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Abstract

Abstract Interpretation theory formalizes the conservative approximation of the

semantics of hardware and software computer systems. Abstract Interpretation

approximates semantics according to some property of choice, this is formalized by

choosing an appropriate abstract domain to use as abstraction of the semantics. A

great variety of abstract domains can be formulated and the choice of domain offers

a trade-off between precision and computational complexity. This thesis illustrates

the instantiation of the Abstract Interpretation in the following scenarios,

� Program slicing.

� Watermarking relational databases.

� Watermarking program source code.

In this dissertation, a further refinement of the traditional slicing technique, called

property driven program slicing is proposed by combining it with a static analysis

in Abstract Interpretation framework. Very often, we are interested on a specific

property of the variables in the slicing criterion, rather values. This is the case

for instance, when dealing with non-interference in language-based security, where

abstractions come into play in modeling the observational power of attackers.

Therefore, when performing slicing, the abstract properties of variables and the

abstract dependencies come into account. This approach of slicing, is not simply

a pure generalization of a well-known technique, but provides new insights in links

existing between different computer science fields.

Strengthening the ownership rights on outsourced relational database is very im-

portant in todays internet environment. In this context, the thesis introduces

a distortion free watermarking technique that strengthen the verification of in-

tegrity of the relational databases by using a public zero-distortion authentication

mechanism based on a Abstract Interpretation framework.

With the increasing amount of program source code which is distributed in the

web, software ownership protection and detection is becoming an issue. In this

scenario, a public key software watermarking (asymmetric watermarking) scheme

is proposed which is similar in spirit to zero-knowledge proofs. The proposed

approach of watermarking a source code is seen as an alternative to encryption as

a way to support software authentication rather a tool for copyright protection.
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Chapter 1

Introduction

1.1 Motivation

Static program analysis [99][42] is an automatic process that obtains properties of

a program by analyzing its source code or object code. It has been widely used

in optimizing compilers, for instance. But as software becomes more and more

important in our society and as the reliability of software becomes safety-critical,

static program analysis has become more important in different scenarios too.

Abstract Interpretation is a framework for program analysis introduced by Patrick

and Radhia Cousot [43][43][40]. It is a formalized framework designed to deal with

approximations, specially useful for the static analysis of programs. The basic idea

is that a (possibly infinite) set of states is approximated by one abstract state.

This abstraction is made based on some property of interest. The variables and

functions of a program is also abstracted using the same property. This leads to

a computable set of states which correctly approximates the program.

Abstract Interpretation simulates execution with an abstract semantics over a

program. Different abstract semantics give information about different properties

of the program. The different forms of abstraction over the semantics are called

abstract domains.

Abstract Interpretation is a relatively new field of research, and it is being devel-

oped constantly. This framework is very general and can be applied to a great

variety of problems. In fact, a lot of works have been achieved, either based on ab-

stract interpretation or trying to improve different parts of the framework. Because

1
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Abstract Interpretation is so general, there have been theoretical advances and re-

searches to improve the possible applications of abstract interpretation. When

we try to apply abstract interpretation techniques, we must consider the objects

manipulated during the process. This question is crucial to the implementation

because it determines the accuracy and the complexity of the computation. But

in many cases, the objects that are available from classical computer science may

be inadequate, because they don’t take advantage of the possibility of approxi-

mation. Thus some specific objects and their manipulation have been defined to

be used in Abstract Interpretation. Usually, they cannot represent any possible

object but they come with approximation mechanisms. As more domains are be-

ing developed and more will be known about abstract domains in general, it will

probably be even more useful in the future. The choice of abstract domain for a

specific need will probably be easier as tools for custom made abstract domains

probably will be richer. Abstract Interpretation has been used in different contexts

as theory for abstraction. In this thesis we use Abstract Interpretation framework

to describe (define) program slicing as property driven program slicing [13, 36],

relational database watermarking as relational data table abstraction [14–16] and a

novel program source code watermarking procedure based on zero-knowledge proof

system.[17]

1.1.1 Program Slicing

Program slicing is the study of meaningful subprograms. Typically applied to the

code of an existing program, a slicing algorithm is responsible for producing a pro-

gram (or subprogram) that preserves a subset of the original programs behavior.

A specification of that subset is known as a slicing criterion, and the resulting

subprogram is a slice. Generally speaking, by applying a slicing technique on a

program P with a slicing criterion C (i.e. a line of code in P ), we get a program

P ′ that behaves like P when focussing only on the variables in C. The sliced

program P ′ is obtained through backward computation from P by removing all

the statements that do not affect neither directly nor indirectly the values of the

variables in C.

Slicing was introduced with the observation that “programmers use slices when

debugging” [130]. Nevertheless, the application of program slicing does not stop

there. Further applications include testing [13, 69], program comprehension [36],
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model checking [93, 110], parallelisation [6, 131], software metrics [92, 109], as well

as software restructuring and refactoring [53, 82, 89].

There can be many different slices for a given program and slicing criterion. Indeed,

there is always at least one slice for a given slicing criterion: the program itself [129,

130]. However, slicing algorithms are usually expected to produce the smallest

possible slices, as those are most useful in the majority of applications.

1.1.1.1 Property Driven Program Slicing

Very often, we are interested on a specific property of the variables in the slicing

criterion, not on their exact actual values. For instance, in a recently proposed

abstract interpretation based model of non-interference in language-based secu-

rity, where abstractions come into play in modeling the observational power of

attackers. Therefore, when performing slicing, the abstract properties of variables

and the abstract dependencies are came into account. Again consider the case,

when we are analyzing a program P and we want a variable x in P to have a

particular property ρ. If we realize that, at a fixed program point, x does not

have that desired property, we may want to understand which statements affect

the computation of property ρ of x, in order to find out more easily where the

computation was wrong. In this case we are not interested in the exact value of

x, hence we may not need all the statements that a standard slicing algorithm

would return. Therefore, the traditional value based static slicing is not adequate

in this case. In this situation we would need a technique that returns the minimal

amount of statements that actually affect the computation of a desired property

of x. since, properties propagate less than values, some statements might affect

the values but not the property. This can make debugging and program under-

standing tasks easier, since a smaller portion of the code has to be inspected when

searching for some undesired behavior.

In this direction, our aim is to further refine the traditional slicing technique

[129, 130, 132] by combining it with a static analysis in Abstract Interpretation

[40, 42] based framework that looks for the statements affecting a fixed property of

variables of interest rather values. This results into a deeper insight on the strong

relation between slicing and property based dependency (abstract dependency).
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Stmt. No. P P(4,d) P sign
(4,d)

1 a=5; a=5;
2 b=2-a; b=2-a;
3 e=-b;
4 c=a+b; c=a+b;
5 d=c+a*a+b*b-c+5; d=c+a*a+b*b-c+5; d=c+a*a+b*b-c+5;

Table 1.1: Value based vs property driven program slice

The idea can be summarized as follows. The resulting proposal is a fixed point

computation where each iterate has two phases. First, the control flow analysis

is combined with a static analysis in a Abstract Interpretation based framework.

Hence, each program point of the program is enhanced with information about

the abstract state of variables with respect to the property of interest. Then, a

backward program slicing technique is applied to the augmented program exploit-

ing the abstract dependencies. Though our approach of slicing, is not simply a

pure generalization of a well-known technique, but provides new insights in links

existing between different computer science fields.

Example 1.1. Consider the program P in Figure 1.1. The value based traditional

slicing algorithm with slicing criterion (5, d) just removes the statement 3 from the

initial program as it does not affect the slicing criterion at all. However, if we are

interested in the sign of d at statement 5, the situation is quite different. The sign

of d at 5 depends neither on a nor on b. Therefore, statement 1 and statement 2

are irrelevant. Again, unlike the standard approach there is no dependency between

d and c, so in this case statement 4 is also irrelevant. Therefore, The property

driven program slice P sign
(5,d) of program P with respect to slicing criterion (5, d) and

sign property contains less statements than it’s value based slice P(5,d) with the

same slicing criterion.

1.1.2 Watermarking

According to Main and Oorschot [88], computer security can be classified as the

following three types.

1. Data security, which is concerned with the confidentiality and integrity of

data in transit and storage.
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2. Network security, which aims to protect network resources, devices, and

services.

3. Software security, which protects software from unauthorized access, modi-

fication, and tampering.

Due to the dramatically increased usage of the Internet, the ease on downloading

seems to encourage people to use data tables and software source codes without

authorization. In this literature we concentrate on data security and software

security by means of watermarking. The idea is to provide a distortion-free water-

marking algorithm for relational databases and software source code in Abstract

Interpretation based framework.

Most of the research in the area of watermarking is aimed to a common goal.

This goal is how to insert error or mark or data or formula or evidence and so

on associated with a secret key known only by the data owner in order to prove

the ownership of the data without losing its quality. In order to evaluate any

watermark system, the following requirements are generally considered:

1. Readability: A watermark should convey as much information as possible,

statistically detectable, enough to identify ownership and copyright unam-

biguously,

2. Security: Only authorized users can have access to the watermarking infor-

mation,

3. Imperceptibility: The embedding process should not introduce any percep-

tible artifacts into original data and not degrade the perceive quality, and

4. Robustness: The watermark should be able to withstand various attacks

while can be detected in the extraction process.

The extensive use of databases in applications is creating a need for protecting

copyright of databases. There are a range of watermarking techniques available for

protection of ownership, authentication and content integrity. Given the lead that

multimedia watermarking research has over database watermarking research, one

would hope that the standard multimedia techniques can be just carried over to the

realm of relational databases. However, there exist some fundamental differences
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between the characteristics of multimedia data and relational data, which make

the adaptation of the known watermarking techniques not as easy as one would

have desired.

Software watermarking is a method of software protection by embedding secret

information into the text of software. We insert such secret information to claim

ownership of the software. This enables the copyright holders to establish the

ownership of the software by extracting this secret message from an unauthorized

copy of this software when an unauthorized use of this software occurs.

Software watermarking can be regarded as a branch of digital watermarking, which

started about 1954 [45]. Since the publication of a seminal work by Tanaka et al.

in 1990 [123], digital watermarking has made considerable progress and become a

popular technique for copyright protection of multimedia content which includes

digital still images, audio and video sources. Digital watermarking aims at pro-

tecting a digital content from unauthorized redistribution and copying by enabling

ownership provability over the content. These techniques have traditionally relied

on the availability of a large “bandwidth” within which information can be in-

delibly and imperceptibly inserted while remaining certain essential properties of

the original contents. Research on software watermarking started in the 1990s.

The patent by Davidson and Myhrvold [47] presented the first published software

watermarking algorithm.

1.1.2.1 Watermarking Relational Databases

Watermarking databases has unique requirements that differ from those required

for watermarking digital audio or video products. Such requirements include:

maintaining watermarked database usability, preserving database semantics, pre-

serving database structure, watermarked database robustness, blind watermark

extraction, and incremental updatability , among many other requirements. These

fundamental differences between the characteristics of multimedia data and rela-

tional data, make the adaptation of the known watermarking techniques not as

easy as one would have desired. Therefore, new watermarking techniques for

databases have to be designed.

This is increasingly important in many applications where relational databases

are publicly available on the Internet. For example, to provide convenient access
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to information for users, governmental and public institutions are increasingly

required to publish their data on the Internet [124]. The released data are usually

in tabular form and in these cases, all released data are public; what is critical for

the owner of the data is to make sure that the released data are not tampered,

along with its ownership proof. To check the integrity of relational databases, an

intuitive method is to use the traditional digital signature to detect the alterations

of databases [8]. A hash value is computed over a relational database and then is

signed with the owner’s private key. The generated signature is then appended to

the database or stored separately. Though this method is very simple, there are

some problems with it,

• The signature can only be used to verify whether the database has been

modified or not; it cannot be used to localize and recover the modifications.

• For a very large database, the failure of integrity verification will render the

whole database useless.

• If there is a need to make some necessary modifications to the database, we

have to compute a new signature and discard the previous one.

• It is computationally intensive to generate and verify the signatures.

Due to these problems, it is desirable that we have a fragile watermarking scheme

for relational databases so that any modifications can be localized and detected.

In addition, because the fragile watermarking scheme is private key based, its

computational cost is obviously less than that of digital signature schemes.

We introduce a distortion free watermarking technique that strengthen the veri-

fication of integrity of the relational databases by using a public zero distortion

authentication mechanism based on the Abstract Interpretation framework. The

watermarking technique is partition based. The partitioning can be seen as a vir-

tual grouping, which does not change neither the value of the tables elements nor

their physical positions. We called this phase as relation abstraction, where the

confidential abstract relation keeps the information of the partitions. Instead of in-

serting the watermark directly to the database partition, we treat it as an abstract

representation of that concrete partition, such that any change in the concrete do-

main reflects in its abstract counterpart. This is the partition abstraction phase,
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where the main idea is to generate a gray scale image associated with each parti-

tion as a watermark of that partition, that serves as tamper detection procedure,

followed by employing a public zero distortion authentication mechanism to verify

the ownership, the authentication phase.

1.1.2.2 Watermarking Program Source Code

With the increasing amount of program source code (most of the time in the form

of bytecode) which is distributed in the web, software ownership protection and

detection is becoming an issue. In particular, with multiple distributions of code,

in order to prevent the risk of running fake programs, it is important to provide

authentication proofs that do not overload the packages and that are easy to check.

This is the aim of the so called Software Watermarking Techniques.

The actual creator of the software can established his authorship by software

watermarking. Software watermarking refers to the process of embedding hidden

information called watermark in a software source code by the creator of the

software so that the authorship of the software can be proven where the presence

of the secret data is demonstrated by a watermark recognizer. Since the watermark

is secret, only the true author knows its value.

In general, it is not possible to devise watermarks that are immune to all con-

ceivable attacks; it is generally agreed that a sufficiently determined attacker will

eventually be able to defeat any watermark. In our vision, watermarking is a

method that does not aim to stop piracy copying, but to check the ownership of

the software. Therefore in our approach watermarking is seen as an alternative to

encryption as a way to support software authentication rather a tool for copyright

protection.

An important consideration in watermarking is protecting the watermark from

the adversary. The adversary might tamper with the program and modify or

completely remove the watermark so that the watermark recognition would fail.

We propose a public key software watermarking (asymmetric watermarking) scheme

which is similar in spirit to zero-knowledge proofs introduced by Goldwasser, Mi-

cali, Rackoff [63]. Zero-knowledge proofs provide a solution in a situation where a

prover wants to prove its knowledge of the truth of a statement to another party,

called the verifier. However, the prover wants to convey its knowledge of the proof
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without conveying the actual proof. The proof is provided by the interaction be-

tween the two parties, at the end of which the verifier is convinced of the provers

knowledge of the proof. However, the verifier has not gained any knowledge in the

interaction. In our case, we show the watermark by a zero knowledge proof.

Our main idea is to prove the presence of a watermark without revealing the exact

nature of the mark. The embedding algorithm inserts a watermark W into the

source code of the program P using the private key of the owner. In the verification

process we established a protocol V that has access to the watermarked program

PW and to the corresponding public key. V proves the presence of watermark W

in PW without revealing the exact location of the watermark nor the nature of the

watermark specified by private key.

1.2 Thesis Outline

This thesis is composed by 6 chapters. Each chapter provides a brief introduction

explaining its contents, while the chapters describing original work have also a

final discussion section about the problems addressed and the solutions proposed

in the chapter. Chapter 2 provides notation and the basic algebraic notions that

we are going to use in the following of the thesis, together with a brief introduc-

tion to abstract interpretation. Chapter 3 provides a refinement of the traditional

slicing technique by combining it with a static analysis in abstract interpreta-

tion based framework, namely, property driven program slicing. In Chapter 4 a

distortion free watermarking technique is introduced that strengthen the verifi-

cation of integrity of the relational databases by using a public zero distortion

authentication mechanism in a abstract interpretation based frame work. a public

key software watermarking (asymmetric watermarking) scheme which is similar in

sprit to zero-knowledge proofs is proposed in Chapter 5. Chapter 6 sums up the

major contributions of this thesis and briefly describes future works that we would

like to explore.



Chapter 2

Basic Notions

In this chapter, we introduce the basic algebraic notations and teminologies that

we are going to use in the thesis. In Section 2.1 describes the mathematical

background, recalling the basic notions of sets, functions and relations, followed

by an overview of fixpoint theory [41] and a brief presentation of lattice theory

[40, 61, 62], recalling the basic algebraic ordered structures and the definitions

of upper closure operators and Galois connections and describing how these two

notions are related to each other. Abstract Interpretation [40, 42] is introduced

in Section 2.2, characterizing abstract domains in terms of both Galois connec-

tions and upper closure operators.The properties of soundness and completeness

of abstract operators with respect to the corresponding concrete ones are also de-

scribed. Dependence terminologies that are useful for discussing property driven

program slicing is illustrated in Section 2.3. Section 2.4 describes the notion of

zero-knowledge proofs by an example.

2.1 Mathematical Background

2.1.1 Sets

A set is a collection of objects. The notation x ∈ C (x belongs to C) expresses the

fact that x is an element of the set C. The cardinality of a set C represents the

number of its elements and it is denoted as |C|. Let C and D be two sets. C is a

subset of D, denoted C ⊆ D, if every element of C belongs to D. When C ⊆ D

10
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and there exists at least one element of D that does not belong to C we say that C

is properly contained in D, denoted C ⊂ D.Two sets C and D are equal, denoted

C = D, if C ⊆ D and D ⊆ C. Two sets C and D are different, denoted C 6= D,

if there exists an element in C (in D) that does not belong to D (to C). The

symbol ∅ denote the empty set, namely the set without any element. The union

of C and D is defined as C ∪D = {x|x ∈ C ∨x ∈ D}.The intersection of C and D

is defined as C ∩D = {x|x ∈ C ∧ x ∈ D}. Two sets C and D are disjoint if their

intersection is the empty set, i.e., C ∩ D = ∅. The set difference, i.e. the set of

elements of C that do not belong to D is defined as C \D = {x|x ∈ C ∧ x /∈ D}.
The powerset ℘(C) of a set C is defined as the set of all possible subsets of C and

is defined as ℘(C) = {D|D ⊆ C}.

2.1.2 Relations

Let x, y be two elements of a set C, we call ordered pair the element (x, y). This

notion can be extended to the one of ordered n− tuple, with n ≥ 2 : (x1, . . . , xn)

is defined as, (...((x1, x2), x3)...). Given n sets {Ci}1≤i≤n, the cartesian product of

the n sets Ci is the set of ordered n-tuples:

C1 × C2 × ...Cn = {(x1, x2, ..., xn)|∀i : 1 ≤ i ≤ n : xi ∈ Ci}

We denote by Cn, the nth cartesian self product of C.

Given two not empty sets C and D, any subset of the cartesian product C × D
defines a relation between the elements of C and the elements of D. When C = D,

any subset of C × C defines a binary relation on C. Given a relation R between

C and D, i.e., R ⊆ C ×D, and two elements x ∈ C and y ∈ D, then (x, y) ∈ R
and xRy are equivalent notations denoting that the pair (x, y) belongs to the

relation R, namely that x is in relation R with y. In the following we introduce

two important classes of binary relations on a set C.

Definition 2.1. (Equivalence relation) An equivalence relation R on a set C is a

subset of C × C which satisfies the three axioms below:

• reflexivity: ∀x ∈ C : (x, x) ∈ R

• symmetry: ∀x, y ∈ C : (x, y) ∈ R ⇒ (y, x) ∈ R



Chapter 2. Basic notations 12

• transitivity: ∀x, y, z ∈ C : (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R

An equivalence class is a subset of C of the form {x ∈ C|xRy} where y is an

element of C. Roughly, it contains all the elements of C which are equivalent to y.

Definition 2.2. (Partial order) A binary relation v on a set C is a partial order

on C if the following properties hold:

• reflexivity: ∀x ∈ C : x v x;

• antisymmetry: ∀x, y ∈ C : x v y ∧ y v x⇒ x = y;

• transitivity: ∀x, y, z ∈ C : x v y ∧ y v z ⇒ x v z

A set with a partial order defined on it is called a partially ordered set or poset

and is denoted as 〈C,v〉.

2.1.3 Functions

Let C and D be two sets. A function f from C to D is a relation between C and

D such that for each x ∈ C there exists exactly one y ∈ D such that (x, y) ∈ f ,

and in this case we write f(x) = y. Usually the notation f : C → D is used

to denote a function from C to D, where C is the domain and D the co-domain

of function f . The set f = {f(x)|x ∈ X} is the image of X ⊆ C under f .

The image of the domain, i.e., f(C), is called the range of f . If there exists an

elements x ∈ C such that the element f(x) is not defined, we say that function f

is partial, otherwise function f is said to be total. Given two sets C and D and

function f : C → D. Function f is said to be injective or one-to-one if for every

x, y ∈ C : f(x) = f(y) ⇒ x = y. Thus, a function is injective if it maps distinct

elements into distinct elements. Function f is surjective or onto if, f(C) = D.

Thus, a function is surjective if every element of the co-domain is image of at-

least one element of the domain. Function f is bijective if f is both injective and

surjective. While Two sets are isomorphic, denoted ∼=, if there exists a bijection

between them. The identity function fid : C → C that associates each element to

itself, i.e., ∀x ∈ C : fid(x) = x. The composition g ◦ f : C → E of two functions

f : C → D and g : D → E, is defined as g ◦ f(x) = g(f(x)).



Chapter 2. Basic notations 13

2.1.4 Ordered Structures

Let us consider two elements x and y of a poset 〈L,v〉. We say that x is covered

by y in C, written x ≺ y, if x v y and @z ∈ L : x v z v y. Relation ≺ can be

used to define a Hasse diagram for a finite ordered set C: the elements of C are

represented by points in the plane, where x is drown above y if x v y, and a line

is drown from point x to point y precisely when x ≺ y.

Following are definitions of some commonly used terms related to partial order

〈L,v〉.

• X ⊆ L has l ∈ L as lower bound if ∀l′ ∈ X : l v l′.

• X ⊆ L has l ∈ L as greatest lower bound (glb or inf or meet) if l is a

lower bound of X and l0 v l whenever l0 is another lower bound of X. It is

represented by the operator u. We denote glb(X) by uX.

• let l be the glb(X), if l belongs to X, l is the minimal element of X. If glb(L)

exists it is called the minimum (or bottom) element of the poset L and it is

usually denoted by the symbol ⊥.

• X ⊆ L has l ∈ L as upper bound if ∀l′ ∈ X : l′ v l.

• X ⊆ L has l ∈ L as least upper bound (lub or sub or join) if l is the upper

bound of X and l v l0 whenever l0 is another upper bound of X. It is

represented by the operator t. We denote lub(X) by tX.

• let l be the lub(X), if l belongs to X, l is the maximal element of X. If

lub(X) exists it is called the maximum (or top) element of the poset L and

it is usually denoted by the symbol >.

Example 2.1. Lets consider a partially ordered set 〈L, |〉; where L = {1, 2, 3, 4, 6, 9, 36}
under relation divides(|). It can be represented using Hasse diagram as shown in

Figure 2.1. Here for X = {6, 36} we get upper bound(X) = {3, 6} and lower

bound(X) = {1}. Hence glb(X) = 1 and lub(X)= 6. Hence it is clear from this

example that glb and lub for a given subset X need not be present in X.

Definition 2.3. (Chain) Let 〈L,v〉 be a poset. X ⊆ L is a chain if ∀x, y ∈ X :

x v y ∨ y v x. Hence, a chain is a totally ordered set. Figure 2.2 shows a poset

and some chains in it.
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Figure 2.1: Complete lattice

Definition 2.4. (Direct set) A poset L is a direct set if each non-empty finite

subset of L has least upper bound in L. A typical example of a direct set is a

chain.

Definition 2.5. (Complete partial order) A complete partial order (or cpo) is a

poset 〈L,v〉, such that there is a bottom element ⊥ and for each direct set D in

L, there exists tD.

It is clear that every finite poset is a cpo. Moreover, it holds that a poset L is a

cpo if and only if each chain in L has least upper bound.

Figure 2.2: (a)Poset(b)Example of chains in poset(a)

Definition 2.6. (Complete lattice) A complete lattice (L, v, t, u, >, ⊥) is a

partial ordered set (L, v) such that every subsets of L, has a least upper bound as

well as a greatest lower bound.

• The greatest element > = u∅ = tL
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• The least element ⊥ = uL = t∅

Definition 2.7. (Moore Family) Let L be a complete lattice. The subset X ∈ C
is a Moore family of L if X =M(X) = {uS|S ⊆ X}, where u∅ = > ∈M(X).

In factM(X) is the smallest (with respect to set inclusion) subset of L containing

X.

Definition 2.8. (Ascending chain condition) A poset 〈C,v〉 satisfies the ascend-

ing chain condition (ACC) if for each increasing sequence x1 v x2 v ... v xn v ...

of elements of C, there exists an index k such that ∀h ≥ k it holds xh = xk i.e

xk = xk+1 = ...

It is clear that the ordered set of even numbers {n ∈ N | n mod 2 = 0} does not

satisfy the ascending chain condition, since the ascending chain of even numbers

does not converge. A poset satisfying the descending chain condition (DCC) is

dually defined as a poset without infinite descending chains.

2.1.5 Functions on Domains

Let 〈C,v1〉 and 〈D,v2〉 be two posets, and consider a function f : C → D, now

let us consider the following definitions:

Definition 2.9. (monotone) f is monotone (or order preserving) if for each x, y ∈
C such that x v1 y we have that f(x) v2 f(y).

Definition 2.10. (order embedding) f is order embedding if ∀x, y ∈ C we have

that x v1 y ⇔ f(x) v2 f(y).

Definition 2.11. (order isomorphism) f is an order isomorphism if f is order

embedding and surjective.

The continuous and additive functions are particularly important when studying

program semantics.

Definition 2.12. (continuous) Given two cpo C and E, a function f : C → E is

(Scott)- continuous if it is monotone and if it preserves the limits of direct sets,

i.e. if for each direct set D of C, we have f(tCD) = tEf(D).
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Co-continuous functions can be defined dually.

Definition 2.13. (additive) Given two cpo C and D, a function f : C → D is

(completely) additive if for each X ⊆ C, we have that f(tCX) = tDf(X).

Hence, an additive function preserves the limits (lub) of all subsets of C (∅ is

included), meaning that an additive function is also continuous. The notion of

co-additive functions is dually defined.

2.1.6 Fixed Points

Definition 2.14. (Fixpoint) Consider a monotone function f : L1 → L2 on a

complete lattice L = (L,v,t,u,⊥,>). A fixed point of f is an element l ∈ L such

that f(l) = l.

Fix(f) = {l|f(l) = l}

Figure 2.3: Structure of fixed points of f

The semantics of programming languages can be always formulated in a fixpoint

form. If f is defined over a partial order 〈L,v〉 (Figutre 2.3), then an element

l ∈ L is

• Fix(f) = {l ∈ L | f(l) = l} set of fixed points.

• a pre-fixpoint if l v f(l)
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• a post-fixpoint if f(l) v l

• the least fixpont (lfp(f))if ∀l′ ∈ L : l′ = f(l′)⇒ l v l′

• the greatest fixpoint(gfp(f)) if ∀d′ ∈ L : l′ = f(l′)⇒ l′ v d

• Ref(f) = {l|f(l) v l} is the set of elements upon which f is reductive.

• Ext(f) = {l|f(l) w l} is the set of elements upon which f is extensive.

• Fix(f) = Red(f) ∩ Ext(f).

By Tarski’s theorem, we have

lfp(f)
def
= uFix(f) = uRef(f) ∈ Fix(f)

Fix(f)
def
= tFix(f) = tExt(f) ∈ Fix(f)

2.1.7 Closure Operators

Closure operator is very important when dealing with abstract interpretation.

Definition 2.15. Closure An upper closure operator, or simply a closure, on a

poset 〈C,v〉, is an operator ρ : C → C that is:

• extensive: ∀x ∈ C : x v ρ(x)

• monotone: ∀x, y ∈ C : x v y ⇒ ρ(x) v ρ(y)

• idempotent: ∀x ∈ C : ρ(ρ(x)) = ρ(x)

Example 2.2. Function f : C → C in Figure 2.4(a) is an upper closure operator

while function g : C → C in 2.4(b) is not since it is not idempotent.

Let uco(C) denote the set of all upper closures operators of domain C. If (L, v,

t, u, >, ⊥) is a complete lattice, then for each closure operator ρ ∈ uco(C)

ρ(c) = u{x ∈ C|x = ρ(x), c v x}

meaning that the image of an elements c through ρ is the minimum fixpoint of ρ

greater than c. Moreover, ρ is uniquely determined by its image ρ(C), that is the

set of its fixpoints ρ(C) = Fix(ρ).
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Figure 2.4: f is an upper closure operator while g is not

2.1.8 Galois Connections

Definition 2.16. (Galois connection) Two posets 〈C,v1〉 and 〈L,v2〉 and two

monotone functions α : C → L and γ : L→ C such that:

• ∀c ∈ C : c v1 γ(α(c))

• ∀l ∈ L : α(γ(l)) v2 l

form a Galois connection, equivalently denoted by (C, α, γ, L).

A Galois connection (C, α, γ, L) where ∀l ∈ L : α(γ(l)) = l is called a Galois

insertion.

Figure 2.5: Galois connection

Given a Galois connection (C, α, γ, L) where 〈C,v1〉 and 〈L,v2〉 are posets, we

have that:

• if C has a bottom element ⊥1, then L has bottom element α(⊥1).

• dually, if L has top element >2, then C has top element γ(>2).
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• α ◦ γ ◦ α = α and γ ◦ α ◦ γ = γ.

• if (L, α′, γ′, E) is a Galois connection, then (C, α′ ◦ α, γ′ ◦ γ,E) is a Galois

connection, namely it is possible to compose Galois connections.

• if (C, α, γ, L) is a Galois insertion and C is a complete lattice, then L is a

complete lattice.

• α is surjective if and only if γ is injective if and only if (C, α, γ, L) is a Galois

insertion, i.e. a Galois insertion between two complete lattices C and L is

fully specified by a surjective and additive map α : C → L or by an injective

and co-additive map γ : L→ C.

2.1.8.1 Galois Connections and Closure Operators

Closure operators ρ ∈ uco(C), being equivalent to Galois connections, have prop-

erties (monotonicity, extensivity and idempotency) that well fit the abstraction

process. The monotonicity ensures that the approximation process preserves the

relation of being more precise than. If a concrete element c1 contains more infor-

mation than a concrete element c2, then after approximation we have that ρ(c1)

is more precise than ρ(c2) (monotonicity). Approximating an object means that

we could loose some of its properties, therefore it is not possible to gain any infor-

mation during approximation. Hence, when approximating an element we obtain

an object that contains at most the same amount of information of the original

object. This is well expressed by the fact that the closure operator is extensive.

Finally, we have that the approximation process looses information only on its

first application, namely if the approximated version of the object c is the element

a, then approximating a we obtain a. Meaning that the approximation function

as to be idempotent. Hence, it is possible to describe abstract domains on C in

terms of both Galois connections and upper closure operators [42]. Given a Galois

connection (C, α, γ, L) it can be proved that the map γ ◦ α is an upper closure on

C, i.e., γ ◦α ∈ uco(C). If C is a complete lattice then γ(L) is a Moore family of C

and given a poset C and a closure ρ ∈ uco(C) then (C, ρ, λx.x, γ(α(C))) defines a

Galois insertion. Thus, the notions of Galois insertion and closure operators are

equivalent. This holds also for Galois connections up to reduction.
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2.2 Abstract Interpretation

According to a widely recognized definition [43]: Abstract interpretation is a gen-

eral theory for approximating the semantics of discrete dynamic systems. Abstract

interpretation is a theory of sound approximation of the semantics of computer

programs, based on monotonic functions over ordered sets, especially lattices. It

can be viewed as a partial execution of a computer program which gains infor-

mation about its semantics (e.g. control structure, flow of information) without

performing all the calculations.

Abstract interpretation formalizes the approximation corresponding between the

concrete semantics of a syntactically correct program and abstract semantics which

is a safe approximation on the concrete semantics. Let S denotes a formal defini-

tion of the semantics of programs in P written in a certain programming language,

and let C be the semantic domain on which S is computed. Let us denote with

S# an abstract semantics expressing an approximation of the concrete seman-

tics S. The definition of the abstract semantics S# is given by the definition of

the concrete semantics S where the domain C has been replaced by an approxi-

mated semantic domain A in Galois connection with C, i.e., (C, α, γ,A). Then,

the abstract semantics is obtained by replacing any function F : C → C, used to

compute S, with an approximated function F# : A → A that correctly mimics

the behaviour of F in the domain properties expressed by A.

2.2.1 Concrete vs Abstract Domains

The concrete program semantics S of a program P is computed on the so-called

concrete domain, i.e., the poset of mathematical objects 〈C,vC〉 on which the

program runs. The ordering relation encodes relative precision: c1 vC c2 means

that c1 is a more precise (concrete) description than c2. For instance, the concrete

domain for a program with integer variables is simply given by the powerset of

integer numbers ordered by subset inclusion 〈℘(Z),⊆〉.

Approximation is encoded by an abstract domain 〈A,vA〉, which is a poset of

abstract values that represent some approximated properties of concrete objects.

Also in the abstract domain, the ordering relation models relative precision: a1 vA
a2 means that a1 is a better approximation (i.e., more precise) than a2.
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Example 2.3. (The abstract domain of intervals) The set of intervals over inte-

gers is naturally equipped with a lattice structure, induced by the usual order on

integers, extended to infinite positive and negative values in order to get complete-

ness. When considering the concrete domain of the powerset of integers a non

trivial and well known abstraction is given by the abstract domain of intervals,

here denoted by 〈Int,vInt〉 [99]. The lattice (Int,vInt,tInt,uInt) of intervals is

defined as,

• a base set Int = {[a, b]|a, b ∈ Z, a ≤ b} ∪ ⊥ where Z = Z ∪ {−∞,+∞},

• a partial order vInt which is the least relation satisfying the following rules
I∈Int
⊥vintI

c≤a b≤d a,b,c,d∈Z
[a,b]vInt[c,d]

• meet operator is defined by,

– I tInt ⊥ = I, ∀I ∈ Int

– ⊥ tInt I = I, ∀I ∈ Int

– [a, b] tInt [c, d] = [min(a, c),max(b, d)]

• join operators is defined by,

– I uInt ⊥ = I, ∀I ∈ Int

– ⊥ uInt I = I, ∀I ∈ Int

– [a, b] uInt [c, d] = [max(a, c),min(b, d)]

• The bottom and top elements are ⊥Int = ⊥ and >Int = {−∞,+∞}, respec-

tively.

Figure 2.6 represents the abstract domain of intervals. (℘(Z), αInt, γInt, Int) is

a Galois insertion where the abstraction αInt : ℘(Z) → Int and concretization

γInt : Int→ ℘(Z) maps are defined as follows, let a, b ∈ Z then:

αInt(S) =



⊥ if S = ∅
[a, b] if min(S) = a ∧max(S) = b

(−∞, b] if 6 ∃min(S) ∧max(S) = b

[a,+∞) if min(S) = a∧ 6 ∃max(S)

(−∞,+∞) if 6 ∃min(S) 6 ∃max(S)
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Figure 2.6: The Interval abstract domain

γInt(I) =



∅ if I = ⊥
{z ∈ Z|a ≤ z ≤ b} if I = [a, b]

{z ∈ Z|z ≤ b} if I = (−∞, b]
{z ∈ Z|z ≥ a} if I = [a,+∞)

Z if I = (−∞,+∞)

For example, the set {2, 5, 8} is abstracted in the interval [2, 8], while the infinite

set {z ∈ Z|z ≥ 10} is abstracted in the interval [10,+∞).

Example 2.4. (The abstract domain of sign) Figure 2.7 represents the abstract

domain of sign. (℘(Z), αsign, γsign, ℘(sign)) is a Galois insertion where ∀z ∈ Z,

sign : Z→ sign is specified by,

sign(z) =


− if z < 0

0 if z = 0

+ if z > 0

∀C ∈ ℘(Z) and ∀A ∈ ℘(sign), the abstraction αsign : C → A and concretization

γsign : A→ C maps are defined as follows,

αsign(C) = {sign(z)|z ∈ C}
γsign(A) = {z ∈ C|sign(z) ∈ A}

Example 2.5. (The abstract domain of parity) Fig. 8 represents the abstract

domain of parity. (℘(Z), αparity, γparity, ℘(parity)) is a Galois insertion where ∀z ∈
Z, parity : Z→ parity is specified by,
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Figure 2.7: The Sign abstract domain

parity(z) =

{
Even if z%2 = 0

Odd Otherwise

∀C ∈ ℘(Z) and ∀A ∈ ℘(parity), the abstraction αparity : C → A and concretization

γparity : A→ C maps are defined as follows,

αparity(C) = {parity(z)|z ∈ C}
γsign(A) = {z ∈ C|parity(z) ∈ A}

2.2.2 Abstract operations

2.2.2.1 Soundness

A concrete semantic operation must be approximated on some abstract domain

A by a sound abstract operation f# : A → A. This means that f# must be a

correct approximation of f in A: for any c ∈ C and a ∈ A, if a approximates c

then f#(a) must approximates f(c). This is therefore encoded by the condition:

∀c ∈ C : α(f(c)) vA f#(α(c)) (2.1)

Soundness can be also equivalently stated in terms of the concretization map:

∀a ∈ A : f(γ(a)) vC γ(f#(a)) (2.2)

In Figure 2.8 we have a graphical representation of soundness. In particular,

Figure 2.8(a) refers to the condition α ◦ f(x) vA f# ◦ α(x), which compares the
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f(x) α // α(f(x)) v f#(α(x))

x α //

f

OO

α(x)

f#

OO

(a)

α(f(x)) v γ(f#(x)) f#(x)γ
oo

γ(x)

f

OO

xγ
oo

f#

OO

(b)

Figure 2.8: Soundness

computational process in the abstract domain, while 2.8(b) refers to the condition

f ◦ γ(x) vC γof#(x), which compares the results of the computations on the

concrete domain. Given a concrete operation f : C → C, we can order the correct

approximations of f with respect to (C, α, γ,A): let f#
1 and f#

2 be two correct

approximations of f in A, then f#
1 is a better approximation of f#

2 if f#
1 v f#

2 . It

is well known that, given a concrete function f : C → C and a Galois connection

(C, α, γ,A), there exists a best correct approximation of f on A, usually denoted as

fA. In fact, it is possible to show that α◦f ◦γ : A → A is a correct approximation

of f on A, and that for every correct approximation f#of f we have that: ∀x ∈ A :

α(f(γ(x))) vA f#(x). Observe that the definition of best correct approximation

only depends upon the structure of the underlying abstract domain, namely the

best correct approximation of any concrete function is uniquely determined by the

Galois connection (C, α, γ,A).

Example 2.6. (Soundness) A (unary) integer squaring operation (sq) on the

concrete domain ℘(Z) is given by sq(X) = {x2 ∈ Z|x ∈ X}. A correct ap-

proximation sq#of sq on the abstract domain Sign can be defined as follows:

sq#(>) = >, sq#(⊥) = ⊥, sq#(0+) = 0+, sq#(0−) = 0+ and sq#(0) = 0.
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It is clear that this provides a sound approximation of the square function, that is

∀x ∈ Sign : sq(γ(x)) ⊆ sq#(γ(x)).

2.2.2.2 Completeness

When soundness is satisfied with equality, we say that the abstract function is

a complete approximation of the concrete one. The equivalent soundness con-

ditions (1) and (2) introduced above can be strengthened to two different (i.e.,

incomparable) notions of completeness.

f(x) α // f#(α(x)) = α(f(x))

x α //

f

OO

α(x)

f#

OO

(a) Backward completeness

f(γ(x)) = γ(f#(x)) f#(x)γ
oo

γ(x)

f

OO

xγ
oo

f#

OO

(a) Forward completeness

Figure 2.9: Completeness

Given a Galois connection (C, α, γ,A) and a concrete function f : C → C, and an

abstract function f# : A → A, then:

• if α ◦ f = f# ◦ α, the abstract function f# is backward-complete for f .

• if f ◦ γ = γ ◦ f#, the abstract function f# is forward-complete for f .
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Backward completeness considers abstractions on the output of operations while

forward completeness considers abstractions on the input to operations. Figure

2.9(a) provides a graphical representation of backward completeness, while Figure

2.9(b) represents the forward completeness case. While any abstract domain A in-

duces the so-called canonical best correct approximation, not all abstract domains

induce a backward (forward)-complete abstraction. However, if there exists a com-

plete function for f on the abstract domain α((C)), then α ◦ f ◦ γ is also complete

and viceversa. This means that it is possible to define a complete function for f

on α(C) if and only if α ◦ f ◦ γ is complete [61].

Example 2.7. (Completeness) A (unary) integer squaring operation (sq) on the

concrete domain ℘(Z) is given by sq(X) = {x2 ∈ Z|x ∈ X}. A correct ap-

proximation sq#of sq on the abstract domain Sign can be defined as follows:

sq#(>) = >, sq#(⊥) = ⊥, sq#(0+) = 0+, sq#(0−) = 0+ and sq#(0) = 0.

sq#is backward complete for sq on Sign while it is not forward complete because

sq(γ(0+)) = {x2 ∈ Z|x > 0} ( {x ∈ Z|x > 0} = γ(sq#(0+)).

2.3 Dependence Terminologies

Dependence analysis is the process of determining a program’s dependences, com-

bining traditional control flow analysis and dataflow analysis. Program depen-

dences are relationships, holding between program statements, that can be deter-

mined from a program text and used to predict aspects of the program execution

behavior. There are two basic types of program dependences: control dependences,

which are features of a programs control structure, and data flow dependences,

which are features of a programs use of variables.

The following definitions are language independent. They are used to establish a

common terminology to be used to define dataflow based property driven program

slicing.

Definition 2.17. (Directed graph) A Directed graph or digraph G is a pair (N,

E), where N is a finite, nonempty set called nodes, and E is a subset of N ×N −
{(n, n)|n ∈ N}, called edges of G, respectively. Given an edge (ni, nj) ∈ E, ni

is said to be predecessor of nj, and nj is said to be successor of ni. PRED(n)

and SUCC(n) are the set of the predecessors and the set of the successors of a

node n, respectively. The in-degree of a node n, denoted in(n), is the number
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of predecessors of n, while the out-degree of n, denoted out(n), is the number of

successors of n. A walk W in a digraph G is a sequence of nodes n1, n2...nk such

that k ≥ 0 and (ni, ni+1) ∈ E for i = 1, 2, k - 1, where k is the length of W . If

W is nonempty (the length is not zero) then it is called a n1 − nk walk.

Definition 2.18. (A control-flow graph) A control-flow graph G is a directed

graph that satisfies each of the following conditions:

1. The maximum out-degree of the nodes of G is at most two.

2. G contains two distinguished nodes: the initial node nI , which has in-degree

zero, and the final node nF , which has out-degree zero.

3. Every node of G occurs on some nI − nF walk.

Here, the nodes of a control flow graph represent simple program statements and

also branch conditions, while the edges represent possible transfers of control be-

tween these. The programs entry point and exit point are represented by the

initial vertex and final vertex, respectively. A node of out-degree two in a control

flow graph is called a decision node, and an edge incident from a decision node

is called a decision edge. A decision node represents the branch condition of a

conditional branch statement. If u is a decision node and u1, u2 ∈ SUCC(u) are

the successors of u. Then u1 is called the complement of u2 or vice-versa, with

respect to u.

scanf(%d, &n);

sum=0;

while(n>0)

{

sum=sum+1;

n=n-1;

}

printf(%d, sum);

Figure 2.10: Program of sum of first n natural numbers

Example 2.8. Figure 2.11 is the control flow graph of the program in Figure 2.10.

Definition 2.19. (Forward dominance) Let G be a control flow graph. A node

n′ ∈ N forward dominates a node n ∈ N if every n− nF walk in G contains n′.
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Figure 2.11: Control flow graph of Figure 2.10

n′ properly forward dominates n iff n′ 6= n and n′ forward dominates n. The

immediate forward dominator of a node n ∈ (N − {nF}) is the node that is the

first proper forward dominator of n to occur on every n−nF walk in G. n′ strongly

forward dominates n iff n′ forward dominates n and there is an integer k ≥ 1 such

that every walk in G beginning with n and of length ≥ k contains n′.

Example 2.9. In the control flow graph of Figure 2.11 node 5 strongly forward

dominates node 4, because there are arbitrarily long walks from node 4 that do not

contain node 6. Whereas, node 6 is the immediate forward dominator of node 3.

Definition 2.20. (def/use graph) A def/use graph is a quadruple G = (G, V, def, use),

where G is a control flow graph, V is a finite set of symbols called variables, and

def : N → ℘(V ), use : N → ℘(V ) are functions.

For each node n ∈ N , def(n) represents the set of variables defined and use(n)

represents the set of variables used (referenced) at the statement represented by

n, respectively. let W be a walk in G. Then, def(W ) =
⋃
n∈W def(n).
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Example 2.10. Figure 2.12is the def/use graph of Figure 2.11.

Figure 2.12: def/use graph of Figure 2.11

Definition 2.21. (Data flow dependence) Let G = (G, V, def, use) be a def/use

graph, and let n, n′ ∈ N . n′ is directly data flow dependent on n if there is a walk

w (n−n′) in G such that (def(n)∩use(n′))−def(W ) 6= 0. n′ is data flow dependent

on n if there is a sequence n1, n2, ..., nk of nodes, n ≥ 2, such that n = n1, n′ = nk,

and ni is directly data flow dependent on ni+1 for i = 1, 2, ..., k − 1.

Definition 2.22. (Strongly control dependent) Let G be a control frow graph, and

let n, n′ ∈ N . n′ is strongly control dependent on n iff there is a walk w (n − n′)
in G not containing the immediate forward dominator of n.

Definition 2.23. (Weakly control dependent) Let G be a control frow graph, and

let n, n′ ∈ N . n′ is directly weakly control dependent on n iff n has successors

n′′ and n′′′ such that n′ strongly forward dominates n′′ but does not strongly

forward dominate n′′′. n′ is weakly control dependent on n iff there is a sequence

n1, n2, ..., nk of nodes, k ≥ 2, such that n′ = n1, n = nk, and ni is directly weakly

control dependent on ni+1 for i = 1, 2, .., k − 1.
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Example 2.11. Node 6 is (directly) weakly control dependent on node 3 (because

node 6 strongly forward dominates itself, but not node 4), but not strongly control

dependent on node 3 (because node 6 is the immediate forward dominator of node

3). In addition, node 3, node 4, and node 5 are (directly) weakly control dependent

on node 3, because each strongly forward dominates node 4 but not node 6.

The essential difference between weak and strong control dependence is that weak

control dependence reflects a dependence between an exit condition of a loop

and a statement outside the loop that may be executed after the loop is exited,

while strong control dependence does not. Weak control dependence [21] is a

generalization of strong control dependence in the sense that every strong control

dependence is also a weak control dependence.

Definition 2.24. (Weakly syntactically dependent) Let G = (G, V, def, use) be a

def/use graph, and let n, n′ ∈ N . n′ is weakly syntactically dependent on n if there

is there is a sequence n1, n2, ..., nk of nodes, k ≥ 2, such that n′ = n1, n = nk, and

for i = 1, 2, .., k − 1 either ni is weakly control dependent on ni+1 or ; ni is data

flow dependent on ni+l.

Definition 2.25. (Strongly syntactically dependent) Let G = (G, V, def, use) be

a def/use graph, and let n, n′ ∈ N . n′ is strongly syntactically dependent on n if

there is there is a sequence n1, n2, ..., nk of nodes, k ≥ 2, such that n′ = n1, n = nk,

and for i = 1, 2, .., k − 1 either ni is strongly control dependent on ni+1 or ; ni is

data flow dependent on ni+l.

Example 2.12. Node 6 is weakly syntactically dependent on node 5, because node

6 is weakly control dependent on node 3 and node 3 is data flow dependent on node

5; node 5 is strongly syntactically dependent on node 1, because node 5 is strongly

control dependent on node 3 and node 3 is data flow dependent on node 1. Note

that node 6 is not strongly syntactically dependent on v5.

This notion of dependencies described so far loses some information, because syn-

tactic occurrence is not enough to get the real idea of relevancy. For instance,

the value assigned to x does not depend on y in the statement x = z + y − y, al-

though y occurs in the expression. The syntactic approach may fail in computing

the optimal set of dependencies, since it is not able to rule out this kind of false

dependencies. This results in obtaining a slice which contains more statements

than needed.The first step towards a generalization of the way of defining slicing
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is to consider semantic dependencies, where intuitively a variable is relevant for

an expression if it is relevant for its evaluation.

Definition 2.26. (Semantic dependency) Let x, y ∈ Var, then the semantic de-

pendency between the expression e and variable x is defined formally as,

∃σ1, σ2 ∈ Σ.∀y 6= x.σ1(y) = σ2(y) ∧ E [[e]]σ1 6= E [[e]]σ2.

This semantic notion can then easily generalized in what we will call abstract

dependency, where a variable is relevant to an expression if it affects a given

property of its evaluation. More precisely, This notion of dependency is parametric

on the properties of interest. Basically, an expression e depends on a variable x

w.r.t. a property ρ if changing x, and keeping all other variables unchanged with

respect to ρ, may lead to a change in e with respect to ρ.

Definition 2.27. (Abstract dependency) Let x, y ∈ Var, then the abstract depen-

dency between the expression e and variable x with respect to an abstract domain

ρ (property) is defined formally as,

∃ϕ1, ϕ2 ∈ Σρ.∀y 6= x.ϕ1(y) = ϕ2(y) ∧H[[e]]ϕ1 6= H[[e]]ϕ2.

2.4 Zero-knowledge Proofs

The fundamental notion of zero-knowledge was introduced by Goldwasser, Micali

and Rackoff in [63]. They consider a setting where a powerful prover is proving

a theorem to a probabilistic polynomial time verifier. Intuitively, a proof system

is considered zero knowledge if whatever the verifier can compute while interact-

ing with the prover it can compute by itself without going through the protocol.

Informally, A zero-knowledge proof (ZKP) is a method by which one can prove

knowledge of a fact without revealing that knowledge to another party. The word

”proof” here is not used in the traditional mathematical since, rather, a ”proof”,

or equivalently a ”proof” system, is a randomized protocol by which one party

(the prover) wishes to convince another party (the verifier) that a given statement

is true.ZKPs exist only if one-way functions exist, as a cheating verifier may be

able to extract additional information after interacting with a prover by essen-

tially hacking the prover. The notion of one-way functions is often generalized to

represent any means of committing to a secret bit (i.e., information hiding).
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Example 2.13. Let us consider the following example was adapted from [105].Peggy

has found a magical cave(Figure 2.13). The cave has a magic door deep inside it

that opens only upon uttering the secret word, a secret which Peggy has uncovered.

Victor hears about this and wishes to also know the secret. Peggy agrees to sell

Victor the secret word for $1,000,000, but Victor wants to be certain that Peggy,

indeed, knows the secret word before he pays. How can Peggy (the prover) prove

to Victor (the verifier) that she knows the secret without actually conveying the

secret to Victor? Peggy and Victor devise the following scheme. Victor will wait

outside the cave while Peggy enters. She chooses either path A or path B at ran-

dom. Victor does not know which path she has chosen. Then, Victor will enter

the cave as far as the fork and announce the path along which he wants Peggy to

return.

Figure 2.13: Magic Cave

Suppose Peggy knows the secret word. Then, she will be able to return along either

path A or path B regardless of the path she chose initially. If Victor announces

the same path through which Peggy chose to enter, she simply exits the cave along

that path. If Victor announces the path that Peggy did not choose, she whispers the

secret word (Victor is presumably too far away to hear it), thus opening the door

and allowing her to return along the desired path. Suppose Peggy does not know

the secret word. Then, she will only be able to return along the appropriate path if

Victor announces the same path that she chose. This will occur with probability 1
2
.

If Peggy is tested many times, the probability that the path announced by Victor

is the same chosen by Peggy for every test becomes negligible. That is, Victor will

eventually discover that Peggy is a liar.

One might wonder why Victor simply does not tell Peggy to enter through a known

path (say, path A) and then require her to return along the other path. Clearly, this

would force Peggy to use her knowledge of the secret word to return appropriately.

However, such a scheme also allows Victor to eavesdrop by following her down the

pre-specified path. By randomizing the initial path, the probability that Victor can

successfully eavesdrop is reduced.
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Property Driven Program Slicing

Slicing enables large programs to be decomposed into ones which are smaller and

hence potentially easier to analyse, maintain and test. A slice Ps of a program P

w.r.t. a slicing criterion C has to

• be syntactically correct and executable; and

• give the same result as P if observations are restricted to C.

A slice is usually computed by analyzing how the effects of a computation are

propagated through the code, i.e., by inferring dependencies. Following the the-

ory of abstract interpretation [42] [43] [39], properties are abstractions of data.

A general notion based on the observation that, in typical debugging tasks, the

interest is often on the part of the program which is relevant to some property

of data, rather than their exact value. studying dependence only as regards the

abstraction, differently from the standard, concrete approach. In this chapter we

redefine the traditional slicing algorithm [13, 36] by a data flow analysis which is

based on the theory of Abstract Interpretation that enables an automatic extrac-

tion of information about all possible program executions, followed by a backward

static slicing using the extracted information at each program point.

In Section 3.1, we categorize different forms of program slices. Mark Weiser’s

slicing algorthim is discussed in Section 3.2. Section 3.3 introduces the abstract

state trajectories related to property driven program slicing. Dataflow based prop-

erty driven program slicing algorithm is proposed in Section 3.4. In Section 3.5,

we state the correctness conditions. Section 3.6 states the most relevant existing

33
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program slicing techniques. In Section 3.7, we conclude by discussing the main

advantages of our scheme.

3.1 Different Forms of Slice

Program slicing can be categorized in many forms like, backward or forward

[129][107][58], static or dynamic [57][3][64], intra-procedural or inter-procedural

[76]. Slicing has been applied to programs with arbitrary control flow (goto

statements)[25][2] and even concurrent programming languages like Ada [24]. An-

other general form of slicing, Amorphous slicing [20] is a form of partial evaluation

[21]. There are variants of slicing in between the two extremes of static and dy-

namic. Where some but not all properties of the initial state are known. These

are known as conditioned slices [22] or constrained slices.[55]

3.1.1 Backward vs. Forward

Backward slicing answer the question ”Which statements affect the slicing crite-

rion?” This is the conventional one [129][130][132] where as forward slicing [107] is

the reverse of backword slice, answers the question ”Given a particular statement

in a program. which other statements are affected by this particular statement’s

execution?”

3.1.2 Static vs Dynamic

A static slice is the conventional one where the slice required to agree with the

program being sliced in all initial states. Dynamic slicing [26, 57, 84] involves

executing the program in a particular initial state and using trace information to

construct a slice to particular initial state.

3.1.3 Intra-procedural vs Inter-procedural

Intra-procedural slicing means slicing programs which do not have procedures

whereas inter-procedural [76][107] slicing tackles the more complex problem of

slicing programs where procedure definitions and calls are allowed.
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3.1.4 Slicing Structured vs. Unstructured Programs

For many applications, particularly where the maintenance problems are the pri-

mary motivation for slicing, the slicing algorithm must be capable of constructing

slices from unstructured programs as well. The archetype of this unstructured

programming style is the go to statement, all forms of jump statement. Such as

break and continue can be regarded as special cases of the goto statement. Such

programs are said to exhibit arbitrary control flow and are considered to be un-

structured. The traditional program dependence graph approach [100] incorrectly

fails to include any goto statements in a slice. Various authors have suggested

solutions to the problem [100][25][7].

3.1.5 Dataflow vs. Non-Dataflow

In the non-dataflow analysis approach [121], infeasible paths are detected by se-

mantic dependency [91]. Parametric program slicing [55] is a non-dataflow ap-

proach of program slicing, where slices are constructed using a term rewriting

system. which can use arbitrary rewrites which preserve a property of syntax

using origin tracking.

Weiser’s original work described backward, static, intra-procedural slicing although

he also gave an algorithm for backward, static, inter-procedural slicing.

3.2 Weiser’s Work

3.2.1 Dataflow Based Program Slicing

Weiser’s program slicing algorithm is an example of data flow analysis. Data flow

analysis [72, 130], by definition, is a act of inferring properties about program from

its control flow graph(CFG) alone. The slicing algorithm takes the control flow

graph G of a program P as input and outputs a set of nodes, Ns ∈ N . Since in

this case there is one to one correspondence (∼) between the nodes of the control

flow graph and the statements of the corresponding program, this output uniquely

determines which statements of P should be included in the slice of P . The slice
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P

∼

��

semantic relationship // Ps

N
slice // Ns

f(Ns,P )

OO

Figure 3.1: Weiser’s slicing

Ps of P is the program derived from P and the set of nodes Ns output by Wiser’s

algorithm.

Let us illustrate the above idea pictorially (Figure 3.1). Weiser defines a slice as an

executable program that is obtained from the original program by deleting zero or

more statements. A slicing criterion C consists of a pair (n, V ) where n is a node

in the control flow graph (CFG) of the program, and V a subset of the programs

variables present in n. In order to be a slice with respect to given criterion (n, V ),

a subset Ps of the statements of program P must satisfy the following properties:

1. Ps must be a valid program,

2. whenever P halts for a given input, Ps also halts for that input, computing

the same values for the variables in V whenever the statement corresponding

to node n is executed. At least one slice exists for any criterion: the program

itself.

In Weiser’s original thesis [129], it is shown how slices can be computed by solving

a set of dataflow and control flow equations derived directly from the control flow

graph (CFG) being sliced. These equations are solved using iterative process which

entails computing sets of relevant variables for each node in the CFG from which

sets of relevant statements are derived; the computed slice is defined as the fixpoint

of the latter set.
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Directly relevant variables

First, the directly relevant variables of node i, R0
C(i) are inductively defined as

follows:

1. The set of directly relevant variables at slice node, n, is simply the slice set,

V .

2. The set of directly relevant variables at every other node i, is defined in

terms of the set of directly relevant variables of all nodes j leading directly

from i to j (i −→CFG j) in the CFG. R0
C(i) contains all variables v such that

either

• v ∈ R0
C(j)− def(i) or

• v ∈ ref(i) and def(i) ∩R0
C(j) 6= ∅

The directly relevant variables of a a node are the set of variables at that node

upon which the slicing criterion is transitively data dependent.

Directly relevant statements

In terms of the directly relevant variables, a set of directly relevant statements S0
C

is defined:

S0
C = {i | ∃j ∧ (i −→CFG j) ∧ (def(i) ∩R0

C(j) 6= ∅})

Indirectly relevant variables

The subsequent iterations of Weiser’s algorithm calculate the indirectly relevant

variables, RK
C where K ≥ 0. In calculating the indirectly relevant variables, control

dependency is taken into account.

RK+1
C (i) = RK

C (i) ∪
⋃
b∈BKC

R0
(b,use(b))(i)

where

BK
C = {b | ∃i ∈ SKC ∧ (b i})
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BK
C is the set of all predicate nodes that control ( ) a statement in SKC .

Indirectly relevant statements

Adding predicate nodes to SKC includes further indirectly relevant statements in

the slice:

SK+1
C = BK

C ∪ {i | ∃j ∧ i −→CFG j ∧ def(i) ∩RK+1
C (j) 6= ∅}

This process will eventually terminate since SKC and RK
C are non-decreasing sub-

sets of program’s variables. Weiser proves, in his thesis (Theorem 10), that his

algorithm produces slices according to his semantic definition of a slice.

Example 3.1. Let us consider a program which computes the sum and product of

first n numbers, using a single loop. Figure 3.2 shows the program and its slice

with respect to the slicing criteria C = (11, sum).

1. scanf("%d", &n);

2. if (n > 0) {

3. i = 1;

4. sum = 0;

5. prod = 1;

6. while (i <= n) {

7. sum = sum + i;

8. prod = prod * i;

9. i := i + 1;}

10. printf("%d",product);

11. printf("%d",sum);}

1. scanf("%d", &n);

2. if (n > 0) {

3. i = 1;

4. sum = 0;

5.

6. while (i <= n) {

7. sum = sum + i;

8.

9. i := i + 1;}

10.

11. printf("%d",sum);}

Figure 3.2: The original code and sliced code w.r.t C= (11, sum)

Table 3.1 and Table 3.2 show the computational steps of Weiser’s slicing algorithm.

Now let us discuss how directly and indirectly variables and statements are com-

puted using Weiser’s algorithm on the above program consulting Table 3.1 and

Table 3.2. Directly relevant statements S0
C with slicing criteria C = (11, sum) is

computed from Table 3.1 using directly relevant variables R0
(11,sum) = sum, i as,

S0
(11,sum) = {3, 4, 7, 11}. The set of all predicate nodes in the program, B0

(11,sum) =
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No statement def use R0
(11,sum)

1 scanf(”%d”, &n); {n} ∅ ∅
2 if (n > 0) { ∅ {n} ∅
3 i = 1; {i} ∅ ∅
4 sum = 0; {sum} ∅ {i}
5 prod = 1; {prod} ∅ {sum, i}
6 while (i <= n) { ∅ {i, n} {sum, i}
7 sum = sum + i; {sum} {sum, i} {sum, i}
8 prod = prod * i; {prod} {prod, i} {sum}
9 i = i + 1;} {i} {i} {sum}
10 printf(”%d”, prod); ∅ {prod} {sum}
11 printf(”%d”, sum);} ∅ {sum} {sum}

Table 3.1: Computing R0
(11,sum)

No statement def use R0
(2,n) R0

(6,n) R0
(6,i)

1 scanf(”%d”, &n); {n} ∅ ∅ ∅ ∅
2 if (n > 0) { ∅ {n} {n} {n} ∅
3 i = 1; {i} ∅ ∅ {n} ∅
4 sum = 0; {sum} ∅ ∅ {n} {i}
5 prod = 1; {prod} ∅ ∅ {n} {i}
6 while (i <= n) { ∅ {i, n} ∅ {n} {i}
7 sum = sum + i; {sum} {sum, i} ∅ {n} {i}
8 prod = prod * i; {prod} {prod, i} ∅ {n} {i}
9 i = i + 1;} {i} {i} ∅ {n} {i}
10 printf(”%d”, prod); ∅ {prod} ∅ {n} {i}
11 printf(”%d”, sum);} ∅ {sum} ∅ {n} {i}

Table 3.2: Computing
⋃
b∈B0

(11,sum)
R0

(b,use(b))

{2, 6}. The indirectly relevant variables are computed in Table 3.2, Indirectly rel-

evant variables are R1
(11,sum) = {sum, i, n}. Indirectly relevant statements are

calculated as S1
(11,sum) = {2, 6} ∪ {3, 4, 7} ∪ {1, 9} = {1, 2, 3, 4, 6, 7, 9, 11}.

3.2.2 Weiser’s Semantics Definition of Valid Slices

The essential issue in program slicing is to define what semantic relationship must

exist between a program and its slice in order that the slice is considered valid.

Mark Weiser [129] defined the semantic relationship that must exist between a

program and its slice in terms of state trajectories.

Definition 3.1. (Trajectories) A state trajectory is a finite sequence of ordered

pairs:
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τ = 〈(p0, σ0), (p1, σ1), ..., (pk, σk)〉

where p0, p1, ..., pk are the program points in program P and 〈p0, p1, ..., pk〉 is the

path to be traversed during program execution. ∀σi ∈ Σ, be a state which is

assumed immediately before execution of pi. More formally, σ ∈ Σ : V → V are

memory configurations. i.e., mappings from variables V to values V (V def
= Z) .

3.2.3 Trajectory Semantics

Let us revise the trajectory semantics [9][129] on a simple statement oriented im-

perative programming language WHILE by denotational semantics [99]. In stan-

dard denotational semantics, states σ ∈ Σ : V → V are memory configurations.

i.e., mappings from variables V to values V (V def
= Z). The abstract syntax of the

language is given by Table 3.3. Standard trajectory semantics, τ [[.]] , is a map

S → {L× Σ}. We now give rules which define τ for each syntactic category:

Value domains

x, y ∈ Var variables
n ∈ Num numerals
l ∈ Lab labels

Syntactic categories

a ∈ AExp arithmetic expressions
b ∈ BExp boolean expressions
s ∈ Stmt statements

Operators

opa ∈ Opa arithmetic operators
opb ∈ Opb boolean operators
opr ∈ Opr relational operators

Abstract syntax

a ::= x | n | a1 opa a2

b ::= true | flase | not b | b1 opa b2 |
b1 opr b2 | a1 opr a2

S ::= l : skip | l : x := a | S1;S2 |
l : if b then S1 else S2 |
l : while b do S

Table 3.3: abstract syntax of WHILE
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� For skip statement:

τ [[l : skip]]σ = 〈(l, σ)〉

〈(l, σ)〉 represents the singleton sequence consisting of the pair (l, σ).

� For assignment statement:

τ [[l : x = a]]σ = (l, σ[x← E [[a]]σ])

where E [[a]]σ means the new value resulting from evaluating expression a.

� For sequences of statements:

τ [[l : S1;S2]]σ = τ [[S1]]σ � τ [[S2]]σ′

where σ′ is the state obtained after executing S1 in σ and � means con-

catenation.

� For if statement:

τ [[l : if b then S1 else S2]]σ = 〈(l, σ)〉 � (E [[b]]σ → τ [[S1]]σ, τ [[S2]]σ)

The first element of the trajectory is the label of the if in the current state.

The rest of the trajectory is the trajectory of one of the branches depending

on the value of the boolean expression evaluated in the current state.

� For while statement:

τ [[l : while b then S]]σ = τ [[if(l : b) {S;while(l : b) S}else skip]]σ

while loops are defined simply in terms of if statements in the standard

way.

Since a slice only needs to preserve the behavior of the program with respect to

the variables of interest, the concept of state restriction is introduced.
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Definition 3.2. (Restriction of a state to a set of variables) Given a state, σ and

a set of variables V , σ|V restricts σ so that it is defined only for variables in V :

(σ|V )x =

{
σx if x ∈ V
⊥ otherwise

Since the programs only need to agree at the slicing criterion, the idea of restricting

a trajectory to a slicing criterion (p, V ) is introduced. To do this, first delete all

pairs in the trajectory whose label component is not p and for the ones that are

left, restrict the state component of the pair to V as just defined. First we define

how to project a single element of a trajectory onto a slicing criterion:

Definition 3.3. (Projection of a trajectory to a slicing criterion) For a program

point p′ and a state σ the projection of the trajectory sequence element (p′, σ) to

the slicing criterion (p, V) is

(p′, σ)|(p,V ) =

{
(p′, σ|V ) if p′ = p

λ otherwise

where λ denotes the empty string.

The projection of the trajectory τ = 〈(p0, σ0), (p1, σ1), ..., (pk, σk)〉 to the slicing

criterion (p, V ) is

Proj(p,V )(τ) = 〈(p0, σ0)|(p,V ), (p1, σ1)|(p,V ), ..., (pk, σk)|(p,V )〉

Definition 3.4. (Weiser’s backward static slice) A slice P ′ of a program P on a

slicing criterion (p, V ) is any executable program with the following two properties:

1. P ′ can be obtained from P by deleting zero or more statements.

2. Whenever P halts on an input state σ with a trajectory τ then P ′ also halts

on input σ with trajectory τ ′ where Proj(p,V )(τ) = Proj(p,V )(τ
′).

The trajectory Proj(p,V )(τ) is obtained first by deleting all elements of τ whose

label component is not p and then by restricting the state components to V .
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H[[a]]ϕ=


di if a = xi ∈ Var
α(n) if a = n ∈ Num
H[[a1]]ϕ ôpa H[[a2]]ϕ if a = a1 opa a2

Table 3.4: Approximation of arithmetic expressions

3.3 Abstract Semantics

We consider the WHILE language in Table 3.3. The set of concrete states Σ consists

of functions σ : V→ V which maps the variables to their values from the semantic

domain Z⊥ where, ⊥ represents an undefined or uninitialized value and Z is the

set of integers. If a program has k variables x1, ..., xk, we can represent states as

tuples, i.e., σ = 〈x1, ..., xk〉 and Σ = Vk.

The semantics of arithmetic expression a ∈ AExp over the state σ is denoted by

E [[a]]σ where, the function E is of the type AExp → (σ → V). Similarly, B[[b]]σ

denotes the semantics of boolean expression b ∈ BExp over the state σ of type

BExp→ (σ → T ) where T is the set of truth values.

Let D be an abstract domain on concrete values and α and γ are abstraction

and concretization functions, respectively. The related abstract semantics on ex-

pressions , H[[a]]ϕ, is applied to abstract states ϕ = 〈d1, ..., dk〉 and ϕ ∈ Dk and is

defined as the best correct approximation of E [[a]]σ in Table 3.4, ôpa is the abstract

operation in D that safely approximate opa.

When we construct the approximate or abstract semantics of programs, we need

to define abstract operations over the abstract domain, that approximate concrete

operations over the concrete domain. The idea is that the abstract calculation sim-

ulates the concrete calculation, and the concretization of the abstract calculation

is a correct approximation of the values in the concrete result.

Example 3.2. For example consider the following code fragment in Figure 3.3 and

consider the abstract domain where the addition and multiplication are influenced

according to the well known rule of signs
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1. x=2;

2. y=-5;

3. z = (x+3)*y;

Figure 3.3: Sample code fragment

Hb[[b]]ϕ=



TRUE if b = TRUE
OR
b = a1 opr a2 AND
H[[a1]]ϕ ôpr H[[a2]]ϕ = TRUE

FALSE if b = FALSE
OR
b = a1 opr a2 AND
H[[a1]]ϕ ôpr H[[a2]]ϕ = FALSE

? undefined otherwise

Table 3.5: Approximation of boolean expressions

H[[x+ 3 ∗ y]]ϕ = (H[[x]]ϕ +̂ H[[3]]ϕ) ∗ H[[y]]ϕ

= (+ +̂ α(3)) ∗̂ −
= (+ +̂ +) ∗̂ −
= + +̂ −
= −

The abstract semantics Hb[[b]]ϕ of boolean expression b is defined as the best

correct approximation of B[[b]]σ in Table 3.5, ôpr : D × D → {TRUE,FALSE, ?}
is the abstract operation that safely approximate opr and ? (undefined) signifies

that, the abstract domain is not accurate enough to evaluate the condition.

Example 3.3. Let Ôpr = {<,≤, >,≥, 6=,=}, now consider the abstract operations

<̂ and ̂6= on Sign domain (Table 3.6), other relational operators can be abstracted

accordingly.
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̂6= > ⊥ + 0 − <̂ > ⊥ + 0 −
> ? ? ? ? ? > ? ? ? ? ?
⊥ ? ? ? ? ? ⊥ ? ? ? ? ?
+ ? ? ? TRUE TRUE + ? ? ? FALSE FALSE
0 ? ? TRUE ? TRUE 0 ? ? TRUE ? FALSE
− ? ? TRUE TRUE ? − ? ? TRUE TRUE ?

Table 3.6: Abstracting 6= and < operator

3.3.1 Abstract Trajectory

We now define the abstract trajectory semantics for WHILE in Table 3.3.

� For skip statement:

τD[[l : skip]]ϕ = 〈(l, ϕ)〉

〈(l, ϕ)〉 represents the singleton sequence consisting of the pair (l, ϕ). i.e

statement level alone with the properties of the variables.

� For assignment statement:

τD[[l : x = a]]ϕ = (l, ϕ[x← H[[a]]ϕ])

where H[[a]]ϕ means the new value resulting from evaluating expression a

in abstract domain and ϕ[x ← H[[a]]ϕ] is the abstract state ϕ updated with

the maplet that takes variable x to this new abstract value.

� For sequences of statements:

τD[[l : S1;S2]]ϕ = τ [[S1]]ϕ � τD[[S2]]ϕ′

where ϕ′ is the abstract state obtained after executing S1 in ϕ and � means

concatenation.
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� For if statement:

τD[[l : if b then S1 else S2]]ϕ = 〈(l, ϕ)〉 �


⊥ if Hb[[b]]ϕ =?

τD[[S1]] if Hb[[b]]ϕ = TRUE

τD[[S2]] if Hb[[b]]ϕ = FALSE

(τD[[S1]]ϕ) t (τD[[S2]]ϕ) otherwise

The first element is the label of the if in the current abstract state. The

rest of the trajectory is the trajectory of one of the branches depending on

the abstract execution of the boolean expression evaluated in the current

abstract state.

� For while statement:

τD[[l : while b then S]]ϕ =


λ if Hb[[b]]ϕ = FALSE

〈li,ti≥0(ϕi)〉 otherwise

If the predicate b evaluated to be FALSE there would be a empty trajectory

at l other wise a fixpont iteration on the abstract state of each statements

with in the loop body where ϕ0 = ϕ and ϕi+1 = τD[[S]]ϕi

Definition 3.5. (Restriction of a state to a set of variables w.r.t a given property)

Given a abstract state, ϕ with respect to a property, ρ and a set of variables, V ∈
Var, ϕ|ρV restricts ϕ so that it is defined by ρ only for variables in V .

Definition 3.6. (Projection of a abstract trajectory to a slicing criterion w.r.t a

given property) For a program point p′ and a abstract state ϕ, the projection of

the abstract trajectory sequence element (p′, ϕ) to the slicing criterion (p, V ) w.r.t

property ρ is

(p′, ϕ)|ρ(p,V ) =

{
(p′, ϕ|ρV ) if p′ = p

λ otherwise

where λ denotes the empty string.



Chapter 3. Property driven program slicing 47

begin
i=0;
while(i < n){

j=1;
while(pi+j = pi) && (ϕi+j = ϕi)
remove (pi+j, ϕj) from the trajectory

i=i+j;
}

Table 3.7: Red

The projection of the abstract trajectory τD to the slicing criterion (p, V ) w.r.t a

property ρ is

Proj(p,V )(τ
D) = 〈(p0, ϕ0)|ρ(p,V ), (p1, ϕ1)|ρ(p,V ), ..., (pk, ϕk)|

ρ
(p,V )〉

Definition 3.7. (Property driven program slicing) A property driven slice Pρ of

a program P on a slicing criterion (p, V ) and with respect to a given property ρ

is any executable program with the following two properties:

� P ′ can be obtained from P by deleting zero or more statements.

� Whenever P halts on an input state ϕ with a abstract trajectory τD then

P ′ also halts on ϕ with trajectory τD
′

where,

Red(Proj(p,V )(τ
D)) = Red(Proj(p,V )(τ

D′)).

Where Red is defined in Table 3.7, given a abstract trajectory τD = 〈(p0, ϕ0), (p1, ϕ1), ..., (pk, ϕk)〉
Red is obtained by applying the following reduction algorithm,

Example 3.4. Consider Table 3.8 for an illustration of the above definitions,

The abstract state trajectory of program P with respect to Sign property is denoted

as τSign and the abstract state trajectory of the sliced program PSign with respect

to the property Sign on slicing criteria C = (10, w) is denoted as τSign
′
.

τSign= 〈(1, {⊥,⊥,⊥,⊥}), (2, {⊥,+,⊥,⊥}), (3, {⊥,+,+,⊥}), (4, {⊥,+,+,−}),
(5, {⊥,+,+,−}), (6, {−,+,+,−}), (10, {−,+,+,−})〉
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St.No. Original Program, P Sliced Program, PSign

1 x = 5; x = 5;
2 y = 3; y = 3;
3 z = y − x; z = y − x;
4 if(x > z){ if(x > z)
5 y = x+ z2;
6 w = y ∗ z; } w = y ∗ z;
7 else{
8 y = x2 + z;
9 w = y ∗ z; }
10 printf”%d”, w; printf”%d”, w;

Table 3.8: Property driven slicing

τSign
′
= 〈(1, {⊥,⊥,⊥,⊥}), (2, {⊥,+,⊥,⊥}), (3, {⊥,+,+,⊥}), (4, {⊥,+,+,−}),

(6, {⊥,+,+,−}), (10, {−,+,+,−})〉

Notice that,

Red(Proj(10,w)(τ
Sign)) = Red(Proj(10,w)(τ

Sign′))

3.4 Dataflow Based Property Driven Program

Slicing

The algorithm involve a data flow analysis which is based on the theory of Ab-

stract Interpretation that enables an automatic extraction of information about

all possible program executions, followed by a backward static slicing using the

extracted information at each program point.

3.4.1 Phase 1: Static Analysis

We will restrict to boolean and integer valued variables, and will be interested in

approximating functions over integers (such as addition, subtraction, multiplica-

tion and addition), i.e., functions of the type f : Zn → Z. However, the concrete

domain used in abstract interpretation operates over sets of integers rather than

integers themselves. Thus, for any n − ary operation, f : Zn → Z, it is possible
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to define a lifted version fP : ℘(Z)n → ℘(Z). In practice, when operations over

the integers are used, the concrete domain will be ℘(Z).

Our representation of programs are def/use graphs. The objective of a static

analysis based on Abstract Interpretation is to assign sets of possible abstract

values to edges of a def/use graph. The def/use graph consists of five different

node types which represent program points:

1. A designated start and end node representing the beginning and end point

of a def/use graph.

2. Expression nodes representing different expression types found in a concrete

semantic model.

3. Condition nodes representing forks in a control flow, i.e. this type of nodes

has one incoming and two outgoing edges.

4. Join nodes merging two paths of the def/use graph, i.e. these nodes have

two incoming and one outgoing edge.

Like the classical approach, our analysis also begins at the start node of the def/use

graph and traverses the graph during its static program analysis phase. Depending

on the encountered node type, a particular set of rules which is based on Abstract

Interpretation is applied.

Based on the def/use graph, the classical approach begins with the construction

of a complete transition system for the five node types. It defines how an abstract

state is transferred into one state to another state at program point p:

Tp : ℘(ΣA)→ ℘(ΣA)

The transition system T is used to construct a system of equations which define

the assignment of abstract states to program points. A solution is found by a

fixed-point iteration. It begins with the least possible assignment T (⊥) where ⊥
is the least element representing ∅. The fixed-point iteration continues as long as a

further application of T does not compute a new state: T 0 = ⊥ and T n−1 = T n.

Now we will define T for the different types of control flow edges in a def/use

graph. For any edge e ∈ E we shall denote its predecessor edges as epre. For
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merge nodes, which have two incoming edges, the second is denoted epre′ . In the

following, T is given for every type of program point with respect to a given

abstract domain ρ. ∀ϕρ ∈ Σρ denotes the abstract states associated to program

variables at each program point.

Start edge: At the start edge e, nothing is known about the values of vari-

ables. Having said this, the natural definition of an abstract state associated

with the initial state should be as follows:

Te(ϕρ) = ⊥

Assignment edge: An assignment edge is an edge which emerges from

an assignment node. Let, an assignment node has an assignment x := a

associated with it, where x ∈ Var and a ∈ AExp, then Te(ϕρ) should be equal

to the previous abstract state with the variable x updated to the abstract

value of e (Table 3.4), as follows:.

Te(ϕρ) = Tepre(ϕρ[x← H[[a]]ϕρ])

Merge edge: The problem of Abstract Interpretation is that a termina-

tion of the fixed-point iteration can not be guaranteed. Due to the nature

of Abstract Interpretation which iteratively simulates each state transition,

the fixed-point iteration can consume a significant amount of time for loops

with large iteration counts. To overcome both problems, the widening oper-

ator ∇[44][38] can be applied. Its application typically enlarges the abstract

states during the fixed-point iteration leading to a correct but also over-

approximated solution which might become infeasible as result for many ap-

plications. Thus, a narrowing operator 4 was introduced [44][38] to restrict

the over-approximation afterwards.

A merge edge is an edge emerging from a merge node. A merge node com-

bines the analysis results of the two incoming edges. The least abstract value

which is correct with respect to both incoming values is the supremum of

the these. In addition, if the merge node is the entry of a loop, then that is

a good place to put the widening based on the abstract domain. Thus, the

abstract transition function for merge nodes is
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Te(ϕρ) =


Te(ϕρ)∇(Tepre(ϕρ) tTepre′

(ϕρ)) if loop merge

Tepre(ϕρ) tTepre′
(ϕρ) otherwise

Conditional edges: The conditional node has two outgoing edges. Con-

ditionals are resolved by only boolean expressions with relational operators

Opr, so for an abstract domain it is necessary to have abstract version of all

relational operators Ôpr (Table 3.5).

Te(ϕρ) =


Tepre(ϕρ) ∧Hb[[b]]ϕρ = TRUE

Tepre(ϕρ) ∧Hb[[b]]ϕρ = FALSE

The abstract interpretation may establish certain properties of a program

through which we can identify infeasible statements of the program which

will not be taken into account for program execution by predicting predicates

present in conditional statements. By the following rules we modify the

program P in order to simplify the control dependence, taking into account

only the statements that have all impact on the property of interest ρ. Here,

P [S ′/S] represents the replacement of S by S ′ in P yields the simplified

program P ′.

Example 3.5. Lets apply the rules in Table 3.9 on the following code fragments,

In Table 3.10, P ′ is obtained by applying rule 1(a) on P by statically analyzing the

program in Parity domain and in Table 3.11 we apply rule 2(a) on P analyzing

the Sign property. In both cases P ′ contains less statements than P . But in Table

3.12 we notice no improvement in terms of the number of statements both in P

and P ′. Therefore, the above rules can often generate a reduced CFG by statically

analyzing the associated program with respect to a certain property ρ.



Chapter 3. Property driven program slicing 52

Rule 1 For S::= l : if b then S1 else S2
(a)P ′ = P [S / S1] if Hb[[b]]ϕρ = TRUE

(b)P ′ = P [S / S2] if Hb[[b]]ϕρ = FALSE

(c)P ′ = P [S / S] No replacement otherwise

Rule 2 For S::= l : while b do S1
(a)P ′ = P [skip / S] if Hb[[b]]ϕρ = FALSE

(b)P ′ = P [S / S] No replacement otherwise

Table 3.9: Rules for conditional nodes

P ϕ{w, x, y, z} P ′ ϕ{w, x, y, z}
scanf(”%d”,&z); (⊥, ⊥, ⊥, ⊥) scanf(”%d”,&z); (⊥, ⊥, ⊥, ⊥)
y = 15; (⊥, ⊥, ⊥, >) y = 15; (⊥, ⊥, ⊥, >)
x = 2 ∗ z; (⊥, ⊥, O, >) x = 2 ∗ z; (⊥, ⊥, O, >))
if(x! = y) (⊥, E, O, >)
w = x+ y; (⊥, E, O, >) w = x+ y; (⊥, E, O, >)

else (⊥, E, O, >)
w = x− y + 1; (⊥, E, O, >)

printf(”%d”, w); (>, E, O, >) printf(”%d”, w); (O,E, O, >)

Table 3.10: Application of rule 1(a) on program P

P(Original program) ϕ{i, j, x, y} P′(applying Rule 4) ϕ{i, j, x, y}
i = 1; (⊥, ⊥, ⊥, ⊥) i = 1; (⊥, ⊥, ⊥, ⊥)
y = 2; (+, ⊥, ⊥, ⊥) y = 5; (+, ⊥, ⊥, ⊥)
x = 1; (+, ⊥, ⊥, +) x = 3; (+, ⊥, ⊥, +)
j = 5 ∗ (x− y); (+, ⊥, +, +) j = 5 ∗ (x− y); (+, ⊥, +, +)
while(i < j){ (+, −, +, +)
x = x+ y; (+, −, +, +)
i = i+ 1; } (+, −, +, +)

printf(”%d”, x); (+, −, +, +) printf(”%d”, x); (+, −, +, +)

Table 3.11: Application of rule 2(a) on program P

As an illustration consider CFG (for simplicity and better illustration we consider

control flow graphs since def/use graph is a augmented version of CFG so this

technique can be easily adopted to def/use graphs as well) in Figure 3.4. If the

abstract domain of signs is used then the abstract transition function yields the

following system of equations in Table 3.13.
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P(Original program) ϕ{i, j, x, y} P′(applying Rule 4) ϕ{i, j, x, y}
i = 1; (⊥, ⊥, ⊥, ⊥) i = 1; (⊥, ⊥, ⊥, ⊥)
y = 2; (+, ⊥, ⊥, ⊥) y = 5; (+, ⊥, ⊥, ⊥)
x = 1; (+, ⊥, ⊥, +) x = 3; (+, ⊥, ⊥, +)
j = 5 ∗ (y − x); (+, ⊥, +, +) j = 5 ∗ (x− y); (+, ⊥, +, +)
while(i < j){ (+, +, +, +) while(i < j){ (+, +, +, +)
x = x+ y; (+, +, +, +) x = x+ y; (+, +, +, +)

i=i+1;} (+, +, +, +) i=i+1;} (+, +, +, +)
printf(”%d”, x); (+, +, +, +) printf(”%d”, x); (+, +, +, +)

Table 3.12: Application of rule 2(b) on program P

Figure 3.4: Control flow graph

To solve this system of equations, we begin by setting Te0 = ⊥ for all program

points en. Then the left hand side is replaced by the right hand side of the system.

The process is iterated until A fixed point is reached i.e. the left hand side equals
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Te0(ϕsign) = [sum 7→ ⊥]
Te1(ϕsign) = [sum 7→ α(2)]
Te2(ϕsign) = Te1(ϕsign) tTe5(ϕsign)
Te3(ϕsign) = Te2 ∧Hb[[sum ≥ 0]]ϕsign = TRUE
Te4(ϕsign) = Te2 ∧Hb[[sum ≥ 0]]ϕsign = FALSE
Te5(ϕsign) = Te4(ϕsign[sum← H[[sum ∗ (−1)]]ϕsign])

Table 3.13: System of equations

the right hand side.

3.4.2 Phase 2: Slicing Algorithm

This section introduces a backward slicing algorithm (Table 3.14) that uses the

extracted information from phase 1 at each program point. While traditional

slicing algorithms are typically syntactical dependency based, this property driven

approach must rely on semantics dependencies and abstract dependencies. In fact,

the more abstract the property, the greater the loss of precision of the syntactic

approach with respect to the actual semantic. During directly relevant variable

calculation we consider what is relevant as a semantic requirement. and relevant

statements are collected based on the abstract dependency stated in step 2(b) of

Table 3.14.

Algorithm: Property Driven Program Slicing

Input:

(1) GP : Statically analyzed (Phase 1) def/use graph of the program P.

(2) C = (n, V ): slicing criterion.

(3) ρ: Given property of interest.
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Directly Relevant Variables (R0
(C,ρ))

(1) The set of directly relevant variables at slice node, n, is

simply the slice set, V .

(2) The set of directly relevant variables at every other node i,

is defined in terms of the set of directly relevant variables of

all nodes j leading directly from i to j (i −→GP ′ j) in GP .

R0
(C,ρ)(i) contains all variables x such that, either



(a) x ∈ R0
(C,ρ)(j)− def(i)

(b) if (def(i) ∩R0
(C,ρ)(j) 6= ∅) then

(∀y 6= x ∈ use(i)) ∧ (∀ϕiρ, ϕjρ ∈ ΣA)

if(ϕiρ(y) = ϕjρ(y)) ∧ (ϕiρ(def(i)) 6= ϕjρ(def(i))) then

R0
(C,ρ)(i) = R0

(C,ρ)(i) ∪ {x}

Directly Relevant Statements (S0
(C,ρ))

if (def(i) ∩R0
(C,ρ)(j) 6= ∅) then

S0
(C,ρ) = S0

(C,ρ) ∪ {i}
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Indirectly Relevant Variables (Rk+1
(C,ρ), K ≥ 0)

(a) for each predicate node b in GP ′ do

if (b ∩ S0
(C,ρ)) 6= ∅

BK
(C,ρ) = BK

(C,ρ) ∪ {b}

(b) RK+1
(C,ρ)(i) = RK

(C,ρ)(i) ∪
⋃
b∈BK

(C,ρ)
R0

(b,use(b),ρ)(i)

Indirectly Relevant Statements (Sk+1
(C,ρ), K ≥ 0)

if (def(i) ∩Rk+1
(C,ρ)(j) 6= ∅) then

Sk+1
(C,ρ) = Sk+1

(C,ρ) ∪BK
(C,ρ) ∪ {i}

Table 3.14: Property driven program slicing algorithm

Example 3.6. Let us consider the following code in Table 3.15. Notice that,

statements 7 and 11 to 13 can be ignored by Rule 1(a) discussed in Table 3.9.

Table 3.16 shows the comparison between the value based slice and property driven

slice with respect to slicing criterion C=(16, w) and a property ρ = sign. Since the

property of x at statement 2 does not depend on the property of y, statement 1 is

irrelevant. The property of x stays same before and after the execution of statement

8, for that reason statement 8 is also irrelevant in this context. And statement 6

and statement 10 are deleted from the slice due to the traditional slicing rules.

3.5 Correctness of Abstract Execution

In our framework the execution of a program can be described as a succession of

transitions between concrete values/states from the variable set V

v0  v1  ... vi  ...
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Stmt. No. Code x y l p m k c w

1 scanf(”%d”, &y); ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 x=2*y+1 ⊥ > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
3 l=x+1; O > ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
4 p=l; O > E ⊥ ⊥ ⊥ ⊥ ⊥
5 m=x+l; O > E E ⊥ ⊥ ⊥ ⊥
6 k= m+(x%2)-m; O > E E O ⊥ ⊥ ⊥
7 if(k!=0){ O > E E O O ⊥ ⊥
8 x=p+1; O > E E O O ⊥ ⊥
9 x=x+1; O > E E O O ⊥ ⊥
10 c=x+p;} E > E E O O ⊥ ⊥

else{ E > E E O O E ⊥
11 x=x-1;
12 p=l+1;
13 c=x-p;}
14 w=x+p E > E E O O E ⊥
15 printf(”%d”, c); E > E E O O E E
16 printf(”%d”, w); E > E E O O E E

Table 3.15: Program P after Phase 1

where  is a transition relation. On the other hand a program analysis is an

abstract execution of the program if the execution can be described in a property

space Dρ. The property space Dρ should be a complete lattice 〈Dρ,v〉 , i.e., a set

L with an ordering relation v ⊆ Dρ×Dρ such that each subset of D′ρ ⊆ Dρ, has a

least upper bound tD′ρ and greatest lower bound uD′ρ in Dρ. Instead of values, the

analysis works with properties (abstract values with respect to property ρ) di ∈ Dρ
where di models the value vi based on a correctness relation. T : Dρ → Dρ is a

function, called transfer function, such that,

d0 7→ d1= T (d0) 7→ ... 7→ di 7→ di+1 = T (di) ...

Definition 3.8. (Correctness Relation) Let V be the set of concrete (actual)

values and Dρ be the set of abstract values with respect to property ρ. A relation

R ∈ V × Dρ is said to be a correctness relation if it satisfies the following two

conditions:

1. ∀v ∈ V ∀d1, d2 ∈ Dρ: (vRd1) ∧ (d1 v d2)→ (vRd2)

2. ∀v ∈ V D′ρ ⊆ D (∀d ∈ D′ρ : (vRd))→ (v(uD′ρ))
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Stmt. No. P P sign
(16,w) P(16,w)

1 scanf(”%d”, &y); scanf(”%d”, &y);
2 x=2*y+1; x=2*y+1; x=2*y+1;
3 l=x+1; l=x+1; l=x+1;
4 p=l; p=l; p=l;
5 m=x+l; m=x+l;
6 k= m+(x%2)-m; k= m+(x%2)-m;
7 if(k!=0){ if(k!=0){
8 x=p+1; x=p+1;
9 x=x+1; x=x+1; x=x+1;}
10 c=x+p;}

else{ else{
11 x=x-1; x=x-1;
12 p=l+1; p=l+1;}
13 c=x-p;}
14 w=x+p; w=x+p; w=x+p;
15 printf(”%d”, c);
16 printf(”%d”, w); printf(”%d”, w); printf(”%d”, w);

Table 3.16: Property driven slice of P, P sign(16,w), w.r.t ρ = sign and C=(16,w),

and value based slice of P, P(16,w), w.r.t ρ = sign and C=(16,w)

The first condition says that if l1 is a valid abstract value for v and the analysis can

produce an abstract value abstract l2 such that l1 v l2 then l2 is also valid (may

not be the best) abstraction of v. Clearly first condition allows multiple abstract

value for some v. So the second condition determines the best abstract value out

of them.

Here we are combining the various abstract values to select the best approximation

using following rules:

1. If a value v is described by both d1 and d2, then best approximation for v is

d1 u d2.(Precise)

2. If a value v is described by either d1 or d2, then best approximation for v is

d1 t d2.(Safe)

Suppose we have an abstract initial value d0 and the initial concrete value v0,

such that v0 R d0. Given a program point, we can consider all concrete execution
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paths that reach it, analogously, abstractly execute each of them starting from v0

to compute an abstract value, and join the resulting abstract values to obtain

an element of the property lattice that approximates all values possible for that

program point. This is called meet-over-paths. It is not always possible to compute

the meet-over-paths ; therefore, we approximate its result by computing a fixed

point of a set of dataflow equations. To be sure that a fixed point exists, we

require that:

1. The transfer function (T ) is monotone.

2. There is no infinite ascending chain in Dρ.

To prove the correctness of the analysis, it is sufficient to prove,

1. The initial property (abstract) d0 is a correct approximation of the initial

value (concrete) v0 and v0 R d0.

2. Each transition preserves the correctness relation, i.e.,

∀v1, v2 ∈ V∀d1, d2 ∈ Dρ(v1  v2) ∧ (v1Rd1) ∧ ((d1) = d2)→ v2Rd2

Once we prove this, an elementary induction on the length of the execution

path shows that the result of meet-over-paths for a specific program point

describes all the concrete values that can occur at that program point with

respect to the correctness relation R.

3.6 Related Work

The original definition of a program slice was presented by Weiser [129, 130, 132]

in 1979 . Since then, various slightly different notions of program slices have

been proposed, as well as a number of methods to compute them. In Weiser’s

approach, slices are computed by computing consecutive sets of transitively rel-

evant statements, according to data flow and control flow dependencies. Only

statically available information is used for computing slices; hence, this type of

slice is referred to as a static slice. Since then, program slicing has grown as a
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field and an amazing number of papers have been published that present differ-

ent forms of program slicing, algorithms to compute them, and applications to

software engineering.

An alternative method for computing static slices was suggested by Ottenstein

and Ottenstein [100], who restate the problem of static slicing in terms of a reach-

ability problem in a program dependence graph (PDG). [81][54] Horwitz et al. [76]

extended the PDG based algorithm to compute inter-procedural slices on the Sys-

tem Dependence Graph (SDG). The authors demonstrated that their algorithm

is more accurate than the original inter-procedural slicing algorithm by Weiser

[132], because it accounts for procedure calling contexts. Recent improvements of

algorithms to compute slices through graph reachability are presented in [106].

Yet another approach was proposed by Bergeretti and Carr [11], who define slices

in terms of information-flow relations, which are derived from a program in a

syntax-directed fashion. The slices mentioned so far are computed by gathering

statements and control predicates by way of a backward traversal of the programs

control flow graph (CFG) or PDG, starting at the slicing criterion. They were the

first to define the notion of a forward static slice, although Reps and Bricker [107]

were the first to use this terminology.

Venkatesh [58] presents formal definitions of several types of slices in terms of

denotational semantics.Venkatesh introduced a simple procedural language L and

claims to formally define the semantics of a variety of already existing forms of

slice as well as introducing some of his own. He distinguishes three independent

dimensions according to which slices can be categorized: static vs. dynamic,

backward vs. forward, and closure vs. executable. These include the Dynamic

backward clousure slice, the dynamic backword executable slice, static backward

closure slice, static backword executable slice all of which, unlike Weiser’s definition

and functions.

Hausler [71] states the same definition of a slice as Weiser but he has written the

slicing algorithm in functional language. His algorithm is a dataflow algorithm

and appears, like Venkatesh, to be another formulation of Weiser’s Algorithm.

The strength of his work lies in the fact that he expresses a slicing algorithm with-

out explicitly mentioning data and control dependence but they are, nevertheless

encoded in his algorithm.
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Reps and Yang [108] illustrate the relationship between the execution behavior of a

program and the execution behavior of its slices. They state the Slicing Theorem

and the Termination Theorem. The Slicing Theorem demonstrates that a slice

captures a portion of a program’s behavior in the sense that, for any initial state

on which the program halts, the program and the slice compute the same sequence

of values for each element of the slice. The Termination Theorem demonstrates

that if a program is decomposed into (two or more) slices, the program halts on

any state for which all the slices halt.

Binkley et al in [18] proposed a formal framework, represents different forms of

slicing by means of a pair: a syntactic preorder, a function from slicing criteria to

semantic equivalences. The preorder fixes a syntactic relation between the program

and its slices. In standard slicing, this relation represents the fact that slices are

obtained from the original program by removing zero or more statements. This

preorder is called traditional syntactic ordering. The function fixes the semantic

constraints that a subprogram has to respect in order to be a slice of the original

program. The equivalence relation returned by the function is uniquely determined

by the form of slicing and by the chosen slicing criterion.

Hong et.al [74] proposes a new approach to program slicing based on abstract

interpretation and model checking. They extends static slicing with predicates

and constraints by using as the program model an abstract state graph, which

is obtained by applying predicate abstraction to a program, rather than a flow

graph. This leads to a program slice that is more precise and smaller than its

static counterpart. They develop a method for performing abstract slicing and

show how abstract slicing is reduced to a least fixpoint computation over formulas

in the branching time temporal logic CTL.

Recently, Isabella Mastroeni and Damiano Zanardini [91] discuss the relation be-

tween program slicing and data dependencies in Abstract Interpretation frame

work. They introduce the notion of semantic dependency and abstract depen-

dency. In this framework, since it is possible to choose dependency in the syntac-

tic or semantic sense, thus leading to compute possibly different, smaller slices.

Moreover, the notion of abstract dependency, based on properties instead of exact

data values, is investigated in its theoretical meaning.

[90] extends the formal framework proposed by Binkley et al. [18] with three

forms of abstract slicing, static, dynamic and conditioned. Authors show that all
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existing forms are instantiations of their corresponding abstract forms and enrich

the existing slicing technique hierarchy by inserting these abstract forms of slicing.

Next in the literature, an algorithmic approach is provided for extracting abstract

slices. The idea is to define a notion of abstract state which observes variables of

interest by means of abstract properties. These states are used for analyzing the

evolution of the properties of variables of interest instead of their values. In order

to perform the evolution analysis, an abstract state graph (ASG) is constructed,

whose vertices are abstract states and which models program executions at some

level of abstraction. Then to remove all the statements not relevant for the prop-

erties of interest At this point, a technique for pruning the ASG is proposed. The

algorithm is split into two modules: the simple approach, used for abstract static

slicing, and the extended approach, composed of several applications of the simple

one, which is used for abstract conditioned slicing.

Srihari Sukumaran et al.[122] proposed an extension of the classical program de-

pendence graph(PDG) called the dependence conditiongraph (DCG). The DCG is

obtained by adding to each PDG edge an annotation whose semantic interpreta-

tion encodes the condition under which the dependence represented by that PDG

edge actually arises in a program execution. This semantic interpretation can be

naturally extended to PDG paths. Based on this foundation abstract program

slicing is extended in [37] by transforming the semantics-based abstract PDG into

an semantics-based abstract Dependence Condition Graph (DCG) that enables to

identify the conditions for dependence between program points.

Different applications of static slicing have been proposed in the literature, with

some variants on the original definition. For example, Gallagher and Lyle [57]

introduced the concept of decomposition slicing and discussed its application to

software maintenance. A decomposition slice is defined with respect to a variable

v, independently of any program point. It is given by the union of the static

slices computed with respect to the variable v and all possible program points

p. Weiser’s slicing criterion only provides the end point and the set of output

variables of the function to be extracted. Lanubile and Visaggio [84] added the set

of input variables of the searched function to the slicing criterion. They introduced

the notion of transform slice, as the slice that computes the values of the output

variables at a given program point from the values of the input variables. The

computation of a transform slice is similar to the computation of a static backward

slice but stops as soon as the statements that define values for the input variables
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are included in the slice. On the other hand, Cimitile et al. [26][27] defined a

different slicing criterion including both the start and the end statements of the

function to be extracted. The slice is computed between these two statements that

form a one-in/ one-out subgraph of the CFG. The authors also defined a method

to identify the slicing criterion from the specification of the searched function

expressed in terms of a precondition and a postcondition.

Different program slicing surveys have also been published [19][79], as well as jour-

nal special issues [56]. A detailed survey is found in [126] by Frank Tip. His survey

presents an overview of program slicing, including the various general approaches

used to compute slices, as well as the specific techniques used to address a variety

of language features such as procedures, unstructured control flow, composite data

types and pointers, and concurrency. Horwitz and Reps [75] present a survey of

the work that has been done at the University of Wisconsin-Madison on slicing,

differencing, and integration of single-procedure and multi-procedure programs as

operations on PDGs.

3.7 Conclusions

We further extend the previously introduced theoretical framework [129, 130, 132].

The proposed slicing algorithm has some significant advantages over the traditional

slicing algorithms.

On the practical side, property driven program slicing is interesting since, in gen-

eral, the slicing based on a property of some variables is smaller than the slicing

technique based on the exact value of the same variables, since, properties prop-

agate less than concrete values, some statements might affect the values but not

the property. This can make debugging and program understanding tasks easier,

since a smaller portion of the code has to be inspected when searching for some

undesired behavior.

Since slicing is closely related to the calculus of dependencies [23], which, in turn,

represents one of the basic notions in information flow [112], closely related work

can be found in the abstract non-interference [60] theory where, the notion of

non-interference is relaxed, in the sense that flows are only detected when they

affect a property, the one which can be seen by an attacker, whose observational

power is limited, rather than the concrete value of data. Due to this, a program
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is more likely to satisfy abstract non-interference than standard non-interference,

since some concrete flows are not really harmful at the abstract level.



Chapter 4

Watermarking Relational

Databases

Watermarking is a widely used technique to embed additional but not visible

information into the underlying data with the aim of supporting tamper detec-

tion, localization, ownership proof, and/or traitor tracing purposes. Watermarking

techniques apply to various types of host content. Here, we concentrate on rela-

tional databases. Rights protection for such data is crucial in scenarios where data

are sensitive, valuable and nevertheless they need to be outsourced.

Unlike encryption and hash description, typical watermarking techniques modify

the ordinal data and inevitably cause permanent distortion to the original ones

and this is an issue when integrity requirement of data are required. However

some applications in which relational data are involved cannot tolerate any per-

manent distortions and data’s integrity needs to be authenticated. To meet this

requirement. In this chapter we further strengthen this approach and propose a

distortion free watermarking algorithm [15, 15, 15] for relational databases and

discuss it in abstract interpretation framework proposed by Patrick Cousot and

Radhia Cousot [39, 42, 43].

In Section 4.1, we compare database watermarking with digital multimedia water-

marking. Basic database watermarking process along with the requirements and

classifications are stated in Section 4.2. In Section 4.3 we introduce the formal

definitions that we are going to use in the remaining sections. The actual water-

marking process is introduced in Section 4.4. We illustrate database authentication

issues in Section 4.5. Section 4.6 discuss the robustness of the algorithm to handle

65
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different watermarking attacks. In Section 4.7 states the most relevant existing

database watermarking techniques. In Section 4.8, we conclude by discussing the

main advantages of our scheme.

4.1 Watermarking, Multimedia vs Database

Digital multimedia watermarking technology was suggested in the last decade to

embed copyright information in digital objects such images, audio and video. Most

watermarking research concentrated on watermarking multimedia data objects

such as still images [111] and video [70, 83, 102] and audio [5, 10, 85]. However,

the increasing use of relational database systems in many real-life applications

created an ever increasing need for watermarking database systems. As a result,

watermarking relational database systems is now merging as a research area that

deals with the legal issue of copyright protection of database systems. Techniques

developed for multimedia data cannot be directly used for watermarking relational

databases, because relational and multimedia data differ in a number of important

respects [4]:

� A multimedia object consists of a large number of bits with considerable

redundancy. Thus, the watermark has a large cover in which to hide. A

database relation consists of tuples, each of which represents a separate ob-

ject. The watermark needs to be spread over these separate objects.

� The relative spatial/temporal positioning of various pieces of a multimedia

object typically does not change. Tuples of a relation, constitute a set, and

there is no implied ordering between them.

� Multimedia objects typically remain intact; portions of an object cannot be

dropped or replaced arbitrarily without causing perceptual changes in the

object. On the other hand, tuple insertions, deletions and updates are the

norm in the database setting.

4.2 Basic Watermarking Process

Database watermarking consists of two basic processes: watermark insertion and

watermark detection, as illustrated in Figure 4.1. For watermark insertion, a key
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is used to embed watermark information into an original database so as to produce

the watermarked database for publication or distribution. Given appropriate key

and watermark information, a watermark detection process can be applied to any

suspicious database so as to determine whether or not a legitimate watermark can

be detected. A suspicious database can be any watermarked database or innocent

database, or a mixture of them under various database attacks.

W

Watermark Insertion


W


Watermark Detection


W


?


Figure 4.1: Basic database watermarking process

The motivation for database watermarking is to protect databases, especially those

published online as parametric specifications, surveys or life sciences bio-metric

data, from tampering and pirated copies. Here are some constraints of database

watermarking include:

� Watermark selection: the insertion of the mark does not destroy the value of

the Work, i.e., it is still useful for the intended purpose and it is difficult for an

adversary to remove or alter the mark beyond detection without destroying

this value. If the Work to be watermarked cannot be modified without losing

its value then a watermark cannot be inserted. Thus, an important first step

is inserting a watermark, i.e., by altering it, is to identify changes that are

acceptable. Naturally, the nature and level of such change is dependent upon
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the application for which the data is to be used. Clearly, the notion of value

or utility of the data becomes thus central to the watermarking process. At

the same time, the concept of value of watermarked Works is necessarily

relative and largely influenced by each semantic context it appears in.

� Distortion: It is often hard to define the available bandwidth for inserting the

watermark directly. Instead, allowable distortion bounds for the input data

can be defined in terms of some metrics. If the watermarked data satisfies

the metrics, then the alterations induced by the insertion of the watermark

are considered to be acceptable. One such simple yet relevant example for

numeric data, is the case of maximum allowable mean squared error (MSE),

in which the usability metrics are defined in terms of mean squared error

tolerances as (si − vi)
2 < ti, ∀i = 1, ..., n and

∑
(si − vi)

2 < tmax, where

S = {s1, ..., sn} ⊂ R, is the data to be watermarked, V = {v1, ..., vn} is the

result, T = {t1, ..., tn} ⊂ R and tmax ∈ R define the guaranteed error bounds

at data distribution time. In other words T defines the allowable distortions

for individual elements in terms of MSE and tmax its overall permissible

value.

� Uniqueness: each value must be unique.

� Scale: the ratio between any two number before and after the change must

remain the same.

� Classification: the objects must remain in the same class (defined by a range

of values) before and after the watermarking.

4.2.1 Classification Model

The existing database watermarking schemes can be classified along various di-

mensions [86], including:

� Data type: Different schemes are designed for watermarking different types

of data, including numerical data and categorical data.

� Distortion to underlying data While some watermarking schemes inevitably

introduce distortions/errors to the underlying data, others are distortion-

free.
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� Sensitivity to database attacks A watermarking scheme can be either ro-

bust or fragile to database attacks. A scheme is robust (fragile, respec-

tively) if it is difficult to make an embedded watermark undetectable (un-

changed,respectively) in database attacks, provided that the attacks do not

degrade the usefulness of the data significantly.

� Watermark information The watermark information that is embedded into

a database can be a single-bit watermark, a multiple-bit watermark, a fin-

gerprint, or multiple watermarks in different watermarking schemes.

� Verifiability A watermark solution is said to be private if the detection of a

watermark can only be performed by someone who owns a secret key and

can only be proven once to the public (e.g., to the court). After this one-time

proof, the secret key is known to the public and the embedded watermark

can be easily destroyed by malicious users. A watermark solution is said to

be public if the detection of a watermark can be publicly proven by anyone,

as many times as necessary.

� Data structure Different watermarking schemes are designed to accommo-

date different structural information of the underlying data, including re-

lational databases (with or without primary keys), data cubes, streaming

data, and XML data.

4.2.2 Requirements of Database Watermarking

Watermarking database systems have some typical requirements that differ from

those required for watermarking digital image and audio systems. The water-

marked database must maintain the following properties:

� Usability That amount of change in the database caused by the watermark-

ing process should not result in degrading the database and making it use-

less. The amount of allowable change differs from one database to another,

depending on the nature of stored records.

� Robustness Watermarks embedded in the database should be robust against

attacks to erase them. That is, the database watermarking algorithm must

be developed in such a way to make it difficult for an adversary to remove
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or alter the watermark beyond detection without destroying usability of the

database.

� Blindness Watermark extraction should neither require the knowledge of the

original un-watermarked database nor the watermark itself. This property

is critical as it allows the watermark to be detected in a copy of the database

relation, irrespective of later updates to the original relation.

� Structure A database is made of inter-related tuples. The tuples that are

joined before the watermarking process should not be altered during wa-

termarking. Moreover, scale and classification must be considered during

the watermarking process since they have impact on the semantics of the

database.

� Security Choice of the watermarked tuples, attributes, bit positions should

be secret and be only known through the knowledge of a secret-key. Owner

of the database should be the only one who has knowledge of a secret-key.

4.3 Preliminaries

We shall use the capital letters at the beginning of the alphabet to denote single

attributes (A,B...) , and dom(A) will be the domain of the attribute A. For sets

of attributes we shall use the letters at the end of the alphabet (X, Y...), and

dom(X) will be the cartesian product of all the attribute domains A ∈ X. R, S...

will denote relational schemes (sets of attributes). A(R) is a set of attributes and

T (R) is the set of tuples, over which relation schema R is defined. Relations,

i.e, instances of relational schemes, will be denoted by small letters such as r, s...

and tuples by t, u.... To emphasize that the attribute A belongs to the relation r,

we shall use the notation r.A. The value of an attribute A in a tuple t, will be

represented by t[A]. A relational table R is a function,

∀t ∈ T (R) ∧ ∀A ∈ A(R) : T (R)×A(R)→ t[A] ∈ dom(A)

The symbol × stands for the usual cartesian product.

Example 4.1. Consider the EMPLOYEE table (Table 4.1) as example,
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emp no emp name emp rank

100 John Manager
101 David programmer
103 Albert HR

Table 4.1: EMPLOYEE relation

� T (EMPLOY EE): {t1, t2, t3}.

� A(EMPLOY EE): {emp no, emp name, emp rank}.

� EMPLOYEE:

t1(emp no) = 100; t1(emp name) = Jhon; t1(emp rank) = Manager

t2(emp no) = 101; t2(emp name) = David; t2(emp rank) = Programmer

t3(emp no) = 103; t3(emp name) = Albert; t3(emp rank) = HR

Now, let us consider the definition of watermarking in case of relational databases,

Definition 4.1. (Watermarking) A watermark W for a relation R is a predi-

cate such that W(R) is true and the probability of W(R′) being true with R′ ∈
℘(T (R′)×A(R′))\R is negligible.

4.4 Distortion Free Database Watermarking

Specifying only allowable change limits on individual values, and possibly an over-

all limit, fails to capture important semantic features associated with the data,

especially if data are structured. Consider for example, the age data in an Indian

context. While a small change to the age values may be acceptable, it may be

critical that individuals that are younger than 21 remain so even after watermark-

ing if the data will be used to determine behavior patterns for under-age drinking.

Similarly, if the same data were to be used for identifying legal voters, the cut-off

would be 18 years. In another scenario, if a relation contains the start and end

times of a web interaction, it is important that each tuple satisfies the condition

that the end time be later than the start time. For some other application it may

be important that the relative ages, in terms of which one is younger, not change.

It is clear from the above examples, simple bounds on the change of numerical

values are often not sufficient to prevent side effects of a watermarking operation.



Chapter 4. Watermarking relational database 72

Our proposed watermarking technique is partition based. The partitioning can be

seen as a virtual grouping, which neither change the value of the table’s elements

nor their physical positions. This partitioning phase is interpreted in abstract

interpretation framework as relational table abstraction. Instead of inserting the

watermark directly to the database partition, we treat it as an abstract represen-

tation of that concrete partition, such that any change in the concrete domain

reflects in its abstract counterpart. This is called partition abstracting. The main

idea is to generate a image (binary [15] or grey scale [16]) of the partition as a

watermark of that partition, that serves as ownership proof (certificate) as well

as tamper detection, namely authentication phase. The overall idea is depicted in

Figure 4.2.

4.4.1 Partitioning

In this section we will describe three partitioning algorithms. Two of them have

been introduced in [15][14], here we will propose a third, the most general partition-

ing algorithm and will describe the abstraction associated with each partitioning

scheme.

4.4.1.1 Partition Based on Categorical Attribute

Let R be a given relational data table and C ∈ A(R) be a categorical attribute.

The (finite) value set V ⊆ dom(C) is the set of values of C that are actually

present in R. We can partition the tuples in R by grouping the values of attribute

C as

P = {[vi] : 1 ≤ i ≤ N}, where ∀t ∈ T (R) : t[C] = vi ⇔ t ∈ [vi].

The frequency qi of vi is the number of tuples in [vi]. The data distribution of C

in R is the set of pairs τ = {(vi, fi)|1 ≤ i ≤ N}. So the entire database can be

partitioned into N fixed mutual exclusive areas based on each categorical value vi.

Abstraction:

The above concept leads to an abstraction as depicted in Figure 4.3.

Given a relation R a categorical attribute C ∈ A(R) and P = {[vi] : 1 ≤ i ≤ N},
for each set S ⊆ R, We can define a concretization map γx as follows:
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Figure 4.2: Block diagram of the over all process

Figure 4.3: Table Abstraction (Galois Connection).
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
γx(vi, h) = S ⊆ R | ∀t ∈ S : t ∈ [vi] ∧ size of S is h

γx(>) = T

γx(⊥) = ∅

The best representation of a set of tuples with attribute C is captured by the

corresponding abstraction function αx :

αx(S) =


(vi, h) if ∀t ∈ T (S) : t[C] = vi ∧ size of S is h

> if ∃t1, t2 ∈ S : t1[C] 6= t2.x

⊥ if S = ∅

We may prove that (αx, γx) form a Galois insertion [8] with αx monotone and γx

weakly monotone, i.e. (v, u) ≤ (v,m) ⇒ (∪γ(v, u)) ⊆ (∪γ(v,m)).

4.4.1.2 Secret Partitioning

In this section we present a data partitioning algorithm that partitions the rela-

tional data table based on a secret key < with P as the primary key attribute and

N is the number of tuples in R. R is partitioned into m non overlapping partitions,

[S0], ..., [Sm−1], such that each partition [Si] contains on average (N
m

) tuples from

R. Partitions do not overlap, i.e., for any two partitions [Si] and [Sj] such that

i 6= j we have [Si] ∩ [Sj] = ∅. In order to generate the partitions, for each tuple

r ∈ T (R), the data partitioning algorithm computes a message authenticated code

(MAC) using HMAC.[73]

Using the property that secure hash functions generate uniformly distributed mes-

sage digests this partitioning technique places (N
m

) tuples, on average, in each par-

tition. Furthermore, an attacker cannot predict the tuples-to-partition assignment

without the knowledge of the secret key < and the number of partitions m which

are kept secret. Keeping it secret makes it harder for the attacker to regenerate

the partitions. The partitioning algorithm is described in Table 4.2.

Abstraction:

Consider the lattice A = 〈N,
⋃
{⊥,>},v〉, where ⊥ v i v > and ∀ i, j ∈ N, i 6= j,

i and j are uncomparable with v. The lattice is shown in Figure 4.4.
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get partitions(R,<,m)

for each tuple r ∈ T (R) do
partition← HMAC(< | r[P ]) mod m
insert r into Spartition

return(S0, ..., Sm−1)

Table 4.2: Secret partitiong

Figure 4.4: Lattice of the abstract domain

Given R and m partitions {[Si], 0 ≤ i ≤ (m− 1)}, for each set T ⊆ R, and given

a set of natural number i ∈ N, we can define a concretization map γ as follows:

γ(>) = R

γ(⊥) = ∅

γ(i) =

{
T ⊆ R if ∀t ∈ T : i = HMAC(<|t[P ]) mod m

∅ Otherwise
(4.1)

The best representation of a set of tuples is captured by the corresponding ab-

straction function α :

α(T ) =


⊥ if S = ∅
i if ∀t ∈ T : HMAC(< | t[P ]) mod m = i

> Otherwise

(4.2)

The two functions α and γ described above yield a Galois connection [40] between

R and the lattice depicted in Figure 4.4. The main advantage of this partitioning

is that, it is not limited to any particular type of attribute, like categorical or

numerical attribute.
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4.4.1.3 Partitioning Based on Pattern Tableau

Using the intersection operator over tuples we could build the tuples lattice of a

relation. A closed tuple will thus subsume all tuples agreeing on the same values,

i.e. the values of non empty variables in the closed tuple. This notion of set

of tuples agreeing on the same values for a given set of attributes X has already

been defined in database theory for horizontal decomposition purposes [101]. Let’s

consider the following definitions to define the partitioning.

Definition 4.2. (Pattern tableau) A pattern tableau R# with all attributes from

A(R), where each row tp ∈ T (R#) and each attribute A ∈ A(R), tp[A] is either:

� a constant a ∈ dom(A).

� an empty variable > which indicates that the attribute does not contribute

to the pattern.

Definition 4.3. (X-complete property) The relation r is said to be X-complete if

and only if ∀t1, t2 ∈ r we have t1[X] = t2[X].

Informally, a relation is X-complete if all tuples agree on the attributes X.

Definition 4.4. (X-complete-pattern) We call X-complete-pattern of an X-complete

relation r, denoted by P(X, r), the pattern tuple on which tuples of r agree.

since r is X-complete, its X-complete-pattern defines at least the attributes in X

i.e. those attributes do not have the > value.

Definition 4.5. (X-complete horizontal decomposition) The set of all X-complete

fragment relations of r, RX(r) is defined formally as RX(r) = {r′ ⊆ r|r is X −
complete}.

To denote that a tuple t ∈ r′ satisfies a particular row (pattern) tp ∈ T (r#), we

use the symbol t[A] ˚ tp[A], iff ∀A ∈ A(r) either t[A] = tp[A] or tp[A] = >.

Definition 4.6. (Set of X-patterns) The set of all X-complete-patterns of an X-

complete decomposition, Γ(X, r) is formally defined as Γ(X, r) = {P(X, r′)|r′ ∈
RX(r)}.
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T A B C D E F
t1 a1 b1 c1 d1 e1 f1

t2 a1 b1 c1 d1 e2 f1

t3 a2 b1 c2 d2 e2 f1

t4 a2 b1 c2 d2 e3 f1

t5 a2 b2 c2 d2 e1 f2

t6 a2 b2 c2 d1 e1 f2

t7 a2 b2 c1 d1 e1 f2

t8 a2 b2 c1 d2 e1 f2

t9 a1 b2 c2 d1 e2 f2

t10 a1 b2 c2 d1 e1 f2

Table 4.3: An instance relation r of the schema R

Attributes X are defined in all X-complete-patterns. Some other attributes might

also be defined.

Example 4.2. Consider Table 4.3,

� The AB − complete horizontal decomposition of r is

RAB(r) = {{t1, t2}, {t3, t4}, {t5, t6, t7, t8}, {t9, t10}}.

� The set of AB − complete patterns is Γ(AB, r) =

{(a1, b1, c1, d1,>, f1);

(a2, b1, c2, d2,>, f1);

(a2, b2,>,>, e1, f2);

(a1, b2, c2, d1,>, f2)}.

Partitions are the X − complete horizontal decomposition of R, RX(R), where

X ⊆ A, such that the following two conditions must be satisfied,

1.
⋃

∀r∈RX(R)

r = R

2.
⋂

∀r∈RX(R)

r = ∅

Table 4.4: Partitioning conditions

Example 4.3. Table 4.5, Table 4.6, Table 4.7 and Table 4.8 are the partitions of

Table 4.3 based on the set of AB − complete patterns, Γ(AB, r).
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Ra1b1(r) A B C D E F
t1 a1 b1 c1 d1 e1 f1

t2 a1 b1 c1 d1 e2 f1

Table 4.5: P(AB,Ra1b1(r)) =
(a1, b1, c1, d1,>, f1)

Ra2b1(r) A B C D E F
t3 a2 b1 c2 d2 e2 f1

t4 a2 b1 c2 d2 e3 f1

Table 4.6: P(AB,Ra2b1(r)) =
(a2, b1, c2, d2,>, f1)

Ra2b2(r) A B C D E F
t5 a2 b2 c2 d2 e1 f2

t6 a2 b2 c2 d1 e1 f2

t7 a2 b2 c1 d1 e1 f2

t8 a2 b2 c1 d2 e1 f2

Table 4.7: P(AB,Ra2b2(r)) =
(a2, b2,>,>, e1, f2)

Ra2b1(r) A B C D E F
t9 a1 b2 c2 d1 e2 f2

t10 a1 b2 c2 d1 e1 f2

Table 4.8: P(AB,Ra2b1(r)) =
(a1, b2, c2, d1,>, f2)

Abstraction

Given a relation R and m partitions (X − complete horizontal decompositions of

R) {[Ri], 1 ≤ i ≤ m}, then r ⊆ R, and given a set of X − complete patterns, we

can define a concretization map γ as follows:

γ(>) = R

γ(⊥) = ∅

γ(P(X, r)) ={
r ⊆ R ∀t ∈ T (r),∀a ∈ A : either t(a) = P(X, r)(a) or P(X, r)(a) = >
∅ Otherwise

The best representation of a set of tuples is captured by the corresponding ab-

straction function α :

α(r) =
⊥ if r = ∅
P(X, r) if ∀t ∈ T (r),∀a ∈ A : either t(a) = P(X, r)(a) or P(X, r)(a) = >
> Otherwise

Example 4.4. Table 4.9 shows the concrete relation instance r and associated

abstract relation instance r#. Notice that, each tuple tp ∈ T (r#) is associated with

a non-overlapping partition in r.
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T A B C D E F T A B C D E F
t1 a1 b1 c1 d1 e1 f1 > a1 b1 c1 d1 > f1

t2 a1 b1 c1 d1 e2 f1

t3 a2 b1 c2 d2 e2 f1 > a2 b1 c2 d2 > f1

t4 a2 b1 c2 d2 e3 f1

t5 a2 b2 c2 d2 e1 f2 > a2 b2 > > e1 f2

t6 a2 b2 c2 d1 e1 f2

t7 a2 b2 c1 d1 e1 f2

t8 a2 b2 c1 d2 e1 f2

t9 a1 b2 c2 d1 e2 f2 > a1 b2 c2 d1 > f2

t10 a1 b2 c2 d1 e1 f2

Table 4.9: Concrete Relation r and the corresponding abstract relation r#

4.4.2 Watermark Generation

We are interested in a watermark generation process starting from a partition [Rk]

1 ≤ k ≤ n], in a relational database table . The partitioning can be seen as

a virtual grouping which does not change the physical position of the tuples as

described in the last section. Let the owner of the relation R possess a watermark

key <, which will be used in both watermark generation and detection. In addi-

tion, the key should be long enough to thwart brute force guessing attacks to the

key. A cryptographic pseudo random sequence generator [113] G is seeded with

the concatenation of watermark key < and the primary key r[P ] for each tuple

r ∈ T (Rk), generating a sequence of numbers, through which we select a field

(attribute) in A(R). A fixed number of MSBs (most significant bits) and LSBs

(least significant bits) of the selected field are used for generating the watermark

of that corresponding field. The reason behind it is: a small alteration in that field

in R will affects the LSBs first and a major alteration will affects the MSBs, so

the LSB and MSB association is able to track the changes in the actual attribute

values. So here we make the watermark value as the concatenation of m number

of MSBs and n number of LSBs such that m+ n = 8. Our aim is to make a grey

scale image as the watermark of that associated partition, so the value of each cell

must belongs to [0..255] range. Formally, the watermark (grey scale image) RI
k

corresponding to the kth partition [Rk] is generated in Table 5.1,

Example 4.5. Let us illustrate the above algorithm for a single tuple in any hypo-

thetical partition of a table Employee = (emp id, emp name, salary, location, position),

where emp id is the primary key which is concatenated along with the private key

< as in line 4 in the above algorithm to select random attributes. Here (10111111,
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genW (Rk,<)

for each tuple t ∈ T (Rk) do
construct a row p ∈ T (RI

k)
for (i = 0; i < |A(Rk)|; i = i+ 1) do
j = Gi(<, r[P ]) mod |A(Rk)|
pi.R

I
k = (t[j]m MSBs | t[j]n LSBS)10 mod 256

delete the jth attribute from t
endfor

endfor
return(RI

k)

Table 4.10: Watermark generation

10110101, 10010101,11110111) is the generated watermark for the tuple (Bob,

10000, London, Manager), where we consider 4 MSBs concatenated with 4 LSBs.

And the attribute watermark pair looks like {〈Bob, 10010101〉, 〈10000, 10111111〉,
〈London, 11110111〉, 〈Manager, 10110101〉}. The entire concept is illustrated by

Figure 4.5.

Figure 4.5: Watermark generation for a single tuple

The whole process does not introduce any distortion to the original data. The use

of MSB LSB combination is for thwarting potential attacks that modify the data

as it simply produces an integrity certificate.

4.4.2.1 Abstraction

Let us define the abstract framework behind this generation algorithm, let

� R = {R : T × A→ Z}



Chapter 4. Watermarking relational database 81

� RI = {RI : T × A→ [0..255]}

� The abstraction function α : R → RI is defined as α(R)(t, a) = α(R(t, a))

where α : Z→ [0..255].

4.4.3 Watermark Detection

A very important problem in a watermarking scheme is synchronization, that

is, we must ensure, that the watermark extracted is in the same order as that

generated. If synchronization is lost, even if no modifications have been made, the

embedded watermark cannot be correctly verified. In watermark detection, the

watermark key < and watermark RI
k are needed to check a suspicious partition

R′k of the suspicious database relation R′. It is assumed that the primary key

attribute has not been changed or else can be recovered. Table 4.11 states the

watermark detection algorithm.

genW (Rk,<)

for each tuple t ∈ T (Rk) do
construct a row p ∈ T (RI

k)
for (i = 0; i < |A(Rk)|; i = i+ 1) do
j = Gi(<, r[P ]) mod |A(Rk)|
if pi.R

I
k = (t[j]m MSBs | t[j]n LSBS)10 mod 256 then

matchC = matchC + 1
endif
delete the jth attribute from t

endfor
endfor
if matchC = ω then
// ω = number of rows × number of columns in RI

k return true
else
return false
endif

Table 4.11: Watermark detection

The variable matchC counts the total number of correct matches. The authenti-

cation is checked by comparing the generated watermark bitwise. And after each

match matchC is increased by 1. Finally, the total match is compared to the
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number of bits in the watermark image RI
k associated with partition Rk to check

the final authentication.

4.5 Zero Distortion Authentication Watermark-

ing (ZAW)

So far, we have a set of grey scale images corresponding to a data table R. Each

gray scale image RI
k (k=1 to n) is associated with n partitions Rk (k=1 to n) of R.

And image RI
k is said to be the abstraction of partition Rk. Now the authentication

of database owner is necessary. We employ the zero-distortion authentication

watermarking (ZAW) [133] to authenticate the table which introduces no artifact

at all. Figure 4.6 describes the framework of the ZAW scheme which does not

modify the host content but transforms the host into its equivalence.

Figure 4.6: ZAW framework

Without loss of generality we assume that the table R is fragmented into n in-

dependent grey scale images RI
1; RI

2; ...;RI
n. Each image does not depend on any

other images. If we consider R as the concrete table then RI (composition of all

image fragments RI
1; RI

2; ...;RI
n ) can be considered as its abstract counterpart.

An equivalent image can be derived from πk using Myrvold and Ruskey’s linear

permutation ranking algorithm [96] by permuting the partitions in RI . The al-

gorithm unrank makes a permutation of the segments based on a secret number

(M) only known to the database owner and this number can be considered as a

private key of the owner. The owner can distribute the number of partitions n as

public key. unrank in Table 4.12 can be treated as a encryption algorithm based

on the private key M .

The algorithm rank in Table 4.13 can be treated as decryption algorithm based

on the public key n.
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Unrank(n,M, π)

for (i = 0; i < n; i+ +) do
πi = i

endfor
if(m > 0) then

swap(π[n− 1], π[M mod n])
Unrank(n− 1, bM/nc, π)

endif

Table 4.12: Encryption

rank(n, π, π−1)

if (n = 1) then
return 0

endif
s = π[n− 1]
swap(π[n− 1], π[π−1[n− 1]])
swap(π−1[s], π−1[n− 1])
return (s+m * rank(n− 1, π, π−1))

Table 4.13: Decryption

4.6 Robustness

We analyze the robustness of our scheme by Bernoulli trials and binomial prob-

ability. Repeated independent trials in which there can be only two outcomes

are called Bernoulli trials in honor of James Bernoulli (1654-1705).The probabil-

ity that the outcome of an experiment that consists of n Bernoulli trials has k

successes and n− k failures is given by the binomial distribution

b(n, k, p) =

(
n

k

)
pk(1− p)n−k



Chapter 4. Watermarking relational database 84

(
n

k

)
=

n!

k!(n− k)!
0 ≤ k ≤ n

where the probability of success on an individual trial is given by p.

The probability of having at least k successes in n trials, the cumulative binomial

probability, can be written as

B(n, k, p) =
k∑
i

b(n, i, p)

We will discuss our robustness condition based on two parameters false hit and

false miss.

4.6.1 False Hit

False hit is the probability of a valid watermark being detected from non-watermarked

data. The lower the false hit, the better the robustness.

When the watermark detection is applied to non-watermarked data, each 〈MSBm|LSBn〉
association (grey scale entry) has the probability 1

28 to match to the corresponding

entry in RI . Assume that for a non-watermarked data partition R′q and watermark-

ing data partition Rk, |A(R′q)| = |A(Rk)|, |T (R′q)| = |T (Rk)| and P.R′q = P.Rk,

i.e. both have same number of tuples, attributes and same primary keys, respec-

tively. Let ω = |A(Rk)| ∗ (m + n) ∗ |T (Rk)| is the size of the watermark. The

false hit is the probability that at least 1
T

portion of ω can be detected from the

non-watermarked data by sheer chance. When T is the watermark detection pa-

rameter. It is used as a tradeoff between false hit and false miss. Increasing T will

make the robustness better in terms of false hit. Therefore, the false hit Fh can

be written as

Fh = B(ω, bω
T
c, 1

28
)

4.6.2 False Miss

False miss is the probability of not detecting a valid watermark from watermarked

data that has been modified in typical attacks. The less the false miss, the better

the robustness.
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4.6.2.1 Subset Deletion Attack

For tuple deletion and attribute deletion, the 〈MSBm|LSBn〉 association in the

deleted tuples or attributes will not be detected in watermark detection; however,

the other tuples or attributes will not be affected. Therefore, all detected bit

strings will match their counterparts in the watermark, and the false miss is zero.

4.6.2.2 Subset Addition Attack

Suppose an attacker inserts ς new tuples to replace ς watermarked tuples with

their primary key values unchanged. For watermark detection to return a false

answer, at least 1
T

bit strings of those newly added tuples (which consists of vς

〈MSBm|LSBn〉) must not match their counterparts in the watermark (which con-

sists of ω bits). also in this case T is the watermark detection parameter, used as

a tradeoff between false hit and false miss. Increasing T will make the robustness

worse in terms of false miss. Therefore, the false miss Fm for inserting ς tuples

can be written as

Fm = B(vς, b|A(Rk)| ∗ ς
T

c, 1

28
)

The formulae Fh and Fm together, give us a measure of the robustness of the

watermark.

4.7 Related Work

Watermarking in relational frameworks is a relatively young technology that has

begun its maturity cycle towards full deployment in industry-level applications.

A brief overview of recent research on watermark is given below based on the

classification presented in the last section.

The first well-known database watermarking scheme was proposed by Agrawal

and Kiernan [4] for watermarking numerical values in relational databases. The

fundamental assumption is that the watermarked database can tolerate a small

amount of errors: it is acceptable to change a small number of least significant

bits in some numeric values; however, the value of data is significantly reduced if
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a large number of the bits are changed. The basic idea is to ensure that those bit

positions contain specific values determined by a secret key K. The bit pattern

constitutes a watermark.

Agrawal and Kiernans scheme has been extended by Ng and Lau to watermark

XML data [98]. In this scheme, the owner of the XML data is responsible for

selecting the XML elements that are suitable to be locators, where a locator is

defined to have a unique value that can serve as a primary key in the watermarking

process, as in Agrawal and Kiernans scheme. The difference between this scheme

and Agrawal and Kiernans scheme is that if a textual value of an element is selected

to embed a mark bit, one of its words is chosen and replaced by a synonym function

based on a well-known synonym database WordNet.

This scheme is further extended and deployed on a XML compression system.

In [65] Gross-Amblard introduce interesting theoretical results investigating alter-

ations to relational data (or associated XML) in a consumer-driven framework in

which a set of parametric queries are to be preserved up to an acceptable level

of distortion.The author shows if the family of sets defined by the queries is not

learnable, no query-preserving data alteration scheme can be designed. In a sec-

ond result, the author shows that if the query sets defined by first-order logic and

monadic second order logic on restricted classes of structures with a bounded de-

gree for the Gaifman graph or the tree-width of the structure, a query-preserving

data alteration scheme exists. [12] Bertino et. al. explore issues at the intersection

of two important dimensions in data-centric assurance, namely rights assessment

and privacy, in the broader context of medical data. A unified framework is in-

troduced that combines binning and watermarking techniques for the purpose of

achieving both data privacy and the ability to assert rights. The framework then

deploys a version of the encoding for categorical types [114] [120] by Sion et. al.

in a hierarchical fashion, for the purpose of defeating a data generalization attack

of concern in this framework.

In [87], Li, Guo, and Jajodia introduced a distortion-free scheme for watermarking

categorical data. The purpose of fragile watermarking is not to protect copyright,

but to detect and localize possible attacks that modify a distributed or published

database. Guo et al. [66] proposed another fragile watermarking scheme that can

further improve the precision in tamper localization, assuming that the database

relation to be watermarked has numerical attributes and that the errors introduced

in two least significant bits of each value can be tolerated.
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Patents have been filed for several of them, including Agrawal et.al. [86] [80] and

Sion et.al. [114, 115, 120] [116] [117–119].

4.8 Conclusions

As a conclusion, let us stress the main features of the watermark technique pre-

sented in this dissertation

� It does not depend on any particular type of attributes (categorical, numer-

ical);

� It ensures both authentication and integrity.

� As it is partition based, we are able to detect and locate modifications as we

can trace the group which is possibly affected when a tuple tm is tampered;

� Neither watermark generation nor detection depends on any correlation or

costly sorting among data items. Each tuple in a table is independently

processed; therefore, the scheme is particularly efficient for tuple oriented

database operations;

� It does not modify any database item; therefore it is distortion free.

� This watermarking process has an advantage over hash function, as this

watermarking procedure does not depend on the ordering of the tuples, so

it is free from false alarms, that depends on just by altering the order of the

tuples.



Chapter 5

Zero-Knowledge Source Code

Watermarking

With the increasing amount of program source code (most of the time in the form

of bytecode) which is distributed in the web, software ownership protection and

detection is becoming an issue. In particular, with multiple distributions of code,

in order to prevent the risk of running fake programs, it is important to provide

authentication proofs that do not overload the packages and that are easy to check.

This is the aim of the so called Software Watermarking Techniques. Software

watermarking embeds hidden information about ownership and integrity of the

program into the code itself which can be retrieved and checked automatically on

demand. In general, it is not possible to devise watermarks that are immune to all

conceivable attacks; it is generally agreed that a sufficiently determined attacker

will eventually be able to defeat any watermark. In our vision, watermarking is a

method that does not aim to stop piracy copying, but to check the ownership of

the software. Therefore in our approach watermarking is seen as an alternative to

encryption as a way to support software authentication rather a tool for copyright

protection.

In this chapter we focus our attention on a semantic-preserving program transfor-

mation based public key source code watermarking (asymmetric watermarking)

scheme [17]which is similar in sprit to zero-knowledge proofs introduced by Gold-

wasser, Micali, Rackoff [63]. The main idea is to prove the presence of a watermark

without revealing the exact nature of the mark.

88
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In Section 5.1, we state different schemes of software watermarking available. In

section 5.2, we introduce the formal definitions that we are going to use in the

remaining sections. The actual source code watermarking algorithm is introduced

in Section 5.3. Computational complexity of the technique is discussed in Section

5.4. Section 5.5 discuss the ability of the algorithm to handle different watermark-

ing attacks. In Section 5.6 we state how we can use this algorithm to fingerprint

a source code. In Section 5.7, we categorize the most relevant existing software

watermarking techniques. In section 5.8, we conclude by discussing the main ad-

vantages of our scheme.

5.1 Different Software Watermarking Schemes

The methodology for software watermarking can be divided into two major types,

static [47] and dynamic [34]. Systems that encode the watermark data directly in

the program executable are static systems. The watermark may be stored in any

part of the executable, so long as the semantics of the program are preserved. To

detect the watermark, the program executable is statically analyzed by a decode

function, searching for the watermark data. Instead of encoding the watermark

data directly in the text of the program executable, some systems add code to

the program which constructs the watermark in the runtime state of the program.

Such systems were first proposed by Collberg and Thomborson [47] and are called

dynamic systems. To detect the watermark, instead of analyzing the program

directly, some other artifact of the program is searched such as a profile of the run

time state of the program. Depending on the nature of the extraction algorithm,

two types of watermarking schemes can be identified. The extraction process of

private watermarking systems take the watermarked media, the original media,

the watermark and the secret key and outputs TRUE if the watermark is actually

present. In the case of blind watermarking systems, the extractor extracts the

watermark given only the watermarked media and the key. Blind watermarking

is preferable to non-blind marking, because publication of the original, unmarked

media allows subsequent piracy. Traditional watermarking systems (symmetric

watermarking) require the complete disclosure of the private watermark key in the

watermark verification process. This is a major security risk, since this information

is in most cases sufficient to remove the watermark and to defeat the goal of

copyright protection. This problem of information leakage strongly limits the
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usability of symmetric watermarks. Such problems could be avoided by public-key

watermarking. Each user would have a private key to embed a watermark which

everybody could verify using the corresponding public key. [49][50] presented

an extension to watermarking system, in which a mark is inserted by a private

key but the presence of the watermark can be checked using different (public) key

watermark extraction should also be possible in case small modifications have been

applied to the marked media. Such modifications can be the result of intentional

attacks in order to remove the mark or the result of coding schemes (e.g. lossy

compression) and errors during the transmission [50]. Schemes which are able to

retrieve a watermark from a distorted media are called robust.

5.2 Preliminaries

In this section, we present the definitions of the primitives which are required for

a formal definition of zero-knowledge watermark detection [35] [1] and that will

be used in section 4 in order to properly explain our watermarking technique.

Definition 5.1. (Semantics-preserving program transformation) Let dom(P) be

the set of input sequences accepted by a program P, out(P, I) be the output of P

on input I. Let T be the set of transformations from programs to programs. An

input output semantics-preserving transformation T ∈ T satisfies the following

properties

� dom(P) = dom(T(P)),

� ∀ I ∈ dom(P): out(P, I) = out(T(P), I).

Definition 5.2. (Prover and Verifier) To describe zero-knowledge proofs, we need

the notion of a prover and a verifier. The prover is an agent or entity who claims

the knowledge of the proof of a statement and tries to prove it. The verifier is an

agent or entity who tries to learn the proof from the verifier. At the end of the

interaction, called a protocol, a prover convinces the verifier about his knowledge

of the proof (but not any additional knowledge). If the prover does not know the

proof, he is called a cheating prover. The protocol is designed so that the verifier

would not accept the proof of a cheating prover. A cheating verifier, is the one

who tries to gain knowledge from the prover through the protocol executions.
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Definition 5.3. (Commitment Schemes) A commitment scheme (com, open) for

the message space M and commitment space C consists of a two-party protocol

com to commit to a value m ∈M and a protocol open that opens a commitment.

A commitment to a value m is denoted by com(m, parcom) where parcom stands

for all public parameters needed to compute the commitment value. To open a

commitment com the committer runs the protocol open(com, parcom, skcom) where

skcom is the secret opening information of the committer.

The security requirements are,

� binding (committing) requires that a dishonest committer cannot open a

commitment to another message m′ 6= m than the one to which he commit-

ted.

� hiding (secrecy) requires that the commitment does not reveal any informa-

tion about the message m to the verifier.

� homomorphic property: Let com(m1) and com(m2) be commitments to ar-

bitrary messages m1,m2 ∈ M . Then the committer can open com(m1) ∗
com(m2) to m1 + m2 without revealing additional information about the

contents of com(m1) and com(m2).

Definition 5.4. (Interactive Proof systems) An interactive proof system for a set

S is a two-party game between a verifier executing a probabilistic polynomial-

time strategy and a prover which executes a computationally unbounded strategy

satisfying:

� Completeness: For every x ∈ S, the verifier always accepts after interacting

with the prover on common input x.

� Soundness: For some polynomial p, it holds that for every x /∈ S and every

potential strategy P ∗, the verifier rejects with probability at least 1
p(|x|) after

interacting with P ∗ on common input x.

Informally, a proof is complete if an honest verifier will always be convinced of

a true statement by an honest prover. A proof is sound if a cheating prover can

convince an honest verifier that some false statement is actually true with only a

small probability. A proof is further considered to be zero-knowledge if it satisfies

the following definition.
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Definition 5.5. (Zero-knowledge) A strategy A is zero-knowledge on (inputs

from) the set S if, for every feasible strategy B∗ there exists a feasible compu-

tation C∗ so that the following two probability ensembles are computationally

indistinguishable:

� the output of B∗ after interacting with A on common input x ∈ S

� the output of C∗ on input x ∈ S

the first ensemble represents the output of an actual execution of the proof system

protocol, while the second ensemble (called the simulation) is the output of a

stand-alone procedure which is not a part of any interactive system. A proof is

called zero-knowledge if the output of any strategy B∗ used by a cheating verifier

could also be produced by the non-interactive computation C∗. In other words,

whatever information can be learned by interacting with A on some input x can

also be extracted from x without interacting with A.

Definition 5.6. (Software watermarking schemes)Let P is the set of programs

to be watermarked. Software watermarking schemes can be defined by a tuples,

S = (Gkey(), GW (), E(), D()), where

� Gkey() is a polynomial-time algorithm. On input of the security parameters,

it generates the keys (Kemb, Kdet), required for watermark embedding and

detection.

� GW () is a polynomial-time algorithm. On input of the security parameters,

it generates the watermark W.

� On input of a program P ∈ P, a watermark W to be embedded and the em-

bedding key Kemb the polynomial time embedding algorithm E(P,W,Kemb)

outputs the watermarked program PW .

� On input of a possibly modified watermarked program P ′W , the watermark

W, the original program P and the detection key Kdet, the detection algo-

rithm D(P ′W , P,W,Kdet) outputs a boolean value, 1 for the presence of W

in P ′W relative to the reference program P and 0, otherwise.

A symmetric watermarking scheme needs the same key kwm (kemb = kdet = Kwm)

for detection as for embedding. Watermarking schemes whose D() algorithm does
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not require the input of reference data W are called blind, in contrast to non-blind

schemes.

Definition 5.7. (Zero-knowledge watermark detection) Let (com, open) be a se-

cure commitment scheme. A zero-knowledge watermark detection protocol ZK DETECT

for the watermarkingscheme (Gkey(), GW (), E(), D()) is a zero-knowledge proof

of knowledge protocol between a prover P and a verifier V : The common protocol

input of P and V is the stego-data P ′W , com(W ), com(P ), com(Kdet), i.e., commit-

ments on the watermark, the reference data and the detection key respectively, as

well as the public parameters parcom = (parWcom, par
P
com, par

Kdet
com ) ) of these commit-

ments. The private input of the prover is the secret opening information of these

commitments skcom = (skWcom, sk
P
com, sk

kdet
com).

P proves knowledge of a tuple (W,P,K, skWcom, sk
P
com, sk

kdet
com) such that:

[(open(com(W ), parWcom, sk
M
com) = M)

∧
(open(com(P ); parPcom, sk

P
com) = P )

∧
(open(com(Kkey), par

Kkey
com , sk

Kkey
com ) = Kkey

∧
D(P ′W ,W, P,Kdet)] = true

The protocol outputs a boolean value to the verifier, stating whether to accept the

proof or not.

Zero-knowledge watermark detection enables a prover to prove to an un-trusted

verifier that a certain watermark is present in stego-data without revealing any

information about the watermark, the reference data and the detection key.

5.3 Source Code Watermarking

The central idea of our watermarking scheme can be defined by the following steps,

� The watermark embedding process is based on a semantics-preserving pro-

gram transformation using a permutation on the set of n syntactic elements

of the program P.
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� The watermark detection and verification process is based on a permutation

that produces a scrambled version of the watermarked program by reordering

m syntactic elements present in the watermarked program. This permutation

is introduced to prove the ownership in a interactive zero-knowledge proof

system framework.

� This watermarking scheme can be combined with a time-stamp mechanism

that makes it robust against invertibility or ambiguity attacks.

Let us illustrate our source code watermarking scheme on C source codes, exploit-

ing explicitly the programming language features. Let P ∈ P be the program to be

watermarked. Let Id(P ) = InId(P ) ∪ LocId(P ) ∪ OutId(P ) be the identifiers of

program P, where InId(P) are the identifiers defined in other functions imported

by P (e.g. extern variables),OutId(P) are the identifiers that are exported (global

variables) to other programs interacting with P, and LocId(P) are the remaining

local identifiers. The central idea of our watermarking scheme can be defined by

the following two steps

� The watermark embedding process is based on a semantics-preserving pro-

gram transformation using a permutation π on LocId(P). Suppose |LocId(P )| =
n, then LocId(P) is considered as n syntactic elements for watermarking P .

� The watermark detection and verification process is based on a permutation

Γ, produces a scrambled version of the watermarked program Pπ by reorder-

ing the functions defined in (P). Suppose there are m functions defined in

(P), then we consider each function as a syntactic element, reordering them

introduces compile time errors. This permutation is introduced to prove the

ownership in a interactive zero knowledge proof system framework.

5.3.1 Watermark Generation

Let the owner of the program P possess a secured key <; the key should be long

enough to thwart brute force guessing attacks. A cryptographic pseudo random

sequence generator G is seeded with key < and the concatenated identifiers, gen-

erating a sequence of numbers. A permutation π is chosen from the permutation

group Sn on n elements (assuming |LocId(P )| = n ) on the basis of the output

generated by G [? ]. The permutation π is considered as a security parameter for
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the watermark embedding algorithm and π(LocId(P )) will be the generated wa-

termark. Here we adopt the function unrank following the Myrvold and Ruskey’s

linear permutation unranking algorithm [96] to generate the permutation π as

stated in Table 5.1.

genW(LocId(P),<)

r= G(<, Id1||Id2||...||Idn) mod (n!)
LocId(P ) = {Id1, Id2, ..., Idn}
for i=1 to n do
πi = Idi

Unrank(π, n, r)
return(π(LocId(P )))

Unrank(π, n, r)
if n > 0 then

swap (π[n-1], π[r mod n])
Unrank(n− 1, br/nc, π)

endif

Table 5.1: Watermark generation algorithm

5.3.2 Watermark Embedding

The watermark embedding function is a semantics-preserving program transformer

which just substitutes each identifier LocId(P ) by the corresponding one in π(LocId(P )).

For the sake of simplicity we denote LocId(P ) as Id and π(LocId(P )) as Idπ. A

single variable substitution can be expressed as,

∀x ∈ Id, ∃y ∈ Idπ, [y/x]Q = ([x]Q)y.

The left side reads the substitution of y for all occurrences of variable x in expres-

sion Q. The formula states that this is equal to a new expression derived from

the original one, applied as a function to argument y. The watermark embedding

algorithm can be expressed as,
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E<: PId → PIdπ .

Where E< is the watermark embedding algorithm, < the secure watermark em-

bedding key, PId is the program to be watermarked and PIdπ is the watermarked

program. So far we used traditional symmetric key watermarking algorithm to

generate the watermarked program PIdπ . It could be a very tedious job for the

attacker to select the actual permutation from Sn in worst case scenario, since the

number of identifiers(n) are supposed to be huge in a software which increases the

number of permutations (n!) radically.

5.3.3 Watermark Detection and Verification

Assume that software owner (Prover) Alice inserted her watermark W into the

program by using watermarking algorithm described in section 3.2, yielding the

watermarked program PIdπ . The software user (Verifier) Bob who is expecting

the proof of authentication from Alice. To do so, both Alice and Bob participate

to a challenge-response protocols in a interactive zero knowledge proof system

framework as follows, Let F (P ) = {f1, f2, ..., fm} be the set of functions defined

in program P. Alice now produces a scrambled version of her software by an-

other permutation Γ. The central idea of this scheme (scrambling) is to alter the

sequence in which the functions in F (P ) appear in P, by choosing a hidden per-

mutation Γ from the permutation group Sm. We denote the scrambled program

obtained in this way by PFΓ
. Alice sets up a public directory where she publishes

PIdπ along with PFΓ
. We assume that the software consists of a large number of

functions so that the size of the permutation group Sm, is large enough to make

the permutation difficult to guess by brute force. Notice that PFΓ
is useless with

respect to program execution, because altering the sequence of order of functions

in PIdπ might yield to compile-time errors in C. By using the following protocol,

Alice proves Bob that she actually knows the secret Γ and that her watermark is

present into the program, by revealing no knowledge to Bob about the watermark

generation, nor the embedding, and nor the exact location of watermark in P. The

protocol might be better understood by looking at Figure 5.1.
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PId
π // PIdπ

α

��66666666666666
Γ // PFΓ

Pα
Idπ

β

DD														

Figure 5.1: Watermark verification

5.3.4 Zero-knowledge Verification Protocol

� Alice generates the permutations α and β, and Γ = α◦β. She also computes

Pα
Idπ

= α(PIdπ). Alice generates an ownership ticket (OT) with two commit-

ments (for α and β) and a hash H(Pα
Idπ

). OT=〈C1(α), C2(β), H(Pα
Idπ

)〉

Alice sends the signed OT to Bob.

� Bob flips a coin and ask Alice either

– to open commitment C1, or

– to open commitment C2

� Alice responds by opening either C1 or C2, based on Bob’s request.

� Now the following two cases can arise on Bob’s side:

– Case 1 (Alice opens commitment C1): Bob computes α(PIdπ) from the

knowledge of α contained in commitment C1. Bob computesH(α(PIdπ))

and checks whether H(Pα
Idπ

) = H(α(PIdπ)).

– Case 2 (Alice opens commitment C2): Bob computes β−1(PFΓ
) from the

knowledge of β contained in commitment C2. Bob computesH(β−1(PFΓ
))

and checks whether H(Pα
Idπ

) = H(β−1(PFΓ
)).

� Alice and Bob perform these steps repeated number of times (k). If all tests

pass, Bob is convinced by Alice that the watermark is present in PIdπ , and

that Alice is the owner of PId.

Theorem 5.8. The Zero-knowledge Verification Protocol is complete.

Proof. During the protocol, no information about Γ is leaked. If an attacker can

not determine Γ, then the value of α reveals nothing about the value of β, and vice

versa, since Sm is a group. For every possible secret Γ and every possible revealed
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permutation α, there exists one and only one β such that Γ = αoβ, and analogously

this is true for a revealed β. Therefore, the Zero-knowledge Verification Protocol

described above is complete.

Theorem 5.9. The Zero-knowledge Verification Protocol is weakly sound: after k

iterations of the zero-knowledge protocol a cheating prover has a success probability

1−
∑k

i=1( 1
2i

).

Proof. Suppose Bob wants his own watermark to appear in the program PId.

Although he cannot change PId, he is free to add his own watermark W to PId and

to scramble the program with his own hidden permutation Γ chosen from Sm. He

pretends that his scrambled program is the true scrambling of PId induced by his

own Γ. He may construct the ownership ticket by using either permutation α or β,

by fooling a verifier in one of the two cases. Therefore, the probability of his success

in each round is 1
2
. So after k iterations of the zero-knowledge protocol above, we

get the resulting probability equals to ((((1− 1
2
)− 1

22 ))...− 1
2k

) = 1−
∑k

i=1( 1
2i

).

Example 5.1. Let us illustrate our watermarking scheme by a simple program

product.c in Figure 5.2 which performs multiplication operation by repeated ad-

dition method. LocId(P)= {a, b, sum, product, mul, x, y, prod, add, p, q, i, k,

print prod} and F(P)={mul(), add(), print prod()}. The permutation group S14

consists of (14)!=87178291200 permutations and S3 consists of (3)!= 6 permuta-

tions. Now suppose statement 1 of algorithm genW() in section 3.1 generates a

hypothetical value r which is used to generate the secret permutation πr ∈ S14. Let

πr(LocId(P )) ={product, prod, i, b, q, sum, a, mul, y, k, add, print prod, x, p}.
The next step is to perform the second hidden permutation Γ on the watermarked

program Pπr to generate its scrambled public version PFΓ
by reordering the F (P ).

PFΓ
∈ S3.

The original program P is shown in Figure 5.2 and corresponding watermarked

program Pπr and the scrambled program PFΓ
are shown in Figure 5.3, respectively.

Notice that PFΓ
generates compile time errors during compilation.

5.4 Complexity

The computational complexity of watermark generation algorithm is linear. The

watermark generation algorithm produces a permutation selected uniformly at
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int add(int p, int q)

{

int i,k=0;

for(i=0;i<q;i++)

k=k+p;

return(k);

}

void mul(int x, int y)

{

int prod;

prod= add(x,y);

print_prod(prod);

}

void print_prod(int product)

{

printf("%d", product);

}

void main void()

{

int a, b, sum;

scanf("%d",&a);

scanf("%d",&b);

mul(a,b);

}

Figure 5.2: Original program

random from amongst all permutations in Sn. Let rn−1, rn−2, ..., r1, r0 be the se-

quence of random elements where 0 ≤ ri ≤ i. Since there are exactly n × (n −
1) × (n − 2) × ...2 × 1 = n! such sequences, each difference sequence must pro-

duce a different permutation. Thus we should be able to unrank if we can take

an integer r in the range [0..n! − 1] and turn it into a unique sequence of values

rn−1, rn−2, ..., r1, r0 where 0 ≤ ri ≤ i. Through the Unrank procedure this can be

done in O(n) operations [96].

In case of watermark embedding operation, if the original program has m state-

ments and it contains n local variables, then the semantic preserving program

transformation performs O(m ∗ n) operations to generate the watermarked pro-

gram.
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int y(int k, int add)

{

int print_prod,x=0;

for(print_prod=0; print_prod<add;

print_prod++)

x=x+k;

return(x);

}

void q(int sum, int a)

{

int mul;

mul= y(sum,a);

p(mul);

}

void p(int b)

{

printf("%d", b);

}

void main (void)

{

int product, prod, i, b;

scanf("%d",&product);

scanf("%d",&prod);

q(product,prod);

}

void q(int sum, int a)

{

int mul;

mul= y(sum,a);

p(mul);

}

int y(int k, int add)

{

int print_prod,x=0;

for(print_prod=0; print_prod<add;

print_prod++)

x=x+k;

return(x);

}

void p(int b)

{

printf("%d", b);

}

void main (void)

{

int product, prod, i, b;

scanf("%d",&product);

scanf("%d",&prod);

q(product,prod);

}

Figure 5.3: Watermarked and scrambled program

5.5 Security Considerations

In zero-knowledge watermark detection systems, invertibility or ambiguity attacks

are very well known attacks where an adversary can create an ambiguous situ-

ation by deriving a forged watermark from a published work, and commits the

forged watermark. Suppose Alice and Mallory use the same watermarking tech-

nique proposed here to watermark their softwares. And suppose Mallory wants his

own watermark to appear in the program (PIdπ) watermarked by Alice. Although

he can’t change PIdπ , but he is free to add his own watermark π(LocId(PIdπ)) to

PIdπ and scramble watermarked program P ′Idπ by his own hidden permutation Γ,
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yielding Γ(P ′Idπ). And he pretends the owner of the program P. We can prevent

such ambiguities by involving a third party Trusted Time-Stamping Service(TTSS)

[67]. Before sending the signed OT to the Verifier (as described in section 3.4),

the Prover must send it to a TTSS. The TTSS records the date and time the

document was received and retains a copy of OT (signed by the Prover) for safe-

keeping. The TTSS appends a signed time-stamp T for the submitter (i.e. the

Prover) using his symmetric private key KTTSS and send it back to the submit-

ter (i.e. the Prover). So in our example the modified OT from Alice will look

like, OT=〈C1(α), C2(β), H(Pα
Idπ

), (T )KTTSS〉. Then in the time-stamp verification

phase, both the Verifier and the Prover have to come to TTSS and on the basis

of their time-stamp values TTSS will solve the ambiguity about by revealing the

actual owner of the software.

5.6 Watermarking and Fingerprinting

Traitors are dishonest buyers who redistribute the data to others without permis-

sion from the owner. The proposed watermarking scheme has a inherent traitor

detection feature. The owner may use this watermarking scheme to embed a

buyer-specific mark (permutations π and Γ) into his/ her code; he/she can subse-

quently detect the mark in pirated code and use the mark to identify the traitor

who distributed the data. It is some how similar to fingerprinting where the owner

embed a buyer-specific mark into a data copy provided to a buyer. Fingerprinting

is a class of information hiding techniques that insert digital marks into data with

the purpose of identifying the recipients who have been provided data, where Wa-

termarking is another class of information hiding techniques whose purpose is to

identify the sources of data. Both techniques can help protect data from piracy.

And our algorithm has the provision to serve traitor detection (fingerprinting) as

well. And this can be done by introducing identity certificate scheme like, Internet

x.509 public key infrastructure certification in our protocol verification phase.

5.7 Software Watermarking: A Brief Survey

Research on software watermarking started in the 1990s. The patent by Davidson

and Myhrvold [48] presented the first published software watermarking algorithm.
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The early works on software watermarking include paper and patents, but the

concepts in these works are preliminary and informal. For the first time, Collberg

et al. presented detailed definitions for software watermarking [34]. Since then,

several new software watermarking algorithms have been proposed. We can classify

the most relevant existing software watermarking techniques as follows

� Graph Based Software Watermarking: Collberg and C. Thombor-

son [34] proposed a data Structure watermarking technique called Dynamic

Graph Watermarking. The central idea is to embed a watermark in the

topology of dynamically built graph structure. Code that builds this graph

is inserted into the program to the watermarked. Because of pointer alias-

ing effects, graph-building code will be hard to analyze and detect, and it

can be shown that it will be impervious to most de-watermarking attacks

by code optimization and code ofucation. [30][32][125] enhance this idea.

In Venkatesan et al. [127] proposed The software and the watermark code

are converted into digraphs and new edges are introduced between the two

by adding function calls between the software code and watermark code.

Error-correcting capabilities were missing from the scheme and it was also

susceptible to attacks that reorder the instructions and add new function

calls. Instruction and block re-ordering attacks remain to be a problem for

all these models.

� Register Based Software Watermarking: Watermark bits are encoded

in the registers used for storing variables. Certain higher level language

blocks by inline assembly code that controls which registers store which

variables. Goal of the attack is to re-allocate variables in different registers

to distort the encoding. Register-based software watermarking based on the

QP algorithm (named after authors Qu and Potkonjak) [104][103] has been

proposed in [95]. It changes the registers used to store variables depend-

ing on the variables required at the same time. The scheme is unable to

survive register reallocation and recompilation attacks as well as secondary

watermarking attacks. Also, inserting bogus methods renders the watermark

useless by changing the interference graph.

� Thread Based Software Watermarking: Nagra and Thomborson [97]

introduce a new dynamic technique for embedding robust software water-

marks into a software program using thread contention. Multithreaded pro-

grams are inherently more difficult to analyze and the difficulty of analysis
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increases with the number of threads that are live concurrently. The pro-

posed technique embeds the watermark in the order and choice of threads

which execute different parts of an application. The embedding is a two

step process. Firstly, increasing the number of possible paths through the

program by creating multiple threads of execution. The semantics of the

old program are maintained by introducing locks. Secondly, other locks are

added to ensure that only a small subset of the possible paths are in fact

executed by the watermarked program. The particular paths that are exe-

cuted encode the watermark. Proposed technique relies on introducing new

threads into single threaded sections of a program. In an unsynchronized

multithreaded program, two or more threads may try to read or write to the

same area of memory or try to use resources simultaneously. This results

in a race condition - a situation in which two or more threads or processes

are reading or writing some shared data, and the final result depends on the

timing of how the threads are scheduled.

� Obfuscation Based Software Watermarking: Code obfuscation is very

similar to code optimization, except that with obfuscation one maximizes

obscurity while minimizing execution time, whereas with optimization, just

minimizes execution time. A potent defense against reverse engineering is

obfuscation. By several transformations (lexical,control, data) on program

body in [35] authors attempts to transform a program into an equivalent one

that is harder to reverse engineer. Ertaul and Venkatesh [128] propose ob-

fuscation techniques, based on composite functions, which are Array Index

Transformation, Method Argument Transformation and Hiding Constants

and an obfuscation algorithm based on Discrete Logs to Pack the Words

and another one, based on Affine Ciphers, to Encode String Literals. Soft-

ware protection tools like Sand Mark [33], Dot Obfuscator[46], JMangle [77],

JObfuscator [78] and JHide [52] are all designed based on the principal the-

ories of code obfuscation techniques.

� Branch Based Software Watermarking: Collberg et al. introduce path-

based watermarking based on the dynamic branching behavior of programs

which embeds the watermark in the runtime branch-ing structure of the pro-

gram. The idea is based on the intuition that the forward branches executed

by a program are an essential aspect of its computation and part of what

makes the program unique. an obvious apparent drawback with using the
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branch structure of a program to encode information is that, in principle,

the branch structure of a program can be modified quite extensively without

affecting program semantics, using well-known transformations such as basic

block reordering, branch chaining (where the target of a branch instruction

is itself a branch to some other location), loop unrolling, etc. This paper

shows how error-correcting and tamper-proofing techniques can be used to

make path-based watermarks resilient against a wide variety of attacks. Gin-

ger Myles and Hongxia Jin [33] proposed a software watermarking scheme

based on converting jump instructions or unconditional branch statements

(UBSs) by calls to a fingerprint branch function (FBF) that computes the

correct target address of the UBS as a function of the generated fingerprint

and integrity check. If the program is tampered with, the fingerprint and in-

tegrity checks change and the target address will not be computed correctly.

Unconditional branch statements (UBS) are converted to function calls to a

special function called the branch function. The purpose of branch function

is to transfer the control to the correct target address of the UBS [29].

� Program Slicing Based Software Watermarking: Software modules

are split into open and hidden components. The open components are in-

stalled and executed on an un secure machine while the hidden components

are installed and executed on a secure machine. While open components

can be stolen, to obtain a fully functioning copy of the software, the hidden

components, constructed by slicing the original software components, must

be recovered. The hidden components are constructed in a manner that

causes a great deal of effort to be required in finding the missing hidden

components by observing the code of the open component and its runtime

interactions with the hidden component and the recovery of hidden compo-

nents constructed through slicing, in order to obtain a fully functioning copy

of the software, is a complex task. Zhang and Gupta in [134] describe an

algorithm that constructs hidden components by slicing the original software

components.

� Abstract Interpretation Based Software Watermarking: A different

approach of watermarking using static analysis in Abstract Interpretation

frame work is presented in [128]. The basic idea is that the watermark is

hidden in the program code in such a way that it can only be extracted by

an abstract interpretation of the concrete semantics of this code. This static
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analysis-based approach allows the watermark to be recovered even if only a

small part of the program code is present and does not even need that code

to be executed.The watermark is embedded in the values of some designated

local variables during the program execution. The main advantage of this

scheme is that the watermark can be recovered even if only small part of

the code is available. The scheme can be attacked by obfuscating the pro-

gram such that local variables representing the watermark cannot be located.

Recently, Roberto Giacobazzi [59] shows how abstract interpretation more

specifically, completeness provides an adequate developing a unifying the-

ory of information hiding in software, by modeling observers (i.e., malicious

host attackers) as suitable abstract interpreters. An observation can be any

static or dynamic interpretation of programs intended to extract properties

from its semantics and abstract interpretation provides the best framework

to understand semantics at different levels of abstraction.This paper mainly

covers completeness in the context of code obfuscation and watermarking.

� Watermarking Systems: There are 4 widely available watermarking sys-

tems for Java bytecode: Sandmark [33], Allatori [94], DashO [46]and jmark

[94]. SandMark is a tool developed by Collberg et al. at the University

of Arizona for research into software watermarking, tamper-proofing, and

code obfuscation of Java bytecode. Sandmark contains 12 static software

watermarking algorithms [28], which are implementations of some of the

algorithms discussed in this paper. Allatori is a commercial Java obfusca-

tor complete with a watermarking system created. DashO is a commercial

Java security solution, including obfuscator, watermarking and encrypter.

jmarks algorithm is also available in Sandmark. The static watermarking

algorithms in all of these systems are susceptible to semantics-preserving

transformation (distortive) attacks[68]. UWStego [31] is a tool, available on

request, used for developing watermarking algorithms. Hydan [51], a system

for steganographically embedding hidden messages in x86 assembly code,

is available but is not aimed at watermarking and is therefore not resilient

against attacks.
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5.8 Conclusions

The proposed scheme has several benefits with respect to the current software

watermarking techniques as it is robust against two typical software watermarking

attacks.

� Before beginning to make modifications to the program, the attacker may

make an attempt to gather some information about the watermark. A first

step may be to try and determine if the program is in fact watermarked,

and if it is, which watermarking system was used. Such types of attacks are

called collusive attacks. The proposed watermarking scheme is invisible and

does not reveals any information about the watermark and its location into

the program, since the zero-knowledge proof is independent of the encoding

and embedding, it is free from such attacks.

� Another very common software watermarking attack is the so called program

transformation attacks, including subtractive attacks, additive attacks, dis-

tortive attacks etc. Also in this case, the proposed scheme performs well,

since the watermark is spread in the entire program and the watermark

detection depends on a secure collision resistant hash function.

� The scheme can be combined with a time-stamp technique to handle invert-

ibility/ambiguity attacks.

This approach can be easily extended also to other programming languages by

applying suitable permutation-based program transformations that exploit the

particular programming languages’ features.



Chapter 6

Conclusions

The thesis originated from the idea of extending Abstract Interpretation frame-

work to some application fields, where both correctness and efficiency are crucial

issues, and so semantics-based technologies based on abstractions may be the right

tool to use. In particular the dissertation is focused on,

� Program slicing.

� Watermarking relational databases.

� Watermarking program source code.

Let us recall here the main contributions of the thesis as well as the corresponding

research challenges that will deserve to be investigated in the future

1. Program slicing is used for reducing the size of programs to analyze. Nev-

ertheless, sometimes this reduction is not sufficient for really improving the

analysis. Suppose that some variables at some point of execution do not have

a desired property. In order to understand where the error occurred it would

be useful to find the statements affecting the property of these variables.

Standard slicing may return too many statements, making it hard for the

programmer to realize which ones caused the error. The proposed property

driven program slicing technique allows to slice a program with respect to

a given property, represented as an abstraction, instead of concrete values.

107
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This kind of reasoning inherently relies on program semantics. Indeed, con-

sidering syntax alone is quite a good approximation in the case of concrete

slicing, but becomes too imprecise when abstract properties are considered.

One direction of future work in this part, consists of accounting for more

realistic frameworks. An inter-procedural formulation would be a first step

in this direction. The logical and static analysis components needed to im-

plement the algorithm deserve further study. The power of such techniques

from the semantic point of view has to be investigated. Finally, effort will

be put on implementing the presented framework.

2. Watermarking in relational frameworks is a relatively young technology that

has begun its maturity cycle towards full deployment in industry-level appli-

cations. The proposed scheme shows a new way to see database watermark-

ing in abstract interpretation based frame work. Proposed watermarking

scheme is fragile in nature, it can detect and localized a single valued modi-

fications. The scheme is distortion free and can be applied to any relational

table irrespective to any attribute value.

The solutions discussed in Chapter 4 need to be prototyped and validated

on real data. The authentication proof of the database can be extended

using zero-knowledge proof [63]. As in most zero-knowledge protocols, the

proposed scheme requires many rounds of interactions between prover and

verifier, which may not be efficient in practice. It is also not clear how to

extend this scheme to watermarking relational databases. So it could be

interesting to extend this work in this direction.

3. Recently, it has been shown how programs can be seen as abstractions of

their semantics and how syntactic transformations can be specified as ap-

proximations of their semantic counterpart [59]. In particular, this result

shows that abstract interpretation provides the right setting in which to for-

malize the relationship between code obfuscation and its effects on program

semantics. In this setting, it would be interesting to see if our theoretical

framework for software watermarking could be used to better understand

and formalized the level of security that program diversity guarantees.

Future work includes a full evaluation of the parametric framework on more

realistic benchmark programs.
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As for a formal conclusion we can say that, there is still lot of space for further

research in applying semantics based analysis to various areas of software systems.

Both on software manipulation, protection and database management the results

that we presented in this thesis can be seen as very preliminary steps towards the

development.

Most of the content of this thesis has already been published in proceedings of

international conferences. property driven program slicing in [13, 36], relational

database watermarking as relational data table abstraction in [14–16] and the pro-

gram source code watermarking procedure based on zero-knowledge proof system

in [17].



Bibliography

[1] Adelsbach, A., Katzenbeisser, S., and Sadeghi, A.-R. Watermark

detection with zero-knowledge disclosure. Multimedia Systems 9, 3 (2003),

266–278.

[2] Agrawal, H. On slicing programs with jump statements. In Proceedings

of the ACM SIGPLAN94 Conference on Programming Language Design and

Implementation 29, 6 (1994), 302–312.

[3] Agrawal, H., and Horgan, J. Dynamic program slicing. In Proceedings

of the ACM SIGPLAN90 Conference on Programming Language Design and

Implementation 25, 6 (1990), 246–256.

[4] Agrawal, R., Haas, P. J., and Kiernan, J. Watermarking relational

data: framework, algorithms and analysis. The VLDB Journal 12, 2 (2003),

157–169.

[5] Arnold, M., Schumucker, M., and Wolthusen, S. Techniques and

applications of digital watermarking and content protection. Artech House

ISBN: 10: 1580531113 (2003).

[6] Badger, L., and Weiser, M. Minimizing communication for synchro-

nizing parallel dataflow programs. In International Conference on Parallel

Processing (ICPP) (1988), 122–126.

[7] Ball, T., and Horwitz, S. Slicing programs with arbitrary control-

flow. In Proceedings of the First International Workshop on Automated and

Algorithmic Debugging, LNCS 749 (1993), 206–222.

[8] Barbara, D., Goel, R., and Jajodia, S. A checksum-based corruption

detection techniques. J.Comput. Security, 11 (2003), 315–329.

110



Bibliography 111

[9] Barraclough, R. W., Binkley, D., Danicic, S., Harman, M., Hi-

eron, R. M., Kiss, A., Laurence, M., and Ouarbya, L. A trajectory-

based strict semantics for program slicing. Elsevier 411, 11-13 (2010), 1372–

1386.

[10] Bassia, P., Pitas, L., and Nikolaidis, N. Robust audio watermarking

in the time-domain. IEEE Trans. Multimedia DOI: 10.1109/6046.923822

(2001), 232–242.

[11] Bergeretti, J., and Carre, B. Information-flow and data-flow analy-

sis of while-programs. ACM Transactions on Programming Languages and

Systems 7, 1 (1985), 37–61.

[12] Bertino, E., Ooi, B. C., Yang, Y., and Deng, R. H. Privacy and

ownership preserving of outsourced medical data. In Proceedings of the In-

ternational Conference on Data Engineering (2005), 521–532.

[13] Bhattacharya, S., and Cortesi, A. Property driven program slicing.

In the Proceeding of 20th Nordic Workshop on Programming Theory, NWPT

2008 (2008).

[14] Bhattacharya, S., and Cortesi, A. A distortion free watermarking

framework for relational databases. In the Proceeding of forth International

Conference on Software and Data technology ICSOFT 2009, Sofia, Bulgaria

(2009), 229–234.

[15] Bhattacharya, S., and Cortesi, A. A generic distortion free water-

marking technique for relational databases. In the Proceeding of fifth Inter-

national Conference on Information Systems Security, ICISS 2009, LNCS

5905 (2009), 252–264.

[16] Bhattacharya, S., and Cortesi, A. Database authentication by distor-

tion free watermarking. In the Proceeding of fifth International Conference

on Software and Data technology, ICSOFT 2010 Athens, Greece (Best stu-

dent paper award) (2010), 219–226.

[17] Bhattacharya, S., and Cortesi, A. Zero-knowledge software water-

marking for c programs. In the Proceeding of International Conference on

Advances in Communication, Network, and Computing CNC 2010, IEEE

digital library (Selected for best paper award category) (2010), 282–286.



Bibliography 112

[18] Binkley, D., Danicic, S., Gyimthy, T., Harman, M., Kiss, ., and

Korel, B. A formalisation of the relationship between forms of program

slicing. Sci. Comput. Program 62, 3 (2006), 228–252.

[19] Binkley, D., and Gallagher, K. Program slicing. in Advances in

Computers (1996), 1–52.

[20] Binkley, D. W. Computing amorphous program slices using dependence

graphs and data-flow model. In ACM Symposium on Applied Computing

ACM Press (1999).

[21] Binkley, D. W., Danicic, S., Harman, M., Howroyd, J., and

Ouarbya, L. A formal relationship between program slicing and partial

evaluation. Formal Aspects of Computing. SpimgerLink 18, 2, 103–119.

[22] Canfora, G., Cimitile, A., and Luca, S. Journal of information and

Software Technology special Issue on Program Slicing, Elsevier .

[23] Cartwright, I., and Felleisen, M. The semantics of program depen-

dence. In the Proceedings of PLDI (1989).

[24] Cheng, J. Slicing concurrent programs a graph-theoretical approach. In

the Proceedings of the First International Workshop on Automated and Al-

gorithmic Debugging, LNCS 749 (1993), 223–240.

[25] Choi, J., and Ferrante, J. Static slicing in the presence of goto state-

ments. ACM Transactions on Programming Languages and Systems 16, 4

(July 1994), 1097–1113.

[26] Cimitile, A., Lucia, A. D., and Munro, M. Identifying reusable func-

tions using specification driven program slicing: a case study. Proceedings of

International Conference on Software Maintenance, IEEE CS Press (1995),

124–133.

[27] Cimitile, A., Lucia, A. D., and Munro, M. A specification driven

slicing process for identifying reusable functions. Journal of Software Main-

tenance: Research and Practice 8, 3 (1996), 145–178.

[28] Collberg, C. Sandmark algorithms. Technical report, University of Ari-

zona, July (2002).



Bibliography 113

[29] Collberg, C., Carter, E., Debray, S., Huntwork, A., Linn, C.,

and Stepp, M. Dynamic path-based software watermarking. In Proceeding

of Conference on Programming Language Design and Implementation 39

(June 2004), 107–118.

[30] Collberg, C., Huntwork, A., Carter, E., and Townsend, G.

Graph theoretic software watermarks: Implementation, analysis, and at-

tacks. Workshop on Information Hiding (2004).

[31] Collberg, C., Jha, S., Thomko, D., and Wang, H. Uwstego.

[32] Collberg, C., Kobourov, S., Carter, E., and Thomborson, C.

Error-correcting graphs for software watermarking. In Proceedings of the

29th Workshop on Graph Theoretic Concepts in Computer Science (2003),

156–167.

[33] Collberg, C., Myles, G., and Work, A. Sand mark a tool for software

protection research. IEEE Security and Privacy (July/August 2003).

[34] Collberg, C., and Thomborson, C. Software watermarking: Mod-

els and dynamic embeddings. In Proceeding of Principles of Programming

Languages (1999), 311–324.

[35] Collberg, C., and Thomborson, C. Watermarking,tamper-proofing,

and obfuscation-tools for software protection. IEEE Transactions on Soft-

ware Engineering 28, 8 (August 2002), 735–746.

[36] Cortesi, A., and Bhattacharya, S. A framework for property driven

program slicing. 1st Int. Conference on Computer, Communication, Control

and Information Technology, Macmillan Publishers India Ldt ISBN/ISSN:

0230-063759-0 (2009), 118–122.

[37] Cortesi, A., and Halder, R. The dependence condition graph: Precise

conditions for dependence between program points. In Proceedings of the

10th International Workshop on Language Descriptions Tools and Applica-

tions (LDTA’10) (2010).

[38] Cortesi, A., and Zanioli, M. Widening and narrowing operators for

abstract interpretation. Computer Languages, Systems and Structures 37, 1

(2010), 24–42.



Bibliography 114

[39] Cousot, P. Abstract interpretation based formal methods and future chal-

lenges. Logic and Comp 2000, 2 (2000), 138–156.

[40] Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In Proceedings of the 4th ACM Symp. on Principles of Program-

ming Languages (1977), 238–252.

[41] Cousot, P., and Cousot, R. Constructive versions of tarskis fixed point

theorem. Pacific Math 82, 1 (1979), 43–57.

[42] Cousot, P., and Cousot, R. Systematic design of program analysis

frameworks. In Proceedings of the 6th ACM Symp. on Principles of Pro-

gramming Languages (1979), 269–282.

[43] Cousot, P., and Cousot, R. Abstract interpretation frameworks. Logic

and Comp, 2 (1992), 511–547.

[44] Cousot, P., and Cousot, R. Comparing the galois connection, and

widening/narrowing approaches to abstract interpretation. In Proceeding of

PLILP (1992).

[45] Cox, I., Kilian, J., Leighton, T., and Shamoon, T. A secure, robust

watermark for multimedia. LNCS 1174. (1996), 317–333.

[46] DashO. http://www.preemptive.com/products/dasho/overview.

[47] Davidson, I., and Myhrvold, N. Method and system for generating and

auditing a signature for a computer program. Assignee:Microsoft Corpora-

tion.US Patent 5559884 (September 1996).

[48] Davidson, R., and Myhrvold, N. Method and system for generating and

auditing a signature for a computer program. US Patent 5559884 (1996).

[49] Duhamel, P., and Furon, T. An asymmetric public detection water-

marking technique. In Proceedings of the Third International Workshop on

Information Hiding, LNCS 1768 (2000), 89–100.

[50] Eggers, J., Su, J., and B.Girod. Public key watermarking by eigen-

vectors of linear transforms. In Proceedings of European Signal Processing

Conference (April 2000).



Bibliography 115

[51] El-Khalil, R. http://www.crazyboy.com/hydan/. Hydan (2004).

[52] Ertaul, L., and Venkatesh, S. Jhide a tool kit for code obfuscation. In

the Proceeding of 8th IASTED International Conference on Software Engi-

neering and Applications (Novenber 2004).

[53] Ettinger, R., and Verbaere, M. Untangling: A slice extraction

refactoring. In Proceedings of the 3rd International Conference on Aspect-

Oriented Software Development (2004), 93–101.

[54] Ferrante, J., Ottenstein, K., , and Warren, J. The program depen-

dence graph and its use in optimization. ACM Transactions on Programming

Languages and Systems 9, 3 (1987), 319–349.

[55] Field, J., Ramalingam, G., and Tip, F. Parametric program slicing.

In Conference Record of the Twenty-Second ACM Symposium on Principles

of Programming Languages (1995), 379–392.

[56] Gallagher, K., and Harman, M. Program slicing. Information and

Software Technology, special issue 40, 11/12 (1998).

[57] Gallagher, K., and Lyle, J. Using program slicing in software mainte-

nance. IEEE Transactions on Software Engineering 17, 8 (1991).

[58] G.A.Venkatesh. The semantic approach to program slicing. In Proceed-

ings of the Conference on Programming Language Design and Implementa-

tion, SIGPLAN Notices 26, 6 (1991), 107–119.

[59] Giacobazzi, R. Hiding information in completeness holes: New perspec-

tives in code obfuscation and watermarking. In the Proceedings of Sixth

IEEE International Conference on Software Engineering and Formal Meth-

ods (2008), 7–18.

[60] Giacobazzi, R., and Mastroeni, I. Abstract non-

interference:parameterizing non-interference by abstract interpretation.

N. Jones and X. Leroy, editors, Proc. POPL 21, 1 (2004).

[61] Giacobazzi, R., Ranzato, F., and Scozzari, F. Making abstract

interpretations complete. Journal of the ACM 47, 2 (2000), 361–416.



Bibliography 116

[62] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove,

M., and Scott, D. D. Compendium on continuous lattices. Springer

Verlag (1980).

[63] Goldwasser, S., Micali, S., and Rackoff, C. The knowledge com-

plexity of interactive proof systems. SIAM Journal on Computing 18, 1

(1989), 186–207.

[64] Gopal, R. Dynamic program slicing based on dependence relations. In

Proceedings of the Conference on Software Maintenance (1991), 191–200.

[65] Gross-Amblard, D. Query-preserving watermarking of relational

databases and xml documents. In Proceedings of the Nineteenth ACM

SIGMOD-SIGACTSIGART Symposium on Principles of Database Systems ,

191–201.

[66] Guo, H., Li, Y., Liu, A., and Jajodia, S. A fragile watermarking

scheme for detecting malicious modifications of database relations. 1350–

1378.

[67] Haber, S., and Stornetta, W. How to time-stamp a digital document.

Journal of Cryptology 3, 2 (1991), 99–111.

[68] Hamilton, J., and Danicic, S. An evaluation of static java bytecode

watermarking. In Proceedings of the International Conference on Computer

Science and Applications (2010).

[69] Harman, M., and Danicic, S. Using program slicing to simplify testing.

Software Testing, Verification and Reliability 5, 3 (1995), 143–162.

[70] Hartung, F., and Girod, B. Watermarking of uncompressed and com-

pressed video. Signal Processing 66, DOI: 10.1016/S0165-1684(98)00011-5

(1998), 238–301.

[71] Hausler, P. Denotational program slicing. In 22nd Annual Hawaii Inter-

mational Conference on System Sciences 11 (1989), 486–495.

[72] Hecht, M. Flow analysis of computer programs. Elsevier (1977).

[73] HMAC. The keyed-hash message authentication code. FEDERAL INFOR-

MATION PROCESS STANDARDS PUBLICATION (2002).



Bibliography 117

[74] Hong, H., Lee, I., and Sokolsky, O. Abstract slicing: A new approach

to program slicing based on abstract interpretation and model checking. In

Proc. SCAM. IEEE (2005).

[75] Horwitz, S., and Reps, T. The use of program dependence graphs in

software engineering. In Proceedings of the 14th International Conference

on Software Engineering (1992), 392–411.

[76] Horwitz, S., Reps, T., and Binkley, D. Interprocedural slicing using

dependence graphs. ACM Transactions on Programming Languages and

Systems 12, 1 (1990), 26–60.

[77] JMangle. http://www.elegant-software.com/software/jmangle/.

[78] Jobfuscator. http://download.com.com/3000-2417-10205637.html.

[79] Kamkar, M. An overview and comparative classification of program slicing

techniques. The Journal of Systems and Software 31 (1995), 197–214.

[80] Kiernan, J., and relational databases, R. A. W. In Proceedings of

the 28th International Conference on Very Large Databases VLDB (2002).

[81] Kuck, D., Kuhn, R., Padua, D., Leasure, B., and Wolfe, M.

Dependence graphs and compiler optimizations. In Conference Record of the

Eighth ACMSymposium on Principles of Programming Languages (1981),

207–218.

[82] Lakhotia, A., and Deprez, J.-C. Restructuring programs by tucking

statements into functions. Information and Software Technology 40, 11-12

(1998), 677–690.

[83] Langelaar, G., Setyawan, I., and Lagendijk, R. Watermarking dig-

ital image and video data: A state-of-art overview. IEEE Signal Processing

17 (2000), 20–46.

[84] Lanubile, F., and Visaggio, G. Extracting reusable functions by flow

graph-based program slicing. IEEE Transactions on Software Engineering

23, 4 (1997), 246–459.

[85] Lemma, A., Aprea, J., and Kherkhof, L. A temporal-domain

audio watermarking technique. IEEE Trans. Signal Process. DOI:

10.1109/TSP.2003.809372 (2003), 1088–1097.



Bibliography 118

[86] Li, Y. Handbook of database security, Springer Verlag, 9780387485324

(2008), 329–355.

[87] Li, Y., Guo, H., and Jajodia, S. Tamper detection and localization

for categorical data using fragile watermarks. Digital Rights Management

Workshop (2004), 73–82.

[88] Main, A., and van Oorschot, P. Software protection and application

security: Understanding the battleground. International Course on State of

the Art and Evolution of Computer Security and Industrial Cryptography,

Heverlee, Belgium ([Available online]www.scs.carleton.ca/ paulv/papers/-

softprot8a.ps 2003).

[89] Maruyama, K. Automated method-extraction refactoring by using block-

based slicing. In Proceedings of the 2001 Symposium on Software Reusability

(2001), 31–40.

[90] Mastroeni, I., and Nikolic, D. Abstract program slicing: From theory

towards an implementation. In Proceedings of the 12th International Con-

ference on Formal Engineering Methods (ICFEM’10). LNCS 6467 (2010),

452–456.

[91] Mastroeni, I., and Zanardini, D. Data dependencies and program

slicing: from syntax to abstract semantics. Proceedings of ACM SIGPLAN

symposium on Partial evaluation and semantics-based program manipulation

(2008), 123–134.

[92] Meyers, T. M., and Binkley, D. Slice-based cohesion metrics and soft-

ware intervention. Proceedings of the 11th Working Conference on Reverse

Engineering (WCRE 2004) (2004), 256–265.

[93] Millett, L., and Teitelbaum, T. Slicing promela and its applications

to model checking. In Proceedings on Model Checking of Software (1998).

[94] Monden, A. jmark. http://se.aist-nara.ac.jp/jmark/ (2003).

[95] Myles, G., and Collberg, C. Software watermarking through register

allocation: Implementation, analysis, and attacks. In the Proceedings of

International Conference on Information Security and Cryptology, LNCS

2971 (2003), 274–293.



Bibliography 119

[96] Myrvold, W., and Ruskey, F. Ranking and unranking permutations in

linear time. Information Processing Letters (October 2000).

[97] Nagra, J., and Thomborson, C. Threading software watermarks. In

Proceedings of 6th Information Hiding Workshop, LNCS 2971 (2004), 208–

223.

[98] Ng, W., and Lau, H. L. Effective approaches for watermarking xml data.

DASFAA (2005), 68–80.

[99] Nielson, F., Nielson, H., and Hankin, C. Principles of program anal-

ysis. Springer Verlag (1999).

[100] Ottenstein, K., and Ottenstein, L. The program dependence graph

in a software development environment. The Proceedings of the ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments 19, 5 (1984), 177–184.

[101] P. De Bra, J. P. An algorithm for horizontal decompositions. Inf. Process.

Lett 17, 2 (1983), 91–95.

[102] Potdar, V., Han, S., and Chang, E. A survey of digital image water-

marking techniques. In the Proceeding of the 3rd International IEEE Confer-

ence on Industrial Informatics DOI: 10.1109/INDIN.2005.1560462 (August

2005), 709–716.

[103] Qu, G., and Potkonjak, M. Analysis of watermarking techniques for

graph coloring problem. In the Proceedings of International Conference on

Computer Aided Design (1998), 190–193.

[104] Qu, G., and Potkonjak, M. Hiding signatures in graph coloring solu-

tions. Information Hiding (1999), 348–367.

[105] Quisquater, J.-J., Guillou, L. C., and Berson, T. A. How to ex-

plain zero-knowledge protocols to your children. Advances in Cryptology 435

(1990), 628–631.

[106] Reps, T. Program analysis via graph reachability. Information and Software

Technology 40, 11/12 (1998), 701–726.

[107] Reps, T., and Bricker, T. Illustrating interference in interfering ver-

sions of programs. In Proceedings of the Second International Workshop on



Bibliography 120

Software Configuration Management, ACMSIGSOFT Software Engineering

Notes 17, 7 (1989), 46–55.

[108] Reps, T., and Yang, W. The semantics of program slicing and program

integration. In Proc. Colloq. on Current Issues in Programming Languages,

LNCS 352 (1989).

[109] Rilling, J., and Klemola, T. Identifying comprehension bottlenecks

using program slicing and cognitive complexity metrics. Proceedings of the

11th IEEE International Workshop on Program Comprehension (2003), 115–

121.

[110] Rilling, J., and Mudur, S. P. 3d visualization techniques to support

slicing-based program comprehension. Computers and Graphics 29, 3 (2005),

311–329.

[111] Ruanaidh, Dowling, and Boland. Watermarking digital images for

copyright protection. IEEE ProcVision Signal, Image Procesing 143, 4

(1996), 250–256.

[112] Sabelfeld, A., and Myers, A. Language-based informationflow security.

IEEE Journal on Selected Areas in Communications 21, 1 (2003).

[113] Schneier, B. Applied cryptography. John Wiley and Sons (1996).

[114] Sion, R. Proving ownership over categorical data. In Proceedings of the

IEEE International Conference on Data Engineering ICDE (2004).

[115] Sion, R. wmdb.*: A suite for database watermarking. In Proceedings of

the IEEE International Conference on Data Engineering ICDE (2004).

[116] Sion, R., Atallah, M., and Prabhakar, S. On watermarking numeric

sets. In Proceedings of IWDW, LNCS (2002).

[117] Sion, R., Atallah, M., and Prabhakar, S. Watermarking databases.

[118] Sion, R., Atallah, M., and Prabhakar, S. Rights protection for

relational data. In Proceedings of the ACM Special Interest Group on Man-

agement of Data Conference SIGMOD (2003).

[119] Sion, R., Atallah, M., and Prabhakar, S. Relational data rights

protection through watermarking. IEEE Transactions on Knowledge and

Data Engineering TKDE 16, 6 (2004).



Bibliography 121

[120] Sion, R., Atallah, M., and Prabhakar, S. Ownership proofs for

categorical data. IEEE Transactions on Knowledge and Data Engineering

TKDE (2005).

[121] Snelting, G. C. Slicing and constant solving for validation of measurement

software. In Static Analysis Symposium, LNCS 1145 (1996), 332–348.

[122] Sukumarana, S., Sreenivasb, A., and Metta, R. The dependence

condition graph: Precise conditions for dependence between program points.

Computer Languages, Systems and Structures 36, 96-121 (2010), 577–581.

[123] Tanaka, K., Nakamura, Y., and Matsui, K. Ebedding secrect in-

formation in to a ditered multilevel image. In Proceeding of IEEE military

commun. (1990), 216–220.

[124] the case for a new federal database protection law, D.

P. M. http://www.siia.net/sharedcontent/gove/issues/ip/dbbrief.html.

SIIA: (2000).

[125] Thomborson, C., Nagra, J., Somaraju, R., and He, C. Tamper-

proofing software watermarks. In the Proceeding of Conferences in research

and practice in information technology (2004).

[126] Tip, F. A survey of program slicing techniques. Journal of Programming

Languages 3 (1995).

[127] Venkatesan, R., Vazirani, V., and Sinha, S. A graph theoretic ap-

proach to software watermarking. In the Proceedings of 4th Information

Hiding Workshop, LNCS 2137, 1 (2001), 157–168.

[128] Venkatesh, S., and Ertaul, L. Novel obfuscation algorithms for soft-

ware security. Software Engineering Research and Practice (2005), 209–215.

[129] Weiser, M. Program slices: formal, psychological, and practical investiga-

tions of an automatic program abstraction method. PhD thesis, University

of Michigan, Ann Arbor (1979).

[130] Weiser, M. Programmers use slices when debugging. Communications of

the ACM 25, 7 (1982), 446–452.

[131] Weiser, M. Reconstructing sequential behavior from parallel behavior

projections. Information Processing Letters 17, 3 (1983), 129–135.



Bibliography 122

[132] Weiser, M. Program slicing. IEEE Transactions on Software Engineering

10, 4 (1984), 352–357.

[133] Wu, Y. Zero-distortion authentication watermarking. ISC (2003), 325–337.

[134] Zhang, X., and Gupta, R. Hiding program slices for software security.

In the Proceedings of First Annual IEEE/ACM International Symposium on

Code Generation and Optimization (March 2003), 325–336.


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Program Slicing
	1.1.1.1 Property Driven Program Slicing

	1.1.2 Watermarking
	1.1.2.1 Watermarking Relational Databases
	1.1.2.2 Watermarking Program Source Code


	1.2 Thesis Outline

	2 Basic Notions
	2.1 Mathematical Background 
	2.1.1 Sets
	2.1.2 Relations
	2.1.3 Functions
	2.1.4 Ordered Structures
	2.1.5 Functions on Domains
	2.1.6 Fixed Points
	2.1.7 Closure Operators
	2.1.8 Galois Connections
	2.1.8.1 Galois Connections and Closure Operators


	2.2 Abstract Interpretation
	2.2.1 Concrete vs Abstract Domains
	2.2.2 Abstract operations
	2.2.2.1 Soundness
	2.2.2.2 Completeness


	2.3 Dependence Terminologies
	2.4 Zero-knowledge Proofs

	3 Property Driven Program Slicing
	3.1 Different Forms of Slice
	3.1.1 Backward vs. Forward
	3.1.2 Static vs Dynamic
	3.1.3 Intra-procedural vs Inter-procedural
	3.1.4 Slicing Structured vs. Unstructured Programs
	3.1.5 Dataflow vs. Non-Dataflow

	3.2 Weiser's Work
	3.2.1 Dataflow Based Program Slicing
	3.2.2 Weiser's Semantics Definition of Valid Slices
	3.2.3 Trajectory Semantics

	3.3 Abstract Semantics
	3.3.1 Abstract Trajectory

	3.4 Dataflow Based Property Driven Program Slicing
	3.4.1 Phase 1: Static Analysis
	3.4.2 Phase 2: Slicing Algorithm

	3.5 Correctness of Abstract Execution
	3.6 Related Work
	3.7 Conclusions

	4 Watermarking Relational Databases
	4.1 Watermarking, Multimedia vs Database
	4.2 Basic Watermarking Process
	4.2.1 Classification Model
	4.2.2 Requirements of Database Watermarking

	4.3 Preliminaries
	4.4 Distortion Free Database Watermarking
	4.4.1 Partitioning
	4.4.1.1 Partition Based on Categorical Attribute
	4.4.1.2 Secret Partitioning
	4.4.1.3 Partitioning Based on Pattern Tableau

	4.4.2 Watermark Generation
	4.4.2.1 Abstraction

	4.4.3 Watermark Detection

	4.5 Zero Distortion Authentication Watermarking (ZAW)
	4.6 Robustness
	4.6.1 False Hit
	4.6.2 False Miss
	4.6.2.1 Subset Deletion Attack
	4.6.2.2 Subset Addition Attack


	4.7 Related Work
	4.8 Conclusions

	5 Zero-Knowledge Source Code Watermarking
	5.1 Different Software Watermarking Schemes
	5.2 Preliminaries
	5.3 Source Code Watermarking
	5.3.1 Watermark Generation
	5.3.2 Watermark Embedding
	5.3.3 Watermark Detection and Verification
	5.3.4 Zero-knowledge Verification Protocol

	5.4 Complexity
	5.5 Security Considerations
	5.6 Watermarking and Fingerprinting
	5.7 Software Watermarking: A Brief Survey
	5.8 Conclusions

	6 Conclusions
	Bibliography

