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Abstract
We study intertemporal decision making under uncertainty in a purely subjective
framework. The concept of stationarity, introduced by Koopmans for deterministic
discounted utility, is naturally extended to a framework with uncertainty and plays a
central role for both attitudes towards time and uncertainty. We show that a strong sta-
tionarity axiom characterizes discounted expected utility. When considerations about
correlations across time between uncertain outcomes are taken into account, a weaker
stationarity axiom generalizes discounted expected utility to Choquet expected dis-
counted utility, allowing for non-neutral attitudes towards subjective uncertainty.

Keywords Ambiguity · Intertemporal choice · (Choquet) Discounted expected
utility · Stationarity · Serial correlation · Uncertainty aversion/seeking

JEL Classification D81 · D83 · D84

1 Introduction

When making economic decisions, agents usually need to take into account two fun-
damental dimensions that affect the outcome of their choice: time and uncertainty.
Consider for instance a firm that wants to implement a project that will deliver a
stochastic cash flow in the future or a government that needs to decide how to allo-
cate its budget taking into account GDP growth in the following years. In both cases,
decision makers (DMs henceforth) are required to make choices that involve uncertain
outcomes occurring at future dates.
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1072 L. Bastianello, J. H. Faro

One of the most popular models used in economics to evaluate uncertain streams
of income or consumption is the (exponential) discounted expected utility model. The
choice problem faced by the firm or the government can be formalized in the following
way. Suppose that, at time t = 0, Nature chooses a state of the world ω ∈ � which
is hidden to the agent. At the same time, the agent should choose an alternative,
called act, denoted by h := (h0, h1, . . . ). Each state of the world determines a path
describing the amounts of income that the DM will receive across future periods,
denoted by h(ω) := (h0(ω), h1(ω), . . . ). Thus, given h and ω ∈ �, she gets ht (ω) at
time t ≥ 0. The discounted expected utility model asserts that the stochastic stream
h := (h0, h1, . . . ) is evaluated through the intertemporal utility function

V (h) =
∞∑

t=0

β t
EP [u(ht )], (1)

where u(·) is an instantaneous utility index, theDM’s attitude towards time is described
through the discount factor β t with β ∈ (0, 1) and the expectation is takenwith respect
to a subjective probability P over �. Mathematically, the expression in (1) prescribes
to compute the expected utility of each random variable ht , actualize its value through
the discount factor β t and sum up the actualized expected utilities.

Exponential discounted utility was first axiomatized by Koopmans (1960, 1972) in
the deterministic framework.We propose a generalization of his stationarity condition
under uncertainty in order to characterize the formula in (1).1 Roughly speaking, our
axiom requires that a DM who is indifferent between two uncertain streams f and g
should remain indifferent if, given an arbitrary period t , the random incomes of both
streams are shifted one period ahead starting from t , and the same stochastic amount
of income ht is inserted in period t .

As it turns out, the implications of the stationarity axiom in presence of uncertainty
are stronger than in the deterministic framework. Consider a firm that needs to decide
today whether to invest in solar (s) technology or to build a carbon (c) plan. In year
2022 there will be elections (this is the source of uncertainty). If democrats win (event
D), they will subsidize firms that invested in green technologies. If republicans win
(event R), they will subsidize traditional ways of producing energy. The firm has
therefore to choose between the two streams

2021 2022 2023 2024 . . .

s0, s1, · · · ≡ 0 s1

{
10 if D

0 if R
0 . . . . . .

c0, c1, · · · ≡ 0 c1

{
0 if D

10 if R
0 . . . . . .

If the manager of the firm thinks that democrats and republicans are equally likely to
win the elections, then it seems reasonable to be indifferent between s and c. Suppose

1 For an axiomatization of the discounted expected utility model with an infinite horizon under risk one
can see Epstein (1983) and Peitler (2019). Under uncertainty, a charcterization of (1) can be derived from
Kochov (2015), see discussions after Theorems 1 and 5.
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now that the republicans are the incumbent. For budget reasons they are obliged to
postpone any subsidy in favor of the technological sector to 2023, but they promise to
reduces taxes on firms in 2022 in case they win the elections. Taking into account the
shift of subsidies and tax reductions, the streams now look like

2021 2022 2023 2024 . . .

s0, h1, s1, · · · ≡ 0 h1

{
0 if D

7 if R
s1

{
10 if D

0 if R
0 . . .

c0, h1, c1, · · · ≡ 0 h1

{
0 if D

7 if R
c1

{
0 if D

10 if R
0 . . .

If stationarity holds, than the firm should remain indifferent between (the modified
version of) s and c. The rationale being that in year 2022 the firm gets h1 whatever the
investment decision, and from 2023 on, the streams are the same as in the previous
decision context.

However note that choosing to invest in carbon looks “more uncertain”. In fact, if
democrats win, the firm will not get anything for two consecutive years. On the other
hand, investing on solar would allow the firm to hedge against any possible winner.
If democrats win, the firm gets 10 in 2023 and if republicans win it gets 7 in 2022:
whatever the winner, the firm has a positive result in at least one period. Choosing solar
offers a possible hedge against the uncertainty of the electoral result and therefore one
may expect that a cautious (or pessimistic) manager strictly prefers s to c. Note that, a
confident (or optimistic) manager may very well prefer to invest in carbon rather than
in solar.

The central idea is that h1 is positively correlated with c1 and negatively correlated
with s1. An uncertainty averse DM would prefer negatively correlated variables fol-
lowing one another in order to protect herself against uncertainty. At the same time, an
uncertainty loving DM would appreciate positively correlated variables one after the
other. Finally, it can also be the case that a DMwould sometimes prefer negatively cor-
related variables and sometimes positively correlated variables following one another.
Imposing stationarity when such considerations can be done may be demanding, and
this is why, under uncertainty, we name this property Strong Stationarity.

The example above shows a particular case of a more general concept. Loosely
speaking, two random variables φ, ψ are comonotonic if they “vary in the same
direction”: when φ takes relative high (low) values, ψ also takes relative high (low)
values. For instance, in the example above, h1 is comonotonic with c1 but not with
s1. Comonotonicity is strictly linked to correlation, and DMs may have positive or
negative attitude towards correlated variables. This pattern of correlation across time
is called autocorrelation, serial correlation or temporal correlation. Several authors
already remarked that attitude towards correlation is an important behavioral feature.
For an early treatment of autocorrelation in the context of lotteries, see Epstein and
Tanny (1980).2 Recent papers studying this issue are Kochov (2015) and Bommier
et al. (2017).

2 In finance, the fact that the return on a stock presents serial correlation is a violation of the weak form of
market-efficiency. See, for instance, Rosenberg and Rudd (1982) and Jegadeesh (1990).
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In order to cope with possible non-neutral attitudes towards this kind of temporal
correlations, we introduce a generalization of Strong Stationarity, calledComonotonic
Stationarity, that restricts the shifts prescribed by Strong Stationarity only to cases in
which considerations about correlations do not play a role. Technically, we require
the stochastic income plugged at period t to be comonotonic with the variables that
follow in both sequences. If variables involved in the shifts are comonotonic, there
is no modification of the perceived uncertainty inherent to a sequence. Theorem 2,
which is our main contribution, shows formally that substituting Strong Stationarity
with Comonotonic Stationarity makes it possible to generalize discounted expected
utility to the following representation

V (h) =
∫ ∞∑

t=0

β t u(ht )dv. (2)

The integral is a Choquet integral, taken with respect to a capacity v. While a precise
mathematical definition will be given later, we just recall here that a capacity is a
non-necessarily additive set function and the Choquet integral is a mathematical tool
that allows to compute expectations with respect to it.

The Choquet expected utility model was introduced in economics in the atemporal
setting proposed byAnscombe andAumann (1963) in the seminal paper of Schmeidler
(1989). This model generalizes expected utility and solves the famous Ellsberg (1961)
paradox, which shows that agents cannot quantify uncertainty in terms of a (additive)
probabilitymeasure. In this sense, our model of Choquet expected discounted utility in
(2) parallels Schmeidler’s work in the atemporal setting. Therefore, this paper provides
novel foundations for two fundamental models of decision making: Choquet expected
utility and discounted expected utility. Discounted expected utility is characterized
by Strong Stationarity (together with other basic axioms) which implies a form of
uncertainty neutrality. Our more general axiom, Comonotonic Stationarity, reflects the
idea that agents’ behaviour is affected by intertemporal correlations between random
variables. The Choquet expected discounted utility model is a flexible tool that can be
applied in order to study how serial correlation aversion or serial correlation seeking
(or both at the same time) impact agents’ decisions.

There is a rich literature concerning decision making under uncertainty, and several
models have been proposed to address the Ellsberg paradox. A popular way to take
into account agents’ behavior towards uncertainty is through the MaxMin expected
utility model of Gilboa and Schmeidler (1989). This model, developed in the atem-
poral setting, says that a DM has a set of probabilities in her mind and takes the
minimum expected utility calculated with respect to the probabilities in this set. Our
paper is closely related to a recent article of Kochov (2015), who provides a general-
ization of discounted expected utility (1) by considering an intertemporal version of
the MaxMin expected utility model of Gilboa and Schmeidler (1989). In our paper we
use the same framework of Kochov (2015) and we show that changing his axioms of
Intertemporal Hedging and Path Stationarity into Comonotonic Stationarity allows us
to obtain the Choquet expected discounted utility model. The importance of Comono-
tonic Stationarity is revealed by the weaknesses of Strong Stationarity (as explained in
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Choquet expected discounted utility 1075

the beginning of this section and in Example 1). We will discuss further this relevant
article in the main body of our paper.

Finally we recall that there are several interesting ways to discount the future,
besides exponential discounting, that are outside the scope of this paper. While expo-
nential discounting may be appropriate in the case of a firm, who can set β = 1

1+r
where r is the interest rate, it may not be so compelling for other types of agents. For
instance, interesting alternatives are the hyperbolic, quasi-hyperbolic, quasi-geometric
and constant-sensitivity discounting, see Loewenstein and Prelec (1992), Laibson
(1997),Montiel Olea and Strzalecki (2014), Phelps and Pollak (1968), Hayashi (2003)
and Ebert and Prelec (2007). Another interesting approach appears in Chambers and
Echenique (2018) where the authors study models with multiple discount factors.
The analysis of this paper is bounded to exponential discounting in order to give a
generalization of under uncertainty that is as close at possible to Koopmans’ original
model.

The rest of the paper is organized as follows. Section 2 introduces the framework and
notation. In Sect. 3 we characterize the discounted expected utility model. Section 4
generalizes the previous section and contains our main result, the Choquet expected
discounted utilitymodel. Sections 5 treats the case of uncertainty aversion.We provide
some additional discussions in Sect. 6. Section 7 concludes. All proofs are gathered
in the Appendix.

2 Framework andmathematical preliminaries

Time is discrete and identifiedwithN = {0, 1, 2, . . . }. Let X be a connected, separable
and first-countable topological space. It will be interpreted as the space of outcomes.
For instance, if X is a convex subset ofRn , then x ∈ X may represent a bundle of goods.
Let � be a non-empty set of states of nature. A filtration (Ft )t over � is a sequence
of algebras such that F0 = {∅,�}3 and Ft ⊆ Ft+1 for all t ∈ N. We denote by F the
union of these algebras F := ∪tFt . A stochastic process h := (ht )t∈N is a sequence
such that ht is a Ft -measurable function from � to X for all t . We sometimes call
measurable functions random variables. The following technical assumption restricts
the set of stochastic processes that we consider.

Assumption. Stochastic processes are bounded and finite. Boundedness means that for
each act h there exists a compact set Kh ⊂ X such that ∪t ht (�) ⊂ Kh . Finiteness
means that for each act h there is a finitely generated algebra Ah ⊂ F such that ht is
Ah-measurable for all t ∈ N.

We denote by H the set of bounded and finite stochastic processes

H :={h=(ht )t∈N|ht : � → X , ht is Ft -measurable ∀t and h is finite and bounded}.

A sequence h ∈ H will be called act. The set D ⊂ H denotes the set of deterministic
acts: we have d ∈ D if and only if dt is a constant random variable for all t ∈ N and

3 F0 = {∅,�} is a standard requirement in the literature. However, one can consider a larger algebra if the
DM already has some information at t = 0.
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there exists a compact set Kd ⊆ X such that dt ∈ Kd for all t ≥ 0. As usual we identify
D with a subset of X∞. For example, if X = R then D = l∞, the set of real-valued
bounded sequences. When x ∈ X and d ∈ D, (x, d) denotes the act (x, d0, d1, . . . ).
Obviously the procedure can be repeated as in (x, y, d) = (x, y, d0, d1, . . . ) and so on.
Note that we do not invoke the convex structure of a mixture space as in the standard
Anscombe and Aumann (1963) setting. Instead, we use a purely subjective setup with
somemeasurability and topological assumptions. This frameworkwith the restrictions
that definesH was proposed by Kochov (2015), which is a relatively standard setting
that appears for instance (up to small differences) in Epstein and Wang (1995).

A (normalized) capacity v on themeasurable space (�,F) is a set functionv : F �→
R such that v(∅) = 0, v(�) = 1 and for all A, B ∈ F , A ⊂ B ⇒ v(A) ≤ v(B).
Given a capacity v on (�,F), the Choquet integral of a real-valued, bounded, F-
measurable function f : � → R with respect to v is defined as

∫

�

f dv :=
∫ 0

−∞
(v({ f ≥ t}) − 1) dt +

∫ +∞

0
v({ f ≥ t}) dt,

where { f ≥ t} = {ω ∈ �| f (ω) ≥ t}. A capacity v : F �→ R is convex if, for all
A, B ∈ F , v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B). A (finitely additive) probability
P : F �→ R is a capacity such that A ∩ B = ∅ implies P(A ∪ B) = P(A) + P(B).
The core of a capacity v is defined by core(v) = {P|P is a probability s.t. P(A) ≥
v(A)∀A ∈ F}. Finally, if P is a probability, then we denote the integral with respect
to P of a real-valued, bounded, F-measurable function f with the usual notation for
expectation

∫
�

f d P = EP [ f ].

3 Uncertainty and discounted expected utility

Section 3 characterizes the discounted expected utility model. The main novelty that
we introduce is an independence condition, called Strong Stationarity, that generalizes
in the context of uncertainty Koopmans’ original stationarity axiom. This section
motivates the results of Sect. 4 in which we argue that Strong Stationarity is actually
too restrictive and we propose a generalization.

Let � be a non-trivial (i.e. with a non-empty strict part �), complete and transitive
binary relation over H. Recall that an act h ∈ H is a bounded and finite stochastic
process: at time t = 0, Nature chooses a state ω ∈ � (hidden to the DM at any
finite time t) and the DM receives ht (ω) in period t . The relation � represents the
preferences of the DM over acts.4 While repeated choices are outside the scope of this
paper, as we want to stick to Koopmans (1972) original framework, we discuss them
briefly in Sect. 6.1. Preferences over outcomes in X are defined in the usual way, i.e.
x � y if and only if (x, x, . . .) � (y, y, . . .).

The following three axioms arewell known in the literature and are used for instance
in Koopmans (1972), Bleichrodt et al. (2008) and Kochov (2015). We refer to them
as basic axioms.

4 Note that the DM is choosing only at time t = 0. AsKoopmans’ (1972) put it: “no question of consistency
or inconsistency of orderings adopted at different points in time is raised”.
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Continuity (C) For all compact sets K ⊂ X and for all acts h ∈ H the sets {d ∈
K∞|d � h} and {d ∈ K∞|h � d} are closed in the product topology over K∞.

When X is a subset of Rn , continuity with respect to the product topology is
a stronger requirement than continuity with respect to the sup-norm topology, as
postulated by Koopmans (1972). However, as noted in Kochov (2015), axiom (C)
(together with the other axioms and non-triviality of the preference relation) makes it
possible to drop Koopmans’ metrizability assumption and his postulates P.2 and P.5.
Wegive aproof of this result inProposition4 inAppendixA.1 for sakeof completeness.

The next axiom, Time Separability, is exactly the same as Koopmans’ postulate
P.3, see Appendix A.1. Several authors drop this axiom in order to get endogenous
discounting, see for instance Epstein (1983) and Bommier et al. (2019).We keep Time
Separability in order to obtain a constant exponential discount factor.
Time Separability (TS) For all x, y, x ′, y′ ∈ X and d, d ′ ∈ D, (x, y, d) �
(x ′, y′, d) if and only if (x, y, d ′) � (x ′, y′, d ′).

Before introducing Monotonicity we need a piece of notation. Let h ∈ H and
ω ∈ �, then h(ω) denotes the (deterministic) sequence (h0(ω), h1(ω), . . . ) ∈ D.
Monotonicity (M) For all h, g ∈ H, if h(ω) � g(ω) ∀ω ∈ � then h � g.

Suppose that the DMprefers the deterministic act h(ω) rather than the deterministic
act g(ω) for every possible choice ω of Nature. Then (M) says that she should prefer
h to g.

The last axiom, Strong Stationarity, represents the main novelty of this section.
Let us first introduce the original stationarity axiom, proposed by Koopmans in the
deterministic setting, in order to make a comparison.
P.4 (K-Stationarity)5 For all x ∈ X and d, d ′ ∈ D, d � d ′ if and only if (x, d) �
(x, d ′).

P.4 asserts the following. Suppose that a DM prefers a deterministic stream d to
d ′. Postpone all elements of the two sequences one period ahead (d0 and d ′

0 will be
consumed in period 1, d1 and d ′

1 will be consumed in period 2 and so on) and introduce
a common period-zero consumption bundle x . Then she will prefer (x, d) to (x, d ′).
The same reasoning can be done the other way around: if two streams have a common
period zero consumption bundle, then it can be dropped, all the bundles can be shifted
one period back, and preferences will not change.

Remark 3.1 Note that K-Stationarity is equivalent to the following (apparently)
stronger stationarity property: for all t ∈N and d, d ′, c, c′, w∈D, (d0, . . . , dt−1, ct , d)

� (d0, . . . , dt−1, c′
t , d

′) if and only if (d0, . . . , dt−1, wt , ct , d) � (d0, . . . , dt − 1, wt ,

c′
t , d

′).
Consider two acts that may differ from period t on. Suppose that the DM prefers

(d0, . . . , dt−1, ct , d) to (d0, . . . , dt−1, c′
t , d

′). Then we can shift all bundles one period
ahead starting from period t , introduce a common bundle wt in period t and the DM’s
preferences will not change. The reasoning can be done the other way around: the
common bundle wt can be deleted and consumption can be anticipated.

Under uncertainty, consumption can be stochastic at some points in time. Consider
the following generalization of P.4, inspired by Remark 3.1.

5 K-Stationarity stands for Koopmans’ stationarity.
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Strong Stationarity (SS) For all t ∈ N, d, d ′ ∈ D and f , g, h ∈ H,

(d0, . . . , dt−1, ft , dt+1, . . . ) � (d0, . . . , dt−1, gt , d
′
t+1, . . . ) ⇔

(d0, . . . , dt−1, ht , ft , dt+1, . . . ) � (d0, . . . , dt−1, ht , gt , d
′
t+1, . . . )

The axiom of (SS) naturally generalizes K-Stationarity in light of Remark 3.1.
Preferences ought to be the sameafter shifts sinceweare only postponing (anticipating)
of one period the timing of consumption and inserting (deleting) a common variable
ht in both sequences, while keeping the information structure fixed. Note however
that now acts can be stochastic in period t as well as the common random variable ht
inserted (or deleted) in both sequences in period t .

Clearly (SS) implies the property in Remark 3.1 and hence K-Stationarity (just
consider (SS) over D). A caveat is in order, since acts are adapted to the filtration
(Ft )t , one needs to be careful not to shift back a Ft -measurable variable to period
t − 1, as this variable may not be Ft−1-measurable. Measurability is also the reason
why we need to state (SS) for all periods t , as in Remark 3.1, and not only for period 0.
If one states the axiom only for shifts starting at period 0, it would be possible to insert
only random variables that are measurable with respect to F0, i.e. constant random
variables (for more about this, see Sect. 5).

It is important to note that (SS) plays the role that the Independence axiom has in
the Anscombe–Aumann (1963) model. Shifting variables one period ahead (or one
period back) and inserting (or removing) a variable ht can be done independently of
the choice of the sequences and the variable ht . As we argued in the Introduction and
in Example 1, (SS) is too restrictive in presence of uncertainty. This motivates the
generalization that is given in Sect. 4.

Finally, note that there are two possible ways of generalizing K-Stationarity. Our
axiom, (SS), keeps the timing of resolution of uncertainty fixed while it changes the
date in which consumption takes place. Another way would be to change both dates of
resolution of uncertainty and consumption. The former generalization is considered
in Kochov (2015) and Bommier et al. (2017), the latter in Bommier et al. (2019).

We are ready to state the main result of this section. The basic axioms (C), (M) and
(TS) together with (SS) deliver the discounted expected utility representation in (1).

Theorem 1 A preference relation� overH satisfies (C), (M), (TS) and (SS) if and only
if there exists a probability P : F → [0, 1], a continuous utility index u : X → R

and a discount factor β ∈ (0, 1) such that � is represented by

V (h) = EP

[ ∞∑

t=0

β t u(ht )

]

Moreover P and β are unique and u is unique up to a positive affine transformation.

Theorem 1 can be derived from Theorem 5 (Section 5), as remarked by Kochov
(2015) (p. 244), by requiring indifference in the IntertemporalHedging axiom included
in his elegant characterization of an intertemporal version of the MaxMin expected
utility model of Gilboa and Schmeidler (1989). We think that the main merit of using
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StrongStationarity in a representation result for theDiscountedExpectedUtilitymodel
is that it is a direct generalization of Koopmans’ original axiom and that it can be
interpreted as an independence condition. Moreover, this leads to the interpretation
of such behavior as indicative of ambiguity neutrality in the sense of Ghirardato and
Marinacci (2002). We will elaborate more on this after Theorem 5.

A last remark is in order. In the literature, the utility function of Theorem 1 is
usually written

∞∑

t=0

β t
EP [u(ht )]

where the sum and the expected value operator are exchanged. Clearly this cannot
be done for the Choquet functional in (2) and for the MaxMin functional (which is
defined later in equation (4)). Howeverwe show in Proposition 1 that for the discounted
expected utility model of Theorem 1 both forms are possible.

Proposition 1 For all h ∈ H, EP
[∑

t β
t u(ht )

] = ∑
t β

t
EP [u(ht )].

4 Main result: Choquet expected discounted utility

While discounted expected utility, axiomatized in Theorem 1, is widely used in eco-
nomic applications, we argue that its behavioral foundations are not exempt from
criticisms. Example 1 below, already mentioned in the Introduction, shows that (SS)
may be too restrictive (this is why we call this axiom Strong Stationarity) as it neglects
possible hedging considerations made by the DM.

Example 1 Let X be an interval ofR. Acts are interpreted as stochastic flows of income.
Consider an event A ∈ Ft (this was the event “Democrats win the elections” in
the Introduction) and two acts f ∼ g, with f = (d0, . . . , dt−1, ft , dt+1, . . . ) and
g = (d0, . . . , dt−1, gt , dt+1, . . . ). These acts are constant in every period except in
period t in which they are defined by

ft (ω) =
{
10$ if ω ∈ A

0$ if ω ∈ Ac and gt (ω) =
{
0$ if ω ∈ A

10$ if ω ∈ Ac.

If � has the discounted expected utility representation of Theorem 1 (with u(0) = 0)
then f ∼ g implies β t

EP [u( ft )] = β t
EP [u(gt )] and hence P(A) = P(Ac) = 1

2 , i.e.
being indifferent reveals that the DM thinks that the two events A and Ac are equally
likely.

Consider now an act h ∈ H such that

ht (ω) =
{
0$ if ω ∈ A

7$ if ω ∈ Ac.
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If (SS) holds then one obtains

(d0, . . . , dt−1, ht , ft , dt+1, . . . ) ∼ (d0, . . . , dt−1, ht , gt , dt+1, . . . ).

Of course, indifference is obvious if preference are of the discounted expected utility
type.

However, as we have argued in the Introduction, deducing indifference in this latter
situation from f ∼ g is not straightforward. We argue that we may actually observe

(d0, . . . , dt−1, ht , ft , dt+1, . . . ) � (d0, . . . , dt−1, ht , gt , dt+1, . . . ).

This happens because in case of bad luck, formally forω ∈ A, the act on the right-hand
side of the preference relationmakes theDM“poor” for 2 consecutive dates (she gets 0$
in t and 0$ in t+1).Whereas, by choosing the act on the left-hand side, she can be sure
that shewill be“rich" in at least one period. Introducing ht in front of ft gives a temporal
hedge to the DM against any choice of nature. The reverse preferencemay be observed
as well, namely (d0, . . . , dt−1, ht , ft , dt+1, . . . ) ≺ (d0, . . . , dt−1, ht , gt , dt+1, . . . ).
This would be the choice of a DM who would like to leverage uncertainty in order to
get a high pay-off in case of “luck”. Finally, it could happen that a DM may want to
hedge against uncertainty for some events A ∈ Ft and leverage uncertainty for other
events B ∈ Ft . This last attitude may be explained by the competence hypothesis:
Heath and Tversky (1991) show in an experiment that DMs are uncertainty seeking
whenever they are betting over events forwhich they feel competent, but not otherwise.
All these attitudes are precluded by axiom (SS).

Recall that two random variables f , g from� to X are comonotonic if there is no ω

and ω′ in � such that f (ω) � f (ω′) and g(ω′) � g(ω). Note that a constant random
variable is comonotonic with any other random variable. If X is a convex interval of
R, two random variables f , g are comonotonic if for all ω,ω′ ∈ �,

[
f (ω) − f (ω′)

] ·[
g(ω) − g(ω′)

] ≥ 0. Comonotonic random variables are “positively correlated”.6 It
is not difficult to check that in Example 1 the variables ht and gt are comonotonic,
whereas ht and ft are not. Therefore, putting ht and ft one after the other can lead to
some considerations about (positive) correlation aversion/loving, which may reverse
preferences if we perform the shifts prescribed by stationarity.

If two consecutive random variables are not comonotonic, the DM can tempo-
rally hedge or leverage uncertainty. On the other hand, two consecutive comonotonic
random variables remove any such consideration.

The main novelty of our paper is represented by the axiom Comonotonic Stationar-
ity. This axiom weakens (SS) by taking into account temporal correlations. The idea
is simply to restrict the set of acts on which (SS) has a bite. The formal statement
follows.

6 We cannot properly speak about correlation since there is no probability defined on (�,A). However, if
� is finite it is possible to show that two real-valued random variables f , g are comonotonic if and only if
cov( f , g) ≥ 0 for all probabilities over (�,A).
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Comonotonic Stationarity (CS) For all t ∈ N, d, d ′ ∈ D and f , g, h ∈ H such
that ht is comonotonic with ft and gt ,

(d0, . . . , dt−1, ft , dt+1, . . . ) � (d0, . . . , dt−1, gt , d
′
t+1, . . . ) ⇔

(d0, . . . , dt−1, ht , ft , dt+1, . . . ) � (d0, . . . , dt−1, ht , gt , d
′
t+1, . . . )

Axiom (CS) allows the same type of shifts as (SS) onlywhen the randomvariable ht ,
inserted in period t , is comonotonic with the two random variables ft and gt . Therefore
(CS) generalizes (SS) (in the sense that (SS) implies (CS)) limiting its range of action.
Shifts can be performed only when no considerations about temporal correlations can
be done. For instance all preferences described in Example 1 are admissible under
(CS).

It is interesting to stress the conceptual similarity of axiom (CS) with the
axiomComonotonic Independence of Schmeidler (1989). Comonotonic Independence
restricts the classical Independence axiom of expected utility to comonotonic acts. In
the Anscombe and Aumann (1963) (atemporal) framework, acts are functions from
states of the world to lotteries over X . The Independence axiom says that for any
three acts f , g and h and any mixing weight α ∈ [0, 1], f � g if and only if
α f + (1 − α)h � αg + (1 − α)h. Comonotonic Independence retains this prop-
erty only when the act h is comonotonic with both f and g, see Schmeidler (1989). In
this latter case, no hedging can occur when h is mixed with f or g. In our framework,
hedging is not achieved by probability mixing but through “time mixing”. Hence (SS)
plays the role of Independence while (CS) the one of Comonotonic Independence.

The following is the main result of this section.

Theorem 2 A preference relation � over H satisfies (C), (M), (TS) and (CS) if and
only if there exists a capacity v : F → [0, 1], a continuous utility index u : X → R

and a discount factor β ∈ (0, 1) such that � is represented by

V (h) =
∫ ∞∑

t=0

β t u(ht )dv.

Moreover v and β are unique and u is unique up to a positive affine transformation.

Theorem 2 generalizes Theorem 1 allowing non-neutral attitudes towards cor-
relations and, therefore, towards uncertainty. Note however that Choquet expected
discounted utility does not axiomatically impose any particular behavior. Section 5
focuses on the particular case of uncertainty aversion.7

7 It is also interesting to note that the Choquet model has been fruitfully applied to an intertemporal setting
at least since Gilboa (1989). Gilboa’s paper however differs from ours since uncertainty is absent and the
Choquet integral is used to model aversion (or love) for variability of payments across time. Other papers
taking this approach are for instance Araujo et al. (2011) and Bastianello and Chateauneuf (2016).
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5 Uncertainty aversion

We consider here the particular (but relevant) case of uncertainty aversion. As it will
be clearer later, uncertainty aversion is akin to some form of pessimism. This justifies
the name of the following axiom.

Pessimistic Stationarity (PS) The preference relation � satisfies (CS). Moreover
for all t ∈ N, for all d ∈ D and for all f , g, h ∈ H such that ht is comonotonic with
gt ,

(d0, . . . , dt−1, ft , dt+1, . . . ) � (d0, . . . , dt−1, gt , d
′
t+1, . . . ) ⇒

(d0, . . . , dt−1, ht , ft , dt+1, . . . ) � (d0, . . . , dt−1, ht , gt , d
′
t+1, . . . )

It has the same interpretation of Wakker’s (1990) axiom Pessimism Independence.
See also Chateauneuf (1994). For a pessimistic DM shifting all variables one period
ahead starting from period t and inserting a comonotonic variable ht in front of gt
will decrease the appreciation of the act (d0, . . . , dt−1, gt , d ′

t+1, . . . ). On the other
end, the possibly non-comonotonic variable ht in front of ft will make the stream
(d0, . . . , dt−1, ft , dt+1, . . . )more appealing since it may offer a temporal hedge. Con-
sider again Example 1.

Example 1 - cont. Consider the acts of Example 1. If DM’s preferences satisfy (PS)
one will actually observe the path of choices described in Example 1, namely

f ∼ g ⇒ (d0, . . . , dt−1, ht , ft , dt+1, . . . ) � (d0, . . . , dt−1, ht , gt , dt+1, . . . ).

Let � be represented by the Choquet expected discounted utility functional V of
Theorem 2 (with u(0) = 0). First note that f ∼ g implies V ( f ) = β t u(10)v(A)+k =
β t u(10)v(Ac)+k = V (g)where k = ∑

i �=t β
i u(di ); and hence v(A) = v(Ac). Since

v it is not required to be additive, we may have v(A) �= 1
2 .

Call f̂ = (d0, . . . , dt−1, ht , ft , dt+1, . . . ) and ĝ = (d0, . . . , dt−1, ht , gt , dt+1, . . . )

and assume for the sake of calculations βu(10) > u(7) (the opposite case is
treated similarly and yields the same conclusions). Note that V ( f̂ ) = β t u(7) +
[β t+1u(10) − β t u(7)]v(A) + k′ and V (ĝ) = [β t u(7) + β t+1u(10)]v(Ac) + k′ where
k′ = ∑

i �=t,t+1 β i u(di ). Therefore f̂ � ĝ if and only if

u(7) + [βu(10) − u(7)]v(A) > [u(7) + βu(10)]v(Ac)

u(7)(1 − v(A)) > u(7)v(Ac) [since v(A) = v(Ac)]
v(A) + v(Ac) < 1

and hence v(A) < 1
2 . If v is actually convex, one gets v(A) + v(Ac) < 1, and in this

case one can observe f ∼ g and f̂ � ĝ. It is not difficult to find examples in which
v is convex and actually g � f and f̂ � ĝ. As Theorem 3 shows, (PS) forces the
capacity v to be convex.
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Note that (PS) implies (CS) and hence Theorem 2 remains valid if (CS) is replaced
by (PS). Since this latter axiom is stronger, we can prove in Theorem 3 that the capacity
appearing in the Choquet integral is convex.

Theorem 3 A preference relation� overH satisfies (C), (M), (TS) and (PS) if and only
if there exists a convex capacity v : F → [0, 1], a continuous utility index u : X → R

and a discount factor β ∈ (0, 1) such that � is represented by

V (h) =
∫ ∞∑

t=0

β t u(ht )dv.

Moreover v and β are unique and u is unique up to a positive affine transformation.

It is known that (see Schmeidler 1986) when v is a convex capacity the following
equality holds

∫ ∞∑

t=0

β t u(ht )dv = min
P∈core(v)

EP

[ ∞∑

t=0

β t u(ht )

]
. (3)

This equality suggests a sharp interpretation of aChoquet integralwith respect a convex
capacity v and justifies why we call pessimist a DM with preferences as the ones in
Theorem 3. When v is convex, an agent reasons as if she computes the discounted
expected utility for all probabilities in core(v) and then selects the minimal one.

If in (3) one replaces core(v) with a convex and closed set P of probabilities, then
one obtains the intertemporal version of the MaxMin expected utility model recently
axiomatized by Kochov (2015). MaxMin expected utility is a popular8 decision theo-
retic model axiomatized by Gilboa and Schmeidler (1989) in an atemporal framework
in order to address Ellsberg (1961) paradox. Consider the following axiom proposed
by Kochov (2015).
Intertemporal Hedging (IH) For all t ∈ N, for all d ∈ D and for all g, h ∈ H,

(d0, . . . , dt−1, ht , ht , dt+2 . . . ) ∼ (d0, . . . , dt−1, gt , gt , dt+2 . . . )

⇒ (d0, . . . , dt−1, gt , ht , dt+2 . . . ) � (d0, . . . , dt−1, ht , ht , dt+2 . . . )

The interpretation of (IH) is that a DM prefers to smooth consumption through
states rather than through time. This in turns implies that she is pessimistic vis-
à-vis Nature’s choice of the state of the world. We can note in fact that the act
(d0, . . . , dt−1, gt , ht , dt+2 . . . ) allows for a temporalmix thatmay provide some hedg-
ing against uncertainty. As explained byKochov (2015) this axiom is the intertemporal
counterpart to the Uncertainty Aversion axiom of Gilboa and Schmeidler (1989).

We show now that the representation of Theorem 3 can be obtained also using (IH)
and weakening (PS) to (CS).

8 There are several other famousmodels that deal with choice under uncertainty andmay exhibit non neutral
attitudes towards uncertainty. For instance the Choquet expected utility model of Schmeidler (1989), the
smooth ambiguity model of Klibanoff et al. (2005), the variational model of Maccheroni et al. (2006), the
confidence model of Chateauneuf and Faro (2009), prospect theory of Tversky and Kahneman (1992) etc.

123



1084 L. Bastianello, J. H. Faro

Theorem 4 A preference relation � over H satisfies (C), (M), (TS), (CS) and (IH) if
and only if there exists a convex capacity v : F → [0, 1], a continuous utility index
u : X → R and a discount factor β ∈ (0, 1) such that � is represented by

V (h) =
∫ ∞∑

t=0

β t u(ht )dv.

Moreover v and β are unique and u is unique up to a positive affine transformation.

The utility function in Theorem 3 and Theorem 4 is a particular case of the intertem-
poral MaxMin model studied by Kochov (2015)

V (h) = min
P∈P

EP

[ ∞∑

t=0

β t u(ht )

]
(4)

where P is a convex and closed (with respect to the weak* topology) set of probabil-
ities. Actually, if one sets P = core(v), the functionals in (3) and (4) are exactly the
same.

If one is willing to obtain Kochov’s (2015) Theorem 1, in which he characterizes
the utility function in (4), then (CS) should be weakened to the following axiom, called
Path Stationarity in Bommier et al. (2017).9

Path Stationarity (PathS) For all x ∈ X , d, d ′ ∈ D and f ∈ H,

(d0, . . . , dt−1, ft , dt+1, . . . ) � (d0, . . . , dt−1, gt , d
′
t+1, . . . ) ⇔

(x, d0, . . . , dt−1, ft , dt+1, . . . ) � (x, d0, . . . , dt−1, gt , d
′
t+1, . . . )

This axiom is weaker than (CS) since the outcome x ∈ X can be identified with
a constant random variable, which is comonotonic with all other variables. Note also
that it is not needed to state the axiom for all periods of time t ∈ N. A constant
random variable is Ft -measurable for all t ∈ N and therefore there are no measur-
ability concerns. The interpretation of this axiom is the same as for K-Stationarity.
Kochov (2015) underlines an interesting parallel between (PathS) and the Certainty
Independence axiom of Gilboa and Schmeidler (1989).

Proposition 2 shows how the different stationarity axioms presented in the paper
are linked one to another. We recall that (K-Stationarity) is due to Koopmans (1960,
1972) and characterizes discounted utility, see Proposition 5; (PathS) is due to Kochov
(2015) and characterizes MaxMin discounted expected utility, see Theorem 5 below;
finally axioms (SS), (CS) and (PS) are new and characterize discounted expected utility
and Choquet expected discounted utility, see Theorems 1, 2 and 3.

Proposition 2 The following implications hold:

(SS) ⇒ (PS) ⇒ (CS) ⇒ (PathS) ⇒ (K-Stationari ty).

9 This axiom is weaker than the one used by Kochov (2015), but one can show that it is sufficient to derive
his main result.
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Weakening (CS) to (PathS) and adding (IH) to the other basic axioms, allow us to
recover Kochov’s main result (see Kochov 2015 Theorem 1, p. 245).

Theorem 5 (Kochov 2015) A preference relation � over H satisfies (C), (M), (TS),
(PathS) and (IH) if and only if there exists nonempty weak*-closed convex set P of
probabilities, a continuous strictly increasing utility index u : X → R and a discount
factor β ∈ (0, 1) such that � is represented by

V (h) = min
P∈P

EP

[ ∞∑

t=0

β t u(ht )

]
.

Moreover P and β are unique and u is unique up to a positive affine transformation.

Some remarks are in order. First, it is clear that the discounted expected util-
ity model, obtained in Theorem 1, could be derived requiring indifference in (IH)
and applying Theorem 5, as remarked by Kochov (2015). However we believe that
(SS) is conceptually closer to the independence axiom of a-temporal expected utility
and closer in spirit to Koopmans’ original axiomatization. In some sense, deriving
discounted expected utility from Theorem 5 would be as deriving expected utility
from Gilboa and Schmeidler (1989), without knowing the Independence axiom of
Anscombe and Aumann (1963). Second, the multiple prior model postulates uncer-
tainty aversion (or seeking) as an axiom. In the intertemporal framework this is implied
by (PS) or (IH). We believe that (CS) and therefore the Choquet expected discounted
utility model with a general (e.g. not convex) capacity have a different flavor. This
model obtains when (SS) is relaxed in order to perform the shifts of stationarity only
when no considerations about temporal correlations arise. Hence, Choquet expected
discounted utility does not take any stance about the attitude towards uncertainty of a
DM. Note that this model can handle the competence hypothesis of Heath and Tver-
sky (1991): this is done considering a capacity that is neither convex nor concave. For
instance one can think about the neo-additive capacities defined by Chateauneuf et al.
(2007).

6 Discussion

6.1 Dynamic choices and updating

While dynamic choices are outside the scope of this paper, as our main purpose
is to provide a sound axiomatiozation of Koopmans’ (1972) intertemporal model
under uncertainty, we will briefly discuss in this section some issues about dynamic
preferences and some open research questions.

In the previous sections, the DM was only deciding at time t = 0. Suppose now
that the agent can express a preference at every time t . Clearly at time t she knows that
the true state of nature ω belongs to Ft (ω) = ∩{A ∈ Ft |ω ∈ A}, i.e. Ft (ω) denotes
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the intersection of all sets in Ft that contain ω.10 Therefore for each ω and t she will
have a preference relation �t,ω over H.

Two classical axioms imposed on the class of preferences {�t,ω}t∈N,ω∈� in the
context of repeated choice are Consequentialism and Dynamic Consistency. Conse-
quentialism says that preferences at a certain date t do not depend neither on previous
dates nor on states of nature that do not belong to Ft (ω). Formally,

Consequentialism (Co) For all t ∈ N, ω ∈ � and f , g ∈ H such that fk(ω′) =
gk(ω′) for all k ≥ t and for all ω′ ∈ Ft (ω), f ∼t,ω g.

Dynamic Consistency postulates that, if two acts f and g are equal up to time t ,
and in period t + 1 f is preferred to g in all states of the world, then f ought to be
preferred to g at time t .

Dynamic Consistency (DC) For all t ∈ N, ω ∈ � and f , g ∈ H such that fk = gk
for all k ≤ t and such that f �t+1,ω′ g for all ω′ ∈ Ft (ω), f �t,ω g.

When preferences are of the discounted expected utility type, as the ones axioma-
tized in Theorem1, it is well known that (Co) and (DC) imply that�t,ω is characterized
by the recursive formula

Vt,ω(h) = u(ht (ω)) + βEPt,ω

[
Vt+1,·(h)

]
(5)

and one has

Vt,ω(h) = EP

⎡

⎣
∑

k≥t

βk−t u(ht ) | Ft (ω)

⎤

⎦ .

Hence Pt,ω is the Bayesian update of P given information Ft (ω). See Kreps and
Porteus (1978) and Skiadas (1998) for recursivity and discounted expected utility. For
general results on (monotone) recursive preferences see a recent paper of Bommier
et al. (2017).

When preferences are of the Choquet expected discounted utility type, as the ones
axiomatized in Theorem 2, things get more complicated since there is not a unique
way to update a capacity. The three most well known updating rules for capacities
are the Dempster–Shafer updating rule (Dempster 1968; Shafer 1976), naive Bayes’
updating rule (Gilboa and Schmeidler 1993), and generalized Bayesian updating rule
(Dempster 1967; Fagin and Halpern 1991; Jaffray 1992). Let v : F → [0, 1] be a
capacity and consider a set A ∈ F such that A �= ∅,�, then the three updating rules
are respectively

vDS
A (E) = v((E ∩ A) ∪ Ac) − v(Ac)

1 − v(Ac)

vN B
A (E) = v(E ∩ A)

v(A)

vGB
A (E) = v(E ∩ A)

v(E ∩ A) + 1 − v(E ∪ Ac)

10 In the study of repeated choice Ft is assumed to be finitely generated for all t .
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were the denominators are assumed to be strictly positive. Note that if v is additive,
the three updating rules boil down to Bayesian updating.

It is known that, if a capacity is updated with one of these rules, (DC) is violated
in general. Eichberger et al. (2007) and Horie (2013) show that a weakening of (DC),
adapted from the one proposed by Pires (2002) for the multiple prior model, leads to
generalized Bayesian updating. Asano andKojima (2019) propose two different relax-
ations of (DC) that yield Dempster–Shafer and naive Baye’s updating rules. Another
path is followed by Dominiak and Lefort (2011) who restrict (DC) to suitably defined
non-ambiguous events and show that in this case the correct updating rule is the
naive Baye’s one. A different approach is the one of Siniscalchi (2011), who studies
consistent-planning for preferences over decision trees. Finally, in a recent paper Gul
and Pesendorfer (2018) propose a consequentialist and recursive model of updating
for totally monotone capacities and derive a new updating rule called the proxy rule.

This variety of results indicates how delicate is the issue of updating a capacity and
its consequences for (DC). Moreover, the axiom of (CS) do not ensure recursivity. For
this reasons, we do not address the issue of the recursive formulation of the Choquet
expected discounted utility model and its appropriate updating rules. This is an open
area for future research.

6.2 About the stationarity conditions

Note that for acts involved in our stationarity axioms, consumption is stochastic in
only two periods, t and t + 1. These axioms are necessary and sufficient to derive our
results. One natural question is whether our representation results imply some form
of stationarity for acts in which consumption is stochastic in several (maybe infinitely
many) periods. We propose in this section two stronger versions of (SS) and of (CS)
in order to take into account this case. A strengthening of (PathS) was already given
in Kochov (2015).

Consider the following two axioms.
Strong Stationarity’ (SS’) For all t ∈ N, f , g, h ∈ H,

(h0, . . . , ht−1, ft , ft+1, . . . ) � (h0, . . . , ht−1, gt , gt+1, . . . ) ⇔
(h0, . . . , ht−1, ht , ft , ft+1, . . . ) � (h0, . . . , ht−1, ht , gt , gt+1, . . . )

Comonotonic Stationarity’ (CS’) For all t ∈ N, d ∈ D and f , g, h ∈ H such
that ht is comonotonic with fi and gi for all i ≥ t ,

(d0, . . . , dt−1, ft , ft+1, . . . ) � (d0, . . . , dt−1, gt , gt+1, . . . ) ⇔
(d0, . . . , dt−1, ht , ft , ft+1, . . . ) � (d0, . . . , dt−1, ht , gt , gt+1, . . . )

Axiom (SS’) is a strengthening of (SS) as consumption could be stochastic in every
period. Note however that the two consumption streams must be equal in the first t
periods. Axiom (CS’) allows the same type of shifts as (SS’) only when the random
variable ht , inserted in period t , is comonotonic with all random variables after period
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t for both acts f and g. Moreover the first t periods of consumption must be equal
and deterministic.

It is easy to see that (SS’) and (CS’) are strengthening of (SS) and (CS) respectively.
Therefore these axioms are sufficient to derive our results. The next proposition shows
that they are also necessary.

Proposition 3 Formula (1) implies (SS’) and formula (2) implies (CS’).

7 Conclusions

In this paper we make two contributions that can be of high interest for economists
working with problems that involve decisions through time and under uncertainty.

Our first contribution is to show how a Strong Stationarity axiom is the key behav-
ioral condition behind discounted expected utility in a purely subjective framework.
Strong Stationarity plays the same role as the Independece axiom for decisions under
uncertainty in an atemporal setting.

Second,we argue that Strong Stationarity neglects agents’ hedging behavior. Strong
Stationarity is subject to the same critiques as the Independece axiom. We solve this
problem introducing a new axiom, Comonotonic Stationarity. This latter condition
allows us to generalize the discounted expected utility model to the Choquet expected
discounted utility model. Our axioms have a simple interpretation, akin to the original
stationarity condition of Koopmans (1960, 1972). Testing these new axioms in the lab
and studying dynamic choices will be the focus of subsequent explorations.
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A Appendix

Proposition 5 in Appendix A.1 derives a discounted utility representation over the set
of deterministic streams D using the axioms of Sect. 3. This result is known since
Koopmans (1960, 1972). There are however few differences (e.g. Koopmans assumes
continuity w.r.t. the sup-norm topology while we use the product topology) and this
is why we include it in this appendix. Appendix A.2 uses Proposition 5 in order to
derive our main theorems.

A.1 The deterministic setting

We derive in Proposition 5 a discounted utility representation V (d) = ∑∞
t=0 β t u(dt )

for � over the setD of deterministic acts. This is done in several steps. First, we show
in Proposition 4 that the axioms (C), (T S), (M) and (SS) of Sect. 3 imply Koopmans’
(1972) original postulates P.1–5. Second, we show in Lemma A.3 that P.1–5 imply the
axioms of Bleichrodt et al. (2008). Finally we use Theorem 6 (proved in Bleichrodt
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et al. (2008)) to derive the representation. We detail the proof to make our paper as
self-contained and explicit as possible. The reader who is familiar with Koopmans
(1960, 1972) and Bleichrodt et al. (2008) can skip Appendix A.1.

The following postulates, P.1–5, where considered first by Koopmans (1972).
P.1 (Continuity) For all compact sets K ⊂ X and for all deterministic acts d ′ ∈ D, the
sets {d ∈ K∞|d � d ′} and {d ∈ K∞|d ′ � d} are closed in the product topology over
K∞.
P.2 (Sensitivity) There exist x, y ∈ X , d ∈ D such that (x, d) � (y, d).
P.3 (Time Separability) For all x, y, x ′, y′ ∈ X and d, d ′ ∈ D, (x, y, d) � (x ′, y′, d)

if and only if (x, y, d ′) � (x ′, y′, d ′).
P.4 (K-Stationarity) For all x ∈ X and d, d ′ ∈ D, d � d ′ if and only if (x, d) � (x, d ′).
P.5 (K-Monotonicity) Let d, d ′ ∈ D. If dt � d ′

t for all t , then d � d ′; if moreover
dt � d ′

t for some t then d � d ′.
We list now the alternative axioms studied by Bleichrodt et al. (2008).

Notation: given T ∈ N, XT = {(x0, x1, . . . , xT , α, α)|x0, . . . , xT , α ∈ X}. Note that,
for any T ∈ N, there is a one-to-one function from XT and the product XT+1.

Ultimate Continuity (UC). � is continuous (with respect to the product topology) on
each set XT , i.e. the sets {x ∈ XT |x � y} and {x ∈ XT |y � x} are closed for all
y ∈ XT .

Constant equivalent (CE).� satisfies constant equivalence if for all d ∈ D there exists
a constant sequence xd ∈ D such that d ∼ xd .

Tail Robustness (TR). � satisfies tail robustness if for all constant sequence x ∈ D, if
d � (≺)x then there exists t ∈ N such that (d0, . . . , dT , x, x, ) � (≺)x for all T ≥ t .

Theorem 6 (Bleichrodt et al. 2008) Let � be defined over D′ ⊃ D, a domain that
contains all ultimately constant programs, then TFAE:

(i) Discounted Utility holds over D′ with u continuous and not constant.
(ii) � satisfies P.2, P.3, P.5, UC, CE, TR.

In Observation 3, Bleichrodt et al. (2008) noticed that “Tail robustness can also be
replaced by monotonicity if [D′] contains only bounded programs.” Boundededness
means that for every d ∈ D′ there exist x, y ∈ X such that x � d � y.

Remark The definition of D (compactness) and P.5 imply boundedness. Therefore
Observation 3 of Bleichrodt et al. (2008) applies.

We show now that the axioms of Sect. 3 imply P1–5.

Proposition 4 (C), (T S), (M) and (SS) imply P.1–5.

Proof It easy to see that (C) ⇒ P.1, (T S) ⇔ P.3, (SS) ⇒ P.4.

Lemma A.1 (C), (M) and (SS) imply P.2.

Proof See Lemma 5 in Kochov (2015). ��
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Lemma A.2 (C), (T S) and (SS) imply P.5.11

Proof Recall that if x, y ∈ X , we define x � y ⇔ (x, x, . . . ) � (y, y, . . . ). We
introduce the notation (nx, d) = (x, . . . , x︸ ︷︷ ︸

n−times

, d) and x̄ = (x, x, . . . ).

Claim Let x, y ∈ X and d ∈ D. Then (x, d) � (�)(y, d) ⇔ x � (�)y.

(⇒) We have (x, d) � (�)(y, d)
(T S)⇐�⇒ x̄ = (x, x̄) � (�)(y, x̄)

(SS)⇐�⇒ (y, x̄) � (�)

(y, y, x̄). Hence reasoning by induction and using transitivity of � we get x̄ � (�)

(y, x̄) � (�)(n y, x̄). Since (n y, x̄) converges to ȳ as n → ∞, by (C) we obtain
x � (�)y.
(⇐) Suppose x � (�)y. If there exists d ∈ D such that (y, d) � (�)(x, d), then by
the first part of this proof y � (�)x , which is impossible. Since � is complete we
conclude that (x, d) � (�)(y, d).

This conclude the prof of the Claim.
Let d, d ′ ∈ D such that dt � d ′

t for all t ∈ N. Fix n ∈ N, since dn � d ′
n , (SS)

then implies (dn−1, dn, dn, . . . ) � (dn−1, d ′
n, d

′
n, . . . ). Moreover the Claim yields

(dn−1, d ′
n, d

′
n, . . . ) � (d ′

n−1, d
′
n, d

′
n, . . . ) and by transitivity (dn−1, dn, dn, . . . ) �

(d ′
n−1, d

′
n, d

′
n, . . . ). Applying n times this reasoning we obtain

(d0, d1, . . . , dn, dn, . . . ) � (d ′
0, d

′
1, . . . , d

′
n, d

′
n, . . . )

Since n was arbitrary, this is true for all n ∈ N. When n tends to infinity, the sequence
on the left hand-side of the preference converges to d, and the one to the right hand-side
converges to d ′ in the product topology. Then (C) implies d � d ′.
Suppose now that in addition dt � d ′

t for some t . By the Claim we have
(dt , dt+1, . . . ) � (d ′

t , dt+1, . . . ). Applying t times (SS) we obtain

(d0, . . . , dt−1, dt , dt+1, . . . ) � (d0, . . . , dt−1, d
′
t , dt+1, . . . ).

By the Claim, for all n ≥ t (d0, . . . , dt−1, d ′
t , dt+1, . . . ) � (d ′

0, . . . , d
′
n, dn+1 . . . ).

Since the latter sequence converge tod ′, by (C)wehave (d0, . . . , dt−1, d ′
t , dt+1, . . . ) �

d ′ and hence d � d ′. ��
Therefore we proved that (C), (T S), (M) and (SS) imply P .1–5. ��
We show that the axioms P1–5 entail the representation with exponential discounted
utility.

Proposition 5 A preference relation � overD satisfies P.1–5 if and only if there exists
a continuous function u : X → R and a discount factor β ∈ (0, 1) such that � is
represented by

V (d) =
∞∑

t=0

β t u(dt ).

11 A similar statement appears without a formal proof in the proof of Lemma 7 in Kochov (2015). We
provide a proof for sake of completeness.
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Moreover β is unique and u is unique up to a positive affine transformation.

Proof of Proposition 5 In order to prove Proposition 5, we will show that postulates
P.1–5 imply the axioms of Bleichrodt et al. (2008). By the Remark after Theorem 6,
we only need to show UC and CE.

Lemma A.3 If a preference relation � over D satisfies P.1–5 then it satisfies UC and
CE.

Proof We show that � satisfies UC. Fix T ∈ N and y ∈ XT . We will show that the
set Uy = {x ∈ XT |x � y} is closed.

Let (x̂n)n be a sequence inUy such that x̂n → x̂ .Note that x̂n = (x̂n0 , x̂n1 , . . . , x̂nT , α̂n,

α̂n, . . . ). By definition x̂n → x̂ if and only if x̂ni → x̂i for all i ∈ N, with x̂ni = α̂n

for all i ≥ T + 1. Since x̂n ∈ XT , α̂n → α̂ and this implies that x̂ ∈ XT . The sets
Ci = {x̂ni |n ∈ N}, i = 0, . . . , T , and Cα = {α̂n|n ∈ N} are compact and hence

C = (∪T
i=0Ci

) ∪ Cα is compact. Since x̂ ∈ D, there is a compact set K̂ such that

x̂t ∈ K̂ for all t ∈ N. Therefore K = C ∪ K̂ is compact and x̂n, x̂ ∈ K∞ for all
n ∈ N. Consider now U = {d ∈ K∞|d � y}. We have therefore that for all n ∈ N,
x̂n � y and x̂n ∈ U , moreover x̂n → x̂ and sinceU is closed by P.1 we obtain x̂ � y.
Hence Uy is closed.

We show that � satisfies CE. Fix d ∈ D, and let Kd be a compact set such that
dt ∈ Kd for all t ∈ N. By compactness, there are x0, x1 ∈ Kd such that x0 � dt � x1
for all t ∈ N. By P.5 we have x0 � d � x1. Consider A = {y ∈ co(Kd)|ȳ � d} and
B = {y ∈ co(Kd)|d � ȳ}, where ȳ denotes the constant sequence ȳ = (y, y, . . . )
and co(Kd) is the convex hull of Kd . By P.1, A, and B are closed and since x0 ∈ A
and x1 ∈ B they are both non empty. By connectedness of X we have that co(Kd) is
connected and therefore there exists xd ∈ co(Kd) such that xd ∼ d. ��
Lemma A.3 and Theorem 6 of Bleichrodt et al. (2008) imply Proposition 5. ��

A.2 Proof of themain results

Proof of Theorem 2 We first prove necessity of the axioms. Monotonicity (M) and
Time Separability (TS) follow from the properties of monotonicity and comonotonic
additivity of the Choquet integral. Continuity (C) is proved as inKochov (2015). Given
a compact set K ⊆ X , one has that |β t u(dt )| ≤ β t M for some upper bound M of
the function u (this bound exists since u is continuous over a compact set). By Rudin
(1976), Theorem 7.10, the function d → ∑n

t=0 β t u(dt ) converges uniformly on K∞.
Hence (C) follows from Rudin (1976), Theorem 7.11. Necessity of Comonotonic
Stationarity (CS) is shown in Proposition 3.

We turn now to sufficiency. A simple modification of Proposition 4 shows that (C),
(T S), (M) and (CS) imply P .1–5. Hence, by Proposition 5 there exists a continuous
function u : X → R and a discount factor β ∈ (0, 1) such that the restriction of �
over D is represented by the functional

U (d) =
∞∑

t=0

β t u(dt ).
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Moreover β ∈ (0, 1) is unique and u unique up to a positive affine transformation.
We can note that connectedness of X and continuity of u imply that u(X) is an

interval. By Lemma A.1 this interval has non-empty interior. Re-normalize w.l.g. u so
that [−1, 1] ⊆ u(X) and let x∗ ∈ X be such that u(x∗) = 0.

Lemma A.4 For every h ∈ H there exists dh ∈ D s.t. h ∼ dh.

Proof See Lemma 8 of Kochov (2015). ��
Define the function V : H → R by V (h) := U (dh). SinceU represents preferences

over D, the function V is well defined and represents preferences over H. Consider
now the set

U :=
{
U ◦ h :=

∑

t

β t u(ht )|h := (ht )t ∈ H
}

.

For every h ∈ H, U ◦ h ∈ U is a function U ◦ h : � → R and will be denoted by
capital letters.

Define now the function I : U → R as I (H) := V (h) where h ∈ H is such that
U ◦ h = H . Note that I is well defined by monotonicity: if H = U ◦ h = U ◦ h′ then
h(ω) ∼ h′(ω) for all ω ∈ � , by (M) h ∼ h′ and therefore V (h) = V (h′).

Recall that F = ∪tFt . We denote Bo := Bo(�,F ,R), i.e. the set of simple,
real-valued F-measurable functions over �. Given a set A ∈ F , 1A ∈ Bo denotes the
indicator function of the set A.

Lemma A.5 For all a ∈ Bo, there exists δ > 0 such that a ∈ δU , i.e. U is an absorbing
subset of Bo.

Proof We need a slight modification of the proof of Lemma 9 in Kochov (2015) in
order to take into account our definition of (SS). Consider his proof and let h ∈ H
such that hk = x∗ for all k �= t and ht = f .12 ��

The next lemma extends I : U → R to Ĩ : Bo → R and shows that Ĩ is translation
invariant and β-homogeneous.

Lemma A.6 ( Ĩ is translation invariant) There exists a unique functional Ĩ : Bo → R

such that the restriction Ĩ |U of Ĩ on U is such that Ĩ |U = I . Moreover for every
a ∈ Bo, for every α ∈ R, Ĩ (βa) = β Ĩ (a) and Ĩ (a + α) = Ĩ (a) + α.

Proof See Lemma 10, Lemma 11 and Lemma 12 of Kochov (2015). ��
Lemma A.7 Let a, b, c ∈ Bo be such that c is comonotonic with a and b. Then Ĩ (a) =
Ĩ (b) ⇔ Ĩ (a + c) = Ĩ (b + c).

Proof Fix a, b, c ∈ Bo such that c is comonotonic with a and b. Since a, b, c are in
Bo there exists t1 ∈ N such that a, b, c are Ft1 -measurable. Moreover there is t2 ∈ N

12 Note that Kochov defines U as U (d) = (1 − β)
∑∞

t=0 βt u(dt ).
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such that the range of β t2a, β t2b and β t2c is included in [−1, 1]. Pick n ≥ max{t1, t2}
and define for all t ∈ N and for all ω ∈ �

ft (ω) :=
{
x∗ if t �= n

u−1(βna(ω)) if t = n.
(6)

Note that f ∈ H since it is finite (because a is finite), and u−1(βna(ω)) is Fn-
measurable since βna(ω) is Ft1 -measurable and Ft1 ⊆ Fn . In the same way define
g and h using b and c respectively in the place of a. We have that U ◦ f = β2na,
U ◦ g = β2nc and U ◦ h = β2nc. Hence

Ĩ (a) = Ĩ (b) ⇔ Ĩ (β2na) = Ĩ (β2nb) ⇔ I (U ◦ f ) = I (U ◦ g) ⇔ V ( f )

= V (g) ⇔ f ∼ g.

Note now that hn is comonotonic with fn and gn (and with x∗) and therefore by (CS)
f ∼ g iff

f h := (x∗, . . . , x∗, hn︸︷︷︸
n

, fn︸︷︷︸
n+1

, x∗, . . . ) ∼ (x∗, . . . , x∗, hn︸︷︷︸
n

, gn︸︷︷︸
n+1

, x∗, . . . ) =: gh

and therefore V ( f h) = V (gh). SinceU ◦ f h = β2nc+β2n+1a andU ◦ gh = β2nc+
β2n+1b then Ĩ (β2nc + β2n+1a) = Ĩ (β2nc + β2n+1b). Therefore (using Lemma A.6)
we proved that Ĩ (a) = Ĩ (b) ⇔ Ĩ (c + βa) = Ĩ (c+ βb). However by Lemma A.6 we
have

Ĩ (a) = Ĩ

(
β

β
a

)
= β Ĩ

(
1

β
a

)
⇔ Ĩ

(
1

β
a

)
= 1

β
Ĩ (a)

and therefore

Ĩ (a) = Ĩ (b) ⇔ Ĩ

(
1

β
a

)
= Ĩ

(
1

β
b

)
⇔ Ĩ

(
c + β

1

β
a

)

= Ĩ

(
c + β

1

β
b

)
⇔ Ĩ (a + c) = Ĩ (b + c)

��
We will prove now that Ĩ satisfies comonotonic additivity on Bo.

Lemma A.8 ( Ĩ satisfies comonotonic additivity) Let a, b ∈ Bo be comonotonic, then
Ĩ (a + b) = Ĩ (a) + Ĩ (b).

Proof Take a, b ∈ Bo s.t. a is comonotonic with b. By Lemma A.6 (translation
invariance) Ĩ (a) = Ĩ (0+ Ĩ (a)). Since b is comonotonic with a and with the constant
function Ĩ (a), Ĩ (a + b) = Ĩ ( Ĩ (a) + b) = Ĩ (a) + Ĩ (b) the first equality coming from
Lemma A.7 and the second one from Lemma A.6. ��
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Let a, b ∈ Bo, then a ≥ b means a(ω) ≥ b(ω) for all ω ∈ �. We will prove now
that Ĩ is monotone.

Lemma A.9 ( Ĩ is monotone) Let a, b ∈ Bo be such that a ≥ b, then Ĩ (a) ≥ Ĩ (b).

Proof By Lemma A.5 there is n ∈ N such that βna, βnb ∈ U . Let f , g ∈ H be such
that U ◦ f = βna and U ◦ g = βnb. Then U ◦ f (ω) ≥ U ◦ g(ω) for all ω ∈ � and
by monotonicity f � g. Hence V ( f ) ≥ V (g) ⇔ Ĩ (βna) ≥ Ĩ (βna) ⇔ Ĩ (a) ≥ Ĩ (a)

(where the last equivalence comes from Lemma A.6). ��

We will prove now that Ĩ is positively homogeneous.

Lemma A.10 ( Ĩ is positively homogeneous) For all α ≥ 0, for all a ∈ Bo Ĩ (αa) =
α Ĩ (a).

Proof This comes from Lemma A.8 and Lemma A.9 as noticed by Schmeidler (1986)
in Remark 1 p. 256. ��

We proved therefore that Ĩ : Bo → R satisfies comonotonic additivity
(Lemma A.8) and positive homogeneity (Lemma A.10) and thus defining defining
v(A) = Ĩ (1A) for A ∈ F , we can use Proposition 1 of Schmeidler (1986) and we can
conclude that for all a ∈ Bo

Ĩ (a) =
∫

adv.

Hence for all f , g ∈ H,

f � g iff I (U ◦ f ) ≥ I (U ◦ g) iff
∫ ∑

t

β t u( ft )dv ≥
∫ ∑

t

β t u(gt )dv.

We turn to uniqueness. The fact that that β is unique and u is unique up to positive
affine transformation comes from Proposition 5.
Suppose now that the preference relation is represented by J (U ◦ f ) := (1 −
β)

∫ ∑
t β

t u( ft )dv′. Fix A ∈ F , let x1 ∈ X be such that u(x1) = 1 and consider the
stream f ∈ H defined by

ft (ω) =
{
x1 if ω ∈ A

x0 otherwise

for every t ∈ N. Note that U ◦ f = 1A
1−β

and therefore J (U ◦ f ) = v′(A) and
I (U ◦ f ) = v(A). Take x ∈ X such that u(x) = v(A) and define g ∈ H by
g := (x, x, . . . ). SinceU ◦g = v(A)we obtain that I (U ◦g) = v(A) = I (U ◦ f ) and
therefore f ∼ g. Note that J (U ◦g) = v(A), and since we supposed that J represents
the preference relation over H, then v(A) = J (U ◦ g) = J (U ◦ f ) = v′(A). ��
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Proof of Theorem 1 Repeating the same steps as in Theorem 2, we can note that the
functional Ĩ is additive on Bo, i.e. for all a, b ∈ Bo

Ĩ (a + b) = Ĩ (a) + Ĩ (b).

This comes from the fact that (SS) does not restrict additivity to comonotonic acts.
Consider now two sets A, B ∈ F s.t. A ∩ B = ∅. We have that 1A∪B = 1A + 1B .
Therefore

v(A ∪ B) = Ĩ (1A∪B) = Ĩ (1A + 1B) = Ĩ (1A) + Ĩ (1B) = v(A) + v(B).

Which implies that v is a probability. ��
Proof of Theorem 3 Necessity is shown as in the proof of Theorem 2, using the fact
that when v is convex,

∫
(a+b)dv ≥ ∫

adv+∫
bdv for all a, b ∈ Bo (see Proposition

3 of Schmeidler (1986)).
We prove sufficiency. Since (PS) implies (CS) the proof of Theorem 2 is valid. The

only thing that is needed to show is that v is convex, i.e. v(A ∪ B) + v(A ∩ B) ≥
v(A) + v(B).
Let Ĩ : Bo → R be the functional defined in the proof of Theorem 2.

Lemma A.11 Let a, b, c ∈ Bo be such that c is comonotonic with b. Then Ĩ (a) =
Ĩ (b) ⇒ Ĩ (a + c) ≥ Ĩ (b + c).

Proof It follows using (PS) and doing the proof as in Lemma A.7. ��
Let A, B ∈ F . Note that Ĩ (1A) = v(A) = Ĩ (v(A)1�) and Ĩ (1B) = v(B) =

Ĩ (v(B)1�). Since 1B is comonotonic with v(A)1�, by LemmaA.11 it follows Ĩ (1A+
1B) ≥ Ĩ (v(A)1� + 1B) = v(A) + Ĩ (1B) = v(A) + v(B). Note that 1A + 1B =
1A∪B +1A∩B , and moreover 1A∪B and 1A∩B are comonotone. Hence by comonotonic
additivity of the Choquet integral

v(A ∪ B) + v(A ∩ B) = Ĩ (1A∪B) + Ĩ (1A∩B) = Ĩ (1A∪B + 1A∩B)

= Ĩ (1A + 1B) ≥ v(A) + v(B).

��
Proof of Theorem 4 The proof follows from Theorem 1 of Kochov (2015) and the
Proposition in Schmeidler (1989) p. 582. ��
Proof of Proposition 1 Fix h ∈ H. Since h is bounded there exists a compact set Kh ⊆
X such that∪t ht (�) ⊂ Kh . Since u : X → R is continuous, we can findM ∈ R+ such
that |u(x)| ≤ M for all x ∈ Kh . Hence ∀t ∈ N and ∀ω ∈ �, β t |u(ht (ω))| ≤ β t M .
Since

∑
t β

t M converges to M
1−β

, by Theorem 7.10 of Rudin (1976), the series of

functions
∑

t β
t u(ht ) converges uniformly on �. Define Hn = ∑n

t=0 β t u(ht ) and
H = ∑∞

t=0 β t u(ht ). Since Hn converges uniformly to H on �, for every ε > 0, there
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exists N ∈ N s.t. n ≥ N implies supω |Hn(ω) − H(ω)| < ε. Hence, for n ≥ N , using
the fact that P is a probability

∣∣∣∣
∫

HndP −
∫

HdP

∣∣∣∣ ≤
∫

|Hn − H | dP <

∫
εdP = ε

where the first inequality follows from Theorem 4.4.4 (ii) and (iii) of Rao and Rao
(1983) (note that Hn and H are simple functions by the finiteness of acts). This implies
that the series converges and limn

∫
HndP = ∫

HdP . Rewriting explicitly we obtain

∑

t

β t
EP [u(ht )] = lim

n

n∑

t=0

β t
∫

u(ht )dP

= lim
n

∫ n∑

t=0

β t u(ht )dP=
∫ ∑

t

β t u(ht )dP=EP

[
∑

t

β t u(ht )

]
.

��
Proof of Proposition 3 We only prove that formula (2) implies (CS’) as the other impli-
cation can be readily shown.
Fix t ∈ N, d ∈ D and f , g, h ∈ H such that ht is comonotonic with fi and gi for all
i ≥ t . Note that ht is comonotonic with fi if and only if for all ω,ω′ ∈ �

[
u(ht (ω)) − u(ht (ω

′))
] [
u( fi (ω)) − u( fi (ω

′))
] ≥ 0,

and the same is true for gi . Let ω and ω′ be in �, we have

[
u(ht (ω)) − u(ht (ω

′))
]
⎡

⎣
∑

i≥t

β i+1u( fi (ω)) −
∑

i≥t

β i+1u( fi (ω
′))

⎤

⎦

= lim
n→∞

n∑

i=t

β i+1 [
u(ht (ω)) − u(ht (ω

′))
] [
u( fi (ω)) − u( fi (ω

′))
] ≥ 0.

Therefore ht is comonotonic with
∑

i≥t β
i+1u( fi ) and

∑
i≥t β

i+1u(gi ). Denoting

δ = ∑t−1
i=1 β i u(di ), and using the fact that the Choquet integral satisfies comonotonic

additivity and positive homogeneity we get

(d0, . . . , dt−1, ht , ft , ft+1, . . . ) � (d0, . . . , dt−1, ht , gt , gt+1, . . . ) ⇔
∫

δ + β t u(ht ) +
∑

i≥t

β i+1u( fi )dv ≥
∫

δ + β t u(ht ) +
∑

i≥t

β i+1u(gi )dv ⇔

δ+
∫

β t u(ht )dv+β

∫ ∑

i≥t

β i u( fi )dv ≥ δ+
∫

β t u(ht )dv + β

∫ ∑

i≥t

β i u(gi )dv ⇔
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∫ ∑

i≥t

β i u( fi )dv ≥
∫ ∑

i≥t

β i u(gi )dv ⇔
∫

δ +
∑

i≥t

β i u( fi )dv ≥
∫

δ +
∑

i≥t

β i u(gi )dv ⇔

(d0, . . . , dt−1, ft , ft+1, . . . ) � (d0, . . . , dt−1, gt , gt+1, . . . ).

��
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