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Abstract. We carry on a long term analysis for Bitcoin price, which is currently among
the most renowned crypto assets available on markets other than Forex. In the last decade
Bitcoin has been under spotlights among traders all world wide, both because of its nature of
pseudo–currency and for the high volatility its price has frequently experienced. Considering
that Bitcoin price has earned over five orders of magnitude since 2009, the interest of
investors has been increasingly motivated by the necessity of accurately predicting its value,
not to mention that a comparative analysis with other assets as silver and gold has been
under investigation, too. This paper reports two approaches for a long term Bitcoin price
prediction. The first one follows more standard paradigms from regression and least squares
frameworks. Our main contribution in this regard fosters conclusions which are able to
justify the cyclic performance of Bitcoin price, in terms of its Stock–to–Flow. Our second
approach is definitely novel in the literature, and indicates guidelines for long term forecasts
of Bitcoin price based on Machine Learning (ML) methods, with a specific reference to
Support Vector Machines (SVMs). Both these approaches are inherently data–driven, and
the second one does not require any of the assumptions typically needed by solvers for
classic regression problems.

Keywords: Bitcoin, Forecast, Least Squares Problems, Regression, Support Vector Ma-
chines, Bootstrap.



1 Introduction

In this paper we consider a challenging price forecast problem, associated with a specific
asset class, namely the crypto assets. In particular, we focus on one of the most famous
crypto assets which is Bitcoin [15], inasmuch as it currently corresponds also to the largest
market capitalization asset among the crypto ones (see also [4, 16, 22]).

Bitcoin was created in 2008 [15] by an anonymous researcher (or possibly a team of
people), under the nickname of Satoshi Nakamoto. It represents a digital asset whose im-
plementation release protocol is open–source. What strongly characterizes Bitcoin with
respect to fiat currencies (as Dollar, Euro, Yen, Pound, etc.) is its decentralized nature.
Indeed, no private bank or national central bank is neither responsible for managing the
overall amount of circulating bitcoins nor be able to issue new bitcoins. Bitcoin negotia-
tions need exchanges to finalize transactions. These are special intermediaries who allow
the negotiation of Bitcoin vs. the main fiat currencies or vs. other crypto assets. Never-
theless, peer–to–peer movements on the Bitcoin network can be perfectly finalized without
the need for intermediaries, too. Transactions among users are validated by network nodes
(computers), after solving complex inverse cryptographic problems. Moreover, the transac-
tions cannot be removed from the Bitcoin network, since they are sequentially collected into
blocks appended to a public distributed ledger called blockchain. Newly minted bitcoins are
created every time a block is added to the blockchain, by special nodes (computers) of the
network, associated with the so called miners, who are rewarded for solving the above com-
plex inverse cryptographic problems. Miners’ rewarding policy of Bitcoin network changes
every four years, identifying events in the history of Bitcoin known as halvenings, since they
correspond indeed to halven the reward associated to each mined block.

In order to foresee the long term price for Bitcoin, a number of different approaches
were considered in the literature (the interested reader can refer to the recent papers [1, 19]
and therein references), so that an increasing interest in the literature has grown in the
last decade. Considering the wide range of stakeholders for crypto assets, ranging from
practitioners to investors, researchers and members from private/public institutions, the
quality of the literature on Bitcoin price prediction has sometimes been methodologically
questionable. However, one of the main difficulties for Bitcoin price prediction relies on
the high volatility of this asset [2], whose price can definitely show large oscillations in a
short time period. The main reason of this drawback is that Bitcoin is a relatively recent
asset. Thus, considering its market capitalization (which is currently about one tenth of the
overall gold capitalization), Bitcoin is often the target of speculations which include highly
leveraged transactions on Bitcoin derivatives (i.e. futures and options).

Among the most recent contributions, for the assessment of the price of Bitcoin, we find
the recent paper [1], that introduces a ML–based approach to provide a quantitative model
for Bitcoin price forecast. However, [1] basically relies on using intrinsic mode functions
(IMFs), coupled with SVMs, which attempt to capture the natural characteristics of the
time series associated with Bitcoin prices. As another contribution based on ML we find
the analysis in [19], which relies on the optimization method LASSO for ML.

Unlike the cited references, our main approach here is twofold. On one hand we inves-
tigate linear Least Squares models, to study the role played by the Stock–to–Flow ratio
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within regression problems related to Bitcoin price forecast. We recall that the Stock–to–
Flow ratio is defined as the ratio between the current overall stock of Bitcoin on the market,
and the quantity of bitcoins minted in a given time period. On the other hand, we show that
we can use a ML–based technique (see Section 5), combining Mathematical Programming
and SVMs, in order to provide a long term measurement system for estimating Bitcoin
price. We will show that, under suitable assumptions, the two proposals provide similar
results. We remark that our second proposal does not rely on those theoretical assumptions
(e.g. the normal distribution of data) which are typically associated with regression formu-
lations. More specifically, in our second proposal we combine a preliminary multiobjective
programming approach with an SVM: this represents to our knowledge a completely novel
framework in the literature.

Given the foregoing, it is possible to show that to some extent the price of Bitcoin
shows a dependency on its Stock–to–Flow ratio (SF). For instance, Figure 1 represents 1295
pairs of Bitcoin price vs. SF, corresponding to the period between January, 2011 and July,
20221 Data has been transformed to allow easy processing, with respect to a logarithmic
scale. The (red) bullets represent Bitcoin prices corresponding to SF values, and it is not
difficult to realize the high volatility of Bitcoin price. Moreover, the time window length
for computing the SF is given by 463 days, as indicated by [6]2. The rationale behind
the determination of this value follows guidelines suggested by other scarce assets like, for
instance, gold and silver. Briefly, given the average length of the production cycle of bitcoins
between two consecutive halvenings (about 4 years, that is about 1, 460 days), practitioners
and professionals have identified within this cycle the following three consecutive market
phases: bull run, correction, and reversion to the mean. The lengths of these three phases are
estimated approximately equal among them, that is 4/3 years each, hence the (approximate)
value of 463 days for the time window length used to compute the Bitcoin SF3. However,
this choice of the length of the time window may be itself questionable, and represents
a key parameter, as detailed in Section 4. All this said, the approximate solution of a
linear regression problem, to forecast Bitcoin price vs. its SF, through the solution of a
linear least squares problem, strongly depends on a number of issues and definitely requires
specific cares. For the sake of completeness we recall that the parallel continuous lines in
Figure 1 have equations y = mx + q1 and y = mx + q2, respectively, where m, q1 and q2
solve the linear programming problem (each pair (x̄i, ȳi) represents the Bitcoin price, i.e.

1Note that reliable data in the early years of Bitcoin history may be hardly retrieved, because in 2009–
2010 there were not yet observers in charge for accurate data collection. Hence, we decided to completely
revise and update our database including more recent data, but also discarding the pairs corresponding to
the years 2009–2010. In the attempt to collect more reliable data we downloaded and compared it from the
websites:
https://www.blockchain.com/charts/total-bitcoins,
https://www.cryptocurrencychart.com/,
https://datahub.io/cryptocurrency/bitcoin,
https://www.investing.com/crypto/bitcoin/historical-data,
https://finance.yahoo.com/cryptocurrencies.

2In particular, see the webpage www.buybitcoinworldwide.com/stats/stock-to-flow/.
3Note that 463 days is about 95% of 4/3 years.
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ȳi, corresponding to its SF, i.e. x̄i)

min
m,q2,q1

q2 − q1

ȳi ≥ mx̄i + q1, i = 1, . . . , 1295,

ȳi ≤ mx̄i + q2, i = 1, . . . , 1295,

that is the area between the two lines identifies the narrowest stripe containing all Bitcoin
transactions.

Figure 1: The price of Bitcoin vs. its SF. Continuous green lines (support lines) delimit the
narrowest stripe containing all Bitcoin transactions. The dashed black line is the mid–line
between the support lines and is expected to give a trend for Bitcoin price, with respect
to its SF. The natural logarithm is used for scaling both the axes, and the reference time
window for computing SF is 463 days (see also Section 4 and [6]).

Note that the linear model suggested by Figure 1, that is

ln (Pricet) = m̂ ln (SFt) + q̂,

with m̂ and q̂ appropriate estimates of the slope and the intercept respectively, is very
popular among practitioners and professionals (see for instance [6, 17] and the really huge
amount of more or less authoritative contributions in the so called Socials). However, these
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investigations are generally not well founded, with possible negative effects when used for
professional trading purposes. One of the goals of this paper consists exactly in providing
the essentials of such foundations (see Sections 3 and 4).

The remainder of this paper is organized as follows. In Section 2 we remind the reader
some details about the relationship between regression problems and least squares optimiza-
tion approaches. Section 3 describes linear least squares schemes, where scaling on variables
is suitably investigated in view of the analysis for Bitcoin price. In Section 4 we give indica-
tions about the computation of the SF ratio for Bitcoin, while Section 5 reports theoretical
contributions and numerical results on long term Bitcoin price analyses which are based on
Support Vector Machines (SVMs) and SVMs coupled with the bootstrap method. Finally,
Section 6 reports some conclusions and guidelines for future work.
As regards the symbols used in this paper, we indicate with E[v] the expected value of
the real random variable/vector v. With A � 0 [A � 0] we indicate that the matrix A is
positive definite [positive semidefinite]. Finally, |B| denotes the cardinality of the set B.

2 Regression problems and least squares optimization

To better explain the reliability of solving linear least squares problems in the context of
linear regression formulations, assume we are given the 1 +p random variables Y and {Xi},
being

Y =

p∑
i=1

βiXi + ui, βi ∈ IR, i = 1, . . . , p, (2.1)

where Y is the dependent variable and {Xi} are the independent unknowns. Moreover,
ui represents a statistical error, for any i, and satisfies E(ui|X1, . . . , Xp) = 0. Then, if
Y,X1, . . . , Xp are independent and identically distributed (i.i.d.) and a few mild assumptions
are fulfilled, the solution of the Linear Regression problem

min
â,b̂

E

[
Y −

(
b̂+

p∑
i=1

âiXi

)]
, â ∈ IRp, b̂ ∈ IR (2.2)

can be equivalently obtained by solving the Linear Least Squares problem

min
a,b

N∑
j=1

[
Y (j) −

(
b+

p∑
i=1

aiX
(j)
i

)]2
, a ∈ IRp, b ∈ IR (2.3)

whereN represents the number of available samples for the random variables (Y,X1, . . . , Xp).
We strongly remark that the solution of the minimization problem (2.3) is definitely ap-
pealing, since it is an unconstrained convex quadratic model. However, we also highlight
that the solutions of (2.2) and (2.3) might strongly differ in case the theoretical assump-
tions on the quantities Y,X1, . . . , Xp, u1, . . . , up were not fulfilled. A typical example where
we experience the last drawback is the case in which the samples do not follow a normal
distribution. Conversely, in case the random variables u1, . . . , up admit the joint normal
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distribution N(0, σ2I), with zero expected value and the same variance for all the variables,
then the solutions of (2.2) and (2.3) coincide.

Typically in applied sciences (2.3) is often solved assuming the fulfillment of indispens-
able theoretical assumptions, which unfortunately are often not satisfied, as specified above.
Thus, a test on the reliability of the solutions of (2.3) is usually sought (e.g. the R2 and
the p–value indicators).

In this paper we are interested about estimating the price (i.e. Y ) of Bitcoin vs. its SF
(i.e. X), being Y = aX + u, with a ∈ IR; however, the error u is not normally distributed,
so that the solution of the linear least squares problem (2.3) might possibly represent a poor
estimator (see also the practical analysis on [11]).

3 Our setting for data scaling in Least Squares problems

On the guidelines of Section 2, we detail here the linear least squares setting we make
reference to. Note that in this section we propose some novel theoretical results, in order
to address and give foundation to claims and questions raised by practitioners, within the
literature on Bitcoin (see for instance [6, 17]). Generally, these results are simple from
a mathematical standpoint (mainly, they refer to the classical Box-Cox transformation
approach [5]) but are meaningful from the point of view of the Bitcoin price forecast. For
these reasons, below we consider a couple of different linear regression problem formulations,
as general as possible, in order to take into account a number of possible parameters that
can affect Bitcoin price forecast.

Let us consider the N training pairs (x̄i, ȳi) ∈ IR2, i = 1, . . . , N , and let us consider
the following least squares problem, where we assume that the training pairs are possibly
subject to a log–transformation, being α and β suitable positive parameters not equal to
zero or one

min
m,q∈IR

N∑
i=1

[
logα(ωȳi)−m logβ(x̄i)− q

]2
. (3.4)

In particular, in the pair (x̄i, ȳi) the quantity x̄i is associated with Bitcoin SF value, while
ȳi represents the corresponding price of Bitcoin. The motivation for introducing in (3.4) the
parameter ω will be clear later on, and further specific motivations to recur to the log–scaled
expression (3.4) are given in [6]. They basically reduce to the fact that, assimilating the
pair (x̄i, ȳi) to a determination of a two–dimensional random variable (x, y), then (x, y) has
not necessarily a normal distribution. In this regard, a log–transformation, with respect
to at least one of the random variables, may possibly yield the pairs {(x̄i, ȳi)} to better
resemble a normal distribution.
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Proposition 1 Given the problem (3.4) with α, β 6∈ {0, 1} and positive, let

A =

N∑
i=1

[logβ(x̄i)]
2, B =

N∑
i=1

[logα(ȳi)]
2,

C = 2
N∑
i=1

logβ(x̄i), D = 2
N∑
i=1

logα(ȳi),

E = 2

N∑
i=1

logβ(x̄i) logα(ȳi).

(3.5)

Assume without loss of generality that B 6= 0 and the sequence {logβ(x̄i)} contains at least
two non–coincident entries. Then the optimal solution m∗, q∗ to (3.4) satisfies the following
properties:

1. m∗ is independent of ω, being

m∗ =
2NE − CD
4NA− C2

;

2. q∗ is not independent of ω, being

q∗ = logα(ω)− CE − 2AD

4NA− C2
.

Proof
We rewrite (3.4) as

min
m,q∈IR

N∑
i=1

[
logα(ω) + logα(ȳi)−m logβ(x̄i)− q

]2
,

so that after computing the square in the sum and collecting the terms we equivalently
obtain the problem

min
m,q∈IR

N [logα(ω)]2+Am2+Nq2+B−C logα(ω)m−2N logα(ω)q+D logα(ω)+Cmq−Em−Dq

and after a few arrangements

min
m,q∈IR

N
{

[logα(ω)]2 + q2 − 2 logα(ω)q
}

+Am2−Cm [logα(ω)− q]+D [logα(ω)− q]−Em+B

or equivalently

min
m,q∈IR

N [logα(ω)− q]2 +Am2 + (D − Cm) [logα(ω)− q]− Em+B.

Thus, after setting s = logα(ω)− q we equivalently have to solve the problem

min
m,s∈IR

ψ(s,m) ≡ Ns2 +Am2 + (D − Cm)s− Em+B.
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Now observe that the Hessian matrix of the last quadratic function is constant and is given
by

∇2ψ(s,m) =

 2N −C

−C 2A

 ,

so that it is positive definite. Indeed N,A ≥ 0 and det
[
∇2ψ(s,m)

]
= 4NA − C2, with

|C| ≤ 2‖v‖1 and

v =

 logβ(x̄1)
...

logβ(x̄N )

 .
Hence, C2 ≤ 4‖v‖21 so that

det
[
∇2ψ(s,m)

]
= 4NA− C2 ≥ 4N‖v‖22 − 4‖v‖21
= 4(

√
N‖v‖2 + ‖v‖1)(

√
N‖v‖2 − ‖v‖1).

Since ‖v‖1 ≤
√
N‖v‖2 (see Fact 9.8.12 in [3]), then det

[
∇2ψ(s,m)

]
≥ 0. Moreover, since

at least two entries of v are non coincident, then ψ(s,m) is a strictly convex function in
IR2, inasmuch as 4NA−C2 > 0. Now, first order stationarity conditions applied to ψ(s,m)
yield 

∂ψ(s∗,m∗)

∂s
= 2Ns∗ + (D − Cm∗) = 0

∂ψ(s∗,m∗)

∂m
= 2Am∗ − Cs∗ − E = 0,

so that 
m∗ =

2NE − CD
4NA− C2

s∗ =
CE − 2AD

4NA− C2
,

(3.6)

i.e. the statement of the proposition definitely holds. Q.E.D.

Similarly to the previous proposition we also have the following result, where the scaling
parameter ω is applied to the sequence {x̄i}, i.e. now we refer to the case where problem
(3.4) becomes

min
m,q∈IR

N∑
i=1

[
logα(ȳi)−m logβ(ωx̄i)− q

]2
. (3.7)

Proposition 2 Given the problem (3.7) with α, β 6∈ {0, 1} and positive, let us consider the
positions (3.5). Assume without loss of generality that B 6= 0, A + C logβ(ω) > 0 and the
sequence {logβ(x̄i)} contains at least two non–coincident entries. Then the optimal solution
m∗, q∗ to (3.7) satisfies the following properties:
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1. m∗ is independent of ω, being

m∗ =
2NE − CD
4NA− C2

;

2. q∗ is not independent of ω, being

q∗ = −2NE − CD
4NA− C2

logβ(ω)− CE − 2AD

4NA− C2
.

Proof
Following the guidelines of Proposition 1 we can equivalently rewrite (3.7) as

min
m,q∈IR

N∑
i=1

[
logα(ȳi)−m

[
logβ(ω) + logβ(x̄i)

]
− q
]2
,

i.e.

min
m,q∈IR

ψ(m, q) ≡ B +Nm2 [logα(ω)]2 +Am2 + Cm2 logβ(ω) +Nq2 −Dm logβ(ω)

−Em−Dq + 2Nmq logβ(ω) + Cmq.

Observe that by the assumptions the Hessian matrix

∇2ψ(m, q) =

 2N
[
logβ(ω)

]2
+ 2A+ 2C logβ(ω) 2N logβ(ω)

2N logβ(ω) 2N


is positive definite (indeed the assumption A + C logβ(ω) > 0 implies that both its deter-

minant and its trace are positive), so that ψ(m, q) is strictly convex on IR2.
Now, first order stationarity conditions applied to ψ(m, q) yield

∂ψ(m∗, q∗)

∂m
= 2Nm∗

[
logβ(ω)

]2
+ 2Am∗ + (2Cm∗ −D) logβ(ω)− E

+ 2Nq∗ logβ(ω) + Cq∗ = 0

∂ψ(m∗, q∗)

∂q
= 2Nq∗ −D + 2Nm∗ logβ(ω) + Cm∗ = 0,

so that from the second equation

q∗ =
D −m∗

[
2N logβ(ω) + C

]
2N

and replacing into the first equation we have after some computations

m∗ =
2NE − CD
4NA− C2

.
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Note also that, similarly to Proposition 1, the assumptions ensure that the denominator
4NA− C2 of q∗ is strictly positive. Finally, we also obtain after some computations

q∗ =
D −m∗

[
2N logβ(ω) + C

]
2N

= −m∗ logβ(ω) +
D −m∗C

2N

= −2NE − CD
4NA− C2

logβ(ω)− CE − 2AD

4NA− C2
,

which completes the proof. Q.E.D.

Observation 3.1 We highlight that whatever the value of ω in the linear regression prob-
lems (3.4) and (3.7), Propositions 1 and 2 give the same optimal m∗s, and that in case
ω = 1 in (3.4) and (3.7), then evidently the optimal q∗s from Propositions 1 and 2 (as
expected) coincide. Moreover, the assumption A + C logβ(ω) > 0 in Proposition 2 is not
particularly restrictive for Bitcoin, as detailed in Section 4.

Observation 3.2 We stress that the outcomes according to which both (3.4) and (3.7) have
optimal m∗s independent of ω imply that the value of ω does not affect the forecast of the
Bitcoin price variation.

As for the roles played by the bases of the logarithms α and β, with respect to the
natural one, we provide the following results.

Corollary 3 Let us consider the problem (3.4) with α = α′, β = β′ 6∈ {0, 1} and positive,
and let us consider the same problem with α = β = e. Then the problem using the natural
base has the optimal intercept q∗e such that:

q∗e =
1

logα′(e)
q∗.

Proof
The proof directly holds performing a straightforward computation.

Corollary 4 Let us consider the problem (3.7) with α = α′, β = β′ 6∈ {0, 1} and positive,
and let us consider the same problem with α = β = e. Then the problem using the natural
base has the optimal intercept q∗e such that:

q∗e =
1

logα′(e)
q∗.

Proof
Again the proof directly holds performing a straightforward computation.

Corollary 5 Let us consider the problems (3.4) and (3.7) with α = α′, β = β′ 6∈ {0, 1} and
positive, and let us consider the same problems with α = β = e. Then both the problems
using the natural base have the same optimal slope m∗e such that:

m∗e =
logβ′(e)

logα′(e)
m∗.
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Proof
The proof follows the guidelines for Corollaries 3 and 4.

Observation 3.3 We remark that in case α′ = β′ with α′, β′ 6∈ {0, 1} and positive, then
m∗e = m∗. This sheds some lights on possible doubts raised within the literature for prac-
titioners, about the possible dependency of Bitcoin price forecast on the bases α, β in (3.4)
and (3.7) (see [17]).

4 The assessment of the SF for Bitcoin

As reported in Section 1, several authors in the literature have observed a relationship
between the price of Bitcoin and its SF value (see e.g. [6], among the first). Here we want
to better investigate the last conclusion, in view of Propositions 1 and 2. In particular, we
want to show that the SF value for Bitcoin strongly relies on the time window we use to
compute it: this motivates the introduction of the parameter ω in the formulation (3.7), in
case ȳi represents the i–th price of Bitcoin and x̄i is associated with the i–th value of the
SF.
As a preliminary example, recalling that the SF is the ratio between the current stock of
an asset and its flow within a given time window, assume the flow is computed in a time
interval of one year (i.e. 365 days as in Figure 1). Then, SF essentially represents the
number of years, at the current annual production rate, that are necessary to obtain its
current stock. Hence, the higher the SF the scarcer the asset. Now, let us consider in our
example the pairs price vs. SF of Bitcoin, from January 1st, 2011, to July 15th, 20224.
Then, the formula to be adopted for the computation of the SF for Bitcoin should be (as
an example the stock in the formula refers to the end of September, 2021)

SFBitcoin ≈
18, 700, 000

24·60
10 · 463 · 6.25

≈ 44.9. (4.8)

The quantities in the last computation duly keep into consideration the following facts:

� every day about 24 · 60/10 newly mined blocks are added to Bitcoin blockchain (i.e.
around one block every 10 minutes);

� for each newly added block to the blockchain of Bitcoin, exactly 6.25 bitcoins are
minted and rewarded to miners, so that they can be possibly negotiated (i.e. they
are potentially available) on the market. Moreover, the value 6.25 will be successively
halved in 2020 + 4k, for any k = 1, 2, . . ., up to about 2140;

� the time window for computing the stock is different with respect to 365 days (being
indeed 463 days as suggested in [6]), so that the corresponding value is used in the
denominator of (4.8), in place of 365.

4For further information on data for Bitcoin prices and the number of minted bitcoins, the reader may
refer to the footnote at page 2.
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We comparatively observe that the current SF of the gold is a bit larger than 60, so that we
conclude that the scarcity of Bitcoin to some extent compares with that of the gold (hence
the widely used nickname of digital gold for Bitcoin). Figure 2 reports a plot of Bitcoin price
vs. its SF: the dashed line is a regression line obtained from solving either the problems (3.4)
or (3.7), after setting ω = 1. The slope of the resulting regression line is m∗ ≈ 2.68084 and
q∗ amounts to ≈ 0.40596, while red points represent the pairs (ln(price), ln(SF )). Thus,
relation

ln(price) = 2.680 ln(SF ) + 0.405 (4.9)

immediately yield the Bitcoin price forecast. For instance, considering the value of the SF
in (4.8) (i.e. at the end of September, 2021), we had

price = SF 2.680 · e0.405 = 44.92.680 · e0.405 ≈ 40, 171$.

Figure 2: The price of Bitcoin vs. its SF (the flow is computed with respect to a time window
of 463 days), where data refers to the period between January 1st, 2011 and July 15th, 2022.
The black dashed line represents a regression line from solving either the problems (3.4) or
(3.7), after setting ω = 1. The natural logarithm (i.e. α = β = e) is used for scaling both
the axes. The slope of the regression line is m∗ ≈ 2.68084.

For the sake of completeness observe that R2 and p-value, associated with the computation
of the linear regression model (4.9), are given by

R2 = 0.639, p� 0.05,
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which shows that the linear regression model is only partially reliable. Furthermore, we
remark that there is no discrepancy between the outcomes of Figures 1 and 2, since in both
the figures the flow, in the SF for Bitcoin, is computed with respect to the same time window
(i.e. 463 days). This conclusion highlights the importance of introducing the parameter ω
in (3.7), inasmuch as the following observations hold:

� when in (3.7) x̄i represents a value of Bitcoin SF and we set ω = 1, then it means we
are adopting exactly the formula (4.8) for the SF;

� when in (3.7) x̄i represents a value of Bitcoin SF and we set ω = 365/463, then it
means we are adopting the formula (4.8), with the number 365 in place of 463.

Hence, the parameter ω duly takes into account the time window adopted for computing
the SF of Bitcoin, and according with Proposition 2 it does not influence the slope m∗ of
the corresponding regression line. This is to our knowledge a remarkable novel result in the
literature.

Observation 4.1 We highlight that the choice of the value of ω affects the values of the
optimal q∗s given by Propositions 1 and 2, and consequently influences the Bitcoin price
forecast. Therefore, in order to improve the quality of the forecast, a more general opti-
mization process might be considered, also taking into consideration ω itself as unknown, in
addition to q and m. It will be a point of our future research on this topic. Nevertheless,
in general, for trading purposes what really matters is possibly not the forecast of the asset
price, but rather the forecast of the asset price variation. In this regard, as stressed in Ob-
servation 3.2, the value of ω does not affect the Bitcoin price variation forecast. So that,
from an operational point of view, the choice of such parameter might be not so crucial.

Lastly, given that the linear model is inherently data–driven, we point out that the
assumptions needed by the solver to address the corresponding regression problem has
to be satisfied. In this regard, we recall that one of the main assumptions underlying
the considered regression problem is that the probability distribution of Y conditional on
(X1, . . . , Xi, . . . , Xp) is jointly normal (see (2.1)).
In order to verify this assumption, we carried out the test of Jarque and Bera (see [13]) as
follows {

H0: the probability distribution of u is normal
H1: the probability distribution of u is not normal

where u
.
= (u1, . . . , up) is the vector of the residuals coming from the regression problem

min
m,q

N∑
j=1

[
ln(price)(j) −m ln(SF )(j) − q

]2
, a, b ∈ IR.

In particular, we performed the test for the overall period considered in the example pre-
sented in this section, that is from January 1st, 2011 to July 15th, 2022, and for each of
the thirteen time-windows considered in Section 5.2. For all such time periods, the null
hypothesis has been accepted at the 5% significance level, with p-values ranging in the in-
terval [0.1170, 0.1666]. Hence, given this matter of fact, we decided to admit the use of the
linear regression approach when reporting the comparative results in Section 5.2.
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5 Our second approach for long term Bitcoin price prediction

In this section we describe our second approach for the long term Bitcoin price forecast. In
particular, first, in Section 5.1, we show that combining a Multiobjective Technique (MT),
from Nonlinear Programming, with a SVM, from ML (see also [7, 20, 21, 12, 10, 14]), we can
recover results similar to those from the first approach, without requiring any assumption
typically needed by regression frameworks. Then, in Section 5.2 we couple the above SVM–
based approach with a bootstrap method, in order to possibly improve the quality of its
performance. Finally, we apply both such developed methodologies to the long term forecast
of Bitcoin price.

5.1 The Algorithm MT–SVM

In order to combine MTs with SVMs, let (x̄i, ȳi), i = 1, . . . , N , be the pairs of SF
and Bitcoin price, within a given time interval. Then, we preliminarily identify the two
subsets Lmax and Lmin of {(x̄i, ȳi)}, each associated with a different weak Pareto front. In
particular, consider Figure 3. We compute the sets Lmax and Lmin, being now respectively
Lmax indicated by LWest−North and Lmin indicated by LEast−South, as

� LEast−South: the weak Pareto front (red points) associated with both the maximization
of the stock–to–flow SF and the minimization of Bitcoin price;

� LWest−North: the weak Pareto front (cyan points) associated with both the minimiza-
tion of the stock–to–flow SF and the maximization of Bitcoin price.

For a more formal definition of these last sets of points, the reader can consider that the
point (x̄i, ȳi) will be classified as a point in Lmax if it satisfies the properties (non–dominated
point with respect to maximization of ȳ and minimization of x̄)

(x̄i, ȳi) ∈ Lmax if 6 ∃j ∈ {1, . . . , N}, with (x̄j , ȳj) 6= (x̄i, ȳi) ,
s.t. x̄j < x̄i and ȳj > ȳi.

Similarly, the point with coordinates (x̄i, ȳi) will be classified as a point in Lmin if it satisfies
the properties (dominated point with respect to minimization of ȳ and maximization of x̄)

(x̄i, ȳi) ∈ Lmax if 6 ∃j ∈ {1, . . . , N}, with (x̄j , ȳj) 6= (x̄i, ȳi) ,
s.t. x̄j > x̄i and ȳj < ȳi.

Broadly speaking, the front Lmax includes (desirable) points with high price performance
for Bitcoin vs. its SF. On the contrary, Lmin contains (undesirable) points with poor price
performance for Bitcoin vs. its SF. Therefore, the sets Lmax and Lmin include points which
may be associated with extreme opposite performances of Bitcoin price, and can be used in
our SVM–based classification framework to possibly model long term Bitcoin price.

In the remaining part of this section we propose an iterative procedure which relies on
the following definition (all the theoretical results in the current section refer to the set
{(x̄i, ȳi)}, with x̄i ∈ IR and ȳi ∈ IR. Nevertheless, in [18] the authors proved that they can
be immediately extended to the set {(x̄i, ȳi)}, with x̄i ∈ IRp, p ≥ 2, ȳi ∈ IR, too).
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Figure 3: The fronts LEast−South and LWest−North among the pairs Bitcoin price vs. its SF.
Data is reported using ln() transformation.

Definition 1 Given the points (x̄i, ȳi) ∈ IR2, i = 1, . . . , N , and the values zi ∈ {−1,+1},
i = 1, . . . , N , let us define the nonempty sets A = {(x̄i, ȳi) : zi = +1} and B = {(x̄i, ȳi) :
zi = −1}. Then, we say that A and B are linearly separable in IR2 if there exists a line
H(β, β0;x, y) = 0, with coefficients β, β0 ∈ IR, such that

H(β, β0; x̄i, ȳi) > 0, ∀i : zi = +1

H(β, β0; x̄i, ȳi) < 0, ∀i : zi = −1.
(5.10)

The procedure in our proposal starts by setting A0 = Lmax and B0 = Lmin; then, we
generate the sequences of sets {Ak} and {Bk}, with k = 0, 1, 2, . . ., according with the next
two distinct phases:

� first, we solve an SVM classification problem that computes the line

H
(
β(k), β

(k)
0 ;x, y

)
= 0

which linearly separates (see Definition 1) the sets Ak and Bk, and is maximally
distant (maximum margin) from their points;

� second, a point
(
x̄
(k)
max, ȳ

(k)
max

)
in {(x̄i, ȳi), i = 1, . . . , N} \ {Ak ∪ Bk} is identified and

assigned with a label zk ∈ {−1,+1}. In case zk = +1 we generate the novel sets
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Ak+1 = Ak ∪
{(
x̄
(k)
max, ȳ

(k)
max

)}
and Bk+1 = Bk, otherwise we set Ak+1 = Ak and

Bk+1 = Bk ∪
{(
x̄
(k)
max, ȳ

(k)
max

)}
.

More formally, our proposal is summarized in the Algorithm MT–SVM of Table 1,
whose steps are briefly commented as follows. In a preliminary initialization we set χ =
{(x̄i, ȳi), i = 1, . . . , N} and set A0 and B0, using Lmax and Lmin defined above. Then, we

compute the best (i.e. the one maximizing the margin) separating line H
(
β(0), β

(0)
0 ;x, y

)
=

0 between A0 and B0, whose parameters are given by β(0) and β
(0)
0 , using an SVM method.

Thus, H
(
β(0), β

(0)
0 ;x, y

)
= 0 is the maximally distant line with respect to both the sets A0

and B0. In particular, in Algorithm MT–SVM we indicate with SVM(Ak, Bk) the solution
of the SVM problem which computes the best (maximally distant) separating line between
Ak and Bk. Note that the SVM problem reduces to a convex linearly constrained quadratic
minimization problem which always admits solution (see [7]).

Therefore, at any step k we first pick the point
(
x̄
(k)
max, ȳ

(k)
max

)
in χ \ {Ak ∪ Bk} with

the largest distance from H
(
β(k), β

(k)
0 ;x, y

)
= 0. Moreover, depending on the half space

where
(
x̄
(k)
max, ȳ

(k)
max

)
is located, with respect to the line H

(
β(k), β

(k)
0 ;x, y

)
= 0, we update

the novel sets Ak+1, Bk+1 starting from the pair Ak, Bk. In the end, we increase the step
and iterate the procedure. The next results can be proved, which establishes theoretical
properties for Algorithm MT–SVM (see also [18]).

Lemma 2 Consider the set χ ⊂ IR2, with |χ| < +∞. Let Lmax, Lmin ⊆ χ. Then, the
Algorithm MT–SVM in Table 1 provides the pair of sets Am, Bm after m steps, with

m = |χ \ {Lmax ∪ Lmin}| ,

such that 
Am ∪Bm = χ

Am ∩Bm = ∅.
Proof
By Table 1, recalling that |χ| is finite, the index k ranges from 0 to |χ \ {A0 ∪B0}| ≤ |χ| <
+∞. Moreover, since by construction |Ak ∪ Bk| = |Ak−1 ∪ Bk−1| + 1, then m is exactly
given by the number of points in χ which are neither present in Lmax nor in Lmin. Q.E.D.

Proposition 3 Let be given the nonempty sets Lmax, Lmin ⊆ χ, and consider the Algorithm
MT–SVM in Table 1. If Lmax and Lmin are linearly separable, as by Definition 1, then the
sets Ak and Bk are linearly separable, for any k ≥ 0.

Proof
The proof can be found in [18]. Q.E.D.

We can also give a couple of additional results, to better clarify the properties of the
solution provided by Algorithm MT–SVM, either in case Lmax and Lmin are / are not
linearly separable.
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Algorithm MT–SVM

Data: χ ≡ {(x̄i, ȳi), i = 1, . . . , N}
Initialization: Set k ← 0, choice ∈ {TRUE,FALSE}, A0 ← Lmax, B0 ← Lmin

Step k: While (|χ \ {Ak ∪Bk}| 6= 0)

Compute the parameters [β(k), β
(k)
0 ] = SVM(Ak, Bk)

Set d
(k)
max ← 0

For i = 1 : |χ \ {Ak ∪Bk}|
Extract (x̄i, ȳi) from χ \ {Ak ∪Bk}
Compute the distance di = d

[
(x̄i, ȳi), H

(
β(k), β

(k)
0 ;x, y

)]
If
(
di ≥ d(k)max

)
Then

Set d
(k)
max ← di

Set
(
x̄
(k)
max, ȳ

(k)
max

)
← (x̄i, ȳi)

End If
End For

If
(
d
(k)
max > 0

)
Then

If
(
H
(
β(k), β

(k)
0 ; x̄

(k)
max, ȳ

(k)
max

)
> 0
)

Then

Set Ak+1 ← Ak ∪
{(
x̄
(k)
max, ȳ

(k)
max

)}
Set Bk+1 ← Bk

Else
(

i.e. H
(
β(k), β

(k)
0 ; x̄

(k)
max, ȳ

(k)
max

)
< 0
)

Set Ak+1 ← Ak

Set Bk+1 ← Bk ∪
{(
x̄
(k)
max, ȳ

(k)
max

)}
End If

Else
(

i.e. d
(k)
max = 0

)
If (choice = FALSE) Then

Set Ak+1 ← Ak ∪
{(
x̄
(k)
max, ȳ

(k)
max

)}
Set Bk+1 ← Bk

Else
Set Ak+1 ← Ak

Set Bk+1 ← Bk ∪
{(
x̄
(k)
max, ȳ

(k)
max

)}
End If

End If
k ← k + 1

End While

Table 1: Description of our SVM–based procedure applied to the points {(x̄i, ȳi), i =
1, . . . , N} in the set χ.
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Lemma 4 Let be given the nonempty sets Lmax, Lmin ⊆ χ, and consider the Algorithm
MT–SVM in Table 1. If Lmax and Lmin are linearly separable, then

� for any k ≥ 1 the margin W (k) of the SVM problem SVM(Ak, Bk) satisfies

W (k) = min
{
W (k−1), 2d(k)max

}
; (5.11)

� the sequence
{
W (k)

}
is monotonically nonincreasing, with

W (k) ≤ 2d(j)max, j = 0, . . . , k. (5.12)

Moreover, assume that at step k of the Algorithm MT–SVM we set d
(k)
max ← d̂, being d̂ =

d[(x̂, ŷ), H(β(k), β
(k)
0 ;x, y)] with

d̂ 6∈ arg max(xi,yi)∈χ\{Ak∪Bk}

{
d[(xi, yi), H(β(k), β

(k)
0 ;x, y)]

}
.

Then, we have W (k) ≤ 2d̂.

Proof
The proof can be found in [18]. Q.E.D.

Observation 5.1 Let be given the nonempty sets Lmax, Lmin ⊆ χ, and consider the Al-
gorithm MT–SVM in Table 1. Then, it can be also proved (see [18]) that under mild
assumptions the misclassified points when solving SVM(Ak+1, Bk+1) are a subset of the
misclassified points when solving SVM(Ak, Bk). This remarks once more the importance of
selecting in our procedure A0 = Lmax and B0 = Lmin, being Lmax and Lmin likely separable
in practice.

Figure 4 shows the overall outcome of Algorithm MT–SVM for k = 0. In particular, we
have A0 = Lmax = LWest−North and B0 = Lmin = LEast−South, being A0 and B0 linearly
separable as in Definition 1. The picture also reports three parallel lines: one central line and
two side lines. The central line represents the separating line computed by SVM(A0, B0),

i.e. the line of equation H
(
β(0), β

(0)
0 ;x, y

)
= 0. Conversely, the two side lines delimit the

largest region (stripe) where none of the points in A0 ∪B0 is included. Finally, the circled
points in the picture represent so called support vectors (see [7]), i.e. those points in A0∪B0

which are the closest to the central line of equation H
(
β(0), β

(0)
0 ;x, y

)
= 0. Of course,

applying the procedure in the Algorithm MT–SVM also for k ≥ 1, the stripe delimited by
the two side lines will reduce its thickness, so that the three lines tend to become closer
and closer as k increases. Their slope identifies a possible trend–line (which is expected to
change with k) for Bitcoin price vs. its SF. As by Figures 3 and 4 the common slope of the
three lines when k = 0 is m∗ ≈ 2.9324, which is not pretty close to the value 2.680 obtained
with our first proposal in Section 4. In particular, similarly to (4.9) we have now the line

ln(price) = 2.9324 ln(SF )− 0.35052,
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Figure 4: The fronts LEast−South and LWest−North, for the problem of forecasting Bitcoin
price vs. its SF ratio. Applying Algorithm MT–SVM and stopping right after iteration
k = 0 we obtain the circled points (support vectors) and the side lines (support lines).
(Blue) crosses identify all the pairs Bitcoin price vs. its SF. Data is reported using ln()
transformation.

so that considering for instance the value of the SF in (4.8) (i.e. at the end of September,
2021), we obtain

price = SF 2.9324 · e−0.35052 = 44.92.9324 · e−0.35052 ≈ 49, 297$.

Observe that this last Bitcoin price forecast is appreciably different with respect to the
one obtained using (4.9). Moreover, observing historical data of Bitcoin prices we can
immediately realize that 40, 171$ was a bit closer to the actual value (i.e. ≈ 41, 500 $)
we experienced in practice, with respect to the value 49, 297$ obtained with our second
approach. Figure 4 includes the same information of Figure 3, and additionally reports also
the (remaining) points of the set {(x̄i, ȳi), i = 1, . . . , N} which are not in Lmax ∪ Lmin.

Observing the parallel lines in Figures 3 and 4, our SVM–based approach suggests also
that the two side lines (i.e. the support hyperplanes following the taxonomy of SVMs) have
respectively the equations

ln(price) = 2.9324 ln(SF ) + (−0.35052 + 0.11629) = 2.9324 ln(SF )− 0.23423,

ln(price) = 2.9324 ln(SF ) + (−0.35052− 0.11629) = 2.9324 ln(SF )− 0.46681,
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so that considering again the value of the SF in (4.8), we obtain for Bitcoin price forecast
at the end of September 2021 the range of possible values

price ∈
[
44.92.9324e−0.46681 , 44.92.9324e−0.23423

]
≡ [ 43, 884.8$ , 55, 376.1$ ]. (5.13)

This last result reveals that the actual price of 41,500 $ for Bitcoin, at the end of September
2021, was not included in the interval indicated by (5.13), though the relative error εSVM =
[43, 884.8−41, 500]/41, 500, using our SVM–based approach (lowest extreme in the interval
in (5.13)), and the relative error εLS = [40, 171 − 41, 500]/41, 500, using a more standard
regression approach, are not distant. This indeed explains why we considered to report our
numerical experience with reference to the end of September 2021: it was indeed the case
in which our second proposal performs most poorly with respect to the regression analysis.
A couple of final considerations should also be highlighted:

� our second approach in the current section does not require any of the assumptions
typically needed when solving linear least squares problems. This implies that our
second approach is not subject to any specific validation test;

� as any approach based on linear regression, our first proposal is capable of producing
both a point relation between the Bitcoin price and its SF (see (4.9)) and a confidence
interval for the price itself. Nevertheless, the calculation of this interval is easy only
under suitable theoretical assumptions on the probability distribution of the data (e.g.
the normal one which is typically associated with regression formulations). Conversely,
our second approach always gives an interval of reliability for the pair of Bitcoin price
vs. its SF, identified by the stripe delimited by the side lines in Figure 3, regardless of
the data probability distribution. Thus, in this regard our second proposal shows to
some extent higher versatility and possibly robustness of the outcomes. Moreover, it
provides a tentative information about long term Bitcoin price, that possibly expert
investors may decide to refine or even integrate with their own trusted methods.

5.2 Enhancement using bootstrap

Bootstrap represents a widely used technique to infer statistics on a population, by perform-
ing re–sampling with replacement of the original dataset associated with the population.
More often, after defining a reference measure, bootstrap first implies re–sampling the orig-
inal dataset so that this measure is recomputed several times. Then, exploiting the Central
Limit Theorem (CLT), this measure is treated as a random variable whose simple statistics
(i.e. the mean value and the standard deviation) are sought. In this regard we recall that
according with the CLT, when i.i.d. random variables are summed up (or averaged), then
their properly normalized sum approaches a normal distribution, regardless of the original
distribution of the random variables (see [9]).
Bootstrap can be declined in several practical ways, though it basically reduces to repeat-
edly selecting a sample in a given population, calculating the statistics associated with some
measure, and finally taking the average of the computed statistics. To be more precise, a
general bootstrap technique can be summarized as by the following scheme:
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1 Select the number NS of re–samplings and the sample size SS to perform;

2 For any i = 1 to NS

Compute the i–th sample (of size SS) with replacement of the population

Compute k ≥ 1 quantities related to the i–th sample

3 Compute the statistics associated with the k quantities.

Note that such a bootstrap technique is in some sense basic as it does not account for possible
presence of autocorrelation in the considered time series (in that case, so-called moving
blocks bootstrap methods should be used). Anyway, the choice to use a plain bootstrap
technique is deliberate in order to stress the robustness of our Algorithm MT–SVM when
non optimally coupled.

When applying a ML model, whose outcomes yield random quantities, then it is desir-
able that the results are provided with confidence intervals. We highlight that widely used
techniques within ML, like cross-validation, are unable to immediately give confidence in-
tervals for the quantities they report. In our SVM–based ML procedure we used bootstrap
to estimate the final mean value and the standard deviation of Bitcoin price, with reference
to the following 13 different time–windows for the pairs Bitcoin price vs. its SF:

Time–window 1 January 1st, 2011 – March 31st, 2021
Time–window 2 January 1st, 2011 – April 30th, 2021
Time–window 3 January 1st, 2011 – May 31st, 2021
Time–window 4 January 1st, 2011 – June 30th, 2021
Time–window 5 January 1st, 2011 – July 31st, 2021
Time–window 6 January 1st, 2011 – August 31st, 2021
Time–window 7 January 1st, 2011 – September 30th, 2021
Time–window 8 January 1st, 2011 – October 31st, 2021
Time–window 9 January 1st, 2011 – November 30th, 2021
Time–window 10 January 1st, 2011 – December 31st, 2021
Time–window 11 January 1st, 2011 – January 31st, 2022
Time–window 12 January 1st, 2011 – February 28th, 2022
Time–window 13 January 1st, 2011 – March 31st, 2022

The dataset associated with each time–window is used to apply the Algorithm MT –SVM,
in order to generate the parameters of the central line in Figure 3. Then, the forecast of
Bitcoin price is computed in the subsequent three months (e.g. for Time–window 1 we used
the data in the interval January 1st, 2011 – March 31st, 2021, and computed a forecast for
Bitcoin price at the end of April 2021, May 2021 and June 2021). Finally, this last scheme
is repeated for NS re–samplings of data in the same time–window, so that a statistics
using bootstrap will be available. Following standard guidelines from the literature, we also
set in our bootstrap framework: number of re–samplings NS = 250; size of each sample
SS = the size of dataset in the current time–window.

In Tables 2 to 4 we present the 13 forecasts achieved respectively for each of the con-
sidered prediction horizons, i.e. after 1 month (Table 2), after 2 months (Table 3), and

20



ln(Pt+1 month) SVM µSVM+B σSVM+B [·, ·]95% εSVM εSVM+B

10.9122 10.2932 10.2689 0.1501 [9.9748, 10.5630] −0.0567 −0.0590
10.4512 11.1474 11.1068 0.2241 [10.6676, 11.5460] 0.0666 0.0627
10.4639 12.2532 11.9440 0.3593 [11.2397, 12.6483] 0.1710 0.1414
10.6347 10.6400 10.4055 0.3344 [9.7500, 11.0610]∗ 0.0005 −0.0216
10.7975 10.6513 10.4186 0.3657 [9.7018, 11.1354]∗ −0.0135 −0.0351
10.6879 10.6566 10.4195 0.3012 [9.8291, 11.0099]∗ −0.0029 −0.0251
10.0388 10.6550 10.4042 0.2740 [9.8671, 10.9413]∗ 0.0614 0.0364
10.9559 11.5767 11.3024 0.2867 [10.7405, 11.8643]∗ 0.0567 0.0316
10.7605 10.6781 10.4266 0.2814 [9.8751, 10.9781]∗ −0.0077 −0.0310
10.5386 10.6764 10.4009 0.3112 [9.7910, 11.0108]∗ 0.0131 −0.0131
10.5371 10.6619 10.4448 0.3456 [9.7674, 11.1222]∗ 0.0118 −0.0088
10.7674 10.6795 10.4476 0.3258 [9.8091, 11.0861]∗ −0.0082 −0.0297
10.5903 10.6843 10.4560 0.2868 [9.8939, 11.0181]∗ 0.0089 −0.0127

Table 2: Forecasts of the value of the logarithm for Bitcoin price, along with some related
statistics, considering 1 month as prediction horizon. The asterisk in Column 5 indicates
that the true value of Bitcoin price falls within the confidence interval.

after 3 months (Table 4). In particular, in each table: Column 1 reports the true value of
Bitcoin price; Columns 2 gives the value of the forecast obtained by the Algorithm MT–
SVM; Column 3 and Column 4 respectively provide the average value and the standard
deviation of the forecast obtained by the Algorithm MT–SVM coupled with the bootstrap
method; Column 5 shows the 95% confidence interval computed using the average value
and standard deviation in Column 3 and Column 4; Columns 6 and 7 present the relative
errors respectively associated to the forecasts from the Algorithm MT–SVM and from the
Algorithm MT–SVM coupled with the bootstrap method.

Observation 5.2 We highlight that for each forecast horizon, most of the true values to
predict fall within the confidence interval, namely 10 out of 13 for the one-month horizon,
10 out of 13 for the two-month horizon, and 13 out of 13 for the three-month horizon.
Furthermore, the other actual values not falling within this interval are generally close to
it. Given the high volatility that the Bitcoin price has often experienced, our outcomes can
be considered more than satisfactory. Lastly note that, unlike what usually happens when
forecasting time series data, the above three ratios 10/13, 10/13 and 11/13 do not decrease
as the forecast horizon length increases.

Observation 5.3 We stress that for all the forecast horizons, the average of the relative
error associated to the Algorithm MT–SVM coupled with the bootstrap method (i.e. the
average of the values in the last column of Tables 2, 3 and 4) is lower than the average
of the relative error associated to the Algorithm MT–SVM alone (i.e. the average of the
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ln(Pt+2 months) SVM µSVM+B σSVM+B [·, ·]95% εSVM εSVM+B

10.4512 11.1474 11.1156 0.1649 [ 10.7923, 11.4389 ] 0.0666 0.0636
10.4639 11.8058 11.7555 0.2399 [ 11.2853, 12.2257 ] 0.1282 0.1234
10.6347 10.6400 10.4208 0.3014 [ 9.8300, 11.0116 ]∗ 0.0005 −0.0201
10.7975 10.6513 10.4161 0.3348 [ 9.7598, 11.0724 ]∗ −0.0135 −0.0353
10.6879 10.6566 10.4236 0.3659 [ 9.7064, 11.1408 ]∗ −0.0029 −0.0247
10.0388 10.6550 10.4180 0.3012 [ 9.8277, 11.0083 ]∗ 0.0614 0.0378
10.9559 11.5767 11.2721 0.3034 [ 10.6774, 11.8668 ]∗ 0.0567 0.0289
10.7605 10.6781 10.4547 0.2610 [ 9.9431, 10.9663 ]∗ −0.0077 −0.0284
11.5386 10.6764 10.4250 0.2813 [ 9.8736, 10.9764 ] 0.0131 −0.0108
10.5371 10.6619 10.3872 0.3107 [ 9.7783, 10.9961 ]∗ 0.0118 −0.0142
10.7674 10.6795 10.4615 0.3463 [ 9.7828, 11.1402 ]∗ −0.0082 −0.0284
10.5903 10.6843 10.4521 0.3259 [ 9.8133, 11.0909 ]∗ 0.0089 −0.0130
10.2760 10.6619 10.4348 0.2861 [ 9.8741, 10.9955 ]∗ 0.0376 0.0155

Table 3: Forecasts of the value of the logarithm for Bitcoin price, along with some related
statistics, considering 2 months as prediction horizon. The asterisk in Column 5 indicates
that the true value of Bitcoin price falls within the confidence interval.

ln(Pt+3 months) SVM µSVM+B σSVM+B [·, ·]95% εSVM εSVM+B

10.4639 11.8058 11.7681 0.1772 [ 11.4208, 12.1154 ]∗ 0.1282 0.1246
10.6347 10.3003 10.2722 0.2050 [ 9.8704, 10.6740 ]∗ −0.0314 −0.0341
10.7975 10.6513 10.4315 0.3018 [ 9.8399, 11.0231 ]∗ −0.0135 −0.0339
10.6879 10.6566 10.4211 0.3350 [ 9.7644, 11.0778 ]∗ −0.0029 −0.0250
10.0388 10.6550 10.4221 0.3659 [ 9.7050, 11.1392 ]∗ 0.0614 0.0382
10.9559 11.5767 11.2867 0.3333 [ 10.6333, 11.9401 ]∗ 0.0567 0.0302
10.7605 10.6781 10.4259 0.2747 [ 9.8874, 10.9644 ]∗ −0.0077 −0.0311
10.5386 10.6764 10.4531 0.2610 [ 9.9416, 10.9646 ]∗ 0.0131 −0.0081
10.5371 10.6619 10.4113 0.2809 [ 9.8608, 10.9618 ]∗ 0.0118 −0.0119
10.7674 10.6795 10.4038 0.3113 [ 9.7937, 11.0139 ]∗ −0.0082 −0.0338
10.5903 10.6843 10.4660 0.3465 [ 9.7869, 11.1451 ]∗ 0.0089 −0.0117
10.2760 10.6619 10.4309 0.3251 [ 9.7937, 11.0681 ]∗ 0.0376 0.0151
9.9173 10.6795 10.4515 0.2866 [ 9.8897, 11.0133 ]∗ 0.0769 0.0539

Table 4: Forecasts of the value of the logarithm for Bitcoin price, along with some related
statistics, considering 3 months as prediction horizon. The asterisk in Column 5 indicates
that the true value of Bitcoin price falls within the confidence interval.
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values in the second last column of Tables 2, 3 and 4), namely: 0.28% vs. 2.31% for the
one-month horizon, 0.72% vs. 2.71% for the two-month horizon, and 0.56% vs. 2.54% for
the three-month horizon. We also point out that the standard deviations of both the relative
errors are very close between them in each of the three considered forecast horizons.

All these results give numerical evidence that in this context coupling a bootstrap
method with a SVM–based approach can improve the quality of the forecast.

Lastly, as stated in the end of Section 4, we consider the linear regression model for
comparative purposes with our SVM-based approach enhanced through bootstrap. In par-
ticular, similarly to what done in the previous analyses, we applied the linear regression
model to predict the future price of Bitcoin with reference to the above same 13 time-
windows and for each of the above same forecast horizons.
All the main findings strongly suggest that the Algorithm MT–SVM coupled with the boot-
strap method performs better than the linear regression model. Figure 5 shows that all the
95% confidence intervals related to the former approach (the red one) are strictly contained
in the corresponding 95% confidence intervals related to the linear regression model (the
black one), this for all the considered time-windows and all the forecast horizons.

Observation 5.4 We highlight that for all the forecast horizons, the average of the standard
error associated to the Algorithm MT–SVM coupled with the bootstrap method is lower than
the average of the standard error associated to the linear regression model, namely: 0.2959
vs. 0.9935 for the one-month horizon, 0.2941 vs. 0.9935 for the two-month horizon, and
0.2926 vs. 0.9935 for the three-month horizon.

Observation 5.5 We point out that for all the forecast horizons, the average of the relative
error associated to the Algorithm MT–SVM enhanced using the bootstrap method is lower
(absolute value) than the average of the relative error associated to the linear regression
model, namely: 0.28% vs. −2.49% for the one-month horizon, 0.72% vs. −2.00% for the
two-month horizon, and 0.56% vs. −2.12% for the three-month horizon. We also stress
that the standard deviations of both the relative errors are very close between them in each
of the three considered forecast horizons.

These findings provide numerical evidences that, at least in this forecasting context,
coupling a bootstrap method with a SVM–based approach can improve the quality of the
performance with respect to the one obtained from the use of a linear regression model.

6 Conclusions and future work

This paper contributes to possibly investigate reliable long term models for Bitcoin price
forecast. We recall that in the last decade Bitcoin has become an observed digital asset, for
possible investments by both private and institutional stakeholders. In this paper we have
specifically proposed a couple of models, following two different perspectives. The first one
was suggested by considering a more standard regression analysis, while the second one is
definitely novel in the literature, being obtained by combining a preliminary multiobjective
approach with a ML scheme, where a sequence of SVMs is indeed considered.
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Figure 5: 95% confidence intervals related to the Algorithm MT–SVM enhanced using
the bootstrap method (the red one) and to the linear regression model (the black one),
considering: 1 month as prediction horizon (upper figure); 2 months as prediction horizon
(middle figure); 3 months as prediction horizon (lower figure). Each red confidence interval
is strictly contained within the corresponding black confidence interval. The two broken
lines in each figure represent the forecasts of ln(price) as provided by the two methods,
respectively.

We are persuaded that several factors strongly contribute to affect long term Bitcoin
price, other than the SF. Nevertheless, the dependency of Bitcoin price on its SF was
suggested by several authors, and is also considered in the first proposal of this paper. In
this regard, a natural future extension for our analysis will have to consider a set of multiple
elements encompassing SF, so that our ML–based proposal will have to be enhanced.
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