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On a Boolean algebra we consider the topology u induced by a finitely additive 
measure μ with values in a locally convex space and formulate a condition on u that 
is sufficient to guarantee the convexity and weak compactness of the range of μ. 
This result à la Lyapunov extends those obtained in (Khan and Sagara 2013 [26]) 
to the finitely additive setting through a more direct and less involved proof. We 
will then give an economical interpretation of the topology u in the framework of 
coalitional large economies to tackle the problem of measuring the bargaining power 
of coalitions when the commodity space is infinite dimensional and locally convex. 
We will show that our condition on u plays the role of the “many more agents than 
commodities” condition introduced by Rustichini and Yannelis in (1991) [31]. As a 
consequence of the convexity theorem, we will obtain two straight generalizations 
of Schmeidler’s and Vind’s Theorems on the veto power of coalitions of arbitrary 
economic weight.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Being one of the main assumptions of Lyapunov’s Theorem on the range of vector measures, the notion 
of non-atomicity of measure spaces is of great importance in a wide variety of applications. Many significant 
results, like Aumann’s or Richter’s Theorems on the range and integrals of correspondences, depend on 
the fact that, given a non-atomic measure space (Σ, λ), every RN -valued measure on Σ that is absolutely 
continuous with respect to λ has a convex and weakly compact range.1 As it is known, the validity of this 
statement depends directly on the dimension of RN and, in general, it does not hold if we consider measures 
with values in infinite dimensional spaces, suggesting that the non-atomicity of λ should be replaced by a 
stronger property.

E-mail address: niccolo.urbinati@unina.it.
1 Aumann explicitly refers to this formulation of Lyapunov’s Theorem in [6]. For a short proof of Richter’s Theorem that makes 

clear the connections with Lyapunov’s see [23, Theorem 3, page 62].
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Progresses in this direction have been made in the last years since Khan and Sagara presented in [26]
a version of Lyapunov’s Theorem for Banach-space valued σ-additive measures in which non-atomicity is 
substituted by Maharam-type homogeneity.2 This result can be formally stated as follows:

Theorem. Given a Banach space E, a σ-algebra Σ and a homogeneous σ-additive measure μ : Σ → E, every 
measure ν : Σ → E absolutely continuous with respect to μ has a convex and weakly compact range whenever 
the Maharam-type of μ is strictly greater than the density of E.

This idea was then sharpened by Greinecker and Podczeck in [20] and applied to economic models of 
exchange economies. As observed in [27], this convexity result still holds under the milder assumption that 
E is a locally convex space, provided that the measure μ admits a real valued control measure, a condition 
that is always satisfied by Banach-space valued measures.

In their recent work [28], Khan and Sagara came back on this problem removing the hypothesis on the 
existence of the control measure by means of a Theorem by Knowles ([29, Theorem V.1.1]). Although their 
approach follows from a close range the previous one, the tools involved are founded on deep concepts of 
measure theory and functional analysis that were not required in the Banach-space valued case and which 
are hard to be used in several applications.

In this paper we give an alternative, but yet equivalent, formulation of the Theorem above using the 
so-called Fréchet Nikodym approach, in which a measure is studied via the topological structure it induces 
on its Boolean algebra of definition. By doing so we will extend the mentioned results to include the case of a 
finitely additive measure μ that takes values in a locally convex space and that is not necessarily controlled. 
To overcome the difficulties faced in [28], we will decompose μ as μ =

∑
i μi, where each μi admits a control 

measure. This way we will be able to reduce the proof to the simpler case of controlled measures and hence 
to Greinecker and Podczeck’s approach. Our contribution is therefore twofold: while on the one hand we 
extend the convexity result to the finitely additive setting, on the other hand we present an alternative 
approach that shortcuts some technicalities of [28] and opens to a wide range of applications.

This part of our work is organized as follows: In Section 2 we recall some definitions and basic properties 
of topological Boolean algebras and we introduce the key notion of degree of saturation, a cardinal invariant 
similar to the Maharam-type. In Section 3 we consider a topological Boolean algebra (Σ, u), a locally convex 
space E and find a condition under which every u-continuous measure μ : Σ → E has a convex and weakly 
compact range. This result is obtained first under the assumption that u is metrizable (or, equivalently, 
that the measures we consider are controlled) and then in the general case. Moreover, in the spirit of [26, 
Theorem 4.2], we will find a partial converse to this result in the special case in which E is separable and 
metrizable.

In the second part of the paper, we provide applications of our main theorem to models of exchange 
economies and, in particular, we focus on the study of coalitional finitely additive exchange economies with 
a locally convex space of commodities. Within this general model we study the problem of representing the 
influence that coalitions have on the economic activity. Specifically, we will show how in every exchange 
economy the set of all coalitions can be represented as a topological Boolean algebra so that coalitions with 
“small” economic power correspond to “topologically small” elements of the algebra. What will emerge is that 
the topological approach proposed in the paper is not only a natural consequence of the commodity-price 
duality, but also a necessary tool to study economies with a locally convex space of commodities without 
imposing significant (and apparently unjustified) restrictions on the model. As a corollary of our main 
theorem, we shall derive in Section 4 a condition ensuring the convexity of values of demand correspondences 

2 The Maharam-type of a measure μ on a Boolean algebra Σ is the least among the cardinalities of sub-algebras of the quotient 
Σ/N (μ), where N (μ) is the ideal of μ-null sets, whose order closure is the whole Σ/N (μ). μ is homogeneous if the restriction of 
μ to every non-null principal ideal of Σ has the same Maharam-type.
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and then two characterizations of core allocations in the spirit of Schmeidler and Vind’s Theorems ([32], 
[38]).

Notation
Throughout, E will denote a complete, Hausdorff locally convex topological vector space with continuous 

dual E∗. For x∗ ∈ E∗, x ∈ E we will also write 〈x∗, x〉 meaning x∗(x). As usual, σ(E, E∗) will denote the 
weak topology on E induced by E∗.

We agree to denote by Σ a Boolean algebra, to use the symbols �, ∧, ∨, \ and ≤ respectively for the 
Boolean operations of symmetric difference (sum), infimum (multiplication), supremum, difference and for 
the natural order, and to call 0Σ (or simply 0) and 1Σ respectively the null and unit element in Σ. For any 
x ∈ Σ, we will write xc for 1Σ\x and Σ ∧x for the principal ideal generated by x, i.e. the set {y ∈ Σ : y ≤ x}. 
For algebras of sets (i.e. sub-algebras of the power set of a non-empty set) we will also use the standard set 
notation.

By measure we will always mean a finitely additive function on a Boolean algebra. We will say that a 
measure μ on Σ is exhaustive if μ(xn) → 0 whenever xn, n ∈ N, is a sequence of pairwise disjoint elements 
of Σ. When μ is a measure on Σ, we will refer to the set N (μ) := {x ∈ Σ : μ(y) = 0 ∀y ≤ x} as the ideal of 
μ-null elements and denote by Σ̂μ the quotient algebra Σ/N (μ) so that the elements of Σ̂μ are the classes 
of equivalence determined by the relation x ∼μ y ⇐⇒ x�y ∈ N (μ), for x, y ∈ Σ.

Other notation conventions will be introduced below. As our main references, we cite [30,39] for the 
theory of finitely additive measures (charges) and topological Boolean algebras, [14,1,18] for elements of 
vector measures, integration and functional analysis.

2. Measures and topologies

We start this section by considering a bounded, positive scalar measure λ defined on a Boolean algebra Σ: 
as it is well known, the function dλ : (x, y) �→ λ(x�y), for x, y ∈ Σ defines on Σ an invariant pseudo-metric 
and hence a ring-topology on Σ that we will denote by τ(λ). Such a topology, whose 0-neighborhood system 
is generated by the sets {x ∈ Σ : λ(x) ≤ 2−n} with n ranging in N, will result to be the coarsest one 
making λ a uniformly continuous function. In this way, absolute continuity of a measure with respect 
to λ is translated in uniform continuity with respect to the uniform structure induced on Σ by λ. This 
means that a measure μ : Σ → RN will be absolutely continuous with respect to λ3 if and only if it is 
continuous with respect to the topology τ(λ). For an arbitrary measure μ : Σ → E we follow a similar idea 
and define on Σ the ring-topology τ(μ) as the one whose 0-neighborhood system is generated by the sets 
{x ∈ Σ : y ∈ U for all y ≤ x} with U ranging over the 0-neighborhoods in E. Just like in the case of scalar 
measures, τ(μ) will result to be the coarsest group-topology on (Σ, �) making μ a continuous function.

All these topologies on Σ belong to the family of the so-called Fréchet–Nikodym topologies (or simply 
FN -topologies) which are all the ring-topologies on Σ that make the ring-operations � and ∧ uniformly 
continuous ([39, Proposition 1.6]). When u is a FN -topology on Σ we refer to (Σ, u) by calling it a topological 
Boolean algebra.

We will say that the topological Boolean algebra (Σ, u) is exhaustive if every sequence of pairwise disjoint 
elements of Σ converges to 0 or, equivalently, if every monotone net in Σ is Cauchy ([39, Proposition 3.4]). 
With this definition, a measure is exhaustive if and only if it induces an exhaustive FN -topology. On the 
other hand, if every monotone net in Σ order converging to some x ∈ Σ is also topologically convergent to 
x we will call u an order continuous topology. These two classes of measures, which link the algebraic and 
the uniform nature of topological Boolean algebras, are related by the following property.

3 We refer to the ε–δ notion of absolute continuity as defined in [30, Definition 6.1.1]: i.e. μ is absolutely continuous with respect 
to λ if and only if for all ε > 0 there exists a δ > 0 such that |μ(y)| ≤ ε whenever λ(x) ≤ δ for all y ≤ x ∈ Σ.
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Proposition 2.1 (Proposition 4.2 in [39]). Let (Σ, u) be an exhaustive, Hausdorff topological Boolean algebra 
that is complete (as a uniform space). Then Σ is a complete Boolean algebra and u is order continuous.

In view of Proposition 2.1, we give a special importance to those measures inducing a complete 
FN -topology on Σ, namely the closed measures.

Definition 2.2. A measure μ on Σ is closed if (Σ, τ(μ)) is a (uniformly) complete topological Boolean algebra.

We stress that if E is metrizable, Σ is a σ-algebra and μ : Σ → E is σ-additive then μ is automatically 
closed ([39, Corollary 3.7]).

Let us call N (u) the closure of {0} in (Σ, u). One sees that N (u) is a closed ideal in (Σ, u) (that coincides 
with N (μ) if u is the FN -topology induced by a measure μ) so that the quotient (Σ̂, ̂u) := (Σ, u)/N (u)
results to be a Hausdorff topological Boolean algebra which is exhaustive or complete whenever u is so. 
Furthermore, if μ is a u-continuous measure on Σ then μ̂ : x̂ �→ μ(x), for x ∈ x̂ ∈ Σ̂, defines on Σ̂ a 
û-continuous measure. This, together with Proposition 2.1, gives us the following key result.

Proposition 2.3. Let (Σ, u) be a complete and exhaustive topological Boolean algebra and let (Σ̂, ̂u) be the 
quotient (Σ, u)/N (u). Then Σ̂ is a complete Boolean algebra and û is order continuous.

In addition, if μ : Σ → E is a u-continuous measure and μ̂ : Σ̂ → E is the function defined by μ̂(x̂) = μ(x)
for x ∈ x̂ ∈ Σ̂ then μ̂ is a completely additive measure4 and μ(Σ) = μ̂(Σ̂).

Finally, we introduce the notion of absolute continuity. Given two measures μ and ν over Σ, ν is absolutely 
continuous with respect to μ if τ(ν) is coarser than τ(μ) (in this case we write ν � μ). From this definition, 
which can be shown to be coherent with the usual ε-δ definition for real valued measures, it follows that for 
closed and exhaustive measures μ and ν over a complete algebra, ν � μ if and only if N (μ) ⊆ N (ν). This 
follows from the fact that for any two order continuous topologies u and v over a complete Boolean algebra 
Σ, u ⊆ v if and only if N (v) ⊆ N (u) ([39, Theorem 4.8]).

2.1. The degree of saturation of a topological Boolean algebra

Recall that the density of a topological group G, denoted by dens(G), is the least among the cardinalities 
of all dense subsets of G. It is straightforward to see that, if H is the closure of the identity in G, then the 
Hausdorff quotient G/H has the same density as G.

In general, when H is a subset of G, it is not necessarily true that dens(H) = dens(G). Consequently, 
for a given topological Boolean algebra (Σ, u) we could have that the subspace Σ ∧ x, considered with the 
topology induced by u, has density strictly smaller than dens(Σ). This observation brings us to the following 
definition.

Definition 2.4. The degree of saturation of a topological Boolean algebra (Σ, u), denoted by sat(u), is the 
least among the densities of all Σ ∧ x, with x ∈ Σ \ N (u), each one considered as a topological subspace of 
(Σ, u).

If μ is a measure over Σ, we also write sat(μ) to denote sat(τ(μ)) and call it degree of saturation of the 
measure μ.

Just like the density character, we note that the degree of saturation of a topological Boolean algebra 
(Σ, u) is the same as the one of the correspondent Hausdorff quotient. In fact, if one calls (Σ̂, ̂u) the quotient 
(Σ, u)/N (u), then dens(Σ ∧ x) = dens(Σ̂ ∧ x̂) for every x ∈ x̂ ∈ Σ̂.

4 I.e. for every net (xi)i∈I of pairwise disjoint elements of Σ̂, (μ̂(xi))i∈I is summable and ∑i μ̂(xi) = μ̂(supi xi).
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Proposition 2.5. Let Σ be a complete Boolean algebra and u, v two order continuous FN -topologies over Σ
such that v ⊆ u. Then sat(u) ≤ sat(v).

Proof. We prove that for every x ∈ Σ \ N (v) there is a continuous function f : (Σ, v) → (Σ, u) such that 
f(Σ ∧ x) is of the form Σ ∧ y for some y ∈ Σ \ N (u). This way, for every v-dense subset D of Σ ∧ x, f(D)
is a u-dense subset of Σ ∧ y with cardinality smaller or equal than |D|. We do it only for x := 1Σ, as the 
proof strategy remains the same for a generic x ∈ Σ \ N (v).

Since the ideal N (v) can be seen as a monotone net in Σ, it must converge to a := supN (v) ∈ Σ (which 
exists by the completeness of Σ) by the order continuity assumption. This, being N (v) closed, implies that 
N (v) can be written as the principal ideal Σ ∧ a.

Let b := ac and call ub and vb the subspace topologies induced on Σ ∧ b by u and v respectively. vb and 
ub are order-continuous topologies defined on a complete Boolean algebra and, moreover, by the choice of 
b, N (vb) = N (v) ∧ b = {0} = N (u) ∧ b = N (ub). But then, a glance at [39, Theorem 4.8] gives us vb = ub. 
Let f : Σ → Σ ∧ b be the function that assigns x ∧ b to each x ∈ Σ. Of course, f is surjective and continuous 
with respect to v and vb. Since vb = ub, f is the desired function. �
Corollary 2.6. Let (Σ, u) be a complete and exhaustive topological Boolean algebra and μ a u-continuous 
measure on Σ. Then sat(u) ≤ sat(μ).

Proof. Let (Σ̂, ̂u), μ̂ as in Proposition 2.3 so that Σ is a complete Boolean algebra and u (and hence 
τ(μ)) are order-continuous topologies on Σ. Since û and τ(μ̂) satisfy the assumptions of Proposition 2.5, 
sat(û) ≤ sat(τ(μ̂)) = sat(μ̂). The thesis follows from the fact that sat(u) = sat(û) and sat(μ) = sat(μ̂).

�
Remark 2.7. Let μ be a measure on Σ and π : Σ → Σ̂μ the quotient map. By the argument above, sat(μ) < ∞
if and only if π(Σ ∧ x) is finite for some x ∈ Σ \N (μ). But the latter is equivalent with saying that x is the 
finite join of μ-atoms5 and, consequently, sat(μ) = 1.

In other words, μ is non-atomic if and only if sat(μ) is infinite if and only if sat(μ) > 1.

Remark 2.8. The notion of saturation of a measure space has been widely employed in different applications 
of measure and probability theory in the last decades (see [19,25] and their references for a survey). However, 
it is in [28] that we find this notion adapted to topological Boolean algebras with the following definition: a 
measure μ on Σ is saturated if there is no x ∈ Σ \N (μ) such that Σ ∧x, endowed with the topology τ(μ), is 
separable. The definition of degree of saturation we gave in Definition 2.4 can be seen as a natural extension 
of this concept: in fact a measure μ is saturated in the sense given by Khan and Sagara if and only if sat(μ)
is uncountable.

3. A convexity result for the range of vector measures

A significant consequence of Lyapunov’s Theorem is that if Σ is a σ-algebra and λ : Σ → [0, +∞[ a 
σ-additive, non-atomic measure, then the range of every RN -valued measure absolutely continuous with 
respect to λ is convex and compact. By adapting the terminology used in [26], we say that the measure 
λ has the Lyapunov property with respect to any finite dimensional space. This brings us to the following 
definition.

Definition 3.1. We say that a topological Boolean algebra (Σ, u) has the Lyapunov property with respect to 
the space E if every u-continuous measure ν : Σ → E has a convex and weakly compact range.

5 a ∈ Σ is a μ-atom if for all b ≤ a, b ∈ N (μ) or a \ b ∈ N (μ).
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Similarly, a measure μ on Σ has the Lyapunov property with respect to E if τ(μ) has the Lyapunov 
property with respect to E.

In other words, a measure μ : Σ → E has the Lyapunov property with respect to E if every E-valued 
measure absolutely continuous with respect to μ has a convex and weakly compact range. Our main problem 
can then be written in the following way:

Problem. Given the locally convex space E, which topological Boolean algebras have the Lyapunov property 
with respect to E?

We divide our analysis in two steps: first we consider only topological Boolean algebras whose uniform 
structure is induced by a scalar measure, then we tackle the problem in the general case.

3.1. The case of measures admitting a control

We say that a vector measure μ : Σ → E has a control measure λ : Σ → [0, +∞[ if μ � λ, i.e. if 
limn μ(xn) = 0 whenever (xn)n∈N is a sequence in Σ such that limn λ(xn) = 0. In this case, μ is continuous 
with respect to the λ-topology and therefore it is exhaustive and bounded and it is σ-additive when λ is 
σ-additive. Moreover, both μ and λ will be closed whenever Σ is a σ-algebra and λ is σ-additive (see [39, 
Corollary 3.7]).

In general not all vector measures are controlled, however, when E is metrizable, a slight generalization 
of Bartle–Dunford–Schwartz’s Theorem ensures that if μ is a E-valued exhaustive measure then it admits 
a control measure λ which can be taken σ-additive if μ is so ([39, Corollary 7.5]).

Throughout all this section, we assume that A is a σ-algebra of subsets of a non-empty Ω and that 
λ : A → [0, +∞[ is a σ-additive measure. For all A ∈ A, we will use χA to denote the characteristic 
function of A. If we identify the functions that are equal λ-almost everywhere we can define a unique 
continuous operator Tμ : L∞(λ) → E with the property that Tμ(χA) = μ(A), A ∈ A, and prove that Tμ

is continuous with respect to the weak∗ topology on L∞(λ) and the weak topology on E ([14, IX.1.4]). 
We call Tμ the integral operator associated to μ and also write 

∫
f dμ for Tμ(f) (see [29] for references 

on this integration procedure). Observe that, for a continuity argument, for all x∗ ∈ E∗ and f ∈ L∞(λ)
x∗ ◦ Tμ(f) = x∗ (

∫
f dμ) =

∫
f d(x∗ ◦ μ) = Tx∗◦μ(f).

The following Theorem shows the relation between the non-injectiveness of the operator Tμ and the 
convexity of the range of μ. Its proof can be found in [14, IX.1.4] for Banach-space valued measures and in 
[36, Proposition 2.3] for the locally convex case.

Proposition 3.2. Let μ : A → E be a vector measure over a σ-algebra of sets and λ : A → [0, +∞[ a σ-additive 
control for μ. For every A ∈ A \N(λ), assume that the restriction of the operator Tμ to the space L∞(λA), 
consisting of functions in L∞(λ) vanishing off A, is non-injective. Then μ(A ∩ A) is weakly compact and 
convex for all A ∈ A.

In view of the above, our next aim is to find conditions on the measures μ and λ ensuring that each of the 
operators Tμ : L∞(λA) → E, A ∈ A \ A, is non-injective. For example, we could ask that dim (L∞(λA)) >
dim E6 for every A ∈ A \N(μ), a condition studied by Rustichini and Yannelis in [31] and again by Turkey 
and Yannelis in [34]. The approach below closely follows the line of Greinecker and Podczeck ([20]) and it 
is included here for the sake of completeness. First we will need the following lemma.

6 Here dim E stands for the algebraic dimension of the linear space E.
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Lemma 3.3. Let λ : A → [0, +∞[ be a σ-additive measure over a σ-algebra of sets. Then dens(A, τ(λ)) =
dens(L1(λ), ‖ · ‖1) whenever dens(A, τ(λ)) is infinite.

Proof. We first prove the inequality dens(A, τ(λ)) ≤ dens(L1(λ), ‖ · ‖1). Take a dense set F ⊂ L1(λ) and 
for f ∈ F define Bf := {x : |1 − f(x)| ≤ 1

2} ∈ A. Our goal is to show that for any A ∈ A and ε > 0 we can 
take f ∈ F such that λ(A�Bf ) < 2ε. This way {Bf : f ∈ F} is dense in (A, τ(λ)) and so the thesis will 
follow from the generality of F .

Choose A ∈ A, ε > 0 and take f ∈ F such that ‖χA − f‖1 < ε. We have that:

ε > ‖χA − f‖1 =
∫

|χA − f(x)| dλ(x) ≥
∫

A\Bf

|1 − f(x)| dλ(x) +
∫

Bf\A

|f(x)| dλ(x)

By construction, |f(x)| ≥ 1
2 for x ∈ Bf while |1 − f(x)| ≥ 1

2 for x /∈ Bf so from the previous equation 
follows that:

ε > ‖χA − f‖1 ≥
∫

A\Bf

1
2 dλ +

∫
Bf\A

1
2 dλ = 1

2λ(A \Bf ) + 1
2λ(Bf \A) = 1

2λ(A�Bf )

as claimed.
We now prove that the inequality dens(A, τ(λ)) ≥ dens(L1(λ), ‖ · |1) holds when dens(A, τ(λ)) is infinite. 

For a dense subset B ⊂ A, let F be the collection of all (finite) linear combinations of elements of {χB : B ∈
B} with rational coefficient. Since F and B have the same cardinality and the space of simple functions7 S(A)
is dense in L1(λ), it will be enough to show that F is dense in S(A) to prove that dens(L1(λ), ‖ · ‖1) ≤ |B|.

Let f :=
∑n

i=1 αiχAi
be any simple function in S(A) and ε > 0. For every i ≤ n choose βi ∈ Q and 

Bi ∈ B so that |βi − αi| ≤ ε/nλ(Ω) and λ(Bi�Ai) ≤ ε/nα, where Ω is the largest element of A and 
α := supi≤n |αi|. This way g :=

∑n
i=1 βiχBi

is a function in F such that:

|g − f | ≤
n∑

i=1
|βiχBi

− αiχAi
| ≤

n∑
i=1

|βi − αi|χBi
+ |αi| · |χBi

− χAi
| =

n∑
i=1

|βi − αi|χBi
+ |αi|χBi�Ai

.

But then:

∫
|g − f | dλ ≤

n∑
i=1

|βi − αi|λ(Bi) + |αi|λ(Bi�Ai) ≤
ε

nλ(Ω)

n∑
i=1

λ(Bi) + α

n∑
i=1

λ(Bi�Ai) ≤ ε + ε

proving that F is dense in S(A). �
In [20], the authors consider a σ-algebra of sets A and for every infinite cardinal number κ they define a 

class of κ-atomless measures. The latter consists of σ-additive measure λ : A → [0, 1] such that densL1(λA) ≥
κ for every A ∈ A \N (λ) (by [20, Fact 1] this is equivalent to the original definition of κ-atomless measures). 
By doing so, they were able to prove in [20, Section 3] that if λ : A → [0, 1] is a σ-additive, κ-atomless measure 
and E is a Banach space separated by a family F ⊂ E∗ with |F| < κ then every measure μ : A → E

absolutely continuous with respect to λ has a convex and weakly compact range.
Next Theorem can be seen as an extension of Greinecker and Podczeck’s main result.

7 I.e. all linear combinations of characteristic functions of all A ∈ A.
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Theorem 3.4. Let μ : A → E be a measure on a σ-algebra of sets and λ : A → [0, +∞[ be a σ-additive control 
measure for μ with infinite degree of saturation. Assume that there exists a family F ⊂ E∗ that separates 
the points of spanμ(A) with |F| < sat(λ). Then μ(A) is convex and weakly compact.

Proof. We identify functions which are λ-almost everywhere equal.
By Proposition 3.2 it will be sufficient to prove that for any A ∈ A \N(λ), the restriction of the operator 

Tμ : f �→
∫
f dμ to L∞(λA) is non-injective. We will do this for A = Ω, since the proof remains the same 

for the general case.
If F is finite then spanμ(Σ) must be finite dimensional. At the same time, being sat(λ) infinite, the space 

L∞(λ) has infinite dimension and so the operator Tμ : L∞(λ) → E cannot be injective. Therefore we can 
assume that F is infinite.

By the Radon–Nikodym Theorem, to every x∗ ∈ F we can associate a function gx∗ ∈ L1(λ) so that the 
measure x∗◦μ is described by the relation A �→

∫
A
gx∗ dλ for A ∈ A. Put Y := span{gx∗ : x∗ ∈ F}. Since the 

set of finite linear combinations of the gx∗ ’s with rational coefficients is a dense subset of Y with cardinality 
|F| and the latter is strictly smaller than sat(λ) by hypothesis, we have that dens(Y ) ≤ |F| < dens(A, τ(λ)). 
Consequently, Y cannot be the whole L1(λ), since L1(λ) has density greater or equal to (A, τ(λ)) by 
Lemma 3.3.

Now, because Y is a closed proper subspace of L1(λ) and L1(λ)∗ = L∞(λ), as a consequence of the 
Hahn–Banach Theorem there must be a f ∈ L∞(λ) \ {0} such that for all x∗ ∈ F , 

∫
f d(x∗ ◦μ) = 0 and so, 

by a continuity argument, x∗ ◦ Tμ(f) = 0. But Tμ(f) belongs to spanμ(A), so x∗ ◦ Tμ(f) = 0 for all x∗ ∈ F
implies that Tμ(f) = 0 and hence that Tμ is non-injective as claimed. �

In the assumptions of Theorem 3.4, λ is a σ-additive real valued measure defined on a σ-algebra and 
as such it is closed. The corollary that follows shows that this property alone is enough to guarantee the 
validity of the results.

Corollary 3.5. Let λ : Σ → [0, +∞[ be a closed control measure for μ : Σ → E with infinite degree of saturation 
and assume that there is a family F ⊂ E∗ separating the points of spanμ(Σ) such that |F| < sat(λ). Then 
μ(Σ) is convex and weakly compact.

Proof. Let (Σ̂λ, ̂u) be the quotient (Σ, τ(λ))/N(λ) and μ̂ : Σ̂λ → E, λ̂ : Σ̂λ → [0, +∞[ be the measures 
defined by μ̂(x̂) = μ(x), λ̂(x̂) = λ(x) for x ∈ x̂ ∈ Σ̂λ. By Proposition 2.3, being (Σ, u) complete and 
exhaustive, Σ̂λ is complete and λ̂ is a completely additive control measure for μ̂.

By the Loomis–Sikorski representation Theorem ([33, 29.1]), there exists a σ-algebra of sets A and a 
surjective homomorphism π : A → Σ̂λ such that Kerπ is a σ-ideal in A thus A/Kerπ is isomorphic to 
Σ̂λ. Let us define the measures λπ := λ̂ ◦ π : A → [0, +∞[ and μπ := μ̂ ◦ π : A → E. By construction, 
λπ is a σ-additive control measure for μπ, sat(λπ) = sat(λ̂) = sat(λ) and μπ(A) = μ(Σ). In other words, 
spanμπ(A) is separated by the family F ⊂ E∗ with |F| < sat(λπ) and so, being satisfied the condition of 
Theorem 3.4, μπ(A), and therefore μ(Σ), is convex and weakly compact as claimed. �
3.2. The general case

In the absence of a control measure for μ : Σ → E, it is much harder to obtain a result close to Theorem 3.4
with a similar approach. This is mainly due to the difficulties that can arise in generalizing some of the 
functional analytic tools used throughout the proofs of Proposition 3.2, Lemma 3.3 and Theorem 3.4, in 
which the properties of L∞(λ) and L1(λ) were intensively employed.

Our main goal in this Section is to prove the following:
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Theorem 3.6. Let μ : Σ → E be a closed and exhaustive measure with infinite degree of saturation and 
suppose that there is a family F ⊂ E∗ that separates the points of spanμ(Σ) with |F| < sat(μ). Then μ(Σ)
is convex and weakly compact.

The idea behind the proof is simple and it follows what has been done in [36]. It consists in decomposing 
μ as a sum μ =

∑
i∈I μi in which each one of the μi’s is a measure satisfying the hypothesis of Corollary 3.5

and then showing that μ(Σ) =
∑

i μi(Σ). However, if on one hand the writing 
∑

i∈I μ(Σ) has a clear meaning 
when I is finite, in the infinite case things must be handled much more carefully and a little additional 
terminology is needed. For convenience, in the following we recall some of the definitions and results used 
in [36, Section 3] to study infinite sums and uniform summability.

We recall that a family xi, i ∈ I, in E is summable if the net of partial sums 
∑

i∈F xi, F ⊂ I finite, 
converges to some element x0 ∈ E. In this case, we write 

∑
i∈I xi := x0. With these definitions, the set 


1(I, E) of all summable families of elements of E indexed by I will form a vector subspace of EI .
We say that a system A :=

∏
i∈I Ai ⊂ EI of summable families is uniformly summable if the nets of 

partial sums of the families in A converge uniformly, i.e. if for every 0-neighborhood U in E there is a finite 
subset F ⊂ I such that 

∑
i∈F0

xi ∈ U for every finite F0 ⊂ I \ F and every (xi)i∈I ∈ A. In this case, we 
write 

∑
i∈I Ai for the set {

∑
i∈I xi : (xi)i ∈ A}.

We will need the following two results. The first one is a consequence of lemmas [36, 3.6, 3.8, 3.9].

Lemma 3.7. Let Ai ⊂ E, i ∈ I be a family of non-empty convex and weakly compact subsets of E such that 
A :=

∏
i∈I Ai is uniformly summable. Then 

∑
i∈I Ai is convex and weakly compact too.

Proof. Let us denote by w the subspace topology on 
1(I, E) induced by the product topology on 
(E, σ(E, E∗))I . Since each of the Ai’s is convex and weakly compact by assumption, A =

∏
i∈I Ai is 

convex and compact with respect to the topology w by Tychonoff’s Theorem.
Our aim is to show that the relation S : (xi)i∈I �→

∑
i∈I xi defines a linear function S : 
1(I, E) → E

whose restriction to A is continuous with respect to the topology w and the weak topology on E. As a 
consequence S(A) =

∑
i∈I Ai will be a convex and weakly compact subset of E.

The linearity of S is immediate so we focus on the continuity of its restriction to A. Let U be a closed and 
symmetric 0-neighborhood of (E, σ(E, E∗)). By the uniform summability of 

∏
i∈I A, there is a finite subset 

F of I such that 
∑

i∈F0
xi ∈ U for all finite subsets F0 of I \F and (xi)i∈I ∈ A. Let V be a 0-neighborhood 

of (E, σ(E, E∗)) such that 
∑

i∈F V ⊂ U , then consider the set W := {(xi)i∈I : xi ∈ V ∀ i ∈ F} which is a 
0-neighborhood in (
1(I, E), w).

If we choose x := (xi)i∈I and y := (yi)i∈I in A so that x − y ∈ W , it will follow that

S(x) − S(y) = S(x− y) =
∑
i∈F

(xi − yi) +
∑
i/∈F

xi −
∑
i/∈F

yi ∈
∑
i∈F

V + U − U ⊆ U + U + U

proving that the restriction of S to A is continuous as claimed. �
Proposition 3.8 (Theorem 4.5 in [36]). Let μ : Σ → E be a closed and exhaustive measure. Then there is a 
system ai ∈ Σ of almost disjoint8 elements and x∗

i ∈ E∗, i ∈ I, such that the measures μi : Σ → E defined 
by μi(x) = μ(x ∧ ai), x ∈ Σ, satisfy the following conditions:

1. for each i ∈ I the measure μi is absolutely continuous with respect to |x∗
i ◦ μ|;

2. for all x ∈ Σ, (μi(x))i∈I is summable and μ(x) =
∑

i∈I μi(x);
3.

∏
i∈I μi(Σ) is uniformly summable and 

∑
i∈I μi(Σ) = μ(Σ).

8 I.e. such that ai ∧ aj ∈ N (μ) for all i, j ∈ I distinct.
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What Proposition 3.8 ensures is that whenever we have a closed and exhaustive measure μ : Σ → E, we 
can always write it as the infinite sum of some controlled measures μi’s that can be chosen so that (μi(Σ))
is uniformly summable. We now have all the ingredients to prove our main theorem.

Theorem 3.9. Let μ : Σ → E be a closed and exhaustive measure with infinite degree of saturation and 
suppose that there is a family F ⊂ E∗ that separate the points of spanμ(Σ) with |F| < sat(μ). Then μ(Σ)
is convex and weakly compact.

Proof. Let x∗
i ∈ E∗, ai ∈ Σ and μi : Σ → E, i ∈ I, be as in Proposition 3.8 so that 

∏
i∈I μi(Σ) is 

uniformly summable and μ(Σ) =
∑

i∈I μi(Σ). If we prove that each of the μi’s satisfies the assumptions of 
Corollary 3.5, the thesis will follow from Lemma 3.7.

Fix a i ∈ I and call λ the measure |x∗
i ◦ μ| : Σ → [0, +∞[, which is a control measure for μi by point 

(1) in Proposition 3.8. By construction, λ is absolutely continuous with respect to μ and therefore, beside 
being closed, it has a degree of saturation greater or equal than sat(μ) so that |F| < sat(λ).

Moreover, since μi(Σ) ⊆ μ(Σ), the family F separates the points of spanμi(Σ) too. But then all the 
assumptions on Corollary 3.5 are satisfied and μi(Σ) is convex and weakly compact as claimed. �
Corollary 3.10. Let μ : Σ → E be a closed and exhaustive measure with infinite degree of saturation and 
suppose that there is a family F ⊂ E∗ that separates the points of E with |F| < sat(μ). Then μ has the 
Lyapunov property with respect to E.

Proof. Let ν : Σ → E be a measure absolutely continuous with respect to μ. Then ν is closed, exhaustive 
and has degree of saturation greater or equal to sat(μ), where the latter is strictly greater than |F| by 
assumption. Since F separates the points of E, and consequently of spanν(Σ), ν satisfies all the assumptions 
of Theorem 3.9 and as such it has a convex and weakly compact range. �
Corollary 3.11. Let (Σ, u) be a complete and exhaustive topological Boolean algebra such that sat(u) is 
infinite. Furthermore, assume that there is a family F ⊂ E∗ that separates the points with |F| < sat(u). 
Then (Σ, u) has the Lyapunov property with respect to E.

Proof. It follows directly from Corollary 2.6 that every u-continuous measure μ : Σ → E satisfies the 
assumptions of Corollary 3.10 and therefore it has a convex and weakly compact range. �
Remark 3.12 (Remarks on the main theorem). As mentioned before, what makes it quite easier to work 
with a vector measure μ : R → E admitting a control λ : R → [0, +∞[ is the possibility of employing many 
fine properties of the spaces L1(λ) and L∞(λ). When such a λ does not exist, it is necessary to study other 
function spaces in order to replace L1(λ) and L∞(λ). This is done, for example, in [29] where a generalization 
of Proposition 3.2 is given. Following this line of investigation, in [28] Khan and Sagara proved that a closed, 
σ-additive measure over a σ-algebra μ : A → E has convex and weakly compact range if it is homogeneous 
of type strictly greater than the topological dimension of E, generalizing a previous result contained in [26]. 
The problem with this approach is mainly due to the very deep analytical tools employed which seem to be 
a very high price to be payed in this framework.

To prove Theorem 3.9, which can be seen as a general case of the above mentioned result of Khan and 
Sagara, we decided to follow a completely different path inspired by [36]. Theorem 3.9 improves previous 
results in two respects: the less restrictive hypothesis, in which neither σ-additiveness of the measures nor 
the σ-completeness of the algebra are required, and the proof strategy itself which seems to be more flexible 
to further developments.
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3.3. A refinement of the main result

As it was first proved in [35, Theorem 3], a finitely additive measure taking values in a locally convex 
space has a relatively weakly compact range if and only if it is exhaustive (see also or [14, Corollary 18.1.I]
for the case of Banach-space valued measures). This implies that whenever μ : Σ → E is exhaustive, the 
space spanμ(Σ) belongs to the class of weakly compactly generated spaces, where a linear subspace Y of E
is weakly compactly generated if it is the closed linear span of a weakly compact subset of E. In the light 
of this remark, we might agree with saying that much of the results on the range of E-valued exhaustive 
measures can be reformulated in terms of weakly compactly generated subsets of E. The following Theorem 
is a way to do this.

Theorem 3.13. Let μ : Σ → E be a closed and exhaustive measure with infinite degree of saturation and 
assume that for every weakly compactly generated subspace Y of E there is a family F ⊂ E∗ separating the 
points of Y such that |F| < sat(μ). Then μ has the Lyapunov property with respect to E.

Proof. Let ν : Σ → E be a measure absolutely continuous with respect to μ and call Y := spanν(Σ). Our 
goal is to prove that ν has a convex and weakly compact range by showing that is satisfied the assumptions 
of Theorem 3.9.

Being ν exhaustive, Y is a weakly compactly generated subspace of E and so, by hypothesis, its points 
are separated by a family F ⊂ E∗ with |F| < sat(μ). The fact that ν is closed, so that sat(μ) ≤ sat(ν)
(Corollary 2.6), concludes the proof. �

We stress that Theorem 3.13 is a significant improvement of Corollary 3.10 as it allows us to consider a 
much wider class of measures. In the following example, we describe a locally convex, infinite dimensional 
space whose weakly compactly generated subspaces are finite dimensional.

Example 3.14. Consider the infinite dimensional space X = c00 consisting of all real sequences with finite 
support (i.e. sequences (xn)n ⊂ R such that xn = 0 for all but a finite number of indexes n ∈ N). On E we 
take the topology τB generated by the base:

{
E ∩

(∏
n∈N

Un

)
: Un is an open set of R for all n ∈ N

}
.

Such τB is commonly known as box topology and, by [24, section 6.6], it makes (X, τB) a complete locally 
convex space. Furthermore, one observes that bounded sets in E must lie in finite dimensional subspaces of 
X (see [41, Theorem 4]).

Consider now the algebra B of measurable subsets of the real unit interval [0, 1] with the Lebesgue 
measure λ. Since the range of every measure μ : B → X absolutely continuous with respect to λ lies in a 
finite dimensional subspace of X, by the classical Lyapunov’s Theorem μ(B) must be compact and convex. 
This implies that (B, τ(λ)) has the Lyapunov’s property with respect to X even though there is no family 
of functionals F ⊂ X∗ that separates the points of X with |F| < sat(λ).

Similarly with what is done in [26,27] and [20, Corollary 1], one might want to find a relation between 
the density of the space E and the degree of saturation of a E-valued measure with the Lyapunov property 
with respect to E. In order to do this, we will recall the following preliminary result, due to Amir and Lin-
denstrauss ([3]), whose proof can be found in [18, Theorem 13.3] for Banach spaces and in [10, Theorem 13]
for a general class of spaces that includes locally convex metrizable spaces.
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Proposition 3.15. If E is a metrizable weakly compactly generated locally convex space then dens(E) =
dens(E∗) where E∗ is considered with the weak∗ topology.

Proposition 3.15 allows us reformulate the conditions in Theorem 3.13 in terms of the density of weakly 
compactly generated subspaces of E.

Proposition 3.16. Let μ : Σ → E be a closed and exhaustive measure and assume that every weakly compactly 
generated subspace of E is linearly homeomorphic to some metrizable space with density strictly smaller than 
sat(μ). Then μ has the Lyapunov property with respect to E.

Proof. Let ν : Σ → E be a measure absolutely continuous with respect to μ. We need to prove that ν(Σ)
is convex and weakly compact. Since ν is closed and exhaustive, it is sufficient to show that the points of 
Y := spanν(Σ) are separated by an infinite family F ⊂ E∗ with |F| < sat(ν), then apply Theorem 3.9.

Being ν exhaustive, Y is weakly compactly generated subspace of E and therefore it is metrizable by 
assumption. Thus, by applying Proposition 3.15, we can take a family F ⊂ Y ∗ with cardinality dens(Y )
that is dense in Y ∗ with respect to the weak∗ topology. The family F has therefore cardinality strictly 
smaller than sat(μ) by assumption and it separates the points of Y as a consequence of the Hahn–Banach 
Theorem ([18, Proposition 3.39]).

This, together with the fact that sat(μ) ≤ sat(ν) (Proposition 2.6), implies that |F| < sat(ν) as de-
sired. �
Remark 3.17. In the setting of Proposition 3.16, the measure μ takes values in a subspace of E whose 
topology can be induced by a metric. Thus, by the Theorem of Bartle–Dunford–Schwartz (as formulated 
in [39, Corollary 7.5]) the measure μ is equivalent with respect to a scalar measure λ : Σ → [0, +∞[ (i.e. 
τ(μ) = τ(λ)).

This makes possible to prove Proposition 3.16 via Corollary 3.5 without recurring to Theorem 3.9.

3.4. A necessary condition for a measure to have convex range

It is known that Lyapunov’s Theorem also characterizes finite dimensional spaces. In fact, if E is a 
F -space9 such that every E-valued non-atomic σ-additive measure on σ-algebras has compact or convex 
range, E cannot have infinite dimension (see [14, Corollary 6 on pg 265] for the case E is a Banach space, 
for the general result see [40]).

We wonder whether a similar statement can be generalized to spaces with higher dimension, proving that 
those conditions that in Theorem 3.9 were shown to be sufficient for the convexity result are also necessary. 
In other words, we ask if the following question can be answered positively:

Question. Let μ : Σ → E be a closed and exhaustive measure with the Lyapunov property with respect to 
E. Is it true that sat(μ) must be strictly greater than the cardinality of the minimum family F ⊂ E∗ that 
separates the points of span μ(Σ)?

Following an idea of Wnuk ([40]), we use the existence of a topologically independent sequence in E to 
provide a partial answer to the previous question.

Recall that (en)n∈N is a topologically linearly independent sequence in E if for every f ∈ 
∞(N) (i.e. the 
space of bounded functions f : N → R) 

∑
n∈N

f(n)en = 0 implies f = 0. In [16] it is proved that every 
infinite dimensional metrizable vector space (X, τ) contains a topologically linearly independent sequence 
(en)n∈N.

9 I.e. a complete metrizable topological vector space.
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Proposition 3.18. Suppose that E is metrizable and infinite dimensional. Let μ : Σ → E be an exhaustive 
measure such that every measure ν : Σ → E absolutely continuous with respect to μ has a convex range. 
Then sat(μ) is uncountable.

Proof. Since E is metrizable and μ exhaustive, by Bartle–Dunford–Schwartz’s Theorem ([39, Corollary 7.5]) 
there is a measure λ : Σ → [0, +∞[ which is equivalent to μ, i.e. such that τ(λ) = τ(μ). By contradiction, 
suppose that sat(λ) ≤ |N|. Then there exists a x ∈ Σ \ N (λ) such that Σ ∧ x is a separable topological 
subspace of (Σ, τ(λ)). Without loss of generality we can assume that x = 1Σ and take a sequence bn, n ∈ N

dense in (Σ, τ(λ)).
On Σ we define the family of scalar measures λn : x �→ λ(x ∧ bn), n ∈ N, and observe that x�y /∈ N (λ)

implies that λn(x) �= λn(y) for at least one n ∈ N.
Since E is metrizable, we can select a topologically linearly independent sequence en, n ∈ N, in E and 

choose a sequence of non-zero tn ∈ R, n ∈ N, so that (tnen)n∈N is summable in E. Then, we can define the 
measure ν : Σ → E by setting ν(x) :=

∑
n∈N

λn(x)tnen for x ∈ Σ. Since ν is absolutely continuous with 
respect to μ, ν(Σ) must be a convex subset of E, meaning that there is a a ∈ Σ such that ν(a) = ν(ac) =
ν(1Σ)/2. But then:

0 = ν(a) − ν(ac) =
∑
n∈N

tn (λn(a) − λn(ac)) en

and so, having taken en, n ∈ N, topologically linearly independent and tn non-zero, it must be λn(a) = λn(ac)
for each n ∈ N.

However, since λ(a�ac) > 0 by construction, there must be a n ∈ N with λn(a) �= λn(ac). �
We stress that in the settings of Proposition 3.18 the assumption of metrizability of the space E cannot 

be directly dropped. As seen in Example 3.14, if E is infinite dimensional but not metrizable it is possible 
to find a measure μ : Σ → E with the Lyapunov property with respect to E such that sat(μ) is countable.

Corollary 3.19. Let E be separable, infinite dimensional and metrizable and let μ : Σ → E be a closed and 
exhaustive measure. Then the following are equivalent:

1. μ has the Lyapunov property with respect to E;
2. every ν : Σ → E with ν � μ has convex range;
3. sat(μ) is uncountable.

Proof. The implication (1 ⇒ 2) is obvious while (2 ⇒ 3) is a consequence of Proposition 3.18. Finally, 
(1 ⇒ 2) can be seen as a special case of Theorem 3.16. �
Remark 3.20. Corollary 3.19 still holds if we replaced the hypothesis on the metrizability and separability 
of E with the less restrictive hypothesis that every weakly compactly generated subset of E is linearly 
homeomorphic to a separable and metrizable space. In fact, under this milder assumptions, the proofs 
remains identical.

Remark 3.21. Using [14, Corollary 6, pg. 265], Khan and Sagara proved in [26, Section 4.2] that if E is an 
infinite dimensional separable Banach space and μ : A → E is a σ-additive homogeneous measure over a 
σ-algebra then μ is saturated10 if and only if every ν : A → E absolutely continuous with respect to μ has 
convex and weakly compact range.

10 I.e. sat(μ) is uncountable.
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Their result is extended in this section via Proposition 3.18 and Corollary 3.19 to include finitely additive 
measures that are not necessarily homogeneous and that can take values in locally convex metrizable spaces. 
Moreover, the proof is significantly simplified by avoiding the necessity of recurring to Maharam’s Theorem 
of classification of homogeneous measure algebras.

4. Applications

4.1. Coalitional representations of exchange economies with many commodities

This section is devoted to the description of an exchange economy E with infinitely many agents and 
commodities. We mainly adapt the coalitional approach described in [4] to obtain a finitely additive econ-
omy with an infinite dimensional locally convex space of commodities. The main idea behind coalitional 
representations of economies is to take coalitions, instead of agents, as the main actors of the model so 
as to ignore all entities unable to influence the economic activity. We take [37,4,7] and [11,15] for classical 
references on coalitional representations both in finite dimensional and infinite dimensional economies.

In our model, we will consider an exchange economy E in which:

• the commodity-price duality is represented via the dual pair (E, E∗) of infinite dimensional ordered lo-
cally convex spaces, where the positive orthant of E, denoted by E+, stands for the spaces of commodity 
bundles while E∗

+ for the set of prices.
• Coalitions are taken as the primitive entity of the economy, formally represented as the elements of an 

abstract Boolean algebra Σ. Even though Σ is a purely algebraic object, for the sake of simplicity we 
will think of Σ as the algebra of sub-sets of a given set Ω �= ∅ representing the totality of the agents. 
This identification is made possible by the Stone’s representation theorem (see [33, pg. 117]).

• Assignments are (finitely additive) vector measures α : Σ → E+ with the idea that α(F ) ∈ E+ represents 
the consumption bundle assigned by α to the coalition F . Since we want the total amount of resources 
available in the economy to be bounded, we require that every assignment α : Σ → E+ has a totally 
bounded range α(Σ) which, in our situation, is equivalent with asking that α is an exhaustive measure 
([35, Theorem 3]).
In the set A of all assignments, which we consider endowed with the uniform-convergence topology, 
we give a special importance to the initial endowment ω : Σ → E+ which describes how the wealth is 
initially distributed among coalitions.

• A binary relation �F on A is associated to every coalition F ∈ Σ to represent the preference of coalition 
F following the intuition that α �F β means that every agent in F prefers what she obtains from α
with respect to β. Once �F is defined we can introduce a weak preference relation �F on A by setting 
α �F β if and only if there is no non-null coalition F ′ ⊂ F such that β �F ′ α.

In conclusion, a finitely additive coalitional economy E will be fully described by the tuple:

E := (Σ, (E,E∗), ω : Σ → E+, {�F : F ∈ Σ}) .

For any assignment μ ∈ A and coalition F ∈ Σ, μ|F will stand for the assignment that associates μ(G ∩F )
to each G ∈ Σ. In addition to the assumptions made above, following [4] we will require that preference 
relations satisfy some standard assumptions:

Assumption 4.1.

(i) for all α, β ∈ A, the set {G ∈ Σ : α �G β} is an ideal in Σ;
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(s) for α, β ∈ A, α �F β if and only if α|F �F β if and only if α �F β|F ;
(m) if α, β ∈ A are such that α|F ≥ β|F and α|F �= β|F then α �F β;
(c) the set {(α, β) ∈ A2 : α �F β} is closed in the product topology.

The condition (i), where i stands for ideal, reflects the idea that all members of a coalition F must agree 
on the preference �F so that the formation of coalitions is totally voluntary. On the other hand, condition 
(s), that stands for selfishness, is needed to exclude the presence of externalities of consumption. Last, (m)
and (c) are simply conditions of monotonicity and continuity of preferences.

Remark 4.2. The description of the commodity-price duality in terms of a dual pair of ordered linear 
spaces is a common expedient we owe to Debreu ([12]). Thanks to this idea, the topological structure of the 
commodity space, and hence the continuity of price-evaluation functions, is justified as a natural consequence 
of the algebraic properties determined by the commodity-price duality and it is not imposed for technical 
necessities. In this perspective, locally convex topologies are the most natural ones to be considered on a 
space of commodities. For more references on this issue see [2, Chapter 8.2].

Remark 4.3. Starting from an individual representation of the economy E , i.e. a model in which agents are 
represented as the points of a measure space and assignments as integrable functions, it is always possible 
to derive an equivalent coalitional representation of E via a suitable integration procedure. Thus, in some 
sense, the coalitional approach can be seen as a generalization of the individual one which short circuits 
some technical aspects of mathematical integration that are intrinsic in Aumann’s model for competitive 
economies. In [13], Debreu showed that, as long as we consider countably additive economies with finitely 
many commodities, the differences between the two approaches are not too significant: in fact, for every 
coalitional economy with finitely many commodities, a σ-algebra of coalitions and σ-additive assignments, 
it is possible to construct an equivalent individual representation with the aid of a specific version of 
Radon–Nikodym Theorem for preference relations.

It is only with [4] that Armstrong and Richter provided a class of examples of coalitional representations 
of economies that cannot be derived from individual models.

4.2. A qualitative measurement of the power of coalitions

In the study of large economies we often make considerations on the economic weight of coalitions intended 
as the capacity of a group of agents to influence trades. The problem of understanding how the actors in 
the economy and their economic weight should be represented, is a classical and significant issue. This is 
especially true dealing with competitive economies, where the notion of economic negligibility of individual 
traders plays a crucial role.

Let us consider the exchange economy E as defined in Section 4.1. Loosely speaking, we expect that 
coalitions with “better” initial endowment will more likely play a significant role in the economic activity 
and therefore have a larger economic weight. Following this intuition, we should measure how powerful a 
coalition F ∈ Σ is in terms of what it will be able to attain if she decides to deviate from the rest of economy 
and act independently. In other words, we need to focus on the set ω(Σ ∩F ) = {ω(G) : Σ � G ⊆ F} which 
is the collection of all bundles initially owned by F and its sub-coalitions. In the light of this, the smaller 
the set ω(Σ ∩ F ) is, the “weaker” we expect F to be.

With the observations above we focus on the uniform structure induced on Σ by the correspondence 
F �→ ω(Σ ∩ F ) and say that F ∈ Σ is U -small if ω(Σ ∩ F ) ⊆ U , where U is a 0-neighborhood of E. All this 
brings us to the following definition:

Definition 4.4. We call distribution of the economic weight the ω-topology τ(ω) in Σ and denote it by the 
letter u.
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Moving from Definition 4.4, we shall refer to the space of coalitions in the economy E as the topological 
Boolean algebra (Σ, u). Finally, we can define allocations all the assignments that are consistent with the 
topological structure of the space of coalitions.

Definition 4.5. An allocation is a u-continuous assignment α : (Σ, u) → E+.

We will denote by M the set of all allocations and observe that it is a closed linear subspace of A. An 
allocation α will be feasible if α(Ω) = ω(Ω).

A possible alternative way of defining the economic weight of coalitions, more closely related to the 
commodity-price duality, is to measure the economic potential of each coalition under all possible price-
systems that can emerge. Formally, one could associate to every p ∈ E∗

+ the positive measure

νp : F �→ sup{〈p, ω(G)〉 : G ∈ Σ ∩ F}

which assign to every coalition F ∈ Σ the maximum possible income she can attain at price p if she deviates 
from the rest of the economy. With this idea we are brought to say that the economic power of a coalition 
F ∈ Σ should be “small” whenever νp(F ) is small for some p ∈ E∗

+. Quite surprisingly, this approach can 
be shown to be equivalent with the one showed above thanks to the following proposition:

Proposition 4.6 (Corollary 7.3 in [39]). For any net of coalitions Fi, i ∈ I, and F0 ∈ Σ it is equivalent to 
say that:

1. the net Fi converges to F0 in (Σ, u),
2. for all p ∈ E∗

+ the net νp(Fi) converges to νp(F0).

In other words, the topology induced on Σ by the collection νp, p ∈ E∗
+, coincides with τ(ω) and hence 

with the distribution of economic weight as defined in Definition 4.4, showing that our notion of economic 
weight can be derived directly from the commodity-price duality.

Remark 4.7. A common solution adopted in most of the literature on coalitional economies is to include in 
the description of the model a numerical estimation of the economic weight by assuming the existence of a 
control measure λ : Σ → [0, +∞[ for ω. This way ω(Σ ∩ F ) “gets smaller with λ(F )” in the sense that for 
every 0-neighborhood U of E there is a ε > 0 such that λ(F ) < ε ⇒ ω(Σ ∩ F ) ⊆ U and we can think of 
λ(F ) as a numerical expression of the economic weight of F ∈ Σ.

Despite its intuitiveness, this approach as it forces to limit the analysis only to controlled assignments, a 
limitation which does not seem to have any economic justification. By moving the attention from the measure 
λ to the uniform structure it induces on Σ, we move from a quantitative to a qualitative measurement of the 
economic weight. We will see next that this weakening does not affect important features we are interested 
in.

Remark 4.8. When the space of commodities E is equipped with a norm ‖ · ‖, it is common to call diameter
the function F �→ |F |ω := sup{‖ω(G)‖ : Σ � G ⊆ F}, F ∈ Σ (see for example [21] or [22,17] for the case 
in which the dimension of E is infinite). Since every p ∈ E∗

+ defines on E the semi-norm x �→ |〈p, x〉|, we 
could see the function νp as a special case of a diameter function.

It is also worth stressing that, when E is normed, the diameter function | · |ω provides a sort of numerical 
description of the economic weight in the sense described in Remark 4.7.
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4.3. A condition for competitive markets

When the commodity space E has a finite dimension, Aumann’s notion of perfect competitiveness of the 
market is stated in terms of non-atomicity of the initial endowment and, consequently, of all allocations (see 
[5]). We follow his idea to extend this notion to the case of infinite dimensional spaces by requiring that ω
satisfies the following conditions.

Assumption 4.9. sat(ω) is infinite and there is a family F ⊂ E∗ separating the points of E such that 
|F| < sat(ω).

Once again we stress that in the finite dimensional settings Assumption 4.9 is equivalent to the condition 
of non-atomicity of allocations and therefore to Aumann’s notion of perfect competitive market. Also, in 
line with Aumann, as a direct consequence of Theorem 3.9 we have that, under Assumption 4.9, every closed 
allocation has convex and weakly compact range. It is in view of this that throughout we will also assume 
the following:

Assumption 4.10. ω : R → E+ is a closed measure.

Assumptions 4.9, 4.10 give us important results on convexity of preferences. Precisely, if we fix a coalition 
F ∈ Σ and an allocation α ∈ M we can represent the set of bundles preferred to α(F ) by means of the set 
{β(F ) : β ∈ M, β �F α} which we claim to be convex.

Proposition 4.11. Let α ∈ M and F ∈ Σ \ N (ω). Then the set Pα(F ) := {β(F ) : β ∈ M, β �F α} is 
convex.

Proof. Let β1, β2 ∈ M be such that βi �F α for i = 1, 2 and chose t ∈ (0, 1). Our goal is to find an 
allocation γ ∈ M such that γ �F α and γ(F ) = tβ1(F ) + (1 − t)β2(F ).

Let us define the measure η : Σ → E2 that assigns (β1(G ∩ F ), β2(G ∩ F )) to every coalition G ∈ Σ. By 
construction, η is a u-continuous measure that satisfies the assumptions of Theorem 3.13 and, as such, it 
has a convex range. This means that we can take a F ′ ⊆ F such that:

(β1(F ′), β2(F ′)) = η(F ′) = tη(F ) = (tβ1(F ), tβ2(F )).

Call γ the allocation that assigns β1(G ∩F ′) +β2(G \F ′) to every G ∈ Σ. This way γ|F ′ = β1|F ′ and γ|F ′ c =
β2|F ′ c and so, by the ideal and selfish assumptions on preferences, we can write γ �F α. Furthermore, 
γ(F ) = β1(F ′) + β2(F ) − β2(F ′) = tβ1(F ) + (1 − t)β2(F ), proving that γ is the needed allocation. �
4.4. On the veto power of coalitions

We now move to the problem of determining under which condition on its economic weight a coalition is 
capable of improving upon a given allocation.

Precisely, we say that an allocation α is dominated by an allocation β if there is a coalition F ∈ Σ \N (ω)
such that β(F ) = ω(F ) and β �F α. In this case, we also say that F blocks α via β and call F a blocking 
coalition for α. Feasible allocations which are not dominated are called core allocations.

In general, the larger the economy, the harder is to check whether a given distribution of resources is 
a core allocation or not. Here, we will study how we can narrow the area in which we have to look for 
blocking coalitions from the whole Σ to significantly smaller subsets. We start by extending a theorem due 
to Schmeidler ([32]), who proved that in perfectly competitive markets, any non-competitive allocation can 
be blocked by arbitrarily small coalitions. In our framework, this result can be formalized as follows.
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Theorem 4.12. Let α be an allocation that can be blocked by a coalition F via a given β ∈ M. Then for 
every 0-neighborhood U of (Σ, u) there is a G ⊂ F in U that blocks α via β.

Proof. Let U be a 0-neighborhood in (Σ, u). As a consequence of Proposition 4.6 there is a finite number 
of u-continuous measures λi : Σ → [0, 1], i ≤ n, and an ε > 0 such that G ∈ U whenever λi(G) ≤ ελ(Ω) for 
all i ≤ n.

Define the vector measure η : Σ → E ×E × Rn by setting:

η(G) := (ω(G) − β(G), λi(G), . . . , λn(G))

for all G ∈ Σ. The measure η is u-continuous and takes values in a space that is separated by a family 
of functionals F ⊂ D with |F| < sat(Σ, u). But then, by Theorem 3.13, η(Σ ∩ F ) is convex and as such 
there must be a G ⊂ F such that εη(F ) = η(G). This means that ω(G) − β(G) = 0 and that G ∈ U (since 
λi(G) ≤ ελ(F ) ≤ ελi(Ω) for all i ≤ n). Moreover, since G ⊂ F , by the ideal assumption on preferences, 
β �F α implies that β �G α proving that G blocks α via β as claimed. �

In the spirit of the work of Schmeidler, Vind describes in ([38]) sufficient conditions for an allocation out-
side the core to be blocked by arbitrarily big coalitions. However, despite being symmetrical to the previous 
situation, the problem introduced by Vind requires us to make additional assumptions on preferences.

Assumption 4.13. Let α ∈ M and v ∈ E+ a non zero commodity bundle. Then for every F ∈ Σ there is an 
allocation β ∈ M such that β �F α and β(F ) = α(F ) + v.

Lemma 4.14. Let α, β ∈ M and F ∈ Σ be such that β �F α. Then there is a γ ∈ M such that γ �F α and 
v := β(F ) − γ(F ) ≥ 0, v �= 0.

Proof. Call C the set {(η, ζ) ∈ M2 : η �F ζ} and observe that, since β �F α, it cannot be α �F β and 
hence (α, β) /∈ C. For the assumption of continuity of preferences, C must be a closed set and as such it 
must have an open complement in M. All this implies that there is a t ∈ (0, 1) such that (α, tβ) does not 
belong to C neither and, consequently, such that tβ �F ′ α for some non-null coalition F ′ ⊂ F . In particular, 
it must be then β(F ′) ≥ 0, β(F ′) �= 0.

Call G the complementary of F ′ and set γ = β|G + tβ|F ′ . Then γ �F α by the assumption of selfishness 
on preferences, and v := β(F ) − γ(F ) = (1 − t)β(F ′) ≥ 0 and v �= 0 as claimed. �
Theorem 4.15. Let α ∈ M be a feasible non-core allocation. Under Assumption 4.13, for every 
0-neighborhood U in (Σ, u) there is a coalition D that blocks α and such that Dc ∈ U .

Proof. Let U be a 0-neighborhood in (Σ, u) and suppose that A ∈ Σ is a non-null coalition that can block 
α via a certain β ∈ M, i.e. β(A) = ω(A) and β �A α. By Proposition 4.6, there exists an ε > 0 and a 
finite number of u-continuous measures λi : Σ → [0, 1], i ≤ n, such that F ∈ U whenever F ∈ Σ is such that 
λ(F ) ≤ 1 − ε for all i ≤ n.

We can define the measure η : Σ → E × E × Rn that associates to F ∈ Σ the vector:

η(F ) := (ω(F ), α(F ), λ1(F ), . . . , λn(F ))

and observe that it satisfies the assumptions of Theorem 3.13. Therefore, we can take a B ⊆ A such that 
η(B) = εη(A) and a C ⊆ Bc such that η(C) = εη(Bc) so that for every i ≤ n λi(C ∪B) = λi(C) + λi(B) =
ε(λi(Bc) +λi(A)) ≥ ελi(Ω). Since Dc ∈ U , it is enough to prove that D := B∪C can block the allocation α.
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Let us focus on the coalition B. Since B ⊂ A, by the ideal assumption on preferences β �B α. This also 
means, by Lemma 4.14, that there is a γ ∈ M such that γ �B α and β(B) − γ(B) > 0. Now, since the set 
ω(B) + Pα(B) is convex, the vector εα(B) + (1 − ε)γ(B) still belongs to ω(A) + Pα(B) thus there must be 
an allocation ζ1 ∈ M such that ζ1 �B α and ζ1(B) = εα(B) + (1 − ε)γ(B).

We now move our attention to C. The vector (1 − ε)(β(B) − γ(B)) is strictly greater than 0, thus by 
the Assumption 4.13 there is a ζ2 ∈ M such that ζ2(C) = α(C) + (1 − ε)(β(B) − γ(B)) and ζ2 �C α. Let 
us define ζ ∈ M as the sum ζ1|B + ζ2|C so that, by the property of selfishness of preferences, ζ �D α. We 
claim that D, which we defined as B ∪ C, blocks α via ζ. To see this, observe that:

ζ(D) =ζ1(B) + ζ2(C) =

= [εα(B) + (1 − ε)γ(B)] + [α(C) + (1 − ε)(β(B) − γ(B))] =

= εα(B) + α(C) + (1 − ε)β(B) =

= εα(B) + εα(Bc) + β(B) − εβ(B) =

= ε(α(Ω) − β(B)) + β(B) =

= ε(ω(Ω) − ω(B)) + ω(B) =

= ε(ω(Bc)) + ω(B) =

= ω(C) + ω(B) = ω(D)

(1)

as claimed. �
The importance of these results can be informally explained as follows: taken any feasible allocation α

and 0-neighborhood U in (Σ, u), by Theorem 4.12 if no coalitions in U can block an allocation α then 
no coalition in Σ will and α is therefore a core allocation. On the other hand, by Theorem 4.15, under 
the additional Assumption 4.13 α is a core allocation if it cannot be blocked by any F ∈ U c. This holds 
regardless how small or big we take U with respect to Σ.

Remark 4.16. It is thanks to the Assumptions 4.9, 4.10 on the economic weight of coalitions that we could 
prove Theorems 4.12, 4.15 using a classical approach similar to what is done in the finite dimensional cases. 
Without such a restriction on u, some additional assumptions on the commodity space are needed: in [22], for 
example, the commodity space is taken as the sequence space 
∞ while in [17] E is required to be a Banach 
lattice whose positive cone has an interior point. Another approach, used in [8], consists in restricting the 
attention to allocations with the equal treatment property. Last, in [9] the authors impose the existence of 
a cone of arbitrage which allows them extend their analysis to economies with atoms.

Remark 4.17. As mentioned in Remark 4.8, when E is a Banach space endowed with a norm ‖ · ‖ it is 
common to call diameter the function F �→ sup{‖ω(G)‖ : G ∈ Σ ∩F}, F ∈ Σ. What we have is that for all 
ε > 0 the set of coalitions with diameter smaller than ε forms a 0-neighborhood in (Σ, τ(ω)) showing that 
our definition of distribution of economic power is very closely related to the idea of diameter. In view of 
this, Theorem 4.12 can be viewed as an infinite dimensional interpretation of Grodal’s Theorem ([21]).
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