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Summary. Generalized linear models are a widely used method to obtain parametric estimates for the mean function. They
have been further extended to allow the relationship between the mean function and the covariates to be more flexible
via generalized additive models. However, the fixed variance structure can in many cases be too restrictive. The extended
quasilikelihood (EQL) framework allows for estimation of both the mean and the dispersion/variance as functions of covariates.
As for other maximum likelihood methods though, EQL estimates are not resistant to outliers: we need methods to obtain
robust estimates for both the mean and the dispersion function. In this article, we obtain functional estimates for the mean
and the dispersion that are both robust and smooth. The performance of the proposed method is illustrated via a simulation
study and some real data examples.
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1. Introduction
Statistical modeling aims at describing how a phenomenon
of interest changes with respect to some other quantities.
Generally most of the modeling efforts focus on studying
how the expected value of the dependent variable Y , de-
noted by μ, changes as a function of the covariates Xd =
(X1 , . . . , Xd ). Generalized linear models (GLM, McCullagh
and Nelder, 1989) are one of the most popular techniques
to model the mean of different types of distributions belong-
ing to the exponential family. Standard GLM though are not
always most appropriate to model the data at hand; the as-
sumption of a linear relationship between (a transformation
of) μ and the covariates might be too restrictive. Also, GLM
estimates are maximum likelihood estimates, which can be
severely influenced by the presence of outliers. For both is-
sues possible solutions have been proposed: we can allow the
relationship between (a transformation of) μ and the covari-
ates to be of a smooth unknown shape via generalized additive
models (GAM; Hastie and Tibshirani, 1990) and we can ob-
tain estimates that are robust via the approach proposed for
GLMs by Cantoni and Ronchetti (2001a). Recently Alimadad
and Salibian-Barrera (2011) propose a method for robust es-
timation of GAM.

In this article, we develop a statistical procedure to obtain
smooth and robust estimates for both the mean and the dis-
persion function in a multivariate covariates setting. We thus
allow for heteroscedasticity in the model. Estimating how the

variance changes with respect to Xd can be in some cases
of interest by itself, or it can be pursued to obtain a more
appropriate fit. From the distributional assumptions made in
GLM follows a fixed relationship between the shape of the
variance and the mean, but the variance observed in real data
often deviates from the theoretical model. Common devia-
tions from the usual assumptions in GLM are heteroscedastic-
ity in normal data and over- or underdispersion in count and
proportion data. The estimation of the variance can indeed be
a crucial point and different approaches have been proposed
to tackle this problem: see the introduction in Gijbels, Pros-
docimi, and Claeskens (2010) or Hinde and Demétrio (1998)
for a review of possible methods. In particular, Rigby and
Stasinopoulos (2005) propose a class of models generalized
additive models for location, scale and shape (GAMLSS) that
allows the user to obtain smooth functional estimates for dif-
ferent parameters of a given distribution (from which the data
are assumed to be generated). To model the dispersion of, for
example, count or proportion data, one needs to specify a dis-
tribution that also allows for dispersion modeling. Typically,
one would assume data to come from a negative binomial
or a beta binomial distribution, which extend the standard
Poisson and binomial distribution via hierarchical modeling
reasoning. These distributions only allow overdispersion mod-
eling, and cannot be used in case of underdispersed data or
when data show a combination of overdispersion and under-
dispersion.
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In this work we use the extended quasilikelihood (EQL) ap-
proach (Nelder and Pregibon, 1987; McCullagh and Nelder,
1989) to obtain estimates for the dispersion function. The
EQL framework allows for a very flexible type of modeling in
which one also easily models both under- and overdispersion.
Just as the standard quasilikelihood, EQL estimators can be
severely affected by outliers, and we use the techniques pro-
posed by Cantoni and Ronchetti (2001a) to robustly estimate
both the mean and the dispersion function in our setting.
Moreover, the methods presented here allow these estimates
to be a flexible function of the covariates. We mostly use GAM
combined with P-splines (Marx and Eilers, 1998). For simplic-
ity of presentation we limit ourselves to P-splines. Different
linear smoothers, possibly more appropriate than P-splines for
a problem at hand, could be employed without undermining
the main contribution of this article.

The remainder of the article is organized as follows: in Sec-
tions 2 and 3, standard and robust estimation methods within
the EQL framework are presented. In Section 4, we introduce
the generalized additive models framework to obtain smooth
and robust estimates of the mean and the dispersion func-
tion. In Section 5, we discuss how to optimally choose the
smoothing parameters. We show the performance of the pro-
posed methods via a simulation study and real data examples
in Sections 6 and 7, respectively. In Section 8, we provide
a comparative study for different model choices, evaluating
their impact on the final performance via a simulation study.

The methods presented in this article have been imple-
mented in R. The files containing the implemented functions
can be found at: http://wis.kuleuven.be/stat/codes.

html.

2. Extended Quasilikelihood
To write a likelihood function for a certain model, we need
to make assumptions on the distribution of the process of in-
terest. In the quasilikelihood framework, rather than making
a full distributional assumption, one only specifies the rela-
tionship between the mean and the variance of the process of
interest. Estimates are obtained by maximizing a quasilikeli-
hood function, which shares key properties with a likelihood
function, but can be obtained with weaker assumptions (Wed-
derburn, 1974). We consider

E[Y |Xd = xd ] = μ(xd ) and Var[Y |Xd = xd ] = φV (μ(xd )),

with V (·) a known function, and write the quasi-log-likelihood
function as:

Q(y, μ(xd )) =
∫ μ (xd )

y

y − t

φV (t)
dt .

We also introduce a monotone and twice differentiable func-
tion η(·), which transforms the expected value of (Y |Xd =
xd ) via a link function g(·), and is modeled as a linear com-
bination of some generic functions of the covariates: η(xd ) =
g(μ(xd )) = αμ,0 + η1(x1) + · · · + ηd (xd ). Furthermore, the
quasideviance function

d(y, μ(xd )) = −2Q(y, μ(xd )) = 2
∫ y

μ (xd )

y − t

φV (t)
dt , (1)

measures the discrepancy between the value of y and the ex-
pected value of the original distribution.

In the quasilikelihood setting the relationship between the
variance of (Y |Xd = xd ) and the covariates is totally gov-
erned by the functional form of V (μ(xd )). This relationship
might however be too restrictive, and one might be interested
in adding an extra dispersion parameter in the model, which
varies as a function of the covariates (Nelder and Pregibon,
1987). We thus consider

E[Y |Xd = xd ] = μ(xd ) and

Var[Y |Xd = xd ] = φγ(xd )V (μ(xd )), (2)

with γ(xd ) an extra dispersion function. To model this dis-
persion function we take:

E[d(Y, μ) |Xd = xd ] = γ(xd ) and

Var[d(Y, μ) |Xd = xd ] = 2γ2(xd ). (3)

The structure used to model the dispersion is a mirror image
of the mean modeling: the quasideviance is used as a response
variable with mean function γ(xd ) and a suitable variance
function is also assumed. Note how the chosen variance struc-
ture for the dispersion corresponds to assuming (d(Y , μ) |
Xd = xd ) ∼ γ(xd ) χ2

1. We introduce here a second monotone
and twice differentiable function ξ(·), which transforms the
expected value of (d(Y , μ) |Xd = xd ) via a link function h−1

(·), and is modeled as a linear combination of some generic
functions of the covariates: ξ(xd ) = h−1 (γ(xd )) = αγ ,0 +
ξ1(x1) + · · · + ξd (xd ).

In the usual parametric approach one takes the relationship
between the link functions and the covariates Xd to be linear:
η(xd ) = αμ,0 + x1αμ,1 + · · · + xdαμ,d and ξ(xd ) = αγ ,0 +
x1αγ ,1 + · · · + xdαγ ,d with αμ = (αμ,0, αμ,1 , . . . , αμ,d )T and
αγ = (αγ ,0, αγ ,1 , . . . , αγ ,d )T the vectors of parameters that
need to be estimated.

For a given independent and identically distributed (i.i.d.)
sample (x, y) = ((xd ,1, y1)T , . . . , (xd ,n , yn)T )T , we take the
n × (d + 1) regression matrices Bμ = [1n x] and Bγ = [1n

x], where we denote 1n = (1 , . . . , 1)T the unit vector of length
n and model η(x) = Bμ αμ and ξ(x) = Bγ αγ .

Denote by μ(x) = (μ(xd ,1, αμ ) , . . . , μ(xd ,n , αμ ))T the vec-
tor of computed μ(·) values in each datapoint, by V (μ(x)) the
vector of values of the V (·) function evaluated at each μ(x)
point, and similarly γ(x) = (γ(xd ,1, αγ ) , . . . , γ(xd ,n , αγ ))T

the vector of γ(·) values. The estimation of the mean and dis-
persion function is done via a two-step procedure that alter-
nates between the estimation of αμ and αγ as in McCullagh
and Nelder (1989):

Step 1: For a given αγ and γ (i.e., the estimated dispersion
function from the previous iteration step) the EQL estimator
of αμ is obtained as the solution to

BT
μ

(
y − μ(x)

φγV (μ(x))
dμ

dη
(x)

)
= 0, (4)

where 0 is the null vector. The multiplication of the vectors
within the brackets is done element-wise. In the notation, we
drop the dependence of μ(x) on αμ to make the formulas
more readable. Once αμ , and consequently μ(x), is estimated
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by solving (4), we compute the vector of deviances d = d(y,
μ) = (d(y1, μ(xd ,1)) , . . . , d(yn , μ(xd ,n)))T .

Step 2: For a given αμ and μ (i.e., the estimated mean
function from the previous step) the EQL estimator of αγ is
then obtained by solving:

BT
γ

(
d − γ(x)
2γ2(x)

dγ

dξ
(x)

)
= 0.

The estimation procedure alternates between the two steps
till convergence.

3. Robust Estimation of Mean and Dispersion
The EQL estimators proposed in Section 2 can been shown
to have an unbounded influence function. Outlying points,
as well as bad leverage points, can have a severe effect on
the performance of the estimator. To mitigate the effect of
outliers and to obtain bounded influence functions, an M-
type estimation procedure is followed similar as in Cantoni
and Ronchetti (2001a).

The M-estimator for αμ is obtained as the solution of the
equation:

Ψs (y, μ(x)) = BT
μ (sψ (y, μ(x))w(x)μ′ − a(αμ )) = 0, (5)

with μ′ = dμ
dη

(x). Robustness against outlying points is ob-
tained if Ψs(·,·) is a bounded function. For this, we take

sψ (y, μ(x)) = ψc

(
y − μ(x)√
φγV (μ(x))

)
1√

φγV (μ(x))
,

with ψc the Huber function defined as

ψc (x) =

{
x if |x| ≤ c

c sign(x) if |x| > c.
(6)

Further w(·) in (5) is a weight function, which controls the
effect of leverage points on the estimate.

The tuning constant c in (6) balances the robustness and
the efficiency of the estimate; if w(x) = 1n and c = ∞ (5) boils
down to (4). Cantoni and Ronchetti (2001a) discuss proce-
dures to choose c. Unless otherwise stated, we take c = 1.345,
the standard value that ensures 95% efficiency for the normal
model. Our experience shows that this value gives reasonable
results for other models as well (see Section 8.2 for further
discussion on the choice of this tuning parameter). In (5), the
constant

a(αμ ) = Ēn [sψ (y, μ(x)) |Xd = xd ]w(x)μ′

ensures Fisher consistency. This means that the true pa-
rameter value αμ is a solution of (5) for n tending to
infinity (see, e.g., Heritier et al., 2009, p. 138). Here we
used the shorthand notation Ēn [sψ (y, μ(x)) |Xd = xd ] for
n−1

∑n

i=1 E [sψ (Y, μ(Xd )) |Xd = xd ,i ]. This notation Ēn will
also be used in the next paragraph with a similar meaning
involving a different quantity, as well as in Section 7.

Similarly, a robust estimate for αγ is obtained as the solu-
tion to:

Ψt (d, γ(x)) = BT
γ (tψ (d, γ(x))w(x)γ ′ − b(αγ )) = 0 , (7)

with γ ′ = dγ
dξ

(x). The estimate is robust against outliers, pro-
vided that we take Ψt (d, γ(x)) to be a bounded function. As
for the estimation of αμ we take

tψ (d, γ(x)) = ψc

(
d − γ(x)√

2γ(x)

)
1√

2γ(x)
,

with ψc the Huber function defined in (6). Again, the constant

b(αγ ) = Ēn [tψ (d, γ(x)) |Xd = xd ]w(x)γ ′

ensures Fisher consistency.
Both (5) and (7) cannot be solved analytically. We use the

iteratively reweighted least squares algorithm (Hampel et al.,
1986). The estimation procedure is done in two steps as in
Section 2.

4. Robust Generalized Additive Models
In the models described in Sections 2 and 3, we have taken
η(xd ) and ξ(xd ) to be linear combinations of the covariates.
This functional form can in many cases be too restrictive and
we would like to let the form of each ηj (·) and ξj (·) to be as
unspecified as possible, assuming only that these are smooth
functions. To obtain such smooth estimates we use general-
ized additive models for both the mean and the dispersion
function. GAM (Hastie and Tibshirani, 1990) extend GLM by
allowing the mean to be a flexible function of the covariates.
Marx and Eilers (1998) have developed a way to estimate the
smooth components ηj (·) via penalized B-splines (P-splines).
In Ruppert, Wand, and Carroll (2003, 2009), nonparametric
regression via splines is further discussed, although a com-
plete and clear presentation of penalized splines and GAM
can be found in Wood (2006). Gijbels and Prosdocimi (2011)
extended GAM to estimate both the mean and the dispersion
as smooth functions of the covariates. We intend to further
develop these extended GAM to obtain estimates for both
the mean and the dispersion that are both smooth and ro-
bust. Before introducing a robust extended version of GAM,
we briefly introduce penalized splines and their use in GAM
fitting.

4.1 P-splines and P-GAM
The use of penalized splines dates back at least to Reinsch
(1967) and was further discussed in Silverman (1985). See also
Wahba (1980). Eilers and Marx (1996) introduced what they
call P-splines, in which the use of B-splines is combined with a
discrete difference type of penalty on the coefficients. Thanks
to their good numerical properties and easiness of implemen-
tation, modeling via P-splines quickly became a popular tool
in nonparametric regression. We briefly explain how to use
P-splines combined with GAM.

First consider the case of one covariate. For a given set of
knots {κ1 , . . . , κk}, B-spline basis functions of degree p, are
composed of polynomial pieces of degree p, joined together
in an appropriate way at each knot point κj . This leads to a
B-spline basis of dimension K = p + k + 1. For a given i.i.d.
sample (x, y) we build a large B-splines base matrix Bμ and
use this as regression matrix in a GLM, taking η(x) = Bμ αμ .
The central idea in P-splines is to take Bμ to be a very large
B-spline base that would overfit the data and to then avoid
such overfitting by adding a penalty term which controls the
smoothness of the curve in the quasilikelihood. Estimates for
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αμ are obtained as the solution to:

BT
μ

(
y − μ(x)
φV (μ(x))

μ′
)

− λP μ αμ = 0, (8)

with P μ an appropriate matrix representation of the differ-
ence operator. The smoothing parameter λ > 0 governs the
balance between the overfitting and the smoothness of the
fitted function.

P-splines can be used also when we are interested in de-
termining the relationship between the expected value of Y
and multiple covariates. We take η(xd ) = αμ,0 + η1(x1) + · · ·
+ ηd (xd ) and fit the generic component ηj (xj ) via P-splines.
For a given i.i.d. sample (x, y) we now build d large B-splines
base matrices Bμ ,1 , . . . , Bμ ,d and model η(x) as a linear com-
bination of the B-splines matrices η(x) = αμ,0 +Bμ ,1αμ ,1 +
· · · +Bμ ,dαμ ,d = Bμ αμ , with Bμ = [1n , Bμ ,1 , . . . , Bμ ,d ] the
design matrix and αμ = (αT

μ ,0, αT
μ ,1 , . . . , αT

μ ,d )
T the column

vector of parameters to be estimated. To avoid overfitting
for each of the d components we build d penalty matrices
P μ ,1 , . . . , P μ ,d and take λμ = (λμ,1 , . . . , λμ,d ) the smooth-
ing parameters governing the smoothness of the components.
Taking P μ = blockdiag [0, λμ,1 P μ ,1 , . . . , λμ,d P μ ,d ] a block-
diagonal penalty matrix, we obtain an estimate of αμ as the
solution of

BT
μ

(
y − μ(x)
φV (μ(x))

μ′
)

− P μ αμ = 0 .

In the next section, we combine the GAM and the robust
EQL framework presented in Section 2 to obtain robust and
smooth estimates for both the mean and the dispersion func-
tion.

4.2 Robust Extended P-GAM
We next allow the dispersion function to be a smooth func-
tion of the covariates, and we propose estimators that are
smooth as well as robust against outliers. Again we use the
EQL framework and make assumptions only on the first two
moments of (Y |Xd = xd ) and (d(Y , μ) |Xd = xd ) just as in
(2) and (3). Once more, η(·) and ξ(·) are two link functions
for the mean and the dispersion, respectively. These link func-
tions are of the form η(xd ) = αμ,0 + η1(x1) + · · · + ηd (xd )
and ξ(xd ) = αγ ,0 + ξ1(x1) + · · · + ξd (xd ), where the ηj (xj )
and ξj (xj ) components are modeled via P-splines.

As in Section 4.1, for a given i.i.d. sample (x, y) we
build the regression matrix Bμ and the blockdiagonal penalty
matrix P μ . In the same way we build the regression ma-
trix Bγ and, given a set of smoothing parameters λγ =
(λγ ,1 , . . . , λγ ,d ), the penalty matrix P γ for the modeling of
the dispersion function.

Smooth and robust estimates for αμ and αγ are obtained
as the solution to

Ψs (y, μ(x)) − P μ αμ = BT
μ (sψ (y, μ(x))w(x)μ′ − a(αμ ))

−P μ αμ = 0 (9)

and

Ψt (d, γ(x)) − P γ αγ = BT
γ (tψ (d, γ(x))w(x)γ ′ − b(αγ ))

−P γ αγ = 0. (10)

These estimates can be shown to have a bounded influence
function when Ψs(·,·) and Ψt (·,·) are bounded, as in Section 3.
Note how (9) and (10) differ from (5) and (7) because now
Bμ and Bγ represent a larger combination of matrices, and
there is the penalty term that ensures the smoothness of the
fit.

Estimates for αμ and αγ are obtained via iterative proce-
dures. In particular, the rule to update the current estimate
α̃μ of αμ is:

αμ =
(
BT

μ W̃ μ Bμ + P μ

)−1
BT

μ W̃ μ z̃μ , (11)

where W̃ μ = diag(−E[ d
dαμ

Ψs (Y, μ̃(Xd )) |Xd = xd ,i ])i , z̃μ =

Bμ α̃μ + W̃
−1
μ Ψs (y, μ̃(x)) and μ̃(·) is the vector of current es-

timates for μ(·) which depends on α̃μ . Similarly αγ is updated
with the following scheme:

αγ =
(
BT

γ W̃ γ Bγ + P γ

)−1
BT

γ W̃ γ z̃γ , (12)

where W̃ γ = diag(−E[ d
dαγ

Ψt (d(Y, μ), γ̃(Xd )) |Xd = xd ,i ])i ,

z̃γ = Bγ α̃γ + W̃
−1
γ Ψt (d, γ̃(x)) and γ̃(x) is the vector of cur-

rent estimates for γ(x), which depends on α̃γ .
Once convergence is reached we take η̂(x) = Hμ (λμ )z̃μ ,

with Hμ (λμ ) = Bμ (BT
μ W̃ μ Bμ + P μ )−1BT

μ W̃ μ , the hat ma-
trix for the mean model, which depends on the values of
λμ . Similarly we have ξ̂(x) = H γ (λγ )z̃γ with H γ (λγ ) =
Bγ (BT

γ W̃ γ Bγ + P γ )−1BT
γ W̃ γ the hat matrix for the dis-

persion model. Finally we take df (λμ ) = tr (Hμ (λμ )) and
df (λγ ) = tr (H γ (λγ )) to be the equivalent number of degrees
of freedom for the mean and the dispersion model.

The smoothing parameters λμ and λγ strongly influence
the final appearance of the fits and their values are chosen
before and updated within each iteration. Methods to choose
optimal values are discussed in the next section. The final
algorithm to estimate the mean and dispersion function orig-
inates from the one presented at the end of Section 2 and
iterates between the following steps (see also Gijbels et al.,
2010):

Step 0: initializing the algorithm. In our implementation
we took initial values α

(0)
μ and α

(0)
γ based on the sample mean

and standard deviation of the Y -observations.

Step 1.a: selection of the smoothing parameter λμ . Select an
optimal value for λμ by minimizing RGCV(λμ ) or RAIC(λμ ),
defined in (14) and (16) respectively, in Section 5. In our im-
plementation we used the optim function of R to numerically
minimize RGCV(λμ ) or RAIC(λμ ).

Step 1.b: estimation of αμ . For the chosen λμ values, es-
timates of αμ are obtained by solving (5). Once an estimate
for αμ , and hence for μ, has been obtained, we compute the
vector of deviances d, which is used to estimate the dispersion
function.

Step 2.a: selection of the smoothing parameter λγ . Select an
optimal value for λγ by minimizing RGCV(λγ ) or RAIC(λγ ),
as described in Section 5.

Step 2.b: estimation of αγ . For the chosen λγ values, es-
timates of αγ are obtained by solving (10). The vector of
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estimated γ values can now be computed and used in the
Step 1.a of the next iteration.

The algorithm iterates between Steps 1 and 2 till conver-
gence.

5. Smoothing Parameter Selection
Different methods for choosing the smoothing parameters ex-
ist. A standard procedure is to minimize the generalized cross-
validation (GCV) criterion (Craven and Wahba, 1979):

GCV (λμ ) = 1T
n

d(y, μ̂(x, λμ ))
(n − df (λμ ))2 , (13)

where with μ̂(x, λμ ) we want to emphasize that the estimate
of μ(x) depends on λμ .

The criterion above is widely used in standard GAM to
choose optimal values for λμ . Nevertheless, the criterion needs
to be slightly modified when the dispersion function is con-
sidered to be no longer constant as in Gijbels and Prosdocimi
(2011). Moreover, as mentioned by Cantoni and Ronchetti
(2001b), the choice of λμ via GCV will no longer work well
in presence of outliers, even when the estimation procedure is
robust. Here we propose to choose optimal values for λμ via
a robust version of GCV:

RGCV(λμ ) = 1T
n

ψq (d(y, μ̂(x, λμ ))/γ)
(n − df (λμ ))2 ,

where γ once more denotes the vector of estimated γ(·) values,
which is kept fixed when estimating the mean function.

The choice of smoothing parameters for the dispersion func-
tion is much less discussed in the literature. Gijbels and Pros-
docimi (2011) propose an appropriate form of GCV for the
choice of λγ . Here, we propose to use a robustified version of
this criterion:

RGCV(λγ ) = 1T
n

ψq (dγ (d, γ̂(x, λγ )))
(n − df (λγ ))2 , (14)

where dγ (d, γ̂(x, λγ )) is the vector of deviance residuals for
the dispersion model, with dγ (·,·) the deviance function de-
fined as (see 1)

dγ (d, γ(xd )) = 2
∫ d

γ (xd )

d − t

2t2 dt . (15)

Akaike’s information criterion (AIC) is also often used to
choose a smoothing parameter value (among others in the
original, Eilers and Marx paper, 1996). Similarly to what is
done for GCV, AIC can also be appropriately modified for
a robust selection of the smoothing parameters for both the
mean and the dispersion function estimation. The two criteria
to be minimized are then:

RAIC(λμ ) = 1T
n ψq

(
d(y, μ̂(x, λμ ))

γ

)
+ 2 df (λμ ), (16)

and

RAIC(λγ ) = 1T
n ψq (dγ (d, γ̂(x, λγ ))) + 2 df (λγ ).

Simulation results not presented here show that in many
cases the two criteria (AIC and GCV; and RAIC and RGCV)
perform comparably.

In all the RGCV (·) and RAIC (·) criteria we take ψq to
be the Huber function defined in (6) with tuning constant q.
Taking q = ∞ corresponds to using the standard GCV and
AIC criteria. In our applications we take q to be equal to c, the
value of the tuning constant in the estimating procedure, but
other choices could be done. Also, bounded functions other
than the Huber function could be employed both in the esti-
mation and in the smoothing parameters selection.

6. Simulation Study
We investigate the performance of the proposed method
through a simulation study. We simulated 1000 datasets of
size n = 250 coming from a Poisson-like distribution with
mean function μ(x) = exp (η0 + η1(x1) + η2(x2)) and disper-
sion function γ(x) = exp (ξ0 + ξ1(x1) + ξ2(x2)) with:

η0 = 1, η1(x1) = 1.8 sin
(
3.4x2

1

)
, η2(x2) = 1.1 cos(8x2)

ξ0 = −0.35, ξ1(x1) = 2.3 sin(2x1)x2
1,

ξ2(x2) = −1.35(sin(x2) exp(1.5 − 0.8x2)) .

When summarizing the simulation results we present cen-
tered curves. This means that we subtract from a curve its
average over the values taken in all datapoints, i.e., for exam-
ple for η1(x1) we present η1(x1) − n−1

∑n

i=1 η1(x1, i ). The co-
variates x1 and x2 are generated from two independent U (0,
1) distributions. We simulated data in three different settings,
contaminating a growing percentage (0%, 3%, and 5%) of ob-
servations, uniformly located in 0.1 < x1 < 0.2 and 0.8 < x2

< 0.9, with Y -observations drawn from a discrete U (25, 28)
distribution.

In this Poisson-type modeling we take V (μ) = μ, and log-
arithmic link functions for both the mean and the dispersion:
η(·) = log (μ(·)) and ξ(·) = log (γ(·)). Also, we take w(·) = 1.

For each simulated dataset we estimated both the mean
and the dispersion function via the Robust extended GAM
procedure proposed in Section 3 choosing the smoothing pa-
rameters both via the standard GCVs and the robust ver-
sions proposed in Section 5. We compare the performance of
the proposed methods with the nonrobust extended GAM of
Gijbels and Prosdocimi (2011) and the standard GAM with
mean function estimation only. In this way we are able to in-
vestigate the differences between both robust and nonrobust
methods, and between models in which only the mean func-
tion is estimated and the Double models in which both the
mean and the dispersion functions are estimated.

For a given dataset we evaluate the performance of the
estimation procedure via the approximate integrated squared
error (AISE):

AISE =

n∑
i=1

(f̂ (xd ,i ) − ftrue(xd ,i ))2

n∑
i=1

(ftrue(xd ,i ))2

,

with f̂ (·) the estimated function and ftrue(·) the true function.
In Figures 1 and 2 we summarize the results for the 0% and
the 3% contamination setting. The results for the 5% contam-
ination setting (not shown here) give results similar to these
for the lower contamination setting. In each plot we show the
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Figure 1. The 0% contamination setting: boxplots of AISE values for the mean (left) and dispersion (right) estimation.

Figure 2. The 3% contamination setting: boxplots of AISE values for the mean (left) and dispersion (right) estimation.

boxplots of the AISE values for the mean and the dispersion
function estimation for the different estimation procedures
(boxplots from left to right):

• RobDoubleRGCV: the proposed robust estimation of mean
and dispersion function, with smoothing parameter cho-
sen via RGCV;

• RobDoubleGCV: the proposed robust estimation of mean
and dispersion function, with smoothing parameter cho-
sen via standard GCV;

• DoubleGAM: the nonrobust estimation of mean and dis-
persion function as in Gijbels and Prosdocimi (2011),
with smoothing parameter chosen via GCV;

• RobGAM: the robust GAM estimation of the mean func-
tion, with smoothing parameter chosen via GCV;

• GAM: the standard GAM estimation of the mean function,
with smoothing parameter chosen via GCV;

From Figure 1 it is seen that in case of no contamination
the nonrobust and the robust methods have similar behavior,
with nonrobust methods performing slightly better. We note
that not taking into account the variability in the dispersion
function can have a bad influence on the mean estimation as
well. From Figure 2 we can see that as soon as outliers are
present in the data, the nonrobust methods perform worse and

worse: we even get lower AISE values for the dispersion when
the dispersion function is not estimated rather than estimated
in a nonrobust way. Note also that choosing the smoothing
parameters with a robust criterion plays a crucial role: when
using robust methods the optimal smoothing parameters need
to be chosen with a robust criterion as well. In general the
proposed method (RobDoubleRGCV) seems to perform quite
well: not only the median AISE values are much lower than
the ones of the other methods, but we also see little variability.

In Figure 3, we show a dataset simulated under the 3%
contamination setting, together with nonrobust and robust
estimates for the mean and dispersion functions. It is clearly
seen that the robust methods are less affected by the presence
of outliers.

7. Real Data Examples
In all examples we use a logarithmic link for the dispersion
function, i.e., ξ(·) = log (γ(·)), and take w(·) = 1, i.e., no
weighting function is employed to correct for leverage points.

7.1 Influenza-Like Illness (ILI) Visits in the United States
Alimadad and Salibian-Barrera (2011) study how the weekly
counts of ILI visits in the United States change in the course
of the influenza season (which lasts 33 weeks, from week 40
to the end of week 20 of the next year). They analyze data
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Figure 3. A simulated dataset from the 3% contamination setting. Outliers are indicated with crosses. Robust (dashed lines)
and nonrobust (dashed–dotted lines) estimates, together with the true functions (solid lines), for both the mean (top panels)
and the dispersion (lower panels) functions. This figure appears in color in the electronic version of this article.

Figure 4. ILI visits in the United States (crosses indicate data of the 2008/2009 season): robust double GAM (solid line)
with confidence intervals (dotted lines), and standard double GAM (dashed line) fits for the mean and dispersion function.
This figure appears in color in the electronic version of this article.

regarding the influenza seasons of 2006/2007, 2007/2008, and
2008/2009. During the last weeks of the 2008/2009 season
the H1N1 flu started spreading, and this resulted in a higher
number of visits. Therefore, they suggest to analyze the data
using robust methods which are less affected by the presence
of high numbers of visits. What they do not take into account
is that the variability of the data also seems to be changing
over the weeks within the season. We propose that, to analyze

these data properly, not only the mean but also the disper-
sion function should be estimated. The presence of extreme
points in the data, suggests indeed that we should apply ro-
bust methods. For the mean modeling we take V (μ) = μ and
a logarithmic link function η(·) = log (μ(·)), as we would do
for a Poisson regression.

In the left panel of Figure 4 we present the centered (log)
data with a robust and a nonrobust fit of the mean, while the
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Figure 5. Standardized residuals for the fits to the ILI visits. On the left the residuals obtained when taking the dispersion
as a constant, on the right the ones obtained when taking the dispersion to be a function of the covariate.

Figure 6. The ozone data with outliers. The robust double GAM (solid line) with confidence intervals (dotted lines) and
the nonrobust double GAM (dashed line) fits for the mean and the dispersion (top and bottom panels, respectively). The
long-dashed line represents the fit from a nonrobust double estimation of the mean and dispersion function on the original
data. The dotted–dashed lines are standard GAM fits (top panels only). This figure appears in color in the electronic version
of this article.
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Figure 7. The abortion data: robust double GAM (solid lines) with confidence intervals (dotted lines), and standard double
GAM (dashed lines) fits for the mean and dispersion function (top and bottom panels, respectively). Crosses indicate the
provinces of Puglia. The dotted–dashed lines are standard GAM fits (top panels only). This figure appears in color in the
electronic version of this article.

Figure 8. Overdispersed Poisson data: double robust GAM and GAMLSS estimation. For both estimation procedures
boxplots of AISE values for the mean (left) dispersion (center) and variance (right) estimation are displayed.

centered (log) deviance residuals with a fit for the ξ(weeks)
component are shown in the right panel. We see that the ro-
bust methods are less affected by the presence of extreme
values in the data, both for the mean and the dispersion es-
timation. The dotted lines in the plots are robust confidence
intervals. They are obtained from the following asymptotic
distributions, resulting from the theory of M-estimation (see
Hampel et al., 1986),

α̂μ ∼ N
(
αμ , W̃

−1
μ Qμ W̃ μ

)
with

Qμ = Ēn [Ψs (y, μ(x))(Ψs (y, μ(x)))T |Xd = xd ]

α̂γ ∼ N
(
αγ , W̃

−1
γ Qγ W̃

−1
γ

)
with

Qγ = Ēn [Ψt (d, γ(x))(Ψt (d, γ(x)))T |Xd = xd ] ,

where W̃ μ and W̃ γ are the matrices defined in (11) and (12).
Because for a large part of the covariate domain the confidence
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Figure 9. PIG data: double robust GAM and GAMLSS estimation. For both estimation procedures boxplots of AISE values
for the mean (left) dispersion (center) and variance (right) estimation are displayed.

intervals for both functions do not contain the null value,
we have an indication that a functional relationship between
the mean/dispersion and the covariates is indeed present in
the data. The dispersion of the model should then indeed
be estimated as a varying function: in Figure 5 we see the
standardized Pearson residuals we would obtain from a robust
model with a constant dispersion (rP = (y − μ)/(φ μ)) and
the ones we obtain when modeling also the dispersion in a
robust way (rP = (y − μ)/(φ γ μ)). Clearly the shape present
in the residuals in the left plot diminishes when estimating
the dispersion and we also notice how the outlying points at
the extreme right of the plot have now lower residuals.

A consequence of estimating the dispersion is that points
which correspond to extremely high ILI visit counts and that
have very large residuals in the left plot are scaled by the
estimated dispersion function, which has higher values in the
area where the more extreme counts are observed. Indeed in
the right panel of Figure 5 the points with higher residuals
are less sticking out, they appear to be less extreme. If we
think that the process under study is prone to have parts of
larger variability we should estimate the dispersion function
and allow the process to be more variable in some parts, rather
than interpreting high counts automatically as outliers.

7.2 The Ozone Data
In Figure 6 (top panels) data on the ozone level in Upland,
California in 1976 (see Breiman and Friedman, 1985), are de-
picted. We are interested in modeling the ozone level as a
flexible function of the inversion base temperature, the inver-
sion base height and the daggett pressure gradient. To illus-
trate what the effect of outliers can be, we replaced 5% of
the data by outliers scattered uniformly around (55,58). The
datapoints to be substituted by outliers were selected among
those with inversion base temperature values between 70 and
80. We take V (μ) = 1 and the identity link η(·) = μ(·), the de-
fault choice in standard GAM for data assumed to be normal.

In Figure 6, we see how the robust techniques are much
less influenced by the presence of the outliers in the data.
The robust estimates obtained for the mean and the disper-

sion function resemble indeed much more the shape we would
get when outliers are not present in the data. It is interesting
to note that for the standard GAM (only estimation of the
mean) the outliers in the data have a stronger impact on the
final estimate than for the Double GAM. This is because one
of the consequences of allowing for heteroscedasticity and to
estimate the dispersion is that high values of the dispersion
corresponding to the outlying points, result in those outlying
points receiving a lower weight in the mean estimation (see
(5)). They therefore influence less the final shape of the mean
estimate. Estimating the dispersion in a nonrobust way can
thus possibly be beneficial for obtaining better estimates for
the mean, but when the interest lies in delivering robust es-
timates for both the mean and the dispersion functions, we
advise using the robust methods presented in the previous
sections.

7.3 The Italian Abortion Data
In Figure 7 data on the induced abortion rate for each Italian
province are shown. This dataset was previously analyzed in
Gijbels and Prosdocimi (2011). We are interested in studying
how the abortion rate in the 98 Italian provinces changes as
a function of the following socioeconomical covariates:

• The average age at first marriage for women;
• The index of nonfinished compulsory education for the

female population between 15 and 52; and
• The percentage of unipersonal families.

As in Section 7.1, we take V (μ) = μ and η(·) = log (μ(·))
in this example. Smoothing parameters for the standard and
the robust fit are selected, respectively, via AIC and RAIC.

We know that the highest values present in the dataset
are coming from the five provinces in one region (Puglia) in
which the health care system, especially concerning induced
abortion, is of higher quality than the one of the neighboring
regions. It is suspected that the high abortivity rates observed
in this region are due more to women from outside who travel
to undergo the operation rather than from a real higher abor-
tion rate among the women of the region. By using a robust
estimate for the mean and dispersion value we are assured
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Figure 10. Sample size n = 250. Boxplots of AISE values for the mean (left) and dispersion (right) estimation in the 0%,
3%, and 5% contamination settings (top, middle and bottom panels).

that these outlying points will have less effect on the final
estimates, as can be seen in Figure 7: indeed the robust fits
are less affected by the presence of extreme points. Again, we
see that the standard GAM estimate for the mean is most
severely affected by extreme points.

8. Comparisons with Other Modeling Choices
In this section, we discuss different modeling choices and eval-
uate their performances. First we compare our modeling strat-
egy with the GAMLSS approach of Rigby and Stasinopoulos

(2005). Then, via an additional simulation study, we investi-
gate how different choices of the tuning constant c affect the
final estimate for the mean and dispersion function.

8.1 A Comparison with a GAMLSS Approach
As mentioned in Section 1, a possible different modeling ap-
proach to estimate the dispersion function of overdispersed
data is to start from specific data-generating distributions
which extend the standard distributions belonging to the ex-
ponential family of distributions. For example, to model the
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Figure 11. Sample size n = 500. Boxplots of AISE values for the mean (left) and dispersion (right) estimation in the 0%,
3%, and 5% contamination settings (top, middle and bottom panels).

mean and the dispersion function of count data, one could
use a negative binomial distribution, and via the GAMLSS
framework obtain smooth estimates for the mean and the dis-
persion function. These methods though, are also affected by
outliers in the data, and as far as we know, no work has been
done on robustifying the GAMLSS approach in a fashion like
the one proposed in this article. In the presence of outliers,
a possible approach within the GAMLSS class would be to
use overdispersed long-tailed distributions, like the Poisson
inverse Gaussian (PIG; Dean, Lawless, and Willmot, 1989).
When Y |Xd = xd ∼ PIG (λ(xd ), τ (xd )), we have that E

[Y |Xd = xd ] = λ(xd ) and V ar [Y |Xd = xd ] = λ(xd )(1 +
λ(xd ) τ (xd )). Because τ (xd ) > 0 it is clear that this distri-
bution can only be used in the case of overdispersed data.
To have a fair comparison between the PIG approach and the
methods presented in this article, we performed a new simula-
tion study. The dispersion function used to generate the data
of Section 6 in fact changes from underdispersion to overdis-
persion so assuming a PIG distribution for those data would
not be realistic. We therefore generated data following either a
PIG (λ(x1, x2), τ (x1, x2)) or a 3% contaminated overdispersed
Poisson distribution with mean λ(x1, x2) and dispersion γ(x1,
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x2). We took the mean to be as the one described in Section
6, λ(x1, x2) = exp (η0 + η1(x1) + η2(x2)), whereas for the
dispersion function we took τ (x1, x2) = exp (ξ∗0 + ξ∗1(x1) +
ξ∗2(x2)) and γ(x1, x2) = (1 + λ(x1, x2) τ (x1, x2)) with

ξ∗0 = −1.75, ξ∗1(x1) = 1.8 sin(2x1)x2
1,

ξ∗2(x2) = −0.95(sin(x2) exp(1.5 − 0.8x2)),

which results into a dispersion function γ(·,·) similar in shape
as that in Section 6, but now larger than one everywhere
(only overdispersion). The data generation and the model fit-
ting for the PIG data has been done using the R package
gamlss of Stasinopoulos and Rigby (2007). In Figures 8 and
9, we present boxplots of the AISE values for the mean, the
dispersion, and the variance estimation of the two estimation
procedures. Clearly each one of the two methods performs
(much) better in the case in which the (noncontaminated)
data are generated from the distribution assumed in the es-
timation procedure, although we observe larger proportions
of extremely high AISE values for the dispersion estimation
when using the GAMLSS approach. Despite the fact that in
our setting the added 3% outlying points do not fit the model,
contrary to the setup when we draw data from the PIG model,
we notice an overall very good performance of the proposed
method.

8.2 The Tuning Parameter c

In the numerical studies in Sections 6, 7, and 8.1 we took the
tuning parameter c = 1.345 for both the mean and the disper-
sion function estimation. The reasoning behind this particular
choice is that, if using M-estimation for a location parameter
on data coming from a normal distribution, using c = 1.345
would lead to an estimate that is 95% model efficient com-
pared to the maximum likelihood estimate. Considering that
the Pearson residuals are standardized quantities on which
we apply the ψc(·) function, using a c value that has good
properties for normal data seems to be a reasonable choice.
Another sensible choice for both the mean and the dispersion
function estimation would be to take c = 2, which, in case of
normal data, allows for approximately 5% of the datapoints
to be downweighted. The reasoning behind this choice is that
we would downweight only values that are not very likely to
be observed; to give an indication taking c = 1.345 would
downweight approximately 20% of normally distributed dat-
apoints.

We studied the effect of the choice of c on the final result
via some simulation study. We repeated the simulation study
of Section 6 (sample size n = 250) using this time a value c =
2 for the estimation of both the mean and the dispersion. In
Figure 10 we compare the AISE values for both the mean and
the dispersion function estimation for the different c-values.
In Figure 11 simulation results are presented for sample size
n = 500. The difference in performance when using the two
different tuning parameter values is mostly visible in the case
of higher levels of contamination, indicating that when the
percentage of outliers in the data is relatively high we need
to use a lower tuning constant c to ensure that the estima-
tion procedure is indeed not too much influenced by extreme
points. It should be noted that for the 5% contamination set-
ting the worsening of the estimation performance affects the

estimate of the dispersion more than the estimation of the
mean. This is mostly because when a poorer estimate of the
mean function is obtained, the deviance residuals which are
computed based on this mean estimation will be less reliable
and will not be a good response variable for the dispersion es-
timation. We would therefore advice the use of c = 1.345, to
make sure that both functions estimation are not influenced
by outlying points.
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