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Abstract

In this paper, we study a frequentist approach to belief updating in the framework of Dempster-
Shafer Theory (DST). We propose several mechanisms that allow the gathering of possibly am-
biguous pieces of evidence over time to obtain a belief mass assignment. We then use our approach
to study the impact of ambiguous evidence on the belief distribution of agents in social networks.
We illustrate our approach by taking three representative situations. In the first one, we suppose
that there is an unknown state of nature, and agents form belief on the set of possible states.
Nature constantly sends a signal which reflects the true state with some probability but which can
also be ambiguous. In the second situation, there is no ground truth, and agents are against or
in favor of some ethical or societal issues. In the third situation, there is no ground state either,
but agents have opinions on left, center, and right political parties. We show that our approach
can model various phenomena often observed in social networks, like polarization, echo chambers,
and bounded confidence effects.

Keywords:Dempster-Shafer theory, agent-based modeling, social networks, ambiguous evi-
dence, subjective belief update, opinion dynamics.

1 Introduction

Emerging behaviors of human beliefs are complex by nature. Both Bayesian and heuristic approaches
have been used to study these emerging phenomena in social networks (e.g., polarization, echo cham-
bers, bounded confidence, . . . ). However, empirical observations suggest that such models, while
robust, do not fully encapsulate the nuances of real-world belief evolution (Chandrasekhar et al., 2020)
(see Acemoglu and Ozdaglar (2011) about a theoretical paper comparing Bayesian models to heuristic
models).

Agents with similar priors may have vastly different posteriors after observing the same piece of
evidence (Acemoglu et al., 2010). One of the explanations for this phenomenon is the ambiguity
of evidence. Updating beliefs under ambiguity has been challenging in the Bayesian setting. For
example, Fryer Jr et al. (2019) assumes that an agent with a bias towards one of the events interprets
ambiguous evidence as unequivocally supporting that favored event. It is within this context that
the Dempster-Shafer Theory (DST) emerges as a potent alternative, incorporating the rationality of
Bayesian models while still allowing for the intricacies of heuristics. An advantage of DST is that it
need not model singleton evidence solely but rather can model evidence that might support multiple
states of nature simultaneously. Therefore, two agents with identical betting probabilities, the same
priors on the surface, might have two different mental models leading to different posteriors (Smets &
Kennes, 2008) (see Gilboa and Schmeidler (1993) for an explanation of how non-additive probability
approaches are suitable for modeling ambiguous evidence).

∗This work has received funding from the European Union’s Horizon 2020 research and innovation programme under

the Marie Sk lodowska-Curie grant agreement No 956107, ”Economic Policy in Complex Environments (EPOC)”.
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DST has two mainstream belief update methodologies: combination rules (Shafer, 1976) and condi-
tioning rules (Shafer, 1981) (see Dubois and Denoeux (2012) for a comparison of both). Both of these
methods can cause radical changes in one’s belief under completely opposite evidence, which might
violate belief persistence (see Dominiak and Lee (2017) for a discussion on belief persistence). For this
reason, we propose a frequentist update methodology for DST. Our frequentist rule acts as an evidence
aggregation mechanism where every atom of evidence only nudges an agent towards a direction, which
is similar to heuristic approaches (Allahverdyan & Galstyan, 2014). Using this methodology, we create
several update rules for different cases and then show the emergent behavior of these updates in three
different agent-based models.

The contribution of this paper is three-fold. Our first and foremost contribution is that we create
a frequentist update framework for DST, addressing the challenges posed by the violation of belief
persistence. Second, we propose several update rules for different scenarios and study their properties.
Finally, we explore the application of DST in modeling belief dynamics within social networks, pro-
viding insights into emerging phenomena such as polarization or echo chambers. We demonstrate the
efficacy of DST in managing ambiguous evidence, showing its unique ability to capture and process
uncertainty.

The rest of the paper will be organized as follows: in Section 2, we will present the basic notation
of DST that will be used later. In Section 3, we will create a frequentist framework for DST, suggest
several update rules for this framework, and study the properties of these rules. Section 4 will study the
emergent phenomena of DST in social networks using agent-based modeling, explaining the differences
between the combination rule and the frequentist rule. Finally, Section 5 will conclude the paper with
a summary of our results.

2 Basic concepts and notation

2.1 The Dempster-Shafer framework

We present basic notions of Dempster-Shafer theory (DST), which are necessary for our exposition. A
detailed presentation can be found in Grabisch et al. (2016). Let Ω be a finite set of n outcomes (or
states of nature, etc.), and 2Ω be the power set denoting all possible subsets of outcomes, called events.
In Dempster-Shafer Theory, an agent’s belief about events is modeled by a basic mass assignment
or mass distribution, abbreviated hereafter by bma, which is a function m : 2Ω → [0, 1], satisfying∑

X⊆Ω m(X) = 1. Given some evidence received by the agent, m(X) represents the (quantity of)
belief committed exactly to the event X and not to any proper subset of X. The amount of belief
committed to Ω represents the level of ignorance of the agent, while the amount of belief committed
to the empty set represents the belief that Ω does not contain all possible outcomes (open world
hypothesis). Throughout this paper, we assume m(∅) = 0. We denote byM(Ω) the set of all bmas on
Ω satisfying the latter property.

We give in Table 1 an example of a mass distribution, where Ω = {a, b}.

Events Masses
∅ 0
{a} 0.3
{b} 0.4
Ω 0.3

Table 1: An example of a mass distribution.

Following Shafer (1976), we introduce, for a given mass distribution m of some agent,

• The belief function Bel : 2Ω → [0, 1], assigning to every event X the quantity Bel(X) =∑
Y⊆X m(Y ), interpreted as the degree of certainty/belief that eventX realizes, i.e., the certainty

that the true outcome or state of nature lies in X.

• The plausibility function Pl : 2Ω → [0, 1], assigning to every event X the quantity Pl(X) =∑
Y ∩X ̸=∅ m(Y ), interpreted as the degree of plausibility that event X realizes, i.e., the plausi-

bility that the true outcome or state of nature lies in X.
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Therefore, following the example above, we can derive Table 2:

Mass Belief Plausibility

∅ 0 0 0
{a} 0.3 0.3 0.6
{b} 0.4 0.4 0.7
Ω 0.3 1 1

Table 2: Belief and plausibility functions of the agent.

2.2 Combination rule

Consider two agents i, j, with bmas mi,mj , coming from two sets of evidence supposed to be both
trustable and independent. Dempster’s rule of combination allows to combine these two sets of evidence
and to produce a new mass distribution mi ⊕mj defined as follows:

(mi ⊕mj)(X) =

∑
Y ∩Z=X mi(Y )mj(Z)

1− κ
, ∅ ̸= X ⊆ Ω, (1)

and (mi ⊕mj)(∅) = 0, provided 1 − κ ̸= 0. The quantity κ =
∑

Y ∩Z=∅ mi(Y )mj(Z) is the level
of conflict, and quantifies to what extent the two pieces of evidence contradict each other∗. It is easy
to check that mi ⊕mj is indeed a bma.

As an illustration, consider two pieces of evidence represented by mass distributions m1,m2 on
Ω = {a, b} given by

m1({a}) = 0.6, m1({b}) = 0.3, m1(Ω) = 0.1

m2({a}) = 0.1, m2({b}) = 0.5, m2(Ω) = 0.4.

Table 3 gives the result of the combination with and without normalization.

∅ {a} {b} Ω
without normaliza-
tion

0.33 0.31 0.32 0.04

with normalization 0 0.4627 0.4776 0.0597

Table 3: Combination of m1,m2

2.3 Transferable belief model

Shafer’s modelling of the beliefs of an agent is done through the belief function and the plausibility
function, which can be interpreted as giving an interval where the (unknown) true probability lies.
The following question arises: What if an agent is forced to give a probability to make a decision?
Smets and Kennes (2008) answered this question by proposing their transferable belief model: they
assume that the modeling stage of the beliefs of the agent, given a number of evidence, is done in
the framework of Shafer (they call this the credal level), while this belief information is transferred
to the pignistic level, where the decision has to be made, via a betting probability, denoted by BetP,
indicating that this is the probability P the agent would bet on. BetP is defined as:

BetP(x) =
∑
A∋x

m(A)

|A|
(2)

It is well known that BetP is nothing other than the Shapley value (Shapley, 1953) of Bel, the belief
function of the credal level.

∗Smets and Kennes (2008) do not perform normalization by the denominator, since they do not assume that the
mass given to ∅ has to be equal to 0. This approach can be used when the open-world hypothesis is true.
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3 Frequentist belief updates in DST

We consider as above a finite set Ω of n possible states of nature or outcomes. Each agent has a prior
belief on the true state of nature, which is represented by a bma denoted by m0. At each time step
t = 1, 2, . . ., agents receive a signal or evidence et giving information about the true state of nature
under the form of a non-empty subset of Ω. If et = {ω} for some ω ∈ Ω, the evidence is said to be
non-ambiguous, while if et is not a singleton, then the evidence is said to be ambiguous. We do not
discard the case et = Ω, considered as fully ambiguous, and bringing in principle no information.

Upon receiving a signal, each agent updates her bma by some mechanism, and we denote by mt the
bma of the agent at time t, after having received signal et and updated.

In the sequel, we consider several updating rules, which are based on a frequentist view rather
than on the Dempster’s rule of combination, mimicking the way a probability is estimated by repeated
observations via the law of large numbers. To the best of our knowledge, we did not find any previous
attempt in this direction, as all updating mechanisms in DST are based either on Dempster’s rule of
combination or one of its variants or by conditioning like in Bayesian updating.

The presence of ambiguous evidence, together with different possible attitudes of the agent towards
new information, opens the field of many possible updating rules. We present some examples of rules
in the following subsections, ending with a general form encompassing all the given examples.

3.1 The unbiased rule

This rule is the most natural one in the DST framework. If an evidence et = X is received, only the
value of the bma at X is modified, nothing else. Formally:

mt(X) =


t ·mt−1(X) + 1

t+ 1
, if et = X

t ·mt−1(X)

t+ 1
, otherwise

, (X ⊆ Ω, X ̸= ∅). (3)

A more compact form is the following:

mt(X) =
t ·mt−1(X) + δet(X)

t+ 1
(4)

with δet(X) = 1 if et = X, and 0 otherwise. It can be easily checked that

mt(X) =
m0(X) + nt(X)

t+ 1
, ∅ ̸= X ⊆ Ω, (5)

where nt(X) is the number of occurrences of X in the sequence of evidence e0, . . . , et. This formula
shows that the order in the sequence of signals is unimportant. Also, as t tends to infinity, the influence
of the prior belief tends to 0, and the mass distribution tends to the frequency of the events in the
sequence, as for the law of large numbers.

Let us illustrate the rule by the following running example.

Example 1. Consider Ω = {a, b} with two states of nature, e.g., ameans that there is a climate change,
and b means that there is no climate change. An evidence et is brought by regular meteorological
bulletins, supporting either a or b, or being ambiguous (et = Ω).

Consider 3 agents, with the following prior bmas m1
0,m

2
0,m

3
0:

{a} {b} Ω
m1

0 1 0 0
m2

0 0 1 0
m3

0 0 0 1

Agent 1 is fully convinced that climate change is real, while Agent 2 is fully convinced that this is
a conspiracy theory, and Agent 3 comes from the Moon and has absolutely no opinion on the topic.

Consider first the following sequence of non-ambiguous evidence (omitting braces and commas for
short): a, a, b, a, b, where there are slightly more pieces of evidence of a than b. Applying the unbiased
rule 5 times yields the following (using (5)):

4
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{a} {b} Ω
m1

5
2/3 1/3 0

m2
5

1/2 1/2 0
m3

5
1/2 1/3 1/6

One can see how the mass distribution of the agents tends to the frequentist distribution of the events:
3/5 for a and 2/5 for b. Observe also how the mass of ignorance diminishes for Agent 3.

Let us now consider that in the previous sequences, the two last pieces of evidence become ambigu-
ous: a, a, b, ab, ab. We obtain the following:

{a} {b} Ω
m1

5
1/2 1/6 1/3

m2
5

1/3 1/3 1/3
m3

5
1/3 1/6 1/2

Ambiguity raises the level of ignorance and slows down the convergence to the frequency of appearances
of a and b.

The next proposition gives two important properties of this rule.

Proposition 1. The unbiased rule has the following properties:

1. Assuming mt−1 is a bma, mt is also a bma.

2. If et = X, mt(X) ⩾ mt−1(X), and more precisely

mt(X)−mt−1(X) =
1−mt(X)

t
⩾ 0.

On the other hand, mt(Y ) ⩽ mt−1(Y ) for Y ̸= X, more precisely

mt(Y )−mt−1(Y ) = −mt(Y )

t
⩽ 0.

Also, mt(Y )
mt−1(Y ) =

t
t+1 .

Proof. 1. See Proposition 4.
2. From the definition of mt, we get

(t+ 1)mt(X) = t ·mt−1(X) + 1

from which we get the desired expression (and similarly for mt(Y )). Finally, the inequalities follow
from the fact that mt is a bma because m0 is a bma and of property (1).

The first property ensures that the updating process remains in the DST framework. The second
property shows a desirable feature: the mass of the received event increases while the other ones
decrease.

3.2 Distributive belief update

A distinctive feature of the unbiased rule is that every event is treated similarly, and the fact that the
evidence is ambiguous does not matter. In particular, receiving the totally ambiguous signal Ω just
augments the mass of Ω. However, we might argue that et = Ω does not bring any information, so
why mt should be different from mt−1?

The distributive rule considers that when an ambiguous evidence X is received, it could have been
any subset of X, and the agent updates the masses of every subset of X in proportion of her belief on
these subsets: the more the agent believes that Z is true, the more she is inclined to “interpret” any
new evidence X ⊇ Z as a manifestation of Z. Hence, ambiguous evidence serves to reinforce the belief
on less ambiguous evidence.
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We use the notation m̂ to denote this updating rule, defined as follows:

m̂t(X) =


t · m̂t−1(X) + m̂t−1(X : et)

t+ 1
, if X ⊆ et

t · m̂t−1(X)

t+ 1
, otherwise

, (X ⊆ Ω, X ̸= ∅), (6)

with

m̂(X : Z) :=


m̂(X)∑

Y⊆Z m̂(Y )
, if

∑
Y⊆Z

m̂(Y ) > 0

1, otherwise

, (∅ ̸= X ⊆ Z). (7)

A simpler formulation is:

m̂t(X) =
t · m̂t−1(X) + m̂t−1(X : et)δ⊆et(X)

t+ 1
(8)

with δ⊆et(X) = 1 if X ⊆ et, and 0 otherwise.
We give a number of properties of the distributive rule.

Proposition 2. The distributive rule has the following properties:

1. If m̂t−1 is a bma, then m̂t is a bma too.

2. If et is a singleton, then m̂t = mt, i.e., the distributive rule coincides with the unbiased rule.

3. If et = Ω, then m̂t = m̂t−1.

4. Suppose Z ⊆ X ⊆ Y . Then

m̂t(Z | et = X) ⩾ m̂t(Z | et = Y ),

where the conditioning bar indicates the observed evidence.

Proof. 1. See Proposition 4.
2. Suppose et = {ω}. Then m̂t−1(X : {ω}) reduces to

m̂t−1({ω} : {ω}) = 1. Therefore

m̂t(X) =


t · m̂t−1({ω}) + 1

t+ 1
, if X = {ω}

t · m̂t−1(X)

t+ 1
, otherwise

,

which coincides with the unbiased rule.
3. Suppose et = Ω. Then for every ∅ ̸= X ⊆ Ω

m̂t−1(X : Ω) =
m̂t−1(X)∑

Y⊆Ω m̂t−1(Y )
= m̂t−1(X)

since m̂t−1 is a bma (because m0 is a bma and of property (1)). Then

m̂t(X) =
t · m̂t−1(X) + m̂t−1(X)

t+ 1
= m̂t−1(X)

for every ∅ ̸= X ⊆ Ω.
4. Suppose Z ⊆ X ⊆ Y . Observe that

m̂t−1(Z : X) =
m̂t−1(Z)∑

K⊆X m̂t−1(K)
⩾

m̂t−1(Z)∑
K⊆Y m̂t−1(K)

= m̂t−1(Z : Y )

because m̂t−1 is nonnegative as it is a bma. The desired result follows from this inequality.

6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4715241

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4715241

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



The first property shows that this rule also remains in the DST framework, and the last property
shows that belief increases more when the evidence is less ambiguous.

We may wonder if a kind of monotonicity property holds, as for the unbiased rule (see Proposition 1
(1)), but this is not true. Indeed, supposing et = Z is received and

∑
Y⊆Z m̂t−1(Y ) > 0, it is not

possible to tell whether m̂t(X) is greater or smaller than m̂t−1(X) for X ⊆ Z, since we get from (6)

m̂t(X)− m̂t−1(X) =
1

t

( m̂t−1(X)∑
Y⊆et

m̂t−1(Y )
− m̂t(X)

)
when

∑
Y⊆et

m̂t−1(Y ) ̸= 0. The sign of the expression in parentheses may be positive or negative,
depending on the values taken by m̂t and m̂t−1. However, as for the unbiased rule, if X ̸⊆ et, then
m̂t(X) decreases.

Example 2 (Example 1 cont’d). Let us apply the distributive rule to our previous example. Since
for the sequence a, a, b, a, b of non-ambiguous events, the result is identical (see Proposition 2 (2)), we
turn to the second sequence a, a, b, ab, ab. We obtain:

{a} {b} Ω
m̂1

5
3/4 1/4 0

m̂2
5

1/2 1/2 0
m̂3

5
1/2 1/4 1/4

From Proposition 2 (2) and (3), we get in fact m̂i
5 = mi

3 for i = 1, 2, 3. We observe that in contrast
to the unbiased rule, agents 1 and 2 have no ignorance, as the ambiguous evidence are not taken into
account.

We present a second example to illustrate the computation with three states of nature.

Example 3. Let Ω = {a, b, c} be the set of all possible outcomes. Let

Event X {a} {b} {c} {a, b} {a, c} {b, c} Ω
m0(X) 0.3 0.1 0.2 0.1 0.1 0.1 0.1

be the prior distribution m0 of an agent. Let e1 = {a, b} be the evidence at time 1. Then, the
distributive update is obtained as follows (we omit braces and commas):

m̂1(a) =
m0(a) +

m0(a)
m0(a)+m0(b)+m0(ab)

2
=

0.3 + 0.3
0.3+0.1+0.1

2
= 0.45

m̂1(b) =
0.1 + 0.1

0.3+0.1+0.1

2
= 0.15

m̂1(c) =
m0(c)

2
= 0.1

m̂1(ab) =
0.1 + 0.1

0.3+0.1+0.1

2
= 0.15

m̂1(ac) =
m0(ac)

2
= 0.05

m̂1(bc) =
m0(bc)

2
= 0.05

m̂1(abc) =
m0(abc)

2
= 0.05 (9)

Notice that the mass of a increased more than the mass of b, while the relative ratio remained
the same. Now let us calculate the BetP of these masses for the previous turn: BetPt−1(a) = 0.4333,
BetPt−1(b) = 0.2333, BetPt−1(c) = 0.3333. And the updated betting probabilities are: BetPt(a) =
0.56666, BetPt(b) = 0.26666, BetPt(c) = 0.1666. Even though the evidence supported both states of
nature a and b, the agent’s prior caused the agent to support evidence a more. This result parallels
with Fryer Jr et al. (2019) in terms of ambiguous evidence.
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3.3 The biased rule when Ω = {a, b}
We place ourselves in the case of two possible states of nature, as in our running example with climate
change. The idea behind this rule is the following: when the agent is faced with ambiguous evidence
Ω, she updates her belief on a and b in proportion to her current belief as in the distributive rule,
but also in proportion to her level of certainty, that is, 1 − mt(Ω) (recall that mt(Ω) is the level of
ignorance).

Let us denote by m̃t+1 the bma updated by the biased rule. When et = {a} or et = {b}, the formula
is identical to the unbiased one: m̃t(X) = mt(X) for all X ⊆ Ω, X ̸= ∅. When et = Ω, the formula is:

m̃t(X) =


t · m̃t−1(X) + m̃t−1(X)(1− m̃t−1(Ω))

t+ 1
, if X = {a} or X = {b}

m̃t−1(X)
( t+ 2− m̃t−1(X)

t+ 1

)
, if X = Ω.

(10)

This rule has a number of interesting properties, given in the next proposition below.

Proposition 3. The biased rule has the following properties:

1. When the evidence is a singleton, all three rules coincide.

2. If m̃t−1 is a bma, then m̃t is a bma.

3. Suppose et = Ω and 0 < m̃t−1(Ω) < 1. Then m̃t(Ω) > m̃t−1(Ω), implying that m̃t(Ω) converges
to 1 when et = Ω for all t ⩾ t0.

4. Supposing et = Ω for all t and 0 < m0 < 1, we have m̃t(Ω) < mt(Ω) for all t. Consequently, m̃
converges more slowly than m.

5. Suppose et = Ω. Then
m̃t({a})
m̃t({b})

=
m̃t−1({a})
m̃t−1({b})

Proof. 1. Clear.

2. See Proposition 4.

3. We have from the definition

m̃t(Ω)− m̃t−1(Ω) =
m̃t−1(Ω)

t+ 1
(1− m̃t−1(Ω)).

As 0 ≤ m̃t−1(Ω) ≤ 1 for every t, the sequence m̃t(Ω) is nondecreasing, and is strictly increasing
iff 0 < m̃t−1(Ω) < 1 for every t. Observe that m0(Ω) = 0 entails m̃t(Ω) = 0 for every t, and
m0(Ω) = 1 entails m̃t(Ω) = 1 for every t. It follows that, under that assumption 0 < m0(Ω) < 1,
m̃t(Ω) converges to 1.

4. Let us show by induction that starting from the same prior 0 < m0 < 1, m̃t(Ω) < mt(Ω) for
every t. From (3) and (10)) with t = 1, we obtain:

m̃1(Ω) = m0(Ω)
3−m0(Ω)

2
=

3m0(Ω)− (m0(Ω))
2

2

=
m0(Ω) + 1− (m0(Ω)− 1)2

2
<

m0(Ω) + 1

2
= m1(Ω).

Let us assume the hypothesis till t− 1. We have from (10) again

m̃t(Ω) = m̃t−1(Ω)
( t+ 2− m̃t−1(Ω)

t+ 1

)
=

m̃t−1(Ω)(t+ 2)− (m̃t−1(Ω))
2

t+ 1

=
−(m̃t−1(Ω)− 1)2 + 1 + m̃t−1(Ω)t

t+ 1

<
m̃t−1(Ω) + 1

t+ 1
<

mt−1(Ω)t+ 1

t+ 1
= mt(Ω), (11)

where the last inequality comes from the induction hypothesis.
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5. Let us assume a piece of ambiguous evidence, the updated beliefs are:

m̃t({a}) =
m̃t−1({a}) · t+ m̃t−1({a}) · (1− (1− m̃t−1({a})− m̃t−1({b})))

t+ 1

=
m̃t−1({a}) · t+ m̃t−1({a})(m̃t−1({a}) + m̃t−1({b}))

t+ 1

and

m̃t({b}) =
m̃t−1({b}) · t+ m̃t−1({b}) · (1− (1− m̃t−1({a})− m̃t−1({b})))

t+ 1

=
m̃t−1({b}) · t+ m̃t−1({b})(m̃t−1({a}) + m̃t−1({b}))

t+ 1
.

The ratio between new masses is:

m̃t({a})
m̃t({b})

=

m̃t−1({a})·t+m̃t−1({a})(m̃t−1({a})+m̃t−1({b}))
t+1

m̃t−1({b})·t+m̃t−1({b})(m̃t−1({a})+m̃t−1({b}))
t+1

=
m̃t−1({a}) · t+ m̃t−1({a})(m̃t−1({a}) + m̃t−1({b}))
m̃t−1({b}) · t+ m̃t−1({b})(m̃t−1({a}) + m̃t−1({b}))

=
m̃t−1({a})(t+ m̃t−1({a}) + m̃t−1({b}))
m̃t−1({b})(t+ m̃t−1({a}) + m̃t−1({b}))

=
m̃t−1({a})
m̃t−1({b})

(12)

Suppose et = Ω. As observed, the distributive rule yields m̂t = m̂t−1, which is different from the
biased rule. Observe that if m̃t−1(Ω) = 1 (total uncertainty) or m̃t−1(Ω) = 0 (no uncertainty), then
m̃t = m̃t−1. In particular, m̃t(Ω) remains 1 or 0, respectively.

Example 4 (Example 1 cont’d). Let us apply the biased rule to our previous example. As for
the sequence a, a, b, a, b of non-ambiguous events, the result is identical to the previous ones (see
Proposition 3 (1)), we turn to the second sequence a, a, b, ab, ab. We obtain:

{a} {b} Ω
m̃1

5
3/4 1/4 0

m̃2
5

1/2 1/2 0
m̃3

5 0.4522 0.2261 0.3216

One can see that as expected, m̃5(Ω) remains smaller than m5(Ω) (see Proposition 3 (4), and recall
that m̃3 = m3).

3.4 Generalized formula

All previous rules can be cast into the following general rule:

mf
t (X) =

t ·mf
t−1(X) + f(mf

t−1, X, et)

t+ 1
, (∅ ̸= X ⊆ Ω), (13)

with f :M(Ω)× (2Ω \ {∅})× (2Ω \ {∅})→ [0, 1] is a function satisfying the property∑
∅ ̸=X⊆Ω

f(m,X, Y ) = 1.

Such a function f satisfying the above condition is called an updating function or updator. Indeed, we
have:

9
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• For the unbiased rule,
f(mt−1, X, et) = δet(X).

• For the distributive rule,

f(m̂t−1, X, et) = δ⊆et(X)m̂t−1(X : et).

• For the biased rule,

f(m̃t−1, X, et) =


δet(X), if et = {a} or et = {b}
m̃t−1(X)(1− m̃t−1(Ω)), if et = Ω and X ̸= Ω

m̃t−1(Ω)
(

t+2−m̃t−1(Ω)
t+1

)
, if et = X = Ω.

It is easy to check that all the above functions f are indeed updating functions.
The next proposition gives some basic properties of this class of updating rules. First, we say that an

updating rule based on an updating function f is strictly monotone if for all t > 0, mf
t (X) > mf

t−1(X)

whenever et = X and mf
t−1(X) < 1.

Proposition 4. Let f be an updating function and its corresponding updating rule. The following
holds:

1. If mf
t−1 is a bma, then mf

t is a bma.

2. The updating rule is strictly monotone iff

f(mf
t−1, X,X) > mf

t−1(X),∀∅ ̸= X ⊆ Ω,∀t = 1, 2, . . .

Proof. 1. As f and mf
t−1 take values in [0, 1], we have clearly mf

t ⩾ 0. Also, for every X ⊆ Ω, X ̸= ∅,

mf
t (X) ⩽

t ·mf
t−1(X) + 1

t+ 1
⩽

t+ 1

t+ 1
= 1.

Let us prove that
∑

X⊆Ω mf
t (X) = 1. We have

∑
X⊆Ω

mf
t (X) =

1

t+ 1

(
t
∑
X⊆Ω

mf
t−1(X) +

∑
X⊆Ω

f(mf
t−1, X, et)

)
=

1

t+ 1
(t+ 1) = 1.

2. By definition we have

mf
t (X)−mf

t−1(X) =
1

t+ 1

[
−mf

t−1(X) + f(mf
t−1, X,X)

]
which is positive iff f(mf

t−1, X,X) > mf
t−1(X).

Let us study the convergence properties of the family of updating rules. Let f be an updating
function and m0 some initial bma. Given a sequence of evidence e1, e2, . . . , et, we have the following,
for every ∅ ̸= X ⊆ Ω:

mf
1 (X) =

m0(X) + f(m0, X, e1)

2

mf
2 (X) =

m0(X) + f(m0, X, e1) + f(mf
1 , X, e2)

3

mf
3 (X) =

m0(X) + f(m0, X, e1) + f(mf
1 , X, e2) + f(mf

2 , X, e3)

4
...

...

mf
t (X) =

m0(X) +
∑t−1

k=0 f(m
f
k , X, ek+1)

t+ 1
⩽

m0(X) + t

t+ 1
.

10

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4715241

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4715241

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



It follows that

lim
t→∞

mf
t (X) = lim

t→∞

1

t

t∑
k=1

f(mf
k−1, X, ek), (14)

provided the limit exists. Let us see some particular cases.

1. Suppose et = X, t = 1, 2, . . ., and consider the unbiased rule. We have in this case f(mk, X,X) =
1, therefore by (14),

lim
t→∞

mt(X) = lim
t→∞

1

t

t∑
k=1

1 = 1.

2. Suppose et is a random sequence where et = X with probability p, and consider the unbiased
rule again. Then, by the strong law of large numbers, mt(X) converges to p almost surely.

3. Suppose again that et = X, t = 1, 2, . . ., and consider the distributive rule. The following can be
shown.

Proposition 5. Suppose m0(X) > 0 and that et = X for t = 1, 2, . . .. Then

lim
t→∞

m̂t(X) = m0(X : X).

The proof relies on the following lemma.

Lemma 1. Suppose m0(X) > 0 and that et = X for t = 1, 2, . . .. Then, by the distributive rule,
for any t = 1, 2, . . . ,

m̂t(X : X) = m0(X : X), m̂t(Y : X) = m0(Y : X) for every Y ⊂ X.

Proof. We show the result by induction. Let us put

m0(X : X) =
m0(X)∑

Y⊂X m0(Y ) +m0(X)
=: α,

m0(Y : X) =
m0(Y )∑

Y⊂X m0(Y ) +m0(X)
=: αY for any Y ⊂ X.

Note that αY = 0 iff m0(Y ) = 0 and that
∑

Y⊂X αY + α = 1. We have

m̂1(X) =
1

2

(
m0(X) + α

)
, m̂1(Y ) =

1

2

(
m0(Y ) + αY

)
.

Therefore

m1(X : X) =
m̂1(X)∑

Y⊂X m̂1(Y ) + m̂1(X)

=
m0(X) + α∑

Y⊂X m0(Y ) +m0(X) + 1

=
m0(X) + α
1
αm0(X) + 1

= α.

Similarly, for any Y ⊂ X:

m1(Y : X) =
m̂1(Y )∑

Y⊂X m̂1(Y ) + m̂1(X)

=
m0(Y ) + αY∑

Y⊂X m0(Y ) +m0(X) + 1

=
m0(Y ) + αY
1

αY
m0(Y ) + 1

= αY .

11
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Let us suppose the property true till t and let us prove it for t+1. We have, using the induction
hypothesis:

m̂t+1(X) =
(t+ 1)m̂t(X) + α

t+ 2
,

m̂t+1(Y ) =
(t+ 1)m̂t(Y ) + αY

t+ 2

for any Y ⊂ X. Therefore

mt+1(X : X) =
m̂t+1(X)∑

Y⊂X m̂t+1(Y ) + m̂t+1(X)

=
(t+ 1)m̂t(X) + α

(t+ 1)
(∑

Y⊂X m̂t(Y ) + m̂t(X)
)
+ 1

=
(t+ 1)m̂t(X) + α

t+1
α m̂t(X) + 1

= α.

Similarly, for any Y ⊂ X:

mt+1(Y : X) =
m̂t+1(Y )∑

Y⊂X m̂t+1(Y ) + m̂t+1(X)

=
(t+ 1)m̂t(Y ) + αY

(t+ 1)
(∑

Y⊂X m̂t(Y ) + m̂t(X)
)
+ 1

=
(t+ 1)m̂t(Y ) + αY

t+1
αY

m̂t(Y ) + 1
= αY .

Proof. (of Proposition 5) By using (14) and Lemma 1, we find, under constant evidence et = X,
t = 1, 2, . . . ,:

lim
t→∞

m̂t(X) = lim
t→∞

1

t

t∑
k=1

f(m̂k−1, X,X)

= lim
t→∞

1

t

t∑
k=1

m̂k−1(X : X)

= lim
t→∞

1

t
t ·m0(X : X) = m0(X : X).

Similarly,
lim
t→∞

m̂t(Y ) = m0(Y : X)

for any Y ⊂ X.

4 Agent-based models

In order to understand how beliefs evolve in a social network via different settings and update rules,
we create three agent-based models. In the first setting, there is a true state of nature, like in Example
1. In each turn, nature constantly sends signals. After updating their beliefs, agents discuss with their
neighbors. In the second setting, we create a model where agents form opinions about an ethical issue
with no true state; therefore, agents form opinions via their discussions with their neighbors. Finally,
we extend our second model to a three-party setting, e.g., Ω = {l, c, r}.

To study opinion dynamics, we create social networks via the Barabasi-Albert algorithm in all of
our models (Barabási & Albert, 1999), which proceeds as follows. In order to generate a network with
N = {1, 2, . . . , n}, we initially assume |N | = 1. Then, in each step t, we add a new agent nt until
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|N | = n. Agent nt connects to agent i of degree ki with probability pi =
ki∑
j kj

. This algorithm gives

us a scale-free network whose degree distribution follows a power law. Its main characteristic is that
few nodes will have many connections, and many nodes will have only a few connections †. The main
advantage of scale-free networks is that there are few extremely influential agents, which sometimes
poses a challenge for asymptotic learning (Acemoglu et al., 2011).

In this section, we will use three of the rules we described in Section 3: Dempster’s combination
rule from Equation (1), the distributive rule from Equation (6) when |Ω| = 3, and the biased rule from
Equation (10) when |Ω| = 2. The precise way of combination and belief updating will be explained
in each subsection. We nevertheless make an essential remark about Dempster’s rule of combination.
Recall that it is not defined when the level of conflict κ is equal to 1 in order to avoid division by 0.
Practically, we do not perform the combination if κ exceeds d = 0.9. It means that agents with very
different beliefs do not update; hence, their opinions are not affected, as if they would not communicate
at all. This reminds the bounded confidence models in social networks, where agents delete links with
agents with which they have too distant opinions (see Grabisch and Rusinowska (2020) for an extensive
literature review about bounded confidence models and the effect of the distance).

In our agent-based model, we use a total of 9 parameters. We run each simulation on average
T = 2000 turns, where beliefs stabilize. Moreover, we create R = 1000 simulations for each parameter
combination and then take the average results. In order to facilitate network visualization, we take
N = 200 agents in the network. We have also tested the robustness of our results with 2000 agents,
where we have observed no noticeable difference in results. We create agents with a prior belief mass
assignment randomly selected from a Dirichlet distribution in each run, e.g., mi

0 ∼ Dir(α∅, . . . , αΩ),
∀i ∈ N , where α∅, . . . , αΩ are Dirichlet parameters that denote the weight of outcome of ∅, . . . ,Ω in
the prior (see A for a detailed explanation on our reasoning for using Dirichlet distributions). Table 4
describes the parameters used in the simulation.

Parameter Value range Description
T 2000 Number of turns per run;
R 1000 Number of runs per parameter combination;
N 200 Number of agents in the network;
αH 20 A high weight Dirichlet parameter;
αM 1 An unbiased agent’s Dirichlet parameter;
αL 0.1 A low weight Dirichlet parameter;
p (0, 5, 1] The probability of observing the true state if the ev-

idence is non-ambiguous;
q [0, 1) The probability of observing a non-ambiguous evi-

dence;
π 0.01 The proportion of edges that are selected to commu-

nicate;
d 0.9 Bounded confidence parameter;
k 1 Neighbors to be connected in Barabasi-Albert algo-

rithm (scale-free).

Table 4: Parameters of simulations.

4.1 Existence of a true unknown state

This section studies the process of belief update when there is a true state of nature that is unknown,
while nature constantly sends a signal revealing the true state with a probability p, the signal being
possibly ambiguous. We take as framework Example 1, with Ω = {a, b} where a means that climate

†There is a dispute in the literature based on the shape of networks encountered in empirical data. Some studies
claim that real data follows a scale-free shape (Mislove et al., 2007), while a recent paper challenges that the real
data is rarely scale-free (Broido & Clauset, 2019). However, this challenge is based on how empirical observations are
more complex and have underlying unique properties. Therefore, we have also tested our model using a Watts-Strogatz
algorithm (Watts & Strogatz, 1998), where agents are in a “small world”, i.e., they can reach one another in very few
steps. The significance of our results remains the same.
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change is real, while b indicates the that there is no climate change. We distinguish two different
procedures for updating beliefs, detailed in the following subsections.

4.1.1 Communication via Dempster’s rule of combination

Algorithm 1 Dempster’s rule with a true state

1: A network G is randomly generated via Barabasi-Albert algorithm;
2: for every time step t do
3: Nature determines et:
4: if et = X ̸= Ω then
5: P(et = X) = pX ∗ q; X ̸= ∅;
6: else
7: P(et = Ω) = 1− q
8: end if
9: for every agent i do

10: mi
t(Y ) is computed by Eq. 10, ∀Y ⊆ Ω;

11: end for
12: A proportion π of links is selected randomly;
13: for every selected link ij do
14: Compute the level of conflict κ between mi

t and mj
t ;

15: if κ ⩽ d then
16: mi

t = mj
t ← mi

t ⊕mj
t ;

17: else state No update occurs;
18: end if
19: end for
20: end for

Supposing the true state of nature is a, nature sends ambiguous signal Ω with probability 0.1;
otherwise, nature sends a signal a with probability 0.8 and b with probability 0.2. At each time step t:

1. Each agent i updates its bma mi
t−1 with the signal X sent by Nature by using the biased rule

(Eq. (10)).

2. Select a proportion π of links. For each link ij selected, the agents i, j update their bmas mi
t,m

j
t

by replacing them by mi
t−1 ⊕mj

t−1 (Dempster’s rule), provided the level of conflict κ does not
exceed d (bounded confidence). Otherwise, no update occurs.

Algorithm 1 summarizes the whole procedure.
Figure 1 shows that agents start fully believing in climate change if nature consistently sends

evidence for it. In this case, nature is a constant persuader with a rigid opinion. This persuader
parallels the literature, where a constant persuader often prevails. However, we also observe short-
term polarization, where agents first polarize in two distinct opinions. Then, the wrong side starts
losing confidence after constant exposure to nature. Finally, everyone converges to full belief.

What is also interesting is the fact that agents’ m(B) values do not converge to the true p × q
value when they communicate via Dempster’s combination rule. Instead, it converges to full belief
m(B) = 1. The combination rule causes agents to believe they are entirely correct and that there is
no other probability. This behavior comes from the combination rule being self-reinforcing, meaning
that two agents with the same opinion will reinforce their beliefs and not stay in the position. This
result is similar to models that have been encountered in opinion dynamics models (Allahverdyan and
Galstyan, 2014; Baumann et al., 2020).

4.1.2 Communication via frequentist update

This section assumes that agents communicate via the biased update rule from Equation (10). Fre-
quentist update ensures that agents are not communicating thoroughly as they did via Dempster’s
combination rule; instead, they communicate with a softer approach where agents change their opin-
ions slowly. More precisely, at each time step t:
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(a) Each line is an agent’s BetP(B). (b) Initial distribution

(c) After 20000 turns. (d) Final distribution

Figure 1: Created via Algorithm 1. Red indicates a belief in climate change (BetP(B) = 1). p =
0.8, q = 0.9

1. Updating with a signal of nature is identical to the previous case.

2. Select a proportion π of links. For each link ij selected:

(a) Agent i sends a signal X ⊆ Ω to Agent j with probability mi
t(X), while simultaneously

Agent j sends a signal Y ⊆ Ω to Agent i with probability mj
t (Y ).

(b) Both agents i and j update via the frequentist biased rule (10).

Algorithm 2 summarizes this procedure, and Figure 2 shows our results.
We observe from Figure 2 that agents now converge to a value close to the true pq value, which

is 0.72. However, it is not easy to separate the effect of communication when there is a constant
persuader: nature. The difference here is that agents take tens of thousands of turns to converge to
the true state, while Dempster’s rule stabilizes after 3000 turns on average. Furthermore, our time
plot from Figure 2a shows no polarization at any given time.
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Algorithm 2 Frequentist rule with a true state

1: A network G is randomly generated via Barabasi-Albert algorithm;
2: for every time step t do
3: Nature determines et:
4: if et = X ̸= Ω then
5: P(et = X) = pX ∗ q; X ̸= ∅;
6: else
7: P(et = Ω) = 1− q
8: end if
9: for every agent i do

10: mi
t(Y ) is computed by Eq. 10, ∀Y ⊆ Ω;

11: end for
12: A proportion π of links is selected randomly;
13: for every selected link ij do
14: Agent i sends signal X ⊆ Ω to agent j with probability mi

t(X)
15: Agent j sends signal Y ⊆ Ω to agent i with probability mi

t(Y )
16: mi

t(Z) is computed by Eq. 10 with et = X and mi
t, ∀Z;

17: mj
t (Z) is computed by Eq. 10 with et = Y and mj

t , ∀Z;
18: end for
19: end for

4.2 No evidence from nature

In this section, we study an example where agents try to form opinions about an issue without obtaining
evidence from nature. This situation is similar to forming opinions about political or social issues where
there is no true state. Let us consider Ω = {a, b} with two ethical propositions, e.g., a indicates a
pro-choice opinion, and b indicates a pro-life opinion. We test the belief evolution in a network using
the combination and frequentist rules.

4.2.1 Communication via the Dempster’s rule of combination

In this model, at each time step t:

1. Select a proportion π of links.

2. For each link ij selected, the agents i, j update their bmas mi
t,m

j
t by replacing them by mi

t−1 ⊕
mj

t−1 (Dempster’s rule), provided the level of conflict κ does not exceed d (bounded confidence).
Otherwise, no update occurs.

Algorithm 3 summarizes this procedure.

Algorithm 3 Dempster’s rule with no true state

1: A network G is randomly generated via Barabasi-Albert algorithm;
2: for every time step t do
3: A proportion π of links is selected randomly;
4: for every selected link ij do
5: Compute the level of conflict κ between mi

t and mj
t ;

6: if κ ⩽ d then
7: mi

t = mj
t ← mi

t ⊕mj
t ;

8: else state No update occurs;
9: end if

10: end for
11: end for

Figure 3 reveals total polarization if agents communicate with their neighbors using Dempster’s
rule. Surprisingly enough, this polarization remains even when d = 0.999, indicating that agents are
highly tolerant and communicate with each other unless they are on the opposite side of the spectrum.
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(a) Each line is an agent’s BetP(B).

(b) Initial distribution (c) Final distribution

Figure 2: Created via Algorithm 2. Red indicates a belief in climate change (BetP(B) = 1). p =
0.8, q = 9.

Moreover, we tested the robustness of our results under small-world graph generation, and the results
remain robust.

Figure 3 shows a strong polarization result. Moreover, when we compare Figure 3 to Figure 1, we
realize that the constant flow of evidence eventually wears down radical agents in our previous model.
The lack of a constant persuader, nature, is a potent source of polarization.

4.2.2 Frequentist communication

The procedure here is very similar to the previous case, except that Agent i sends a signal X ⊆ Ω with
a probability mi

t−1 to a randomly chosen neighbor j, who updates its bma via the frequentist biased
rule. Algorithm 4 describes this process.

Figure 4 shows the smoothest polarization and echo chamber emergence in all of our simulations.
However, this polarization is not as substantial as in the previous section, where agents used the
combination rule. We see small echo chambers of different opinions. Here, Figure 4a indicates a more
chaotic result; however, one can observe that clusters in Figure 4c are indeed from the same opinion.
The graph shows the emergence of an echo chamber, where one cluster remains with one opinion, and
any outsider opinion is eliminated the turn after. Finally, it is possible to suggest that Dempster’s
rule will cause strict polarization due to its self-reinforcing nature, while frequentist rule will cause the
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(a) Each single line represents an agent’s BetP(B).

(b) Initial distribution (c) Final distribution

Figure 3: Created via Algorithm 3. Red indicates belief in climate change (BetP(B) = 1).

Algorithm 4 Frequentist rule with no true state

1: A network G is randomly generated via Barabasi-Albert algorithm;
2: for every time step t do
3: A proportion π of links is selected randomly;
4: for every selected link ij do
5: Agent i sends signal X ⊆ Ω to agent j with probability mi

t−1(X)
6: Agent j sends signal Y ⊆ Ω to agent i with probability mi

t−1(Y )
7: mi

t(Z) is computed by Eq. 10 with et = X and mi
t−1, ∀Z;

8: mj
t (Z) is computed by Eq. 10 with et = Y and mj

t−1, ∀Z;
9: end for

10: end for

emergence of echo chambers.

4.3 Ambiguous evidence and recognition of ignorance

An essential contribution of this paper is that it implements a degree of recognition of ignorance.
One question that arises from this fact is what happens to the ambiguity of agents under our belief
update rules. To answer this question, we study two cases where agents attempt to learn the true
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(a) Each line represents a single agent’s BetP(B) value
(belief to climate change).

(b) Initial distribution (c) Final distribution

Figure 4: Created via Algorithm 4. Red indicates belief in climate change (BetP(B) = 1).

ambiguity in nature, with and without communication. Algorithm 2 is used to create the case where
agents communicate via the Biased update rule (Equation 10. Then, we create another model where
agents receive evidence from nature and update their beliefs without the information from neighbors.
Algorithm 5 summarizes the model.

Moreover, we increase the ambiguity of evidence to 0.9, meaning that q = 0.1. Only one piece of
evidence out of ten is significant, while the rest is ambiguous.

Figure 5 shows that when there is no communication between agents, they will learn the ambiguity
of the evidence and eventually become self-doubtful. m(Ω) will go to q value for every agent. However,
communication will immediately change the nature of this behavior. Even a frequentist approach will
cause agents to become less doubtful about themselves. Eventually, m(Ω) will converge to 0 for every
agent.

4.4 A political example

Finally, we study an example where |Ω| = 3. Let us assume a political election with three parties:
Ω = {l, c, r}. In order to observe the impact of certainty, we study two types of agents. First, an
agent can be the voter of a party with extreme certainty, e.g., m(r) > 0.9. Second, an agent can be
indifferent between two parties while having a strong distaste for the third, e.g., m({l, c}) > 0.9. We
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Algorithm 5 Belief update under constant evidence

1: A network G is randomly generated via Barabasi-Albert algorithm;
2: for every time step t do
3: Nature determines et:
4: if et = X ̸= Ω then
5: P(et = X) = pX ∗ q; X ̸= ∅;
6: else
7: P(et = Ω) = 1− q
8: end if
9: for every agent i do

10: mi
t(Y ) is computed by Eq. 10, ∀Y ⊆ Ω;

11: end for
12: end for

(a) No communication (b) communication via frequentist update

Figure 5: Figure 5a is created via Algorithm 5, while Figure 5b is created via Algorithm 2. Each line
shows the recognition of ignorance of an agent (m(Ω)). q = 0.1, meaning that agents receive almost
only ambiguous evidence.

study under which circumstances the party with a certain voter base would prevail. For this section,
we use the distributive update rule from Equation 6 since its advantage becomes apparent when we
have more than two possible outcomes. Algorithm 6 summarizes the model.

Algorithm 6 Frequentist rule with three parties

1: A network G is randomly generated via Barabasi-Albert algorithm;
2: for every time step t do
3: A proportion π of links is selected randomly;
4: for every selected link ij do
5: Agent i sends signal X ⊆ Ω to agent j with probability mi

t−1(X)
6: Agent j sends signal Y ⊆ Ω to agent i with probability mi

t−1(Y )
7: mi

t(Z) is computed by Eq. 10 with et = X and mi
t−1, ∀Z;

8: mj
t (Z) is computed by Eq. 10 with et = Y and mj

t−1, ∀Z;
9: end for

10: end for

Figure 6 shows that the right party wins most elections. The difference in initial ambiguity beliefs is
apparent. More interestingly, we observe that the impact of increasing the starting age is exceptionally
high. This effect is expected since our model increases belief persistence with the amount of evidence
one receives. Therefore, left and centre-party voters tend to change their opinions since their initial
beliefs are more ambiguous, while right-party voters eventually act as persuaders. We also observe
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(a) benchmark (b) k=2

(c) starting age = 100 (d) m(Ω) is very high

Figure 6: The effect of initial age, ambiguity, and network connectivity. In the benchmark model,
k=1, starting age is 10, and initial m(Ω) is low for all agents.

that the more connected a network gets, the differences become less noticeable. This indicates that
network bottlenecks work in favor of the party that is more certain of herself. Finally, we observe that
initial ambiguity helps the party that is certain of themselves (see Grabisch et al. (2023) for an opinion
dynamics paper that shows under which conditions polarization benefits the majority candidate).

5 Concluding remarks

Dempster-Shafer Theory in opinion dynamics had been relatively barren, with an emerging interest
in the last decade (Lu et al., 2015; Huang et al., 2023). So far, to our knowledge, our paper is the
first study that creates a frequentist model in DST. We study two approaches created in the works
of literature of Bayesian and non-Bayesian models, using various update rules in DST. We show that
DST is strong and versatile enough to generate various phenomena of social networks.
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Climate change was a polarized topic of discussion in the mid-late twentieth century. However, the
number of people who believe that climate change is real and that humans are the leading cause is
increasing over time (Milfont et al., 2017). Ethical discussions like abortion (Adamczyk et al., 2020) or
political discussions like fraud in elections, however, cause significant polarization in the population,
which we do not observe vanishing. Our preliminary results predict this behavior: agents tend to form
a consensus on issues with a constant source of meaningful, accurate information. Meanwhile, a social
issue without a definitive true answer creates significant polarization. To summarize, nature eventually
acts as a persistent persuader, which has been shown to prevail.

Furthermore, the ambiguity of the evidence changes behavior depending on whether there is com-
munication or not. When there is no communication, agents realize that the evidence is mostly noise.
However, communication polarises the community, and agents start believing they are entirely correct
and there is no ambiguity. The combination rule might cause the violation of belief persistence (Ryan,
2002) when two agents with vastly different opinions collide. The proposed model is similar to subtle
belief update methodologies observed in heuristic-based models, where agents take one step toward
others instead of immediately meeting somewhere in the middle. Hence, this approach is immune to
the violation of belief persistence.

A Application of Dirichlet distribution

The Dirichlet distribution is a generalization of the beta distribution to higher dimensions and is
commonly used in Bayesian statistics for generating random probability vectors that sum to 1 (Ng
et al., 2011; Robert et al., 2007). We use these distributions in this study for the construction of priors
in Section 4. Formally, the Dirichlet distribution, denoted as Dir(α1, . . . , αK) for a K − 1 dimensional
simplex, is a family of continuous multivariate probability distributions parameterized by a vector
α = (α1, . . . , αK) of positive reals.

f(x1, x2, . . . , xK ;α1, α2, . . . , αK) =
1

B(α)

K∏
i=1

xαi−1
i (15)

where x1, x2, . . . , xK are non-negative real numbers that sum to 1 (
∑K

i xi = 1), and B(α) is the
multinomial beta function, which serves as a normalization constant to ensure that the total probability
integrates to 1. The function B(α) is defined as:

B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

) (16)

where Γ(·) denotes the gamma function. Its suitability for our model is based on two properties:

1. Conformity to normalization constraint: Given the requirement in DST that the sum of masses
across all subsets of the frame of discernment must be unity, the Dirichlet distribution is apt due to
its inherent property of generating vectors: m0 = (m0(X1), . . . ,m0(XK)) where

∑K
i=1 m0(Xi) =

1, X ⊆ Ω.

2. Flexibility in encoding beliefs: The parameters αi of the Dirichlet distribution directly influence
the distribution’s shape, allowing for modeling a wide range of initial belief states. This is vital
in representing diverse agent perspectives in DST, where αi essentially controls the agent’s initial
confidence in the corresponding outcome.

Let Ω = {A,B}, in order to create a prior mass m0 = {m(∅),m(A),m(B),m(Ω)}, we use a
Dirichlet distribution with parameters (αA, αB , αΩ). Please note that we assume α∅ = 0 due to the
closed-world hypothesis.

In Section 4, we first create agents randomly in Algorithms 1, 2, 3, 4, and 5. In these mod-
els, we have a power set 2Ω = {∅, {Climate change is real}, {It is not real}, {Either can be true}} =
{∅, {A}, {B},Ω}. We assume that an agent will always consider α = 1 for all non-empty set events,
e.g., α = (1, 1, 1) (we omit the case of the empty set for the sake of simplification). On the other
hand, in Algorithm 6, we assume biased agents towards one of the outcomes. Let Ω = {l, c, r}; for
example, a voter who supports the right party with almost full certainty would have a prior selected
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from a distribution with parameters α = (0.1, 0.1, 20, 0.1, 0.1, 0.1, 0.1), while a voter who hates the
right party while being indifferent between left and center parties would have a prior selected from
α = (0.1, 0.1, 0.1, 20, 0.1, 0.1, 0.1, 0.1).

(a) α = (5, 5, 5) (b) α = (1, 1, 1)

(c) α = (2, 2, 10) (d) α = (0.1, 0.1, 20)

Figure 7: Each triangle represents a 2-simplex where each point inside is a vector (A,B,Ω), where
A+B +Ω = 1.

To illustrate how different Dirichlet parameters lead to different distributions, we generate four
different plots in Figure 7. All parameters are equal in Figures 7a and 7b. It is possible to see that
α = (1, 1, 1) from Figure 7b is equivalent to a multivariate uniform distribution, where all points are
equally likely. In contrast, α = (5, 5, 5) from Figure 7a causes more central points to be selected.
Then, we create two plots where the distribution favors one of the outcomes in Figures 7c and 7d. We
observe that many agents from Figure 7c have beliefs that are still close to the center, while Figure 7d
causes all agents to be biased. In this paper, we used parameters from Figure 7b for unbiased agents
and those from Figure 7d for biased agents.
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