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ABSTRACT: Computational generation of cyclic peptide inhibitors using machine
learning models requires large size training data sets often difficult to generate
experimentally. Here we demonstrated that sequential combination of Random Forest
Regression with the pseudolikelihood maximization Direct Coupling Analysis method and
Monte Carlo simulation can effectively enhance the design pipeline of cyclic peptide
inhibitors of a tumor-associated protease even for small experimental data sets. Further in
vitro studies showed that such in silico-evolved cyclic peptides are more potent than the best
peptide inhibitors previously developed to this target. Crystal structure of the cyclic
peptides in complex with the protease resembled those of protein complexes, with large
interaction surfaces, constrained peptide backbones, and multiple inter- and intramolecular
interactions, leading to good binding affinity and selectivity.

■ INTRODUCTION
Cyclic peptides combine numerous favorable properties that
make them attractive modalities for drug development.1 More
than 40 cyclic peptides are used as therapeutics today, with
about one cyclic peptide drug approved per year.2 The
discovery of cyclic peptide ligands with desired binding
affinities and specificities has progressed exponentially with
the advent of genetically encodable technologies, such as phage
display,3,4 mRNA display,5−7 ribosome display,8 bacteria
display,9,10 yeast display,11,12 and the split-intein based
approach SICLOPPS.13 Although very powerful, such directed
evolution approaches are often slow and resource-intensive, as
they involve the generation of large combinatorial libraries of
random genetically encoded cyclic peptides, multiple iterative
cycles of selection, amplification and diversification, and
painstaking trial-and-error.14−16

In this work, we raised the question of whether the potency
of previously selected phage-encoded bicyclic peptide inhib-
itors could be rapidly and cost-effectively enhanced in silico
rather than resort to slow, labor-intensive, and pricy in vitro, ex
vivo, and/or in vivo evolutionary approaches. Initial attempts to
improve the inhibitory potency of a family of bicyclic peptides
using a supervised ensemble learning method yielded limited
results in terms of prediction. We attributed the poor
performance to the small size of the available training data
set and attempted an unsupervised statistical learning method.
However, even this latter approach proved unable to provide

insightful information about the peptide sequence design. We
have therefore combined the two approaches and demon-
strated that the sequential application of statistical and
computational methodologies can effectively enable the rapid
and cost-effective in silico evolution of chemically constrained
bicyclic peptide inhibitors with greater potency than the best
previously experimentally evolved in vitro. We tested our
combined approach on two different families of phage-encoded
bicyclic peptide inhibitors of human urokinase-type plasmi-
nogen activator (huPA), a cancer-associated trypsin-like serine
protease.17 In both cases, the in silico inferred bicyclic peptides
proved to be more potent than the best experimentally evolved
inhibitors.

■ RESULTS AND DISCUSSION
To generate new bicyclic peptide sequences with the desired
property, we initially applied machine learning (ML) models
on a family of phage-encoded bicyclic peptide inhibitors of
huPA, whose most potent inhibitor was named UK18 and had
an inhibitory constant (Ki) value of 53 nM.

17 Further efforts to
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affinity mature UK18 using phage display and partially
randomized combinatorial peptide libraries under stringent
selection conditions yielded novel peptide sequences with
strong consensus motifs but not improved activities. Identified
phage-encoded bicyclic peptides had Ki values ranging from 53
to 7670 nM.17 All bicyclic peptide inhibitors consist of two
rings of identical length (each of six amino acids) flanked by
three cysteines that have been selectively chemically modified
using the same small organic linker 1,3,5-tris(bromomethyl)-
benzene (TBMB).18 Notably, the 3-fold symmetry of this small
linker allows the formation of only one isomer upon chemical
modification.
Given the small sample size of the training data set available

(37 peptide sequences for which we previously measured Ki
experimentally; Supporting data set 1) and the large possible
design space (20L possible sequences of length L), we ruled
out using deep learning approaches and instead explored the
use of Random Forest Regression (RFR) models to predict Ki.
Random Forest is a supervised ensemble learning method
based on decision trees.19 In the case of regression, numerous
decision trees are trained, and the model output is obtained by
averaging the outputs of the individual trees.20,21 The RFR
model was obtained by considering the peptide amino acid
sequence information as a feature while also including further
properties of the sequence itself in a second phase (Supporting
data set 2). The small TBMB linker was not accounted because
it does not impose a defined structure to the peptide and does
not play a direct role in the binding of the bicyclic peptide to
the target protein. Indeed, no noncovalent interactions
between the small mesitylene core and the amino acids of
the peptide loops (intramolecular) and/or the target proteins
(intermolecular) were previously observed.17,18,22,23 The main
role of this small linker is simply to tie the peptide ends
together, leading to reduced flexibility of the backbone.
Although entropic contributions are key in binding, they are
often difficult to determine and thus to include as features in a
training data set, especially for numerous bicyclic peptide
molecules. Moreover, the linker remained unchanged in all 37
available bicyclic peptides as did the positions of the three
cysteines with which it reacted. The only feature that varies
between the different bicyclic peptide inhibitors is, therefore,
the composition of the amino acids within the two peptide
rings. The resulting RFR model was thus trained exclusively
using an amino acid sequence-based data set and tested against
bicyclic peptides whose Ki was known (Supporting results and
discussion). However, the predicted Ki values were affected by
a high root mean squared error (RMSE) and model overfitting
(Figure S1). The reason for such limited prediction perform-
ance probably lies in the small size of the data set used during
the training phase.
To overcome the RFR limitations, we applied Direct

Coupling Analysis (DCA), an unsupervised statistical learning
method that was originally developed24 to predict contacts in
folded protein structures and has also been recently shown to
be able to reconstruct fitness landscape of proteins when
trained on sequence alignments obtained from experimental
sequence evolution pipeline.25,26 The DCA method fits an
ansatz to a multiple sequence alignment (MSA), where the
parameters h and J are related to single position conservation
and residue covariation (Supporting results and discussion). In
particular, herein the MSA of the initial small peptide data set
was processed using the pseudolikelihood maximization Direct
Coupling Analysis (plmDCA) method,27 and the h and J

parameters of the trained model were further used in a Monte
Carlo (MC) simulation to sample novel peptide sequences and
evaluate the plmDCA model’s score assigned to each sequence
(Figure S2). Given the small size of the training data set, it is
unlikely for the plmDCA model to learn parameters h and J
such that it would correctly identify all interactions in the
family of cyclic peptide binders to a given protein target.
However, as described in more detail in the Supporting results
and discussion, since the plmDCA is trained with peptide
sequences known to bind the target, we expect it can still
correctly identify some fraction of the covarying residues in the
sequence ensemble. We then randomly generated new
sequences with the Monte Carlo sampling algorithm, which
uses the plmDCA model score as the effective “energy”
parameter and samples the landscape of possible sequences in
order to generate new ones with good plmDCA scores. The
plmDCA score, trained on such a small data set, is not
expected to reflect the actual binding affinity but rather be
related to the likelihood that the generated peptide sequence
can bind to the protein target.28 Based on the plmDCA
model’s ability to correctly learn some of the covariations, we
expect that at least a few of these generated sequences will also
work experimentally. However, it would be too costly to
perform a high-throughput experimental scan of all of the
sequences generated by the plmDCA model. Therefore, we
decided to take advantage of the qualities of both statistical and
computational methods and applied them sequentially to
generate and select improved peptide inhibitors, respectively.
Hence, once fitted to the plmDCA model, MC simulation was
used to generate novel sequences (∼23600), that were then
given in input to the RFR model to predict their Ki values
(Figure 1 and Table S1).
Finally, the best peptide sequences derived from all of these

iterations were selected. Solely bicyclic peptides with Ki values
predicted to be lower than 0.92 μM (that corresponds to 50th
percentile) were chosen, resulting in ∼3000 novel sequences.
The MSA logo of such peptide sequences revealed a
preferential frequency of amino acids at each position that
was instructive for the definition of the bicyclic peptides to be
tested experimentally (Figure 1 and supporting results and
discussion).
Since RFR was trained on a very small set of sequences and

its performance was poor, thus increasing the risk of selecting
potential false positives from the list of generated sequences,
we decided to design the sequences of bicyclic peptide
inhibitors to be tested experimentally based primarily on the
frequencies of each amino acid residue at each position, as
inferred from the MSA logo, rather than relying on the best
peptide sequences generated directly by our model. We are
indeed aware that while for proteins we can rely on large data
sets and defined three-dimensional structures (e.g., the entire
Protein Data Bank database) that enable proper training of
generative models such as RFdiffusion,29 most bicyclic
peptides do not have defined structures nor are large structural
data available to easily train large-parameter models such as
deep learning models.30,31 The design of small bicyclic peptide
binding proteins must therefore be based on small data sets for
which deep learning-based generative models do not have
enough information to be trained on to perform accurately.
Thus, here we rely on the combination of two models trained
on the same small set of bicyclic peptides whose binding
affinity is known: a plmDCA model for peptide sequence
generation and an RFR model to predict the affinity of the
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generated peptides. However, due to the small size of the
training data set, the best predicted peptide sequences require
careful interpretation by experts to obtain functional
molecules. Based on their MSA logo, we designed eight
representative bicyclic peptide sequences, in which we
included the most frequently predicted amino acids at each
position (Figure 1). In cases of uncertainty, we used the 3D
structure of the best phage-encoded bicyclic peptide UK18 in
complex with huPA to better guide our choices. We therefore
placed an Asp in position 3, an Arg in position 4, and a Phe in
position 5 (Figure 2). The high frequency of an Arg residue at
position 4 did not surprise us, since it was also present in
UK18. The same applies to the aromatic residue Phe in
position 5, which is very similar to the Tyr present in UK18.
We were instead a little more intrigued by the high frequency
of the negatively charged residue Asp in place of the polar
residue Ser in position 3. We were even more surprised to find
that in position 6 the hydrophobic residue Val had a higher
frequency than the negatively charged Glu. Indeed, the three-
dimensional structure of UK18 in complex with huPA revealed
that the side chain of Glu in position 6 is crucial in conferring
structural rigidity to the bicyclic peptide, since it forms an
intramolecular salt bridge with the side chain of the Arg in
position 4.17 We hence speculated that substitution of a Glu
with a Val may have a significant effect on the structure and

binding affinity of the bicyclic peptide. So, to assess the
contribution of these two residues, we decided to design
peptide sequences that include either a Val or a Glu in position
6 (Figure 2). The seven central residues (positions 7 to 13,
Val-Asp-Cys-Arg-Gly-Arg-Gly) were instead kept unaltered as
they occurred at very high frequency and were shown to be key
in conferring high inhibitory potency (Figure 2). At position
14 we placed either a Gly or Ser residue, since they occurred
with a significantly higher frequency than other amino acids
(Figure 2). Notably, the three-dimensional structure of UK18
in complex with huPA showed that hydroxyl group of Ser in
position 14 engages in hydrogen bonds with main carboxyl
groups of the nearby Cys (position 9) and Gly (position 11)
residues.17 Therefore, replacement of a Ser with a Gly is
expected to have a significant effect on both the structure and
binding affinity of the bicyclic peptide. Finally, in position 15
we included either a Val or a Pro residue (Figure 2). The high
frequency of a moderately sized aliphatic hydrophobic amino
acid such as Val did not surprise us, as it is quite similar to the
Ala residue present in UK18. Conversely, the large incidence of
a Pro was unexpected because of both its unique structural
properties and its closed vicinity to the last cysteine. To
investigate the role of these two residues, we therefore
designed peptide sequences that present either a Val or a
Pro in position 15 (Figure 2).
Eight designed peptides were chemically synthesized,

cyclized with TBMB, and purified by reversed-phase high
performance liquid chromatography, the molecular mass
determined by electrospray ionization mass spectrometry,
and their inhibitory potency assessed using a fluorogenic-based
enzyme assay (Figures S3 and S4). Bicycle peptides inhibited
huPA with Ki’s ranging from 7.4 to 154.9 nM (Figure 2 and
Figure S4). Notably, the concomitant presence of Gly14 and
Pro15 in the second loop appears to have a synergic effect.
Indeed, peptides UK957 and UK961 revealed Ki values of 7.4
nM and 16.2 nM, respectively, about 10- and 4-fold better than
the best selected phage-encoded bicyclic peptide UK18
targeting huPA (Ki = 53 nM; Figure 2).

17

To assess the contribution of the enriched amino acids in
the first loop, we generated seven novel bicyclic peptide
variants in which the in silico selected residues Asp3, Phe5, and
Val6 were reverted to those present in the parental phage-
encoded bicyclic peptide UK18 molecule, while the Gly14 and
the Pro15 of the second loop, respectively, were kept unaltered
(Figure S5). Synthetic bicycle peptide variants including either
a single or a double amino acid substitution showed Ki values
ranging from 4.27 to 31.4 nM (Figure 2 and Figure S6).
UK964, which differs from UK18 for the presence of a Pro in
place of an Ala in position 15, showed about 1.7-fold
enhancement in potency. Further reversion of Ser14 to Gly
led to UK965, a peptide variant with a 4-fold increase in
inhibitory activity over UK18 (Figure 2 and Figure S6). While
the sole or concomitant replacement of the Asp3 to a Ser and
the Phe5 to a Tyr yielded peptide variants (UK961, UK965,
UK966, UK967) with marginal improvements (Ki’s ranging
from 11.6 to 18.1 nM), the reversion of the Glu6 to a Val
resulted in three peptide variants (UK968, UK969, and
UK970) that are at least 10-fold better than the best selected
phage-encoded bicyclic peptide UK18, with UK970 being the
most potent one (Ki = 4.3 nM; Figure 2 and Figure S6).
To assess the specificity of UK970, we determined its Ki’s

toward a panel of structurally and functionally related human
and murine trypsin-like proteases. The panel included murine

Figure 1. In silico molecular evolution of bicyclic peptide inhibitors of
huPA. MSA logo of 37 phage-encoded bicyclic peptides (input data)
selected in vitro against huPA (top left). Training and validation data
set were generated using amino acid sequences of all selected bicyclic
peptides (“sequences”), their biochemical and biophysical properties
(“features”), and the Ki values (“label”) determined for 37 bicyclic
peptide molecules (top right). Combination of pseudolikelihood
maximization direct coupling analysis (plmDCA) and Monte Carlo
(MC) methods (left) with the Random Forest Regression (RFR)
algorithm (right) yielded new peptide sequences with a preferential
frequency of amino acids at each position (MSA logo, bottom right;
Supplementary Table 1). MSA: multiple sequence alignment; Ki:
inhibitory constant.
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uPA, human, and mouse tissue-type plasminogen activators
(tPA) as well as other paralogue serine proteases such as the
human trypsin, thrombin, plasmin, plasma kallikrein, and factor
XIIa (Figure 2 and Table S2). Analogously to the parental
clone UK18, the affinity matured bicyclic peptide UK970
appears to be highly specific for huPA (>250000-fold
selectivity) as it only weakly inhibits (Ki > 1 mM) the other
homologue enzymes (Figure 2). The high binding specificity of
UK970 for huPA is particularly important, as many of the
homologue serine proteases tested have vital biological
functions, and their inhibition could cause severe off-target
side effects.
To unveil the contribution of the different enriched key

residues, we applied X-ray crystallography and determined the
structure of huPA in complex with bicyclic peptides UK965
(PDB entry 7ZRR) and UK970 (PDB entry 7ZRT) at 1.64
and 1.8 Å maximum resolution, respectively (Figure 3 and
Table S3). Overall, superposition of huPA-UK18 (PDB entry
3QN7), huPA-UK965 and huPA-UK970 crystal structure
complexes did not show any striking rearrangements of the
main huPA backbone with root-mean-square deviations of the
Cα-atoms that never exceed 1 Å except for loops Arg37A-
Ser37D and Leu203-Gly205 (Figure S7). The electron density
of UK965 and UK970 peptide chains could be traced
unambiguously apart for the first N-terminal residue Ala1
that is not detectable, suggesting some flexibility of orientation

inside the crystal (Figure S8). Further comparison of the
structure of huPA in complex with UK18 with that of bicyclic
peptides UK965 and UK970 revealed that all inhibitors are
accommodated in the substrate-binding region of huPA
(Figure 3). While phage-encoded UK18 covered a total
surface area of 730 Å2, the in silico evolved UK965 and UK970
variants cover a larger surface area (749 Å2 for UK965 and 746
Å2 for UK970; Figure 3, Table S4 and Figure S9).
Analogously to UK18, both peptide loops of UK965 and

UK970 make contacts with the enzyme, establishing multiple
noncovalent interactions with surrounding huPA residues
(Figure 3, Table S5 and Figure S9), though bicyclic peptides
UK965 and UK970 form a greater number of both
intermolecular polar and nonpolar contacts than parental
UK18 (Figure 3, Tables S5 and S6). Most of polar interactions
are mediated by residues Asp8, Arg10 and Arg12 that are
conserved between UK18, UK965, and UK970 (Supporting
results and discussion, Figure 3 and Table S6) while the
majority of nonpolar contacts are mediated by the aliphatic
side chain of Arg4, Tyr5 (UK965) or Phe5 (UK970), Val7,
Gly11 and Gly17 (Supporting results and discussion, Figure 3
and Table S7).
Major differences in the binding mode of bicyclic peptides

UK965 and UK970 to huPA with respect to UK18 can be
ascribed to the presence of a Pro instead of an Ala in position
15 (Figure 4a). Hence, the Pro15 located in the second loop of

Figure 2. Biochemical characterization of in silico evolved bicyclic peptide inhibitors of huPA. a) MSA logo of bicyclic peptides derived from the
iterative in silico process and predicted to have Ki values below 0.92 μM (that corresponds to 50th percentile); b) amino acid sequences of bicyclic
peptides designed according to the sequence logo graph. The residues with the highest frequency (larger letters) were placed in each position. The
sequences are arranged in groups according to sequence similarities; c) amino acid sequences of bicyclic peptides variants in which the in silico
selected residues were reverted to those present in the parental phage-selected UK18 molecule. Identical or similar amino acids between different
bicyclic peptide sequences are highlighted in color. The Ki values were determined at 25 °C and physiological pH (7.4) using the suitable substrate
at the concentration of 50 μM. Mean values of at least three measurements are indicated S.E., standard error; d) column graph comparing the
determined Ki values; e) scheme representing the contribution of mutated amino acid residues to the potency of inhibition; f) residual activities of
huPA and a series of homologous human and murine trypsin-like serine proteases incubated with synthetic bicyclic peptide UK970 were
determined at 25 °C, at physiological pH (7.4) using the suitable substrates at a concentration of 50 μM. The shown values are the means of three
independent experiments. Data are presented as the mean (symbol). S.E., and standard error. The Km values of each protease were determined by
standard Michaelis−Menten kinetics and used in the calculation of the reported Ki values (Supplementary Table 2).
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Figure 3. Structural comparison of the binding mode of bicyclic peptides UK18, UK965 and UK970 in complex with huPA. a) Molecular surface
representation of the overall huPA-UK18, huPA-UK965, and huPA-UK970 superimposed complexes are shown in two orientations (90° rotation).
Surface of huPA is colored in gray, while the peptide ribbon and mesitylene scaffold of UK18, UK965, and UK970 are colored in blue, pale green,
and salmon, respectively; b) column graph reporting the total number of polar (both direct and H2O-mediates) and nonpolar interactions of huPA
with bicycle peptides UK18 (blue), UK965 (pale green) and UK970 (salmon); c) comparative analysis of the buried surface area (BSA) covered by
UK965 in respective to UK18 (pale green) and that covered by UK970 in respective to UK18 (salmon); d) schematic representation of molecular
interactions between huPA and UK970. Residues of huPA are labeled according to the chymotrypsin numbering system. Intermolecular salt bridges
and hydrogen bonds are shown as red and blue dashed lines, respectively. Bicyclic peptide intramolecular hydrogen bonds are shown as green
dashed lines. Bent gray lines indicate residues of UK970 in close contact with human uPA (distances shorter than 4.0 Å that are not polar
intermolecular interactions).

Figure 4. Differences in the binding mode of bicyclic peptides UK965 and UK970 to huPA with respect to UK18. a) Detail view of previously
solved X-ray structure of bicyclic peptide UK18 in complex with huPA (blue and gray, top) and bicyclic peptide UK970 in complex with huPA
(salmon and gray, bottom). The presence of a Pro instead of an Ala in position 15 of UK970 variant appears to induce a sharp turn in the local
geometry that induce a different spatial arrangement of one arm of the linker arm and ultimately impose a different conformation on the backbones
of the opposite loop; b) the large conformational change induced by the distal Pro15 cause a repositioning of the Arg4 side chain that instead of
forming an intramolecular salt-bridge with Glu6 (top huPA-UK18 complex, gray and blue) now points toward huPA and engages in intermolecular
contacts with huPA (bottom huPA-UK970 complex, gray and salmon); c) molecular surface representation of the bicyclic peptides UK18, UK965
and UK970 color-coded according to hydrophobicity. Most hydrophobic residues and the mesitylene scaffold are shown in raspberry, whereas the
most hydrophilic ones are shown in white; d) view of the amino acids surrounding the central chemical linker. The mesitylene core and the side
chains of the mutated residues are shown as spheres. Hydrophobic residues and the mesitylene scaffold are shown in raspberry, whereas the
hydrophilic ones are colored in white.
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both UK965 and UK970 variants appears to induce a sharp
turn in the local geometry that prompts a conformational
change of the opposite first loop, ultimately repositioning the
amino acid side chains and affecting the interaction with huPA
(Figure 4b). The reoriented first loop residues displaced huPA
loop Arg37A-Ser37D by around 3.5 Å, creating a new binding
site that is occupied by Arg4 of UK970 (Figure 4b). Notably,
contacts are established with the same shifted huPA residues
Arg35 and Arg37A, that were not engaged in the huPA-UK18
complex (Tables S6 and S7; Figure S10a,b). The newly
induced snug fit of the first loop to the huPA target may
explain the higher inhibitory potency of UK965 and UK970
and validated the importance of the skeletal backbone shape
that would have been difficult to predict by simply inspecting
by eye both the peptide sequence alignments and the crystal
structure of the UK18-huPA complex.
However, the higher potency of the bicyclic peptides UK965

and UK970 over the parental UK18 might be attributed not
only to a larger contact surface but also to entropy-driven
factors. It is fairly well-known that increasing the conforma-
tional constrains of the backbone limits entropic penalisation
and often leads to better binding properties.18,32−34 A major
role in the reduction of the conformational freedom appears to
be played by both the branched cyclization linker TBMB and
the network of noncovalent intramolecular interactions
involving side- and/or main-chain atoms of residues of both
peptide loops. Indeed, UK965 and UK970 bicyclic peptides
exhibit a pattern of intramolecular contacts different from that
of UK18 which could further limit the conformational
flexibility of their backbone and ultimately provide them
with greater compactness and rigidity (Figure 4 and Table S8).
The higher compactness and rigidity of UK965 and UK970

bicyclic peptides in complex with huPA are underpinned by
their overall B-factor values, on average lower than that of the
parental UK18 (Figure S11a−e). The replacement of the Ala
in position 15 with a Pro appears to have a role not only in
inducing the conformational change of the first loop but also in

squeezing the backbone of the second loop (Figure 4). Indeed,
incorporation of proline on a peptide loop is known to impose
conformational rigidity.35,36 As a result of the presence of
Pro15, the two nearby residues Gly11 and Gly14 are brought
closer and engage in an intramolecular contact that further
increases the overall conformational constraint of the second
loop (Figure S11f).
The presence of the central small organic molecule TBMB

might not only function as a branching point but also offer an
environment to which the surrounding amino acids could
adapt to. Indeed, analysis of the hydrophobic profiles of the
three bicyclic peptides in complex with huPA revealed that
while in the structure of UK18-huPA most of the mesitylene
surface was solvent-exposed, in the crystal structure of both
UK965-huPA and UK970-huPA complexes the mesitylene
group is buried by a patch of aliphatic residues (Val6, Gly14,
and Pro15) that seem to pack and fold around the small
organic core (Figure 4). Therefore, we cannot exclude that in
these specific bicyclic peptide molecules the hydrophobic
benzene ring might also function as a nucleating factor that
could direct the structure of the peptide moiety by promoting
the formation of additional noncovalent interactions between
side- and/or main-chain atoms of residues of both peptide
loops ultimately leading to a more rigid molecule and thereby a
more stable peptide−target complex.23 Overall, the compact
folding of UK965 and UK970 appears to resemble that of a
protein with a central hydrophobic core shaped by the
mesitylene moiety and multiple aliphatic residues that wrap
around it, whereas the surrounding hydrophilic amino acids are
often oriented toward the solvent.
Next, we assessed whether our statistical and computational

combined approach could be successfully recapitulated on
other bicyclic peptide families. To this end, we initially
performed a further round of in silico molecular evolution using
the same 37 phage-encoded bicyclic peptide inhibitors of
huPA, to which we added the new 15 peptide sequences
generated in this work, to obtain a data set of 52 unique

Figure 5. Further round of in silico molecular evolution on an enriched family of bicyclic peptide inhibitors of huPA. a) MSA logo of 52 phage-
encoded bicyclic peptides (input data) selected in vitro against huPA (top left). Combination of pseudolikelihood maximization direct coupling
analysis (plmDCA) and Monte Carlo (MC) methods with Random Forest Regression (RFR) algorithm (top middle) yielded new peptide
sequences with a preferential frequency of amino acids at each position (MSA logo, top right) and predicted to have Ki values below 0.38 μM (that
corresponds to 50th percentile). b) Left, amino acid sequences of bicyclic peptides designed according to the MSA logo of the new peptide
sequences. Identical or similar amino acids between different bicyclic peptide sequences are highlighted in color. Right, column graph comparing
the determined Ki values. The Ki values were determined at 25 °C and physiological pH (7.4) using the suitable substrate at the concentration of 50
μM. Mean values of at least three measurements are indicated S.E., standard error; c) Structural comparison of the binding mode of bicyclic
peptides UK970 and UK971 in complex with huPA. Molecular surface of huPA is colored in gray, while the peptide ribbon and mesitylene scaffold
of UK970 and UK971 are colored in salmon and blue, respectively. Selected amino acid side chains (Phe5 and Val7 in UK970; Trp5 and Thr7 in
UK971) are represented as ball-and-stick and colored by atom type (carbon = salmon for UK970 and olive for UK971, oxygen = firebrick, nitrogen
= deep blue).
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bicyclic peptide molecules (Supporting data set 3). Application
of the plmDCA model and MC simulation generated ∼21000
unique sequences that were further selected by RFR resulting
in ∼450 novel bicyclic peptide molecules. Solely bicyclic
peptide inhibitors with Ki values predicted to be lower than
0.38 μM (50th percentile) were used to build the MSA logo
instructive for the definition of the bicyclic peptides to be
tested experimentally (Figure 5a).
Alignment of newly selected peptide sequences confirmed

preferential frequency of either an Asp or a Ser in position 3,
an Arg in position 4, a Phe or a Tyr in position 5, a Val in
position 6, a Gly in position 14, and a Pro in position 15.
However, to our surprise, the combinatorial approach
continued to pick up a Trp in position 5 and a Thr in
position 7, even though these two amino acids were present at
a much lower frequency in the enriched data set than in the
initial one, since none of the 15 newly added peptide
sequences comprised them. Intrigued by the recurrence of
these two residues, that we had neglected in the first round of
our in silico evolution process, we chemically synthesized,
purified, and determined the inhibitory potency of three new
bicyclic peptide molecules comprising one or both Trp and
Thr residues in positions 5 and 7, respectively (Figure S12 and
Figure S13). Substitution of Phe in position 5 with a Trp yields
UK971, a bicyclic peptide inhibitor that showed a Ki value of
6.4 nM. Though UK971 was not superior to UK970 (Ki = 4.3
nM), its power is nevertheless remarkable (only 1.5-fold
difference; Figure 5b). Further comparison of the structure of
huPA in complex with UK970 with that of the modeled
bicyclic peptide UK971 revealed that the site occupied by the
aromatic residue Phe can indeed accommodate a Trp well
(Figure 5c). Oppositely, replacement of Val in position 7 with

Thr was detrimental (UK972, Ki = 14.8 nM; UK973, Ki = 15.3
nM; Figure 5b and Figure S13). However, the loss of potency
is minimal (<4-fold) and can be explained by the fact that Val
and Thr are both branched-chain C-beta amino acids with
comparable bulkiness, though Thr contains a hydroxyl group
instead of a methyl group in the side chain. Overall, all new
generated bicyclic peptide sequences showed inhibitory
potencies about 3- and 9-fold better than the best
experimentally selected phage-encoded bicyclic peptide target-
ing huPA (UK18, Ki = 53 nM; Figure 5 and Figure S13).17

These results not only demonstrated the ability of our
combined approach to intercept meaningful correlations even
from small experimental data sets but also proved the
possibility of applying it iteratively. Indeed, by performing
sequential cycles of in silico evolution on larger data sets fed
with new sequences generated at each round, it should be
possible to better refine the process and hopefully increase the
chances of obtaining more potent molecules.
Furthermore, we applied our in silico molecular evolution

approach to two new diverse families of phage-encoded
bicyclic peptide inhibitors. The first family included bicyclic
peptide inhibitors of huPA that had different amino acid
sequences than the UK18 family and had a clear consensus
motif in the first loop.17,37 The second family, on the other
hand, comprised bicyclic peptide inhibitors of another serine
protease, the human coagulation factor XIIa (hFXIIa), which
instead possessed consensus motifs in both loops.38,39 While
bicyclic peptides of the first family have been generated using
the small organic linker TBMB, bicyclic peptides of the second
family were obtained using the cyclization linker 1,3,5-
triacryloyl-1,3,5-triazinane (TATA).22,23 Notably, the linker
remains unchanged between cyclic peptide molecules of the

Figure 6. In silico molecular evolution on a different family of bicyclic peptide inhibitors of huPA. a) MSA logo of 31 phage-encoded bicyclic
peptides (input data) selected in vitro against huPA (top left). Training and validation data set were generated using amino acid sequences of all
selected bicyclic peptides (“sequences”), their biochemical and biophysical properties (“features”) and the Ki values (“label”) determined for 31
bicyclic peptide molecules (top right). Combination of pseudolikelihood maximization direct coupling analysis (plmDCA) and Monte Carlo (MC)
methods (middle left) with the Random Forest Regression (RFR) algorithm (middle right) yielded new peptide sequences with a preferential
frequency of amino acids at each position and predicted to have Ki values below 1.97 μM (that corresponds to 50th percentile; MSA logo, bottom
right). The MSA logo obtained using statistical methods (plmDCA and MC) combined to computational (RFR) algorithm differs from that
obtained when applying solely statistical methods (MSA logo, bottom left); b) amino acid sequences and Ki values of bicyclic peptides UK974−
UK978 designed according to the sequence logo graph. Identical or similar amino acids between different bicyclic peptide sequences are
highlighted in color. As a reference, the amino acid sequence and Ki value of the parental phage-selected UK140 are also reported. The Ki values
were determined at 25 °C and physiological pH (7.4) using the suitable substrate at the concentration of 50 μM. Mean values of at least three
measurements are indicated S.E., standard error; c) column graph comparing the determined Ki values of synthetic bicyclic peptide UK140 and
UK978 against human uPA (huPA), murine uPA (muPA) and human trypsin (hTryp) proteases. Residual activities were determined at 25 °C, at
physiological pH (7.4), using the suitable substrates at a concentration of 50 μM. The shown values are the means of three independent
experiments. Data are presented as mean (symbol). S.E., standard error. The Km values of each protease were determined by standard Michaelis−
Menten kinetics and used in the calculation of the reported Ki values (Supplementary Table 2).
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same family. Both data sets have a comparable sample size and
a similar order of magnitude difference between the highest
and lowest measured Ki values. The first family comprises 31
peptide sequences of length L = 17 amino acids and Ki values
ranging from 0.20 to 51.4 μM (250-fold difference between the
highest and the lowest Ki value; Supporting data set 4), while
the second family contains 50 peptide sequences of length L =
14 amino acids and Ki values ranging from 0.004 to 3 μM
(750-fold difference between the highest and the lowest Ki
value; Supporting data set 5).
To begin, we challenged the system by removing few

sequences from the initial experimental training data set, and
assessed whether our in silico process could indeed generate de
novo the same removed bicyclic peptide molecules even if it
had never encountered them before. To enable good training,
yet without biasing the system, we removed two bicyclic
peptide inhibitors (<5% of total available molecules) from each
initial data set, choosing among the ones that had Ki values
below the 50th percentile and were not the most potent
(Figure S14). In the case of the bicyclic peptide inhibitors of
huPA, we removed UK115 (Ki = 610 nM) and UK132 (Ki =
470 nM), whereas in the case of the bicyclic peptide inhibitors
of hFXIIa we eliminated FXII617 and FXII618, both with a Ki
value of 12 nM. The size of the first family thus decreased from
31 to 29 unique sequences, while that of the second family
lessened from 50 to 48 unique sequences (Figure S14). In the
case of the “depleted” family of bicyclic peptide inhibitors of
huPA (29 sequences), application of the plmDCA model and
MC simulation generated ∼1700 unique sequences that were
further selected by RFR resulting in 63 novel bicyclic peptide
molecules with Ki values predicted to be within 2.16 μM (50th
percentile). Interestingly, among the new 63 bicyclic peptide
sequences in silico generated, we found the initially excluded
UK132 molecule (Figure S14a). Similarly, application of
plmDCA model and MC simulation using the “depleted”
family of bicyclic peptide inhibitors of hFXIIa as training data
set (48 sequences) generated ∼230 unique sequences that
were further selected by RFR resulting in 6 novel bicyclic
peptide molecule with Ki values expected to be within 0.12 μM
(50th percentile). Again, our in silico approach proved capable
to generate de novo the initially excluded FXII617 bicyclic
peptide sequence (Figure S14b). These results are remarkable
and demonstrate once again the ability of the combined
methodology to provide effective peptide sequences even from
small experimental data sets.
We then evaluated whether our approach, in addition to

generating initially removed sequences, could consistently
enable the design of new inhibitors with greater potency than
the parental ones. To this end, we exploited the same phage-
encoded bicyclic peptide inhibitors of huPA tested above,
which included 31 amino acid sequences different from those
of the UK18-UK970 family and Ki values ranging from 0.20 to
51.4 μM. We processed the 31 sequences using the plmDCA
model and further used MC simulation to generate novel
sequences (∼1700), that were then given in input to the RFR
model to predict their Ki values (Figure 6). Solely bicyclic
peptides with Ki values predicted to be lower than 1.97 μM
(that corresponds to 50th percentile) were chosen, resulting in
46 novel sequences. Further multiple sequence alignment of
these peptide sequences revealed a more definite occurrence of
certain amino acids of the second loop, which was instructive
for the design of new bicyclic peptides to be experimentally
tested (Figure 6).

While for the design of bicyclic peptides UK956−UK963
against huPA (Figure 2) we could rely on detailed information
about the binding mode of parental UK18 in complex with
huPA, for this new family of bicyclic peptide inhibitors of
huPA we did not have access to structural data to guide us.
Therefore, we designed new bicyclic peptide molecules
exclusively based on the knowledge collected during the
characterization of the 31 initial phage-encoded sequences. We
kept the first peptide loop unaltered, except for the residue Arg
in position 5, which we replaced with a Lys that proved to be
key in enhancing the inhibitory potency (Figure 6b). At
positions 11, 12 and 13, we placed the residues Val, Asp, and
Pro, respectively, which exhibited not only a higher frequency
in the MSA logo but were also comprised in the most potent
tested inhibitors (Figure 6b). As for positions 14 and 15, we
instead explored all the possible amino acid combinations
proposed and designed peptides that included a Gly or a Ser at
position 14 and either an Asp, a Glu or a Ser at position 15
(Figure 6b). We must admit that we were particularly intrigued
by the high frequency of both negatively charged amino acids,
Asp and Glu, at position 15, as they occurred rarely in the
phage-encoded sequences, and those few bicyclic peptides that
had these residues at position 15 were actually not impressive
inhibitors (Ki > 900 nM).
A total of five new representative peptide sequences were

chemically synthesized, cyclized with the small organic linker
1,3,5-tris(bromomethyl)benzene (TBMB), purified by re-
versed-phase high performance liquid chromatography, the
molecular mass determined by electrospray ionization mass
spectrometry, and their inhibitory potency assessed using a
fluorogenic-based enzyme assay (Figures S15 and S16). The
synthetic peptide variants UK974 and UK975, which include a
Gly at position 14 and a Ser or an Asp at position 15, showed
Ki values of 363 and 874 nM, respectively, about 1.8- and 4.3-
fold worse than the parental UK140 (Ki = 202 nM; Figure 6
and Figure S16). In contrast, bicyclic peptides UK976 and
UK978, which differ from UK140 for the presence of either an
Asp or a Glu in place of a Ser in position 15, showed greater
inhibitory potency, approximately 1.7- and 2.8-fold higher,
respectively (Figure 6 and Figure S16). The favorable effect of
the presence of a Glu instead of an Asp in position 15 can also
be seen in bicyclic peptide variant UK977, which, despite
having a Gly instead of a Ser at position 14, is nonetheless
more potent than UK140 (1.3-fold) and UK975 (5.5-fold;
Figure 6 and Figure S16). Once again, our in silico approach
proved capable of recognizing meaningful correlations and
instructing the design of valuable bicyclic peptide molecules
from small experimental data sets, even in the absence of an
informative three-dimensional structure.
While the exquisite specificity of UK970 for human uPA was

pleasing (Figure 2f), as many of the paralogous serine
proteases tested play key biological functions and their
inhibition could cause severe side effects, the sparing of the
orthologue murine uPA (muPA) poses difficulties for the
testing of the inhibitor in a preclinical mouse model. On the
contrary, bicyclic peptide UK140 can also inhibit the
orthologue murine uPA (muPA; Ki = 2.6 μM), though at a
low micromolar concentration.37 However, UK140 can also
weakly block the paralogue human trypsin (hTryp; Ki = 10.5
μM). We therefore assessed whether UK978, in addition to
being more potent than UK140 against huPA, also retained its
cross-reactivity for muPA and, hopefully, increased its
specificity against hTryp. Indeed, when tested in vitro, bicycle
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peptide UK978 showed higher potency (∼1.5-fold) against
muPA (Ki = 1.7 μM), while that for hTryp remained
unchanged (Ki = 10.4 μM; Figure 6c and Figure S17). The
greater potency and retained cross-reactivity of UK978 toward
huPA and muPA, combined with its higher specificity toward
hTryp (140-fold), are important, as it provides the opportunity
to develop a novel and potent human and murine cross-
reactive bicyclic peptide inhibitor that, differently from UK970,
could be potentially tested in murine models, ultimately
allowing not only the evaluation of the therapeutic efficacy but
also a better assessment of treatment toxicity, as well as simpler
and less costly clinical studies, facilitating the transition from
preclinical murine models to human clinical trials.

■ CONCLUSIONS
In summary, in the present work, we demonstrated that
sequential combination of statistical (plmDCA and MC) and
computational (RFR) approaches can enable the rapid and
cost-effective affinity maturation of chemically constrained
bicyclic peptide inhibitors with at least enhanced potency over
the best in vitro evolved clone. Even though we used these
models trained on very small data sets compared to their
typical applications in bioinformatics context, they were still
able to inform peptide sequences that have been exper-
imentally verified to have higher potency than those used for
model training. For example, in the case of the family of 37
phage-encoded bicyclic peptide inhibitors of huPA, whose
most potent inhibitor is UK18, by inspecting more closely the
parameters h and J of the trained plmDCA model, we
identified that, besides learning the conserved residues from
the sequence alignments, the interaction matrix J has also
shown a high score between several amino acid pairs in specific
positions (e.g., Phe and Val in positions 5 and 15, Gly and Val
or Gly and Pro in positions 14 and 15 and various amino acid
pairs in positions 15−4 and 5−15), which have then biased the
generated sequences to contain these pairs. Notably, these
amino acids pairs in specific positions have later been verified
experimentally to play a key role. Hence, despite the small
training set, the models still picked-up correlations that can
provide an informed search of design space and perform better
than what we would have been able to do just by inspecting by
eye the original data set. Though this in silico molecular
evolution approach has so far been evaluated using two
different families, each comprising highly similar bicyclic
peptide sequences, our results suggest that sequential
application of the plmDCA model and MC simulation
combined with the RFR algorithm can effectively enhance
the design pipeline even from small experimental data sets that
are not suitable for machine learning approaches with large
numbers of free parameters such as deep neural networks.
Further in vitro studies showed that such in silico-derived small
bicyclic peptides appear to have properties typical of proteins,
such as large surface of interaction with the target, constrained
peptide backbones, multiple inter- and intramolecular non-
covalent interactions mediated by both peptide loops, leading
to good binding affinity and specificity. Such exquisite binding
features are often difficult to rationalize and can be ascribed to
an intricate balance of both enthalpic and entropic factors. We
developed this concept with bicyclic peptides against huPA,
but these studies also have value as a proof-of-concept for a
general approach that could be applied to other relevant
peptide binders and protein targets. Although many challenges
still remain, the ability to evolve in silico cyclic peptide

inhibitors using small data sets and a combination of
computational and statistical approaches might pave the way
for the fast generation of small-mimic proteins with excellent
binding affinities and specificities, access to chemical synthesis,
and attractive pharmacological properties. Further efforts are
underway to implement our approach to include the
contribution of linkers with different geometries and chemical
groups that could provide different environments and thus
impose different conformations to the backbones of bicyclic
peptides. Additionally, we are trying to evaluate whether it is
possible to vary the positions of the cysteines and consequently
the length of the two peptide rings. Although captivating, these
are all very challenging topics that will be the subject of future
work since they first require the generation of new
experimental data sets, even of small size, with which to
train our method. Ongoing developments in this direction in
the coming years hold promise for further increasing success
rates, reducing dependence on extensive experimental
optimization. Our results also suggest a possibility of an
iterative generative method for design of cyclic peptide
inhibitors, where one first trains model with a small number
of sequences, generates and experimentally tests a set of them,
and uses the experimentally verified binders to augment the
data set and retrain the model. This model-experiment driven
exploration of possible design space of all sequences can be
more cost-effective than screening of a large number of
completely random library of sequences.
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Supplementary results and discussion 

 

In silico bicyclic peptide sequence generation using supervised random forest 
regression 

To enhance the binding affinity of bicyclic peptides toward huPA in silico we initially applied 

a machine learning (ML) approach based on supervised Random Forest Regression (RFR) 

algorithm1–4 using the Scikit-learn Python library.5 We first organized both training and 

validation data in a table (Supporting dataset 1). This data set table includes the amino 

acid sequence of 37 unique phage-encoded bicyclic peptides known to inhibit human 

urokinase-type plasminogen activator (huPA) with inhibitory constant (Ki) values ranging 

from 53 to 7670 nM. The data set table has been organized in such a way that each bicyclic 

peptide sequence was sectioned and placed in columns where each column corresponds 

to a single amino acid (single letter code). Given that each bicyclic peptide sequence 

includes 17 residues, such allocation allowed us to obtain a data set table including 37 rows 

(total number of unique sequences) and 17 columns (total number of amino acids per 

sequence). An additional column was devoted to the Ki value (“label”) experimentally 

determined for each bicyclic peptide sequence (Supporting dataset 1). The amino acid 

single letter codes were converted into numerical inputs using One Hot Encoding (OHE) 

approach.5 To improve analysis performance, additional biochemical and biophysical 

properties (“features”) were extracted for each bicyclic peptide sequence, determined using 

modlAMP6 package and further added to generate a new data set table (Supporting 
dataset 2). For each amino acid of each sequence, we added the following properties: 

molecular weight, charge, charge density, hydrophobicity, isoelectric point, aromaticity, 

instability index and Boman index. By doing so, an approximately 5-times larger data set 

table was generated, including eighty-eight features (columns) and thirty-seven unique 

bicyclic peptide sequences (rows). Best hyperparameters were selected for training and test 

split size 90%-10% and 80%-20% according to specific metrics such as the root mean 

square error (RMSE; Figure S1b and S1c). To test and validate the RFR model we created 

a set of N novel random peptide molecules of length L residues by introducing random 

mutations in the amino acid sequences. Given the large size of the design space (2017 

unique sequences of length L = 17), we decided to reduce it by keeping the highly conserved 

residues located in position 1, 2, 8, 9, 10, 11, 12, 13, 16 and 17 unaltered. Only amino acids 

in position 3, 4, 5, 6, 7, 14 and 15 were allowed to mutate, thus reducing the total space to 



explore to 207 new potential peptide sequences. We randomly generated 2 × 106 de novo 

created sequences that have been further scored using the RFR model which had been 

trained on the data set of Supporting dataset 2. Bicyclic peptide sequences predicted by 

RFR to have a Ki < 1.2 µM were collected and used to generate a MSA logo. To explain 

predictions of the classifier and better appreciate the contribution of each feature we applied 

local interpretable model-agnostic explanations (LIME)7 and Shapley Additive exPlanations 

(SHAP).8 The predicted Ki values for the novel generated bicyclic peptide sequences were 

affected by high RMSE and model overfitting (Figure S1b and S1c). All these issues are 

likely due to the small size of the dataset used during the training section. Overall, the MSA 

logo for the bicyclic peptide molecules generated by RFR did not show any prominent motifs 

in the first loop (Figure S1d). 

 

In silico bicyclic peptide affinity maturation using pseudolikelihood maximization 
directed coupling analysis and Monte Carlo simulation 

To overcome the issues encountered by the ML approach based on supervised RFR 

algorithm, we undertook a different strategy and applied pseudolikelihood maximization 

directed coupling analysis (plmDCA) combined to Monte Carlo (MC) simulation.9,10 Briefly, 

the statistical plmDCA method is based on fitting a Potts model to assign probability to a 

target peptide sequence s: 

𝑃(𝑠) = 	 !
"
𝑒𝑥𝑝$∑ ℎ#(𝑠#)$

#%! +	∑ 𝐽#&-𝑠# , 𝑠&/!'#'&'$ 0  (1) 

where si and sj correspond to the type of amino acid in position 𝑖 and j respectively, h 

corresponds to the conservation of a specific amino acid on a given position, and Jij is a 

matrix corresponding to pairwise interaction parameters. For each pair of sites 𝑖 and j, Jij is 

q ´ q square matrix, where q = 21 is the number of possible amino acids (20 natural amino 

acids plus a gap symbol ‘-‘), and local field ℎ#(𝑠#)	represents information on how a particular 

amino acid si is conserved in position 𝑖 of the sequence. The direct coupling analysis (DCA) 

methods were originally developed to infer direct interactions of amino acids in proteins to 

guide prediction of their three-dimensional structure based on their co-evolution (Figure 
S2a).10–12 As opposed to the RFR approach, the plmDCA method does not require additional 

experimental information (e.g. Ki values) but only necessitates the alignment of bicyclic 

peptide amino acid sequences. Furthermore, to enlarge the dataset, we used MC sampling 



(using the energy assigned to given sequence by a Potts model) to generate novel bicyclic 

peptides (Figure S2c). The MC was applied iteratively (10 cycles), where we used trained 

Potts model energy to run MC simulation and generate a new augmented set of sequences 

to be evaluated then by the RFR model (~23600 sequences were generated and evaluated; 

Figure S2a). Matplotlib and Seaborn Python-based packages were used to generate heat-

maps for visualization of the Jij interaction matrices (Figure S2b).12,13 The interaction matrix 

J is an L ´ L tensor, where L is the length of the peptide and each element of the tensor is 

a submatrix of q ´ q dimension in which q = 21 represents the number of possible amino 

acids for each position (20 natural amino acids plus a gap symbol ‘-‘). Figure S2b shows 

the inferred J tensor where respective entries are norms of submatrices and are classified 

according to their values in red (high) or blue (low). Therefore, these entries represent 

interaction matrices given for pairs of amino acids and refer to the probability of obtaining 

specific amino acid pairs in each coupled position, the higher the values the higher the 

probability. Overall, the MSA logo for the bicyclic peptide molecules generated by plmDCA 

did not show any prominent motifs in the first loop (Figure S2c). 

 

In silico characterisation of plmDCA models’ fitting capabilities on small datasets 

In our modelling pipeline, we use a very small set of sequences, and we hence wanted to 

explore in more details the ability of the DCA model inference to discover correct features 

from the training dataset. Previous mathematical work12,14,15 has focused on the theoretical 

limits of the inference methods for Pott’s model (and hence directly relevant to DCA models), 

quantified by the ability to reconstruct a known interaction matrix J based on the dimensions 

of the matrix and the number of system observations generated from the Potts model. 

However, these works typically analytically calculate exact results in limiting cases, and we 

have hence decided to empirically test the plmDCA model capabilities in an in silico model, 

where we define our own model parameters h and J and generate observed sequences 

from them, following the distribution as given by equation (1), where P(s) corresponds to a 

probability of peptide sequence s consisting of amino acids s1 to sL. Here, we treated the 

probability as an effective score, assuming that high probability sequences correspond to 

strong (good) binders. To assess the plmDCA model's ability to represent a peptide family 

from just 37 sequences, we developed an in silico method to evaluate its fitting capabilities. 

We began by hardcoding the DCA model parameters, namely the h matrix and J tensor, to 



represent a fictitious peptide family (Figure S18). Next, we used the Metropolis-Hastings 

algorithm to sample over 3000 sequences from the hardcoded DCA parameters, generating 

an in silico peptide family dataset. Subsequently, we randomly sampled 37 sequences from 

the in silico peptide family and trained a DCA model on these sequences. After training the 

DCA model, we used the newly learned h and J parameters to generate another set of over 

3000 peptide sequences using the Metropolis-Hastings algorithm. Using both the hardcoded 

and learned DCA parameters, and the energy distributions from sequence evaluations, we 

computed ROC curves (Figure S19) and Kullback-Leibler divergences (Figure S20). These 

results demonstrate that a DCA model trained on just 37 sequences from a peptide family 

effectively captures key properties of the entire family. 

To hardcode the DCA model parameters to represent peptide families, we first defined a set 

of parameters to create various peptide families. The parameters chosen to define the 

families included: the number of conserved sites, total correlations, amino acids per 

correlation, and the presence of conserved regions. The number of conserved sites 

established the h matrix (Figure S18c). Since our experimental peptide family (Figure 
S18a) had 10 conserved sites, we tested families with 8 or 10 conserved sites. First, we 

initialized an h matrix with dimensions: sequence length (L) ´ number of possible amino 

acids (17, 21). For a family with 10 conserved sites, we assigned random amino acids to 10 

random locations, each with a value of approximately 1. Specifically, the value set in the h 

matrix for the conserved sites was sampled from a normal distribution with a mean equal to 

the maximum value of the experimental h matrix trained on the 37 experimental sequences 

(Figure S18a), and variance from the same set of values. 

The subsequent parameters for the peptide family, used to populate the J tensor (Figure 
S18d), were the total number of correlations and the number of amino acids per correlation. 

The J tensor dimensions were: sequence length (L) ´ sequence length (L) ´ number of 

possible amino acids ´ number of possible amino acids (17, 17, 21, 21). To populate this 

tensor, we added interactions between non-conserved sites, choosing a total number of 

pairwise interactions between 15 and 45. For each correlation, we selected 3 or 6 possible 

amino acids. For example, with 15 total interactions and 3 amino acids per interaction, we 

randomly selected two non-conserved sites and picked 3 amino acids for each. We then 

assigned interaction values in the J tensor between all possible allowed amino acids for 

each site pair, resulting in nine non-zero interaction (a1, a2, a3) ´ (a4, a5, a6) for a chosen 

interaction site pair. We repeated this process 14 more times (with replacement), filling in 



135 elements, with potential repeated site correlations. For a total of 45 correlations and 6 

amino acids per correlation, 1620 elements (45 ´ 6 ´ 6) were filled in. The correlation value 

was sampled from a normal distribution with a mean equal to the maximum value of the 

experimental J tensor trained on 37 experimental sequences and variance from the same 

dataset. Finally, we added the amino acids assigned to each correlated site to the h matrix, 

sampling the self-correlation value from a normal distribution based on the mean and 

variance derived from the experimental h matrix. 

The last parameter for the peptide families was the presence or absence of a conserved 

region. If there was no conserved region, we hardcoded the h and J matrices as described. 

However, if a conserved region existed, we used a slightly different approach. When 

populating the h matrix, after randomly choosing the first conserved site, we selected 4 

sequential sites to create a continuous conserved region. The next 5 conserved sites were 

then chosen randomly. For the J tensor, we selected the longest continuous region of un-

conserved sites to be interacting, creating "correlated regions". We generated a total of 72 

in silico peptide families. Additionally, we created 3 sets of h and J parameters randomly, 

with each value sampled from a standard normal distribution (Figure S18b). 

To generate realizations of the peptide families encoded in the DCA model parameters, we 

used the Metropolis-Hastings Monte Carlo Markov Chain algorithm. The acceptance ratio 

for each step in the chain was determined by the DCA parameters. Specifically, for a given 

sequence realization, we calculated the "energy" of the sequence by summing the values 

within the h and J matrices corresponding to the realized sequence elements. When 

proposing a random mutation, the acceptance probability was calculated by taking the 

exponential of the inverse effective temperature (β) multiplied by the energy difference 

between the old and newly mutated sequences. We used temperature annealing to maintain 

an overall acceptance probability of 30%. 

After training the DCA models on 37 randomly selected sequences from the >3000 

generated sequences, we assessed the model's performance by calculating the Receiver 

Operating Characteristic (ROC) curve for the hardcoded J tensor versus the learned J 

tensor. The ROC curve, which plots the true positive rate versus the false positive rate, 

enables us to quantify the model's ability to learn our toy-model hardcoded interactions 

between sequence indexes and importantly, specific amino acid identities. We used this 

metric because it helps us understand how well the model discriminates true positives from 

noise in a highly skewed dataset with many true negatives and few true positives. A result 



was only considered a true positive if the model correctly predicted both amino acid identities 

and sequence indexes. We classified the hardcoded J matrix by setting all elements within 

the 17 ´ 17 ´ 21 ´ 21 tensor to class zero, unless the value exceeded a "hardcoded 

threshold," in which case the class was set to one. The threshold value was typically set to 

zero, except when classifying the randomly generated dataset, where a higher threshold 

optimized the ROC area under the curve (AUC). 

The learned J matrices were classified using a different method. First, we calculated the 

norm of the J matrix. Then, if an element of the 17 ´ 17 normed J matrix was less than a 

“norm threshold,” all elements of the 21 ´ 21 matrix corresponding to that element were set 

to 0. If the element exceeded the threshold, we set all elements in the 21 ´ 21 matrix greater 

than 0 to their given J score, and all other values to class 0. We then normalized the 

classified J matrix so that all values fell between 0 and 1, so that the scores represented the 

probability of being class 1. Using the hardcoded J matrix as the true labels and the learned 

J matrix scores and probabilities, we used SciKitLearn’s roc_curve function to calculate the 

ROC statistics. The roc_curve function computes the true positive and false positive rates 

across multiple probability thresholds, assigning class one to predictions above each 

threshold (e.g., probabilities greater than 0.1, 0.2, 0.3, etc.). ROC curves were computed for 

J matrices learned from 37 sequences, 3000 sequences (Figure S19a), 37 Gaussian 

sequences, and 3000 Gaussian sequences (Figure S19b). Given our ROC curves, we 

computed the ROC AUC as a metric to score the performance of a given model. 

Comparison of Figure S19a and Figure S19b showed that the DCA model trained on just 

37 in silico peptides was able to fit the underlying sequence distribution better than the DCA 

model trained on sequences generated using DCA parameters sampled from a Gaussian. 

As the state-space of possible sequences within a peptide family is greatly reduced due to 

the intrinsic requirements of conserved amino acids and correlated regions, it can be 

hypothesized that the DCA’s ability to better fit this data is due to the increased probability 

that the 37 sampled sequences will have repeat patterns. As one would expect, Figure 
S19c, which plots the ROC AUC versus sequence parameters, showed that an increasing 

number of correlated pairs and amino acids per correlation decreases the model ability to fit 

the underlying distribution. However, the model still learned meaningful information, notably 

more than the gaussian sequences. This phenomenon, shown though the ROC curves, can 

further be assumed to apply to any sequence space with intrinsic constraints (i.e., real 



peptide families) implying a possible generalization of the methods described here despite 

a small number of datapoints. 

Besides quantifying the discrimination power of the DCA model on 37 sequences, we also 

aimed to assess how well the sequences generated using the learned DCA parameters 

represented the hardcoded sequence distribution. There are the hardcoded-peptide 

parameters, and the parameters sampled from a gaussian distribution, called hardcoded-

gaussian parameters. The hardcoded-peptide parameters in the Metropolis-Hastings 

scheme generate 3000 hardcoded-peptide sequences. The hardcoded-gaussian 

parameters generated the 3000 hardcoded-gaussian sequences. We trained DCA models 

on the hardcoded-peptide sequences to generate DCA parameters referred to as the 

learned-3000 parameters. Using a random subset of 37 sequences, we obtained the 

learned-37 parameters. The hardcoded-gaussian sequences provided the learned-3000 

Gaussian parameters and learned-37 Gaussian parameters. From the learned parameters, 

we sampled sequences again, resulting in the learned-3000 sequences, learned-37 

sequences, learned-3000 Gaussian sequences, and learned-37 Gaussian sequences. Each 

learned sequence set contained over 3000 sequences. Additionally, we generated a set of 

sequences randomly, without additional logic, as a negative control, referred to as the 

random sequences. 

For each learned sequence set, we calculated the energy of a given sequence in two 

different ways. For example, with the learned-37 sequence set, we can calculate the energy 

using the DCA parameters used to generate the sequences (i.e., the learned-37 parameters) 

or the hardcoded-peptide parameters. By quantifying the energy of the learned-37 sequence 

set using the hardcoded-peptide parameters, we created an energy distribution, with each 

of the 3000 sequences in the learned-37 sequence set labelled with an energy value. By 

comparing the energy distributions of the hardcoded-peptide sequence set and the learned-

37 sequence set, we quantified how much information the learned-37 parameter set is 

missing about the underlying hardcoded-peptide parameters. 

To achieve this, we first removed all sequences within the learned-37 sequence set that had 

an energy score below the 50th percentile when evaluated using the learned-37 parameter 

set. We then created an energy histogram of the trimmed learned-37 sequence set and the 

hardcoded-peptide sequence set, evaluated using the hardcoded-peptide parameter set. 

Using the normalized histograms, we computed the Kullback-Leibler divergence (KL-div) 

using the SciKitLearn entropy function, adding a small epsilon (10-12) to each bin to ensure 



both distributions were well defined across a shared domain. The KL-div quantifies how one 

probability distribution diverges from another, essentially measuring the pseudo-distance 

between two distributions. For true distribution P and approximate distribution Q, the KL-div 

measures the information loss when Q approximates P. A higher KL-div indicates greater 

information loss, implying that distribution Q is a poorer approximation of P. 

This analysis was performed for the learned-3000 sequences, learned-37 sequences, 

learned-3000 Gaussian sequences, and learned-37 Gaussian sequences across the 72 

hardcoded-peptide parameter sets and 3 hardcoded-Gaussian parameter sets. The results 

of Figure S20b demonstrates that the energy distribution of the learned-37 sequences 

contains more than a magnitude more information than the learned-37 gaussian sequences, 

seen from the respective average KL-div values of 0.31 ± 0.12 and 1.92 ± 0.41. The amount 

of learned information is even more apparent in Figure S20c, comparing the KL-div values 

of the mean KDE estimations of the learned-37 sequence and the random sequences, 0.18 

and 19.57 respectively. Furthermore, somewhat surprisingly the difference in the average 

KL-div between the learned-37 sequences and learned-3000 is not significant. All this 

together displays the apparent effectiveness of the plmDCA model coupled to a 

Metropolises’ algorithm with a Pott’s model energy function to learn a significant quantity of 

information about the underlying sequence distribution of a peptide family, even with a 

dataset of only 37 sequences.  Visually, Figure S21 showed the similarity of a representative 

sequence distribution using MSA logos of 3000 sequences and 37 sequences. This 

displayed how the large decease in possible sequence space from the constraints of 

belonging to a peptide family increased the probability of repeat patterns occurring from a 

small subset of the overall distribution of sequences. 

 

Overall structure of huPA in complex with bicyclic peptide UK965 and UK970 

The electron density of the non-glycosylated catalytic domain of huPA (Ile16 to Leu250, 

chymotrypsin numbering) in complex with bicyclic peptides UK965 or UK970 is clearly visible 

for all residues except for the last six amino acids at the C-terminal end. Like in the huPA-

UK18 crystal structure, a single molecule of huPA is present in the asymmetric unit. For both 

huPA-UK965 and huPA-UK970 complexes, the overall structure of huPA does not show any 

striking rearrangements of the main backbone if compared to other huPA crystal structures, 



belonging to the same or different space groups, that have been determined either in the 

apo form or in complex with inhibitors (Figure S7a and S8b). 

 

Overall structure of bicyclic peptides UK965 and UK970 and intra-molecular 
interactions 

The electron density of the bicyclic peptides UK965 and UK970 is well-defined for the 

residues from Cys2 to Gly17 allowing an unambiguous assignment of group orientations for 

protein complex present in the asymmetric unit. The electron density of the N-terminal Ala1 

of both UK965 and UK970 is not detectable since it is solvent exposed and disordered 

(Figure S8). No classical secondary structure elements are found in the bicyclic peptides 

(Figure 3). The non-covalent intra-molecular interactions present appear to confer structural 

rigidity to the peptides (Figure S9 and Table S8). The first loop (residues from Cys2 to Cys9) 

of both UK965 and UK970 forms two consecutives β-turns (Ser3 to Glu6 and Glu6 to Cys9 

in UK965 and Ser3 to Val6 and Val6 to Cys9 in UK970). A change of direction occurs at the 

level of Cys9 followed by the second loop (residues from Cys9 to Cys16) that presents two 

additional β-turns (Gly11 to Gly14 and Gly14 to Gly17) that links the remaining residues 

running roughly anti-parallel. Bicyclic peptides UK965 and UK970 present five and four intra-

molecular hydrogen bond interactions, respectively (Figure S9 and Table S8). Differently 

from UK18, all these intra-molecular hydrogen bonds are mediated by main-chain to main-

chain contacts. Notably, the number of intra-molecular hydrogen bonds of UK965 and 

UK970 have better angles of interaction and are therefore more energetically favourable 

than those of UK18. 

 

Inter-molecular interactions between huPA and bicyclic peptide UK965 and UK970 

Bicyclic peptides UK965 and UK970 fit well into the cleft formed by the active site and the 

surrounding substrate pockets covering a large protein surface of 749 Å2 and 746 Å2, 

respectively (Table S4). Both peptide loops of UK965 and UK970 interact directly with huPA. 

The second loop of both UK965 and UK970 forms more interactions than the first loop and 

hence contributes more to the overall binding. The residues of UK965 and UK970 contacting 

huPA through both main and side chain hydrogen bond interactions are eight for both UK965 

(Arg4, Glu6, Val7, Asp8, Arg10, Arg12, Gly13 and Gly17) and UK970 (Arg4, Val6, Val7, 



Asp8, Arg10, Arg12, Gly13 and Gly17; Figure 3, Figure S9 and Table S6). In the first 

peptide loop of UK965 most interactions with huPA are mediated by Asp8 that forms three 

hydrogen bonds through its side chain (Asp8 OD1 with His57 NE2, Asp8 OD2 with Gly193 

N and Asp8 OD2 with Ser195 OG), a water mediated hydrogen bond between its side chain 

and the main chain oxygen of Ser214 (Asp8 OD2 with Ser214 O) and one hydrogen bond 

between its main chain nitrogen and the Val41 carbonyl group (Asp8 N with Val41 O; Figure 
S9 and Table S6). The side chain of Arg4 forms two hydrogen bonds with Arg35 (Arg4 NH1 

with Arg35 NH2) and Arg37A (Arg4 NH2 with Arg37A N). The side chain of Glu6 forms a 

hydrogen bond with Gln192 (Glu6 OE2 with Gln192 NE2) and a water mediated hydrogen 

bond with Tyr151 (Glu6 OE2 with Tyr151 OH). Furthermore, the main chain oxygen of Glu6 

forms a water-mediated hydrogen bonds with main chain oxygen Tyr40 (Glu6 O with Tyr40 

O). The main chain oxygen of Val7 forms a hydrogen bond with the side chain of Gln192 

(Val7 O to Gln192 NE2). The remaining amino acids Ser3 and Tyr5 of the first peptide loop 

occupy the S1' pocket of huPA but the atomic distances do not suggest the formation of 

hydrogen bond interactions. The most important interactions of the second loop of UK965 

to huPA are mediated by Arg12 whose basic side chain occupies the primary specificity S1 

pocket and interacts with the Asp189 carboxylate at the bottom of the cavity (Figure S9 and 

Table S6). The side chain of Arg12 forms salt bridges with the side chain of Asp189 (Arg12 

NH1 with Asp189 OD1 and Arg12 NH2 with Asp189 OD2). Additionally, the side chain of 

Arg12 forms two hydrogen bonds with Gly218 (Arg12 NE with Gly218 O and Arg12 NH2 

with Gly218 O), one hydrogen bond with Ser190 (Arg12 NH1 with Ser190 OG) and three 

water mediated hydrogen bonds with Arg217 (Arg12 NH2 with Arg217 O), Leu 222 (Arg12 

NH2 with Leu222 N) and Lys224 (Arg12 NH2 with Lys224 O). Furthermore, the main chain 

nitrogen of Arg12 forms a water mediated hydrogen bond with Ser195 (Arg12 N with Ser195 

OG) (Figure S9 and Table S6). Similarly, the side chain of Arg10 in the second peptide 

loop, forms two salt bridges with the side chain of Asp60A (Arg10 NH2 with Asp60A OD1 and 

Arg10 NE with Asp60A OD2). Additionally, the main chain oxygen of Arg10 forms a water 

mediated hydrogen bond with the main chain oxygen of Ser210 (Arg10 O with Ser214 O). 

The main chain of Gly13 forms three water mediated hydrogen bonds with Lys143 (Gly13 

O with Lys143 NZ), Ser146 (Gly13 O with Ser146 O) and Gly216 (Gly13 N with Gly216 O), 

whereas the main chain oxygen of Gly17 forms two water mediated hydrogen bonds with 

Gly216 (Gly17 O with Gly216 N and Gly17 O with Gly216 O). The remaining amino acids 

Gly11, Gly14 e Pro15 of the second peptide loop do not form polar inter-molecular 

interactions with huPA. The network of hydrogen bonds formed by UK970 with uPA is very 



similar to that described above for UK965 (Figure 3, Figure S9 and Table S6). The only 

differences concern Glu6, which has been replaced by a Val in UK970. While Val6 still 

retains its water mediated interactions with Thr29 (Val6 O with Thr29 OG1) and Tyr40 (Val6 

O with Tyr40 O), it loses that with Tyr151 OH. Furthermore, in addition to the three water 

mediated hydrogen bonds formed with Lys143, Ser146 and Gly216 observed in UK965, the 

main chain of UK970’s Gly13 also forms a water mediated hydrogen bond with the side 

chain of Gln192 (Gly13 O with Gln192 OE1). Finally, in addition to the numerous interactions 

described above, the main chain nitrogen of UK970’s Arg12 forms a new water mediated 

hydrogen bond interaction with Ser214 (Arg12 N with Ser214 O), a contact that in UK965 

was established by the side chain of Asp8 (Figure 3, Figure S9 and Table S6). 

 

Comparison of the binding interactions of UK18, UK965 and UK970 bicyclic peptides 
with huPA 

Comparison of the crystal structure complexes revealed some differences at the level of the 

first loop (Cys2 – Cys9) while the second loop (Cys9 – Cys15) of all three bicyclic peptides 

UK18, UK965 and UK970 binds huPA in a very similar fashion (Figure 3 and 4, Figure S9 

and S10, and Table S6 and S7). The first loop of UK965 and UK970 adopts a completely 

different conformation from that of UK18. Consequently, the side chain of Arg4 of both 

UK965 and UK970 establishes a hydrogen bond with the side chain of Arg35 (Arg4 NH1 – 

Arg35 NH2) and both the side and main chain of Arg37A (Arg4 O – Arg37A NH2 and Arg4 

NH2 – Arg37 N), instead absent in UK18. The same aliphatic side chain of Arg4 of both 

UK965 and UK970 further forms numerous nonpolar contacts with aliphatic side chain of 

Arg35 and Tyr60B of huPA, otherwise not detectable in UK18. Similarly, the main chain 

oxygen of Val (UK970) and Glu (UK965) in position 6, forms a water mediated bond with 

both side chain of Thr29 (Val6 O – H2O – Thr29 OG1 and Glu6 O – H2O – Thr29 OG1) and 

the main chain oxygen of Tyr40 (Val6 O – H2O – Tyr40 O and Glu6 O – H2O – Tyr40 O), 

otherwise absent in UK18. While UK18 presents an interaction between the main chain 

oxygen of Ala1 and the hydroxyl group of Tyr60B (Ala1 O – Tyr60B OH), this is instead 

absent in both UK965 and UK970. While the density of Ala1 was well defined in UK18, it 

was not visible in both UK965 and UK970. (Figure S9 and S10, and Table S6 and S7). 

Despite the significant conformational change, some similarities are found in the first loop of 

all three bicyclic peptide inhibitors. For instance, the hydrophobic side chain of the 

conserved Val7 continues to fit well in the hydrophobic pocket of huPA defined by Val41, 



Tyr40, Leu81 and Tyr151. Differently from UK18, the side chain of Val7 of UK965 and UK970 

engages in a non-polar interaction with main chain of Gly193. Moreover, the conserved 

negatively charged amino acid Asp8 continues to establish multiple hydrogen-bonding and 

non-polar interactions with both side and main chains of surrounding Val41, His57, Gly193 

and Ser195 of huPA (Figure S9 and S10, and Table S6 and S7). A major difference 

between UK970 and UK965 is the presence of a Phe in placed on a Tyr residue in position 

5. This causes the water molecule, present in UK965 and coordinated by the side chain 

hydroxyl group of Tyr5 (UK965), the main chain oxygen of Arg37A and the side chain 

hydroxyl group of Ser37D of huPA, to be absent in UK970 bearing instead a Phe in the same 

position (Figure S9 and S10, and Table S6 and S7). Binding mode of the second loop of all 

three bicyclic peptides to huPA is very similar. The conserved Arg12 residue occupies the 

S1 subsite of huPA and forms multiple direct and water-mediated hydrogen bonds with the 

side chain of Asp189, both side and main chain of Ser190, and the main chain oxygen of 

Ser195, Ser214, Arg217, Gly218 and Lys224 (Figure S9 and S10, and Table S6 and S7). 

Similarly, the highly conserved Arg10 residue forms multiple direct and water-mediated 

hydrogen-bonding interactions with the side chain of Asp60A of huPA (Arg10 NH2 – Asp60A 

OD1 and Arg10 NE – Asp60A OD2) and Ser214 (Arg10 O – H2O – Ser214 O). Despite the 

high similarities, some differences exist at the level of Gly13 and Gly17 residues. For 

instance, the main chain oxygen and nitrogen of Gly13 of both UK965 and UK970, forms 

water-mediate hydrogen bonds with the side chain of Lys143, and the main chain oxygen of 

both Ser146 and Gly216, otherwise absent in UK18 (Figure S9 and S10, and Table S6 and 

S7). Similarly, the main chain oxygen of Gly17 of both UK965 and UK970, whose electron 

density was not detectable in UK18, establishes water-mediated hydrogen bonds with main 

chain oxygen and nitrogen of Gly216 (Gly17 O- H2O – Gly216 O and Gly17 O- H2O – Gly216 

N). The same Gly17 of UK965 and UK970 engages in non-polar interactions with 

surrounding Thr97A, Leu97B and His99, otherwise absent in UK18. 

 

Molecular basis for the target specificity of UK965 and UK970 bicyclic peptides to 
huPA 

The high target specificity of UK965 and UK970 bicyclic peptides to huPA can be attributed 

to their ability of engaging in inter-molecular interactions with residues of huPA that are 

different in homologous serine proteases and/or steric factors that hinder the three bicyclic 

peptide inhibitors from binding to the homologous proteases. The substrate binding cleft of 



huPA differs significantly from the homologous serine proteases in the S1-prime subsite (or 

S1'). In this subsite, the residues that are in close contact to UK965 and UK970 are Arg35, 

His37, Arg37A, Gly37B, Thr39, Asp60A and Tyr60B residues (Figure 3 and 4, Figure S9 and 

S10, and Table S6 and S7). The most important interactions of this subsite with UK965 and 

UK970 are mediated by i) the side chain of Arg35 that forms one hydrogen bond and multiple 

nonpolar contacts with the aliphatic side chain of Arg4, ii) the side chain of His37 that 

establishes nonpolar contacts with side chain of either Tyr5 (UK965) or Phe5 (UK970), iii) 

the main chain of Arg37A that forms one hydrogen bond with side chain of Arg4, iv) the 

Asp60A side chain that forms two hydrogen bonds with Arg10 and v) the Tyr60B side chain 

that engages in multiple nonpolar contacts with the aliphatic side chain of Arg4 (Figure S9 

and S10,  and Table S6 and S7). Since the amino acids in position 60A and 60B are different 

in all the tested trypsin-like serine proteases, these proteases cannot form the same polar 

and nonpolar interactions with UK965 and UK970 bicyclic peptides. Another subsite in which 

the amino acids of different trypsin-like serine proteases vary significantly is the S1 sub-

pocket also termed S1β. In this site, the side chains of Ser190 and Gln192 as well as the 

main chain of Gly193 make hydrogen bond interactions with Val7, Asp8, Arg12 and Gly13 

of both UK965 and UK970 (Figure S9 and S10, and Table S6 and S7). While about half of 

the trypsin-like serine proteases have also a serine residue in position 190, the others 

contain an alanine and thus can hence not form a hydrogen bond to Arg12 with their side 

chain. In position 192, many homologous proteases have a lysine or glutamate residue that 

cannot form the same hydrogen bond as the Gln192 to Val7 present in UK965 and UK970. 

A number of amino acids of huPA interacting with UK965 and UK970 are similar or identical 

in many members of the trypsin-like serine protease family and interactions of UK965 and 

UK970 with those are likely to be less relevant for the specificity of the inhibitor. These 

include the amino acids Val41, Asp189 and Gly218 that are rather conserved within the 

family of trypsin-like serine proteases and the invariant amino acids His57 and Ser195 of 

the catalytic triad. 



Supplementary experimental procedures 

 

Chemical synthesis of peptides 

Peptides with a free amine at the N-terminus and an amide at the C-terminus were 

chemically synthetized by standard Fmoc (9-fluorenylmethoxycarbonyl) solid-phase peptide 

synthesis (SPPS). Fmoc-protected amino acids, (Benzotriazol-1-

yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP), acetic anhydride, anisole, 

dichloromethane (DCM), N,N-dimethylformamide (DMF) and Rink Amide MBHA resin (100 

- 200 mesh, loading 0.4 - 0.9 mmol/g resin, 0.01 mmol scale) were purchased from 

Novabiochem (Darmstadt, Germany). Acetonitrile (ACN), formic acid, N-methylmorpholine 

(NMM), octanedithiol (ODT), 1,3,5-tris(bromomethyl)benzene (TBMB), piperidine, diethyl 

ether, trifluoroacetic acid (TFA) and thioanisole were purchased from Sigma-Aldrich 

(Darmstadt, Germany). N-methylpirrolidone (NMP) was purchased from VWR 

(Pennsylvania, USA). All chemicals were used as received without further purification. 

Peptides were chemically synthesized using a ResPepSLi automated peptide synthesiser 

(Intavis Bioanalytical Instruments, Köln, Germany) as previously described.16 Briefly, Fmoc 

groups were removed using a 20% v/v solution of piperidine in DMF (180 µL × 2). Amino 

acid coupling was carried out twice for each Fmoc-amino acid (7.5 eq., 0.5 M solution in 

DMF) using the PyBOP/NMM coupling system (5.5 eq. 0.4 M / 9 eq. 4 M in DMF). Fmoc 

groups were removed using a 20% v/v solution of piperidine in DMF. Final acetylation 

capping was performed using a 5% v/v solution of acetic anhydride in DMF. DCM washes 

(0.3 mL × 5) were performed at the end of the synthetic process. NMP was used as cosolvent 

in the peptide synthesis. 4 M NMM solution in DMF was added as weak base for coupling 

reaction. The final peptides were deprotected (side-chain protected groups) and cleaved 

from the resin using a TFA/thioanisole/H2O/anisole/ODT mixture (90/2.5/2.5/2.5/2.5% v/v) 

for 3 h at room temperature. The resin was removed by filtration under vacuum and the 

peptides were precipitated with cold diethyl ether (50 mL). The precipitated peptides were 

resuspended in diethyl ether (30 mL × 2) and centrifuged (3 times). Finally, the peptides 

were dissolved in H2O:ACN (1:1), freeze-dried and lyophilized on a LIO-5PDGT (5Pascal, 

Milan, Italy). 

 



Chemical cyclisation of peptides 

Bicyclic peptides modified with TBMB were obtained by reacting crude peptides (1 mM) in 

70% v/v 20 mM NH4HCO3, pH 8.0 and 30% v/v ACN with TBMB (1.5 mM) for 1 hr at 30 °C. 

The reaction products were purified by preparative reversed-phase high performance liquid 

chromatography (RP-HPLC) using a C18 SymmetryPrep functionalized silica column (7 μm, 

19 mm × 150 mm, Waters, Millford, MA, USA) connected to a Waters Delta Prep LC 4000 

System equipped with a Waters 2489 dual λ absorbance detector, a Waters 600 pump and 

a PrepLC Controller (Waters, Millford, MA, USA). A flow rate of 20 mL/min and a linear 

gradient (10% to 50% in 35 min) with a mobile phase composed of eluant A (99.9% v/v H2O, 

0.1% v/v TFA) and eluant B (99.9% v/v ACN and 0.1% v/v TFA) was applied. The purified 

peptides were freeze-dried. The purity and molecular mass of the peptides was assessed 

by LC-ESI as described below. Concentrations of peptides were determined using a 

BioPhotometer D30 UV spectrophotometer (Eppendorf, Hamburg, Germany). 

 

Mass spectrometry analysis of bicyclic peptides 

The molecular mass of each bicyclic peptide was determined by electrospray ionisation 

mass spectrometry (ESI–MS) performed on a single quadrupole liquid chromatograph 

InfinityLab LC/MSD mass spectrometer coupled to a 1260 Infinity II LC system (Agilent 

Technologies, Santa Clara, CA, USA). The system operated with the standard ESI source 

and in the positive ionisation mode. Peptides were run at a flow rate of 1 mL/min with a linear 

gradient of solvent B over 15 min (solvent A: 99.9% v/v H2O and 0.1% v/v formic acid; solvent 

B: 99.9% v/v ACN and 0.1% v/v formic acid). The reversed-phase HPLC column was a 

Nucleosil 100-5 C18 (5 μm, 125 mm × 4 mm; Macherey-Nagel, Dueren, Germany). Data 

were acquired, processed and analyzed using the Agilent OpenLAB CDS (Agilent 

Technologies, Santa Clara, CA, USA) and MestReNova (Mestrelab Research, Santiago de 

Compostela, Spain). 

 

Determination of inhibitory activity of bicyclic peptides 

The inhibitory activity of bicyclic peptides was assessed by monitoring the residual activity 

of huPA in the presence of a fluorogenic substrate and different concentrations of inhibitor 



bicyclic peptides. The activity assay was performed by incubating 15 nM huPA with 50 μM 

fluorogenic substrate Z-Gly-Gly-Arg-AMC (50 μM; Bachem, Bubendorf, Switzerland) and 

two-fold peptide dilutions (0, 0.12, 0.24, 0.48, 0.97, 1.95, 3.9, 7.81, 15.6, 31.2, 62.5, 125, 

250, 500, 1000 and 2000 nM). All reagents were diluted in 10 mM Tris-Cl, pH 7.4, 150 mM 

NaCl, 10 mM MgCl2, 1mM CaCl2, 0.1% w/v BSA, 0.01% v/v Triton-X100 and 5% v/v DMSO. 

The measurements were performed on a Tecan microplate reader (Tecan infinite 200 pro, 

Tecan Trading AG, Switzerland) using black microfluor 96-well plate Nunc MicroWell, 

(Thermo Fisher Scientific, Dreieich, Germany) The enzymatic reactions were performed at 

25 °C for 30 min, under shacking with an excitation wavelength of 355 nm and an emission 

recording at 460 nm. The initial velocities were monitored as changes in fluorescence 

intensity. The sigmoidal curves were fitted to the data using the following non-linear 

regression equation for the inhibitory dose-response curves with variable slope (2): 

𝑦 =
100

61 + 7𝐼𝐶()𝑥 :
*
;
 (2) 

where x is the peptide concentration, y is the residual percentage of protease activity and p 

is the hill slope. Half maximum inhibitory concentration (IC50) values were derived from the 

fitted curves from GraphPad Prism 8 8.0.0. software (GraphPad software, Inc., San Diego, 

California). The final Ki was subsequently determined using the Cheng-Prusoff equation (3): 

𝐾# =
𝐼𝐶()

1 + [𝑆])𝐾+

 (3) 

where Km (115 μM) is the Michaelis constant for the hydrolysis of Z-Gly-Gly-Arg-AMC 

catalysed by huPA which has been determined by standard Michaelis-Menten equation. 

Values were determined using either OriginPro 8G software (OriginLab Corporation, 

Northamppton, MA, USA) or GraphPad Prism 8.0.0. software (GraphPad software, Inc., San 

Diego, California). 

 

Specificity determination of bicyclic peptide 

Residual activities were measured in 150 μL volume of buffer containing 10 mM Tris-Cl, pH 

7.4, 150 mM NaCl, 10 mM MgCl2, 1mM CaCl2, 0.1% w/v BSA, 0.01% v/v Triton-X100 and 



5% v/v DMSO. Final concentrations of serine proteases were the following: human uPA 

(UPA-LMW, Molecular Innovations, Novi, MI, USA) 1.5 nM, mouse uPA (MUPA-LMW, 

Molecular Innovations, Novi, MI, USA) 12 nM, human tPA (HTPATC; Molecular Innovations, 

Novi, MI, USA) 7.5 nM, mouse tPA (MTPA, Molecular Innovations, Novi, MI, USA) 6 nM, 

human trypsin (HTRYP, Molecular Innovations, Novi, MI, USA) 0.05 nM, human plasmin 

(HPLM, Molecular Innovations, Novi, MI, USA) 1.5 nM, human plasma kallikrein (IHPKA, 

Innovative Research, Novi, MI, USA) 0.5 nM, human thrombin (IHT, Innovative Research, 

Novi, MI, USA) 10 nM, and human factor XIIa (IHFXIIa, Innovative Research, Novi, MI, USA) 

6 nM. Two-fold dilutions of UK970 bicyclic peptide inhibitor were prepared ranging from 1 

mM to 125 nM for all the proteases. For human uPA an extra two-fold UK970 inhibitor dilution 

experiment was performed by using inhibitor concentrations ranging from 2000 nM to 0.12 

nM. For the determination of the Ki inhibitory constants, the following fluorogenic substrates 

were used at final concentration of 50 μM: Z-Gly-Gly-Arg-AMC (for human uPA, murine uPA, 

human tPA, murine tPA, human trypsin, human thrombin and human factor XIIa; Bachem, 

Bubendorf, Switzerland), Z-Phe-Arg-AMC (for human plasma kallikrein; Bachem, 

Bubendorf, Switzerland) and H-D-Val-Leu-Lys-AMC (for human plasmin; Bachem, 

Bubendorf, Switzerland). The initial velocities were monitored as changes in fluorescence 

intensity during 30 min on a Tecan microplate reader (Tecan infinite 200 pro, Tecan Trading 

AG, Switzerland) using black microfluor 96-well plate Nunc MicroWell (Thermo Fisher 

Scientific, Dreieich, Germany). The enzymatic reactions were performed at 25 °C under 

shacking with an excitation wavelength of 355 nm and an emission recording at 460 nm. 

Apparent equilibrium constants Kiapps values were determined by non-linear regression 

analyses of Vi/V0 versus [I]0 using equation (2). The final Kis were subsequently determined 

by correcting for the competitive effect of the substrate [S]0 using equation (3). The kinetic 

constants Kms for the hydrolysis of fluorogenic substrate, catalysed by each protease, were 

determined by standard Michaelis-Menten equation. Values were determined using either 

OriginPro 8G software (OriginLab Corporation, Northamppton, MA, USA) or GraphPad 

Prism 8.0.0. software (GraphPad software, Inc., San Diego, California). 

 

Recombinant production of the catalytic domain of human urokinase-type 
plasminogen activator 

The low molecular weight (LMW) human urokinase-type plasminogen activator (huPA) 

comprising the truncated 23 amino acid peptide fragment of chain A (Lys136-Lys158 in 



huPA numbering) and the catalytic domain (also termed chain B; Ile159-Leu411 in huPA 

numbering or Ile16-Leu250 in chymotrypsin numbering), mutated in two positions to 

eliminate both the surface-exposed free cysteine residue (Cys122Ala) and the glycosylation 

site (Asn145Gln), was expressed by transient transfection of suspension-adapted human 

embryonic kidney FreeStyle 293-F cells (HEK-293-F) as previously described.17 Briefly, 1 

mg of pSecTagA-LMW-huPA-C122A-N145Q plasmid encoding LMW huPA-C122A-N145Q 

protein was premixed to linear polyethylenimine (PEI, PEI, Polysciences, Heppenheim, 

Germany) and Opti-MEM (Thermo Fisher Scientific, Dreieich, Germany) and used to 

transfect 1 L of high cell density (1 x 106 cells/ml) HEK-293-F cells growing in serum-free 

FreeStyle™ 293 Expression Medium (Thermo Fisher Scientific, Dreieich, Germany) in an 

orbitally shaken one-litre flask at 180 rpm in a Forma Steri-Cycle 370 CO2 incubator (Thermo 

Fisher Scientific, Dreieich, Germany) at 37 °C in the presence of 5% CO2).18,19  At the end 

of the 7-day phase production, cells were harvested by centrifugation at 5500 rpm for 20 

min at 4 °C on an Avanti J-25 centrifuge (Backman Coulter, Indianapolis, USA). Any 

additional cell debris was removed from the medium by filtration through 0.45 μm low protein 

binding membranes (Prat-dumas, Bourg, France). 

 

Purification of the recombinant catalytic domain of human urokinase-type 
plasminogen activator 

The recombinant LMW huPA-C122A-N145Q protein was purified as previously described.17 

Briefly, the protein was concentrated by using 10000 MWCO Amicon Ultra ultrafiltration tube 

(Merck Novagen, Nottingham, UK) at 3000 g and 4 °C on a 5810R centrifuge (Eppendorf, 

Hamburg, Germany) and diluted five-times with Buffer A (50 mM sodium phosphate pH 6.2). 

The protein was captured on 10 mL strong cation exchange SP sepharose fast flow resin 

(Cytiva, Freiburg, Germany) packed on a XK-16 gravity column (Cytiva, Freiburg, Germany) 

pre-equilibrated with Buffer B (25 mM sodium phosphate pH 6.4). The diluted medium was 

passed through the pre-equilibrated resin at 4 °C. After extensive washing with Buffer B (25 

mM sodium phosphate pH 6.4), the protein was eluted with Buffer C (25 mM sodium 

phosphate, 500 mM NaCl, pH 6.4). The protein containing fractions were pooled, 

concentrated by using 10000 MWCO Amicon Ultra ultrafiltration tube (Merck Novagen, 

Nottingham, UK) at 3000 g and 4 °C on an 5810R centrifuge (Eppendorf) and at 4 °C, diluted 

ten-times with Buffer A (50 mM sodium phosphate pH 6.2), and subjected to second cation 

exchange HiScreen SP HP pre-packed chromatography column (Cytiva, Freiburg, 



Germany) connected to an AKTA purifier system (Cytiva, Freiburg, Germany). The diluted 

protein was passed through the resin pre-equilibrated with Buffer B at a flow rate of 1 mL/min 

at 4 °C. After extensive washing with Buffer B, the protein was eluted with Buffer C by 

applying a linear NaCl gradient (0 – 500 mM). The eluted protein showed a single band in 

SDS-PAGE, with an apparent molecular mass of about 32 kDa. Afterwards the recombinant 

LMW huPA-C122A-N145Q was converted into its active two-chains form by plasmin 

cleavage, whereby the first sixteen N-terminal amino acid residue of the A-chain were, due 

to the elimination of the A-B chain-connecting disulfide bridge by the Cys122Ala exchange, 

separated from the B-chain. To a solution of 150 μM LMW-huPA-C122A-N145Q in Buffer D 

(50 mM HEPES, 150 mM NaCl, pH 8.0), 200 nM human plasmin (HPLM, Haematologic 

Technologies, Essex, VT, USA) was added (ratio 500:1). After incubation for 4 hrs at room-

temperature, the cleaved activated protein was further purified by size exclusion 

chromatography using a HiLoad 26/60 Superdex 200 prep-grade column (Cytiva, Freiburg, 

Germany) and Buffer E (50 mM HEPES, 100 mM NaCl, pH 7.0) on an AKTA purifier system 

(Cytiva, Freiburg, Germany). The protein was eluted as a monomer giving a single band in 

SDS-PAGE confirming the complete cleavage, with a molecular mass of about 28 kDa under 

reducing condition. The pure and activated LMW huPA-C122A-N145Q in Buffer E was then 

concentrated to 10 mg/mL (347 μM) for crystallisation by using 5000 MWCO PES Vivaspin-

20 ultrafiltration tube (Sartorius-Stedim Biotech GmbH, Göttingen, Germany) at 3000 g and 

4 °C on 5810R centrifuge (Eppendorf, Hamburg, Germany). The activity of recombinant 

LMW huPA-C122A-N145Q before and after plasmin activation was assessed by incubating 

the protein with the fluorogenic substrate Z-Gly-Gly-Arg-AMC (50 μM; Bachem, Bubendorf, 

Switzerland) in 10 mM Tris-Cl, pH 7.4, 150 mM NaCl, 10 mM MgCl2, 1mM CaCl2, 0.1% w/v 

BSA, 0.01% v/v Triton-X100 and 5% v/v DMSO. The measurements were performed on a 

Tecan microplate reader (Tecan infinite 200 pro, Tecan Trading AG, Switzerland) using 

black microfluor 96-well plate Nunc MicroWell, (Thermo Fisher Scientific, Dreieich, 

Germany). The enzymatic reactions were performed at 25 °C for 30 min, under shacking 

with an excitation wavelength of 355 nm and an emission recording at 460 nm. No inhibitors 

were added to the buffers. 

 

Crystallization of recombinant huPA in complex with bicyclic peptides 

Crystallization trials of huPA in complex with bicyclic peptides UK965 and UK970 were 

carried out at 293 K using the sitting-drop vapor-diffusion method and the Oryx 8 



crystallization robot (Douglas Instruments Ltd, Berkshire, UK). Crystals of huPA in complex 

with UK965 were obtained by mixing 1 μL of huPA protein (10 mg/mL, 347 μM) in 50 mM 

HEPES, 100 mM NaCl, pH 7.0, 0.3 μL of UK965 bicyclic peptide (6 mM) in 50 mM citric acid 

pH 4.3, 7% w/v PEG400, 2 M (NH4)2SO4, and 1 μL of precipitant solution and allowed to 

equilibrate against 200 μL of reservoir solution 50 mM citric acid pH 4.3; 5% w/v PEG400; 

1.8 M (NH4)2SO4. Best crystals were obtained within 7 days. Crystals of huPA in complex 

with UK970 were instead obtained by initially growing crystals in a solution containing the 

lower affinity bicyclic peptide UK18, which was later replaced by the higher affinity bicyclic 

peptide UK970 inhibitor. Briefly, crystals of huPA in complex with UK18 were obtained by 

mixing 1 μL of huPA protein (10 mg/mL, 347 μM) in 50 mM HEPES, 100 mM NaCl, pH 7.0, 

0.3 μL of UK18 bicyclic peptide (6 mM) in 50 mM citric acid pH 4.3, 7% w/v PEG400, 2 M 

(NH4)2SO4, and 1 μL of precipitant solution and allowed to equilibrate against 200 μL of 

reservoir solution 50 mM citric acid pH 4.3; 7% w/v PEG400; 1.8 M (NH4)2SO4. After 9 days, 

the best uPA-UK18 crystals were taken and soaked in a suspension of UK970 bicyclic 

peptide (6 mM) in 50 mM citric acid pH 4.3 7% PEG400, 2 M (NH4)2SO4. For X-ray data 

collection, crystals were soaked in a solution of 20% w/v ethylene glycol, mounted on 

LithoLoops (Molecular Dimensions Ltd, Suffolk, UK) and flash-cooled in liquid nitrogen. 

 

X-ray data collection and processing 

X-ray diffraction data of human uPA-UK965 and uPA-UK970 complexes were collected at 

beamline ID23-2 and ID23EH2 of the European Synchrotron Radiation Facility (ESRF, 

Grenoble, France), respectively. The best crystals of huPA in complex with UK965 diffracted 

to 1.64 Å maximum resolution. Crystals belong to the H3 space group, with unit cell 

parameters: a = 120.9 Å, b = 120.9 Å, c = 42.7 Å, α = 90°, β = 90°, and γ = 120°. The 

asymmetric unit contains 1 molecule and a solvent content of 44% of the crystal volume. 

The best crystals of huPA in complex with UK970 diffracted to 1.80 Å maximum resolution. 

Crystals belong to the H3 space group, with unit cell parameters: a = 121.3 Å, b = 121.3 Å, 

c = 42.8 Å, α = 90°, β = 90°, and γ = 120°. The asymmetric unit contains 1 molecule and a 

solvent content of 44% of the crystal volume. Frames were indexed and integrated with 

software XIA2, merged and scaled with software AIMLESS (CCP4i2 crystallographic 

package).20  

 



Structure determination and model refinement 

The structures were solved by molecular replacement with software PHASER21 using as a 

template the model 3QN7. Refinement was carried on using REFMAC22 and PHENIX.23 

Rebuilding and fitting of the bicyclic peptides and precipitant agents (ethylene glycol, EDO; 

polyethylene glycol 400, PEG400; ammonium sulphate; citrate) was performed manually 

with graphic software COOT.24 Geometrical parameters of the model were validated using 

software included in the CCP4i2 crystallographic package.20 Since the first cycles of 

refinement, the electron density corresponding to the bound bicyclic peptides and/or 

precipitant/additive molecules was clearly visible in the electron density map. The final 

model of huPA-UK965 complex contains 2027 protein atoms, 130 bicyclic peptide atoms, 

125 water molecules, and 24 atoms of other molecules. The final crystallographic R factor 

is 0.206 (Rfree 0.243). The final model of huPA-UK970 complex contains 1951 protein atoms, 

123 bicyclic peptide atoms, 119 water molecules, and 52 atoms of other molecules. The 

final crystallographic R factor is 0.210 (Rfree 0.238). Geometrical parameters of the two 

models are as expected or better for this resolution. Buried surface calculations were 

performed using program PISA.25 Intra-molecular and inter-molecular hydrogen bond 

interactions were analysed by PDBsum,26 LIGPLOT+,27 and PyMOL28 software. All figures 

were made with PyMOL.28 The Protein Data Bank (PDB) identification code for the uPA-

UK965 complex is 7ZRR and that of the uPA-UK970 complex is 7ZRT. 

  



Supplementary tables 

 

Data and Scripts Description 

X_data.csv Input data file containing the family X of bicyclic 

peptide inhibitors to be investigated. 

plmDCA_script.m Main MATLAB script calling all the necessary 

MATLAB scripts listed below. 

mexAll.m MATLAB script to compile the external C 

programs needed for DCA analysis. 

plmDCA_asymmetric.m Main MATLAB script to perform DCA analysis. 

givernaJ_and_h_plmDCA_asymmetric.m MATLAB script to create the h vector and J 
matrix associated to the DCA analysis. 

export_h.m MATLAB script to export the h vector in a text 

file. 

export_J.m MATLAB script to export the J vector in a text 

file. 

FASTA_file_generation_from_csv.ipynb Python script (in Jupyter Notebook format) that 

translates the input file of bicyclic peptides in 

FASTA format. 

Monte_Carlo_simulation.ipynb Python script (in Jupyter Notebook format) that 

generates new bicyclic peptides using Monte 
Carlo (MC) simulation. 

Random_Forest_regression_analysis.ipynb Python script (in Jupyter Notebook format) that 

performs Random Forest Regression (RFR) on 

the bicyclic peptides generated by plmDCA and 

MC simulation. 

Jij_matrices_visualization.ipynb Python script (in Jupyter Notebook format) that 

allows for visualizing the J matrix generated by 

plmDCA and its submatrices. 

 



Supplementary table 1. Input data, MATLAB and Python scripts used for the in silico molecular 

evolutionary approach. The data and scripts names (on the left) and their description (on the right) 

are reported for each step. The source code and data used to produce the results and analyses 

presented in this manuscript are available from Open Science Framework (OSF) data repository: 

https://osf.io/gn6bz/?view_only=20805b7801ba4610a370080e3835fb3c. 

  

https://osf.io/gn6bz/?view_only=20805b7801ba4610a370080e3835fb3c


protease substrate Km ± S.E. (μM) Ki ± S.E. (μM) 

human uPA (huPA) Z-Gly-Gly-Arg-AMC 112 ± 19 0.004 ± 0.001 

murine uPA (muPA) Z-Gly-Gly-Arg-AMC 48 ± 12 > 1000 

human tPA (htPA) Z-Gly-Gly-Arg-AMC 94 ± 3 > 1000 

murine tPA (mtPA) Z-Gly-Gly-Arg-AMC 137 ± 34 > 1000 

human plasmin H-D-Val-Leu-Lys-AMC (6.1 ± 1.8) ´ 102 > 1000 

human trypsin Z-Gly-Gly-Arg-AMC 54 ± 20 > 1000 

human plasma kallikrein Z-Phe-Arg-AMC 41 ± 14 > 1000 

human thrombin Z-Gly-Gly-Arg-AMC 199 ± 67 > 1000 

human factor XIIa Z-Gly-Gly-Arg-AMC 120 ± 3 > 1000 

 

Supplementary Table 2. Inhibitory activity and specificity of bicyclic peptide UK970. The 

inhibitory activity (Ki) values of bicyclic peptide UK970 towards huPA and various other trypsin-like 

serine proteases was determined at 25 °C, at physiological pH (7.4) and using the indicated 

fluorogenic substrates at a concentration of 50 μM. The Km values of each protease were determined 

by standard Michaelis-Menten kinetics and used in the calculation of the reported Ki values. S.E., 

standard error. 

  



Data collection huPA-UK965 huPA-UK970 

Wavelength (Å) 0.873 0.873 

Space group H3 H3 

Cell parameters   

      a, b, c (Å); α, β, γ (°) 120.9, 120.9, 42.7; 90, 90, 120 121.3, 121.3, 42.8; 90, 90, 120 

Resolution (Å) 39.58 – 1.64 (1.67 – 1.64) 39.68 – 1.80 (1.84 – 1.80) 

Observations 54617 (2761) 173005 (6569) 

Unique 28238 (1430) 21768 (1306) 

Multiplicity 1.9 (1.9) 7.9 (5.0) 

Rmerge 0.059 (0.711) 0.136 (0.77) 

<I / σ(I)> 8.5 (1.1) 15.4 (2.1) 

CC1/2 0.997 (0.317) 0.997 (0.588) 

Completeness (%) 99.3 (0.317) 99.9 (99.3) 

Wilson B-factor 19.0 19.8 

Refinement   

No. reflections (Used for Rfree 

calculation) 

28204 (1368) 21767 (1082) 

Rwork / Rfree 0.206 (0.243) 0.210 (0.238) 

Number non-hydrogen atoms 2306 2245 



      protein (chain A) 2027 1951 

      bicyclic peptide (peptide, ZBR) 130 123 

      ions (SO4) 0 10 

      other ligands (EDO, 1PE, PEG) 24 42 

      H2O 125 119 

Geometry   

RMSD values   

      bond lengths (Å) 0.008 0.011 

      bond angles (°) 1.596 1.655 

Ramachandran plot (%)   

      most favoured 97 97 

      additionally allowed 3 3 

      outliers 0 0 

Average B-factor 24 23 

 

Supplementary Table 3. Statistics on X-ray structure data collection and refinement. Data 

collection and refinement statistics of huPA in complex with bicyclic peptides UK965 and UK970. A 

single crystal was used to collect all diffraction data. Highest-resolution shell statistics are shown 

within brackets. 

  



Protein and bicyclic peptide complex huPA-UK18 huPA-UK965 huPA-UK970 

PDB 3QN7 7ZRR 7ZRT 

Length of peptides (amino acid residues) 17 17 17 

Buried surface area on protein (Å2) 730 749 746 

Buried surface area on bicyclic peptide (Å2) 940 949 954 

 

Supplementary Table 4. Buried surface in protein and bicyclic peptide complexes. Buried 

surfaces were calculated using the software PDBsum with a probe of 1.4 Å radius and are reported 

here for the protein huPA and for the bicyclic peptides UK18, UK965 and UK970. The designation 

"buried" implies that the residues are at least partially inaccessible to bulk solvent because of the 

proximity of the interface surfaces of the protein and the bicyclic peptides. The difference of the sum 

in buried surface area of interaction (Δ, Å2) between huPA-UK965 complex and huPA-UK18 complex 

(28 Å2), huPA-UK970 and huPA-UK18 complex (30 Å2), and huPA-UK970 and huPA-UK965 

complex (2 Å2) have been determined by using the following equation (4): 

∆	#Å!% = [(𝑃" + 𝑝") − (𝑃# + 𝑝#)] 

where PX is the buried surface area on protein in complex X, pX is the buried surface area on bicyclic 

peptide in the same complex X, PY is the buried surface area on protein in complex Y and pY is the 

buried surface area on bicyclic peptide in the same complex Y. 

  



Protein and bicyclic 
peptide complex 

number of 
residues at 

the interface 

number 
of salt 

bridges 

number of 
hydrogen 

bonds 

number of 
hydrogen bonds 
water mediated 

number of 
no-bonded 
contacts 

huPA-UK18 

huPA 27 

4 10 8 112 

UK18 11 

huPA-UK965 

huPA 28 

4 9 14 134 

UK965 12 

huPA-UK970 

huPA 28 

4 9 13 143 

UK970 11 

 

Supplementary Table 5. Inter-molecular interactions between huPA and bicyclic peptides. 

Number of residues of huPA and bicyclic peptides UK18, UK965 and UK970 forming polar inter-

molecular interactions. Total number of inter-molecular salt bridges, hydrogen bonds (direct or 

waterer mediated) and non-polar interactions have been defined using the software LIGPLOT+.27 

  



huPA-UK18 complex huPA-UK965 complex huPA-UK970 complex 

 Thr29 OG1 – H2O – Glu6 O (2.5 
Å and 3.1 Å) [HB] 

Thr29 OG1 – H2O – Val6 O (2.7 
Å and 3.0 Å) [HB] 

 Arg35 NH2 – Arg4 NH1 (3.3 Å) 

[HB] 

Arg35 NH2 – Arg4 NH1 (2.9 Å) 

[HB] 

 Arg37A N - Arg4 NH2 (3.1 Å) [HB] Arg37A N - Arg4 NH2 (3.0 Å) [HB] 

  Arg37A NH2 – Arg4 O (3.22 Å) 
[HB] 

 Tyr40 O – H2O – Glu6 O (2.7 Å 
and 3.1 Å) [HB] 

Tyr40 O – H2O – Val6 O (2.7 Å 
and 3.0 Å) [HB] 

Val41 O – Asp8 N (3.1 Å) [HB] Val41 O – Asp8 N (3.2 Å) [HB] Val41 O – Asp8 N (3.1 Å) [HB] 

His57 NE2 – Asp8 OD1 (2.9 Å) [HB] His57 NE2 – Asp8 OD1 (2.9 Å) 

[HB] 

His57 NE2 – Asp8 OD1 (2.9 Å) 

[HB] 

Asp60A OD1 – Arg10 NH2 (3.3 Å) 
[SB] 

Asp60A OD1 – Arg10 NH2 (3.1 Å) 
[SB] 

Asp60A OD1 – Arg10 NH2 (3.3 
Å) [SB] 

Asp60A OD2 – Arg10 NE (2.9 Å) 

[SB] 

Asp60A OD2 – Arg10 NE (2.9 Å) 

[SB] 

Asp60A OD2 – Arg10 NE (2.8 Å) 

[SB] 

Tyr60B OH – Ala1 O (3.2 Å) [HB]   

His99 NE2 – H2O – Arg10 NH1 (3.1 
Å and 3.1 Å) [HB] 

  

His99 NE2 – H2O – Cys16 O (3.1 Å 
and 2.8 Å) [HB] 

  

 Lys143 NZ – H2O – Gly13 O (2.6 

Å and 3.3 Å) [HB] 

Lys143 NZ – H2O – Gly13 O (2.7 

Å and 3.1 Å) [HB] 



 Ser146 O – H2O – Gly13 O (3.3 Å 

and 3.3 Å) [HB] 

Ser146 O – H2O – Gly13 O (3.3 

Å and 3.1 Å) [HB] 

 Tyr151 OH – H2O – Glu6 OE2 

(2.6 Å and 2.7 Å) [HB] 

 

Asp189 OD1 – Arg12 NH1 (2.8 Å) 
[SB] 

Asp189 OD1 – Arg12 NH1 (2.7 Å) 
[SB] 

Asp189 OD1 – Arg12 NH1 (2.8 
Å) [SB] 

Asp189 OD2 – Arg12 NH2 (2.7 Å) 

[SB] 

Asp189 OD2 – Arg12 NH2 (2.8 Å) 

[SB] 

Asp189 OD2 – Arg12 NH2 (2.8 

Å) [SB] 

Ser190 OG – Arg12 NH1 (2.8 Å) 

[HB] 

Ser190 OG – Arg12 NH1 (2.8 Å) 

[HB] 

Ser190 OG – Arg12 NH1 (2.7 Å) 

[HB] 

Gln192 N – Arg12 O (3.1 Å) [HB] Gln192 NE2 – Glu6 OE2 (2.8 Å) 

[HB] 

Gln192 OE1 – H2O – Gly13 O 

(2.8 Å and 3.1 Å) [HB] 

Gln192 NE2 – Val7 O (2.8 Å) [HB] Gln192 NE2 – Val7 O (2.9 Å) [HB] Gln192 NE2 – Val7 O (3.1 Å) 
[HB] 

Gly193 N – Asp8 OD2 (3.1 Å) [HB] Gly193 N – Asp8 OD2 (2.7 Å) 
[HB] 

Gly193 N – Asp8 OD2 (2.8 Å) 
[HB] 

Ser195 OG – Asp8 OD2 (2.8 Å) 

[HB] 

Ser195 OG – Asp8 OD2 (2.8 Å) 

[HB] 

Ser195 OG – Asp8 OD2 (2.6 Å) 

[HB] 

Ser195 OG – H2O – Arg12 N (2.7 Å 

and 3.3 Å) [HB] 

Ser195 OG – H2O – Arg12 N (2.8 

Å and 3.1 Å) [HB] 

Ser195 OG – H2O – Arg12 N (2.8 

Å and 3.0 Å) [HB] 

Ser214 O – H2O – Arg10 O (2.8 Å 
and 2.9 Å) [HB] 

Ser214 O – H2O – Arg10 O (2.8 Å 
and 2.8 Å) [HB] 

Ser214 O – H2O – Arg10 O (2.8 
Å and 2.9 Å) [HB] 

Ser214 O – H2O – Arg12 N (2.7 Å 
and 3.3 Å) [HB] 

Ser214 O – H2O – Asp8 OD2 (3.0 
Å and 2.8 Å) [HB] 

Ser214 O – H2O – Arg12 N (2.9 
Å and 3.0 Å) [HB] 



 Gly216 N – H2O – Gly17 O (3.1 Å 

and 2.9 Å) [HB] 

Gly216 N – H2O – Gly17 O (3.3 

Å and 2.6 Å) [HB] 

 Gly216 O – H2O – Gly17 O (3.1 Å 

and 2.9 Å) [HB] 

 

 Gly216 O – H2O – Gly13 N (2.7 Å 
and 2.9 Å) [HB] 

Gly216 O – H2O – Gly13 N (3.0 
Å and 2.8 Å) [HB] 

Arg217 O – H2O – Arg12 NH2 (2.7 

Å and 3.0 Å) [HB] 

Arg217 O – H2O – Arg12 NH2 

(2.7 Å and 3.1 Å) [HB] 

Arg217 O – H2O – Arg12 NH2 

(2.7 Å and 3.1 Å) [HB] 

Gly218 O – Arg12 NH2 (2.8 Å) [HB] Gly218 O – Arg12 NH2 (3.2 Å) 

[HB] 

Gly218 O – Arg12 NH2 (3.1 Å) 

[HB] 

Gly218 O – Arg12 NE (2.9 Å) [HB] Gly218 O – Arg12 NE (3.0 Å) [HB] Gly218 O – Arg12 NE (3.0 Å) 

[HB] 

Leu222 N – H2O – Arg12 NH2 (3.0 
Å and 3.0 Å) [HB] 

Leu222 N – H2O – Arg12 NH2 
(2.9 Å and 3.1 Å) [HB] 

Leu222 N – H2O – Arg12 NH2 
(2.9 Å and 3.1 Å) [HB] 

Lys224 O – H2O – Arg12 NH2 (2.9 
Å and 3.0 Å) [HB] 

Lys224 O – H2O – Arg12 NH2 
(2.9 Å and 3.1 Å) [HB] 

Lys224 O – H2O – Arg12 NH2 
(2.8 Å and 3.1 Å) [HB] 

 

Supplementary Table 6. Polar inter-molecular interactions between huPA and different 
bicyclic peptides. Residues and atoms of bicyclic peptides UK18, UK965 and UK970 forming polar 

inter-molecular interactions with huPA (chymotrypsin numbering). Optimal salt bridges [SB] and 

hydrogen bond [HB] interactions have been defined using the software LIGPLOT+.27 Distances of 

intra-molecular interactions are shown within round brackets. 

  



huPA-UK18 complex huPA-UK965 complex huPA-UK970 complex 

 Arg35 CZ – Arg4 NH2 (3.78 Å) Arg35 CZ – Arg4 NH2 (3.65 Å) 

 Arg35 NH1 – Arg4 CZ (3.78 Å) Arg35 NH1 – Arg4 CZ (3.68 Å) 

  Arg35 NH2 – Arg4 CB (3.44 Å) 

  Arg35 NH2 – Arg4 CG (3.78 Å) 

  Arg35 NH2 – Arg4 CZ (3.61 Å) 

His37 CG – Tyr5 CE1 (3.55 Å) His37 CG – Tyr5 CE1 (3.80 Å) His37 CG – Phe5 CE1 (3.64 Å) 

His37 CG – Tyr5 CE2 (3.55 Å)  His37 CG – Phe5 CD1 (3.71 Å) 

His37 CG – Tyr5 CD2 (3.70 Å)   His37 ND1 – Phe5 CE1 (3.61 Å) 

His37 ND1 – Tyr5 CD2 (3.64 Å)   His37 ND1 – Phe5 CD1 (3.51 Å) 

His37 CD2 – Tyr5 CD1 (3.60 Å) His37 CD2 – Tyr5 CD1 (3.52 Å)  

His37 CD2 – Tyr5 CD2 (3.60 Å)    

His37 CD2 – Tyr5 CE2 (3.53 Å)    

His37 NE2 – Tyr5 CD1 (3.47 Å) His37 NE2 – Tyr5 CD1 (3.37 Å)  

His37 NE2 – Tyr5 CD2 (3.47 Å)   His37 NE2 – Phe5 CD1 (3.59 Å) 

Gly37B CA – Tyr5 OH (3.55 Å)   

Gly37C CA – Tyr5 CE2 (3.53 Å)   

Gly37C CA – Tyr5 OH (3.68 Å)   



Gly37C O – Tyr5 CE2 (3.53 Å)   

Thr39 CG2 – Tyr5 CB (3.90 Å)  Thr39 CG2 – Phe5 O (3.90 Å) 

 His57 CD2 – Gly11 N (3.82 Å)  

 His57 NE2 – Gly11 CA (3.55 Å) His57 NE2 – Gly11 CA (3.65 Å) 

Asp60A OD1 – Ala1 CA (3.74 Å)   

 Tyr60B OH – Arg4 CA (3.86 Å) Tyr60B OH – Arg4 CA (3.75 Å) 

 Tyr60B OH – Arg4 CB (3.46 Å) Tyr60B OH – Arg4 CB (3.20 Å) 

  Thr97A O – Gly17 C (3.65 Å) 

  Leu97B CA – Gly17 C (3.74 Å) 

 His99 CE1 – Gly17 O (3.21 Å) His99 CE1 – Gly17 O (3.47 Å) 

 Gln192 NE2 – Glu6 CG (3.62 Å)  

  Gln192 OE1 – Gly13 C (3.82 Å) 

 Gly193 CA – Val7 CG1 (3.89 Å) Gly193 CA – Val7 CG1 (2.94 Å) 

 

Supplementary Table 7. Unique non-polar inter-molecular interactions between huPA and 
different bicyclic peptides. Residues and atoms of bicyclic peptides UK18, UK965 and UK970 

forming unique non-polar inter-molecular interactions with huPA (chymotrypsin numbering). Optimal 

interactions have been defined using the software LIGPLOT+.27 Distances of intra-molecular 

interactions are shown within round brackets. 

  



bicyclic peptide UK18 bicyclic peptide UK965 bicyclic peptide UK970 

 Ser3 O – Glu6 N (3.2 Å) [HB]  

Arg4 NH2 – Glu6 OE1 (3.9 Å) [SB]   

Asp8 O – Gly11 N (2.9 Å) [HB] Asp8 O – Gly11 N (2.9 Å) [HB] Asp8 O – Gly11 N (3.0 Å) [HB] 

Cys9 O – Ser14 OG (3.2 Å) [HB] Cys9 O – Cys16 N (3.0 Å) [HB] Cys9 O – Cys16 N (3.1 Å) [HB] 

Gly11 O – Ser14 OG (2.9 Å) [HB] Gly11 O – Gly14 N (2.7 Å) [HB] Gly11 O – Gly14 N (2.7 Å) [HB] 

 Gly14 O – Gly17 N (3.3 Å) [HB] Gly14 O – Gly17 N (3.3 Å) [HB] 

 

Supplementary Table 8. Polar intra-molecular interactions within different bicyclic peptides. 

Residues and atoms forming polar intra-molecular interactions in bicyclic peptides UK18, UK965 and 

UK970. Optimal salt bridges [SB] and hydrogen bond [HB] interactions have been defined using the 

software PyMOL.28 Distances of intra-molecular HB interactions are shown within round brackets. 

  



Supplementary figures 

 

 

Supplementary Figure 1. RFR algorithm development flowchart, metrics evaluation and 
amino acid MSA logo. a) Schematic representation of the Random Forest Regression (RFR) 

algorithm process flow; b, c) Root mean squared error (RMSE) and linear coefficient (R2) evaluation 

of two different test and training dataset. RMSE and R2 have been used to evaluate the model 

predictions and find the best dataset distribution aiming at optimizing the Ki predictions while avoiding 

overfitting; d) MSA logo of the family of 37 phage-encoded bicyclic peptides inhibitors of huPA, 

whose most potent inhibitor is UK18 (left side) and MSA logo of the best bicyclic peptide binders 

predicted by RFR method (right side) among the randomly generated sequences. 

  



 

Supplementary Figure 2. PlmDCA method coupled to MC simulation flowchart, interaction 
matrices and amino acid MSA logo. a) Schematic representation of the pseudolikelihood 

maximization directed coupling analysis (plmDCA) method combined to Monte Carlo (MC) simulation 

process flow; b) Interaction matrix example in which red squares in the heatmaps indicate a strong 

correlation while blue squares designate low correlation between couples of amino acids. Each 

correlation score given for a couple of positions corresponds to the Frobenius norm of a submatrix 

as indicated on the right side in which the best amino acids correlations are evaluated; c) MSA logo 

of the family of 37 phage-encoded bicyclic peptides inhibitors of huPA, whose most potent inhibitor 

is UK18 (left side)17 and MSA logo of novel sequences generated through the plmDCA and MC 

combined methods (right side). 

  



 

Supplementary figure 3. Synthesis and characterisation of bicyclic peptides UK956-UK963. 

HPLC (left) and mass spectra (right) analysis of bicyclic peptides UK956 (a), UK957 (b), UK958 (c), 

UK959 (d), UK960 (e), UK961 (f), UK962 (g) and UK963 (h). The measured molecular weight of 

each bicyclic peptide corresponds to the expected mass. Name, elution retention time (tR), expected 

molecular weight (M.W.) and observed molecular ions of each peptide are indicated. 

  



 

Supplementary figure 4. Activity assay of bicyclic peptides UK956-UK963. Residual activities 

of huPA measured at different concentrations of bicyclic peptides UK18, UK956, UK957, UK958, 

UK959, UK960, UK961, UK962 and UK963. The indicated values are the means of three 

independent experiments. Data are presented as mean (symbol). S.E., standard error and at the 

right the column graph comparing the determined Ki values. The inhibitory activities of all peptide 

variants towards huPA were determined at 25 °C and physiological pH (7.4) using the suitable 

substrate at a concentration of 50 μM. The Km value of huPA protease was determined by standard 

Michaelis-Menten kinetics and used in the calculation of the reported Ki values. S.E., standard error. 

  



 

Supplementary figure 5. Synthesis and characterisation of bicyclic peptides UK18 and 
UK964-UK970. HPLC (left) and mass spectra (right) analysis of bicyclic peptides UK18 (a), UK964 

(b), UK965 (c), UK966 (d), UK967 (e), UK968 (f), UK969 (g) and UK970 (h). The measured 

molecular weight of each bicyclic peptide corresponds to the expected mass. Name, elution retention 

time (tR), expected molecular weight (M.W.) and observed molecular ions of each peptide are 

indicated. 

  



 

Supplementary figure 6. Activity assay of bicyclic peptides UK18 and UK964-UK970. Residual 

activities of huPA measured at different concentrations of bicyclic peptides UK18, UK964, UK965, 

UK966, UK967, UK968, UK969 and UK970. The indicated values are the means of three 

independent experiments. Data are presented as mean (symbol). S.E., standard error and at the 

right the Column graph comparing the determined Ki values. The inhibitory activities of all peptide 

variants towards huPA were determined at 25 °C and physiological pH (7.4) using the suitable 

substrate at a concentration of 50 μM. The Km value of huPA protease was determined by standard 

Michaelis-Menten kinetics and used in the calculation of the reported Ki values. S.E., standard error. 

  



 

Supplementary figure 7. Superimposition of huPA-UK18, huPA-UK965 and huPA-UK970 
crystal structure complexes. a) Superimposition of aligned huPA-UK18 (blue), huPA-UK965 (pale 

green) and huPA-UK970 (salmon) binary complexes are shown in two orientations (180° rotation). 

The secondary structures of huPA are represented by ribbon diagram. The three-dimensional 

structure was generated and rendered using PyMOL28; b) Root mean square deviations (RMSDs) 

calculated over the C-alpha atoms for the different complexes have been determined using Gesamt 

algorithm.20 

  



 

Supplementary figure 8. Conformation and electron density map of bicyclic peptides UK965 
and UK970. a) Conformation and electron density map of bicyclic peptide UK965 shown in two 

orientations (90° rotation). The aromatic ring of the mesitylene core and the side chains of the 

residues are shown as sticks. Carbon, oxygen, nitrogen, and sulphur atoms are shown in pale green, 

red, blue and yellow, respectively; b) Conformation and electron density map of bicyclic peptide 

UK970 shown in two orientations (90° rotation). The aromatic ring of the mesitylene core and the 

side chains of the residues are shown as sticks. Carbon, oxygen, nitrogen, and sulphur atoms are 

shown in salmon, red, blue, and yellow, respectively. The 2Fo − Fc electron density maps are shown 

and contoured at the 2σ level. The three-dimensional structures were generated and rendered using 

PyMOL.28 

  



 

Supplementary figure 9. Structural comparison of the binding mode of bicyclic peptides 
UK18, UK965 and UK970 in complex with huPA. a) Column graph comparing the number of 

protein interface residues that interact with the three bicyclic peptides (UK18 in blue, UK965 in pale 

green and UK970 in salmon) and the number of peptides interface residues that interact with huPA; 

b) Surface representation of huPA (grey) in complex with the three bicyclic peptides (UK18 in blue, 

UK965 in pale green and UK970 in salmon). The three-dimensional structures were generated and 

rendered using PyMOL;28 c) Schematic representation of molecular interactions between human 



uPA and UK965. Residues of human uPA are labelled according to the chymotrypsin numbering 

system. Salt bridge (red) and intramolecular (blue) hydrogen bonds are shown as dashed lines. Bent 

grey lines indicate residues of UK965 in close contact with human uPA (distances shorter than 4.0 

Å that are not hydrogen bonds); d) Schematic representation of molecular interactions between 

human uPA and UK18. Residues of human uPA are labelled according to the chymotrypsin 

numbering system. Salt bridge (red) and intramolecular (blue) hydrogen bonds are shown as dashed 

lines. Bent grey lines indicate residues of UK18 in close contact with human uPA (distances shorter 

than 4.0 Å that are not hydrogen bonds); e) Column graph comparing the number of intramolecular 

interactions of the three peptides (UK18 in blue, UK965 in green and UK970 in pink) with the huPA; 

f) Root mean square deviations (RMSDs) calculated over the C-alpha atoms for the three different 

bicyclic peptides (UK18 in blue, UK965 in pale green and UK970 in salmon) in comparison to each 

other have been determined using Gesamt algorithm.20 

  



 

Supplementary figure 10. Differences in the binding mode of bicyclic peptides UK18 and 
UK970 to huPA. Detail view of previously solved X-ray structure of bicyclic peptide UK18 in complex 

with huPA (blue and grey, a) and bicyclic peptide UK970 in complex with huPA (salmon and grey, 

b). The large conformational change induced by Pro15, located in the second loop, causes a 

repositioning of the Arg4 side chain, located in the first loop, that can now form additional contacts 

with huPA residues Arg35 and Tyr60B, not engaged in the huPA-UK18 complex. The three-

dimensional structures were generated and rendered using PyMOL.28 

  



 

Supplementary figure 11. B-factor diagram of bicyclic peptide UK18 and UK970 in complex 
with huPA. B-factor diagram of bicyclic peptides UK18 (a) and UK970 (b) shown in two orientations 

(180° rotation). The aromatic ring of the mesitylene core and the side chains of the residues are 

shown as sticks. The BI-factor values are illustrated by colour, ranging from low (blue) to high (red). 

BI-factor values of the residue atoms (c) and of the C-alpha carbon atoms (d) of bicyclic peptide 

UK18 (blue) and UK970 (salmon) in complex with huPA as a function of the peptide residue number; 

e) Superimposition of aligned bicyclic peptide UK18 (blue) and UK970 (salmon) shown in two 

orientations (180° rotation). The three-dimensional structures were generated and rendered using 

PyMOL.28 Normalised B-factor (BI-factor) for structural comparison has been determined using 

BANDIT.29  

  



 

Supplementary figure 12. Synthesis and characterisation of bicyclic peptides UK18 and 
UK964-UK970. HPLC (left) and mass spectra (right) analysis of bicyclic peptides UK971 (a), UK972 

(b) and UK973 (c). The measured molecular weight of each bicyclic peptide corresponds to the 

expected mass. Name, elution retention time (tR), expected molecular weight (M.W.) and observed 

molecular ions of each peptide are indicated. 

  



 

Supplementary figure 13. Activity assay of bicyclic peptides UK18 and UK970-UK973. 

Residual activities of huPA measured at different concentrations of bicyclic peptides UK18, UK970, 

UK971, UK972 and UK973. The indicated values are the means of three independent experiments. 

Data are presented as mean (symbol). S.E., standard error and at the right the Column graph 

comparing the determined Ki values. The inhibitory activities of all peptide variants towards huPA 

were determined at 25 °C and physiological pH (7.4) using the suitable substrate at a concentration 

of 50 μM. The Km value of huPA protease was determined by standard Michaelis-Menten kinetics 

and used in the calculation of the reported Ki values. S.E., standard error. 

  



 

Supplementary figure 14. In silico molecular evolution of two different families of phage-
encoded bicyclic peptide inhibitors that have been depleted of two bicyclic peptide 
sequences each. a) Top, plot reporting the inhibitory constant (Ki) values (y axis) of the 31 unique 

phage-encoded bicyclic peptides (x axis) selected in vitro against huPA. The bicyclic peptide 

molecules (white dots) are shown in descending order, starting from the weakest (left, peptide 

sequence 1, bicyclic peptide UK137; Ki = 51.4 µM) to the most powerful one (right, peptide sequence 

31, bicyclic peptide UK140; Ki = 0.20 µM). The bicyclic peptide inhibitors removed are indicated as 



black dots and are UK115 (Ki = 0.61 µM) and UK132 (Ki = 0.47 µM). MSA logo of 29 phage-encoded 

bicyclic peptides (input data) selected in vitro against huPA upon depletion of two bicyclic peptide 

sequences: UK115 and UK132. Combination of pseudolikelihood maximization direct coupling 

analysis (plmDCA) and Monte Carlo (MC) methods yielded ~1700 new peptide sequences (middle 

MSA logo). Further selection using Random Forest Regression (RFR) algorithm yielded 63 new 

bicyclic peptide sequences with a preferential frequency of amino acids at each position and 

predicted to have Ki values below 2.16 µM (that corresponds to 50th percentile; bottom MSA logo). 

The combined statistical and computational approach was able to generate de novo UK132 (Ki = 

0.47 µM), the most potent inhibitor of the two initially eliminated bicyclic peptide sequences; b) Top, 

plot reporting the inhibitory constant (Ki) values (y axis) of the 50 unique phage-encoded bicyclic 

peptides (x axis) selected in vitro against human coagulation factor XIIa (hFXIIa). The bicyclic 

peptide molecules (white dots) are shown in descending order, starting from the weakest (left, 

peptide sequence 1, bicyclic peptide FXII617P13; Ki = 3 µM) to the most powerful one (right, peptide 

sequence 50, bicyclic peptide FXII617P67; Ki = 0.004 µM). The bicyclic peptide inhibitors removed 

are indicated as black dots and are FXII617 (Ki = 0.012 µM) and FXII618 (Ki = 0.012 µM). MSA logo 

of 48 phage-encoded bicyclic peptides (input data) selected in vitro against hFXIIa upon depletion 

of two bicyclic peptide sequences: FXII617 and FXII618. Combination of pseudolikelihood 

maximization direct coupling analysis (plmDCA) and Monte Carlo (MC) methods yielded ~230 new 

peptide sequences (middle MSA logo). Further selection using Random Forest Regression (RFR) 

algorithm yielded 6 new bicyclic peptide sequences with a preferential frequency of amino acids at 

each position and predicted to have Ki values below 0.12 µM (that corresponds to 50th percentile; 

bottom MSA logo). The combined statistical and computational approach was able to generate de 

novo FXII617 (Ki = 12 nM), the more potent of the two initially eliminated bicyclic peptide inhibitors. 

  



 

Supplementary figure 15. Synthesis and characterisation of bicyclic peptides UK140 and 
UK974-UK978. HPLC (left) and mass spectra (right) analysis of bicyclic peptides UK140 (a), UK974 

(b), UK975 (c), UK976 (d), UK977 (e) and UK978 (f). The measured molecular weight of each 

bicyclic peptide corresponds to the expected mass. Name, elution retention time (tR), expected 

molecular weight (M.W.) and observed molecular ions of each peptide are indicated. 

  



 

Supplementary figure 16. Activity assay of bicyclic peptides UK140 and UK974-UK978. 

Residual activities of huPA measured at different concentrations of bicyclic peptides UK140, UK974, 

UK975, UK976, UK977 and UK978. The indicated values are the means of three independent 

experiments. Data are presented as mean (symbol). S.E., standard error and at the right the Column 

graph comparing the determined Ki values. The inhibitory activities of all peptide variants towards 

huPA were determined at 25 °C and physiological pH (7.4) using the suitable substrate at a 

concentration of 50 μM. The Km value of huPA protease was determined by standard Michaelis-

Menten kinetics and used in the calculation of the reported Ki values. S.E., standard error. 

  



 

Supplementary figure 17. Activity assay of bicyclic peptides UK140 and UK978 against human 
uPA, murine uPA and human trypsin. Residual activities of human uPA (huPA), murine muPA 

(muPA) and human trypsin (hTryp) measured at different concentrations of bicyclic peptides UK140 

and UK978. The indicated values are the means of three independent experiments. Data are 

presented as mean (symbol). S.E., standard error and at the right the Column graph comparing the 

determined Ki values. The inhibitory activities of synthetic peptide UK140 and UK978 towards huPA, 

muPA and hTryp were determined at 25 °C and physiological pH (7.4) using the suitable substrate 

at a concentration of 50 μM. The Km value of each protease was determined by standard Michaelis-

Menten kinetics and used in the calculation of the reported Ki values. S.E., standard error. 

  



 

Supplementary figure 18. DCA parameter representations. a) Matrices from training the DCA 

model on 37 experimentally characterized sequences. Left: reduced representation of the J tensor 

(17 ´ 17 ´ 21 ´ 21) by taking the norm. Right: h matrix representing conserved amino acid sites; b) 

Three J matrices with elements sampled from a normal distribution and normed. Columns: 1. 

Hardcoded random matrices. 2. DCA model trained on >3000 sequences generated from hardcoded 

matrices. 3. DCA model trained on 37 sequences sampled from the generated sequences; c-d) 

Three H and J matrices rationally hardcoded to represent peptide families with varied parameters, 

following the same column pattern as the random DCA parameters. The third column of the normed 

J tensor displays the DCA model’s ability to learn correlations between sequence indexes, especially 

at correlated regions. 

  



 

Supplementary figure 19. Receiver Operating Characteristic (ROC) analysis. a) Average ROC 

curve across 72 in silico peptide families with one standard deviation shown as shaded region. Red 

line: ROC curve for random DCA discrimination. Blue line: DCA model trained on 37 sequences. 

Green line: DCA model trained on >3000 sequences. Legend: Average area under the curve (AUC) 

with one standard deviation; b) Average ROC curve for DCA parameters learned from a Gaussian 

distribution. Red, blue, and green curves represent the same groups as in panel ‘a’; c) ROC AUC 

against in silico peptide parameters. Panel ‘a’ demonstrates that training a DCA model on 37 

sequences enables the model to learn meaningfully information about the underlying peptide family, 

obtaining a ROC AUC of 0.61 on average. Comparing panel ‘a’ and ‘b’ shows that the peptide 

families properties make it easier for a DCA model to learn when compared to sequences with 

random underlying distributions. Panel ‘c’ shows that as a peptide family’s J matrix increases in 

complexity the harder it is to learn, and that the presence of a conserved region contributes the most 

in enabling the model to learn the parameters. 

  



 

Supplementary figure 20. Kullback-Leibler divergence (KL-div) analysis. a) Top: energy 

distributions from Gaussian sequence sets. Bottom: energy distributions from three representative 

peptide sequence sets. Green distribution (Random Seqs) is a negative control from randomly 

generated sequences. Energies are evaluated using the respective hardcoded parameter sets. 

Legend: KL-div values calculated relative to the energy distribution of the hardcoded sequence sets; 

b) Mean KL-div values for 72 learned-37 sequence and 3000 sequence sets (S), and three learned-

37 and learned-3000 Gaussian sequence sets (GS). Mean and standard deviation are shown above 

each bar; c) Mean Gaussian kernel density estimation plots with KL-Div from mean plots. 

  



 

Supplementary figure 21. MSA Logos from sequences generated from hardcoded-peptide 

parameters with 10 conserved sites, 45 amino acid correlations, 3 amino acids per correlation, and 

a conserved region. a) MSA logo generated from 3000 sequences; b) MSA logo generated from 37 

sequences randomly sampled from the 3000 sequences. 
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