
Gabriele Santin and Bernard Haasdonk
9 Kernel methods for surrogate modeling

Abstract: This chapter deals with kernel methods as a special class of techniques for
surrogate modeling. Kernel methods have proven to be efficient in machine learn-
ing, pattern recognition and signal analysis due to their flexibility, excellent experi-
mental performance and elegant functional analytic background. These data-based
techniques provide so called kernel-expansions, i. e., linear combinations of kernel
functions which are generated from given input–output point samples that may be
arbitrarily scattered. In particular, these techniques are meshless, do not require or
depend on a grid, hence are less prone to the curse of dimensionality, even for high-
dimensional problems.

In contrast to projection-based model reduction, we do not necessarily assume a
high-dimensional model, but a general function that models input–output behavior
within some simulation context. This could be somemicro-model in amultiscale sim-
ulation, some submodel in a coupled system, some initialization function for solvers,
coefficient function in Partial Differential Equations (PDEs), etc.

First, kernel surrogates can be useful if the input–output function is expensive
to evaluate, e. g. as a result of a finite element simulation. Here, acceleration can be
obtained by sparse kernel expansions. Second, if a function is available only via mea-
surements or a few function evaluation samples, kernel approximation techniques
can provide function surrogates that allow for global evaluation.

We present some important kernel approximation techniques, which are kernel
interpolation, greedy kernel approximation and support vector regression. Pseudo-
code is provided for ease of reproducibility. In order to illustrate the main features,
commonalities and differences, we compare these techniques on a real-world appli-
cation. The experiments clearly indicate the enormous acceleration potential.

Keywords: regularizedkernel interpolation, support vector regression, surrogatemod-
eling, greedy approximation, reproducing kernel Hilbert spaces

MSC 2010: 65D05, 65D15, 46C05, 68T05

Acknowledgement: The authors acknowledge the support of the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2075. The authors
would like to thank Florian Rieg for the careful proofreading of this manuscript.

Gabriele Santin, Bernard Haasdonk, Institute of Applied Analysis and Numerical Simulation,
University of Stuttgart, Stuttgart, Germany

Open Access. © 2021 Gabriele Santin and Bernard Haasdonk, published by De Gruyter. This work is
licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

https://doi.org/10.1515/9783110498967-009

312 | G.Santin and B. Haasdonk

9.1 Introduction

This chapter deals with kernel methods as tools to construct surrogate models of ar-
bitrary functions, given a finite set of arbitrary samples.

These methods generate approximants based solely on input–output pairs of
the unknown function, without geometrical constraints on the sample locations. In
particular, the surrogates do not necessarily depend on the knowledge of an high-
dimensional model but only on its observed input–output behavior at the sample
sites, and they can be applied on arbitrarily scattered points in high dimension.

These features are particularly useful when these methods are applied within
some simulation context. For example, kernel surrogates can be useful if the input–
output function is expensive to evaluate, e. g. is a result of a finite element simulation.
Here, acceleration can be obtained by sparse kernel expansions. Moreover, if a func-
tion is available only via measurements or a few function evaluation samples, kernel
approximation techniques can provide function surrogates that allow global evalua-
tion.

Kernel methods are used with much success in Model Order Reduction, and far
beyond the scope of this chapter. For example, they have been used in the modeling
of geometry transformations and mesh coupling [3, 12, 13], and in mesh repair meth-
ods [33], or in the approximation of stability factors and error indicators [14, 32, 34],
where only a few samples of the exact indicators are sufficient to construct an effi-
cient surrogate to be used in the online phase. Moreover, kernel methods have been
combined with projection-based MORmethods, e. g. to obtain simulation-based clas-
sification [60], or to derive multi-fidelity Monte Carlo approximations [40]. Kernel sur-
rogates have been employed in optimal control problems [51, 59], in the coupling of
multi-scale simulations in biomechanics [25, 69], in real time prediction for parame-
ter identification and state estimation in biomechanical systems [29], in gas transport
problems [22], in the reconstruction of potential energy surfaces [30], in the forecast-
ing of time steppingmethods [6], in the reduction of nonlinear dynamical systems [67],
in uncertainty quantification [28], and for nonlinear balanced truncation of dynami-
cal systems [5].

In further generality, there exist many kernel-based algorithms and application
fields that we do not address here. Mainly, we address the solution of PDEs, in which
several approaches have emerged in the last years, and which particularly allow one
to solve problems with unstructured grids on general geometries, including high di-
mensionalmanifolds (see e. g. [11, 17]). Moreover, several other techniques are studied
withinMachine Learning, such as classification, density estimation, novelty detection
or feature extraction (see e. g. [53, 54]).

Furthermore, we remark that these methods are members of the larger class of
machine learning and approximation techniques, which are generally suitable to con-
struct models based on samples to make prediction on new inputs. These models are

9 Kernel methods for surrogate modeling | 313

usually referred to as surrogateswhen they are thenused as replacements of themodel
that generated the data, as they are able to provide an accurate and faster response.
Someexamples of these techniques are classical approximationmethods suchaspoly-
nomial interpolation, which are used in this context especially in combination with
sparse grids to deal with high-dimensional problems (see [19]), and (deep) neural net-
work models. The latter in particular have seen a huge increase in analysis and ap-
plication in the recent years. For a recent treatment of deep learning, we refer e. g. to
[21].

Despite these very diverse applications and methodologies, kernel methods can
be analyzed to some extent in the common framework of Reproducing Kernel Hilbert
spaces and, although the focus of this chapter will be on the construction of sparse
surrogate models, parts of the following discussion can be the starting point for the
analysis of other techniques.

In general terms, kernel methods can be viewed as nonlinear versions of linear
algorithms. As an example, assume to have some set Xn := {xk}nk=1 ⊂ ℝ

d of data points
and target data values Yn := {yk}nk=1 ⊂ ℝ. We can construct a surrogate s : ℝd → ℝ
that predicts new data via linear regression, i. e., findw ∈ ℝd s. t. s(x) := ⟨w, x⟩, where
⟨⋅, ⋅⟩ is the scalar product in ℝd. A good surrogate model s will give predictions such
that |s(xk) − yk | is small. If we can write w ∈ ℝd as w = ∑nj=1 αjxj for a set of coefficients
(αi)ni=1 ∈ ℝ

n, then s can be rewritten as

s(x) :=
n
∑
j=1

αj⟨xj, x⟩.

Note that this formulation includes also regressionwith anoffset (or bias)b ̸= 0,which
can be written in this form by an extended representation as

s(x) := ⟨w, x⟩ + b =: ⟨w̄, x̄⟩,

where x̄ := (x, 1)T ∈ ℝd+1 and w̄ := (w, b)T ∈ ℝd+1.
Using now the Gramian matrix A ∈ ℝn×n with entries Aij := ⟨xi, xj⟩ and rows ATi ∈

ℝn, we look for the surrogate s which minimizes

n
∑
i=1
(s(xi) − yi)

2
2 =

n
∑
i=1
(ATi α − yi)

2
2 = ‖Aα − y‖

2
2.

Additionally, a regularization term can be added to keep the norm of α small, e. g. in
terms of the value αTAα. Thus, the surrogate can be characterized as the solution of
the optimization problem

min
α∈ℝn
‖Aα − y‖22 + λα

TAα,

i. e., α = (A + λI)−1y if λ > 0.

314 | G.Santin and B. Haasdonk

Inmany cases this (regularized) linear regression is not sufficient to obtain a good
surrogate. A possible idea is to try to combine this linear, simple method with a non-
linear function whichmaps the data to a higher dimensional space, where the hope is
that the image of the data can be processed linearly. For this we consider a so-called
feature map Φ : ℝd → H, where H is a Hilbert space, and apply the same algorithm
to the transformed data Φ(Xn) := {Φ(xi)}ni=1 with the same values Yn. Since the algo-
rithm depends on Xn only via the Gramian A, it is sufficient to replace it with the new
Gramian Aij := ⟨Φ(xi),Φ(xj)⟩H to obtain a nonlinear algorithm.

We will see that ⟨Φ(x),Φ(y)⟩H defines in fact a positive definite kernel, and if any
numerical procedure can be written in terms of inner products of the inputs, it can
be transformed in the same way into a new nonlinear algorithm simply by replacing
the inner products with kernel evaluations (the so-called kernel trick).Wewill discuss
the details of this procedure in the next sections in the case of interpolation and Sup-
port Vector Regression, but this immediately gives a glance of the ample spectrum of
algorithms in the class of kernel methods.

This chapter is organized as follows. Section 9.2 covers the basic notions on ker-
nels and kernel-based spaces which are necessary for the development and under-
standing of the algorithms. The next Section 9.3 presents the general ideas and tools to
construct kernel surrogates as characterized by the Representer Theorem, and these
ideas are specialized to the case of kernel interpolation in Section 9.4 and Support
Vector Regression in Section 9.5. In both cases, we provide the theoretical founda-
tions as well as the algorithmic description of the methods, with particular attention
to techniques to enforce sparsity in the model. These surrogates can be used to per-
form various analyses of the full model, and we give some examples in Section 9.6.
Section 9.7 presents a general strategy to choose the various parameters defining the
model, whose tuning can be critical for a successful application of the algorithms. Fi-
nally, we discuss in Section 9.8 the numerical results of themethods on a real applica-
tion dataset, comparing training time (offline), prediction time (online), and accuracy.

9.2 Background on kernels
We start by introducing some general facts of positive definite kernels. Further de-
tails on the general analytical theory of reproducing kernels can be found e. g. in the
recentmonograph [45], while the books [15, 65] and [53, 55] contain a treatment of ker-
nel theory from the point of view of pattern analysis and scattered data interpolation,
respectively.

9.2.1 Positive definite kernels
Givenanonempty setΩ,which canbe a subset ofℝd,d ∈ ℕ, but also a set of structured
objects such as strings or graphs, a real- and scalar-valued kernel K on Ω is a bivariate

9 Kernel methods for surrogate modeling | 315

symmetric function K : Ω × Ω → ℝ, i. e., K(x, y) = K(y, x) for all x, y ∈ Ω. For our
purposes, we are interested in (strictly) positive definite kernels, defined as follows.

Definition 9.1 (Positive definite kernels). Let Ω be a nonempty set. A kernel K on Ω is
positive definite (PD) onΩ if for alln ∈ ℕ and for any set of npairwise distinct elements
Xn := {xi}ni=1 ⊂ Ω, the kernel matrix (or Gramian matrix) A := AK,Xn ∈ ℝ

n×n defined as
Aij := K(xi, xj), 1 ≤ i, j ≤ n, is positive semidefinite, i. e., for all vectors α := (αi)ni=1 ∈ ℝ

n

we have

αTAα =
n
∑
i,j=1

αiαjK(xi, xj) ≥ 0. (9.1)

The kernel is strictly positive definite (SPD) if the kernel matrix is positive definite,
i. e., (9.1) holds with strict inequality when α ̸= 0.

The further class of conditionally (strictly) positive definite kernels is also of in-
terest in certain contexts. We refer to [65, Chapter 8] for their extensive treatment, and
we just mention that they are defined as above, except that the condition (9.1) has to
be satisfied only for the subset of coefficients α which match a certain orthogonality
condition. When this condition is defined with respect to a space of polynomials of
degree m ∈ ℕ, the resulting kernels are used e. g. to guarantee a certain polynomial
exactness of the given approximation scheme, and they are often employed in certain
methods for the solution of PDEs.

9.2.2 Examples and construction of kernels

Despite the abstract definition, there are several ways to construct functions K : Ω ×
Ω → ℝ which are (strictly) positive definite kernels, and usually the proper choice of
the kernel is a crucial step in the successful application of the method. We list here a
general strategy to construct kernels, and some notable examples.

An often used, constructive approach to designing a new kernel is via feature
maps as follows.

Proposition 9.1 (Kernels via feature maps). Let Ω be a nonempty set. A feature mapΦ
is any function Φ : Ω → H, where (H , ⟨⋅, ⋅⟩H) is any Hilbert space (the feature space).
The function

K(x, y) := ⟨Φ(x),Φ(y)⟩H x, y ∈ Ω,

is a PD kernel on Ω.

Proof. K is a PD kernel since it is symmetric and positive definite, because the inner
product is bilinear, symmetric and positive definite.

316 | G.Santin and B. Haasdonk

Inmany cases,H is eitherℝm with very largem or even an infinite dimensional Hilbert
space. The computation of the possibly expensive m- or infinite-dimensional inner
product can be avoided if a closed form for K can be obtained. This implies a signifi-
cant reduction of the computational time required to evaluate the kernel and thus to
execute any kind of algorithm.

We see now some examples.

Example 9.1 (Expansion kernels). The construction comprises finite dimensional lin-
ear combinations, i. e., for a set of functions {vj}mj=1 : Ω → ℝ, the function K(x, y) :=
∑mk=1 vk(x)vk(y) is a positive definite kernel, having a feature map

Φ(x) := (v1(x), v2(x), . . . , vm(x))
T
∈ H := ℝm. (9.2)

This idea can be extended to an infinite number of functions provided {vj(x)}∞j=1 ∈
H := ℓ2(ℕ) uniformly in Ω, and the resulting kernels are called Hilbert–Schmidt or
expansion kernels, which can be proven to be even SPD under additional conditions
(see [49]). As an example in d = 1, we mention the Brownian Bridge kernel K(x, y) :=
max(x, y) − xy, defined with a feature map vj(x) := √2(jπ)−1 sin(jπx) for j ∈ ℕ, which
is SPD on Ω := (0, 1). We remark that the kernel can be extended to (0, 1)d with d > 1
using a tensor product of one-dimensional kernels.

This featuremap representation proves also that dim(H) =: m <∞means that the
kernel is not SPD in general: e. g., if Xn contains n pairwise distinct points andm < n,
then the vectors {Φ(xi)}ni=1 cannot be linearly independent, and thus the kernel matrix
is singular.

Example 9.2 (Kernels for structured data). Feature maps are also employed to con-
struct positive definite kernels on sets Ω of structured data, such as sets of strings,
graphs, or any other object. For example, the convolution kernels introduced in
[20, 26] consider a finite set of features v1(x), . . . , vm(x) ∈ ℝ of an object x ∈ Ω, and
define a feature map exactly as in (9.2).

Example 9.3 (Polynomial kernels). For a ≥ 0, p ∈ ℕ, x, y ∈ ℝd, the polynomial kernel

K(x, y) := (⟨x, y⟩ + a)p = (
d
∑
i=1

x(i)y(i) + a)
p

, x := (x(1), . . . , x(d))T , (9.3)

is PD on any Ω ⊂ ℝd. It is a d-variate polynomial of degree p, which contains the
monomial terms of degrees j := (j(1), . . . , j(d)) ∈ J, for a certain set J ⊂ ℕd0. If m := |J|, a
feature space is ℝm with feature map

Φ(x) := (√a1x
j1 , . . . ,√amx

jm)T ,

for some positive numbers {aj}mj=1 and monomials xjm := ∏di=1(x
(i))j
(i)
m .

9 Kernel methods for surrogate modeling | 317

Observe that using the closed form (9.3) of the kernel instead of the feature map is
very convenient, sinceweworkwith d-dimensional instead ofm-dimensional vectors,
where possiblym := |J| = (d+pd) = dim(ℙp(ℝ

d)) ≫ d.

Example 9.4 (RBF kernels). For Ω ⊂ ℝd in many applications the most used kernels
are translational invariant kernels, i. e., there exists a function ϕ : ℝd → ℝ with

K(x, y) := ϕ(x − y), x, y ∈ Ω,

and in particular radial kernels, i. e., there exists a univariate function ϕ : ℝ≥0 → ℝ
with

K(x, y) := ϕ(‖x − y‖), x, y ∈ Ω.

A radial kernel, or Radial Basis Function (RBF), is usually defined up to a shape pa-
rameter γ > 0 that controls the scale of the kernel via K(x, y) := ϕ(γ‖x − y‖).

The main example of such kernels is the Gaussian K(x, y) := e−γ
2‖x−y‖2 , which is

in fact strictly positive definite. An explicit feature map has been computed in [56]: If
Ω ⊂ ℝd is nonempty, a feature map is the function Φγ : Ω→ L2(ℝd) defined by

Φγ(x) :=
(2γ)

d
2

π
d
4

exp(−2γ2‖x − ⋅‖2), x ∈ Ω.

In this case it is even more evident how working with the closed form of K is much
more efficient than working with a feature map and computing L2-inner products.

RBF kernels offer a significant easiness of implementation in arbitrary space di-
mension d. The evaluation of the kernel K(⋅, x), x ∈ ℝd, on a vector of n points can
indeed by realized by first computing a distance vector D ∈ ℝn, Di := ‖x − xi‖, and
then applying the univariate function ϕ on D. A discussion and comparison of differ-
ent algorithms (inMatlab) to efficiently compute a distancematrix can be found in [15,
Chapter 4], andmost scientific computing languages comprise a built-in implementa-
tion (such as pdist21 in Matlab and distance_matrix2 in Scipy).

Translational invariant and RBF kernels can be often analyzed in terms of their
Fourier transforms, which provide proofs of their strict positive definiteness via the
Bochner theorem (see e. g. [65, Chapter 6]), and connections to certain Sobolev spaces,
as we will briefly see in Section 9.2.3.

Among various RBF kernels, there are also compactly supported kernels, i. e.,
K(x, y) = 0 if ‖x − y‖ > 1/γ, which produce sparse kernel matrices if γ is large enough.
Themost used ones are theWendlandkernels introduced in [63],which are even radial
polynomial within their support.

1 https://www.mathworks.com/help/stats/pdist2.html
2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance_matrix.html

318 | G.Santin and B. Haasdonk

There are, in addition, various operations to combine positive definite kernels and
obtain new ones. For example, sums and products of positive definite kernels and
multiplication by a positive constant a > 0 produce again positive definite kernels.
Moreover, if K′ is a positive definite kernel and K′′ is symmetric with K′ ≼ K′′ (i. e.,
K := K′′ − K′ is PD) then also K′′ is positive definite. Furthermore, if Ω = Ω′ × Ω′′

and K′, K′′ are PD kernels on Ω′, Ω′′, then K(x, y) := K′(x′, y′)K′′(x′′, y′′) and K(x, y) :=
K′(x′, y′) + K′′(x′′, y′′) are also PD kernels on Ω, i. e., kernels can be defined to respect
tensor product structures of the input.

Further details and examples can be found in [45, Chapters 1–2].

9.2.3 Kernels and Hilbert spaces

Most of the analysis of kernel-based methods is possible through the connection with
certain Hilbert spaces. We first give the following definition.

Definition 9.2 (Reproducing Kernel Hilbert Space). Let Ω be a nonempty set, ℋ an
Hilbert space of functions f : Ω → ℝ with inner product ⟨⋅, ⋅⟩ℋ. Then ℋ is called a
Reproducing Kernel Hilbert Space (RKHS) onΩ if there exists a functionK : Ω×Ω→ ℝ
(the reproducing kernel) such that
1. K(⋅, x) ∈ ℋ for all x ∈ Ω,
2. ⟨f ,K(⋅, x)⟩ℋ = f (x) for all x ∈ Ω, f ∈ ℋ (reproducing property).

The reproducing property is equivalent to state that, for x ∈ Ω, the x-translate
K(⋅, x) of the kernel is the Riesz representer of the evaluation functional δx : ℋ → ℝ,
δx(f) := f (x) for f ∈ ℋ, which is hence a continuous functional inℋ. Also the converse
holds, and the following result gives an abstract criterion to check if a Hilbert space is
a RKHS.

Theorem 9.1. An Hilbert space of functions Ω → ℝ is a RKHS if and only if the point
evaluation functionals are continuous inℋ for all x ∈ Ω, i. e., δx ∈ ℋ′, the dual space of
ℋ. Moreover, the reproducing kernel K ofℋ is strictly positive definite if and only if the
functionals {δx : x ∈ Ω} are linearly independent inℋ′.

Proof. The first part is clear from the reproducing property, while strict positive defi-
niteness can be checked by verifying that the quadratic form in Definition 9.1 cannot
be zero for α ̸= 0 if {δx : x ∈ Ω} are linearly independent.

We see two concrete examples.

Example 9.5 (Finite dimensional spaces). Any finite dimensional Hilbert space ℋ of
functions on a nonempty set Ω is a RKHS. Ifm := dim(ℋ) and {vj}mj=1 is an orthonormal

9 Kernel methods for surrogate modeling | 319

basis, then a reproducing kernel is given by

K(x, y) :=
m
∑
j=1

vj(x)vj(y), x, y ∈ Ω.

Indeed, the two properties of Definition 9.2 can be easily verified by direct computa-
tion.

Example 9.6 (The Sobolev space H1
0(0, 1)). The Sobolev space H1

0(0, 1) with inner
product ⟨f , g⟩H1

0
:= ∫

1
0 f
′(y)g′(y) dy is a RKHS with the Brownian Bridge kernel

K(x, y) := min(x, y) − xy, x, y ∈ (0, 1)

as reproducing kernel (see e. g. [8]). Indeed, K(⋅, x) ∈ H1
0(0, 1), and the reproducing

property (2) follows by explicitly computing the inner product.

The following result proves that reproducing kernels are in fact positive definite
kernels in the sense of Definition 9.1. Moreover, the first two properties are useful to
deal with the various type of approximants of Section 9.4 and Section 9.5, which will
be exactly of this form.

Proposition 9.2. Letℋ be aRKHSonΩwith reproducing kernel K. Let n, n′ ∈ ℕ, α ∈ ℝn,
α′ ∈ ℝn

′
, Xn,X′n′ ⊂ Ω, and define the functions

f (x) :=
n
∑
i=1

αiK(x, xi), g(x) :=
n′
∑
j=1

α′jK(x, x
′
j), x ∈ Ω.

Then we have the following:
1. f , g ∈ ℋ,
2. ⟨f , g⟩ℋ = ∑

n
i=1∑

n′
j=1 αiα

′
jK(xi, x

′
j).

3. K is the unique reproducing kernel ofℋ and it is a positive definite kernel.

Proof. The first two properties follow from Definition 9.2, and in particular from ℋ
being a linear space and from the bilinearity of ⟨⋅, ⋅⟩ℋ.

For Property (3), the fact that K is symmetric and positive definite, hence a PD
kernel, follows from Property (1) of Definition 9.2, and from the symmetry and positive
definiteness of the inner product. Moreover, the reproducing property implies that, if
K,K′ are two reproducing kernels ofℋ, then for all x, y ∈ Ω we have

K(x, y) = ⟨K(⋅, y),K′(⋅, x)⟩ℋ = K
′(x, y).

It is common in applications to follow instead the opposite path, i. e., to start with
a given PD kernel, and try to see if an appropriate RKHS exists. This is in fact always
the case, as proven by the following fundamental theorem from [2].

320 | G.Santin and B. Haasdonk

Theorem 9.2 (RKHS from kernels – Moore–Aronszajn theorem). Let Ω be a nonempty
set and K : Ω × Ω → ℝ a positive definite kernel. Then there exists a unique RKHS
ℋ := ℋK(Ω) with reproducing kernel K.

Proof. The theorem was first proven in [2], to which we refer for a detailed proof. The
idea is to deduce that, by Property (1) of Proposition 3, a candidate RKHSℋ of K needs
to contain the linear space

ℋ0 := span {K(⋅, x) : x ∈ Ω}

of finite linear combinations of kernel translates.Moreover, fromProperty (2) of Propo-
sition 9.2, the inner product on thisℋ0 needs to satisfy

⟨f , g⟩ℋ =
n
∑
i=1

n′
∑
j=1

αiα
′
jK(xi, x

′
j). (9.4)

With this observation inmind, the idea of the construction ofℋ is to start byℋ0, prove
that (9.4) defines indeed an inner product onℋ0, and that the completion ofℋ0 w. r. t.
this inner product is a RKHS havingK as reproducing kernel. Uniqueness then follows
from Property (3) of the same proposition.

As it is common in the approximation literature,wewill sometimes refer to this unique
ℋ as the native space of the kernel K on Ω.

Remark 9.1 (Kernel feature map). Among other consequences, this construction al-
lows one to prove that any PD kernel is generated by at least one feature map. Indeed,
the function Φ : Ω → ℋ, Φ(x) := K(⋅, x), is clearly a feature map for K with feature
spaceℋ, since the reproducing property implies that

⟨Φ(x),Φ(y)⟩H = ⟨K(⋅, x),K(⋅, y)⟩ℋ = K(x, y) for all x, y ∈ Ω.

Remark 9.2. For certain translational invariant kernels it is possible to prove that the
associated native space is norm equivalent to a Sobolev spaces of the appropriate
smoothness, which is related to the kernels’ smoothness (see [65, Chapter 10]). This is
particularly interesting since the approximation properties of the different algorithms,
including certain optimality that we will see in the next sections, are in fact optimal
in these Sobolev spaces (with an equivalent norm).

The various operations on positive definite kernels mentioned in Section 9.2.2
have an analogous effect on the corresponding native spaces. For example, the scal-
ing by a positive number a > 0 does not change the native space, but scales the
inner product correspondingly, and, if K′ ≼ K′′ are positive definite kernels, then
ℋK′ (Ω) ⊂ ℋK′′ (Ω). We remark that the latter property has been used for example in [71]
to prove inclusion relations for the native spaces of RBF kernels with different shape
parameters.

9 Kernel methods for surrogate modeling | 321

9.2.4 Kernels for vector-valued functions

So far we only dealt with scalar-valued kernels, which are suitable to treat scalar-
valued functions. Nevertheless, it is clear that the interest in model reduction is typ-
ically also on vector-valued or multi-output functions, which thus require a general-
ization of the theory presented so far. This has been done in [35], and it is based on the
following definition of matrix-valued kernels.

Definition 9.3 (Matrix-valued PD kernels). Let Ω be a nonempty set and q ∈ ℕ. A func-
tionK : Ω×Ω→ ℝq×q is amatrix-valued kernel if it is symmetric, i. e.,K(x, y) = K(y, x)T

for all x, y ∈ Ω. It is a PD (resp., SPD) matrix-valued kernel if the kernel matrix A ∈
ℝnq×nq is positive semidefinite (resp., positive definite) for all n ∈ ℕ and for all sets
Xn ⊂ Ω of pairwise distinct elements.

Thismore general class of kernels is also associated to a uniquely defined native space
of vector-valued functions, where the notion of RKHS is replaced by the following.

Definition 9.4 (RKHS for matrix-valued kernels). Let Ω be a nonempty set, q ∈ ℕ, ℋ
an Hilbert space of functions f : Ω→ ℝq with inner product ⟨⋅, ⋅⟩ℋ. Thenℋ is called a
vector-valued RKHS onΩ if there exists a functionK : Ω×Ω→ ℝq×q (thematrix-valued
reproducing kernel) such that
1. K(⋅, x)v ∈ ℋ for all x ∈ Ω, v ∈ ℝq,
2. ⟨f ,K(⋅, x)v⟩ℋ = f (x)Tv for all x ∈ Ω, v ∈ ℝq, f ∈ ℋ (directional reproducing prop-

erty).

A particularly simple version of this construction can be realized by considering
separablematrix-valuedkernels (see e. g. [1]), i. e., kernels that are defined asK(x, y) :=
K̃(x, y)B, where K̃ is a standard scalar-valued PD kernel, and B ∈ ℝq×q is a positive
semidefinite matrix. In the special case Q = I (the q × q identity matrix), in [70] it is
shown that the native space of K is the tensor product of q copies of the native space
of K̃, i. e.,

ℋK(Ω) = {f : Ω→ ℝ
q : fj ∈ ℋK̃(Ω), 1 ≤ j ≤ q}

with

⟨f , g⟩ℋK
=

q
∑
j=1
⟨fj, gj⟩ℋK̃

.

This simplification will give convenient advantages when implementing some of the
methods discussed in Section 9.4.

322 | G.Santin and B. Haasdonk

9.3 Data based surrogates
Wecannow introduce in general terms the two surrogatemodeling techniques thatwe
will discuss, namely (regularized) kernel interpolation and Support Vector Regression
(SVR).

For both of them, the idea is to represent the expensive map to be reduced as a
function f : Ω → ℝq that maps an input x ∈ Ω to an output y ∈ ℝq. Here f is assumed
to be only continuous, and the set Ω can be arbitrary as long as a positive definite
kernel K can be defined on it. Moreover, the function does not need to be known in
any particular way except than through its evaluations on a finite set Xn := {xk}nk=1 ⊂ Ω
of pairwise distinct data points, resulting in data values Yn := {yk := f (xk)}nk=1 ⊂ ℝ

q.
The goal is to construct a function s ∈ ℋ such that s(x) is a good approximation of

f (x) for all x ∈ Ω (and not only for x ∈ Xn), while being significantly faster to evaluate.
The process of computing s from the data (Xn,Yn) is often referred to as training of the
surrogate s, and the set (Xn,Yn) is thus called training dataset.

The computation of the particular surrogate is realized as the solution of an infi-
nite dimensional optimization problem. In general terms, we define a loss function

L : ℋ × Ωn × (ℝq)
n
→ ℝ≥0 ∪ {+∞},

which takes as input a candidate surrogate g ∈ ℋ and the values Xn ∈ Ωn, Yn ∈ (ℝq)n,
and returns a measure of the data-accuracy of g. Then the surrogate s is defined as a
minimizer, if it exists, of the cost function

J(g) := L(g,Xn,Yn) + λ‖g‖
2
ℋ,

where the second part of J is a regularization term that penalizes solutions with large
norm. The tradeoff between the data-accuracy termand the regularization term is con-
trolled by the regularization parameter λ ≥ 0.

For the sake of presentation, we restrict in the remaining of this section to the case
of scalar-valued functions, i. e., q = 1. The general case follows by usingmatrix valued
kernels as introduced in Section 9.2.4, and the corresponding definition of orthogonal
projections.

The following fundamental Representer Theorem characterizes exactly some so-
lutions of this problem, and it proves that the surrogate will be a function

s ∈ V(Xn) := span {K(⋅, xi), xi ∈ Xn}

i. e., a finite linear combination of kernel translates on the training points. A first ver-
sionof this resultwasproven in [27],whilewe refer to [52] for amore general statement.

Theorem 9.3 (Representer Theorem). Let Ω be a nonempty set, K a PD kernel on Ω,
λ > 0 a regularization parameter, and let (Xn,Yn) be a training set. Assume that
L(s,Xn,Yn) depends on s only via the values s(xi), xi ∈ Xn.

9 Kernel methods for surrogate modeling | 323

Then, if the optimization problem

argmin
g∈ℋ

J(g) := L(g,Xn,Yn) + λ‖g‖
2
ℋ (9.5)

has a solution, it has in particular a solution of the form

s(x) :=
n
∑
j=1

αjK(x, xj), x ∈ Ω, (9.6)

for suitable coefficients α ∈ ℝn.

Proof. We prove that for every g ∈ ℋ there exists s ∈ V(Xn) such that J(s) ≤ J(g). To
see this, we decompose g ∈ ℋ as

g = s + s⊥, s ∈ V(Xn), s
⊥ ∈ V(Xn)

⊥.

In particular, since K(⋅, xi) ∈ V(Xn), we have by the reproducing property of the kernel

s⊥(xi) = ⟨s
⊥,K(⋅, xi)⟩ℋ = 0, 1 ≤ i ≤ n,

thus g(xi) = s(xi) + s⊥(xi) = s(xi) for 1 ≤ i ≤ n, and it follows that L(g,Xn,Yn) =
L(s,Xn,Yn). Moreover, again by orthogonal projection we have ‖g‖2ℋ = ‖s‖

2
ℋ + ‖s

⊥‖2ℋ.
Since λ ≥ 0, we obtain

J(s) = L(s,Xn,Yn) + λ‖s‖
2
ℋ = L(g,Xn,Yn) + λ‖s‖

2
ℋ

= L(g,Xn,Yn) + λ‖g‖
2
ℋ − λ‖s

⊥‖2ℋ = J(g) − λ‖s
⊥‖2ℋ ≤ J(g).

Thus, if g ∈ ℋ is a solution then s ∈ V(Xn) is also a solution.

The existence of a solution will be guaranteed by choosing a convex cost function
J, i. e., since the regularization term is always convex, by choosing a convex loss func-
tion. Then the theorem states that solutions of the infinite dimensional optimization
problem can be computed by solving a finite dimensional convex one.

This is a great result, but observe that the evaluation of s(x), x ∈ Ω, requires the
evaluation of the n-terms linear combination (9.6), where n is the size of the dataset.
Assuming that the kernel can be evaluated in constant time, the complexity of this op-
eration is𝒪(n). Thus, to achieve the promised speedup in evaluating the surrogate in
place of the function f , wewill consider in the followingmethods that enforce sparsity
in s, i. e., which compute approximate solution where most of the coefficients αj are
zero. If the nonzero coefficients correspond to an index set IN := {i1, . . . , iN } ⊂ {1, . . . , n},
the complexity is reduced to𝒪(N).

Taking into account this sparsity anddenotingXN := {xi ∈ Xn : i ∈ IN } and α := (αi :
i ∈ IN), we can summarize in Algorithm 9.1 the online phase for any of the following
algorithms, consisting in the evaluation of s on a set of points Xte ⊂ Ω. Here and in the
following, we denote by s(X) := (s(x1), . . . , s(xm))T ∈ ℝm the vector of evaluations of s
on a set of points X := {xi}mi=1 ⊂ Ω.

324 | G.Santin and B. Haasdonk

Algorithm 9.1: Kernel surrogate – online phase.

1: Input: XN ∈ ΩN , α ∈ ℝN , kernel K (and kernel parameters), test points Xte :=
{xtei }

nte
i=1 ∈ Ω

nte

2: Compute the kernel matrix Ate ∈ ℝnte×N , (Ate)ij := K(xtei , xij).
3: Evaluate the surrogate s(Xte) = Ateα.
4: Output: evaluation of the surrogate s(Xte) ∈ ℝnte .

Remark 9.3 (Normalization of the cost function). It is sometimes convenient toweight
the loss term in the cost function (9.5) by a factor 1/n, which normalizes its value with
respect to the number of data.We do not use this convention here, andwe only remark
that this is equivalent to the use of a regularization parameter λ = nλ′ for a given
λ′ > 0.

9.4 Kernel interpolation
The first method that we discuss is (regularized) kernel interpolation. In this case, we
consider the square loss function

L(s,Xn,Yn) :=
n
∑
i=1
(s(xi) − yi)

2
,

whichmeasures the pointwise distance between the surrogate and the target data.We
have then the following special case of the Representer Theorem.We denote by y ∈ ℝn

the vector of output data, assuming again for now that q = 1.

Corollary 9.1 (Regularized interpolant). Let Ω be a nonempty set, K a PD kernel on Ω,
λ ≥ 0 a regularization parameter. For any training set (Xn,Yn) there exists an approxi-
mant of the form

s(x) =
n
∑
j=1

αjK(x, xj), x ∈ Ω, (9.7)

where the vector of coefficients α ∈ ℝn is a solution of the linear system

(A + λI)α = y, (9.8)

where A ∈ ℝn×n, Aij := K(xi, xj), is the kernel matrix on Xn. Moreover, if K is SPD this is
the unique solution of the minimization problem (9.5).

Proof. The loss L is clearly convex, so there exists a solution of the optimization prob-
lem, and by Theorem 9.3 we know that we can restrict to solutions in V(Xn).

9 Kernel methods for surrogate modeling | 325

We then consider functions s := ∑nj=1 αjK(⋅, xj) for some unknown α ∈ ℝn. Comput-
ing the inner product as in Proposition 9.2, we obtain

s(xi) =
n
∑
j=1

αjK(xi, xj) = (Aα)i, ‖s‖
2
ℋ =

n
∑
i,j=1

αiαjK(xi, xj) = α
TAα.

The functional J restricted to V(Xn) can be parametrized by α ∈ ℝn, and thus it can be
rewritten as ̃J : ℝn → ℝ with

̃J(α) = ‖Aα − y‖22 + λα
TAα = (Aα − y)T (Aα − y) + λαTAα

= αTATAα − 2αTATy + yTy + λαTAα,

which is convex in α sinceA is positive semidefinite. SinceA is symmetric, its gradient
is

∇α ̃J(α) = 2A
TAα − 2ATy + 2λAα = 2A(Aα − y + λα),

i. e.,∇α ̃J(α) = 0 if and only ifA(A+λI)α = Ay, which is satisfiedby α such that (A+λI)α =
y. If K is SPD then both A and A + λI are invertible, so this is the only solution.

The extension to vector-valued functions, i. e. q > 1, is straightforward using the
separable matrix-valued kernels with B = I of Section 9.2.4. Indeed, in this case the
data values are vectors yi := f (xi) ∈ ℝq, and thus in the interpolant (9.7) also the coef-
ficients are vectors αj ∈ ℝq. The linear system (9.8) has the same matrix, but instead
α, y ∈ ℝn×q are defined as

α := (α1, . . . , αn)
T , y := (y1, . . . , yn)

T . (9.9)

We remark that in the following the values xi, yi, s(x), and αk have always to be under-
stood as row vectors when q > 1. This notation is very convenient when representing
the coefficients as the solution of a linear system. Furthermore, the representation of
the dataset samples (x, y) is quite natural when dealing with tabular data, where each
column represents a feature and each row a sample vector.

For K SPD and pairwise distinct sample locations Xn we can also set λ := 0 and
obtain pure interpolation, i. e., the solution satisfies L(s,Xn,Yn) = 0, or

s(xi) = yi, 1 ≤ i ≤ n.

Observe that this means that with this method we can exactly interpolate arbitrary
continuous functions on arbitrary pairwise distinct scattered data in any dimension,
as opposite tomany other techniqueswhich require complicated conditions on the in-
terpolation points or a grid structure. Moreover, this approximation process has sev-
eral optimality properties inℋ, which remind one of similar properties of spline inter-
polation.

326 | G.Santin and B. Haasdonk

Proposition 9.3 (Optimality of kernel interpolation). Let K be SPD, f ∈ ℋ, and λ = 0.
Then s is the orthogonal projection of f in V(Xn), and in particular

‖f − s‖ℋ = min
g∈V(Xn)
‖f − g‖ℋ.

Moreover, if S := {g ∈ ℋ : g(xi) = f (xi), 1 ≤ i ≤ n}, then

‖s‖ℋ = min
g∈S
‖g‖ℋ,

i. e., s is the minimal norm interpolant of f on Xn.

Proof. The proof is analogous to the proof of the Representer Theorem, using a de-
composition f = g + g⊥, and proving that s = g.

We will see in Section 9.7 a general technique to tune λ using the data, which
should return λ = 0 (or very small) when this is the best option. Nevertheless, also for
an SPD kernel there are at least two reasons to still consider regularized interpolation.
First, the data can be affected by noise, and thus an exact pointwise recovery does not
makemuch sense. Second, a positive parameter λ > 0 improves the condition number
of the linear system, and thus the stability of the solution. Indeed, the 2-condition
number of A + λI is

κ(λ) := λmax(A + λI)
λmin(A + λI)

=
λmax(A) + λ
λmin(A) + λ

,

which is a strictly decreasing function of λ, with κ(0) = κ(A) and limλ→∞ κ(λ) = 1.
Moreover (see [66]) this increased stability can be achieved by still controlling the
pointwise accuracy. Namely, if f ∈ ℋ, we have

yi − s(xi)
2 ≤ √λ‖f ‖ℋ 1 ≤ i ≤ n.

We can then summarize the offline phase for regularized kernel interpolation in
Algorithm 9.2.

Algorithm 9.2: Regularized Kernel interpolation – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ (ℝq)n, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0.

2: Compute the kernel matrix A ∈ ℝn×n, Aij := K(xi, xj).
3: Solve the linear system (A + λI)α = y.
4: Output: coefficients α ∈ ℝn×q.

9 Kernel methods for surrogate modeling | 327

Remark 9.4 (Flat limit). The matrix A can be seriously ill-conditioned for certain ker-
nels, and this constitutes aproblemat least in the case of pure interpolation. It canalso
be proven that kernels which guarantee a faster error convergence result in a worse
conditioned matrix [48].

For RBF kernels, this happens especially for γ → 0 (the so called flat limit), and it
is usually not a good idea to directly solve the linear system. In the last years there has
been very active research to compute s via different formulations, which rely on dif-
ferent representations of the kernel. We mention here mainly the RBF-QR algorithm3

[18, 31] and the Hilbert–Schmidt SVD4 [16] . Both methods are limited so far to only
some kernels, but they manage to achieve a great accuracy, which is usually impossi-
ble to obtain with the direct solution of the linear system.

Remark 9.5 (Error estimation). For SPD translational invariant kernels there is a very
detailed error analysis of the interpolation process (λ = 0), for which we refer to [65,
Chapter 11]. We only mention that these error bounds assume that f ∈ ℋ, and are of
the form

‖f − s‖L∞(Ω) ≤ Chpn‖f ‖ℋ,
where C > 0 is a constant independent of f , and hn is the fill distance of Xn in Ω, i. e.,

hn := hXn ,Ω := supx∈Ω
min
xj∈Xn
‖x − xj‖,

which is the analogue of the mesh width for scattered data. Moreover, the order of
convergence p > 0 is dependent on the smoothness of the kernel. In particular, these
error bounds can be proven to be optimal when the native space of K is a Sobolev
space.

Moreover, these results have been recently extended to the case of regularized
interpolation (λ > 0) in [43, 66].

9.4.1 Kernel greedy approximation

The surrogate constructed via Corollary 9.1 involves a linear combination of n terms,
wheren is the size of thedataset. In general, there is no reason to assume that the result
has any sparsity, i. e., in general all the αj will be nonzero, and it is thus necessary to
introduce some technique to enforce this sparsity.

A very effective way to achieve this result is via greedy algorithms. The idea is to
select a small subset XN ⊂ Xn, N ≪ n, given by indices IN ⊂ {1, . . . , n}, and to solve the

3 http://www.it.uu.se/research/scientific_computing/software/rbf_qr
4 http://math.iit.edu/~mccomic/gaussqr/

328 | G.Santin and B. Haasdonk

corresponding restricted problem with the dataset (XN ,YN) to compute a surrogate

sN (x) := ∑
k∈IN

αkK(x, xk), (9.10)

where the coefficient vectors are computed based on (9.8), and are in general different
from the ones of the full surrogate. If we manage to select IN in a proper way, we will
obtain sN (x) ≈ f (x) for all x ∈ Ω, while the evaluation of sN (x) is now only of order
𝒪(N).

An optimal selection of XN is a combinatorial problem and thus is very expensive
and in practice computationally intractable. The idea of greedy algorithms is instead
to perform this selection incrementally, i. e., adding at each iteration only the most
promising new point, based on some error indicator.

The general structure of the algorithm is described in Algorithm 9.3. For the mo-
ment, we consider a generic selection rule η : Xn ×ℕ × Ωn × (ℝq)n → ℝ≥0 that selects
points based on the value η(x,N ,Xn,Yn). This is a compact notation to denote that the
selection rule assigns a score to a point x ∈ Ω, and it is computed using various quan-
tities that depend on the dataset (Xn,Yn) and on the iteration number N, including in
particular the surrogate computed at the previous iteration. The algorithm is termi-
nated by means of a given tolerance τ > 0.

Algorithm 9.3: Kernel greedy approximation – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ (ℝq)n, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, selection rule η, tolerance τ.

2: Set N := 0, X0 := 0, V(X0) := {0}, s0 := 0.
3: repeat
4: Set N := N + 1
5: Select xN := argmaxx∈Xn\XN−1 η(x,N ,Xn,Yn).
6: Define XN := XN−1 ∪ {xN } and V(XN) := span {K(⋅, xi), xi ∈ XN }
7: Compute the surrogate sN with dataset (XN ,YN) with (9.8).
8: until η(xN ,N ,Xn,Yn) ≤ τ
9: Output: surrogate sN (i. e. coefficients α ∈ ℝN×q).

Remark 9.6. In the case that the maximizer of η the line 5 of Algorithm 9.3 is not
unique, only one of the multiple points is selected and included in XN .

In line 7 of the algorithm, we need to compute the surrogate sN with dataset
(XN ,YN). This step can be highly simplified by reusing sN−1 as much as possible,
thus improving the efficiency of the algorithm. As a side effect, with this incremental
procedure it is easy to update the surrogate if the accuracy has to be improved.

9 Kernel methods for surrogate modeling | 329

This can be achieved using the Newton basis, which is defined in analogy to the
Newton basis for polynomial interpolation. It has been introduced in [37, 39] for K
SPD, and extended to the case of K PD and λ > 0 in [47], and we refer to these papers
for the proof of the following result.

Proposition 9.4 (Newton basis). Let Ω be non empty, λ ≥ 0, K be PD on Ω or SPD when
λ = 0. Let Xn ⊂ Ω be pairwise distinct, and let IN ⊂ {1, . . . , n}. Let moreover Kλ(x, y) :=
K(x, y) + λδxy for all x, y ∈ Ω, and denote its RKHS asℋλ.

The Newton basis {vj}Nj=1 is defined as the Gram–Schmidt orthonormalization of
{Kλ(⋅, xi)}i∈IN inℋ, i. e.,

v1(x) :=
Kλ(x, xi1)
‖Kλ(⋅, xi1)‖ℋλ

=
Kλ(x, xi1)

√Kλ(xi1 , xi1)
,

ṽk(x) := Kλ(x, xik) −
k−1
∑
j=1

vj(xik)vj(x),

vk(x) :=
ṽk(x)
‖ṽk‖ℋλ

=
ṽk(x)

√ṽk(xik)
, 1 < k ≤ N .

Moreover, for all 1 ≤ k ≤ N, we have

vk(x) =
N
∑
j=1

βjkKλ(x, xij),

and, if B ∈ ℝN×N , Bjk := βjk , and V ∈ ℝN×N , Vjk := vk(xj), then B,V are triangular,
B = V−T , and

AN + λI = VV
T

is the Cholesky decomposition of the regularized kernel matrix AN + λI ∈ ℝN×N , Ajk :=
K(xij , xik), with pivoting given by IN .

Observe that this basis is nested, i. e., we can incrementally add a new element
without recomputing the previous ones. Even more, with this basis the surrogate can
be computed as follows.

Proposition 9.5 (Incremental regularized interpolation). Let Ω be non empty, λ ≥ 0, K
be PD on Ω or SPD when λ = 0. Let (XN ,YN) be the subset of (Xn,Yn) corresponding to
indices IN , for all N ≤ n.

Let ̃s0 := 0, and, for N ≥ 1, compute the following incremental function

̃sN (x) =
N
∑
k=1

ckvk(x) = cNvN (x) + sN−1(x), cN :=
yiN − ̃sN (xiN)
vN (xiN)

. (9.11)

330 | G.Santin and B. Haasdonk

Then, for all N, the regularized interpolant can be computed as

sN (x) =
N
∑
j=1

αjK(x, xij) where α := V−Tc.

Remark 9.7. In the case λ = 0 and K SPD, the function ̃sN coincides with the inter-
polant sN . We refer to [39, 47] for the details.

We are now left to define the selection rules, represented by η, to select the new
point at each iteration.

For this, we first need to define the power function, which gives an upper bound
on the interpolation error, and it can be defined using the Newton basis as

PN (x)
2 := Kλ(x, x) −

N
∑
j=1

vj(x)
2. (9.12)

Its relevance is due to the fact that it provides an upper bound on the pointwise (reg-
ularized) interpolation error, i. e., if x ∉ Xn, and K is PD, or SPD when λ = 0, we have
for all f ∈ ℋ that

f (x) − sN (x)
 ≤ Pn(x)‖f ‖ℋ. (9.13)

This function is well known and has been studied in the case of pure interpolation
(see e. g. [65, Chapter 11]), for which the upper bound holds for all x ∈ Ω, and it can be
easily extended to the case of regularized interpolation (see [47]). In both cases, it can
be proven that Pn(x) = 0 if and only if x ∈ Xn, and its maximum is strictly decreasing
with N .

Remark 9.8. This interpolation technique is strictly related to the krigingmethod and
to Gaussian Process Regression (see e. g. [38, 42]). In this case the kernel represents
the covariance kernel of the prior distribution, and the power function is the Kriging
variance, or variance of the posterior distribution (see [50]).

We can then define the following selection rules. We assume to have a dataset
(Xn,Yn), and to have already selected N points corresponding to indices IN−1. We use
the notation [1, n] := {1, . . . , n}, and we have
– P-greedy: iN := argmaxi∈[1,n]\IN−1 PN−1(xi);
– f -greedy: iN := argmaxi∈[1,n]\IN−1 |yi − sN−1(xi)|;
– f /P-greedy: iN := argmaxi∈[1,n]\IN−1 |yi−sN−1(xi)|PN−1(xi) .

Observe that all the selections are well defined, since PN−1(xi) ̸= 0 for all i ∉ IN−1 if
XN are pairwise distinct, and they can be efficiently implemented by using the update
rules (9.11) for sN and (9.12) for PN . Moreover, they aremotivated by different ideas: The
P-greedy selection tries tominimize the Power function, thus providing a uniform up-
per bound on the error for any function f ∈ ℋ via (9.13); the f - and f /P-greedy (which

9 Kernel methods for surrogate modeling | 331

reads “f -over-P-greedy”), on the other hand, use also the output data, and produce
points which are suitable to approximate a single function and thus are expected to
result in a better approximation. In the case of f -greedy this is done by including in the
set of points the locationwhere the current largest error is achieved, thus reducing the
maximum error. The f /P-greedy selection, instead, reduces the error in the ℋ-norm,
and indeed it can be proven to be locally optimal, i. e., it guarantees the maximal pos-
sible reduction of the error, in theℋ-norm, at each iteration.

We can nowdescribe the full computation of the greedy regularized interpolant in
Algorithm 9.4. It realizes the computation of the sparse surrogate sN by selecting the
points XN via the index set IN , and computing only the nonzero coefficients α. More-
over, using the nested structure of the Newton basis and the incremental computation
of Proposition 9.5, the algorithm needs only to compute the columns of the full kernel
matrix corresponding to the index set IN , and thus there is no need to compute nor
store the full n × n matrix, i. e., the implementation is matrix-free. In addition, again
using Proposition 9.5 most of the operations are done in-place, i. e., some vectors are
used to store and update the values of the Power Function and of y. In the algorithm,
we use a Matlab-like notation, i. e., A(IN , :) denotes the submatrix of A consisting of
rows IN and of all the columns.Moreover, the notation v2 denotes the pointwise squar-
ing of the entries of the vector v.

Algorithm 9.4: Kernel greedy approximation – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ (ℝq)n, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, selection rule η, tolerance τ.

2: Set N := 0, I0 := 0, V := [⋅] ∈ ℝn×0, p := diag(Kλ(Xn,Xn)) ∈ ℝn

3: repeat
4: Set N = N + 1
5: Select iN := argmaxi∈[1,n]\IN−1 η(xi,N ,Xn,Yn).
6: Generate column v := Kλ(Xn, xiN)
7: Project v := v − VV(iN , :)T

8: Normalize v = v/√v(iN)
9: Compute cN := y(iN)/v(iN)
10: Update the power function p := p − v2

11: Update the residual y := y − cNv
12: Update IN := IN−1 ∪ {iN }
13: Add the column V = [V , vN]
14: Update the inverse CT = V(IN , :)−1

15: Add the coefficient c = [cT , cN]T

16: until η(xN ,N ,Xn,Yn) ≤ τ
17: Set α = Cc
18: Output: α ∈ ℝN×q, IN .

332 | G.Santin and B. Haasdonk

The set of points XN defined by IN , and the coefficients α, can then be used in the
online phase of Algorithm 9.1.

Remark 9.9 (Vector-valued functions and implementation details). Algorithm9.4 and
the overall procedure are well defined for arbitrary q ≥ 1. Indeed, using the separable
matrix-valued kernel of Section 9.2.4, the Newton basis only depends on the scalar-
valued kernel K, while the computation of the coefficients is valid by considering that
now c, α are matrices instead of vectors. In particular, the computation of cN (line 14)
and the update of y (line 11) has to be done via column-wise multiplications.

Moreover, observe that in line 12we employ a standard technique to update the in-
verse of a lower triangular matrix, i. e., given VN ∈ ℝN×N lower triangular with inverse
V−1N , we define

VN+1 = [
VN 0
vT w

]

for v ∈ ℝN , w ∈ ℝ, and compute V−1N+1 by a simple row-update as

V−1N+1 = [
V−1N 0
−vTV−1N /w 1/w

] .

The present version of the algorithm for vector-valued functions has been intro-
duced in [68] and named Vectorial Kernel Orthogonal Greedy Algorithm (VKOGA). We
keep the same abbreviation also for the regularized version, which has been studied
in [47].

Remark 9.10 (Convergence rates). When the greedy algorithm is run by selecting
points over Ω instead of XN , there are also convergence rates for the resulting approx-
imation processes. For pure interpolation (i. e., K SPD, λ = 0) convergence of f -greedy
has been proven in [36], of P-greedy in [46], and of f /P-greedy in [68], while in [47]
the convergence rate of P-greedy has been extended to regularized interpolation. All
the results make additional assumptions on the kernels, for which we refer to the
cited literature. Nevertheless, we remark that the convergence rates for interpolation
with P-greedy are quasi-optimal for translational invariant kernels, while the results
for the other algorithms guarantee only a possibly significantly slower convergence
rate. These results are believed to be significantly sub-optimal, since extensive ex-
periments indicate that f - and f /P-greedy cases behave much better. This seems to
suggest that there is space for a large improvement in the theoretical understanding
of the methods.

Remark 9.11 (Other techniques). There are other techniques that can be applied to re-
duce the complexity of the evaluation of the surrogate s, which do not use greedy
algorithms but instead different approaches. First, there is a domain decomposition
technique, known as Partition of Unity Method, which partitions Ω into subdomains,

9 Kernel methods for surrogate modeling | 333

solves the (regularized) interpolation problem restricted to each patch, and then com-
bines the results by a weighted sum of the local interpolants to obtain a global ap-
proximant. This method has the advantage that this offline phase can be completely
parallelized. Moreover, when evaluating the surrogate only the few local interpolant
having a support containing the test points have to be evaluated, thus requiring the
evaluation of a few, small kernel expansions, thus providing a significant speedup.
The efficiency of this technique relies on an efficient search procedure to determine
the local patches including the given points, which is the only limitation in the appli-
cation to high dimensional problems. Both theoretical results and efficient implemen-
tations are available [7, 64].

Moreover, other sparsity-inducing techniques have been proposed, namely, the
use of an ℓ1-regularization term [10], and the method of the Least Absolute Shrinkage
and Selection Operator (LASSO) [61].

9.5 Support vector regression
The second method that we present is Support Vector Regression (SVR) [53], which is
based on different premises, but it still fits in the general framework of Section 9.3. In
this case, we consider the ε-insensitive loss function

L(s,Xn,Yn) :=
n
∑
i=1

Lε(s(xi), yi), Lε(s(xi), yi) := max(0, |s(xi) − yi| − ε),

which is designed to linearly penalize functions s which have values outside of an
ε-tube around the data, while no distinction is made between function values that are
inside this tube.

In this setting it is common to use the regularization parameter to scale the cost by
a factor 1/λ, and not the regularization term by a factor λ. The two choices are clearly
equivalent, but we adopt here this different normalization to facilitate the comparison
with the existing literature, and because this offers additional insights in the structure
of the surrogate.

Since the problem is not quadratic (and not smooth), we first derive an equiva-
lent formulation of the optimization problem (9.5). Assuming again that the output is
scalar, i. e., q = 1, the idea is to introduce non-negative slack variables ξ+, ξ− ∈ ℝn

which represent upper bounds on L via

ξ+i ≥ max(0, s(xi) − yi − ε), 1 ≤ i ≤ n, (9.14)
ξ−i ≥ max(0, yi − s(xi) − ε), 1 ≤ i ≤ n,

and to minimize them in place of the original loss. With these new variables we can
rewrite the optimization problem in the following equivalent way.

334 | G.Santin and B. Haasdonk

Definition 9.5 (SVR – primal form). Let Ω be a nonempty set,K a PD kernel onΩ, λ > 0
a regularization parameter. For a training set (Xn,Yn) the SVR approximant (s, ξ+, ξ−) ∈
ℋ × ℝ2n is a solution of the quadratic optimization problem

min
s∈ℋ, ξ+ , ξ−∈ℝn 1λ1Tn (ξ+ + ξ−) + ‖s‖2ℋ (9.15)

s. t. s(xi) − yi − ε ≤ ξ
+
i , 1 ≤ i ≤ n

−s(xi) + yi − ε ≤ ξ
−
i , 1 ≤ i ≤ n

ξ+i , ξ
−
i ≥ 0, 1 ≤ i ≤ n,

where 1n := (1, . . . , 1)T ∈ ℝn.

For this rewriting of the optimization problem, we can now specialize the Repre-
senter Theorem as follows.

Corollary 9.2 (SVR – alternative primal form). Let Ω be a nonempty set, K a PD kernel
on Ω, λ > 0 a regularization parameter. For any training set (Xn,Yn) there exists an SVR
approximant of the form

s(x) =
n
∑
j=1

αjK(x, xj), x ∈ Ω, (9.16)

where (α, ξ+, ξ−) ∈ ℝ3n is a solution of the quadratic optimization problem

min
α,ξ+ ,ξ−∈ℝn 1λ1Tn (ξ+ + ξ−) + αTAα (9.17)

s. t. (Aα)i − yi − ε ≤ ξ
+
i , 1 ≤ i ≤ n

−(Aα)i + yi − ε ≤ ξ
−
i , 1 ≤ i ≤ n

ξ+i , ξ
−
i ≥ 0, 1 ≤ i ≤ n,

with 1n := (1, . . . , 1)T ∈ ℝn, and A ∈ ℝn×n, Aij := K(xi, xj), the kernel matrix on Xn.
Moreover, if K is SPD this is the unique solution of the minimization problem (9.5).

Proof. The result is an immediate consequence of Proposition 9.5, where we use the
form (9.16) for s and compute its squared norm via Proposition 9.2.

The slack variables (9.14) have a nice geometric interpretation. Indeed, the opti-
mization process clearly tries to reduce their value asmuch as possible, while respect-
ing the constraints. We state a more precise result in the following proposition, and
give a schematic illustration in Figure 9.1.

Proposition 9.6 (Slack variables). Let α, ξ+, ξ− ∈ ℝn be a solution of (9.17), and let s be
the corresponding surrogate (9.16). Then, for each index i ∈ {1, . . . , n}, the values ξ+i , ξ

−
i

represent the distance of s(xi) from the ε-tube around yi, and in particular

9 Kernel methods for surrogate modeling | 335

Figure 9.1: Illustration of the role of the slack variables in (9.17).

1. If s(xi) > yi + ε, then ξ+i > 0 and ξ
−
i = 0.

2. If s(xi) < yi − ε, then ξ+i = 0 and ξ
−
i > 0.

3. If yi − ε ≤ s(xi) ≤ yi + ε, then ξ+i = 0 and ξ
−
i = 0.

In particular, only one of ξ+i and ξ−i can be nonzero.

Instead of solving the primal problem of Corollary 9.2, it is more common to derive
and solve the following dual problem. Here again we denote by y ∈ ℝn the vector of
all scalar training target values.

Proposition 9.7 (SVR – dual form). Let Ω be a nonempty set, K a PD kernel on Ω, λ > 0
a regularization parameter. For any training set (Xn,Yn) there exists a solution (α+, α−) ∈
ℝ2n of the problem

min
α+ ,α−∈ℝn 14 (α− − α+)TA(α− − α+) + ε1Tn (α+ + α−) + yT(α+ − α−)

s. t. α+, α− ∈ [0, 1/λ]n, (9.18)

which is unique if K is SPD. Moreover, a solution of (9.17) is given by

s(x) :=
n
∑
j=1

α−j − α
+
j

2
K(x, xj), x ∈ Ω, (9.19)

with ξ+i := max(0, s(xi) − yi − ε), ξ−i := max(0, yi − s(xi) − ε).

Proof. We give a sketch of the proof, although a formal derivation requires more care,
and we refer to [53, Chapter 9] for the details. The idea is to first derive the Lagrangian
ℒ := ℒ(α, ξ+, ξ−; α+, α−, μ+, μ−) for the primal problem (9.17) using non-negative La-
grange multipliers α+, α−, μ+, μ− ∈ ℝn for the inequality constraints, and then derive
the dual problem by imposing the Karush–Kuhn–Tucker (KKT) conditions (see e. g.
Chapter 6 in [53]).

The Lagrangian is defined as

ℒ =
1
λ
1Tn (ξ
+ + ξ−) + αTAα + (μ+)T(−ξ+) + (μ−)T(−ξ−) (9.20)

+ (Aα − y − ε1n − ξ
+)

Tα+ + (y − Aα − ε1n − ξ
−)

Tα−

336 | G.Santin and B. Haasdonk

= (α + α+ − α−)TAα + (1
λ
1n − α

+ − μ+)
T
ξ+ + (1

λ
1n − α

− − μ−)
T
ξ−

− ε1Tn (α
+ + α−) − yT(α+ − α−).

Using the symmetry of A, the partial derivatives of ℒ with respect to the primal vari-
ables can be computed as

∇αℒ = 2Aα + A(α
+ − α−), ∇ξ+ℒ = 1λ1n − α+ − μ+, ∇ξ−i ℒ = 1λ1n − α− − μ−, (9.21)

and setting these three equalities to zero we obtain equations for α, μ+, μ−, where in
particular α = 1

2 (α
− − α+) (which is the unique solution if A is invertible). Substituting

these values in the Lagrangian we get

ℒ = (α + α+ − α−)TAα − ε1Tn (α
+ + α−) − yT(α+ − α−)

= −
1
4
(α− − α+)TA(α− − α+) − ε1Tn (α

+ + α−) − yT(α+ − α−).

The remaining conditions in (9.18) stem from the requirements that the Lagrangemul-
tipliers are non-negative, and in particular 0 ≤ μ+i = 1/λ − α+i , i. e., α

+
i ≤ 1/λ, and

similarly for α−i .

This dual formulation is particularly convenient to explain that the SVR surro-
gate has a built-in sparsity, i. e., the optimization process provides a solution where
possibly many of the entries of α = 1

2 (α
− − α+) are zero. This behavior is in strong con-

trast with the case of interpolation of Section 9.4 where we needed to adopt special
techniques to enforce this property. The points xi ∈ Xn with αi ̸= 0 are called support
vectors, which gives the name to the method.

In particular, as for the slack variables there is a clean geometric description of
this sparsity pattern, this gives additional insights into the solution. To see this we
remark that, in addition to the stationarity KKT conditions (9.21), an optimal solution
satisfies also the complementarity KKT conditions

α+i (s(xi) − yi − ε − ξ
+
i) = 0, α−i (yi − s(xi) − ε − ξ

−
i) = 0, (9.22)

ξ+i (1/λ − α
+
i) = 0, ξ−i (1/λ − α

−
i) = 0. (9.23)

We then have the following:
1. Equation (9.22) states that α+i ̸= 0 only if s(xi)− yi − ε− ξ

+
i = 0, and similarly for α−i .

Since ξ+i ≥ 0, this happens only when s(xi) − yi ≥ ε, i. e., only for points (xi, s(xi))
which are outside or on the boundary of the ε-tube.

2. In particular, if α+i ̸= 0 it follows that s(xi) − yi ≥ ε, and thus yi − s(xi) − ε − ξ
−
i ̸= 0,

and then necessarily α−i = 0. Thus, at most one of α+i and α
−
i can be nonzero.

3. Equation (9.23) implies that α+i , α
−
i = 1/λ whenever ξ

+
i , ξ
−
i is nonzero, i. e., when-

ever s(xi) is strictly outside of the ε-tube. The corresponding xi are called bounded

9 Kernel methods for surrogate modeling | 337

support vectors, and the value of the corresponding coefficients is indeed kept
bounded by the value of the regularization parameter. Reducing λ, i. e., using less
regularization, allows solutions with coefficients of larger magnitude.

In summary, we can then expect that, if s is a good approximation of the data, it will
be also a sparse approximation.

We summarize the offline phase for SVR in Algorithm 9.5. We remark that in this
case the extension to vector-valued functions is not as straightforward as for kernel in-
terpolation, and it is thus common to train a separate SVR for each output component.

Algorithm 9.5: SVR – offline phase.
1: Input: training set Xn ∈ Ωn, Yn ∈ ℝn, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, tube width ε > 0.

2: Compute the kernel matrix A ∈ ℝn×n, Aij := K(xi, xj).
3: Solve the quadratic problem (9.18).
4: Set IN := {i : α−i ̸= 0 or α

+
i ̸= 0}.

5: Set αi := (α−i − α
+
i)/2 for i ∈ IN .

6: Output: α ∈ ℝN , IN .

Remark 9.12 (General Support Vector Machines). SVR is indeed onemember of a vast
collection of algorithms related to Support Vector Machines (SVMs). Standard SVMs
solve classification problems, i. e., Yn ⊂ {0, 1}. The original algorithm has been intro-
duced as a linear algorithm (or, in the present understanding, as limited to the linear
kernel, i. e., the polynomial kernel with a = 0, p = 1), and it has later been extended
via the kernel trick to its general kernel version in [4]. The SVRalgorithmshave instead
been introduced in [53].

Moreover, the version presented here is usually called ε-SVR. There exists also an-
other non equivalent version called ν-SVR, which adds another term in the cost func-
tion multiplied by a factor ν ∈ [0, 1]. This plays the role of giving an upper bound on
the number of support vectors and on the fraction of training data which are outside
of the ε-tube (see Chapter 9 in [53]).

We also remark that it is sometimes common to include in any SVM-based algo-
rithm also an offset or bias term b ∈ ℝ, i. e., to obtain a surrogate s(x) = ∑nj=1 αjK(x, xj)+
b. This changes in an obvious way the primal problem (9.17), while the dual contains
also the constraint ∑ni=1(α

+
i + α
−
i) = 0. However, we stick here to this formulation and

refer to [57] for a discussion of statistical and numerical benefits of not using this offset
term, at least in the case of SPD kernels.

Remark 9.13 (Error estimation). Also for SVR there is a detailed error theory, usually
formulated in the framework of statistical learning theory (see [62]). Results are ob-

338 | G.Santin and B. Haasdonk

tained by assuming that the dataset (Xn,Yn) is drawn from a certain unknown prob-
ability distribution, and then quantifying the approximation power of the surrogate.
For a detailed treatment of this theory, we refer to [53, 55]. Moreover, recently also
deterministic error bounds for translational invariant kernels have been proven in
[43, 44].

9.5.1 Sequential minimal optimization

Although theoptimizationproblem (9.18) can inprinciple be solvedwith anyquadratic
optimization method, there exists a special algorithm, called Sequential Minimal Op-
timization (SMO) that is designed for SVMs and that performs possibly much better.

SMO is an iterativemethodwhich improves an initial feasible guess forα+, α− ∈ ℝn

until convergence, and the update is made such that the minimal possible number of
entries of α are affected. In this way, very large problems can be efficiently solved. The
original version of the algorithm has been introduced in [41] for SVM, and it has later
been adapted to more general methods such as SVR, which we use here to illustrate
the structure of its implementation.

The idea is to findat each iteration ℓ ∈ ℕ aminimal set of indices Iℓ ⊂ {1, . . . , n} and
optimize only the variables with indices in Iℓ. The procedure is then iterated until the
optimum is reached. If the SVR includes an offset term, as explained in the previous
section we have constraints

α+i , α
−
i ∈ [0, 1/λ], 1 ≤ i ≤ n, (9.24)

n
∑
i=1
(α+i + α

−
i) = 0.

Given a feasible solution (α+i , α
−
i)
(ℓ) at iteration ℓ ∈ ℕ, it is thus not possible to update

a single entry of α+i or α
−
i without violating the KKT conditions (since at most one be-

tween α+i and α
−
i need to be nonzero) or violating the second constraint. It is instead

possible to select two indices Iℓ := {i, j} and in this case we have variables α+i , α
−
i , α
+
j , α
−
j

and we can solve the restricted quadratic optimization problem under the constraints

α+i , α
−
i ∈ [0, 1/λ], i ∈ I

ℓ, ∑
i∈Iℓ(α
+
i + α
−
i) = R

ℓ := −∑
i∉Iℓ(α
+
i + α
−
i),

which can be solved analytically.
The crucial step is to select Iℓ, and this is done by finding a first index that does

not satisfy the KKT conditions and a second one with some heuristic. It can be proven
that, if at least one of the two violates the KKT conditions, then the objective is strictly
decreased and convergence is obtained. Moreover, the vectors α+ = α− = 0 ∈ ℝn

are always feasible and can thus be used as a first guess. In practice, the iteration is
stopped when a sufficiently small value of the cost function is reached.

9 Kernel methods for surrogate modeling | 339

In the case of SVRwithout offset discussed in the previous section the situation is
even simpler, since the second constraint in (9.24) is not present and it is thus possible
to update a single pair (α+i , α

−
i) at each iteration. Nevertheless, it has been proven in

[57] that using also in this case two indices improves significantly the speed of con-
vergence. Moreover, the same paper introduces several additional details to select the
pair, to optimize the restricted cost function, and to establish termination conditions.

A general version of SMO for SVR is summarized in Algorithm 9.6, where we as-
sume that the function η : {1, . . . , n}→ {1, . . . , n} implements the selection rule of Iℓ.

Algorithm 9.6: SMO.
1: Input: training set Xn ∈ Ωn, Yn ∈ ℝn, kernel K (and kernel parameters), regular-
ization parameter λ ≥ 0, tube width ε > 0, selection rule η, tolerance τ.

2: Set ℓ := 0 and (α+, α−)(0) := (0,0).
3: while (α+, α−)(ℓ) does not satisfy KKT conditions within tolerance τ. do
4: Set ℓ = ℓ + 1.
5: Set Iℓ := {i, j} := η({1, . . . , n}).
6: Set (α+k , α

−
k)
(ℓ) := (α+k , α

−
k)
(ℓ−1) for k ∉ Iℓ.

7: Solve the optimization problem restricted to Iℓ.
8: end while
9: Set IN := {i : α−i ̸= 0 or α

+
i ̸= 0}.

10: Set αi := (α−i − α
+
i)/2 for i ∈ IN .

11: Output: α ∈ ℝN , IN .

Remark 9.14 (Reference implementations). We remark that there exist commonly
used implementations of SVR (and other SVM-related algorithms), which are avail-
able in several programming languages and implement also some version of this
algorithm. We mention especially LIBSVM5 [9] and liquidSVM6 [58].

9.6 Model analysis using the surrogate
Apart from predicting new inputs with good accuracy and a significant speedup, the
surrogate model can be used to perform a variety of different tasks related to meta-
modeling, such as uncertainty quantification and state estimation. This can be done
in a non-intrusive way, meaning that the full model is employed as a black-box that
provides input–output pairs to train the surrogate, but is not required to be modified.

5 https://www.csie.ntu.edu.tw/~cjlin/libsvm/
6 https://github.com/liquidSVM/liquidSVM

340 | G.Santin and B. Haasdonk

In principle, any kind of analysis that requires multiple evaluations can be signif-
icantly accelerated by the use of a surrogate, including the ones that are not compu-
tationally feasible due to the high computational cost of the full model. An example
is uncertainty quantification, where the expected value of f can be approximated by
a Monte Carlo integration of s using a set Xm ⊂ Ω of integration points, i. e.,

∫
Ω

f (x) dx ≈ 1
m

m
∑
i=1

s(xi).

Once the surrogate is computed using a training set (Xn,Yn), this approximate integral
can be evaluated also form ≫ n with a possibly very small cost, since the evaluation
of s is significantly cheaper than the one of f .

Another example, which we describe in detail in the following, is the solution of
an inverse problem to estimate the input parameter which generated a given output,
i. e., from a given vector y ∈ ℝq we want to estimate x ∈ Ω such that f (x) = y. This can
be done by considering a state-estimation cost function C : Ω→ ℝ defined by

C(x) := 1
2‖y‖22
s(x) − y

2
2, (9.25)

and estimating x by the value x∗ defined as

x∗ := min
x∈Ω

C(x).

In principle, we could perform the same optimization also using f instead of s in (9.25),
but the surrogate allows a rapid evaluation of C. Moreover, if K is at least differen-
tiable, then also s is differentiable, and thus we can use gradient-based methods to
minimize C.

To detail this approach, we assume f : Ω → ℝq and to have a surrogate ob-
tained as in Section 9.4.1 with the separable matrix-valued kernel of Section 9.2.4, i. e.,
from (9.10) we have

sN (x) = ∑
k∈IN

αkK(x, xk).

As explained in (9.9), in the vector-valued case q > 1 we always assume that the output
sN (x) and the coefficients αk are row vectors, and in particular α ∈ ℝN×q and sN (x) ∈
ℝ1×q. In this case we have the following.

Proposition 9.8 (Gradient of the state-estimation cost). For x ∈ Ω ⊂ ℝd and y ∈ ℝq,
the gradient of the cost (9.25) can be computed in x ∈ Ω as

∇C(x) = 1
‖y‖22
(Dα)ET ,

where D ∈ ℝd×N with columns Dj := ∇xK(x, xj), and E := sN (x) − y ∈ ℝ1×q.

9 Kernel methods for surrogate modeling | 341

Proof. By linearity, the gradient of sN in x can be computed as

∇sN (x) =
n
∑
j=1

αj∇xK(x, xj) = Dα ∈ ℝ
d×q,

and thus

∇C(x) = 1
‖y‖22
(sN (x) − y)∇x(sN (x) − y) =

1
‖y‖22
(sN (x) − y)∇s(x)

=
1
‖y‖22
(Dα)ET .

Observe in particular that whenever K is known in closed form thematrixD can be ex-
plicitly computed, and thus the gradient can be assembled using only matrix-vector
multiplications of matrices of dimensions N , d, q, but independent of n. The solution
x∗ can then be computed by any gradient-based optimization method, and each iter-
ation can be performed in an efficient way.

9.7 Parameter and model selection

For all the methods that we have seen the approximation quality of the surrogate de-
pends on several parameters,whichneed tobe carefully chosen to obtain good results.
There are both parameters defining the kernel, such as the shape parameter γ > 0 in
a RBF kernel, and model parameters such as the regularization parameter λ ≥ 0. To
some extent, also the selection of the kernel itself can be considered as a parametric
dependence of the model. Moreover, it is essential to test the quality of the surrogate
on an independent test set of data, since tuning it on the training set alone can very
likely lead to overfitting, i. e., to obtain a model that is excessively accurate on the
training set, while failing to generalize its prediction capabilities to unseen data.

In practical applications the target function f is unknown, so it cannot be used
to check if the approximation is good, and all we know is the training set (Xn,Yn). In
this case the most common approach is to split the sets into train, validation and test
sets in the following sense. We permute (Xn,Yn), fix numbers ntr, nval, nte such that
n = ntr + nval + nte, and define a partition of the dataset as

Xtr := {xi, 1 ≤ i ≤ ntr},
Xval := {xi, ntr + 1 ≤ i ≤ ntr + nval},
Xte := {xi, ntr + nval + 1 ≤ i ≤ n},

and similarly for Ytr, Yval, Yte.

342 | G.Santin and B. Haasdonk

The idea is then to use the validation set (Xval,Yval) to validate (i. e., choose) the
parameters, and the test set (Xte,Yte) to evaluate the error. Having disjoint sets allows
one to have a fair way to test the algorithm.

For the process we also need an error function that returns the error of the sur-
rogate s evaluated on a generic set of points X := {xi}i ⊂ Ω w. r. t. the exact values
Y := {yi}i. We denote by |X| the number of elements of X. Common examples are the
maximal error and the Root Mean Square Error (RMSE) defined as

E(s,X,Y) := max
1≤i≤|X|
‖s(xi) − yi‖2 or E(s,X,Y) := √ 1

|X|

|X|
∑
i=1

s(xi) − yi

2
2. (9.26)

Then one chooses a set of possible parameter instantiations {p1, . . . , pnp }, np ∈ ℕ
that has to be checked. A common choice for positive numerical parameters is to take
them logarithmically equally spaced, since the correct scale is not known in advance,
in general.

The training and validation process is described in Algorithm 9.7, where we de-
note by s(pi) the surrogate obtained with parameter pi. It works as an outer loop with
respect to the training of any of the surrogates thatwe have considered, and it has thus
to be understood as part of the offline phase.

Algorithm 9.7:Model selection by validation.
1: Input: Xtr,Xval,Xte, Ytr,Yval,Yte, {p1, . . . , pnp }
2: for i = 1, . . . , np do
3: Train surrogate s(pi) with data (Xtr,Ytr)
4: Compute validation error ei := E(s(pi),Xval,Yval)
5: end for
6: Choose parameter p̄ := pi with i := argmin ei
7: Train surrogate s(p̄) with data (Xtr ∪ Xval,Ytr ∪ Yval)
8: Compute test error Ē = E(s(p̄),Xte,Yte)
9: Output: surrogate s(p̄), optimal parameter p̄, test error Ē

A more advanced way to realize the same idea is via k-fold cross validation. To have
an even better selection of the parameters, one can repeat the validation step (lines
2–6 in the previous algorithm) by changing the validation set at each step. To do so
we do not select a validation set (so n = ntr + nte), and instead consider a partition of
Xtr,Ytr into a fixed number k ∈ {1, . . . , ntr} of disjoint subsets, all approximately of the
same size, i. e.,

Xtr := {xi, 1 ≤ i ≤ ntr} := ∪
k
i=1Xi

Xte := {xi, ntr + 1 ≤ i ≤ n},

9 Kernel methods for surrogate modeling | 343

and similarly for Ytr := ∪ki=1Yi and for Yte. In the validation step each of theXi is used as
a validation set, and the validation is repeated for all i = 1, . . . , k. In this case the error
ei for the parameter pi is defined as the average error over all these permutations, as
described in Algorithm 9.8.

Algorithm 9.8:Model selection by k-fold cross validation.

1: Input: Xtr = ∪ki=1Xi,Xte, Ytr = ∪
k
i=1Yi,Yte, {p1, . . . , pnp }

2: for i = 1, . . . , np do
3: for j = 1, . . . , k do
4: Train surrogate s(pi) with data (∪ℓ ̸=jXℓ,∪ℓ ̸=jYℓ)
5: Compute error e(j) := E(s(pi),Xj,Yj)
6: end for
7: ei := mean{e(j), 1 ≤ j ≤ k}
8: end for
9: Choose parameter p̄ := pi with i := argmin ei
10: Train surrogate s(p̄) with data (Xtr,Ytr)
11: Compute test error Ē = E(s(p̄),Xte,Yte)
12: Output: surrogate s(p̄), optimal parameter p̄, test error Ē

We remark that, in the extreme case k = N, this k-fold cross validation is usually called
Leave One Out Cross Validation (LOOCV).

9.8 Numerical examples
For the testing and illustration of the two methods of Section 9.4 and Section 9.5, we
consider a real-world application dataset describing the biomechanical modeling of
the human spine introduced and studied in [69]. We refer to that paper for further
details and we just give a brief description in the following.

The input–output function f : ℝ3 → ℝ3 represents the coupling between a global
multibody system (MBS) and a Finite Elements (FEM) submodel. The human spine is
represented as a MBS consisting of the vertebra, which are coupled by the interaction
through intervertebral disks (IVDs). The PDE representing the behavior of each IVD
is approximated by a FEM discretization, and it has the input geometry parameters
as boundary conditions, and computes the output mechanical response as a result
of the simulation. In particular, the three inputs are two spatial displacements and
an angular inclination of a vertebra, and the three outputs are the corresponding two
force components and the momentumwhich are transferred to the next vertebra. The
dataset is generated by running the full model for n := 1370 different input parameters
Xn and generating the corresponding set of outputs Yn.

344 | G.Santin and B. Haasdonk

The dataset, as described in Section 9.7, is first randomly permuted and then di-
vided in training and test datasets (Xntr ,Yntr), (Xnte ,Ynte) with ntr := 1238 and nte = 132,
corresponding to roughly 90% and 10% of the data. We remark that the full model
predicts a value (0,0,0)T for the input (0,0,0)T and this sample pair is present in the
dataset. We thus manually include it in the training set independently of the permu-
tation. The training and test sets can be seen in Figure 9.2.

Figure 9.2: Input parameters (left) and corresponding outputs (right) for the training (top row) and
test set (bottom row).

The models are trained using a Matlab implementation of the algorithms. For VKOGA
we use an own implementation,7 while for SVR we employ the KerMor package,8

which provides an implementation of the 2-index SMO for the SVR without offset that
is discussed in Section 9.5.1. We remark that this implementation requires the output
data to be scaled in [−1, 1], and thus we perform this scaling for the training and val-
idation, while the testing is executed by scaling back the predictions to the original
range. To have a fair comparison, we use the same data normalization also for the
VKOGA models.

7 https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/vkoga
8 https://www.morepas.org/software/kermor/index.html

9 Kernel methods for surrogate modeling | 345

The regularized VKOGA (with f -, P-, and f /P-greedy selection rules) and the SVR
models are trained with the Gaussian kernel. Both algorithms depend on the shape
parameter γ of the kernel and on the regularization parameter λ, while SVR addition-
ally depends on the width ε of the tube. These parameters are selected by k-fold cross
validation as described in Section 9.7. The values of k and of the parameter samples
used for validation are reported in Table 9.1, where each parameter set is obtained by
generating logarithmically equally spaced samples in the given interval, i. e., 400 pa-
rameter pairs are tested for VKOGA and 4000 triples for SVR. As an error measure we
use the max error in (9.26). We remark that the SVR surrogate is obtained by training
a separate model for each output, as described in Section 9.5, but only one cross val-
idation is used. This means that for each parameter triple three models are trained,
and then the parameter is evaluated in the prediction of the three-dimensional out-
put.

Table 9.1: Parameters ranges and sample numbers used in the k-fold cross validation.

k γmin γmax nγ λmin λmax nλ εmin εmax nε

5 10−2 101 20 10−16 103 20 10−10 10−3 10

Moreover, the training of the VKOGA surrogates is terminated when the square of the
power function is below the tolerance τP := 10−12, or when the training error is below
the tolerance τf := 10−6. Additionally, it would be possible to use a maximal number
of selected points as stopping criterion, and this offers the significant advantage of
directly controlling the expansion size, which could be reduced to any given number
(of course at the price of a reduced accuracy). In the case of SVR, instead, the number
N is a result of the tuning of the remaining parameters.

In Table 9.2 we report the values of the parameters selected by the validation pro-
cedure for the four models, as well as the number N of nonzero coefficients in the
trained kernel expansions. Observe that for SVR the three values ofN refer to the num-
ber of support vectors for the three scalar-valued models. Moreover, the number of
support vectors or kernel centers is only slightly larger for SVR than for the VKOGA
models, but, as discussed in the following, the VKOGA models give prediction errors
which are up to two orders of magnitude smaller than the ones of the SVR model.

We cannow test the fourmodels in thepredictionon the test set. Table 9.3 contains
various error measures between the prediction of the surrogates and the exact data.
We report the values of themaximum error Emax and the RMSE ERMSE defined in (9.26),
and the relative maximum error Emax,rel obtained by scaling each error by the norm of
the exact output.

To provide a better insight in the approximation quality of the methods, we show
in Figure 9.3 the distribution of the error over the test set. The plots show, for each sam-

346 | G.Santin and B. Haasdonk

Table 9.2: Selected parameters and number of nonzero coefficients in the kernel expansions.

Method N ̄γ λ̄ ̄ε

VKOGA P-greedy 1000 4.9 ⋅ 10−2 10−11 –
VKOGA f -greedy 879 4.3 ⋅ 10−2 10−11 –
VKOGA f /P-greedy 967 6.2 ⋅ 10−2 10−9 –
SVR, output 1 359 1.8 ⋅ 10−1 102 7.7 ⋅ 10−7

output 2 378
output 3 405

Table 9.3: Test errors: maximum error Emax, RMSE error ERMSE, maximum relative error Emax,rel.

Method Emax ERMSE Emax,rel

VKOGA P-greedy 1.6 ⋅ 102 22.3 2.2 ⋅ 10−1

VKOGA f -greedy 1.6 ⋅ 102 22.4 2.0 ⋅ 10−1

VKOGA f /P-greedy 1.6 ⋅ 102 23.2 8.8 ⋅ 10−1

SVR 1.3 ⋅ 103 1.6 ⋅ 102 1.4 ⋅ 101

Figure 9.3: Absolute errors as functions of the magnitude of the output, and relative error levels from
100 to 10−3 for the surrogates obtained with P-greedy VKOGA (top left), f -greedy VKOGA (top right),
f /P-greedy VKOGA (bottom left) and SVR (bottom right).

9 Kernel methods for surrogate modeling | 347

ple (xi, yi) in the test set, the absolute error ‖yi − s(xi)‖2 as a function of the magnitude
‖yi‖2 of the output. Moreover, the black lines represent a relative error from 100 to 10−3.
It is clear that in all cases the maximum and RMS errors of Table 9.3 are dominated
by the values obtained for outputs of large norm, where the VKOGA models obtain a
much better accuracy than SVR. The relative errors, on the other hand, are not evenly
distributed for SVR, where most of the test set is approximated with a relative error
between 101 and 10−2 except for the samples with small magnitude of the output. For
these data, the model gives increasingly bad predictions as the magnitude is smaller,
reaching a relative errormuch larger than 1. TheVKOGAmodels, instead, obtain a rela-
tive error smaller than 10−2 on the full test set except for the entries of smallmagnitude.
For these samples, the f - and P-greedy versions of the algorithm perform almost the
same and better than the f /P-greedy variant, thus giving an overall smaller relative
error in Table 9.3. Moreover, these results are obtained with a significantly smaller ex-
pansion size for f -greedy than for P-greedy. Indeed, even if the SVR surrogates for the
individual output components are smaller than the VKOGA ones, the overall number
of nonzero coefficients is 359+ 378+ 405 = 1142, i. e., more than the one of each of the
three VKOGA models, thus leading to a less accurate and more expensive surrogate.

Regarding the runtime requirements, we can now estimate both the offline (train-
ing) and the online (prediction) times. The offline time required for the validation and
training of the models is essentially determined by the number of parameters tested
in the k-fold cross validation, while the training time of a singlemodel is almost negli-
gible. As a comparison, we report in Table 9.4 the average runtime T̃offline for 10 runs of
the training of the models for the fixed set of parameters of Table 9.2. All the reported
times are in the ranges of seconds (for VKOGA) and below one minute (for SVR). We
remark that this timing is only a very rough indication and not a precise comparison,
since the times highly depends on the number of selected points (for VKOGA) and the
number of support vectors for SVR, and both are dependent on the used parameters.
For example, we repeated the experiment for SVR with the same parameter set but
with ε = 10−1. In this case this value of ε is overly large (if compared to the one se-
lected by cross validation) and it likely produces a useless model, but nevertheless we
obtain an average training time of 0.03 sec.

Table 9.4: Average offline time (training only), online time, and projected speedup factor for the four
different models.

Method N ̃Toffline ̃Tonline ̃Tfull/ ̃Tonline

VKOGA P-greedy 1000 1.67 sec 9.97 ⋅ 10−6 sec 3.01 ⋅ 105

VKOGA f -greedy 879 1.41 sec 9.44 ⋅ 10−6 sec 3.18 ⋅ 105

VKOGA f /P-greedy 967 1.66 sec 9.92 ⋅ 10−6 sec 3.02 ⋅ 105

SVR (3 models) 1142 52.0 sec 2.28 ⋅ 10−5 sec 1.32 ⋅ 105

348 | G.Santin and B. Haasdonk

A more interesting comparison is the online time, which directly determines the effi-
ciency of the surrogate models in the replacement of the full simulation. In this case,
we evaluate the models 5000 times on the full test set consisting of nte = 132 sam-
ples, and we report the average online time T̃online per single test sample in Table 9.4.
The table contains also again the number N of elements of the corresponding kernel
expansions, and it is evident that a smaller value leads to a faster evaluation of the
model.

In the original paper [69], it has been estimated that a 30 sec full simulation with
24 IVDs with a timestep Δt = 10−3 sec requires 7.2 ⋅ 105 evaluations of the coupling
function f , and these were estimated to require 600h. This corresponds to an average
of T̃full = 3 secper evaluationof f , giving a speedup T̃full/T̃online as reported inTable 9.4.

These surrogates can now be employed to solve different tasks that require mul-
tiple evaluations of f . As an example, we employ the f -greedy model (as the most ac-
curate and most efficient) to solve a parameter estimation problem as described in
Section 9.6. We consider the output values Ynte in the test set as a set of measures that
have not been used in the training of the model, and we try to estimate the values
of Xnte . For each output vector yi ∈ ℝ

3 we define a target value y := yi +η‖yi‖2v to define
the cost (9.25), where v ∈ ℝ3 is a uniform random vector representing some noise, and
η ∈ [0, 1] is a noise level. We then use a built-in Matlab optimizer with the gradient
of Proposition 9.8, with initial guess x0 := 0 ∈ ℝ3, to obtain an estimate x∗i of xi. The
results of the estimate for each output value in the test set are depicted in Figure 9.4 for
η = 0,0.1, where we report also the final value of the cost function C(x∗i). In all cases,
the optimizer seems to converge, since the value of the cost function is in all cases
smaller than 10−4, which represents a relative value smaller than 10−3 with respect to
the magnitude of the input values. The maximum absolute error in the estimations
is quite uniform for all the samples in the test set, and this results in a good relative
error of about 10−1 for large inputs, while for inputs of very small magnitude the rel-
ative error is larger than 1, and a larger noise level leads to less accurate predictions.
This behavior is coherent with the analysis of the test error discussed above, since the
approximant is less accurate on inputs of small magnitude, and thus it provides a less
reliable surrogate in the cost function.

9.9 Conclusions and outlook

In this chapter we discussed the use of kernel methods to construct surrogate models
based on scattered data samples. These methods can be applied to data with general
structure, and they scale well with the dimension of the input and output values.
In particular, we analyzed issues and methods to obtain sparse solutions, which are
then extremely fast to evaluate, while still being very accurate. These properties have
been further demonstrated on numerical tests on a real application dataset. These

9 Kernel methods for surrogate modeling | 349

Figure 9.4: Absolute errors of the input estimation as functions of the magnitude of the output (left),
and value of the cost function at the estimated input (right) for a noise level η = 0 (top row) and
η = 0.1 (bottom row) using the f -greedy VKOGA model. The dotted lines represent relative error
levels from 100 to 10−3.

methods can be analyzed in the common framework of Reproducing Kernel Hilbert
Spaces, which provides solid theoretical foundations and a high flexibility to derive
new algorithms.

The integration of machine learning and model reduction is promising and many
interesting aspects have still to be investigated. For example, surrogate models have
been used in [23, 24] to learn a representation with respect to projection-based meth-
ods, and generally amore extensive application ofmachine learning to dynamical sys-
tems requires additional understanding and the derivation of new techniques. More-
over, the field of data-based numerics is very promising, where classical numerical
methods are integrated or accelerated with data-based models.

Bibliography
[1] M. Alvarez, L. Rosasco, and N. D. Lawrence. Kernels for vector-valued functions: a review.

Found. Trends Mach. Learn., 4(3):195–266, 2012.
[2] N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337–404, 1950.

350 | G.Santin and B. Haasdonk

[3] A. Beckert and H. Wendland. Multivariate interpolation for fluid-structure-interaction problems
using radial basis functions. Aerosp. Sci. Technol., 5(2):125–134, 2001.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pages
144–152. ACM, New York, NY, USA, 1992.

[5] J. Bouvrie and B. Hamzi. Kernel methods for the approximation of nonlinear systems. SIAM J.
Control Optim., 55(4):2460–2492, 2017.

[6] T. Brünnette, G. Santin, and B. Haasdonk. Greedy kernel methods for accelerating implicit
integrators for parametric ODEs. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten and I. S. Pop,
editors, Numerical Mathematics and Advanced Applications - ENUMATH 2017, pages 889–896.
Springer, Cham, 2019.

[7] R. Cavoretto, A. De Rossi, and E. Perracchione. Efficient computation of partition of
unity interpolants through a block-based searching technique. Comput. Math. Appl.,
71(12):2568–2584, 2016.

[8] R. Cavoretto, G. Fasshauer, and M. McCourt. An introduction to the Hilbert-Schmidt SVD using
iterated Brownian bridge kernels. Numer. Algorithms, 68(2):1–30, 2014.

[9] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans. Intell.
Syst. Technol., 2:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci.
Comput., 20(1):33–61, 1998.

[11] W. Chen, Z.-J. Fu, and C.-S. Chen. Recent advances in radial basis function collocation methods.
Springer, 2014.

[12] S. Deparis, D. Forti, and A. Quarteroni. A rescaled localized Radial Basis Function interpolation
on non-Cartesian and nonconforming grids. SIAM J. Sci. Comput., 36(6):A2745–A2762, 2014.

[13] S. Deparis, D. Forti, and A. Quarteroni. A Fluid–Structure Interaction Algorithm Using Radial
Basis Function Interpolation Between Non-Conforming Interfaces, pages 439–450. Springer,
Cham, 2016.

[14] M. Drohmann and K. Carlberg. The ROMESmethod for statistical modeling of
Reduced-Order-Model error. SIAM/ASA J. Uncertain. Quantificat., 3(1):116–145, 2015.

[15] G. E. Fasshauer and M. McCourt. Kernel-Based Approximation Methods Using MATLAB.
Interdisciplinary Mathematical Sciences, volume 19. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2015.

[16] G. E. Fasshauer and M. J. McCourt. Stable evaluation of Gaussian radial basis function
interpolants. SIAM J. Sci. Comput., 34(2):A737–A762, 2012.

[17] B. Fornberg and N. Flyer. A primer on radial basis functions with applications to the
geosciences. SIAM, 2015.

[18] B. Fornberg, E. Larsson, and N. Flyer. Stable computations with Gaussian radial basis
functions. SIAM J. Sci. Comput., 33(2):869–892, 2011.

[19] J. Garcke and M. Griebel. Sparse grids and applications, volume 88. Springer, 2012.
[20] T. Gärtner, J. W. Lloyd, and P. A. Flach. Kernels for structured data. In S. Matwin and C. Sammut,

editors, Inductive Logic Programming, pages 66–83. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[21] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[22] S. Grundel, N. Hornung, B. Klaassen, P. Benner, and T. Clees. Computing Surrogates for Gas
Network Simulation Using Model Order Reduction, pages 189–212. Springer New York, New
York, NY, 2013.

[23] M. Guo and J. S. Hesthaven. Reduced order modeling for nonlinear structural analysis using
Gaussian process regression. Comput. Methods Appl. Mech. Eng., 341:807–826, 2018.

9 Kernel methods for surrogate modeling | 351

[24] M. Guo and J. S. Hesthaven. Data-driven reduced order modeling for time-dependent problems.
Comput. Methods Appl. Mech. Eng., 345:75–99, 2019.

[25] B. Haasdonk and G. Santin. Greedy kernel approximation for sparse surrogate modeling. In
W. Keiper, A. Milde and S. Volkwein, editors, Reduced-Order Modeling (ROM) for Simulation
and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, pages 21–45.
Springer, Cham, 2018.

[26] D. Haussler. Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, UC
Santa Cruz, 1999.

[27] G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic
processes and smoothing by splines. Ann. Math. Stat., 41(2):495–502, 1970.

[28] M. Köppel, F. Franzelin, I. Kröker, S. Oladyshkin, G. Santin, D. Wittwar, A. Barth, B. Haasdonk,
W. Nowak, D. Pflüger, and C. Rohde. Comparison of data-driven uncertainty quantification
methods for a carbon dioxide storage benchmark scenario. Comput. Geosci., 23(2):339–354,
2019.

[29] T. Köppl, G. Santin, B. Haasdonk, and R. Helmig. Numerical modelling of a peripheral arterial
stenosis using dimensionally reduced models and kernel methods. Int. J. Numer. Methods
Biomed. Eng., 34(8):e3095, 2018. cnm.3095.

[30] M. Kowalewski, E. Larsson, and A. Heryudono. An adaptive interpolation scheme for molecular
potential energy surfaces. J. Chem. Phys., 145(8):084104, 2016.

[31] E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg. Stable computation of differentiation
matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci.
Comput., 35(4):A2096–A2119, 2013.

[32] A. Manzoni and F. Negri. Heuristic strategies for the approximation of stability factors in
quadratically nonlinear parametrized PDEs. Adv. Comput. Math., 41(5):1255–1288, 2015.

[33] E. Marchandise, C. Piret, and J.-F. Remacle. CAD and mesh repair with Radial Basis Functions. J.
Comput. Phys., 231(5):2376–2387, 2012.

[34] I. Martini. Reduced Basis Approximation for Heterogeneous Domain Decomposition Problems.
PhD thesis, IANS, University of Stuttgart 2017.

[35] C. A. Micchelli and M. Pontil. On learning vector-valued functions. Neural Comput.,
17(1):177–204, 2005.

[36] S. Müller. Komplexität und Stabilität von kernbasierten Rekonstruktionsmethoden (Complexity
and Stability of Kernel-based Reconstructions). PhD thesis, Fakultät für Mathematik und
Informatik, Georg-August-Universität Göttingen 2009.

[37] S. Müller and R. Schaback. A Newton basis for kernel spaces. J. Approx. Theory,
161(2):645–655, 2009.

[38] R. A. Olea. Geostatistics for engineers and earth scientists. Springer, 2012.
[39] M. Pazouki and R. Schaback. Bases for kernel-based spaces. J. Comput. Appl. Math.,

236(4):575–588, 2011.
[40] B. Peherstorfer and Y. Marzouk. A transport-based multifidelity preconditioner for Markov

chain Monte Carlo. Adv. Comput. Math., 45(5):2321–2348, 2019.
[41] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector

machines. Technical report, April 1998.
[42] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT

Press, 2006.
[43] C. Rieger and B. Zwicknagl. Sampling inequalities for infinitely smooth functions, with

applications to interpolation and machine learning. Adv. Comput. Math., 32(1):103–129, 2008.
[44] C. Rieger and B. Zwicknagl. Deterministic error analysis of support vector regression and

related regularized kernel methods. J. Mach. Learn. Res., 10:2115–2132, 2009.
[45] S. Saitoh and Y. Sawano. Theory of Reproducing Kernels and Applications. Developments in

Mathematics, volume 44. Springer, Singapore, 2016.

352 | G.Santin and B. Haasdonk

[46] G. Santin and B. Haasdonk. Convergence rate of the data-independent P-greedy algorithm in
kernel-based approximation. Dolomites Res. Notes Approx., 10:68–78, 2017.

[47] G. Santin, D. Wittwar, and B. Haasdonk. Greedy regularized kernel interpolation/ University of
Stuttgart, 2018. ArXiv preprint 1807.09575.

[48] R. Schaback. Error estimates and condition numbers for radial basis function interpolation.
Adv. Comput. Math., 3(3):251–264, 1995.

[49] R. Schaback and H. Wendland. Approximation by positive definite kernels. In M. Buhmann and
D. Mache, editors, Advanced Problems in Constructive Approximation. International Series in
Numerical Mathematics, volume 142, pages 203–221. 2002.

[50] M. Scheuerer, R. Schaback, and M. Schlather. Interpolation of spatial data – a stochastic or a
deterministic problem? Eur. J. Appl. Math., 24(4):601-–629, 2013.

[51] A. Schmidt and B. Haasdonk. Data-driven surrogates of value functions and applications to
feedback control for dynamical systems. IFAC-PapersOnLine, 51(2):307–312, 2018. 9th Vienna
International Conference on Mathematical Modelling.

[52] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In D. Helmbold
and B. Williamson, editors, Computational Learning Theory, pages 416–426. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2001.

[53] B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, 2002.
[54] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University

Press, 2004.
[55] I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008.
[56] I. Steinwart, D. Hush, and C. Scovel. An explicit description of the Reproducing Kernel Hilbert

Spaces of Gaussian RBF kernels. IEEE Trans. Inf. Theory, 52(10):4635–4643, 2006.
[57] I. Steinwart, D. Hush, and C. Scovel. Training SVMsWithout Offset. J. Mach. Learn. Res.,

12:141–202, 2011.
[58] I. Steinwart and P. Thomann. liquidSVM: A fast and versatile SVM package, 2017.

arXiv:1702.06899.
[59] J. Suykens, J. Vanderwalle, and B. D. Moor. Optimal control by least squares support vector

machines. Neural Netw., 14:23–35, 2001.
[60] T. Taddei, J. D. Penn, M. Yano, and A. T. Patera. Simulation-based classification; a

model-order-reduction approach for structural health monitoring. Arch. Comput. Methods Eng.,
1–23, 2016.

[61] R. Tibshirani. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. B,
58(1):267–288, 1996.

[62] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, 1998.
[63] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial

functions of minimal degree. Adv. Comput. Math., 4(1):389–396, 1995.
[64] H. Wendland. Fast evaluation of radial basis functions: methods based on partition of unity. In

Approximation theory, X (St. Louis, MO, 2001). Innov. Appl. Math., pages 473–483 Vanderbilt
Univ. Press, Nashville, TN, 2002.

[65] H. Wendland. Scattered Data Approximation. Cambridge Monographs on Applied and
Computational Mathematics, volume 17. Cambridge University Press, Cambridge, 2005.

[66] H. Wendland and C. Rieger. Approximate interpolation with applications to selecting
smoothing parameters. Numer. Math., 101(4):729–748, 2005.

[67] D. Wirtz and B. Haasdonk. A-posteriori error estimation for parameterized kernel-based
systems. In Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical
Modelling, 2012.

[68] D. Wirtz and B. Haasdonk. A vectorial kernel orthogonal greedy algorithm. Dolomites Res.
Notes Approx., 6:83–100, 2013.

9 Kernel methods for surrogate modeling | 353

[69] D. Wirtz, N. Karajan, and B. Haasdonk. Surrogate modelling of multiscale models using kernel
methods. Int. J. Numer. Methods Eng., 101(1):1–28, 2015.

[70] D. Wittwar, G. Santin, and B. Haasdonk. Interpolation with uncoupled separable matrix-valued
kernels. Dolomites Res. Notes Approx., 11:23–29, 2018.

[71] H. Zhang C and L. Zhao. On the inclusion relation of reproducing kernel Hilbert spaces. Anal.
Appl., 11, 2013.

