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Abstract

Helical particles are ubiquitous in nature. Many natural and synthetic biomolecules like

polynucleotides and polypeptides; colloidal suspensions like �lamentous (fd) virus and

helical �agella and certain organic molecules are found in helical shape. Despite their

abundance in nature, understanding of the phase behaviour of helical particles is poor.

These helical molecules have a well known propensity to form liquid crystal phases. The

chirality in the helical shapes in�uence their liquid crystal organization. Experimental

results of the liquid crystal phases shown by these molecules are often compared to those

of rods, neglecting the e�ect of helical shape on phase behaviour. We have undertaken

an extensive investigation of the phase diagram of hard helical particles using Monte

Carlo simulations. We provide evidence of new chiral phases exhibiting screw-like order.

This new chiral phase is di�erent to the cholesteric phase and is characterized by the C2

symmetry axes of helices spiralling around the nematic director with periodicity equal

to the particle pitch. We have used Isobaric Monte Carlo simulations to obtain a full

phase diagram of helical particles. A rich polymorphism is observed exhibiting a special

screw-like nematic and a number of screw-like smectic phases. The e�ect of helical shape

on the phase diagram is studied by considering di�erent shapes of helix obtained by

tuning the helical parameters like radius and pitch. We found a remarkable change in

the phase behaviour with the change in the shape of helix. Dense packing structures

of di�erent helical shapes are found by implementing Isopointal set Structural Search

Method (ISSM). The physical mechanism underlying the liquid crystal order observed

in helical �agella is explained.
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with r = 0.2 and p = 8, calculated at η = 0.515, P ∗ = 1.3, in polar smectic
B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.19 The perpendicular correlation function g⊥(R⊥) for helices with r = 0.2
and p = 8, calculated at η = 0.515, P ∗ = 1.3, in polar smectic B. . . . . . 84

6.20 Hexatic order parameter 〈ψ6〉 as a function of volume fraction η for helices
with r = 0.2 and p = 8. Points are plotted in di�erent colours to indicate
di�erent phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.21 Average number of nearest neighbours 〈n〉 as a function of volume fraction
η for helices with r = 0.2 and p = 8. Points are plotted in di�erent colours
to indicate di�erent phases. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.22 Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.458 in
screw-smectic A phase. The colouring of beads is done according to the
local tangent of the helix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.23 Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.458 in
polar-smectic B phase. The colouring is done according to the C2 axes of
the helices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of Figures xii

6.24 Q4 and Q6 bond order parameters as a function of volume fraction η for
helices with r = 0.2 and p = 8. Points are plotted in di�erent colours to
indicate di�erent phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.25 Figure showing the sequence of phases and their representative snapshots
in the case of helices with r = 0.2 and p = 8. . . . . . . . . . . . . . . . . 87

6.26 Equation of state for the system of helices having r = 0.2, p = 4. Di�erent
colours indicate di�erent phases. I - isotropic; N - nematic; N∗S - screw-
nematic; Sm∗A,S - screw-smectic; SmB,S - screw-smectic B; C - compact
phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.27 Nematic order parameter 〈P2〉 as a function of volume fraction η for helices
with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.28 Screw-like order parameter 〈P1,c〉 as a function of volume fraction η for
helices with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . . . . . . . . . 89

6.29 Smectic order parameter 〈τ1〉 as a function of volume fraction η for helices
with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.30 Hexatic order parameter 〈ψ6〉 as a function of volume fraction η for helices
with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.31 Average number of nearest neighbours 〈n〉 as a function of volume fraction
η for helices with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . . . . . . 91

6.32 Average Q4 and Q6 bond order parameters as a function of volume fraction
η for helices with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . . . . . . 91

6.33 Figure showing the sequence of phases and their representative snapshots
in the case of helices with r = 0.2 and p = 4. . . . . . . . . . . . . . . . . 92

6.34 Equation of state for the system of helices having r = 0.4, p = 4. Di�erent
colours indicate di�erent phases. I - isotropic; N∗S - screw-nematic; SmB,S

- screw-smectic B; C - compact phase . . . . . . . . . . . . . . . . . . . . . 92
6.35 Average Q4 and Q6 bond order parameters as a function of volume fraction

η for helices with r = 0.4 and p = 4. . . . . . . . . . . . . . . . . . . . . . 93
6.36 The parallel correlation function g‖(R‖) for helices with r = 0.4 and p =

4, calculated at η = 0.493, P ∗ = 1.5, in screw smectic B phase. . . . . . . 94
6.37 The parallel correlation function g⊥(R⊥) for helices with r = 0.4 and p =

4, calculated at η = 0.493, P ∗ = 1.5, in screw-smectic B phase. . . . . . . 94
6.38 The screw orientational parallel correlation function gŵ1,‖(R‖) for helices
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Chapter 1

Introduction

1.1 Liquid crystals

Matter was for a long time classi�ed into three states: solid, liquid and gas. This picture

changed in the late eighteen eighties, when it was discovered that the transition between

solid and liquid states is not always direct. It is possible for a series of transitions to occur

between solid and liquid, giving rise to intermediate phases called mesophases. These

mesophases have structural, optical and mechanical properties between those of solid

and liquid. For this reason, these mesomorphic phases are termed as `liquid crystals'[6]

[7].

Liquid crystals were �rst discovered in 1888 by Austrian botanist Friedrich Reinitzer

[8], while doing experiments on cholesteryl benzoate. Instead of a direct solid to liquid

transition, he found that it undergoes two transitions: solid �rst melts into cloudy liquid

and then to a clear liquid. Later Otto Lehmann performed polarised optical microscopic

measurements con�rming the crystal behaviour of the cloudy liquid and coined the word

�liquid crystal" for the intermediate phase. Until 1960's, few studies were done because of

the lack of direct applications of liquid crystals. Research on liquid crystals dramatically

increased in 1970's and 1980's after the discovery of switchable optical properties of

liquid crystals for display technologies. Di�erent types of systems, like micellar solutions

of surfactants [9], certain organic molecules, polymers [10] and many biomolecules [11]

exhibit liquid crystalline phases.

In solids, molecules are constrained to occupy lattice sites and point their molecular

axes in a speci�c direction. Thus a crystal exhibit three dimensional positional order

and orientational order. In liquids, molecules usually occupy random positions and

posses random orientations. Thus liquid lacks long-range positional or orientational

1
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(a)                                         (b)

Figure 1.1: System of rod-like particles in (a) isotropic liquid-like state and (b) crystal
state

order. Figure 1.1 shows an example of isotropic �uid with random orientations and a

crystal structure of the system of rods.

Liquid crystals are characterized by the orientational order and positional order either in

one or two dimensions [6] [7]. They exhibit liquid like order in at least one direction and

posses degree of anisotropy which is characteristic of some sort of order. Typically these

requirements are met if the particles are anisotropic in shape either rod-like or disc-like

[12] [13]. However all anisotropic molecules do not form liquid crystal phases [14].

1.2 Liquid crystal phases formed by anisotropic molecules

Molecules having shape anisotropy may have three types of order. The simplest order is

orientational order [15] [16]. This describes the extent of alignment of symmetry axes of

molecules along a speci�c direction. The second type is positional or translational order

in either one or two dimensions. Positional order is a general term describing the extent

of translational symmetry shown by molecules. The third is the bond orientational order.

Here bond is not a chemical bond but a line joining the adjacent molecules. Depending

on the type of order present, molecules exhibit di�erent liquid crystalline phases. On

going from the least ordered phase (isotropic (I) shown in 1.1) to the most ordered phase

(crystal) with increasing density, we see the following liquid crystal phases.
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n̂

Figure 1.2: Alignment along director n̂ in nematic phase

The Nematic phase (N)

The simplest liquid crystal phase is the nematic phase (N). Nematic phases are character-

ized by long range orientational order (usually of a single particle axis) and the absence of

long-range positional order. In the nematic phase, all molecules orient themselves along

a speci�c direction denoted as a director n̂. The word nematic is derived from a Greek

word νηµα (nema), which means thread. This is because of thread like disclinations

observed in the nematic phase. In rod shaped molecules, the long axis of the molecules

is the director and in the disc-shaped molecules the normal to the disc is the director.

The correlation lengths, parallel to n̂ and perpendicular to n̂ are not equal. The uniaxial

symmetry of the director is an important feature of the nematic phase i.e., n̂ and -n̂ are

not distinguishable. Random distribution of centres of mass about n̂ indicates the lack of

positional order. It is important to understand the long range orientational order which

is causing the anisotropic properties of the nematic phase. The details of the uniaxiality

and nematic order parameter are discussed in detail in chapter 3.

The smectic A phase (SmA)

The second common type of liquid crystal phase is called smectic phase. Semctic phases

have layered structure and thus more ordered compared to nematic phase. The director

and the normal to the layer are the two main directions in smectic phases. The word

`smectic' is derived from a Greek word smektikos, which means soap. This is because the

thick and slippery substance at the bottom of a soap is smectic liquid crystal. There are

several types of smectic phases showing important structural variations. The simplest is

smectic A SmA. The presence of positional order in the same direction that the particles
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smectic

 layer

n̂

Figure 1.3: Schematic of alignment in smectic A phase in the system of rods

are aligned leads to SmA. SmA can be viewed as stacking of two dimensional �uids with

well de�ned inter-layer spacing. All molecules are oriented in parallel direction to the

layer normal as shown in the �gure 1.3. This phase is incompressible and uniaxial. More

details about the characterization of di�erent smectic phases are given in chapter 6.

The smectic B phase(SmB)

This phase is characterized by a layered structure and long range bond orientational

order within the layers. As mentioned before, bonds are the lines joining the adjacent

molecules. The system possesses bond orientational order if the orientation of these bonds

is maintained over a long range. The molecules can best pack in a hexagonal structure

giving rise to six fold symmetry in the orientation of bonds. In SmB phase, molecules

posses local hexagonal ordering within the layers and their orientational alignment is

the same as that observed in SmA. This is a special class of smectics [17]. This phase

is characterized by long range positional order in the direction perpendicular to layers

and short range positional order within the layers. A top view of the molecules within

a plane in SmA, SmB and a crystal structure is shown in the �gure 1.4. The top view

of the layer in SmA phase shows a random arrangement of particles while SmB phase

shows short range hexagonal order and crystal shows long range hexagonal order.

Tilted smectics: smectic C phase (SmC)

The SmC phase is similar to SmA phase as this is a layered structure and positions

of molecules in each layer are random. However, molecules are on average, tilted with

respect to the layer normal. The layer normal and the director are not collinear as shown

in �gure 1.5. There are various tilted phases possessing di�erent structures just like the

untilted phases.
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(a) (b) (c)

Figure 1.4: A top view of molecules within a layer of (a) SmA showing no hexagonal
ordering (b) SmB showing short range hexagonal order and (c) crystal like structure

with long range hexagonal order

Figure 1.5: Schematic of the tilted layers in SmC phase. θ is the tilt angle with
respect to the director n̂. Dashed lines are the guidelines indicating the average layer

positions

There are 12 di�erent smectic phases identi�ed so far. The list of all these phases is given

in the table 1.1. This classi�cation is done based on the tilt position of the layer and the

bond orientational order in molecular packing. Some of these phases are considered as

crystal smectics.

1.2.1 Liquid crystal phases of chiral molecules

A molecule which cannot be superimposed on its mirror image is called a chiral molecule

eg. helix. A molecule is achiral when an improper rotation (which is a combination

of a rotation and a re�ection in a plane perpendicular to the axis of rotation) results

in the same molecule. Chiral molecules lack such kind of symmetry. Handedness is a

phenomenon which is able to classify the chiral molecules into `right-' and `left-' handed
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Table 1.1: Reported smectic phases

Smectic type Phase type Molecular packing Tilt position

A �uid random orthogonal
B hexatic hexagonal orthogonal
C �uid random tilted
D plastic micellar?, rod? �
E crystal orthorhombic orthogonal
F hexatic pseudo-hexagonal tilt to side
G crystal pseudo-hexagonal tilt to side
H crystal herringbone monoclinic tilted
I hexatic pseudo-hexagonal tilt to apex
J crystal pseudo-hexagonal tilt to apex
K crystal herringbone monoclinic tilted
L crystal hexagonal orthogonal

http://www.mc2.chalmers.se/pl/lc/engelska/tutorial/smectable.html

[18]. �All handed objects are chiral but not all chiral objects are handed" [18] eg. potato.

A system is said to be homochiral if all the molecules of the system are of the same chiral

form (same handedness). Nearly all bio-polymers are homochiral in nature. Amino acids

that comprise proteins are left handed and all sugars in DNA and RNA tend to be right

handed.

The chirality in the molecular shape has strong impact on liquid crystal properties. Usu-

ally chiral mesophases are formed by chiral mesogens. Recent results have shown some

achiral molecules forming chiral mesophases [19]. However, the origin of the chirality

and the propagation of chirality from individual molecule to mesophase is still an open

question. Chiral mesophases are characterized by the helical twisting of the long axis of

the molecules. Like achiral molecules, chiral molecules form nematic and smectic phases

with an additional helical twist.

The chiral nematic or cholesteric phase N∗

The nematic phase shown by chiral molecules is called chiral nematic or cholesteric phase

N∗. The intrinsic chirality of the molecule produces intermolecular forces that favour

alignment of molecules but at a slight angle to one another. This leads to the helical

distortion of the nematic director n̂ in which n̂ rotates about its perpendicular direction

say `z' with an angle 2π/P . Here P is cholesteric pitch which is equal to the distance

it takes for n̂ to make 360o rotation. Chiral nematic phase can be viewed as a stack of

nematic layers with the director showing some twist with respect to the director in the

layers below and above. In a chiral nematic phase the director shows a continuous helical

twist about the direction perpendicular to the director `z' as illustrated in the �gure 1.7.

The double headed black arrows in the �gure represent the orientation of the director in

the layers. Chiral nematic phases which have a small twist and large cholesteric pitch
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Figure 1.6: Schematic structure of a right-handed chiral nematic phase. Black arrows
represent the orientation of director, which rotates perpendicularly to z-axis in a helical

manner.

are considered locally nematic. The chiral phases are usually designated with an asterisk

next to letter eg. N∗. Chiral molecules also exhibit chiral tilted phases like the chiral

smectic C Sm∗C in which the director precesses about the layer normal in going from

layer to layer.

1.3 Why helices?

Helical shape has always a special importance in nature. Many systems like polynu-

cleotides, polypeptides and viruses acquire helical shapes. Because of their shape anisotropy,

all these particles exhibit liquid crystal phases at high densities. At such high densities,

the shape of the helices start to be relevant and a�ects the liquid crystal ordering. New

functional materials [20] [21]can be produced by exploiting the intrinsic chirality of the

helical structures, which are useful in catalysis and demixing of enantiomers [22] [23].

Bio-molecules like nucleic acids, proteins, carbohydrates and fats exhibit liquid crystal

phases [11]. Their synthetic counterparts are also studied for biological applications

such as biosensors. Biological liquid crystals are known to display hexagonal, smectic,

blue phases, chiral-nematic and nematic phases depending on various parameters. The

rigid shape anisotropy, the ionic environment that regulates charge on molecule and the

concentration of molecules dictate the phase of the liquid crystal.

Table 1.2 shows some examples of bio-molecules and their liquid crystal organization [11].

Although all these molecules have chiral structure, TMV virus form a nematic phase,

the fd virus, DNA (Deoxyribonucleic acid) and collagen form chiral nematic phase and
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Table 1.2: Examples of biological liquid crystals

Biomaterial liquid crystal organization

DNA isotropic - blue phases - precholesteric - cholesteric - hexagonal
Collagen coexistence, isotropic and chiral nematic phases
fd virus �nger-print texture chiral-nematic phases
TMV coexistence, isotropic - nematic

Helical �agella from S typhimurium coexistence, isotropic and conical

helical �agella form a new phase called a `conical phase' [5]. The reason for this behaviour

remains unknown and some of these issues will be addressed in this work.

Because of its biological interest, DNA is the most emblematic of all helical biomolecular

systems. The DNA molecules can be compacted to give high-ordered packing struc-

tures. At such high concentrations, DNA molecules show liquid crystal phases like blue,

cholesteric, hexagonal columnar or hexatic [24] and crystalline phases which are sensi-

tive to various parameters [11]. DNA is a right handed helix, but makes left handed

superhelices in cholesteric phase. The features of the cholesteric phase like pitch and

handedness depend on the geometry of the helix [25] [26]. Due to the end to end hy-

drophobic interactions, short DNA duplexes stack one top on other forming a long DNA.

Due to stacking, DNA does not show smectic phases but allow very short DNA to make

cloumnar phase. Rill et al. mistakenly identi�ed a smectic phase for nucleosomal DNA

[27], but later Livolant disproved this claim by looking at the defects in the texture. The

same end-to-end interaction was later invoked by Zanchetta et al. in their study of the

mesophase behavior of the ultra-short DNA [1]. The densest liquid crystalline phase of

DNA is the columnar hexagonal [28]. Long range hexagonal bond orientational order

with short positional order is found in case of long DNA [24]. In the phase diagram

of long DNA, the hexatic phase of very long DNA displaces the columnar hexagonal

phase present for the short fragment DNA. The hexatic order is analysed in the Chapter

6. Due to the similarity in shape, dsDNA (double stranded Deoxyribonucleic acid) are

often approximated to rods, overlooking the e�ect of helical shape. The coexistence lines

of liquid crystal phases obtained from the experiments on DNA are often compared to

those predicted by the Onsager theory and computer simulations done on hard sphero-

cylinders. To compare with the phase diagram of spherocylinder, the e�ective diameter

of the helix is considered as the diameter of the spherocylinder. Figure 1.7 shows recent

experimental results on short DNA where the helices are assimilated to rods [1]. Also the

numerical simulations on DNA stacking are done by mimicking helix to rod-like struc-

ture [2]. Kornyshev modelled DNA as a cylinder with helical charge distribution on the

surface of the cylinder as shown in �gure 1.8 to study electrostatic interactions [3] [4].

This clearly tells us that the e�ect of helical shape on the liquid crystal phase diagram

of DNA has been neglected.
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Figure 1.7: Nano scale B-DNA approximated to cylinders. The Stacking of DNA is
shown by the stacking of cylinders. This picture is taken from the work done by Michi

Nakata etal. [1]

Figure 1.8: (a) Coarse-grained model of DNA duplexes used in studying the stacking
interaction of DNA. This picture is taken is taken from the work done by Cristiano
etal. [2]. (b) dsDNA represented by dielectric cylinders with helical strands of point-
like negative charges at the surface. This picture is taken from the work done by Alexei

A. Kornyshev etal. [3] [4]

Other interesting helical systems showing liquid crystal phases are the suspensions of

�lamentous bacterophages, denoted by fd viruses and helical �agella. The rod like fd

virus is a micron-length semi �exible poly-electrolyte formed by a ssDNA(single stranded

DNA) around which proteins are coated [29]. The suspensions of fd virus in aqueous

solutions form isotropic, chiral nematic, smectic and columnar phases [11]. Although

fd virus has helical charge distribution, they can be sterically stabilized by binding

polymers on its surface [30]. Due to the electrostatic repulsion, the e�ective diameter

Deff is larger than the diameter of the bare molecule and Deff changes with ionic

strength. It is reported that the �exibility of the virus depends on the temperature

[31]. The advantage with this kind of colloidal suspensions is that they are monodisperse
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Figure 1.9: Left: Helical shape of fd virus. Picture taken from the ref. Right: Length
distribution of �agella isolated from strain SJW1103 and �orescently labelled �agella

showing di�erent shapes. This picture is taken from the work [5].

enough to form smectic phases [32] [33]. Although TMV and pf1 viruses are chiral in

structure, they form nematic instead of chiral nematic phase [29]. Like this, there are

several questions unexplained about the phase behaviour of virus particles. The results

obtained are always compared with the results obtained from the Onsager theory of

hard rods. There are obvious deviations from the theory. Our model of interest i.e.,

hard helices are more similar to this colloidal virus suspensions than the hard rods.

Thus �nding the phase behaviour of helical particles help us to understand the phase

behaviour of fd virus.

Flagellar �laments are helical structures assembled from a single protein called �agellin.

The advantage of this �agellum is that its helical shape is tunable. From rod-like shapes

to curly helical shapes can be produced by changing the �agellin amino acid sequence,

the pH and the temperature of the suspension [5]. Though the �agella are chiral, studies

report that they do not exhibit a chiral nematic phase. Instead it is reported that they

show �conical phase". This will be focussed again in chapter 3. Figure 1.9 shows the

helical shapes of fd virus and �agellum.

In order to gain a better understand on the liquid crystal behaviour of these biomolecules,

it is necessary to study the e�ect of helical shape on liquid crystal phases. We have

modelled a right handed helix as a chain of hard spheres and performed Monte Carlo

simulation to obtain the liquid crystal phases. Di�erent shapes of helix are studied by

varying the helical parameters. We have taken the phase diagram of hard spherocylinder

as the reference since hard-helix approaches hard-rod in the limit.

1.4 Phase behaviour of hard rods

Before going to discuss about the phase behaviour of helix, I will introduce the phase

diagram of spherocylinders [34]. Figure 1.10 shows the phase diagram of hard spero-

cylinders. Di�erent liquid crystal phases are shown by plotting volume fraction against
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Figure 1.10: Phase diagram of hard spherocylinders

logarithm of aspect ratio. The aspect ratio of spherocylinder is de�ned as L/D where

L is the length of the spherocylinder and D is the width of the helix. From the �gure

we can say, the system of hard spherocylinders form isotropic (I), nematic (N), smectic

A (SmA) and solid phases. The triple points I-SmA-solid and I-N-SmA are found at

L/D = 3.1 and L/D = 3.7, respectively. Monte Carlo simulation techniques like NVT,

NPT and variable shape constant volume Monte Carlo are used to equilibrate the system

[35] [12].

We plan to follow the similar techniques in order to obtain a phase diagram of hard

helices. However, We need to resort to certain special techniques in order to speed up

the simulation. This will be explained in detail in chapters 2 and 3. Because of the

non-convex shape of hard helices, we need to consider large system sizes and e�cient

algorithms to reduce the computational cost. Any deviation from this phase diagram

helps to draw important conclusions about the e�ect of a helical shape. Our study of the

phase behaviour of hard helices not only tells the e�ect of helical shape on liquid crystal

phases but also introduce new phases ascribable to the helical shape. This might help in

understanding experimental results of the fd virus and helical �agella.
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1.5 Thesis outline

In this thesis, I �rst give a brief introduction of Monte Carlo methods that are used in this

work in Chapter 2. In Chapter 3 I present results on isotropic to nematic phase transition

of hard helical particles. Chapter 4 is dedicated to the isopointal set structural search

method which is used to �nd dense packing of hard helices. In Chapter 5 I introduce the

new chiral nematic phase called `screw nematic' which is particular to helical shape. In

Chapter 6 I present full phase diagram of helical particles including high density smectic

phases.



Chapter 2

Monte Carlo methods

2.1 Introduction

Calculating the properties of a condensed matter system by solving the equations of

motion is not feasible because of the large number of atoms(≈ 1023) in the system.

Bringing the system to thermodynamic equilibrium by allowing the system to interact

with surroundings makes the problem even more complex. With the help of statistical

mechanics, this problem can be conveniently transferred to calculating the average prop-

erties of large enough systems by treating them in a probabilistic way. Any equilibrium

property can be obtained by taking the average of the corresponding thermodynamic

variable over the microstates collected with the probability density appropriate to the

imposed equilibrium conditions.

As an example, let us consider a canonical system of N atoms in a volume V and

temperature T . The partition function Z of such system is given by

Z =

∫
dpNdrN exp[−βH(rN ,pN )] (2.1)

where rN denotes the coordinates of all N particles, pN denotes corresponding momenta,

H is the Hamiltonian of the system and β = 1
kBT

. The probability of �nding the system

in state i is proportional to the Boltzmann factor exp(−βHi). The thermal average of

any equilibrium property A is given by,

〈A〉 =
1

Z

∫
dpNdrNA(rN ,pN ) exp[−βH(rN ,pN )] (2.2)

13
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Using thermodynamic relations, other macroscopic equilibrium properties can be ob-

tained. Thus the problem is simpli�ed to that of �nding the properties in a given ensem-

ble. An ensemble consists of all microstates of an equilibrium macroscopic system under

a particular set of thermodynamic constraints. We de�ne di�erent ensembles depending

on the nature of the constraints such as micro-canonical, canonical and grand canonical

ensembles.

The important imposition for generating microstates is ergodicity. Macroscopic prop-

erties measured in experiments are time averaged quantities. The time scale of the

observation is very large when compared to the switching time scale from one microstate

to another [36]. Because of this, we can assume that system visits all accessible mi-

crostates during the observation time. Hence a macroscopic quantity obtained by taking

an average over a suitable ensemble is equivalent to the time averaged quantity [37]

[38]. In order to ensure that the system is in equilibrium, the sampling of microstates

should obey a condition termed �detailed balance", which requires that the forward and

backward rates of any transition between states are equal.

Construction of equilibrium ensembles by generating microstates according to the Hamil-

tonian of the system is viable by computer simulation. Monte Carlo (MC) and Molecular

Dynamics (MD) are the two popular and powerful methodologies followed in computer

simulations. Using MD, one can construct an equilibrium ensemble by solving New-

ton's equations of motion numerically. On the other hand MC methods ignore the

dynamics and kinetics of the system, and simply attempt to accurately sample the mi-

crostates of an ensemble by making a random change in the system with probabilities

carefully chosen to give reliable average thermodynamic properties. In the present work,

we employ Monte Carlo techniques in di�erent ensembles like canonical ensemble (NVT),

isothermal-isobaric ensemble (NPT) and grand canonical ensemble (µ,V,T) to study the

phase behaviour of the hard helices. In this chapter, I brie�y explain Monte Carlo sim-

ulation in all three ensembles.

2.2 Importance sampling

To sample e�ciently, we need to collect large number of microstates representative of

the thermodynamic ensemble. Simple MC moves may result in poor sampling of mi-

crostates, increasing the variance. Estimates from any �nite sample risk su�ering from

poor statistics, and the uncertainty in the results is directly related to the variance of

the sample observed. Importance sampling is one of the variance reduction techniques

and helps to sample points from the region of interest. The probability of observing a

particular system energy depends on two independent measures; one is the abundance
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of states with a particular energy, D(E) and the other is the Boltzmann factor, which

favours the occupation of lower energy states. For a canonical system, the density of

states D(E) increases with energy E and the Boltzmann factor associated with energy

E is given by exp(−βE) [39].The resultant probability distribution P (E) is given by

P (E) = D(E) exp(−βE) (2.3)

Using importance sampling, the microstates are sampled according to probability density

P (E). The computer implementation of importance sampling Boltzmann distribution

given by 2.3 is known as Metropolis Monte Carlo algorithm [40]. The average of macro-

scopic quantities in the canonical ensemble are calculated by averaging over the sampled

micro states. According to eq. 2.2, one needs to know Z to compute averages, which

is not known. Metropolis proposed an elegant method to construct ensembles which

requires no knowledge of the partition function.

2.3 Metropolis algorithm

The purpose of the algorithm is to generate a Markov chain of microstates starting

from an initial con�guration C0 i.e, C0 → C1 → C2.....Ck → Ck+1...... These states

are generated by performing a random walk in the con�guration space according to

the probability distribution. From the initial con�guration say Ci having energy Ei,

a trial con�guration Ct with energy Et is generated by making a random move in the

con�guration. This move is accepted or rejected according to the acceptance probability

which is proportional to the ratio of probabilities associated with Ci and Ct,
exp(−βEt)
exp(−βEi)

.

The ratio cancels out the partition function in both numerator and denominator.

Thus the acceptance probability is given by

p = min(1, exp[−β(Et − Ei)]) (2.4)

The algorithm proceeds as follows:

• Let Ci be the current con�guration with energy Ei
• Generate a trial con�guration Ct by making a random move to one of the randomly

chosen particles in Ci. Calculate its energu Et
• If Et ≤ Ei then accept the trial con�guration: Ci+1 = Ct

• If Et > Ei, calculate the ratio of Boltzmann weights, p = exp[−β(Et − Ei)]
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Select a random number ζ. If ζ < p accept trail con�guration: Ci+1 = Ct

else reject the trial con�guration and set Ci+1 = Ci.

By iterating over the whole procedure, we can generate a Markov chain. The asymptotic

part of the Markov chain consists of con�gurations that belong to the canonical ensemble.

2.4 Monte Carlo in various ensembles

The �rst importance sampling MC simulation is implemented on hard disks by Metropo-

lis in 1953. Since then studying atomic and molecular �uids by MC has been an active

research area. Solids and dilute �uids can be treated analytically using statistical Me-

chanics. Where as studying highly correlated dense �uids is very di�cult. This is where

simulations are useful to study phase transitions in �uids.

The general approach of formulating MC simulation in any ensemble of interest consists

of the three steps.

i. Determining the microstate probability distribution for the ensemble of interest

ii. Determining the set of MC moves accomplishing changes in all �uctuating quatities.

iii. Imposing the detailed balance condition to �nd the acceptance criterion

2.4.1 Canonical Monte Carlo simulation (NVT MC)

Implementation of the Metropolis algorithm in canonical ensemble(NVT) is described in

section 2.3. But in order to get the equation of state, we need to know pressure. It is

not straight forward to obtain pressure from NVT MC since this is an intensive variable.

However, using virial theorem, one can obtain the value of pressure.

P ∗ = ρkBT +
1

3V

〈∑
i<j

f(−→r i −−→r j).(−→r i −−→r j)
〉

(2.5)

where as ρ is the number density, f(ri − rj) is the force between the particles i and

j. Forces can be easily calculated for continuous and pair wise interactions as the force

is directly related to the derivative of the potential. So the virial theorem can be re-

expressed in terms of pair correlation function.

P ∗ = ρkBT −
2

3
πρ2

∫ ∞
0

drr3
du(r)

dr
g(r) (2.6)
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However, this expression does not work for discontinuous potentials like the hard core

potential which is in the form of

u(r) =∞, r < r0

u(r) =0, r > r0

We need to use other techniques like NPT MC to study phase transitions of such systems.

2.4.2 Isothermal-isobaric Monte Carlo simulation (NPT MC)

Isothermal-isobaric Monte Carlo simulations were �rst described by W. W. Wood [41].

He explained this in the context of hard disks. McDonald was the �rst to apply NPT

MC on Lennard-Jones mixture [42]. Isothermal isobaric ensemble is widely used in

MC because most of the experiments are done at controlled pressure and temperature.

Constant NPT MC simulations are used to �nd equation of state for the systems where

virial expression for pressure cannot be calculated. To study �uid-solid transitions or to

study transitions between mesophases like liquid crystals, NPT MC is very useful. These

systems exhibit �rst order phase transitions showing a jump in the �rst derivatives of

thermodynamic variables. By choosing volume as the extensive variable, there is a risk

that system might fall into a forbidden region, where it is not able to access any of the

coexisting phases. Where as at constant pressure, the system is completely free to �nd

the lowest free energy state. So NPT MC is the convenient technique to simulate systems

in the vicinity of �rst order transitions.

To derive the partition function for the canonical ensemble, we assume that our system

with constant N, V and T is in contact with a large heat bath. This thermal contact

between the system and a reservoir allow system to have energy �uctuations at constant

T. Thus we obtain the Boltzmann factor. To derive the partition partition function in

the isothermal-isobaric ensemble, the system is considered to be in thermal contact with

heat bath and mechanically coupled with a volume bath. The mechanical coupling allows

the system to change its volume in order to keep its pressure constant. So the heat bath

acts a thermostat and volume bath acts as barostat.

Since the volume of the box changes, it is convenient to express the coordinates rN in

scaled units of box length L, sN . The partition function in the NPT ensemble is given

by,
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Q(N,P, T ) =
βP

Λ3NN

∫
dV V N exp(−βPV )

∫
dsN exp[−βH(sN ;L)] (2.7)

The free energy associated with the NPT ensemble is the Gibbs free energy

G = −kBT ln(N,P, T ) (2.8)

Volume is an additional degree of freedom in NPT ensemble. Including volume to the

probability distribution

N(V ; sN ) ∝V N exp(−βPV ) exp[−βH(sN ;V )]

= exp−β[H(sN ;V ) + PV −Nβ−1 log V ]

This new Boltzmann factor can be used to formulate an acceptance rule for MC trial move

from an old con�guration `o' to new con�guration `n'. This involves a simple volume

change V to V ′ = V + ∆V , where ∆V is randomly chosen from [−∆Vmax,∆Vmax]

acc(o→ n) = min(1, exp−β[H(sN ;V ′)−H(sN ;V ) + P (V − V ′)−Nβ−1 ln(V ′/V )])

(2.9)

The volume trial move can be performed by changing the logarithm of the volume instead

of direct volume, from log V to log V + ∆(log V ) [43]. In this case, the integral of V N

over dV is changed to an integral of V N+1 over d log V . In the acceptance rule, N is

changed to (N+1).

Algorithm:

• Let Ci be the current con�guration with energy Ei and volume Vi
• Generate a random number ζ in between 1 and (N+1)

• If ζ ≤ N generate trial con�guration Ct by making a random move to one of the ran-

domly chosen particles in Ci. Calculate its energy Et
else if ζ = N+1 generate trial con�guration Ct by performing volume move. Calculate

its energy Et
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• If Et ≤ Ei then accept the trial con�guration: Ci+1 = Ct

• If Et > Ei, calculate the ratio of Boltzmann weights,

p = exp−β(Et − Ei) + P (Vt − Vi)− (N + 1)
log(Vt/Vi)

β
(2.10)

Select a random number ζ. If ζ < p accept trail con�guration: Ci+1 = Ct

else reject the trial con�guration and set Ci+1 = Ci.

2.5 Details of the MC simulation of hard helices

This work deals with hard helical particles. All the particles are represented by their

center of mass coordinates. To overcome the �nite size e�ect, care has to be taken

in choosing the number of particles in the simulation box. The simulation of hard

spherocylinders require number of particles ≈ 500 to give correct results. Due to the

non-convexity in shape, we need to consider more than 500 particle. The number of

particles considered in the simulation is in the range of 900 to 2000. Instead of using

euler angles (φ, θ, ψ), I used quaternions to represent the orientation of the molecule. This

is because of the ease in the implementation of rotational moves using quaternions [35]

[44]. Using euler angles, the rotational operations are expressed in terms of trigonometric

functions which are very time consuming. We can avoid trigonometric equations if we

deal with quaternions. A quaternion can be de�ned as the unit vector in four dimensional

space Q ≡ (q0, q1, q2, q3) with q20 + q21 + q22 + q23 = 1. Quaternion o�ers an e�cient way to

generate uniform random vector on four dimensional unit sphere [45]. However, result

does not depend up on the representation of rotation. The one-to-one correspondence

between the two representations is given by

q0 = cos

(
θ

2

)
cos

(
φ+ ψ

2

)
q1 = sin

(
θ

2

)
cos

(
φ− ψ

2

)
q2 = sin

(
θ

2

)
sin

(
φ− ψ

2

)
q3 = cos

(
θ

2

)
sin

(
φ+ ψ

2

)

and the rotation matrix de�ning the rotation is given by
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
q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


The only interactions involved in the system are hard-core interactions. Thus entropy

alone plays a major role in forming stable phases. The hard-core potential is given by

U(R) =∞, R < D

U(R) =0, R > D

where D is the diameter of the bead forming helix (see model of the helix in chapter

3). Simulations with hard particles consume more computational time compared those

with soft particles. This is because of the overlap check for each pair of particles. In

hard helical particles, the distance between two helical particles cannot be less than the

diameter of the sphere. And the overlap check in such non-convex particles need some

tricky algorithms to reduce the computer time in overlap testing. The overlap test in

hard helices is explained in chapter 3. Normal periodic boundary conditions are used in

the entire work.



Chapter 3

Isotropic to nematic phase

transition of hard helical particles

3.1 Introduction

Dating back to van der Waals, a common notion in liquid structure theory held that when

the liquid is far away from its critical point, the density is determined by the attractive

part of the potential and the structure by the repulsive part [46]. For this reason, the

system of hard spheres has been important as a reference system to study the structural

properties of simple liquid [47] [48] [49]. The �uid to crystal transition in a system of

hard spheres is the �rst example of an entropy driven phase transition. This �nding

showed that attractive interactions are unnecessary to study long-range transitions.

In 1949, Onsager[50] paved the way for an entirely new �eld through his theoretical

prediction of isotropic to nematic transition in the case of hard slender rods. However the

nematic phase was observed in the suspensions of inorganic biological rod-like particles

in 1925 [51] [52]. Original Onsager theory is based on the virial exansion of the free

energy truncated at the second virial coe�cient. Thus the applicability of the original

theory is limited to very long rods. Recently, several improvements have been made to

include higher order contributions to the original theory [50] [53] [54]. This motivated

studies on many monodisperse or polydisperse systems (heterogeneous or homogeneous)

using a series of computer simulations [55] [13] and a number of DFT approaches. All

these studies con�rm that the entropy alone is enough to bring order in the system.

We recall the biomolecules introduced in chapter1� polynucleotides, polypeptides and

virus form nematic or chiral nematic liquid crystal phases at high concentrations. An

experimentally favoured rod-like colloidal suspension is the �lamentous fd virus particles.

21
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Though they are helical in shape and have chiral symmetry, they are often approximated

to rods while interpreting their liquid crystal phases. This is due to the similarity in

the shape anisotropy and non-availability of theoretical studies or numerical simulations

on hard helical shapes. Experimental studies on the isotropic to nematic transition of

�lamentous viruses are compared to theoretical studies of rods taking charge and semi-

�exibility into account [30] [33]. The onsager treatment and the technical details of the

experiments on fd virus are clearly explained in Ref. [33]. At low ionic strength ≈ 1mM ,

the e�ective diameter Deff of virus is large ≈ 60 and thus aspect ratio is small L/Deff ≈
15. At such conditions Onsager theory is not in agreement with experimental results

and predicts lower coexistence concentrations. At higher ionic strengths ≈ 100mM

where the particles are long enough L/Deff ≈ 83, Onsager theory is in quantitative

agreement with experiments. All these observations have inspired the investigation of

the isotropic-nematic transition of hard helical particles. This chapter mainly focusses

on the isotropic-nematic transition of di�erent geometries of helix� from slender rods to

curlier helices [56]. These results might help in understanding the di�erences in theory

and experiments observed in fd viruses.

Hard helices are chiral in shape and expected to form chiral mesophases. The pitch of

the chiral nematic phase is known to be orders of magnitude larger than the length of

the particle. For example, B-DNA (B-form double helix) length ≈ 50nm and the pitch

of the chiral nematic P ≈ 2.8µm. It is not possible to simulate such large systems.

However the chiral nematic phase locally behaves as nematic. In numerical simulations,

the nematic phase seen could be a chiral nematic phase in macroscopic scale.

In this chapter I introduce the model of the helix used to study the phase behaviour

of hard helical particles. In subsequent sections, focus is laid on the description of the

isotropic to nematic transition and details of NPT MC simulation carried out to study

this transition in hard helical particles. In the results and discussion section, I discuss

about the e�ect of helical parameters on the isotropic to nematic transition and the

di�erences with corresponding spherocylinder phase diagram.

3.2 Model of the helix

The model of helical particles used in this work is a chain of 15 partially fused hard

spherical beads, each of diameter D, rigidly arranged in a helical fashion as shown in

Figure 3.1. All lengths in this work are expressed in the units of D. To ensure overlap of

the beads, the contour length L of the chain is set to a value less than 15D. In this work,

L is �xed to 10D. The number of beads and this contour length are chosen such that

the particles are long enough to show liquid crystal behaviour. The fusion of the beads
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Figure 3.1: Model helix made up of 15 partially fused hard spheres of diameter D
with Λ = z15 − z1. rmax being 2r+D and p is the distance along z axis in making one

complete turn.

is considered to make the helix more continuous by reducing the void spaces between the

spheres. The centres of the beads are de�ned by the following helix parametric equations

xi =r cos(2πti)

yi =r sin(2πti), 1 ≤ i ≤ 15

zi =pti

where r is the radius of the helix and p is the pitch of the helix. As shown in the Figure

3.1, the centres of the beads lie on an inner cylinder of radius r. The diameter of the outer

cylinder (2r + D) is the width of the helix. The long axis of the helix û passes through
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Figure 3.2: Shapes with di�erent r and p. For comparison a fully extended Linear
hard sphere chain(LHSC) is shown

the center of the helix. Given the values of r, p and L, the increment ∆t = ti+1 − ti is
determined by the following equation

L

14
= 2π∆t

√
r2 +

( p
2π

)2
(3.1)

The parameteric equations can also be written taking number of turns as the �xed

value instead of �xed L [ref. Appendix A]. The euclidean length Λ is measured as the

component parallel to the long axis of the helix of the distance between �rst and last

bead. Di�erent helix shapes can be achieved by varying r and p. In this work, di�erent

shapes � from a slender rod to a highly coiled helix � are studied by considering di�erent

values of r and p. Figure 3.2 show di�erent shapes of helices and their respective r, p and

Λ values. A long hard sphere chain (LHSC) shown in the �gure is considered a reference

of rod-like shape. We investigate how sensitive phase structures and phase behaviour are

to the curliness of the helix de�ned by the helical parameters (r and p).

3.3 Isotropic to nematic phase transition (IN)

As discussed in chapter 1, the nematic phase is characterized by the long range orien-

tational order and short range positional ordering. To favour orientational ordering, the

particles should be su�ciently anisotropic and the concentration of the system high. All
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the particles are aligned into a single preferred direction while their centres are randomly

distributed. The average local orientation of the particles is described as nematic director

and is denoted by a unit vector n̂. Helices are rotationally invariant about their C2 axis

passing through the centre and perpendicular to the long axis of helix û, so there is no

physical di�erence between particles aligned in the up and down directions i.e., û and

−û. Similarly, the average physical properties of the nematic phase are not altered upon

the inversion of the sign of n̂ though the inversion does not allow the exact mapping of

the particles. If one of the perpendicular axes to n̂ is taken as a reference, in the nematic

phase, C2 axes of individual helices are randomly oriented. However at higher densities,

we see a di�erent picture which arises due to the details of helix shape. I discuss about

those phases in the chapters 5 and 6.

Onsager theory explains the �rst order transition of the IN transition of long thin

rods considering only steric interactions. Theory demonstrates that the density driven

isotropic - nematic transition is because of entropy gain induced by excluded volume

e�ect. The stability of nematic phase can be explained as the result of the trade-o�

between the orientational entropy and translational entropy. Rotational entropy is max-

imum when rods orient in all possible orientations with equal probability. Translational

entropy is maximum when rods have maximum free volume to move in. This occurs

when all rods orient in one direction. At low densities, rotational entropy dominates re-

sulting in a stable isotropic phase and at high densities translational entropy dominates

stabilising the nematic phase. Parson and Lee incorporated higher virial coe�cients in

an approximate model which is useful for short molecules [53] [54]. Maier Saupe theory

gives the mean �eld description of the isotropic-nematic transition by considering each

molecule to be placed in the mean �eld of all others [57]. Landau-de-Gennes theory

of the isotropic-nematic transition is done by expanding free energy in powers of order

parameters and required few phenomenological parameters which can be �tted with the

experiment [6].

An extension of Onsager theory was applied to study isotropic-nematic transition of

hard rods having �nite aspect ratios by taking higher order virial terms into account [53]

[54]. The similar extension of Onsager theory i.e., Onsager theory coupled with Parson

Lee (PL) and Modi�ed Parson Lee (MPL) approximations is applied to study isotropic-

nematic transition of hard helical particles with �nite aspect ratios by Elisa Frezza and

Alberta Ferrarini. The performance of this theory has been tested by comparing with the

Monte Carlo simulations. We present an evidence that helical shape e�ects the location

of isotropic-nematic transition through theory and simulation. The results obtained cast

doubt on providing a direct link between the phase diagram of hard spherocylinders and

that of hard helices.
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3.3.1 Nematic order parameter 〈P2〉

The orientational symmetry of simple nematic phase is described by a scalar order pa-

rameter, which is zero in isotropic phase and nonzero in the nematic phase. Considering

rods, having cylindrical symmetry about their long axis, the orientational order parame-

ters can be de�ned as the expansion coe�cients of the orientational distribution function

f(Ω); Ω = (θ, φ), where θ and φ are the polar angles of the long axis of the particle .

Since the distribution function is invariant under the rotation about the nematic director,

it can be expanded in a wigner series(in a basis of Wigner rotation matrices) [39]:

f(Ω) =
∑

flmnD
l
m,n(Ω). (3.2)

If the nematic director is chosen as the z-axis, the m value becomes zero. Because of

the cylindrical symmetry, rotation about the long axis does not change the distribution,

which implies n = 0 and f depends only on θ, the angle between the director and the

long axis of the rod. Because of the symmetry in the plane perpendicular to the nematic

director, only terms with even l can appear. The oreintational order parameters are

linear expansion coe�cients in eq 3.2 and are given by

D̄l∗
0,0 =

∫
dΩf(Ω)Dl∗

0,0(Ω). (3.3)

The D-matrix elements with second index equal to zero are proportional to spherical

harmonics and associated Legendre polynomials:

D̄l∗
0,0(≡ 〈Pl〉) =

∫
dΩf(Ω)Pl(cos θ). (3.4)

The 〈Pl〉 is the ensemble average of even Legendre polynomials. 〈P2〉 is the simplest

orientational order parameter su�cient to measure nematic ordering and is given

〈P2(cos θ)〉 =〈3
2

cos(θ)2 − 1

2
〉

=
1

N

N∑
i=1

3

2
(n̂.ûi)

2 − 1

Several experimental techniques measure the nematic order using this equation. It is

not possible to implement 〈P2(cos θ)〉 directly in simulations as it involves the prior
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knowledge of n̂. It is more convenient to characterize using second rank ordering tensor

Q.

Qαβ =
1

N

N∑
i=1

3

2

(
uαi u

β
i −

δαβ
2

)
(3.5)

where α, βεx, y, z indices referring to the laboratory frame, uαi is the component of the

unit vector of particle i along α. The Q- matrix is symmetric, tracless and second rank

tensor. The three eigenvalues λ1, λ2, λ3 of Q-matrix are a measure of nematic order in

the three orthogonal directions de�ned by the corresponding eigenvectors. In case of the

uniaxial nematics, −2λ1 = −2λ2 = λ3. The maximum eigenvalue λ3 is the nematic order

parameter 〈P2〉 and corresponding eigenvector is the nematic director n̂.

One can raise the question of the uniaxiality of the nematic phase shown by helical par-

ticles as the shape lacks cylindrical symmetry about the long axis. From the eigenvalues

of the Q matrix, obtained for the system of helical particles we con�rm the uniaxial

nature. The di�erence between the λ1 and λ2 eigenvalues of Q was found to be smaller

than 5%, in agreement with our assumption of uniaxial nematic order. This means in

conventional nematic phase, the helices are still free to rotate about its long axis.

3.4 NPT Monte Carlo Simulation details

Each helix is represented by its centre (the centre on the long axis of the helix) and a

quaternion de�ning the orientation of the helix. Isothermal-Isobaric(NPT) MC simula-

tions were carried out using N = 900 to 2000 particles in a box with a triclinic shape with

standard periodic boundary conditions. This means the simulation box has the freedom

to change its shape by changing its side lengths and the angles between the sides. Each

Monte Carlo cycle consists of N/2 translational, N/2 rotational and one volume move.

Volume move allows the box size and shape to change. An equilibration run of 3 × 106

MC cycles is implemented followed by a production run of 3 × 106. During the equili-

bration, the maximum change in displacement, orientation and volume moves are chosen

such that 30% − 40% of moves are accepted. while in the production run these values

are �xed to avoid any possible violation of the detailed balance condition. Simulations

were either started from a dilute initial con�guration or from a compact con�guration

generated from ISSM which is discussed in Chapter 4.
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Figure 3.3: Cartoon of the overlap between the spherocylinders containing a pair of
helices

3.4.1 Overlap Check

The main problem in the simulation of non-convex hard bodies is the computer time

invested in checking the overlap. In NPT MC, each volume move consists of N2 overlap

checks and each translational or rotational move consists of N overlap checks. In view of

the computation time, simulations of hard helices are more demanding than the simula-

tion of hard spherocylinders. Depending on the state point and the helical parameters

considered, the computational cost is as high as 8 times that of the spherocylinder. Also,

the non-convex shape demands large numbers of particles in the system to avoid �nite

system size e�ect.

The overlap check in the current helix model can be reduced to the overlap check in beads

forming helices. But checking for the overlaps in a system containing N ×15 spheres will

make the test again computationally expensive.

To save computer time, an overlap check between a pair of helices is done in three levels

[Appendix B]. Checking goes to the next level only if there is an overlap in the previous

level.

i) Overlap check between the spheres containing the whole helix

ii)Overlap check between the spherocylinders containing helix.

iii)Bead to bead overlap check for the pair of helices.

Figure 3.3 shows the cartoon of the pair of spherocylinders containing helices. This

strategy is helpful in reducing the computer time by a factor of 5. The overlap test

in spherocylinders is done by following the algorithm proposed by Lago and Vega [58].

This method is based on the idea of �nding the minimum distance between two line

segments. The number of regions to be searched for the closest approach is reduced

to four depending on the angle between the line segments. This test is relatively fast

compared to the methods used before.
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Figure 3.4: Pressure(P ∗) as a function of volume fraction (left) η and 〈P2〉(right) as
a function of η (right) for LHSC. Results from MC simulations are shown in closed cir-
cles and from Onsager theory with PL(dashed line) or MPL(solid line) approximation.
Insets on the right panel are representative snapshots for Isotropic and Nematic phases

obtained by using QMGA software

3.5 Results and Discussion

We have investigated the IN transition of helical particles with di�erent helix structural

parameters (i.e., r and p) using NPT MC simulations. Results are presented in reduced

units, with D taken as the unit of length, and reduced pressure P ∗ = PD3/kBT . This

work was done in collaboration with Elisa Frezza, Alberta Ferrarini and Giorgio Cinacchi.

Monte Carlo results are compared with the results obtained from Onsager theory with

PL and MPL approximations carried out by Elisa Frezza and Alberta Ferrarini. Monte

Carlo results are presented with error bars, evaluated according to reblocking algorithm

[59].

A preliminary test is performed for Linear hard sphere chain (LHSC) shown in �gure

3.2 for which Λ = L. Figure 3.4 shows the 〈P2〉 and P ∗ as a function of the packing

fraction. The solid line in the �gure corresponds to the results from Onsager theory with

PL approximation and the dashed line with MPL approximations. The red dots are from

NPT Monte Carlo simulations.

From �gure 3.4, we see an IN phase transition at η ≈ 0.24, characterized by a jump in

the order parameter. 〈P2〉 takes values greater than 0.8 in the deep nematic region.The

non- zero 〈P2〉 values obtained in the isotropic region are due to the �nite size e�ects

in the simulation. Figure 3.4 shows a good agreement between theory and simulations

for LHSCs. The results obtained using PL and MPL are very close to one another.

This agrees with [60] where it is shown that for LHSCs the discrepancies between MC

simulations and PL theory, and correspondingly also the improvements of the MPL

scaling decreases as the superimposition between adjacent spheres increases.
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Figure 3.5: Pressure(P ∗) as a function of volume fraction η (left) and 〈P2〉(right) as
a function of η (right) for helix with r = 0.2, p = 8. Results from MC simulations are
shown in closed circles and from Onsager theory with PL(dashed line) or MPL(solid

line) approximation.

Figures 3.5 to 3.7 show 〈P2〉 and equation of state curves for the helices with r = 0.2

and decreasing pitches p = 8, 4 and 2. Decrease in pitch increase the curliness of

helix. So we expect the discrepancies with respect to LHSCs are more pronounced with

decreasing pitch. In all these cases an IN transition is occurring with the transition

shifting towards higher densities with decreasing pitch. This e�ect can be qualitatively

understood in terms of a decrease in euclidean length of the helix (and hence the aspect

ratio (Λ + D)/(2r + D))) with the decrease in pitch. The choice of the aspect ratio

is discussed in the section 3.5.1. The values of aspect ratio are 7.77, 7.52 and 6.76 for

helices with r = 0.2 and p = 8, 4 and 2 respectively.

From the equation of states, we can notice that the pressure is underestimated by theory.

This can seen from the equation of state curves. The di�erences between theory and

simulation increase with increasing density and decreasing pitch. From order parameter

curves, it appears like an IN transition occurrs at lower a volume fraction for curlier

helices. The decrepancies are even more pronounced for helices with r = 0.4. Because

an increase in radius increases the curliness of the helix. These results could probably

give some idea about the di�erences observed in the location of the IN transiton of fd

virus when compared to Onsager theory [30].

The MPL variant gives slight improvement over the PL approximation. This deviation

suggests the need for a better theory to account for real excluded volume. This discrep-

ancy increases with the increase in the radius of the helix. Theory predicts well for those

helices which are elongated and rod like.



Chapter 3. Isotropic to nematic phase transition of hard helical particles 31

Figure 3.6: Pressure(P ∗) as a function of volume fraction η (left) and 〈P2〉(right) as
a function of η (right) for helix with r = 0.2, p = 4. Results from MC simulations are
shown in closed circles and from Onsager theory with PL(dashed line) or MPL(solid

line) approximation.

Figure 3.7: Pressure(P ∗) as a function of volume fraction eta and 〈P2〉(right) as a
function of eta (right) for helix with r = 0.2, p = 2. Results from MC simulations are
shown in closed circles and from Onsager theory with PL(dashed line) or MPL(solid

line) approximation.

3.5.1 De�ning an aspect ratio for helix?

An interesting point related to the above �ndings is whether the IN transition for helices

can be mapped on to the that of rods in terms of simple parameters such as the aspect

ratio, as generally done in experimental work on helical systems. Like spherocylinders,

the contour length L, which is identical for all the helices is not a signi�cant parameter.

On the other hand, euclidean length Λ, although more meaningful is not fully satisfactory

either, since for the same aspect ratio Λ/D, the density at which the IN transition occurs

has a non-trivial dependence on the combination of the helical parameters r and p. The

better approximant for the aspect ratio can be obtained by considering the total width

of the helix (2r+D) instead of D i.e., (Λ + D)/(2r + D). As a general rule, we �nd

the transition to move towards higher volume fraction with increasing degree of non-

convexity.

Figure 3.8 shows the IN transitions signalled by a jump in 〈P2〉 in case of r = 0.3 and
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Figure 3.8: Figure showing 〈P2〉 order parameter for helices with radius 0.3 and
di�erent pitches

Figure 3.9: helices with nearly same aspect ratios with di�erent locations of IN
transition

di�erent pitch values. With increase in the pitch, the location of IN transition moves

towards lower densities. This is a direct consequence of an increase in the euclidean

length with increase in pitch.

Two helices having similar aspect ratios ((Λ +D)/(2r+D)) are studied using NPT MC

simulation. Figure 3.9 shows that the location of the IN transition is di�erent for two

helices having similar aspect ratios. The helix with higher aspect ratio is actually showing

IN transition at higher density which is not usual. This result betrays an ambiguity in

de�ning an aspect ratio of helices. The fact that the location of an IN transition is not

uniquely related to the aspect ratio may have implications for the analysis of experimental

data for helical particles as anticipated.

3.5.2 Conclusions

Systems of hard helices were investigated using NPT Monte carlo and variations of On-

sager theory. Our main goal was to rationalize the changes in the isotropic to nematic
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phase transition on going from straight rod-like to quite tortuous helical particles. We

have found that helicity a�ects the location of the IN transitions, with the latter in

general being shifted to higher densities with increasing aspect ratios, as is the case for

spherocylinders. However the same aspect ratio can be achieved with di�erent structural

parameters of hard helices, and this a�ects the IN transition. In other words, the aspect

ratio cannot be a good candidate for the interpretation of liquid-crystal phase diagram

of strongly curled helical particles. We have found that for high helicities Onsager the-

ory signi�cantly departs from the numerical simulations, even when a modi�ed from of

Parson-Lee rescaling is included to account for the non-convexity of particles. When

compared to MC data, Onsager theory generally underestimates pressure, with devia-

tions that increase with increasing density and upon transition from the isotropic to the

nematic phase. This points to the need of more e�ective theory for hard non-convex

particles, a �eld that remain largely unexplored.



Chapter 4

Packing of helices by Isopointal set

Structural Search Method(ISSM)

4.1 Introduction

Recent advances in the synthesis of di�erent colloidal nano-particles with non-spherical

shapes and their self assembly into crystal structures makes predicting dense packing an

interesting and useful study [61] [62] [63] [64]. Dense packing structures are the most

likely stable self assembling structures of colloids. Spherical colloids [49] showing a �uid

to crystal transition is an example of an entropically driven crystallization, where con�g-

urational entropy is sacri�ced for a greater volume per particle in structures that can be

compressed to high density . Simulations of hard spheres has given insight into the self

assembly of colloids. Examples of non-spherical shaped hard particle simulations include

spherocylinder [34], ellipsoids [65], bowl shaped particles, banana shaped particles [66],

dumbbells etc. In designing such advanced anisotropic particles, it is important to under-

stand the relation between the shape of the particles and its maximum packing density

or at least be able to predict the densest crystalline structure for a given particle shape.

Di�erent methods have been implemented in predicting crystal structures for various

three dimensional (3D) and two dimensional (2D) shapes[61] [62]. But the dense packing

of chiral objects like helices is given much less attention in the literature. In this chapter,

I discuss the Isopointal set Structural Search Method (ISSM) and its implementation on

helical particles to �nd densest packing. Our aim is to �nd a relationship between the

maximum packing fraction and the helical shape de�ned by r and p. Since anisotropic

particles with high aspect ratio tend to form layered structures at higher densities, this

study is done on a single layer of helices with their centres restricted to a plane. This

considerably reduces the computational cost of the search, because structural search in

34
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the 17 two dimensional wall paper groups is computationally much cheaper than working

in the 230 space groups in 3D.

The other important reason behind the interest in this study is the di�culty arising in

the MC simulation of helices in dense phases such as those I will discuss in chapters 5

and 6. Initial conditions must be chosen that allow simulations to span the whole phase

diagram, and thus access all phases ergodically. Usually a disordered initial condition is

unable to probe the most compact phases. On the other hand, the high density compact

con�gurations of particles of arbitrary shape cannot reliably be envisaged or constructed

without a reliable search method.

4.2 Isopointal set Structural search Method(ISSM)

The ISSM was developed by Toby Hudson and Peter Harrowell [67] [68]. They imple-

mented this method to �nd dense packing structures for binary hard sphere mixtures

and dense packing of arbitrary 2D shapes. The idea of the ISSM is to break the whole

con�guration space of possible crystal structures into �nite number of subspaces called

isopointal sets where each set can be explored via a good local optimization method

such as simulated annealing to �nd the best packing within it. These isopointal sets are

generated by the crystallographic input and symmetry elements present in the system.

Thus the search is limited to a few isopointal sets. This reduces the computational cost

in two ways. Particles with particular symmetry are incommensurate with some crystal

structure symmetries, which limits the number of isopointal sets that must be searched.

Within an isopointal set, many particles are symmetrically related to one another, so the

search space is parametrized by fewer variables. This idea of selective search works well

because the particles in nature prefer to crystallize into fairly symmetric crystals, with

symmetry-related particle positions and orientations, in spite of having many possibili-

ties.

4.2.1 Two dimensional search space

4.2.1.1 Wallpaper groups

Wallpaper groups are also called plane symmetry groups or plane crystallographic groups.

There are 17 wall paper groups. The classi�cation is done based on symmetries in a

repeated pattern in 2D. The symmetries in a plane are translation, rotation, re�ection

and glide. The 17 wallpaper groups are given the following labels:

p1, pg, pgg, pm, cm, cmm, pmg, pmm, p2, p4, p4m, p3, p3m1, p31m, p6, p6m
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Figure 4.1: Optimal two-dimensional packing in wallpaper group p1 of helices with
radius 0.3 and pitch 3. The perimeter of the red circle represents the helical radius.
The perimeter of the black circle represents the maximum extent of the edge of the

beads. The small black line represents the orientation of the C2 axis.

Figure 4.2: Wallpaper group p2 for helix with radius 0.3 and pitch 3

Figure 4.3: Wallpaper group p3 for helix with radius 0.3 and pitch 3

This notation gives the information about symmetry elements in the group. The group

start with p or c primitive or centred cell. The number n shows n-fold rotational symme-

try. The following letters m, g or 1 represent mirror, glide re�ection or none respectively.

Out of 17 wall paper groups, for a layer consisting solely of right handed helices only 5

wall paper groups are possible. Absence of mirror symmetry and glide symmetries for

helix allow only p1, p2, p3, p4 and p6 wall paper groups.

Figures 4.1 to 4.5 show a 3×3 cell arrangement in the �ve wall paper groups of helix with

radius 0.3 pitch 3, where there is only one set of symmetry-related particles, with related

orientations and positions. This is a planar representation of the helix showing each helix

as circle and its centre as the centre of helix in the plane. The red circle is projection

of the outer extremities of the spheres making up the helix. The overlap in the circles

is shown by dark grey areas. Here all the particles are hard particles and no overlap
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Figure 4.4: Wallpaper group p4 for helix with radius 0.3 and pitch 3

Figure 4.5: Wallpaper group p6 for helix with radius 0.3 and pitch 3

is permissible. The apparent overlap in the circles shows the extent of interpenetration

of turns of one helix into those of another. The black line at the centre of the circle

indicates the orientation of the two fold C2 symmetry axis of helix. The corresponding

three dimensional picture is shown in the �gure 4.7. Notice that in �gure 4.1, the p1 wall

paper group has all particles aligned in the same direction with large interpenetration

shown by dark grey areas. In case of no interpenetration, the maximal packing would be

the two dimensional hexagonal structure, having η = π
12 = 0.906 and with larger circle

inscribed in the unit cell of area equal to (2r+1)2π
3 . Figure 4.6 shows r = 0 case with no

overlapping.

4.2.1.2 Wycko� sites

Wycko� sites are the positions in the unit cell which are not a�ected by particular

symmetry operations of the space group. Positions associated with particularly symmetry
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Figure 4.6: maximally packed two dimensional structure of helices in the limit case
r = 0

Figure 4.7: 3D representation of wall paper groups of helix with radius 0.3 and pitch
3

centres, rotation axes or mirror planes are distinct Wycko� positions. Any two points

which are similarly a�ected (e.g. are both only on the same mirror plane) will have the

same Wycko� positions. Once a particle is placed on such a site in the cell, there will

be a set of associated image particles (collectively called as `orbit') which map onto one

another when the symmetry operations are applied. The number of such positions in the

unit cell is called multiplicity of the Wycko� position.

4.2.1.3 Isopointal sets

All structures within a wallpaper group and with the same occupied Wycko� sites belong

to the same isopointal set. The only things that vary between these structures are the

cell lengths, cell angle and the position of one particle in each occupied Wycko� orbit.

4.3 Implementation of ISSM on helical particles in 2D

Since the number of isopointal sets that we can search is enumerable but unbounded,

we limit them by considering only those with a small number of occupied Wycko� sites,

Nocc. This approximation is based on the observation that the vast majority of crystalline
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materials, and dense packings have a very small number of occupied wycko� sites. For

example 90% of organic crystal structures in the Cambridge Structure Database have

Nocc = 1, and 9% have Nocc = 2 [69]. We choose to search the sets with the number of

Wycko� sites up to 3. Recall that the isopointal sets that must be searched are further

limited by the fact that a right handed helix cannot pack in a space group with a mirror

plane, because that would imply the presence of left handed helices. Once the isopointal

sets are generated, simulated annealing technique is implemented in each set to �nd

the structure with maximum packing with in the set. For a �xed helical shape, the

con�gurational parameters for a search in 2D are the two unit cell side lengths(cellx,

celly), the angle between the sides(cellθ), the fractional coordinates Lx and Ly of each

of Nocc particles in unit cell and the orientation of each of these particle(Lθ).

Our particular implementation �rst iterates over the maximum number of Wycko� sites

to be occupied. The second level of the enumeration is to loop through all permissible

wallpaper groups. Within each isopointal set a simulated annealing Monte Carlo algo-

rithm is implemented which stochastically varies the parameters like particle coordinates,

orientation and cell edges and angle. Moves that cause direct overlap between particles

are rejected. The function it seeks to optimize is simply the density of the structure.

This density is determined entirely by the shape and number of the particles and the cell

volume, provided no overlap. Moves that do not cause overlap are accepted according to

the Monte Carlo acceptance criterion where the �energy" of the system has been replaced

by the inverse of the density, and a �ctitious temperature is gradually decreased through

out the simulation. This continues until the particle moves become very small, and the

density improvements cease. Simulated annealing within an ergodically-connected space

is guaranteed to eventually converge on the global minimum if the search is conducted

for long enough and the temperature decrease is slow enough [70].

4.3.1 Algorithm

4.3.2 Simulated annealing technique

The algorithm involves following steps.

1. Initialisation: Generate a random initial con�guration `o' in a given isopointal set

with no overlapping particles.

2.Random Moves: Generate a new trial con�guration `n' by making a random change in

one of the con�gurational parameters for that isopointal set.
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3.Acceptance criterion: a. Reject the con�guration 'n' if it has any overlaps b. If n does

not contain overlap, then i. if ηn ≥ ηo, accept the move ii. if ηn < ηo, probabilistically

either accept or reject the move based on controlled acceptance probability.

Pacc(o→ n) = min

(
1, exp

[
1
ηo
− 1

ηn

T ∗
+N ln

(
ηo
ηn

)])
(4.1)

where ηi is the packing density of con�guration i, T ∗ is the simulated annealing temper-

ature and N is the number of particles in the unit cell.

4: Iterate: Repeat steps 2 and 3 in a loop for the given number of Monte Carlo cycles

Simulation Temperature T ∗

Simulation starts with a temperature(T ∗start) and ends with Temperature(T ∗end). The an-

nealing scheme determines how the T ∗ decrease between moves from T ∗start to T
∗
end. The

relaxation time increases with the decrease in temperature. To ensure proper equilibra-

tion of the system, the cooling rate must be very slow. Previous studies found that an

exponential decrease works well compared to a linear decrease in T ∗ []. In this work,

T ∗start
T ∗end

= 200, T∗mid =
√

0.00005, T ∗start = 0.1, T ∗end = 0.0005 (4.2)

and T ∗ decreases by 0.11% per 100 moves. The exponential decrease allows the system

to optimize its packing when T ∗ is low. These parameters were tested by conducting 10

multiple runs and found that all of them converge on the same structure.

4.4 Shapes studied

From the de�nition of helix described in chapter 3, a variety of helical shapes are obtained

by varying r and p. The ISSM method is implemented on helices with radius ranging

from 0.1 to 1.0 with an interval of 0.1 and pitch ranging from 1 to 10 with the interval

1. Figure 4.8 shows all the shapes that are studied using ISSM.

4.5 Overlap detection

A chiral object such as helix is not symmetric about its long axis. Through out the

implementation of ISSM in 2D, care has to be taken with the rotation move in the
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Figure 4.8: Helical shapes studied with r ranging from 0.1 to 1.0 and p ranging from
1 to 10
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simulated annealing Monte Carlo moves within the ISSM. In this method the long axis

of helix is perpendicular to the plane with centre of the helix lying on a plane. The

rotational move brings change in the orientation of helix about its long axis. The overlap

check is done by considering the full 3D structure of the helix. The con�gurational

parameters in 2D are used to get the information the details of the 3D structure. All six

con�gurational parameters in a plane are used to build a 3D helix.

Unit cell lengths and angle (cellx, celly and cellθ) are used to construct a rotation matrix.


cellx celly cos(cellθ) 0

0 celly sin(cellθ) 0

0 0 Λ +D


The position of the helix is given by the position coordinates(Lx, Ly). The quaternion

to represent the orientation is obtained from Lθ.

q0 = cos(Lθ/2)

q1 =0

q2 =0

q3 = sin(Lθ/2)

Knowing the position and orientation of each helix, the overlap test is done implementing

the procedure discussed in chapter 3.

4.6 Calculating volume fraction

The volume fraction is de�ned as

η =
nhVh
Vcell

(4.3)

where nh is the number of helices, Vh is the volume of the helix Vcell is the volume of the

crystalline unit cell.

The volume v0 of a linear chain formed by m fused hard spheres of Diameter D and

center to center distance dacc is given by
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v0 =
π

6
D3

[
1 +

m− 1

2

(
3
dacc
D
−
(
dacc
D

)3
)]

(4.4)

From the ISSM we get the area (Acell) of the 2d cross section of the cell. Since all helices

are parallel and their long axis perpendicular to the plane, a reasonable estimate and

upper bound for the volume of the 3D cell is obtained by multiplying area of the 2D cell

with height of the helix (Λ +D)

Vcell = Acell(Λ +D) (4.5)

4.7 Results and Discussion

Our aim is to determine the relation between the shape of the helix and its maximum

packing density ηmax. Because of the asymmetry and voids in the shape of the helix,

helices intercalate. The level of maximum intrusion depends on the helix parameters r

and p. Because of the chirality in the shape, the relative orientation of the helices (twist)

around their long axes plays a major role in achieving packing density. The results

obtained from ISSM not only give the relation between the shape of the helix and its

maximum packing but also an insight into the e�ect of helical shape on intercalation

coupled with the twist of the C2 axis.

All the helical shapes, except a few cases with p = 1, have their best packing structure

in the p1 wall paper group with one occupied Wycko� site i.e., one particle per unit cell

[71] [72]. Arrangement of helices in the p1 wall paper group can be seen in the �gure 4.1.

This indicates that all the helices are in register and oriented in the same direction. The

compact structures of helices are characterized by the inter penetrating helices with their

C2 axes preferably aligned in one direction. Though all the helical shapes resulted in

similar arrangement, the major di�erence is observed in their respective packing densities.

The overlapping region in circles varies with the shape of the helix. The bigger the

overlap, the better is the packing. Three such cases are shown in �gure 4.9 in the order

of increasing packing fraction. The corresponding helical parameters are shown inside

the �gure. The three structures are in the order of ηmax = 0.37; 0.58; 0.76. The increase

in the overlapping area with increasing packing fraction is clearly visible.

A few helical shapes found their best packing in p1 wall paper group with two or three

occupied Wycko� sites. Helices with r = 0.2, p = 1; r = 0.5, p = 1; r = 0.7, p = 1

obtained maximum packing with two occupied Wycko� sites. The helix with r = 0.8,

p = 1 obtained maximum packing with Nocc = 3. All these shapes are tightly coiled

helices with p = 1. Figure 4.10 shows two such cases with two occupied Wycko� sites.
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r = 0.9, p = 2 r = 0.6, p = 5 r = 0.3, p = 7 

Figure 4.9: Structures with maximum packing density for helices having r = 0.9, p
= 2 at η = 0.37; r = 0.6, p = 5 at η = 0.58; r = 0.3, p = 7 at η = 0.76;

r = 0.2, p = 1 r = 0.5, p = 1

Figure 4.10: Structures with Nocc = 2

Note that that the C2 axes of the particles are aligned. The tight pitch of these helices

does not allow any possibility of the interpenetration, so the best packing depends on

the detailed match between the spheres on the outer surfaces.

4.7.1 Maximal packing density as a function of radius and pitch

Figure 4.11 shows a surface plot of the maximum volume fraction projected on to a plane

of radius and pitch. The colour bar next to the plot indicates the colour variation with

the value of η. The numbers shown inside the plot are the values of η. The shape of

each helix is shown for every combination of radius and pitch. There is a clear trend

in the ηmax. Very curly helices are not good candidates for the best packing. The

intermediate helices showing the intermediate packing density. After a certain crossing,

there is a plateau region showing the similar packing density. From the �gure, one can

draw the conclusion that neither slender helices nor curly helices are giving the highest

packing. The highest packing 0.78 is achieved by intermediate helices with particular

combination of radius and pitch.
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Figure 4.11: Colour map of the maximal volume fraction, η, achievable by a given
helix as a function of its radius r and pitch p. The color code is from dark red (high
packing) to dark blue(low packing). The value on the side of each helix is its e�ective
aspect ratio,(λ/(2r +D)). The cartoon on the bottom left of each r, p pair shows the

corresponding helix shape

Since all the helices are restricted to a plane, it is interesting to see the areal number

density (Aden) in a plot similar to 4.11. The �gure 4.12 shows the areal number density

Aden = Nh/Acell plotted in radius and pitch plane. Figure 4.11 and 4.12 are showing

similar patterns. However in the areal number density plot, there are no irregularities in

the plateau region. This shows that after the cross over all helices are equally dense in

the plane. The small di�erences observed in the �gure 4.11 are due to the structure of

helix and volume of the helix.

The other important purpose of ISSM is to obtain the compact initial con�guration for

NPT MC simulations. We obtain a single layered compact structure from ISSM. The

initial con�guration is constructed by replicating this layer exactly one top on another.

Though the information about the arrangement between the layers is missing, this act

as a good starting point for the expansion. I discuss about these compact structures in

chapters 5 and 6.

4.8 Conclusions

Helical shapes are chiral in nature and studying densest packing of this chiral object

constitutes an interesting subject. Using isopointal set structural search method (ISSM),
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Figure 4.12: Colour map of the areal number density, Aden, achievable by a given
helix as a function of its radius r and pitch p. The color code is from dark red (high

packing) to dark blue(low packing).

we obtained the maximum packing fraction of di�erent shapes of helices. All the helices

are found to be well packed in p1 wallpaper group. Except few cases with p = 1, we

found one particle per unit cell for all shapes showing that helices prefer hexagonal

ordering to achieve high packing densities. A clear trend is seen in the volume fraction

obtained for di�erent helical shapes. Neither curly helices nor slendor helices are giving

the best packing density. Those helices with intermediate helicity found to be well packed.

However areal density is found to be similar for all those helices lying after the crossover.

This indicate that planar density is similar and di�erences are arising due to the height

of the helix and the volume of the helix. The structure thus obtained can be used as the

initial con�guration for Monte Carlo simulation and especially to trace the compression

curve. The single layer obtained from ISSM is replicated by stacking one top on another

to construct an initial con�guration.



Chapter 5

Evidence of new screw-like nematic

phase

5.1 Introduction

We have discussed the isotropic-nematic transition for helical particles in Chapter 3.

Elongated particles form a nematic phase upon compression. Non convex shapes like

helices are expected to show unconventional behaviour at higher densities. The shape of

the helix plays a key role in the self assembly and thus exhibit a di�erent phase behaviour

at higher densities. In this chapter I introduce a special chiral nematic phase which is

peculiar to the helix shape. The new phase observed is based on the screw-like order that

develops at higher densities in the system [73]. Using NPT MC, a strong evidence of the

new stable chiral nematic phase is provided in this chapter [71] [72]. This phase occupies

a signi�cant region in the phase diagram. However the screw-like order propagates to the

higher densities resulting in the new chiral smectic phases. These phases are discussed

in chapter 6.

In our model, shape of the helix is de�ned by a radius and a pitch. The long axis of

the helix is denoted by û. In the nematic phase, all the û axes tend to align in one

direction and this direction is denoted by main director n̂. In the cholesteric phase [6]

[74], this n̂ spirals about a perpendicular axis to n̂. The local chiral character of the

helical constituents translates into a global chirality resulting in a chiral nematic phase.

Similarly we de�ne a C2 axis perpendicular to û to each helix. In principle, any axis

passing through the center of the helix (midpoint of the long axis û) perpendicular to

û is two fold (C2) symmetry axis. Inorder to de�ne the rotation of the helix about long

axis û, a �xed C2 symmetry axis ŵ is considered for each helix as shown in the �gure.

Like n̂, ŵ axes can orient along a speci�c direction ĉ. Similar to the cholesteric phase,

47
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Figure 5.1: Helix with arrows showing the unit vectors û and ŵ de�ned in the

molecular frame, and the unit vectors (\̂,ĉ) de�ned in the laboratory frame. X,Z are
the axes of the laboratory frame, with α the angle between ŵ and the X-axis.

this phase is still nematic in that helices are homogeneously distributed and mobile with

their long axis û preferentially oriented along the main director n̂. In contrast to the

cholesteric phase, in this new organization it is the short axes, ŵ, that spirals around

n̂ with a periodicity equal to helix pitch. In this work we refer this order as screw-like

order and the nematic phase with screw-like order as screw nematic N∗S .

5.2 Understanding screw-like order

When helices are far apart, they are free to rotate about their long axes. In this case,

helices behave like rods as shown in the �gure 5.2. At lower densities, helical shape is

not so relevant and the liquid crystal phase thus formed is a conventional nematic phase.

This is however no longer the case when the helices are in close contact. In close contact,

one turn of a helix can intrude into the groove of the other helix resulting a in-phase

locked con�guration as illustrated in �gure 5.2. This intrusion limits the orientation of

ŵ axes of the helix. This restriction on the C2 axes of particles lowers the rotational

entropy. This is compensated by the gain in the translation entropy in order to form a

new stable chiral nematic phase. The translation is coupled to the rotation giving rise

to a screw like motion. This is schematically shown in the �gure 5.3.

This screw organisation develops in the system and is peculiar to the helical shape. The

N∗S phase is a new kind of chiral phase di�erent from the chiral nematic (N∗)phase. In
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Figure 5.2: Pair of helices inphase and antiphase

Figure 5.3: Screw like motion showing translation coupled rotation

the cholesteric phase the û axes of the helices spiral around a perpendicular axis�ĥ�

as illustrated in �gure 5.4. The order of the û axes is non polar, i.e, there is up-down

symmetry. In the N∗S phase û axes are preferentially aligned along the same direction

through out the sample, but the transverse ŵ axes spiral around this direction as depicted

in 5.4 . In this case the ŵ axes have polar order, i.e. they preferentially point in the

same direction. Another important di�erence between screw-nematic and cholesteric is

the length scale of the phase periodicity. In N∗S the pitch of the phase is equal to the

pitch of the particle where as in the cholesteric phase the pitch is orders of magnitude

longer than the size of the particle. Because of this reason, screw-like nematic can be

observed in numerical simulations with box size comparable to the particle length.

The screw nematic can also be described in Frenet frame [Appendix C] which is usually

used for the �exible and semi �exible polymers description. This description was used in

the experimental work done on helical �agella by Barry etal [5]. The screw-like nematic
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Figure 5.4: Top: Cartoon showing the orientation of the û of helix in cholesteric
phase. Middle: Cartoon of the screw-like nematic phase showing the orientation of
ŵ. Here ĥ is a unit vector parallel to the axis around which û or ŵ rotates. Bottom:
Another representation of screw-like nematic showing conical path. Here T̂ is the local

tangent of the helix.

phase can be viewed as the conical movement of the local tangent of helices along the

director. As shown in the bottom panel of the �gure 5.4, the tip of the local tangent

(T̂) follows a conical path on moving along the director (n̂), due to the variation of the

azimuthal angle at �xed polar angle. We used the same idea for the visualization of

snapshots, colour coded according to the local tangent of helices.

5.3 Experimental evidence of the screw nematic phase

There is an experimental evidence to this kind of organization found in helical �agella[].

A transition from isotropic toN∗S phase as density increases has been observed in colloidal

suspensions of helical �agella by Barry etal., using polarizing and di�erential interference

contrast microscopy, combined with experiments on single particle dynamics. A striped

birefringent pattern was observed consistent with a picture where the local tangent of

the helix, tilted with respect to n̂, is rotating in a conical way. By analogy with a similar

behaviour occurring for the cholesteric phase in the presence of an external �eld parallel

to the twist axis, this phase was denoted as conical, although the underlying mechanism

and detailed structure is di�erent. Figure 5.5 shows the screw nematic phase observed

in helical �agella.

5.4 Characterization of the screw Nematic(N ∗S)

In order to fully characterize the new phase, we need a special set of correlation functions

and order parameter are required. We used lowest rank order parameter 〈P1,c〉 which is
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Figure 5.5: Experimental results on �agella SJW1103 [5]. (a) and (b) coexistence
and single phage with polarized microscope. (c) �uorescently labelled �agella dissolve
in conical medium. (d) phase diagram of �agella (e) schematic showing the excluded

volume between two helices.

related to the one proposed in the framework of a theoretical description of a screw like

organization [24].

〈P1,c〉 = 〈ŵ.ĉ〉 (5.1)

where ŵ is the �xed C2 axis shown in the �gure 5.1, ĉ is the local nematic director

of the ŵ axes. This order parameter measures the average alignment along a common

direction(Ĉ) of the secondary axes(ŵ) of helices having their centre of mass on the same

plane perpendicular to the main director n̂.

This cannot be directly implemented as it involves the information of ĉ. So the following
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procedure is followed to avoid the problem of �nding local ĉ director. For each con�gura-

tion, after having determined nematic director n̂ as explained in 3, a rotation of −2πZi/p

around n̂ is imposed on the coordinates of the particles. This is the untwisting of ŵ axes

done about n̂. The exact angle to untwist depends on the position Zi of the particle in

the box as we know that pitch of the phase is equal to the pitch of the particle p. Then

the ĉ is calculated following the procedure explained in 3 for nematic order parameter

of ŵ instead of û. Then the quantity ŵ.ĉ is calculated for each helix and �nally 〈P1,c〉 is
obtained by averaging over all helices and con�gurations. This parameter enables us to

distinguish between conventional Nematic and screw-nematic by giving non zero value

for N∗S and near zero value for N.

Another way to characterize the phase is by using orientational pair correlation function

de�ned as

gŵ1,||(R||) = 〈ŵi.ŵj〉R|| (5.2)

where R|| = Rij .n̂, the projection of the interparticle seperation Rij along the n̂ axis.

Thus gŵ1,|| is computed as a function of the distance projected along the main director.

This gives the information about polar correlation between the C2 symmetry axes of two

helices.

5.5 Results and discussion

In this section, I present results from NPT Monte Carlo simulations showing the emer-

gence of the screw-like order and discuss its dependence on the geometry of the helix.

This section focuses only on screw-like order in the nematic region. Propagation of the

screw like order in denser phases (like the smectic phase) is discussed in chapter 6. We

found three di�erent transitions: IN (isotropic-nematic); N − N∗S (nematic-screw ne-

matic); and I − N∗S (isotropic-screw nematic) in the nematic region depending on the

helical parameters. Near rod like helices with r = 0.1 show conventional IN transition

similar to that of found in spherocylinders. For helices with r = 0.2, as the volume frac-

tion increases, a �rst order IN transition is followed by a second order N−N∗S transition.

For helices with r = 0.3 and r = 0.4, depending on the pitch value we see a direct �rst

order I −N∗S transition.

In the sub-section 5.5.1, characterization of N −N∗S transition is discussed in detail by

showing the order parameter and correlation function curves. In the sub-section 5.5.2,

I −N∗S transition is discussed by showing the order parameter and correlation function
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plots. In sub-section 5.5.3 phase diagrams are shown, discussing the e�ect of r and p on

the screw-like order.

5.5.1 N - N∗S transition

Figures 5.6, 5.7 and 5.8 show the equation of state in P ∗ versus η plane for helices

having r = 0.2 and p = 8, 6 and 3 respectively. All the points in the equation of

state are obtained from NPT MC simulation implemented as explained in chapter 3.

Points labelled as I, N, N∗S and Sm correspond to isotropic, nematic, screw nematic and

smectic phases respectively and each phase is indicated with di�erent colour. Yellow

indicates isotropic; blue indicates nematic; red indicates screw-like nematic and green

indicates smectic. The same colour convention is followed in the rest of the document.

These phases are distinguished with the help of order parameters 〈P2〉, 〈P1,c〉, τ1 and

the correlation function gŵ1,‖. The details of the smectic and higher density phases are

discussed in chapter 6.

From these �gures it is evident that the system �rst undergoes IN transition as η increases

and followed by a N −N∗S transition, with N∗S always occurring at 〈P2〉 close to 1. For

a �xed radius, aspect ratio of each helix decreases with a decrease in pitch. In going

from p = 8 to 3, we see the location of the IN transition moving towards higher densities

and also decrease in the width of net nematic region (N + N∗S). This change can be

qualitatively understood in terms of the decrease in the aspect ratio (as explained in

chapter 3).

When the η value is su�ciently high and all the particles are aligned along a common

direction, the N − N∗S transition occurs because of the interlocking of the grooves of

helices. We notice an increase in the width of N∗S region with the decrease in pitch.

With the decrease in the aspect ratio the system is gradually favouring screw nematic

over conventional nematic. This is due to the fact that the nematic phase tends to

stabilize at higher densities for shorter helices. When the density is high enough, helices

with lower pitch values interlock giving rise to the screw like motion.

Figure 5.9 shows 〈P2〉 as a function of η for helices with r = 0.2 and decreasing pitches

p = 8, 6 and 3. Figure 5.10 shows 〈P1,C〉 as a function of η for helices with r = 0.2

and decreasing pitches p = 8, 6 and 3. Di�erent colours are used to indicate di�erent

phases. Di�erent symbols are used to indicate di�erent pitch values. An IN transition is

associated with the jump in 〈P2〉. It is clearly visible that the location of the IN transition

is shifting from η ≈ 0.24 to η ≈ 0.3 with decreasing pitch, in agreement with the results

shown in chapter 1, where as the location of N −N∗S transition moves towards lower η

with decreasing pitch. This can be explained as a combined e�ect of aspect ratio and
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Figure 5.6: Equation of state plotted in reduced pressure P ∗ - volume fraction η plane
for helices having r = 0.2 and p = 8. Di�erent colours indicate di�erent phases. Yel-
low circles(I)-isotropic; Blue circles(N)-nematic; Red circles(N∗S)-screw nematic; Green

circles(Sm)- smectic.

Figure 5.7: Equation of state plotted in reduced pressure P ∗ - volume fraction η plane
for helices having r = 0.2 and p = 6. Di�erent colours indicate di�erent phases. Yel-
low circles(I)-isotropic; Blue circles(N)-nematic; Red circles(N∗S)-screw nematic; Green

circles(Sm)- smectic.
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Figure 5.8: Equation of state plotted in reduced pressure P ∗ - volume fraction η plane
for helices having r = 0.2 and p = 3. Di�erent colours indicate di�erent phases. Yel-
low circles(I)-isotropic; Blue circles(N)-nematic; Red circles(N∗S)-screw nematic; Green

circles(Sm)- smectic.

pitch of the helix. Because of its high aspect ratio, helices with pitch = 8 tend to form

nematic phase at lower η but because of the less curly shape, screw like order develops

only at higher η. Shorter helices like helices with p = 3 tend to form nematic phase at

higher η but because of the more curly shape, screw like order develops at lower η when

compared to slender helices.

Figures 5.11 and 5.12 show the correlation function gŵ1,‖ calculated for helices r = 0.2,

p = 3 and r = 0.2, p = 6. In both cases, a sinusoidal wave with periodicity equal to p

is clearly visible. Constant amplitude at long inter-particle distance indicates this as a

long range correlation. This behaviour re�ects the chiral organization of each particles

ŵ's along n̂ and is the signature of screw-like ordering. The onset of the screw-like

ordering with increasing volume fraction is clearly visible. For helices having r = 0.2, p

= 3 , gŵ1,‖ is close to zero everywhere at η = 0.32 showing lack of correlation between ŵ

axes and at η = 0.36, maximum amplitude oscillation shows fully developed correlation.

Oscillation continuously grows up with increasing η and gŵ1,‖ oscillate between ±1 when

perfect ordering occurs. The behaviour of 〈P2〉 in the �gure 5.9 is a suggestive of a �rst

order IN transition and the behaviour of 〈P1,c〉 in �gure 5.10 and correlation functions

in �gures 5.11, 5.12 indicate N −N∗S second order N −N∗S phase transition.

Figure 5.13 shows snapshots for helices with r = 0.2 and p = 6 at η = 0.359 to 0.397
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Figure 5.9: 〈P2〉 plotted as a function of η in the case r = 0.2 and di�erent values of
pitch. p = 3 (solid circles); p = 6 (solid triangles); p = 8 (solid squares).

Figure 5.10: 〈P1,C〉 plotted as a function of η in the case r = 0.2 and di�erent values
of pitch. p = 3 (solid circles); p = 6 (solid triangles); p = 8 (solid squares).
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Figure 5.11: Correlation functions gŵ1,‖(R‖) showing the emergence of screw-like order
with increasing η in case of helices with r = 0.2 and p = 3. Di�erent colours are used

to show correlation at di�erent values of η
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ŵ 1
,‖
(R

‖)

 

 

η = 0.359

η = 0.368

η = 0.375

η = 0.388

η = 0.397

r = 0.2, p = 6

Figure 5.12: Correlation functions gŵ1,‖(R‖) showing the emergence of screw-like order
with increasing η in case of helices with r = 0.2 and p = 6. Di�erent colours are used

to show correlation at di�erent values of η

as shown in �gure 5.12. In this �gure helices are colour coded according to their local

tangent. The colour bar shown in the �gure shows the variation of colour with angle say

θ going from 0 to 90 degrees. Here θ is the angle between the local tangent of the helix

and x=y=z axis. The colour changes as the tangent moves along the helix and thus the

periodicity of the colour pattern is equal to the pitch of the helix. So the presence of

regular colour stripes correspond to a N∗S phase and their absence corresponds to a N

phase. This visual representation is in support of the interpretation of screw-like order

in �gures 5.10, 5.12. From snapshots, we can observe a gradual change in the ordering,

going from a random coloured state to periodic colour stripes with increasing η value.
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Figure 5.13: Visual representation of the emergence of screw like order in N − N∗S
transition for the system of helices with r = 0.2 and p = 6. Snapshots and their
corresponding η's are shown. Helices are colour coded according to their local tangent.

5.5.2 I - N∗S transition

Figures 5.14, 5.15 and 5.16 show the equation of state in the P ∗V sη plane for helices

having r = 0.4 and p = 8;6;3. From �gures 5.15, 5.16 it is evident that the systems of

helices with r = 0.4, p = 3 and r = 0.4, p = 6 �rst undergoes a direct I −N∗S transition

as η increases and is followed by a N∗S − Sm transition, with the N phase completely

absent or occurring in a very narrow region. In case of helices with r = 0.4, p = 8, we

can see a very narrow region of N followed by N∗S and Sm phases. With the increase in

the radius from r = 0.2 to r = 0.4, the aspect ratio decreases and helices become more

curly. Due to this, nematic order develops at higher densities and thus increasing the

chance of intercalation, making screw-like order more signi�cant than the conventional

nematic for this radius. Unlike the case of r = 0.2, the N phase is completely absent

or exist in a very narrow region in case of r = 0.4. With the decrease in pitch, the N∗S
region decreases and acts as an intermediate phase helping the system to attain smectic

order. Except r = 0.4 and p = 8 case, in other two cases N∗S − Sm transition is found

to be continuous which will be discussed in detail in chapter 6.

Figure 5.17 shows 〈P2〉 as a function of η for helices with r = 0.4 and decreasing pitches

p = 8, 6 and 3. Figure 5.18 shows 〈P1,C〉 as a function of η for helices with r = 0.4 and

decreasing pitches p = 8, 6 and 3. As expected, the IN transition moves towards higher

densities with decreasing pitch, shown in �gure 5.17. The behaviour of P1,C is markedly

di�erent in the case of r = 0.4 compared to r = 0.2 as depicted in �gure 5.18. The

simultaneous jump in both 〈P2〉 and P1,C is a suggestive of �rst order I −N∗S transition.

Figures 5.19, 5.20 give additional insight into this direct transition. In �gure 5.19, at

η = 0.298, gŵ1,‖(R‖) is zero every where showing absence of correlation between ŵ axes
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Figure 5.14: Equation of state plotted in reduced pressure P ∗ - volume fraction
η plane for helices having r = 0.4 and p = 8. Di�erent colours indicate di�erent
phases. Yellow circles(I)-isotropic; Blue circles(N)-nematic; Red circles(N∗S)-screw ne-

matic; Green circles(Sm)- smectic.

Figure 5.15: Equation of state plotted in reduced pressure P ∗ - volume fraction η
plane for helices having r = 0.4 and p = 6. Di�erent colours indicate di�erent phases.
Yellow circles(I)-isotropic; Red circles(N∗S)-screw nematic; Green circles(Sm)- smectic.
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Figure 5.16: Equation of state plotted in reduced pressure P ∗ - volume fraction η
plane for helices having r = 0.4 and p = 3. Di�erent colours indicate di�erent phases.
Yellow circles(I)-isotropic; Red circles(N∗S)-screw nematic; Green circles(Sm)- smectic.

Figure 5.17: 〈P2〉 plotted as a function of η in the case r = 0.4 and di�erent values
of pitch. p = 3 (solid circles); p = 6 (solid triangles); p = 8 (solid squares).

where as at η = 0.343, system develops a full long range correlation between ŵ axes with

periodicity equal to pitch of the helix .

Figure 5.21 shows snapshots for helices with r = 0.4 and p = 6 at η = 0.298 to 0.354

as shown in �gure 5.12. The scheme of colour coding is the same as explained in sub-

section 5.5.1. This visual representation is in support of the interpretation of an I −N∗S
transition shown in �gures 5.18, 5.20. From snapshots, we can see a clear transition

from an isotropic state shown by random distribution of colours at η = 0.298 to a screw

nematic shown by regular colour stripes at η = 0.329.
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Figure 5.18: 〈P1,c〉 plotted as a function of η in the case r = 0.4 and di�erent values
of pitch. p = 3 (solid circles); p = 6 (solid triangles); p = 8 (solid squares)

.

Figure 5.19: Correlation functions gŵ1,‖(R‖) showing the emergence of screw-like order
with increasing η in case of helices with r= 0.4 and p = 3. Di�erent colours are used

to show correlation at di�erent values of η

Figure 5.20: Correlation functions gŵ1,‖(R‖) showing the emergence of screw-like order
with increasing η in case of helices with r = 0.4 and p = 6. Di�erent colours are used

to show correlation at di�erent values of η
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Figure 5.21: Visual representation of I − N∗Stransition for system of helices with r
= 0.4 and p = 6. Snapshots and their corresponding η's are shown. Helices are colour

coded according to their local tangent.

5.5.3 Phase diagrams showing the e�ect of radius and pitch on Screw-

like order

This section summarizes the phase behaviour of di�erent helical shapes in nematic region.

The e�ect of pitch on screw-like order is discussed by showing phase diagrams for each

radius and di�erent pitch values. E�ect of radius is studied by comparing di�erent

phase diagrams at di�erent radii. The data presented here is obtained from NPT MC

simulation for helices with radius ranging from 0.1 to 0.4 and pitch ranging from 2 to

8. For a �xed value of the radius, the e�ect of pitch is shown in each phase diagram.

Figure 5.22 shows the helical shapes that are studied. In the following sub sections phase

behaviour of helices with r = 0.1 and p = 2 to 8; r = 0.2 with p = 3 to 8; r = 0.3 with

p = 2 to 8; r = 0.4 with p = 2 to 8 are discussed. These phase diagrams help us to

understand the e�ect of a helical shape on the IN, N −N∗S and I −N∗S transitions.

Phase diagram for r = 0.1

From �gure 5.22 we can see that shapes with r = 0.1 are almost rod-like particles with

very high aspect ratio. In this case we can expect phase behaviour not much deviant from

that of the spherocylinder. Figure 5.23 shows the computed phase diagram of helices

with r = 0.1 and p = 2 to 8. In this case we found isotropic to nematic and nematic

to smectic transitions with increasing η. This phase behaviour is consistent with that

of spherocylinder as shown in the phase diagram of spherocylinder in chapter1. The

points plotted are shown in di�erent colours and shapes to distinguish the phases(circles

- isotropic; squares - nematic; triangles - smectic).The same colour convention de�ned

in earlier sections is used here to shade the regions in the phase diagram. A dark yellow

shade indicates an isotropic region; blue shade indicates nematic region and a green

shade indicates a region with smectic and other higher density phases.
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8.78 8.98 9.06 9.10 9.12 9.13 9.14

6.76 7.30 7.52 7.64 7.70 7.74 7.77

5.17 5.91 6.27 6.47 6.58 6.66 6.70

4.81 5.25 5.51 5.67 5.78 5.854.01

Figure 5.22: Helical shapes with radius ranging from r = 0.1 to 0.4 and p = 2 to 8.
The numbers shown inside the picture are the corresponding aspect ratio values.

The absence of screw like order in this case is apparently due to slender rod like helical

shape. The curliness in the shape is not large enough to develop a signi�cant screw-like

motion in the system. The aspect ratio of all helices is not very di�erent and lies between

8.78 and 9.14. With an increase in the pitch, the aspect ratio increases and stabilizes

the nematic phase at lower η. However the phase diagram does not show exact phase

boundaries. This is the subject of our interest and currently is under study. From the

order parameters calculated, it is estimated that helices with r = 0.1 exhibit a �rst order

IN transition, followed by a �rst order nematic to smectic transition with increasing η.

Phase diagram for r = 0.2

Figure 5.24 shows the computed phase diagram of helices with r = 0.2 and p = 2 to 8.

In addition to isotropic, nematic and smectic phases we see screw-nematic phase in this

case. In the phase diagram, region plotted with solid squares represent total nematic

region (N + N∗S) where red squares represent N∗S phase and blue squares represent the

conventional N phase. The red and blue shades in this region separate conventional N

to N∗S phase. The phase behaviour is consistent with what we have already discussed

about r = 0.2 and p = 3, 6 and 8 cases in the section 5.5.1. The N∗S phase is always

observed at the higher end of the nematic region. In all cases we observe a �rst order
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I

N

Sm

Figure 5.23: Phase digram plotted as η Vs pitch for helices having r = 0.1 and p =
2 to 8. circles indicate isotropic; Squares indicate nematic; triangles indicate smectic
and other higher density phases. Shaded regions are rough estimates of the width of

the phases.

IN transition, a second order N −N∗S transition and a continuous or a weak �rst order

N∗S − Sm transition with the increasing η.

In this case, we can see a marked di�erence with the phase diagram of spherocylinders.

Increasing radius brings the desired curliness in helical shape to develop screw-like order

at higher densities. From the �gure we can say, nematic phase tends to stabilize more

with increase in pitch which is due to the increase in aspect ratio. But the N∗S tends

to stabilize more at lower pitch values. We can justify this by looking at shapes with r

= 0.2 in the the �gure 5.22. Because of the increased curliness in shape, particles with

lower pitch values are more prone to the interlocking of the grooves at higher densities.

Phase diagram for r = 0.3

Figure 5.24 shows the computed phase diagram of helices with r = 0.3 and p = 2 to 8.

Increasing the radius to 0.3 further increases the curliness and decreases the aspect ratio

showing an interesting phase behaviour. The phases obtained are the result of a trade

o� between aspect ratio and the helical shape.

In this case we notice the smectic phase is preceded by nematic phase at lower pitch

value. It is evident from the phase diagram of spherocylinder shown in the chapter 1

that smectic phase is the �rst to become stable with increasing aspect ratio. Helices
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Figure 5.24: Phase digram plotted as η Vs pitch for helices having r = 0.2 and p =
2 to 8. Yellow circles indicate isotropic; Blue squares indicate nematic; Red squares
indicate screw nematic; triangles indicate smectic and other higher density phases.

having r = 0.3 and p = 2 are short and cylindrical particles, making the helical shape

less signi�cant. For this particular case we see a direct �rst order isotropic - smectic

transition. Depending on the pitch value, we see a I-Sm or IN or I −N∗S transition.

With our model, we always see N∗S preceded by N with increasing aspect ratio. In case of

spherocylinders, a I−N −Sm triple point is found for the aspect ratio at L/D ≈ 3.7. In

case of helices we can say that I-N-Sm triple point does not exit and there is a chance of

having I −N∗S −Sm triple point at aspect ratio ≈ 5.0 and a I −N −N∗S tricritical point

at aspect ratio ≈ 6.5. For intermediate pitches like 3, 4 and 5 we see I−N∗S ans N∗S−Sm
transition. For pitches greater than 6, we I-N, N −N∗S and N∗S − Sm transitions.

Phase diagram for r = 0.4

Figure 5.26 shows the computed phase diagram of helices with r = 0.4 and p = 2 to 8.

The phase behaviour is similar to the case with r = 0.3. The N∗S region widens and the

conventional nematic region shrinks compared to the phase diagram for r =0.3.

5.6 Conclusions

We found a new chiral phase called as `screw nematic phase' for the systems of hard

helical particles. We found a second order transition from conventional N to screw
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Figure 5.25: Phase digram plotted as η Vs pitch for helices having r = 0.3 and p =
2 to 8. Yellow circles indicate isotropic; Blue squares indicate nematic; Red squares
indicate screw nematic; triangles indicate smectic and other higher density phases.
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Figure 5.26: Phase digram plotted as η Vs pitch for helices having r = 0.4 and p =
2 to 8.
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nematic N∗S and a �rst order transition from an isotropic phase to N∗S phase. This phase

is peculiar to the helical shape and di�erent to cholesteric phase. In principle these two

phases could coexist and investigating their compatibility is our current interest. Phase

diagrams showing isotropic, nematic and screw nematic phases are obtained for di�erent

shape. The e�ect of the radius and the pitch on screw-like order in nematic phase is

clearly explained. Our results provide a theoretical explanation of I − N∗s transition

observed in helical �agella. Our results raise the question of existence of this phase in

other helical systems like concentrated DNA and helical polymers



Chapter 6

Characterization of the smectic

phases of hard helices

6.1 Introduction

Particles with shape anisotropy exhibit rich phase behaviour at high densities. There are

various smectic mesophases exhibited by particles with di�erent shapes and interactions.

Some common smectic types are mentioned in chapter 1. One of the remarkable phe-

nomena observed in 1980's is the spontaneous formation of smectic phases by colloidal

mono disperse rod-like particles spontaneously [75�77]. In any smectic phase, the den-

sity of particles is periodic in one dimension, parallel(tilted) to the principal direction of

particle orientation. The loss of entropy occurring due to this partial positional ordering

in smectic phases is compensated by the the loss in excluded volume. The emblematic

example for computer simulations is the system of hard spherocylinders which shows

smectic phase. First numerical evidence was provided by Frenkel et al.[78], showing that

hard spherocylinders can form stable smectic phases spontaneously. Here entropy, stem-

ming from hard-core interactions, alone is su�cient to drive the system to attain smectic

order. Studies indicate nematic to smectic transition for rod like particles of any aspect

ratio[79] is �rst order.

There are experimental �ndings on smectic phases exhibited by helical particles like

semi �exible monodisperse fd viruses[32], single handed helical polymers[80] etc. All

these particles are mono-disperse enough to form stable smectic phases. A solution of

virus particles showing smectic phase, is the only experimentally investigated system

dominated by repulsive interactions, that we can compare with the simulation of hard

helices. There is considerable deviation in the N-Sm coexistence concentration and the

layer spacing is found to be higher in case of simulations. Recent studies show that semi

68
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�exible viruses form smectic B and columnar phases [29] at high densities which are not

seen in hard-rods case. So studying the e�ects of helical shape on smectic order has its

own signi�cance.

In this chapter, I present the types of smectic phases that are observed in the system

of helical particles. The main focus is laid on the propagation of screw-like order into

smectic phases and its dependence on the shape of the helix. In section 6.2, di�erent

order parameters and correlation functions that are used to distinguish liquid crystal

phases at higher densities are discussed. In section 6.3, types of smectic phases and their

unconventional features are explained. Major part of the results section is dedicated to

the explanation of the phase behaviour of three di�erent helical shapes, going from the

straightest helix to the curliest helix. This is done by showing phases in the equation of

state curve and corresponding order parameters and correlation functions [72]. Finally

combining all the results obtained, full phase diagrams are shown in case of r = 0.1, 0.2

and 0.4.

6.2 Order parameters and correlation functions to charac-

terize higher density phases

In addition to the order parameters 〈P2〉 and 〈P1,c〉 discussed in chapter 5, we need other

order parameters to fully characterize higher density phases. The smectic order in the

system is obtained by computing one dimensional translational order parameter τ1. The

hexagonal ordering is found by using six fold bond orientational order parameter ψ6 and

the crystal like organization is shown by Q4 and Q6 bond order parameters.

6.2.1 smectic order parameter

The calculation of smectic order [6] [74] is not a trivial task in the simulation especially

when the system to close to the nematic to smectic transition. The one dimensional

translational order [81] [82] is given by

τ1 =

∫
ρ(z∗) cos(2π(z∗/d)) dz (6.1)

where z∗ is the position coordinate along the direction normal to the layers L̂, ρ(z∗)

is the singlet translation distribution function and d is the layer spacing. The order

parameter has to be calculated in the coordinate frame with z-axis parallel to ffl̂L. In

case of smectic A and smectic B, L̂ is same as nematic director n̂. Where as in tilted
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phases like smectic C L̂ makes some some angle with n̂. Eq.6.1 can be calculated if the

ρ(z∗) is known as layer spacing can also be obtained form ρ(z∗). But the positions of

the particles and thus positions of layers are always changing during the course of the

simulation making it di�cult to �nd ρ(z∗). These changes are more profound when the

system is close to the transition. The other problem involved here is the ambiguity in the

choice of the origin to �nd z∗. These problems can be overcome by considering general

expression which is given by

〈τ1〉 = |〈exp(2πi(z∗/d)〉| (6.2)

However eq.6.2 [83] [84] still has the disadvantage of requiring the prior knowledge of d.

This is solved by computing τ1 for di�erent values of d and determining the d value that

maximizes τ1. The maximum τ1 value is the smectic order parameter and the value of

d which maximizes is the actual layer spacing. This order parameter is close to unity in

case of perfect layering and close to zero in case of I, N and N∗S phases.

Figure 6.1 shows τ1 plotted as a function of d calculated at di�erent η for helices with r

= 0.2 and p = 4. The black line in the �gure, with no peak, corresponds to N∗S phase at

η = 0.370. The blue, red and green lines, showing peaks, correspond to smectic phase

and are in the order of increasing η. The maximum values of peaks are their correspond-

ing smectic order parameters. With increase in η, the order parameter increases and

corresponding layer spacing value decreases.

6.2.2 Hexatic order parameter

The positional ordering in each layer is analysed by calculating the six fold bond-

orientational (hexatic) order parameter 〈ψ6〉 [83] [85].

〈ψ6〉 =

〈
1

N

N∑
i=1

∣∣∣∣∣∣ 1

n(i)

n(i)∑
j=1

exp (6iθij)

∣∣∣∣∣∣
〉

(6.3)

Here n(i) is the number of nearest neighbours of molecule i with in a single layer. where

θij is the angle between vector r̃ij and a random �xed reference axis in plane perpen-

dicular to layer normal L̂. As shown in the eq 6.4, r̃ij is de�ned as vector parallel to

the projection of the unit vector r̂ij into the plane perpendicular to the layer normal L̂.

Only nearest neighbour molecules are considered as i and j in the equation.

r̃ij = r̂ij − (r̂ij .L̂).L̂ (6.4)
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Figure 6.1: The dependence of translational order parameter 〈τ1〉 on layer spacing
for helices having r = 0.2, p = 4 is shown on either side of N∗S − SmA transition. The

maximum value of τ1 is the smectic order parameter.

Figure 6.2: Figure showing how the line (dashed line) joining the nearest neighbour
helices making an angle θij with reference axis(solid line). Helices are projected on to
a plane. Red circle denotes the radius of the helix. The short axis inside each circle is

the �xed C2 axis indicating the orientation of helix

Figure 6.2 shows the bond angle θij between the line joining nearest neighbours (dashed

line) and the reference axis (solid line) in the plane perpendicular to L̂. Projection of

helices is shown following the same convention used in 4.

This 〈ψ6〉 order parameter helps to probe the onset of the hexatic order in the system.
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This value is close to 1 incase of perfect hexagonal ordering and close to zero in the ab-

sence of hexagonal ordering with in the vicinity of nearest neighbour distance mentioned.

Hexatic order is further supported by computing average number of nearest neighbours

〈n〉 with in each layer. This quantity is computed by taking the number of nearest neigh-

bours for all helices in plane and averaging it overall con�gurations. This value tends

to 6 in perfect hexagonal ordering. However both ψ6 and 〈n〉 are very sensitive to the

de�nition of the nearest neighbour distance. Nearest neighbour distance is decided from

the �rst peak position of radial distribution function. Both 〈ψ6〉, 〈n〉 are consistent in
displaying the hexatic order for di�erent layers. The results shown for hexatic order are

calculated for a single layer.

6.2.3 Q4 and Q6 bond order parameters

A family of local and global bond orientation order parameters are proposed by Stein-

hardt et al.[86] in 1983. These order parameters are commonly used to detect the crystal

nucleus and characterization of its structure. They are useful in studying melting transi-

tions, colloidal �uid-solid interfaces, glass transitions and crystalline clusters. The vector

joining a pair of nearest neighbours is considered as bond. The idea is to quantify the

spatial arrangement of nearest neighbours around a central particle. One can compute

local ql and global Ql bond order parameters. The local order parameter gives the in-

formation about the local arrangement about each particle which is useful in studying

liquids. The average of the local order of all particles gives global order which is an

indicative of long range positional correlation.

These order parameters are based on the spherical harmonic functions Ylm(θ, φ) and

therefore can be taken upto any number. Only few out of many possibilities are consid-

ered depending on the material of interest. The local bond order of particle i is given

by

qlm(i) ≡ 1

Na(i)

Na(i)∑
j=1

Ylm(r̂ij ) (6.5)

where r̂ij speci�es the direction of the bond rij , Na(i) is the number of nearest neighbours

of particle i and Ylm(r̂ij) ≡ Ylm(θij , φij).By taking average of local bond order over all

N particles, we get global bond bond order parameter Qlm.

Qlm ≡
∑N

i=1Na(i)qlm(i)∑N
i=1Na(i)

(6.6)
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Inorder to measure the structure without any bond orientational dependence, rotational

invariants are calculated.

Ql(i) ≡

√√√√ 4π

2l + 1

l∑
m=−l

|Qlm|2 (6.7)

The local bond order parameter ql is non-zero in both solid-like and liquid like states.

Where as the global order parameter Ql remains close to zero in liquids and non-zero in

solids.

The idea of the bond order parameters is to capture the symmetry of bond orienta-

tions regardless of the bond lengths. A bond is de�ned as the vector joining a pair of

neighboring atoms. The local order parameters associated with a bond are the set of

numbers

Qlm(R) ≡ Ylm(θ(R), φ(R)) (6.8)

where θ(R) and φ(R) are the polar and azimuthal angles of the bond with respect to an

arbitrary but �xed reference frame, and Ylm(θ(R), φ(R))are the usual spherical harmonics

Qlm ≡
1

Nb

∑
bonds

Qlm(R) (6.9)

where Nb is the number of bonds. To make the order parameters invariant with respect

to rotations of the reference frame, the second-order invariants are de�ned as

Ql =

√
4π

2l + 1

l∑
m=−l

|Qlm|2 (6.10)

The Q4 and Q6 bond order parameters are generally su�cient to identify di�erent crystal

structures. Characterization of the crystalline structures of helical particles is not simple

because of their non-convex shape. The method of bond-orientational order parameters

is used in case of simple systems like spherical molecules. Due to the shape anisotropy

of hard helices we cannot implement this method directly to the current system. So we

attempt to �nd the inplane order using bond order parameters neglecting the details of

intralayer arrangement. Here the neighbouring helices are those lying in the same plane

having distance less than or equal to the �rst minimum of the pair correlation function

which is ≈1.8D.
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6.2.4 Parallel and perpendicular pair correlation functions

We measure pair correlation function as a function of particle separation to get an insight

into the structure of phase in planes parallel and perpendicular to the director(n̂). The

perpendicular correlation function g⊥(R⊥) gives the probability of �nding a particle at

a distance of R⊥, when projected onto a plane perpendicular to the director [87].

g⊥(R⊥) =
1

2πR⊥N

〈
1

ρLz

N∑
i=1

N∑
j 6=i

δ(R⊥ − |Rij × n̂|)
〉

(6.11)

where N is the total number of particles, ρ is the number density, Lz is the length of the

simulation box along the director n̂. Note that the number density is taken inside the

average as the volume of the box changes in the course of simulation.

The structure of the phase parallel to the director is analysed by measuring g‖(R‖). The

parallel positional correlation function g‖(R‖) gives the probability of �nding a particle

at a distance of R‖, when projected onto a plane parallel to the director. More details

on correlation functions are given in Appendix D.

g‖(R‖) =
1

N

〈
1

ρLxLy

N∑
i=1

N∑
j 6=i

δ(R‖ −Rij .n̂)

〉
(6.12)

where Lx and Ly are the dimensions of the simulation box mutually orthogonal to the

director. δ is the Dirac δ function and Rij is the vector joining the centres of helices i and

j. Peaks in g‖(R‖) suggest layers in the structure. Both these correlation functions help

to distinguish Isotropic and Nematic (both correlation functions are liquid like); Smectic

(peaks in g‖(R‖), g⊥(R⊥) liquid like); columnar (absence of peaks in g‖(R‖) and g⊥(R⊥)

solid like); crystal (both g‖(R‖) and g⊥(R⊥) solid like). In addition to these, gŵ1,‖(R‖)

discussed in Chapter 3 is used to identify screw-like order.

6.3 Types of smectic phases observed

Depending on the shape of the helical particle and the density of the system, we see

mainly three di�erent arrangements in smectic region. Each case is explained in detail

by discussing various order parameters and correlation functions.
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6.3.0.1 smectic A with screw like order (Sm∗A,S)

The screw-like order combined with the layer ordering results in a new chiral smectic

phase. This smectic phase is characterized by random positional ordering inside the

layer along with screw like order. This phase can be distinguished with the help of order

parameters τ1 and 〈P1,c〉. Additional insight is obtained by looking at the snapshots and

the correlation functions gŵ1,||(R||), g||(R|| and g⊥(R⊥). This phase is globally uniaxial

with main director perpendicular to the layers and generally preceded by screw nematic.

6.3.0.2 smectic B with screw like order (Sm∗B,S)

This phase is characterized by the hexagonal positional order with in the layer along

with screw like order. The phase is exhibited by those helices having signi�cant twist in

their helical shape. Depending on the shape of the helix, we see transition form Sm∗A,S

to Sm∗B,S or N∗S to Sm∗B,S . This phase can be distinguished with the help of order

parameters 〈ψ6〉, τ1, and 〈P1,c〉 and correlation functions gŵ1,||(R||), g||(R|| and g⊥(R⊥).

6.3.0.3 smectic B with polar order (SmB,P )

This smectic phase is characterized by a hexagonal positional order with in the layer

along with polar order in each layer. In this phase, screw like order is absent. Each layer

possess hexagonal arrangement and behaves independently. Polar order develops with

C2 axis of all particles pointing in the same direction. This essential di�erence between

the structure of the Sm∗B,S and the Sm∗B,p phase is summarized in the �gure 6.3. While

in Sm∗B,s, helices are azimuthally correlated within each plane and screw-like correlated

between di�erent planes, in SmB,p phase only intra plane azimuthal correlation is present,

with di�erent layers being uncorrelated both positionally and orientationally.

6.4 Results and Discussion

I present the equation of states for three di�erent helices going from a straightest to a

curliest helical shape, explaining the onset of the screw like ordering at higher densities

for each case. In section 6.4.4, I present the full phase diagrams of helices with r = 0.1,

0.2 and 0.4.
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Figure 6.3: Cartoon of the smectic B phases discussed in the text. Circles repre-
sent transversal sections through the center of helices and arrows the corresponding
ŵ vectors. I, II, III indicate adjacent layers. Left: Sm∗B,S phase, with through-layers

positional correlation (AAA strucutre, highlighted by the dashed lines

and screw like orientational correlation of ŵ vectors. Right: SmB,p phase, with in-layer
correlation of ŵ vectors and neither positional nor orientational correlation between

layers.

6.4.1 Equation of state for r = 0.2, p = 8

Helix with r = 0.2, p = 8 is the straightest one with still having e�ective curliness to

account for screw like order. Figure 6.4 shows the equation of state of this system in

reduced pressure P ∗ versus η plane. Di�erent order parameters and correlation functions

are used to distinguish the phases as explained in section 6.3. Di�erent phases are shown

using di�erent colours. The same colour convention is followed in showing all order

parameters. We see I,N ,N∗S ,Sm
∗
A,S ,SmB,p and crystal-like structures with increase in η.

I −N and N −N∗S transition

The onset of nematic ordering and screw-like Nematic ordering is signalled by a jump

in nematic order parameter 〈P2〉 at η ≈ 0.23 and screw-like order parameter 〈P1,C〉 at
η ≈ 0.4 as shown in �gures 6.5 and 6.6. These transitions are discussed in detail in

Chapter5.
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Figure 6.4: Equation of state for the system of helices having r = 0.2, p = 8. Di�erent
colours indicate di�erent phases. I - isotropic; N - nematic; N∗S - screw-nematic; Sm∗A,S

- screw-smectic A; SmB,p - polar-smectic B; C - compact phase

Figure 6.5: Nematic order parameter 〈P2〉 as a function of volume fraction η for
helices with r = 0.2 and p = 8. Points are plotted in di�erent colours to indicate

di�erent phases.
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Figure 6.6: Screw-like order parameter 〈P1,c〉 for helices with r = 0.2 and p = 8.
Points are plotted in di�erent colours to indicate di�erent phases.

Figure 6.7: The parallel correlation function g‖(R‖) for helices with r = 0.2 and p =
8, calculated at η = 0.375, P ∗ = 0.9 in Nematic phase.

The correlation functions g‖(R‖) and gŵ1,‖(R‖) at η = 0.379 are �at (no correlation) as

shown in �gures 6.7 and 6.8. From these �gures it is evident that smectic and screw-like

orders are absent at η = 0.379. Figure 6.12 is the corresponding snapshot(N) coloured

according to the local tangent.
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Figure 6.8: The screw-like parallel orientational correlation function gŵ1,‖(R‖) for
helices with r = 0.2 and p = 8, calculated at η = 0.379, P ∗ = 0.9 in Nematic phase,

showing no screw like order.

Figure 6.9: Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.379 in
nematic phase. The colouring is done for each bead of the helix separately according

to the local tangent at that bead.

Figures 6.10 and 6.11 show correlation functions g‖(R‖) and gŵ1,‖(R‖) at η = 0.409. Figure

6.10 shows very small peaks indicating an incipient smectic order which sets in gradually

at higher pressures. These �gures con�rm screw-like ordering with no perfect layering.

Figure 6.12 is the corresponding snapshot(N∗S) with a hint of colour stripes.

N∗S − Sm∗A,S transition
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Figure 6.10: The parallel correlation function g‖(R‖) for helices with r = 0.2 and p
= 8, calculated at η = 0.409, P ∗ = 1.0 in screw-nematic phase.

Figure 6.11: The screw-like parallel orientational correlation function gŵ1,‖(R‖) for
helices with r = 0.2 and p = 8, calculated at η = 0.409, P ∗ = 1.0 in screw-nematic

phase

We see a transition from N∗S to Sm∗A,S at η ≈ 0.44. The onset of smectic ordering is

marked by an upswing in τ1 as shown in �gure 6.13. Figure 6.6 illustrates the signature

of screw-like ordering in smectic region. The non monotonic behaviour of P1,C after

η 0.42 is due to any slight deviation in the periodicity of the screw-like order because of

the formation of layers.

Broad peaks at an interval of R‖ ≈ 12 in g‖(R‖) correlation function at η = 0.458,

shown in �gure 6.14 con�rms the smectic order. Here we can notice the periodicity of

layers (≈ 12) is slightly higher than the e�ective length of the helix which is 10.88. This

periodicity is di�erent to the periodicity observed in gŵ1,‖(R‖) shown in �gure 6.15, which

corresponds to the helix pitch p = 8. The presence of both periodicities can be seen in

the snapshot shown in �gure 6.17. Thus the screw like order combines with layering,
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Figure 6.12: Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.409,
P ∗ = 1.0 in screw-nematic phase. The colouring is done for each bead of the helix
separately according to the local tangent at that bead. Regular colour stripes indicate

the phase as special chiral screw-nematic

Figure 6.13: smectic order parameter 〈τ1〉 as a function of volume fraction η for
helices with r = 0.2 and p = 8. Points are plotted in di�erent colours to indicate

di�erent phases.
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Figure 6.14: The parallel correlation function g‖(R‖) for helices with r = 0.2 and p
= 8, calculated at η = 0.458, P ∗ = 1.1, in screw-smectic A.

Figure 6.15: The screw orientational parallel correlation function gŵ1,‖(R‖) for helices
with r = 0.2 and p = 8, calculated at η = 0.458, P ∗ = 1.1, in screw-smectic A.

giving rise to a new smectic chiral phase. Figure 6.16 shows g⊥(R⊥) which indicates

liquid like behaviour with in the layer.

Sm∗A,S − SmB,p transition

At η ≈ 0.51, the correlation function g⊥(R⊥) in �gure 6.19 provide an indication of

translation order . g⊥(R⊥) exhibits well developed characteristic double peaked struc-

ture, with maximum at
√

3σ and 2σ, σ being the position of the main, nearest-neighbour

peak. This indicates that hexatic order sets in with in each single layer. This is further

supported by the high value of hexatic order parameter as shown in �gure 6.20 and the

fact that average number of nearest neighbours 〈n〉 tends to 6 as shown in �gure 6.21.

The correlation function gŵ1,‖(R‖) in �gure 6.18 shows the absence the periodicity equal

to helical pitch but shows the presence of azimuthal correlation with in the layer. This
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Figure 6.16: The perpendicular correlation function g⊥(R⊥) for helices with r = 0.2
and p = 8, calculated at η = 0.458, P ∗ = 1.1, in screw-smectic A.

Figure 6.17: Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.458 in
screw-smectic A phase. The colouring of beads is done according to the local tangent

of the helix.
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Figure 6.18: The screw orientational parallel correlation function gŵ1,‖(R‖) for helices
with r = 0.2 and p = 8, calculated at η = 0.515, P ∗ = 1.3, in polar smectic B.

Figure 6.19: The perpendicular correlation function g⊥(R⊥) for helices with r = 0.2
and p = 8, calculated at η = 0.515, P ∗ = 1.3, in polar smectic B.

is di�erent to the case shown in Sm∗A,S . Here the layers are are uncorrelated from each

other, developing polarity with in layers. Note that the gaps in gŵ1,‖(R‖) in �gure 6.18 are

due to the non-availability of particles with those particular R‖ values. Snapshots shown

in �gures 6.22 and 6.33 are in visual support to hexatic order combined with polarity

with in layers. Snapshot shown in �gure 6.33 is obtained by colouring helices according

to the orientation of a �xed C2 axis.

6.4.2 Equation of state for r = 0.2, p = 4

On increasing the helical twist, unconventional phases become more and more pro-

nounced. By keeping the radius �xed at r = 0.2 and decreasing pitch from 8 to 4,

we increase the number of turns in helix from 1.23 to 2.38. The equation of state is
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Figure 6.20: Hexatic order parameter 〈ψ6〉 as a function of volume fraction η for
helices with r = 0.2 and p = 8. Points are plotted in di�erent colours to indicate

di�erent phases.
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Figure 6.21: Average number of nearest neighbours 〈n〉 as a function of volume
fraction η for helices with r = 0.2 and p = 8. Points are plotted in di�erent colours to

indicate di�erent phases.

shown in �gure 6.26. With increase in η we see I, N , N∗S , Sm
∗
A,S , Sm

∗
B,S and crystal

like structures. Corresponding orderparameters are reported in �gures 6.27 to 6.31.

In this case, also the higher density smectic phases exhibit screw-like order. Figure 6.28

show P1,c being high through out entire smectic region and drops only at the onset of

compact phase C. Thus all smectic phases exhibit screw-like order. However SmB is

distinguished from SmA by g⊥(R⊥) and ψ6.
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Figure 6.22: Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.458 in
screw-smectic A phase. The colouring of beads is done according to the local tangent

of the helix.

Figure 6.23: Snapshot of the system of helices having r = 0.2, p = 8 at η = 0.458 in
polar-smectic B phase. The colouring is done according to the C2 axes of the helices.
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Figure 6.24: Q4 and Q6 bond order parameters as a function of volume fraction η
for helices with r = 0.2 and p = 8. Points are plotted in di�erent colours to indicate

di�erent phases.

Figure 6.25: Figure showing the sequence of phases and their representative snapshots
in the case of helices with r = 0.2 and p = 8.
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Figure 6.26: Equation of state for the system of helices having r = 0.2, p = 4. Di�erent
colours indicate di�erent phases. I - isotropic; N - nematic; N∗S - screw-nematic; Sm∗A,S

- screw-smectic; SmB,S - screw-smectic B; C - compact phase



Chapter 6. Characterization of the smectic phases of hard helices 89

Figure 6.27: Nematic order parameter 〈P2〉 as a function of volume fraction η for
helices with r = 0.2 and p = 4.

Figure 6.28: Screw-like order parameter 〈P1,c〉 as a function of volume fraction η for
helices with r = 0.2 and p = 4.

Figure 6.29: Smectic order parameter 〈τ1〉 as a function of volume fraction η for
helices with r = 0.2 and p = 4.
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Figure 6.30: Hexatic order parameter 〈ψ6〉 as a function of volume fraction η for
helices with r = 0.2 and p = 4.



Chapter 6. Characterization of the smectic phases of hard helices 91

Figure 6.31: Average number of nearest neighbours 〈n〉 as a function of volume
fraction η for helices with r = 0.2 and p = 4.

Figure 6.32: Average Q4 and Q6 bond order parameters as a function of volume
fraction η for helices with r = 0.2 and p = 4.

6.4.3 Equation of state for r = 0.4, p = 4

Helix with r = 0.4 and p = 4 is one of the curliest helix investigated. The phase behaviour

has important di�erences compared to those reported in �gures 6.4 and 6.26.From �gure

6.34 we can see only two intermediate high density liquid crystal phases N∗S and Sm∗B,S .

A direct �rst order I − N∗S transition is exhibited without intermediate N phase.Other

novel feature is the direct transition from N∗S to Sm∗B,S .
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Figure 6.33: Figure showing the sequence of phases and their representative snapshots
in the case of helices with r = 0.2 and p = 4.

Figure 6.34: Equation of state for the system of helices having r = 0.4, p = 4.
Di�erent colours indicate di�erent phases. I - isotropic; N∗S - screw-nematic; SmB,S -

screw-smectic B; C - compact phase
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Figure 6.35: Average Q4 and Q6 bond order parameters as a function of volume
fraction η for helices with r = 0.4 and p = 4.

Figure 6.36 shows g‖(Rparallel) at η = 0.493 indicating layers with a periodicity close to

e�ective length of the helix ≈ 9.47. Screw like ordering is evidenced by gŵ1,‖(R‖) and

high value of 〈P1,C〉. Hexagonal order with in the plane is inferred from the double

peaked structure of g⊥(R⊥) which is shown in �gure 6.37. Red dotted line in �gure 6.37

corresponds to g⊥(R⊥) computed for a single layer. Interesting feature in this case is

the absence of �rst peak at R⊥ ≈ 0 when calculation of g⊥ is restricted to single layer

and conversely present when carried over all layers. This clearly indicates the AAA type

of arrangement, where a helix belonging to a given layer gets stacked on with the one

immediately on its top and thus forming a global helix spanning the whole simulation

box. It is important to mention at this stage that starting con�gurations may have a

crucial role at high densities. At low densities (Isotropic and Nematic), a di�erent initial

condition would result in almost same phase behaviour. However this is not necessarily

true at higher densities. It is instructive to dwell on e�ect of starting con�guration on

phase diagram at high densities. Figure 6.34 also shows a compression curve plotted with

darker points. I remind here that all the results are obtained by starting from a very

compact con�guration obtained from ISSM method discussed in Chapter3. While the

compression is started by taking the smectic con�guration which again obtained from

compact con�guration. All the results in compression are obtained by starting with an

equilibrated structure at immediate lower pressure. We can notice a small hysteresis

region indicating the uncertainty of �nding true coexistence pressure.
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Figure 6.36: The parallel correlation function g‖(R‖) for helices with r = 0.4 and p
= 4, calculated at η = 0.493, P ∗ = 1.5, in screw smectic B phase.

Figure 6.37: The parallel correlation function g⊥(R⊥) for helices with r = 0.4 and p
= 4, calculated at η = 0.493, P ∗ = 1.5, in screw-smectic B phase.

Figure 6.38: The screw orientational parallel correlation function gŵ1,‖(R‖) for helices
with r = 0.4 and p = 4, calculated at η = 0.493, P ∗ = 1.5, in screw smectic B phase.
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6.4.4 Phase diagrams showing the e�ect of radius and pitch on smectic

phases

6.4.4.1 Phase diagram for r = 0.1

Figure 6.39 shows full phase diagram corresponding to r = 0.1 and pitch varying from

2 to 8. We can see 4 di�erent coloured regions indicating I,N, SmA and Sm B. Going

from low to high volume fractions yellow region indicate Isotropic; blue indicate Nematic;

Light green indicate smectic A and Dark green indicate smectic B. As mentioned before,

the boundaries are not exact and need further studies to �nd coexistence regions. We did

not �nd SmB - Compact phase C transition with in the region of interest. We observed

no speci�c helical shape e�ects on the phase diagram for r = 0.1. Nevertheless there is

partial screw like order that is emerging for lower pitch values and only at higher densities

(in SmB region). This can be seen in the surface plot of P1,C for r = 0.1 in �gure 6.40,

plotted in η and pitch plane. Notice the value of P1,C corresponding to the colour shown

in the colour bar next to the �gure. It is clear that the P1,C value is close to zero every

where except in the high density region. The maximum value of P1,C found in case of r

= 0.1 is 0.5. The irregular patterns in the surface could be due to the possible deviation

in the periodicity of the screw-like order because of the formation of layers.

6.4.4.2 Phase diagram for r = 0.2

Figure 6.41 shows full phase diagram in case of r = 0.2 and p = 2 to 8. This �gure

is an extended phase diagram to that shown in Chapter 3. Going from low to high

density we see isotropic, nematic, screw-nematic, screw-smectic A and screw-smectic B,

polar-smectic B and �nally compact phases. The remarkable di�erence with the phase

diagram of r = 0.1 is the presence of strong screw like order. In Chapter 3, we discussed

about the second order N − N∗S transition. In this �gure we can notice that screw

like order propagates from Nematic to smectic A region for all pitch values. However

propagation of screw like order in SmA to SmB transition is not uniform for all pitch

values. For low pitch values, we see Sm∗A,S to Sm∗B,S transition and then Sm∗B,S to

compact phase. Where as for high pitch values like 6,7 and 8 screw like order gradually

decreases in smectic B region increasing the polarity in layers. In this region the screw-

like correlation between the layers is lost and behave independently. The grey shade in

smectic region shows the polar smectic B phase. Figure 6.42 clari�es the overall spread of

screw-like order. We can notice signi�cant value of P1,c for low pitch values and gradual

decrease in going to higher pitches. The absence of screw-like order at high density for

pitches 6, 7 and 8 can be seen clearly in the �gure.
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Figure 6.39: Full phase diagram of the helices with r = 0.1 shown in the plane of
volume fraction η and pitch of the particle. Points plotted as circles indicate Isotropic
phase; squares indicate Nematic; triangles indicate smectic phase. Di�erent colours
indicate di�erent phases observed. Yellow - Isotropic; Blue - Nematic; Light green -

smectic A; Dark green - smectic B

Figure 6.40: Surface plot of screw-like order parameter P1,c plotted in the plane of η
and pitch of the helix for r = 0.1 .
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Figure 6.41: Full phase diagram of helices with r = 0.2 shown in the plane of volume
fraction η and pitch of the particle. Points plotted as circles indicate Isotropic phase;
squares indicate Nematic; triangles indicate smectic phase and diamonds indicate crys-
tal like structure. Di�erent colours indicate di�erent phases observed. Each colour is

labelled by the phase observed.

Figure 6.42: Surface plot of screw-like order parameter P1,c plotted in the plane of η
and pitch of the helix for r = 0.2.
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Figure 6.43: Full phase diagram of helices with r = 0.4 shown in the plane of volume
fraction η and pitch of the particle. Points plotted as circles indicate Isotropic phase;
squares indicate Nematic; triangles indicate smectic phase and diamonds indicate crys-
tal like structure. Di�erent colours indicate di�erent phases observed. Each colour is

labelled by the phase observed.

6.4.4.3 Phase diagram for r = 0.4

Figure 6.43 show full phase diagram corresponding to r = 0.4. The phase diagram has

interesting features in case of r = 0.4 because of the aspect ratio. The aspect ratio of

helix goes from 4.01 to 5.85 by increasing pitch form 2 to 8. In this region, the phase

behaviour re�ects the combined e�ect of aspect ratio and pitch of the particle. At higher

pitches we see a general trend of I,N∗S , Sm
∗
A,S and Compact phases. With the decrease in

the pitch, there is an increase in the helical twist. This causes a direct I −N∗S transition

with no conventional Nematic. This has been discussed in detail in 3. In smectic region,

for pitch p = 5, smectic B appears more stable showing I−N∗S −Sm∗B,S −C transitions.

With further decrease we see a direct I − Sm∗B,S transition. Figure 6.44 shows how the

screw like order extends to all pitches.
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Figure 6.44: Surface plot of screw-like order parameter P1,c plotted in the plane of η
and pitch of the helix for r = 0.4.

6.4.5 Evidence of Columnar phase after smectics?

As mentioned before simulations at high densities have a strong dependence on the

initial con�guration. The initial condition plays a major role in deciding the phase. For

certain shapes, the expansion starting from a dilute smectic con�guration resulted in

a columnar phase. However the smectic con�guration is obtained by starting from a

compact con�guration obtained from ISSS method. The phase behaviour is di�erent

along the compression curve. Let us consider one such shape with r = 0.3 and p =

3. Simulations starting from a dilute Sm∗A,S develop hexagonal order with increasing

eta. The interesting behaviour at this point is the drop in smectic order parameter

while screw-like order and hexagonal order still persists. This phase can be described

as hexagonal columnar. With the increase in volume fraction, smectic order parameter

rises slowly resulting in a smectic C with screw like order and hexagonal order. Though

the layers formed in Sm∗C,S are not perfect. This could be due to the weak stability of

this phase.

Figure 6.45 shows the drop in smectic order parameter after η = 0.42. At η = 0.5, we see

a steady increase in order parameter. Figure 6.46 shows how the parallel correlation is

lost with increase in volume fraction. Correlation function g⊥ in �gure 6.47 indicate the

hexatic order in the system. Correlation function gŵ1,‖ shown in the �gure 6.48 indicate

the screw like order in the system. Figure 6.51 shows the snapshot with regular stripes

indicating the screw like order in the system. Figure 6.50 shows the snapshot coloured

according to their position to show the de-localisation of layers.
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Figure 6.45: smectic order parameter 〈P1,c〉 as a function of volume fraction η for
helices with r = 0.3 and p = 3.
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Figure 6.46: The parallel correlation functions g⊥(R⊥) for helices with r = 0.3 and
p = 3, calculated at η = 0.399; 0.461; 0.484.

0 1 2 3 4 5
0

2

4

6

8

10

12

R⊥

g ⊥
(R

⊥
)

P ∗ = 1.3, η = 0.484

Figure 6.47: The perpendicular correlation function g⊥(R⊥) for helices with r = 0.3
and p = 3, calculated at η = 0.484.
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Figure 6.48: The screw orientational parallel correlation function gŵ1,‖(R‖) for helices
with r = 0.3 and p = 3, calculated at η = 0.484, P ∗ = 1.3, in screw smectic B phase.

Figure 6.49: Snapshot of the system of helices having r = 0.3, p = 3 at η = 0.399 in
Sm∗B,S phase. The colouring is done according to the position of the helices.

Presented are the preliminary results. This result is in support of the experimental result

on semi �exible virus by Grelet etal. This work shows an evidence of columnar phase

after smectic B in case of semi-�exible virus [88]. In this case, SmB − col transition is

found to be independent of rod �exibility.

6.5 Conclusions

In this work we have studied the self assembly properties of systems of hard helices as

a function of helix shape. We found a rich and unconventional polymorphism which

is striking contrast to hard spherocylinder phase behaviour. Helices which are rod-like

show phase behaviour similar to hard rods with an additional hexagonal order in smectic
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Figure 6.50: Snapshot of the system of helices having r = 0.3, p = 3 at η = 0.484 in
columnar phase phase. The colouring is done according to the position of the helices.

Figure 6.51: Snapshot of the system of helices having r = 0.3, p = 3 at η = 0.484 in
columnar phase. The colouring is done according to the local tangent of the helices.
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phase. With the increase in the radius of helix, we see a rich phase diagram with

di�erent phases. With increase in the density, a smectic A phase with screw like order

can appear. Helices lying in the interlayer regions provide a bridge between adjacent

layers which allows to keep the the screw like organization. As the density increases,

we see two types of smectic phases depending on the shape of the helix. For less curly

helices, screw-like order vanishes bringing a polar order in the smectic phase. On other

hand, the highly twisted helices undergo a transition to smectic B with screw-like order.



Chapter 7

Summary

Helix shape plays a prominent role in biological activities. Many particles like DNA,

RNA and virus particles acquire helical shape. Though the helical shape is ubiquitous

in nature, little is known about the role of helical shape in liquid crystal organization.

Our work on hard helical particles answers few questions like the e�ect of helical shape

on the liquid crystal phase diagram. Our work clearly explains the physical mechanism

behind the liquid crystalline phase of helical �agella [5]. We have studied the phase

behaviour of di�erent helical shapes varying radius and pitch of the helix. We found a

rich polymorphism showing new chiral phases in nematic and smectic region. Here I give

a brief report on each chapter and the results obtained.

In Chapter 3, I present the results on isotropic-nematic transition of hard helical particles.

We found that the location of the isotropic-nematic transition depends on the shape of

the helix. Unlike spherocylinder, same aspect ratio can be achieved with di�erent helical

parameters. So the approximation of helix to a spherocylinder gives deviation in the

results. We found that the results from Onsager theory deviates from Monte Carlo

results and this deviation increases with increase in the helicity. Compared to Monte

Carlo results, results from Onsager theory underestimates the pressure value.

In Chapter 4, I present the details and implementation of Isopointal set structural Search

method (ISSM). In this work, we obtained the maximum packing densities of di�erent

shapes of helices. Except few helices with pitch equal to 1, all helical shapes prefer

hexagonal arrangement with one particle per unit cell. The method is based on the

simulation annealing techniques and gives best compact strucutre in a plane. Neither

curly nor slender helices are giving best packing. The intermediate helices are giving

highest packing fraction. However, the planar density is found to be the same for all

helices after the crossover. Packing fraction variations after the crossover are occuring

104
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due to di�erence in the height of the particles. The con�guration thus obtained are used

to construct intial con�guration to for the expansion using NPT Monte Carlo simulation.

Chapter 5 consists of important results on the new phase that is observed in nematic

region. The origin of this new chiral nematic phase is due to the coupled translational and

rotational motion of helices. Unlike the long axis in cholesteric phase, the C2 symmetry

axis of the helix which is perpendicular to the long-axis spirals around the nematic

director. This is purely entropy driven and always occurs at the high density end of the

nematic phase. We have characterized this new phase using lowest rank order parameter

P1,C and correlation function gŵ1,||. We found either �rst order isotropic to screw nematic

or second order nematic to screw-nematic transition depending on the geometry of the

helix.

In Chapter 6, I present high density liquid crystal phases of helical particles. We found

rich and unconventional polymorphism in the smectic region of th ephase diagram. We

found three di�erent smectic phases depending on the density and the geometry of the

helical particle. We found smectic A with screw like order, smectic B with screw like

order and smectic B with polar order. Part of the helices lying in the layer gap provide

the information of the C2 axis orientation from the layer below to the next layer. I

present the phase diagrams in density - pitch plane for di�erent values of radius ranging

from r = 0.1 to 0.4. On an other hand, we found a stable columnar phase starting from a

dilute smectic phase for few geometries of helix. Further investigation in characterizing

these phases.



Appendix A

Relation between the length and

number of turns of the helix

Consider a helix as parametrized by an angular coordinate 0 ≤ ζ ≤ 2πnp where np is

the number of di�erent turns (i.e. pitches). In Cartesian coordinates, its representation

with respect to an origin of the helix is identi�ed as the vector

r(ζ) = r cos(ζ)êx + r sin(ζ)êy + p
ζ

2π
êz (A.1)

Here r and p are the radius and the pitch of the helix, respectively. Then we have

∂

∂ζ
r(ζ) = −rsin(ζ)êx + r cos(ζ)êy +

p

2π
êz (A.2)

On recalling that the tangent unit vector has the form

T̂(s) =
∂

∂s
r(s) (A.3)

where

∂

∂s
r(s) =

1

s′(s)
∂

∂ζ
R(ζ) (A.4)

we then have that the condition

T̂(s).T̂(s) =
∂

∂s
r(s).

∂

∂s
r(s) = 1 (A.5)
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leads to

(s′)2 = r2 +
p2

4π2
(A.6)

This can be integrated to get the total length of the string (the backbone of the helix)

L =

∫ 2πnp

0
dζ

√
r2 +

p2

4π2
= np

√
p2 + (2πr)2 (A.7)

Note that this is, in general, di�erent from the �euclidean length� Λ = npP that corre-

sponds to the length of the associated spherocylinder. If we slice the angular variable ζ

in nsp − 1 pieces, nsp being the number of spheres of diameter D forming the helix, we

then have L = (nsp − 1)∆ζD, with the angular amplitude of each slice is given by

∆ζ =
np

D(nsp − 1)

√
p2 + (2πr)2 (A.8)

Hence if one assumes D as the unit of lengths, the geometry of the helix requires inputs

: r, p, nsp and np (or alternatively , Λ).



Appendix B

Checking for the overlap between

two rigid helices

Condider two helical particles denoted by 1, 2 with their center of masses lying at

(X1,Y1,Z1) and (X2,Y2,Z2) and direction vectors of their long axes being U1 and U2.

The alogrithm of the overlap check is as follows:

• The distance between the centres r12 is given by

r12 =
√

(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 (B.1)

If r12 is greater than the length of the helix L+D, then there is no overlap in the helices.

Else the shortest distance between the long axes of the helices has to be found to check

the overlap.

• Shortest distance between the long axes of the helix:

let x be the shortest distance between the axes and can be written as

x = r12 + µU2 − λU1 (B.2)

The values of λ and µ giving the shortest distance lie in any of the four quardrants in (λ,

µ) plane and lie within the interval [−L/2, L/2]. The values are obtained by minimising

the function x2 [58] .

• If distanc x is greater than the width of the helix (2r+D), then there is no overlap in

the helices. Else the overlap has to be checked bead by bead.
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Appendix C

De�nition of the Frenet frame

The helix axis can be described by a curve R(s) parameterized by its arc length s. In

dealing with such curved objects it proves convenient to introduce suitable curvilinear

coordinates to perform the calculations in a more e�cient way and this is achieved by

introducing a particular Frenet frame of unit vectors {T̂(s), N̂(s), B̂(s)} for the tangent,
normal and binormal respectively, as follows

T̂ (s) =
R′ (s)

‖R′ (s) ‖ (C.1)

N̂ (s) =
T̂′ (s)

‖T̂′ (s) ‖
B̂ (s) = T̂ (s)× N̂ (s)

where the prime denotes the derivative with respect to the argument. The Frenet coor-

dinates satis�es the Frenet-Serret equations

∂T̂ (s)

∂s
= κ (s) N̂ (s) (C.2)

∂N̂ (s)

∂s
= −κ (s) T̂ (s) + τ (s) B̂ (s)

∂B̂ (s)

∂s
= −τ (s) N̂ (s)

which automatically de�ne the curvature κ(s) and the torsion τ(s) from the �rst and

the last equations of (C.3). Note that it is convention to choose κ(s) to be positive by

absorbing the sign in the direction of the normal vector N̂(s).
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Correlation functions of various

nature

Consider a system of N helices in a volume V = L3 so that ρ = N/V is the their density.

Let ûi(ωi) and ûj(ωj) be the unit vectors associated with the orientations of helices

i and j, and let r̂ij(ω) the unit vector associated with the center-to-center separation

rij = ri−rj . They are individuated by solid angles ωi,ωj , and ω respectively. We expect

the pair-potential to be of the form

φ (ij) = φ (rij , ûi, ûj) (D.1)

We further introduce the nematic vector n̂. This then suggests the decoupling

rij = r
‖
ij + r⊥ij = (rij · n̂) n̂ + |rij × n̂| r̂⊥ij (D.2)

D.1 Parallel and perpendicular correlation functions

In analogy with the procedure for the computation of the radial distribution function

g(r) [47], we proceed as follows.〈∑
i<j

δ
(
r‖ − (rij · n̂)

)〉
=

1

ZN

∫ [ N∏
l=1

d3rl
dωl
4π

]∑
i<j

δ
(
r‖ − (rij · n̂)

)
e−β

∑
l<m φ(lm)(D.3)
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where ZN is the usual con�gurational partition function. Because of the symmetry

among the helices, and using the de�nition

ρ (12) = ρ2g (12) =
N (N − 1)

ZN

∫ ∏
l≥3

d3rl
dωl
4π

 e−β∑
l<m φ(lm) (D.4)

equation (D.3) can then be reduced to〈∑
i<j

δ
(
r‖ − (rij · n̂)

)〉
=

∫
d3r1 d

3r2

∫
dω1

4π

dω2

4π
δ
(
r‖ − (rij · n̂)

)
ρ2g (12)(D.5)

The factor N(N−1) appearing in eq(D.4) clearly accounts for all ordered pairs of helices.

We further note that∫
d3r1 d

3r2 = V

∫
d3r12 = V

∫ L

0
dr
‖
12

∫
d2r⊥12 (D.6)

and introduce the short-hand notation

〈. . .〉ω =
1

4π

∫
dω . . . (D.7)

Then, eq.(D.5) becomes〈∑
i<j

δ
(
r‖ − (rij · n̂)

)〉
= V ρ2

∫ L

0
dr
‖
12δ
(
r‖ − r‖12

)∫
d2r⊥12

〈
g
(
r
‖
12, r

⊥
12, ω1, ω2

)〉
ω1,ω2

(D.8)

One can then identify the parallel correlation function as an average over the perpendic-

ular component (of area πL2)

g‖
(
r‖
)

=
1

πL2

∫
d2r⊥12

〈
g
(
r
‖
12, r

⊥
12, ω1, ω2

)〉
ω1,ω2

(D.9)

so that, we get from eqs.(D.8) and (D.9)

g‖
(
r‖
)

=
1

πNρL2

〈∑
i<j

δ
(
r‖ − (rij · n̂)

)〉
(D.10)

This expression should correspond to eq.(9) in Ref.[87].

With a similar procedure, we consider the perpendicular component. Here we �nd〈∑
i<j

δ (r⊥ − |rij × n̂|)
〉

= V

∫
d3r12δ (r⊥ − |r12 × n̂|) ρ2

〈
g
(
r
‖
12, r

⊥
12, ω1, ω2

)〉
ω1,ω2

(D.11)
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With the de�nition of perpendicular correlation function

g⊥ (r⊥) =
1

L

∫
dr
‖
12

〈
g
(
r
‖
12, r

⊥
12, ω1, ω2

)〉
ω1,ω2

(D.12)

one then gets from eq.(D.11)

g⊥ (r⊥) =
1

2πNρr⊥L

〈∑
i<j

δ (r⊥ − |rij × n̂|)
〉

(D.13)

that is the analog of eq.(10) in Ref.[87].

D.2 Coe�cients of rotational invariants

The general expansion of g(12) in rotational invariants for a linear molecule in an arbi-

trary frame is given by [89]

g (12) = g (r12, ω1, ω2) =
∑
l1l2l

gl1l2l (r12) Φl1l2l (ω1, ω2, ω) (D.14)

where gl1l2l(r12) are the seeked coe�cients, and the rotational invariants have the form

Φl1l2l (ω1, ω2, ω)
∑

m1m2m

C (l1l2l;m1m2m)Yl1m1 (ω1)Yl2m2 (ω2)Y
∗
lm (ω) (D.15)

Here C(l1l2l;m1m2m) are the Clebsh-Gordan coe�cients and Ylm (ω) the usual spherical

harmonics of order lm. We further note that

gl1l2l (r12) = hl1l2l (r12) + δl10δl20δl0 (D.16)

Using the expansion (D.14) and the normalization condition

〈
Φl1l2l (ω1, ω2, ω) Φl′1l

′
2l (ω1, ω2, ω)

〉
ω1,ω2

= δl1l′1δl2l′2δll′

〈[
Φl1l2l (ω1, ω2, ω)

]2〉
ω1,ω2

(D.17)

so that, one obtains from (D.14) and (D.17)

gl1l2l (r12) =

〈
g (r12, ω1, ω2) Φl1l2l (ω1, ω2, ω)

〉〈
[Φl1l2l (ω1, ω2, ω)]

2
〉
ω1,ω2

(D.18)

Consider now the simplest non-trivial rotational invariant

Φ110 (ω1, ω2, ω) = û1(ω1) · û2(ω2) (D.19)
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Then we have〈∑
i<j

δ (r − rij) Φ110 (ω1, ω2, ω)

〉
=

1

ZN

∫ [ N∏
l=1

d3rl
dωl
4π

]∑
i<j

δ (r − rij) Φ110 (ωi, ωj , ω) e−β
∑

l<m φ(lm)

=
N (N − 1)

ZN

∫ [ N∏
l=1

d3rl
dωl
4π

]
δ (r − r12) Φ110 (ω1, ω2, ω) e−β

∑
l<m φ(lm)

=

∫
d3r1d

3r2

∫
dω1

4π

dω2

4π
δ (r − r12) Φ110 (ω1, ω2, ω) ρ (12)

= ρN4π

∫ +∞

0
dr12r

2
12δ (r − r12)

〈
Φ110 (ω1, ω2, ω) g (r12, ω1, ω2, ω)

〉
ω1,ω2,ω
(D.20)

Use of eqs.(D.17) and (D.18), along with the result [90]〈[
Φ110 (ω1, ω2, ω)

]2〉
ω1,ω2

=
1

3
(D.21)

along with eq.(D.16), leads to

g110 (r) = h110 (r) =
3

4πNρr2

〈∑
i<j

δ (r − rij) Φ110 (ω1, ω2, ω)

〉
(D.22)

that coincides with eq.(9b) of Ref.[91].

The same procedure applies for all other rotational invariants. For instance

Φ112 (ω1, ω2, ω) = 3 (û1(ω1) · r̂12(ω)) (û2(ω2) · r̂12(ω))− û1(ω1) · û2(ω2) (D.23)

The analog of (D.21) is now〈[
Φ112 (ω1, ω2, ω)

]2〉
ω1,ω2

=
2

3
(D.24)

so that

g112 (r) = h112 (r) =
3

8πNρr2

〈∑
i<j

δ (r − rij) Φ112 (ω1, ω2, ω)

〉
(D.25)

that is eq.(9c) of Ref. [91]. Finally, for [90]

Φ220 (ω1, ω2, ω) = 1− 3T 2
1 T

2
2 − 3T 2

3 − 6T1T2T3 (D.26)
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where we have introduced the following short-hand notations [90]

T1 = û1(ω1) · r̂12(ω) (D.27)

T2 = û2(ω2) · r̂12(ω) (D.28)

T3 = û1(ω1) · û2(ω)− (û1(ω1) · r̂12(ω)) (û2(ω2) · r̂12(ω)) (D.29)

one �nds, following the same steps, along with the use of Ref. [90]〈[
Φ220 (ω1, ω2, ω)

]2〉
ω1,ω2

=
4

5
(D.30)

g220 (r) = h220 (r) =
5

16πNρr2

〈∑
i<j

δ (r − rij) Φ220 (ω1, ω2, ω)

〉
(D.31)

Again, this coincides with eq.(9d) of Ref. [91].

These are also the coe�cients computed in Refs. [82, 83] (albeit with di�erent nota-

tions).
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