experimented on the same dataset, we followed
the same experimental setting with [163] to make a fair comparison of techniques.
In [163], accepting one of the coins as a query image (or test image), the remaining one
or two images per class are used to create the training set. At each classification run,
nearest neighbor of the query image is searched in the training set. This procedure leads
to 180 and 360 classification runs when two and one training images per class is used.
When the training set is created by two images per class, the nearest neighbor search
is performed through accumulated dissimilarity values of each training set image over
classes.

Adopting the same experimental setting in our approach, we create a dissimilarity
matrix with the entries computed as in [163], i.e. as mentioned in Section IV.c. Then
we symmetrize it (by getting maximum of entries around diagonal) before giving input
to the GTG algorithm. Additionally, at each iteration we substitute the test image and
training images as unlabeled object and labeled objects, respectively to be used in GTG
and we get the class label of the unlabeled object in the output. In all experiments, the
parameter k of the neighboring set Ni in Eq. 3.11 is set to 2.

Performance evaluation We performed GTG by employing two feature types and
with the corresponding dissimilarity metrics as explained in Section IV. In the first ex-
periment, we compute off-the-shelf CNN features by DenseNet-201 which is one of the

2http://cvl.tuwien.ac.at/research/cvl-databases/coin-image-dataset/
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Table 9.1: Classification results

Training set: 1 image per class Training set: 2 images per class
Technique Correct clas-

sifications
Classification
accuracy

Correct clas-
sifications

Classification
accuracy

CNN features + Euclidean distance +

GTG
188 / 360 52.2% 113 / 180 62.8%

Dense SIFT + Matching cost + NN
[163]

257 / 360 71.4% 150 / 180 83.3%

Dense SIFT + Matching cost + GTG 265 / 360 73.6% 157 / 180 87.2%

state-of-the-art CNN architectures where we use the Euclidean distance metric to mea-
sure the dissimilarity between the features. In the second experiment, by employing
densely computed local SIFT features we use matching costs of SIFT flow as dissimi-
larity measure. The performance results of these experiments and comparison with the
state-of-the-art work on the same dataset [163] are given in Table 9.1.

It can be seen in Table 9.1 that the lowest performance results for both training
set sizes are obtained when we use the CNN features. This is an expected outcome,
because CNN features provide a global description of images and a high global simi-
larity exists between different classes in this coin dataset. We could outperform [163]
that employs a NN-based classifier, by using the GTG for ancient coin classification by
73.6% and 87.2% classification accuracy when the training set is constructed from one
and two images per class, respectively. We additionally checked the performance of
conventional NN-based classifier which does not adopt the accumulation of class-wise
dissimilarities (that were adopted at [163]), when there are two images per class in the
training set. In that case, we got 81.67% accuracy which was slightly lower than the
reported performance (83.3%) in [163].

In Fig. 9.2, we present two misclassifications of the proposed approach. It can
be seen that the misclassifications are mostly due to low variability between different
classes.

9.5 Conclusion

In this chapter, we studied the ancient coin classification problem using Graph Trans-
duction Games (GTG) which adopts the approach of non-parametric classifier. The
GTG is a game-theoretic semi-supervised learning algorithm, grounded on the notion
of label consistency, in which the final labeling of the objects is achieved by reaching an
equilibrium condition between all labeling hypothesis. Our experimental results show
that GTG works better for the problem of ancient coin classification, which is a highly
complex problem due to large intra-class and low inter-class variations, compared to
conventional nearest neighbor based non-parametric classifiers that does not consider
global agreement at labeling choices of all dataset images.
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Figure 9.2: Two selected misclassifications of the proposed approach based on GTG.
First column: test image; Second column: another image from the same class; Third
column: image of selected class by the proposed scheme.
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Conclusions

In this thesis, we showed how non-cooperative game theory can be used effectively
in different fields of computer science. In particular, we have explored an algorithm,
rooted in the evolutionary game-theory, named Graph Transduction Games. The GTG
models a semi-supervised learning problem as a non-cooperative game where the clas-
sification hypothesis emerges as the results of the interaction between data points. In
such a game, the players are the objects of a dataset, and the labels correspond to the
strategies. The aim of the game is letting players play together and pick their best
strategy, considering the choices made by others. The interactions between players are
modeled through a weighted graph, which defines who and how plays together. The
graph explicitly creates a context in which the players are playing. In this thesis, the
GTG algorithm and the notion of context have been used in different fields, outper-
forming traditional SSL algorithm and performing on par to deep-learning approaches.
Summarizing, from a methodological point of view we contributed in different direc-
tions:

Unsupervised Domain Adaptation In this work, the context played a central role
defining the relations between the data from the source and the target domain. Once
the context is created, the labels from the source domain are propagated to the target do-
main in a consistent way, considering both prior knowledge and similarities. This con-
tributes to offering a newer perspective to UDA, which outperforms more complex and
tailored UDA methods while achieving comparable performances with deep-learning
approaches.

Clustering using Factorization of Non-Negative Matrices Here we exploit the con-
text and the GTG algorithm to refine the clustering obtained by non-negative matrix
factorization algorithms. The idea is to use the clustering assumption3 creating a con-
text composed of similar data points (a sparsely connected graph), letting the assign-
ment between points and clusters to adjust automatically, considering the contextual
relations. We initialize a non-cooperative game using both the prior partitioning from
a factorization method and the similarity between points, then we let the final assign-
ment to emerge by competition. This is a substantial contribution since NMF clus-
tering methods are widespread and can be easily ameliorated with this game-theoretic
approach.

3Similar objects are assigned to similar cluster.
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Deep Neural Network Training under Data Scarcity In this work we have pro-
posed a new schema to make feasible the train of a neural network under scarcity of
labeled data but with abundant unlabeled ones. Here, the GTG algorithm was able to
propagate information to an unlabeled pool of data in an effective way using a few an-
notated points. The ”pseudo-labels” created with GTG are more precise than the one
obtained using standard inductive methods, showing better performance during net-
work training.

From an applicative point of view, we applied GTG and its notion of the context
within different areas, offering a newer perspective and remarkable performances.

Protein Function Prediction Predicting protein functionalities is a really complex
task due to the nature of the data and to the fact that multiple functions can be associ-
ated with a particular protein. Following the Hume assumption, which states that simi-
lar points belong to similar classes we were able to encode within the GTG framework
not only pairwise similarities between proteins but also similarities between function-
alities which mean exploiting the semantics of the classes. The classification task as an
emerging property of the data, and the similarities between classes lead us to achieve
outstanding performance in such a complex task.

Multimodal Verb Sense Disambiguation and Ancient Coin Classification The
prior works in these two fields considered the classification like an action performed on
each object independently and in isolation. Due to the complexity of the task, which
can lead to an ambiguous assignment, the usage of contextual classification and the
idea of labeling as an emergent property shown to be effective.

Summarizing what emerged from this research thesis is the following: i) classifi-
cation as an emergent properties from data proved to be (methodologically) a way to
deepen in the next year ii) The role of context defined in terms of interaction between
data points helps in solving ambiguous conditions iii) GTG is a very powerful and
flexible algorithm being able to accommodate in a principle way:

1 prior knowledge on the data in terms of classes assignment

2 no assumption on the functions used to compute the similarities

3 allows the usage of similarities between classes

4 the dynamical system used to reach a Nash Equilibria is highly parallelizable

The direction for the next works will be toward the usage of GTG directly into the
network training as an additional end-to-end disambiguation layer and the usage of
alternative sparsification methods.
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