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Abstract

Many problems in computer vision can be formulated as a clustering problem, a
problem that aims to organize a collection of data objects into groups or clusters,
such that objects within a cluster are more “similar” to each other than they are to
objects in the other groups.

Assuming the feature-based representation, a computer vision problem can be
formulated as follows: Given a set of data points in a ’d’ dimensional space, find
the best partition of the space which gives us meaningful groups. The points in
the representative metric space correspond to the feature vectors extracted from the
object with their distances reflecting the dissimilarity relations. On the other hand,
objects could also be described indirectly by their respective similarity relations, an
approach which is more natural than feature-based technique as there are numerous
application domains where it is not possible to find satisfactory features, but it is
more natural to provide a measure of similarity.

This work proposes similarity based data clustering framework, based on exten-
sions of the dominant sets framework using theories and mathematical tools inher-
ited from graph theory, optimization theory and game theory, that could be adapted
“flexibly” in a wide range of vision applications, thereby combining the research do-
main of computer vision and that of machine learning. In our system, clusters are
in one-to-one correspondence with Evolutionary Stable Strategies (ESS) - a classic
notion of equilibrium in evolutionary game theory field - of a so-called “clustering
game”. The clustering game is a non-cooperative game between two-players, where
the objects to cluster form the set of strategies, while the affinity matrix provides
the players’ payoffs.

The dominant sets framework, a well-known graph-theoretic notion of a clus-
ter which generalizes the concept of a maximal clique to edge-weighted graphs, has
proven itself to be relevant in many computer vision problems such as action recog-
nition, image segmentation, tracking, group detection and others. Its regularized
counterpart, determining the global shape of the energy landscape as well as the
location of its extrema, is able to organize the data to be clustered in a hierarchical
manner. It generalizes the dominant sets framework in that putting the regulariza-
tion parameter to zero results local solutions that are in one-to-one correspondence
with dominant sets. In this thesis we propose constrained dominant sets, parameter-
ized family of quadratic programs that generalizes both formulations, the dominant



sets framework and its regularized counterpart, in that here, only a subset of ele-
ments in the main diagonal is allowed to take the parameter, the other ones being
set to zero. In particular, we show that by properly controlling a regularization pa-
rameter which determines the structure and the scale of the underlying problem, we
are in a position to extract groups of dominant sets clusters which are constrained
to contain user-specified elements. We provide bounds that allow us to control this
process, which are based on the spectral properties of certain submatrices of the
original affinity matrix.

Thanks to the many sensors, which generate a large amount of data every day,
distributed in the society, there is a large amount of data for training and testing
many computer vision systems. However, real data collected through those sensors
is contaminated by outliers, and many computer vision tasks involve processing the
available large amounts of data without any assumption on the existence of outliers.
Recently, very few computer vision systems have shown that considering presence
of outliers while solving computer vision problems help boosting the state-of-the-art
results. However, most of the systems either try just to detect outliers from the
computer vision datasets or solve their problems by detecting and rejecting outliers
before applying the method on the dataset. Our proposed work is robust to outliers,
and since we also believe that it is important for clustering methods to detect data
consensuses and isolated outliers simultaneously in a clustering task, this thesis
proposes a method for simultaneous clustering and outliers detection.

Evolutionary game theory offers a whole class of simple dynamical systems to
solve quadratic (constrained) optimization problems like ours. It envisages a scenario
in which pairs of players are repeatedly drawn at random from a large population
of individuals to play a symmetric two player game. One of the best known class of
game dynamics to extract (constrained) dominant set from a graph is the so-called
replicator dynamics whose computational complexity is quadratic per step which
makes it handicapped for large-scale applications. In this thesis, we propose a fast
algorithm, based on dynamics from evolutionary game theory, which is efficient and
scalable to large-scale real-world applications.

In general, the clustering algorithm proposed in this thesis has many interesting
properties, suitable for solving many computer vision problems, such as: it does
clustering while obliterating outliers in simultaneous fashion, it doesn’t need any
a prior knowledge on the number of clusters, able to deal with compact clusters
and with situations involving arbitrarily-shaped clusters in a context of heavy back-
ground noise, able to extract clusters which are constrained to contain user-specified
elements, does not have any assumptions with the structure of the affinity matrix,
it is fast and scalable to large scale problems, and others. This increased flexibility
leads to an efficient method that we apply on different computer vision problems:
interactive image segmentation, co-segmentation, multi-target multi-camera track-
ing in multiple non overlapping cameras, to extract dense neighbors which we have
used to constrain the diffusion process locally, geo-localization and for person re-
identification.
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Preface

The dissertation is submitted for the degree of doctor of philosophy at Ca’ Foscari
University of Venice. It presents a work in the area of pattern recognition and
machine learning with various applications in computer vision. The first chapter
is devoted to the introduction of the generalization of the well known clustering
framework, dominant sets, and its different extensions which have been published
in [12][13][14]. Their various computer vision applications are presented in the rest
of the chapters. The second chapter presents the first application of constrained
dominant sets to interactive image segmentation, which has been presented in [12],
and its extension to image co-segmentation (both in supervised and unsupervised
flavor) which is under review on Transactions on Pattern Analysis and Machine
Intelligence (TPAMI). The third chapter presents the application of constrained
dominant sets to retrieval which has been appeared in [15]. One of the interesting
results of the thesis is the effective application of constrained dominant sets to
multi-target tracking in multiple non-overlapping cameras which is under review
on TPAMI (arXiv version is in [16]). The last chapter of the thesis presents how
the problem of large-scale image geo-localization is addressed using (constrained)
dominant sets. The result has been appeared in TPAMI [17]. The last two chapters
are the results of the fruitful collaboration with Dr. Mubarak Shah during my
two consecutive visits of Center for Research in Computer Vision at University of
Central Florida. Finally, the Appendix of the thesis presents the different results
which support the theories behind constrained dominant sets.



Introduction

The beginning is the most
important part of the work.

Plato

Computer vision is the science and technology of machines that see. As a scien-
tific discipline, it is concerned with the theory and technology for building artificial
systems that obtain information from images or multi-dimensional data. Its applica-
tions include industrial, biomedical, scientific, environment exploration, surveillance,
document understanding, video analysis, graphics, games and entertainment. Com-
puter vision systems have been designed that can control robots or autonomous
vehicles, inspect machine parts, detect and recognize human faces, retrieve images
from large databases according to content, reconstruct large objects or portions of
cities from multiple photographs, track suspicious people or objects in videos, in
remote sensing, and more.

Many problems in computer vision can be formulated as a clustering problem,
a problem that aims to organize a collection of data objects into groups or clusters
such that objects within a cluster are more “similar” to each other than they are to
objects in the other groups. Clustering arises naturally in many fields; whenever one
has a set of objects, it is natural to seek a method for grouping ”similar objects”
together based on an underlying measure of similarity. The usual approach is to
represent the set of objects as a set of abstract points (figure 1 middle), and try
to follow some ”feature based” approaches where the abstract points are points in
a metric space with distances reflecting the (dis)similarity — the closer the points,
the more similar they are, (figure 1 right). Thus, clustering is centered around an
intuitively compelling but vaguely defined goal: given an underlying set of points,
partition them into a collection of clusters [18].

Though its study is unified only at this very general level of description, at the
level of concrete methods and algorithms, one quickly encounters several different
clustering techniques, including hierarchical, spectral, information-theoretic, and
centroid-based, as well as those arising from combinatorial optimization and from
probabilistic generative models. These techniques are based on diverse underlying
principles, and they often lead to qualitatively different results. The very nature of
the problem being ill-posed, since any given collection of data items can be clus-
tered in drastically different ways, forces the community have very many different
methods to improve existing approaches on specific applications. The very many
clustering methods, developed in several communities, to support its extensive use
in computer vision, pattern recognition, information retrieval, data mining, etc., put
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Figure 1: Left: An examplar image with sample representative pixels from different
regions Middle: The points in the representative metric space which correspond to the
feature vectors (RGB values of the pixels) extracted from the object with their distances
reflecting the dissimilarity relations. Similar dotted colors represent some of the similar
pixels of the image. Right: Similarity representation of N pixels; as can be seen pixel ’i’
and pixel ’j’ (pixels from similar region) have a similarity which is closer to one.

some criteria that provide significant distinctions between clustering methods and
can help selecting appropriate candidate methods for one’s problem: Objective of
clustering and, nature of provided data items, nature of available information and
the clusters’ nature provide one with important information about the clustering
model which one wants to build.

Clustering based computer vision algorithms are developed either using a novel
clustering method or using an existing one modified in such a way as to fulfill some
specific requirements to one’s problem. There is no unified clustering scheme for
solving a computer vision problem, several problems have been addressed using dif-
ferent kinds of clustering frameworks; there are lots of different clustering frameworks
which are designed for solving tracking, other several algorithms for addressing the
problem of segmentation, etc. Some of the off-the-shelf clustering applications in
computer vision include object tracking [19][20][21], applications of segmentation in
medicine [22], action localization [23] [24], text-to-video alignment [25][26], object
co-localization in videos and images [27] or instance-level segmentation [28], in se-
mantic segmentation which is the task of clustering parts of images together which
belong to the same object class, and this type of algorithm has several use cases such
as detecting road signs [29] in tumor detection [30] detecting medical instruments in
operations [31] colon crypts segmentation [32], land use and land cover classification
[33], object tracking [19][20][21], and others.

This work proposes similarity based clustering technique, based on extensions
of the dominant sets framework, which could be used for solving wide range of
computer vision problems in a flexible manner. The proposed clustering framework,
as introduced below and detailed in the first chapter of the thesis, is with many
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interesting properties, suitable for solving several computer vision problems, such
as: it does clustering while obliterating outliers in simultaneous fashion, able to deal
with overlapping clusters, it doesn’t need any a prior knowledge on the number of
clusters, able to deal with compact clusters and with situations involving arbitrarily-
shaped clusters in a context of heavy background noise, able to extract clusters which
are constrained to contain user-specified elements, does not have any assumptions
with the structure of the affinity matrix, it is fast and scalable to large scale problems,
it provides a principled measure of a cluster’s cohesiveness as well as a measure of
a vertex participation to its assigned group, and others.

The thesis, proposing such a flexible similarity based clustering framework, ap-
plies cluster analysis as a unified approach for a wide range of vision applications,
thereby combining the research domain of computer vision and that of machine
learning. In our system, a robust similarity based clustering technique inspired by
game theory, clusters are in one-to-one correspondence with Evolutionary Stable
Strategies (ESS) - a classic notion of equilibrium in evolutionary game theory field -
of a so-called “clustering game”. The clustering game is a non-cooperative game be-
tween two-players, where the objects to be clustered form the set of strategies, while
the affinity matrix provides the players’ payoffs. Assume, in the above example, the
image has N pixels; the similarity among the pixels (figure 1 right) is represented by
a square matrix of size N which, in the game setting, represents the payoff the play-
ers get while playing the game. Each player simultaneously selects a pixel from the
set of N pixels the image has, after having revealed his choice, he receives a payoff
according to the similarity that the selected pixel has with respect to the opponents’.
From a classical game-theoretic point of view, players are rational individuals with
complete knowledge of the game setting, and they act with intent to maximize their
personal income. Since the received payoff depends on the similarity of the selected
pixels, it is in each players interest to select pixels belonging to a common region,
since a cluster exhibits a high internal similarity. Hence, by repeatedly playing this
game, the hypothesis of cluster membership of each player are expected to converge
to a common solution (or equilibrium), which in turn represents a region from the
segmented image.

The increased flexibility in the proposed framework leads to an efficient method
that we apply, as introduced below and detailed from the second to the last chapters
of the thesis, on different computer vision problems: interactive image segmentation,
co-segmentation, multi-target multi-camera tracking in multiple non overlapping
cameras, to extract dense neighbors which we have used to constrain the diffusion
process locally, geo-localization and for person re-identification.

The dominant sets framework has been proven to be relevant in several computer
vision problems, including (automatic) image and video segmentation [34, 35], ac-
tion recognition [36], tracking [37], geo-localization [17]. To determine a dominant
set, as it has an intriguing connection with the solutions of a (continuous) quadratic
optimization problem, one can use a straightforward dynamics from evolutionary
game theory such as replicator dynamics [38] which can be coded in a few lines
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of any high-level programming language and can easily be implemented in a par-
allel network of locally interacting computational units. Moreover, its connection
with non-cooperative game theory has opened the door to elegant generalizations
to directed graphs [39], to hypergraphs [40] and to multi-graphs, i.e.graphs that
are permitted to have multiple edges between vertices [41]. It has many interesting
features such as providing a principled measure of a cluster’s cohesiveness as well as
a measure of a vertex participation to its assigned group.

Hierarchical dominant sets framework is regularized counterpart of dominant
sets formulation. By determining the global shape of the energy landscape as well
as the location of its extrema, it is able to organize the data to be clustered in a
hierarchical manner. It generalizes the dominant sets framework in that putting
the regularization parameter to zero results local solutions that are in one-to-one
correspondence with dominant sets. It is a parametrized (continuous) quadratic
program controlled by a non-negative parameter which is varied during a clustering
process. A bigger parameter considers the whole data as a single cluster while a
smaller value splits the data in to smaller sets. So, starting with a bigger parameter,
it is possible, by properly varying the regularization parameter during the clustering
process, to organize the data to be clustered in a hierarchical manner.

This thesis proposes constrained dominant sets (CDS), parameterized family of
quadratic programs that generalizes both formulations, the dominant sets framework
and its regularized counterpart, in that here, only a subset of elements in the main
diagonal is allowed to take the parameter, the other ones being set to zero. The
framework has many interesting features that the dominant set formulation does
not serve: 1) It can enumerate all the dominant sets without the implicit change
of scale of the problem, we have a guarantee that all the enumerated dominant
sets are local solutions of the original problem. This is not the case in the non-
parametrized dominant sets formulation as the procedure is done in an iterative
manner by removing the already identified dominant set from the graph. 2) It
allows one to obtain ”soft” partitions of the input data, by allowing a point to
belong to more than one cluster. Of-course, the original dominant sets formulation
also allows ”soft” partitions. However, this is done by asymmetric extension of the
similarity matrix which may be a problem for the dynamics to converge properly. 3)
By properly controlling a regularization parameter which determines the structure
and the scale of the underlying problem, we are in a position to extract groups
of dominant sets clusters which are constrained to contain user-specified elements.
We provide bounds that allow us to control this process, which are based on the
spectral properties of certain submatrices of the original affinity matrix. Section 1.3
of the first chapter introduces CDS followed by another two section which details
the dynamics used to extract CDS and the proposed fast approach to extract CDS
when the size of the graph gets larger. Section 1.4 of chapter 1 deals with outliers,
data which does not obey the assumed model. Thanks to the many sensors, which
generate a large amount of data every day, distributed in the society, there is a large
amount of data for training and testing many computer vision systems. However,
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real data collected through those sensors is contaminated by outliers. Since outliers
severely affect many computer vision systems, it is important to explicitly deal with
them. Many computer vision tasks however involve processing the available large
amounts of data with out any assumption on the existence of outliers. Recently,
very few computer vision systems have shown that considering presence of outliers
while solving computer vision problems help boosting the state-of-the-art results.
However, most of the systems either try just detect outliers from the computer
vision datasets or solve their problems by detecting and rejecting outliers before
applying the method on the dataset, they just aim first to come up with the result
of the robust estimation which is the inlier/outlier dichotomy of the data. Our
proposed work is robust to outliers, and since we also believe that it is important for
clustering methods to detect data consensuses and isolated outliers simultaneously
in a clustering task, this thesis proposes a method for simultaneous clustering and
outliers detection. The method utilizes some properties of a family of quadratic
optimization problems related to dominant sets, a well-known graph-theoretic notion
of a cluster which generalizes the concept of a maximal clique to edge-weighted
graphs. Unlike most (all) of the previous techniques, in the proposed framework the
number of clusters arises intuitively and outliers are obliterated automatically. The
resulting algorithm discovers both parameters from the data. Experiments on real
and on large scale synthetic dataset demonstrate the effectiveness of the approach
and the utility of carrying out both clustering and outlier detection in a concurrent
manner.

Chapter 2 of the thesis introduces the application of the proposed framework to
interactive image segmentation and co-segmentation. Image segmentation has come
a long way since the early days of computer vision, and still remains a challenging
task. Modern variations of the classical (purely bottom-up) approach, involve, e.g.,
some form of user assistance (interactive segmentation) or ask for the simultaneous
segmentation of two or more images (co-segmentation). At an abstract level, all
these variants can be thought of as “constrained” versions of the original formulation,
whereby the segmentation process is guided by some external source of information.
In this thesis, we propose a new approach to tackle this kind of problems in a unified
way. In particular, we shall focus on interactive segmentation and co-segmentation
(in both the unsupervised and the interactive versions). The proposed algorithm
can deal naturally with several type of constraints and input modality, including
scribbles, sloppy contours, and bounding boxes, and is able to robustly handle noisy
annotations on the part of the user.

In the third chapter of the thesis, constrained dominant sets is plugged in to a
neighborhood analysis system to constrain the diffusion process locally to improve
the performance of any retrieval systems. Learning new global relations based on an
initial affinity of the database objects has shown significant improvements in simi-
larity retrievals. Locally constrained diffusion process is one of the recent effective
tools in learning the intrinsic manifold structure of a given data. Existing meth-
ods, which constrain the diffusion process locally, have problems - manual choice of
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optimal local neighborhood size, do not allow for intrinsic relation among the neigh-
bors, fix initialization vector to extract dense neighbor - which negatively affect the
affinity propagation. CDS alleviates these issues using a more robust neighborhood
structure.

An interesting but difficult computer vision application is presented in chapter
4 of the thesis where a unified three-layer hierarchical approach for solving tracking
problems in multiple non-overlapping cameras is proposed. Given a video and a set
of detections (obtained by any person detector), we first solve within-camera track-
ing employing the first two layers of our framework and, then, in the third layer, we
solve across-camera tracking by merging tracks of the same person in all cameras
in a simultaneous fashion. To best serve our purpose, a constrained dominant sets
clustering (CDSC) technique, a parametrized version of standard quadratic opti-
mization, is employed to solve both tracking tasks. The tracking problem is cast
as finding constrained dominant sets from a graph. That is, given a constraint set
and a graph, CDSC generates a cluster (or clique), which forms a compact and co-
herent set that contains a subset of the constraint set. The approach is based on a
parametrized family of quadratic programs that generalizes the standard quadratic
optimization problem. In addition to having a unified framework that simultane-
ously solves within- and across-camera tracking, the third layer helps link broken
tracks of the same person occurring during within-camera tracking. A standard al-
gorithm to extract constrained dominant set from a graph is given by the so-called
replicator dynamics whose computational complexity is quadratic per step which
makes it handicapped for large-scale applications. In this thesis, we propose a fast
algorithm, based on dynamics from evolutionary game theory, which is efficient and
scalable to large-scale real-world applications. We have tested this approach on a
very large and challenging dataset (namely, MOTchallenge DukeMTMC) and show
that the proposed framework outperforms the current state of the art. We also
applied it to solve the re-identification problem. Towards that end, we have per-
formed experiments on MARS, one of the largest and challenging video-based per-
son re-identification dataset, and have obtained excellent results. These experiments
demonstrate the general applicability of the proposed framework for non-overlapping
across-camera tracking and person re-identification tasks.

The last chapter of the thesis presents a new approach for the challenging prob-
lem of geo-localization using image matching in a structured database of city-wide
reference images with known GPS coordinates. We cast the geo-localization as a
clustering problem of local image features. Akin to existing approaches to the prob-
lem, our framework builds on low-level features which allow local matching between
images. For each local feature in the query image, we find its approximate nearest
neighbors in the reference set. Next, we cluster the features from reference images
using Dominant Set clustering, which affords several advantages over existing ap-
proaches. First, it permits variable number of nodes in the cluster, which we use
to dynamically select the number of nearest neighbors for each query feature based
on its discrimination value. Second, this approach is several orders of magnitude
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faster than existing approaches. Thus, we obtain multiple clusters (different local
maximizers) and obtain a robust final solution to the problem using multiple weak
solutions through constrained Dominant Sets clustering on global image features,
where we enforce the constraint that the query image must be included in the clus-
ter. This second level of clustering also bypasses heuristic approaches to voting and
selecting the reference image that matches to the query. We evaluate the proposed
framework on an existing dataset of 102k street view images as well as a new larger
dataset of 300k images, and show that it outperforms the state-of-the-art by 20%
and 7%, respectively, on the two datasets.

The main contributions of this thesis are summarized as follows:

• It adopts the dominant sets framework to solve different machine learning and
computer vision problems.

• The notion of path-based similarity measures, which exploit connectedness
information of the elements to be clustered, is adopted to the dominant sets
framework resulting a very simple and efficient algorithm which helps one
extract elongated structures in the presence of heavy background noise.

• It extends the dominant sets framework to solve the problem of simultaneous
clustering and outlier detection. The algorithm is the first algorithm which
solves the problem without any prior knowledge of the number clusters and
number of outliers. Previous state-of-the-art approaches need a priori the
number of outliers and number of clusters.

• It introduces constrained dominant sets, a formalization which generalizes the
dominant sets formulation and its regularized counterpart (hierarchical domi-
nant sets), and have successfully applied it to many interesting computer vision
problems.

• It develops an algorithm for automatic dense neighbor selection which improves
the performance of any retrieval system. The algorithm is new and is with
some proposition which answers some open computer vision problems: auto-
matically selecting a reasonable local neighborhood size is an open computer
vision and machine learning issue.

• It develops a novel framework for interactive image segmentation which can
deal naturally with any type of input modality, including scribbles, sloppy
contours, and bounding boxes, and is able to robustly handle noisy annotations
on the part of the user. It extends the framework to solve the problem of image
co-segmentation.

• It proposes an original fast algorithm to solve the problem of geo-localization
using theories inherited from evolutionary game theory, to localize an image
(video) to its GPS-coordinates.
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• It involves in the development of an algorithm which solves (simultaneously)
multi target multi person tracking and person re-identification in multiple
non-overlapping cameras.



1
Extensions of Dominant Sets

Clustering

The only groups I willingly joined
were spontaneous, short-lived, and
usually game-playing.

Meredith Marple

1.1 Introduction

Clustering refers to the process of extracting maximally coherent groups from a set
of objects. Traditional approaches to this problem are based on the idea of parti-
tioning the input data into a predetermined number of classes, thereby obtaining the
clusters as a by-product of the partitioning process. Some of the limitations of the
partitional paradigm include [42]: the number of classes should be known in advance
and all the input data will have to get assigned to some class. There are, however,
various applications for which it makes little sense to force all data items to belong
to some group, a process which might result either in poorly-coherent clusters or in
the creation of extra spurious classes. The other intrinsic limitation is the constraint
that each element cannot belong to more than one cluster. There are a variety of
important applications, however, where this requirement is too restrictive. Exam-
ples abound and include, e.g., clustering micro-array gene expression data (wherein
a gene often participate in more than one process), clustering documents into topic
categories, perceptual grouping, and segmentation of images with transparent sur-
faces. The symmetry assumption, namely the requirement that the similarities be-
tween the data being clustered be symmetric (and non-negative), is the other major
problem. Asymmetric (or, more generally, non-metric) similarities are preferred (in
image and video processing) in the presence of partially occluded objects, in pairwise
structural alignments of proteins that focus on local similarity and others. In early
2000, the dominant set framework, a formalization of the very notion of a cluster
that considers the clustering process as a sequential search, is proposed which deals
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with all the above limitations. Dominant sets, a well-known graph-theoretic notion
of a cluster, generalizes the concept of a maximal clique to edge-weighted graphs
and has proven to be relevant in many computer vision problems, including (auto-
matic) image and video segmentation [34, 35], action recognition [36], tracking [37],
geo-localization [17]. To determine a dominant set, as it has an intriguing connec-
tion with the solutions of a (continuous) quadratic optimization problem, one can
use a straightforward dynamics from evolutionary game theory, replicator dynamics
[38] which can be coded in a few lines of any high-level programming language and
can easily be implemented in a parallel network of locally interacting computational
units. Moreover, its connection with non-cooperative game theory has opened the
door to elegant generalizations to directed graphs [39], to hypergraphs [40] and to
multi-graphs, i.e. graphs that are permitted to have multiple edges between vertices
[41]. It has many interesting features such as providing a principled measure of a
cluster’s cohesiveness as well as a measure of a vertex participation to its assigned
group.

The dominant sets clustering framework has been extended in different ways
over the last decade. Hierarchical dominant sets [43] is regularized counterpart of
dominant-set formulation. By determining the global shape of the energy landscape
as well as the location of its extrema, it is able to organize the data to be clustered
in a hierarchical manner. It generalizes the dominant-set framework in that putting
the regularization parameter to zero results local solutions that are in one-to-one
correspondence with dominant-set. Same authors have extend the dominant sets
framework to deal with large-scale data ( e.g. , pixel based image segmentation
using dominant sets) [44]. Other extensions include its generalization to high-order
similarities [40] and to multi-graphs [41].

The dominant sets framework and its extensions, though have proven themselves
to be effective in many applications and serve most of our purpose well, have dif-
ferent limitations: problem in dealing with outliers, which is a problem of many
computer vision applications. The dominant set framework, to deal with this prob-
lem, should be provided with the number of meaningful compact structures to be
extracted so that it leaves clutter elements unassigned to any cluster. Since the
framework uses a ‘peel-off’ strategy (take a graph, run the dynamics to extract a
dominant set, remove those selected nodes from the graph, run the dynamics again
on the rest of the graph, and continue the process until all the nodes are assigned
to one of the clusters), in addition to changing the scale of the problem, it has a
problem in dealing with overlapping clusters. In [45] a method is proposed to deal
with this problem introducing an approach for enumerating equilibria of two-player
symmetric games, by iteratively rendering unstable already visited ones through a
particular asymmetric extension of the payoff matrix. The game dynamics which
they have used to solve the problem, however, has a convergence problem with the
extended asymmetric payoff matrix. Another typical problem associated to domi-
nant sets is that they tend to favor compact clusters, the problem therefore remains
as to how to deal with situations involving arbitrarily-shaped clusters in a context
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of heavy background noise. To deal with the last problem, we feed the dominant
sets algorithm with a path-based similarity measure which considers connectivity
information of the elements being clustered, thereby transforming clusters exhibit-
ing an elongated structure under the original similarity function into compact ones.
We deal with its limitation related to outliers proposing a unified approach for si-
multaneous clustering and outlier detection in data, a method which controls the
importance of the extracted compact sets which enables the proposed clustering
algorithm to converge at some point and leaves the clutter background as outliers.
Unlike all the previous techniques, in this framework, the number of clusters arises
intuitively and outliers are obliterated automatically. The resulting algorithm dis-
covers both parameters from the data. Experiments on real and on large scale
synthetic dataset demonstrate the effectiveness of its approach and the utility of
carrying out both clustering and outlier detection in a concurrent manner. We alle-
viates the other issues proposing constrained dominant-set, parameterized family of
quadratic programs that generalizes both the dominant sets formulation and its reg-
ularized counterpart, in that here, only a subset of elements in the main diagonal is
allowed to take the parameter, the other ones being set to zero. The framework has
many interesting features that the dominant set formulation does not serve: 1) It
can enumerate all the dominant sets without the implicit change of scale of the prob-
lem, we have a guarantee that all the enumerated dominant sets are local solutions
of the original problem. This is not the case in the non-parametrized dominant set
formulation as the procedure is done in an iterative manner by removing the already
identified dominant set from the graph. 2) It allows one to obtain ”soft” partitions
of the input data, by allowing a point to belong to more than one cluster. Of-course,
the original dominant set formulation also allows ”soft” partitions. However, this is
done by asymmetric extension of the similarity matrix which may be a problem for
the dynamics to converge properly [45]. 3) By properly controlling a regularization
parameter which determines the structure and the scale of the underlying problem,
we are in a position to extract groups of dominant-set clusters which are constrained
to contain user-specified elements. We provide bounds that allow us to control this
process, which are based on the spectral properties of certain submatrices of the
original affinity matrix. This increased flexibility leads to an efficient method that
we apply on different computer vision problems.

Evolutionary game theory offers a whole class of simple dynamical systems to
solve quadratic constrained optimization problems like ours. It envisages a scenario
in which pairs of players are repeatedly drawn at random from a large population
of individuals to play a symmetric two player game. One of the best known class
of game dynamics to extract constrained dominant set from a graph is the so-called
replicator dynamics whose computational complexity is quadratic per step which
makes it handicapped for large-scale applications. In this thesis, we propose a fast
algorithm, based on dynamics from evolutionary game theory, which is efficient and
salable to large-scale real-world applications.

The rest of the chapter is organized as follows: In the next section, we provide a
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brief introduction to dominant sets and their characterization, and in section 1.3, we
introduce the constrained dominant sets framework. We will show the different pos-
sible cases of constraint sets and the bounds that allows to control the process. Next
we will show some experimental results on random graph instances and DIMACS
benchmark graphs. Our simultaneous clustering and outlier detection is presented
in Section 1.4 followed by a section that presents the path based dominant sets
clustering.

1.2 Dominant Sets Clustering

The dominant set framework provides a formalization of the very notion of a clus-
ter and considering the clustering process as a sequential search of structures in a
data. Dominant sets has intriguing connection with game theory, graph-theory and
optimization theory. From the game-theoretic perspective, clusters are in one-to-
one correspondence with Evolutionary Stable Strategies (ESS) - a classic notion of
equilibrium in evolutionary game theory field - of a so-called “clustering game”; in
the graph-theoretic context, they are edge-weighted generalizations of the maximal
clique; finally, from an optimization point of view, they can be characterized in
terms of solutions to a simplex-constrained quadratic optimization problem.

The framework represents subset of vertices as a cluster (a.k.a dominant set), if
they satisfies two basic properties of a cluster, i.e.

• internal coherence: elements belonging to the cluster should have high mutual
similarities.

• external incoherence: introducing external elements will destroy the internal
coherency.

In this section, we review the formalization of dominant sets, which supports this
claim, from a combinatorial perspective and show the relations it has with standard
quadratic optimization and game-theoretic notion of evolutionary stable strategy.

In the dominant sets framework, the data to be clustered are represented as
an undirected edge-weighted graph with no self-loops G = (V,E,w), where V =
{1, ..., n} is the vertex set, E ⊆ V × V is the edge set, and w : E → R+ is the
(positive) weight function. Vertices in G correspond to data points (objects to
be clustered), edges represent neighborhood relationships, and edge-weights reflect
similarity between pairs of linked vertices. As customary, we represent the graph
G with the corresponding weighted adjacency (or similarity) matrix, which is the
n×n nonnegative, symmetric matrix A = (aij) defined as aij = w(i, j), if (i, j) ∈ E,
and aij = 0 otherwise. Since in G there are no self-loops, note that all entries on
the main diagonal of A are zero.

In an attempt to formally capture dominant sets’ notion, we present some nota-
tions and definitions.
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1.2.1 Definitions

For a non-empty subset S ⊆ V , i ∈ S, and j /∈ S, define

ϕS(i, j) = aij −
1

|S|
∑
k∈S

aik . (1.1)

This quantity measures the (relative) similarity between nodes j and i, with respect
to the average similarity between node i and its neighbors in S. Note that ϕS(i, j)
can be either positive or negative. Next, to each vertex i ∈ S we assign a weight
defined (recursively) as follows:

wS(i) =

{
1, if |S| = 1,∑

j∈S\{i} ϕS\{i}(j, i)wS\{i}(j), otherwise .
(1.2)

Intuitively, wS(i) gives us a measure of the overall similarity between vertex i and
the vertices of S \ {i} with respect to the overall similarity among the vertices in
S \ {i}. Therefore, a positive wS(i) indicates that adding i into its neighbors in S
will increase the internal coherence of the set, whereas in the presence of a negative
value we expect the overall coherence to be decreased. Finally, the total weight of
S can be simply defined as

W (S) =
∑
i∈S

wS(i) . (1.3)

A non-empty subset of vertices S ⊆ V such that W (T ) > 0 for any non-empty
T ⊆ S, is said to be a dominant set if:

1. wS(i) > 0, for all i ∈ S,

2. wS∪{i}(i) < 0, for all i /∈ S.

It is evident from the definition that a dominant set satisfies the two basic properties
of a cluster: internal coherence and external incoherence. Condition 1 indicates that
a dominant set is internally coherent, while condition 2 implies that this coherence
will be destroyed by the addition of any vertex from outside. In other words, a
dominant set is a maximally coherent data set.

Example: Let us consider a graph with nodes {1, 2, 3}, which forms a coherent
group (dominant set) with edge weights 20, 21 and 22 as shown in Fig. 1.1(a). Now,
let us try to add a node {4} to the graph which is highly similar to the set {1,2,3}
with edge weights of 30, 35 and 41 (see Fig. 1.1(b)). Here, we can see that adding
node {4} to the set increases the overall similarity of the new set {1,2,3,4}, that can
be seen from the fact that the weight associated to the node {4} with respect to
the set {1,2,3,4} is positive, (W{1,2,3,4}(4) > 0). On the contrary, when adding node
{5} which is less similar to the set {1,2,3,4} (edge weight of 1 - Fig. 1.1(c)) the
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Figure 1.1: Dominant set example: (a) shows a compact set (dominant set), (b)
node 4 is added which is highly similar to the set {1,2,3} forming a new compact
set. (c) Node 5 is added to the set which has very low similarity with the rest of the
nodes and this is reflected in the value W{1,2,3,4,5}(5).

overall similarity of the new set {1,2,3,4,5} decreases, since we are adding to the set
something less similar with respect to the internal similarity. This is reflected by
the fact that the weight associated to node {5} with respect to the set {1,2,3,4,5}
is less than zero (W{1,2,3,4,5}(5) < 0).

From the definition of a dominant set, we could say the set {1,2,3,4} (Fig. 1.1 (b))
forms a dominant set, as it satisfies both criteria (internal coherence and external
incoherence). While the weight associated to the node out side of the set (dominant
set) is less than zero, W{1,2,3,4,5}(5) < 0.

1.2.2 Link to Optimization Theory

Consider the following linearly-constrained quadratic optimization problem:

maximize f(x) = x⊤Ax
subject to x ∈ ∆

(1.4)

where x⊤ denotes transposition of vector x and

∆ =

{
x ∈ Rn :

n∑
i=1

xi = 1, and xi ≥ 0 for all i = 1 . . . n

}

is the standard simplex of Rn.
The main result presented in [34, 35], assuming the affinity A symmetric, provides

a one-to-one relation between dominant sets and the local solutions of (1.4). In
particular, it is shown that if S is a dominant set then its “weighted characteristics
vector,” which is the vector of ∆ defined as,

xi =

{
wS(i)
W (s)

, if i ∈ S,
0, otherwise
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is a strict local solution of (1.4). Conversely, under mild conditions, it turns out
that if x is a (strict) local solution of program (1.4) then its “support”

σ(x) = {i ∈ V : xi > 0}

is a dominant set.
By virtue of this result, we can find a dominant set by first localizing a solution

of program (1.4) with an appropriate continuous optimization technique, and then
picking up the support set of the solution found. In this sense, we indirectly perform
combinatorial optimization via continuous optimization. A generalization of these
ideas to hypergraphs has recently been developed in [40].

1.2.3 Link to Game Theory

From an optimization point of view, dominant sets are in one-to-one correspondence
with solutions to a simplex-constrained quadratic optimization problem. This rela-
tion to optimization theory, however, exists as long as we have a symmetric affinity
matrix. Interestingly, there is a theory beyond optimization which serves the pur-
pose well with asymmetric affinity, it is game theory.

The relation with game theory exists assuming the players play non-cooperative
symmetric game. Symmetricity in a game setting implies that the two players share
same payoff matrix, and non-cooperative mean that both players have perfect knowl-
edge of the game and take independent decisions about the strategies to play. From
the dominant sets formulation, the objects to be clustered (vertices V ) represent
the strategies to be chosen while the affinity matrix A represents the payoff matrix
which summarizes the gain each of the players obtains while a pair of strategies are
played, i.e, if player 1 chooses the ith strategy (from the set of objects that we have)
to play while player 2 chooses strategy j ((i, j) is chosen from the set V × V ), aij
will be the gain player 1 obtains and player 2 will receive aji. While we play a game,
we should not show any preference for our opponent, if our opponent knows what
we are going to play, he knows what to play to be the winner. A mixed strategy
is a randomization in the selection of the pure strategies which models a stochastic
playing strategy of a player. If player 1 plays a mixed strategy x1 while player 2
chooses to play mixed strategy x2, i.e. , ((x1,x2) is chosen from the simplex ∆×∆),
then the expected payoff the players receive is computed as x⊤

1 Ax2 (for player 1) and
x⊤
2 Ax1(for player 2).
From the clustering perspective, mixed strategies can be regarded as a cluster

hypothesis, where xi represents the probability of having the ith object in the cluster.
In any game setting, players play to maximize their gain. Giving high probability,
while choosing a mixed strategy to play, for those strategies with higher payoff,
they maximize their gain. Considering the payoff matrix as the affinity matrix
A of the dominant set framework, a game, since players give high probability for
those strategies which maximizes their payoff, selects objects having high mutual
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similarities which in turn results a dominant set (a cluster). The zero diagonal in
the dominant sets formulation is also consistent with the game setting; if we do not
set the diagonal of the payoff matrix to zero, the best strategy for each player would
be to coordinate the selection towards exactly the same object, which is useless for
the clustering purposes. On the other hand, by penalizing perfect coordination, one
forces the players to anti-coordinate, resulting eventually in an equilibrium, where
the two players beliefs about the cluster membership are conflicting, which is again
unwanted. A third, desired possibility is that the players end up with a so-called
symmetric (Nash) equilibrium, where the beliefs about cluster membership coincide.

A mixed strategy (x1,x2) ∈ ∆×∆ is said to be a Nash equilibrium if no player
has an incentive to unilaterally deviate from it, i.e. , given the opponent’s strategy
being fixed the following holds

y⊤
2 Ax1 < x⊤

2 Ax1, y⊤
1 Ax2 < x⊤

1 Ax2

for all (y1,y2) ∈ ∆×∆.
In the case of symmetric Nash equilibrium ( i.e. , when x1 = x2 which can be

represented by a single strategy x ∈ ∆ played by two players), the above condition
reduces to the following

x⊤Ax ≥ y⊤Ax for all y ∈ ∆ . (1.5)

This condition implies, from the clustering game perspective, a condition where
both players agree on the same hypothesis of cluster membership and no player
has incentives to deviate from it. The internal coherency follows from the Nash
condition. Indeed, if x is Nash equilibrium, then Eq. (1.5) implies that (Ax)i =
x⊤Ax for all i ∈ σ(x), i.e. every element of the cluster (i ∈ σ(x)) has the same
average similarity with respect to the cluster. The Nash condition, however, does not
necessarily guarantee the external incoherency ( a.k.a. cluster maximality) which
follows from a refinement of Nash Equilibrium that is Evolutionary Stable Strategy
which is stable and that always implies a Nash equilibrium. A Nash equilibrium is an
Evolutionary Stable Strategy(ESS) if the following holds for all strategies y ∈ ∆\x

y⊤Ax = x⊤Ax =⇒ x⊤Ay > y⊤Ay

We can express this as follows: suppose x is a Nash equilibrium and suppose that
y is another Nash equilibrium, if we get the same score when y is played against its
opponent and when when x is played against itself, by changing the role of x and y
we get the following

x⊤Ay > y⊤Ay

.
ESS, which is also Nash equilibrium, satisfies both the internal and external

criteria of a cluster, which implies that the problem of clustering becomes the prob-
lem of finding ESS-clusters of a clustering game. One of the distinguishing features
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of this approach is its generality as it allows one to deal in a unified framework
with a variety of scenarios, including cases with asymmetric, negative, or high-order
affinities. Moreover, when the affinity matrix A is symmetric, the notion of an ESS-
cluster coincides with the original notion of dominant sets, which amounts to finding
a (local) maximizer of x⊤Ax over the standard simplex ∆ [39].

1.3 Constrained Dominant Sets

Let G = (V,E,w) be an edge-weighted graph with n vertices and let A denote as
usual its (weighted) adjacency matrix. Given a subset of vertices S ⊆ V and a
parameter α > 0, define the following parameterized family of quadratic programs:

maximize fαS (x) = x⊤(A− αÎS)x
subject to x ∈ ∆

(1.6)

where ÎS is the n × n diagonal matrix whose diagonal elements are set to 1 in
correspondence to the vertices contained in V \S and to zero otherwise, and the 0’s
represent null square matrices of appropriate dimensions. In other words, assuming
for simplicity that S contains, say, the first k vertices of V , we have:

ÎS =

(
0 0
0 In−k

)
where In−k denotes the (n− k)× (n− k) principal submatrix of the n× n identity
matrix I indexed by the elements of V \ S. Accordingly, the function fαS can also
be written as follows:

fαS (x) = x⊤Ax− αx⊤
SxS

xS being the (n−k)-dimensional vector obtained from x by dropping all the compo-
nents in S. Basically, the function fαS is obtained from f by inserting in the affinity
matrix A the value of the parameter α in the main diagonal positions corresponding
to the elements of V \ S.

Notice that this differs markedly, and indeed generalizes, the formulation pro-
posed in [43] for obtaining a hierarchical clustering in that here, only a subset of
elements in the main diagonal is allowed to take the α parameter, the other ones
being set to zero. We note in fact that the original (non-regularized) dominant-set
formulation (1.4) [35] as well as its regularized counterpart described in [43] can
be considered as degenerate version of ours, corresponding to the cases S = V and
S = ∅, respectively. It is precisely this increased flexibility which allows us to use
this idea for finding groups of “constrained” dominant-set clusters.

We now derive the Karush-Kuhn-Tucker (KKT) conditions for program (1.6),
namely the first-order necessary conditions for local optimality (see, e.g., [46]). For
a point x ∈ ∆ to be a KKT-point there should exist n nonnegative real constants
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µ1, . . . , µn and an additional real number λ such that

[(A− αÎS)x]i − λ+ µi = 0

for all i = 1 . . . n, and
n∑
i=1

xiµi = 0 .

Since both the xi’s and the µi’s are nonnegative, the latter condition is equivalent
to saying that i ∈ σ(x) implies µi = 0, from which we obtain:

[(A− αÎS)x]i

{
= λ, if i ∈ σ(x)
≤ λ, if i /∈ σ(x)

for some constant λ. Noting that λ = x⊤Ax−αx⊤
SxS and recalling the definition of

ÎS, the KKT conditions can be explicitly rewritten as:⎧⎨⎩
(Ax)i − αxi = x⊤Ax− αx⊤

SxS, if i ∈ σ(x) and i /∈ S
(Ax)i = x⊤Ax− αx⊤

SxS, if i ∈ σ(x) and i ∈ S
(Ax)i ≤ x⊤Ax− αx⊤

SxS, if i /∈ σ(x)
(1.7)

We are now in a position to discuss the main results which motivate the algorithm
presented in this section. Note that, in the sequel, given a subset of vertices S ⊆ V ,
the face of ∆ corresponding to S is given by: ∆S = {x ∈ ∆ : σ(x) ⊆ S}.

Proposition 1. Let S ⊆ V , with S ̸= ∅. Define

γS = max
x∈∆V \S

min
i∈S

x⊤Ax− (Ax)i
x⊤x

(1.8)

and let α > γS. If x is a local maximizer of fαS in ∆, then σ(x) ∩ S ̸= ∅.

Proof. Let x be a local maximizer of fαS in ∆, and suppose by contradiction that no
element of σ(x) belongs to S or, in other words, that x ∈ ∆V \S. By letting

i = arg min
j∈S

x⊤Ax− (Ax)j
x⊤x

and observing that σ(x) ⊆ V \ S implies x⊤x = x⊤
SxS, we have:

α > γS ≥
x⊤Ax− (Ax)i

x⊤x
=

x⊤Ax− (Ax)i
x⊤
SxS

.

Hence, (Ax)i > x⊤Ax − αx⊤
SxS for i /∈ σ(x), but this violates the KKT conditions

(1.7), thereby proving the proposition.
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The following proposition provides a useful and easy-to-compute upper bound
for γS.

Proposition 2. Let S ⊆ V , with S ̸= ∅. Then,

γS ≤ λmax(AV \S) (1.9)

where λmax(AV \S) is the largest eigenvalue of the principal submatrix of A indexed by
the elements of V \ S.

Proof. Let x be a point in ∆V \S which attains the maximum γS as defined in (1.8).
Using the Rayleigh-Ritz theorem [47] and the fact that σ(x) ⊆ V \ S, we obtain:

λmax(AV \S) ≥
x⊤
S AV \SxS

x⊤
SxS

=
x⊤Ax

x⊤x
.

Now, define γS(x) = max{(Ax)i : i ∈ S}. Since A is nonnegative so is γS(x), and
recalling the definition of γS we get:

x⊤Ax

x⊤x
≥ x⊤Ax− γS(x)

x⊤x
= γS

which concludes the proof.

The two previous propositions provide us with a simple technique to determine
dominant-set clusters containing user-selected vertices. Indeed, if S is the set of
vertices selected by the user, by setting

α > λmax(AV \S) (1.10)

we are guaranteed that all local solutions of (1.6) will have a support that necessarily
contains elements of S. Note that this does not necessarily imply that the (support
of the) solution found corresponds to a dominant-set cluster of the original affinity
matrix A, as adding the parameter −α on a portion of the main diagonal intrinsically
changes the scale of the underlying problem. However, we have obtained extensive
empirical evidence which supports a conjecture which turns out to be very useful
for our interactive image segmentation application.

To illustrate the idea, let us consider the case where edge-weights are binary,
which basically means that the input graph is unweighted. In this case, it is known
that dominant sets correspond to maximal cliques [35]. Let G = (V,E) be our
unweighted graph and let S be a subset of its vertices. For the sake of simplicity,
we distinguish three different situations of increasing generality.
Case 1. The set S is a singleton, say S = {u}. In this case, we know from
Proposition 2 that all solutions x of fSα over ∆ will have a support which contains
u, that is u ∈ σ(x). Indeed, we conjecture that there will be a unique local (and
hence global) solution here whose support coincides with the union of all maximal
cliques of G which contain vertex u.
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Figure 1.2: An example graph (left), corresponding affinity matrix (middle), and scaled
affinity matrix built considering vertex 5 as a user constraint (right). Notation Ci refers
to the ith maximal clique.

Case 2. The set S is a clique, not necessarily maximal. In this case, Proposition 2
predicts that all solutions x of (1.6) will contain at least one vertex from S. Here, we
claim that indeed the support of local solutions is the union of the maximal cliques
that contain S.
Case 3. The set S is not a clique, but it can be decomposed as a collection of
(possibly overlapping) maximal cliques C1, C2, ..., Ck (maximal with respect to the
subgraph induced by S). In this case, we claim that if x is a local solution, then its
support can be obtained by taking the union of all maximal cliques of G containing
one of the cliques Ci in S.

To make our discussion clearer, consider the graph shown in Fig. 1.2. In order to
test whether our claims hold, we used as the set S different combinations of vertices,
and enumerated all local solutions of (1.6) by multi-start replicator dynamics (see
Section 1.3.1). Some results are shown below, where on the left-hand side we indicate
the set S, while on the right hand-side we show the supports provided as output by
the different runs of the algorithm.

1. S = {2} ⇒ σ(x) = {1, 2, 3}
2. S = {5} ⇒ σ(x) = {4, 5, 6, 7, 8}
3. S = {4, 5} ⇒ σ(x) = {4, 5}
4. S = {5, 8} ⇒ σ(x) = {5, 6, 7, 8}
5. S = {1, 4} ⇒ σ(x1) = {1, 2}, σ(x2) = {4, 5}
6. S = {2, 5, 8} ⇒ σ(x1) = {1, 2, 3}, σ(x2) = {5, 6, 7, 8}

The previous observations can be summarized in the following general statement
which does comprise all three cases. Let S = C1 ∪C2 ∪ . . .∪Ck (k ≥ 1) be a subset
of vertices of G, consisting of a collection of cliques Ci (i = 1 . . . k). Suppose that
condition (1.10) holds, and let x be a local solution of (1.6). Then, σ(x) consists of
the union of all maximal cliques containing some clique Ci of S.

We conjecture that the previous claim carries over to edge-weighted graphs where
the notion of a maximal clique is replaced by that of a dominant set. In section 1.3.3
and A.1, we report the results of an extensive experimentation we have conducted
over random instance graphs and over standard DIMACS benchgraphs which provide
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support to our claim. This conjecture is going to play a key role in our wide range
of vision applications.

1.3.1 Finding Constrained Dominant Sets Using Game Dy-
namics

Evolutionary game theory offers a whole class of simple dynamical systems to solve
quadratic constrained optimization problems like ours. It envisages a scenario in
which pairs of players are repeatedly drawn at random from a large population of
individuals to play a symmetric two-player game. Game dynamics are designed in
such a way as to drive strategies with lower payoff to extinction, following Darwin’s
principle of natural selection [38, 48].

Let xi(t) is the proportion of the population which plays strategy i ∈ J (the set
of strategies) at time t. The state of the population at any given instant is then
given by x(t) = (x1(t), ..., xn(t))

′ where ′ denotes transposition and n refers the size
of available pure strategies, that is |J |.

Let W = (wij) be the n× n payoff matrix (biologically measured as Darwinian
fitness or as profits in economic applications). The payoff for the ith-strategist,
assuming the opponent is playing the jth strategy, is given by wij, the corresponding
ith row and the jth column of W . If the population is in state x, the expected payoff
earned by an the ith-strategist is:

Pi(x) =
n∑
j=1

wijxj = (Wx)i

and the mean payoff over the whole population is

P(x) =
n∑
i=1

xiPi(x) = x′Wx

The game, which is assumed to be played over and over, generation after gener-
ation, changes the state of the population over time until equilibrium is reached. A
point x is said to be a stationary (or equilibrium) point of the dynamical system if
ẋ = 0 where the dot implies derivative with respect to time.

Different formalization of this selection process have been proposed in evolu-
tionary game theory. One of the best-known class of game dynamics is given by
the so-called replicator dynamics, which prescribes that the average rate of increase
ẋi/xi equals the difference between the average fitness of strategy i and the mean
fitness over the entire population:

ẋ = xi ((Wx)i − x′Wx) (1.11)
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A well-known discretization of the above dynamics is:

x
(t+1)
i = x

(t)
i

(Wx(t))i
(x(t))′W (x(t))

(1.12)

Now, the celebrated Fundamental Theorem of Natural Selection [48] states that,
ifW = W ′, then the average population payoff x′Wx is strictly increasing along any
non-constant trajectory of both the continuous-time and discrete-time replicator dy-
namics. Thanks to this property, replicator dynamics naturally suggest themselves
as a simple heuristics for finding (constrained) dominant sets [35].

In our case, problem (1.6), the payoff matrix W is given by

W = A− αÎS

which yields:

x
(t+1)
i =

⎧⎪⎪⎨⎪⎪⎩
x
(t)
i

(Ax(t))i
(x(t))′(A−αÎS)(x(t))

, if i ∈ S

x
(t)
i

(Ax(t))i−αx
(t)
i

(x(t))′(A−αÎS)(x(t))
, if i /∈ S

(1.13)

Provided that the matrix A− αÎS is scaled properly to avoid negative values, it
is readily seen that the simplex ∆ is invariant under these dynamics, which means
that every trajectory starting in ∆ will remain in ∆ for all future times.

In addition to the replicator dynamics described above, we mention a faster al-
ternative to solve linearly constrained quadratic optimization problems like ours,
namely Infection and Immunization Dynamics (InImDyn) [49]. Each step of In-
ImDyn has a linear time/space complexity as opposed to the quadratic per-step
complexity of replicator dynamics, and is therefore to be preferred in the presence
of large payoff matrices.

The dynamics, inspired by infection and immunization processes summarized in
Algorithm (1), finds the optimal solution by iteratively refining an initial distribution
x ∈ ∆. The process allows for invasion of an infective distribution y ∈ ∆ that
satisfies the inequality (y − x)⊤Ax > 0, and combines linearly x and y (line 7 of
Algorithm (1)), thereby engendering a new population z which is immune to y and
guarantees a maximum increase in the expected payoff. A selective function, S(x),
returns an infective strategy for distribution x if it exists, or x otherwise (line 2 of
Algorithm (1)). Selecting a strategy y which is infective for the current population
x, the extent of the infection, δy(x), is then computed in lines 3 to 6 of Algorithm
(1).

By reiterating this process of infection and immunization the dynamics drives
the population to a state that cannot be infected by any other strategy. If this is
the case then x is an equilibrium or fixed point under the dynamics. The refinement
loop of Algorithm (1) controls the number of iterations allowing them to continue
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until x is with in the range of the tolerance τ and we emperically set τ to 10−7. The

range ϵ(x) is computed as ϵ(x) =
∑
i∈J

min
{
xi, (Ax)i − x⊤Ax

}2
.

Algorithm 1 FindEquilibrium(A,x,τ)

Input: n× n payoff matrix A, initial distribution x ∈ ∆ and tolerance τ .
Output: Fixed point x

1: while ϵ(x) > τ do
2: y← S(x)
3: δ ← 1
4: if (y − x)⊤A(y − x) < 0 then

5: δ ← min
{

(x−y)⊤Ax
(y−x)⊤A(y−x)

, 1
}

6: end if
7: x← δ(y − x) + x
8: end while
9: return x

1.3.2 Fast Approach for Solving Constrained Dominant Set
Clustering

Though Infection and Immunization Dynamics (InfImDyn) solves our constrained
quadratic optimization program in linear time, it needs the whole affinity matrix
to extract the compact set which, more often than not, exists in local range of the
whole graph. Efficient out-of-sample [44], extension of dominant sets, is the other
approach which is used to reduce the computational cost by sampling the nodes of
the graph using some given sampling rate that affects the framework efficacy. Liu
et al. [50] proposed an iterative clustering algorithm, which operates in two steps:
Shrink and Expansion. These steps help reduce the runtime of replicator dynamics
on the whole data, which might be slow. The approach has many limitations such as
its preference of sparse graph with many small clusters and the results are sensitive
to some additional parameters. Another approach which tries to reduce the compu-
tational complexity of the standard quadratic program (StQP [51]) is proposed by
[52].

All the above formulations, with their limitations, try to minimize the compu-
tational complexity of StQP using the standard game dynamics, whose complexity
is O(n2) for each iteration.

In this thesis we propose a fast approach (listed in Algorithm (2)), based on In-
fImDyn approach which solves StQP in O(n), for the recently proposed formulation,
x⊤(A− αIQ)x, which of-course generalizes the StQP.

InfImDyn is a game dynamics inspired by Evolutionary game theory. The dy-
namics extracts a dominant set using a two-steps approach (infection and immuniza-
tion), that iteratively increases the compactness measure of the objective function by
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driving the (probability) distribution with lower payoff to extinction, by determin-
ing an ineffective distribution y ∈ ∆, that satisfies the inequality (y − x)⊤Ax > 0,
the dynamics combines linearly the two distributions (x and y), thereby engender-
ing a new population z which is immune to y and guarantees a maximum increase
in the expected payoff. In our setting, given a set of instances and their affinity,
we first assign all of them an equal probability (a distribution at the centre of the
simplex, a.k.a. barycenter). The dynamics then drives the initial distribution with
lower affinity to extinction; those which have higher affinity start getting higher,
while the other get lower values. A selective function, S(x), is then run to check
if there is any infective distribution; a distribution which contains instances with a
better association score. By iterating this process of infection and immunization the
dynamics is said to reach the equilibrium, when the population is driven to a state
that cannot be infected by any other distribution, that is there is no distribution,
whose support contains a set of instances with a better association score. The se-
lective function, however, needs whole affinity matrix, which makes the InfImDyn
inefficient for large graphs. We propose an algorithm, that reduces the search space
using the Karush-Kuhn-Tucker (KKT) condition of the constrained quadratic opti-
mization, effectively enforcing the user constraints. In the constrained optimization
framework [53], the algorithm computes the eigenvalue of the submatrix for every
extraction of the compact sets, which contains the user constraint set. Computing
eigenvalues for large graphs is computationally intensive, which makes the whole
algorithm inefficient.

In our approach, instead of running the dynamics over the whole graph, we
localize it on the sub-matrix, selected using the dominant distribution, that is much
smaller than the original one. To alleviate the issue with the eigenvalues, we utilize
the properties of eigenvalues; a good approximation for the parameter α is to use
the maximum degree of the graph, which of-course is larger than the eigenvalue
of corresponding matrix. The computational complexity, apart from eigenvalue
computation, is reduced to O(r) where r, which is much smaller than the original
affinity, is the size of the sub-matrix where the dynamics is run.

Let us summarize the KKT conditions for quadratic program reported in eq.
(1.6). By adding Lagrangian multipliers, n non-negative constants µ1, ...., µn and a
real number λ, its Lagrangian function is defined as follows:

L(x, µ, λ) = fαQ(x) + λ

(
1−

n∑
i+1

xi

)
+

n∑
i+1

µixi.

For a distribution x ∈ ∆ to be a KKT-point, in order to satisfy the first-order
necessary conditions for local optimality [46], it should satisfy the following two
conditions:

2 ∗ [(A− αIQ)x]i − λ+ µi = 0,
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for all i = 1 . . . n, and
n∑
i=1

xiµi = 0 .

Since both the xi and the µi values are nonnegative, the latter condition is equivalent
to saying that i ∈ σ(x) which implies that µi = 0, from which we obtain:

[(A− αIQ)x]i

{
= λ/2, if i ∈ σ(x)
≤ λ/2, if i /∈ σ(x)

(1.14)

We then need to define a Dominant distribution

Definition 1. A distribution y ∈ ∆ is said to be a dominant distribution for
x ∈ ∆ if {

n∑
i,j=1

xiyjaij − αxiyj

}
>

{
n∑

i,j=1

xixjaij − αxixj

}
(1.15)

Let the ”support” be σ(x) = {i ∈ V : xi > 0} and ei the i
th unit vector (a zero

vector whose ith element is one).

Proposition 3. Given an affinity A and a distribution x ∈ ∆, if (Ax)i > x⊤Ax −
αx⊤

QxQ, for i /∈ σ(x),

1. x is not the maximizer of the parametrized quadratic program of (1.6)

2. ei is a dominant distribution for x

Proof. To show the first condition holds: Let’s assume x is a KKT point

x⊤(A− αIQ)x =
n∑
i=1

xi[(A− αIQ)x]i

Since x is a KKT point

x⊤(A− αIQ)x =
n∑
i=1

xi ∗ λ/2 = λ/2

From the second condition, we have:

[(A− αIQ)x]i ≤ λ/2 = x⊤(A− αIQ)x

Since i /∈ σ(x)
(Ax)i ≤ x⊤(A− αIQ)x

Which concludes the proof showing that the inequality does not hold.
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For the second condition, if ei is a dominant distribution for x, it should
satisfy the inequality {

e⊤i (A− αIQ)x
}
>
{
x⊤(A− αIQ)x

}
Since i /∈ σ(x)

(Ax)i >
{
x⊤(A− αIQ)x

}
Which concludes the proof

The proposition provides us with an easy-to-compute dominant distribution, and
the detail is summarized in Algorithm (2)

Let a function, S(A, x), returns a dominant distribution for distribution, x, ∅
otherwise and G(A,Q, x) returns the local maximizer of program (1.6).

Algorithm 2 Fast CDSC

Input: Affinity B, Constraint set Q
Initialize x to the barycenter of ∆Q
xd ← x, initialize dominant distribution
Output: Fixed point x

1: while true do
2: xd ← S(B,x), Find dominant distribution for x
3: if xd = ∅ then break
4: end if
5: H ← σ(xd) ∪Q, subgraph nodes
6: A← BH
7: xl ← G(A,Q, x)
8: x ← x*0
9: x(H) ← xl
10: end while
11: return x

The selected dominant distribution always increases the value of the objective
function. Moreover, the objective function is bounded which guaranties the conver-
gence of the algorithm.

1.3.3 Experiments Using CDS

In this section, we report on some empirical evidence which provides support to
a conjecture which plays a key role in our computer vision application. For the
reader’s convenience, we recapitulate our claim below.
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Let G = (V,E) be an unweighted graph with adjacency matrix A, and let S be
a subset of its vertices. Let S = C1 ∪ C2 ∪ . . . ∪ Ck (k ≥ 1) be a subset of vertices
of G consisting of a collection of maximal cliques Ci, i = 1 . . . k (maximal w.r.t.
the subgraph induced by S). Let x be a local solution of the following quadratic
program:

maximize fαS (x) = x⊤(A− αÎS)x
subject to x ∈ ∆

(1.16)

and suppose that:
α > λmax(AV \S) . (1.17)

Then, the support of x, defined as

σ(x) = {i ∈ V : xi > 0}

consists of the union of all maximal cliques containing some clique Ci of S.
We also conjecture that the previous claim carries over to edge-weighted graphs

where the notion of a maximal clique is replaced by that of a dominant set. Here we
include only experiments on DIMACS benchmark graphs. Experiments on random
graphs are included in the appendix part of the thesis.

1.3.3.1 Experiments on DIMACS benchmark graphs

We tested our claims over a selection of DIMACS graphs, a standard benchmark
dataset used to assess the effectiveness of clique finding algorithms [54]. In partic-
ular, we used graphs belonging to the brock family, which are constructed so as to
camouflage a clique of size larger than expected, and are known to be among the
most difficult ones contained in the dataset [55].

We tested our algorithm on the larger brock graphs contained in the DIMACS
dataset (from 200 to 800 vertices). To evaluate the results we here use the informa-
tion each graph instance in the dataset contains about the vertices of its maximum
clique. Table 1.1 shows the results obtained. The table includes the name of the
graph (Name), the number of vertices (#), the graph density (ρ), the size of the
maximum clique (ω). Lφ refers to the size, averaged over 20 runs, of the elements
of the extracted nodes, say N , which contain φ % of the clique elements that are
selected randomly. Fϱ represents the fraction of the clique elements that are mem-
bers of the extracted set of nodes for a given ϱ % of the clique elements that are
selected randomly, as computed as follows:

Fϱ =
|C ∩ N |
|C|

.
We also evaluated the performance of the framework on weighted version of the

DIMACS graphs. We generated them by slightly (randomly) perturbing the entries
of the adjacency matrices of original (unweighted) graphs used in the previous set of
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Name # ρ ω L20 F20 L50 F50 L75 F75 L90 F90
brock200 1 200 0.75 21 66.5±5.8 1 22.9±1.4 1 21±0 1 21±0 1
brock200 2 200 0.50 12 47.7±6.7 1 12.1±0.3 1 12±0 1 12±0 1
brock200 3 200 0.61 15 40.5±5.3 1 15.5±0.6 1 15±0 1 15±0 1
brock200 4 200 0.66 17 61.8±5.1 1 18.4±1.1 1 17±0 1 17±0 1
brock400 1 400 0.75 27 95.8±6.3 1 28.2±1.3 1 27±0 1 27±0 1
brock400 2 400 0.75 29 95.7±6.4 1 30.1±0.9 1 29±0 1 29±0 1
brock400 3 400 0.75 31 75.5±7.4 1 31.5±0.5 1 31±0 1 31±0 1
brock400 4 400 0.75 33 77.7±5.0 1 33.3±0.7 1 33±0 1 33±0 1
brock800 1 800 0.65 23 129.5±7.2 1 23.7±0.8 1 23±0 1 23±0 1
brock800 2 800 0.65 24 129.9±9.6 1 24.5±0.4 1 24±0 1 24±0 1
brock800 3 800 0.65 25 84.0±7.9 1 25.4±0.4 1 25±0 1 25±0 1
brock800 4 800 0.65 26 87.0±6.4 1 26.2±0.5 1 26±0 1 26±0 1

Table 1.1: Performance of the algorithm on brock DIMACS graphs.

experiments, in such a way that their maximal cliques corresponded to the dominant
sets in their weighted versions. (This can easily be done using the convergence
properties of replicator dynamics [2].) The results for the weighted version is shown
in Table 1.2.

As can be observed from Tables 1.1 and 1.2, in both unweighted and weighted
versions, as the size of the randomly selected clique elements increases, the extracted
version is identical to the optimum clique size, and since the fraction Fϱ is always 1,
we can infer that not only the clique size but also the right maximum clique elements
are extracted. As the percentage φ increases, the variance drops drastically to zero
and the algorithms converges to the right maximal clique which can be verified by
Lφ, ω and the fraction Fϱ. In general, given a maximal clique as a constraint set, the
algorithms converges to the same maximal clique, and given a subset of a maximal
clique, it converges to a super-set of the maximal clique which contains the given
set.

1.4 Simultaneous Clustering and Outlier Detec-

tion

In the literature, clustering and outlier detection are often treated as separate prob-
lems. However, it is natural to consider them simultaneously. The problem of outlier
detection is deeply studied in both communities of data mining and statistics [56, 57],
with different perspectives.

A classical statistical approach for finding outliers in multivariate data is Min-
imum Covariance Determinant (MCD). The main objective of this approach is
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Name # ρ ω L20 F20 L50 F50 L75 F75 L90 F90
brock200 1 200 0.75 21 81.2±7.6 1 30.0±4 1 21.25±0.41 21±0 1
brock200 2 200 0.50 12 50.3±4.9 1 13.7±2 1 12±0 1 12±0 1
brock200 3 200 0.61 15 48.5±9.7 1 17.8±2 1 15±0 1 15±0 1
brock200 4 200 0.66 17 70.5±7.0 1 24.5±3 1 17±0 1 17±0 1
brock400 1 400 0.75 27 126.2±18 1 33.2±3 1 27±0 1 27±0 1
brock400 2 400 0.75 29 129.2±21 1 32.8±2 1 29±0 1 29±0 1
brock400 3 400 0.75 31 113.2±18 1 33.2±2 1 31±0 1 31±0 1
brock400 4 400 0.75 33 109.5±14 1 34.0±1 1 33±0 1 33±0 1
brock800 1 800 0.65 23 188.1±43 1 27.8±2 1 23±0 1 23±0 1
brock800 2 800 0.65 24 184.9±51 1 26.2±1 1 24±0 1 24±0 1
brock800 3 800 0.65 25 148.5±36 1 27.3±1 1 25±0 1 25±0 1
brock800 4 800 0.65 26 150.95±34 1 26.7±1 1 26±0 1 26±0 1

Table 1.2: Performance of the algorithm on weighted versions of the brock DIMACS
graphs.

to identify a subset of points which minimizes the determinant of the variance-
covariance matrix over all subsets of size n− l, where n is the number of multivariate
data points and l is the number of outliers. The resulting variance-covariance matrix
can be integrated into the Mahalanobis distance and used as part of a chi-square test
to identify multivariate outliers [58]. However, the high computational complexity
makes it impractical for high-dimensional datasets.

A distance-based outlier detection is introduced by authors in [59], which does
not depend on any distributional assumptions and can easily be generalized to mul-
tidimensional datasets. Intuitively, in this approach data points which are far away
from their nearest neighbors are considered as an outlier. However, outliers detected
by these approaches are global outliers, that is, the outlierness is with respect to the
whole dataset.

In [60], the authors introduced a new concept that is local outlier factor (LOF),
which shows how isolated an object is with respect to its surrounding neighborhood.
In this method, they claim that in some situations local outliers are more important
than global outliers which are not easily detected by distance-based techniques.
The concept of local outliers has subsequently been extended in several directions
[56, 61]. Authors in [62] studied a similar problem in the context of facility location
and clustering. Given a set of points in a metric space and parameters k and m, the
goal is to remove m outliers, such that the cost of the optimal k−median clustering
of the remaining points is minimized. In [63] authors have proposed k-means-- which
generalizes k−means with the aim of simultaneously clustering data and discovering
outliers. However, the algorithm inherits the weaknesses of the classical k −means
algorithm: requiring the prior knowledge of cluster numbers k; and, sensitivity to
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initialization of the centroids, which leads to unwanted solutions.
More recently, authors in [64] modelled clustering and outlier detection as an

integer programming optimization task and then proposed a Lagrangian relaxation
to design a scalable subgradient-based algorithm. The resulting algorithm discovers
the number of clusters from the data however it requires the cost of creating a new
cluster and the number of outliers in advance.

In this section of the thesis, we propose a modified dominant set clustering
problem for simultaneous clustering and outlier detection from data (SCOD). Unlike
most of the above approaches our method requires no prior knowledge on both the
number of clusters and outliers, which makes our approach more convenient for real
applications.

A naive approach to apply dominant set clustering is to set a threshold, say
cluster size, and label clusters with smaller cluster size than the threshold as out-
liers. However, in the presence of many cluttered noises (outliers) with a uniformly
distributed similarity (with very small internal coherency), the dominant set frame-
work extracts the set as one big cluster. That is, cluster size threshold approaches
are handicapped in dealing with such cases. Thus what is required is a more robust
technique that can gracefully handle outlier clusters of different size and cohesive-
nesss.

Dominant set framework naturally provide a principled measure of a cluster’s
cohesiveness as well as a measure of vertex participation to each group (cluster).
On the virtue of this nice feature of the framework, we propose a technique which
simultaneously discover clusters and outlier in a computationally efficient manner.

The main contributions of this subsection are:

• we propose a method which is able to identify number of outliers automatically
from the data.

• it requires no prior knowledge of the number of clusters since the approach
discovers the number of clusters from the data.

• the effectiveness of the SCOD is tested on both synthetic and real datasets.

In the next subsection we detail the approach on enumerating dominant sets
while obliterating outliers, while the last part of the section shows experimental
results.

1.4.1 Enumerate Dominant Sets Obliterating Outliers

In the dominant set framework, a hard partition of the input data is achieved using
a ‘peel-off’ strategy described as follows.

Initializing the dynamics defined in (1.12) to a point near the barycenter of the
simplex, say it converges to a point x∗, which is a strict local solution of (1.4).
Let us determine the dominant set DS as the support of x∗, DS = σ(x∗). Then,
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all the vertices corresponding to the extracted dominant set are removed from the
similarity graph. This process is repeated on the remaining graph until all data have
been covered, but in applications involving large and noisy data sets this makes little
sense. In these cases, a better strategy used in [35] is to stop the algorithm using a
predefined threshold based on the size of the given data and assign the unprocessed
ones to the “nearest” extracted dominant set according to some distance criterion.

This approach has proven to be effective in dealing with situations involving
the presence of cluttered backgrounds [14]. However, it lacks an intuitive way to
terminate. In fact, either a manual decision on the number of clusters to be extracted
stops the ‘peel-off’ process or all points will be covered in one of the above two ways.
It is this limitation which makes the dominant set framework not able to deal with
the problem of automated simultaneous clustering and outlier detection.

In this work, we took into account two features which make the dominant set
framework able to deal with simultaneous clustering and outlier detection problem,
in which the number of clusters arises intuitively while outliers are automatically
obliterated: the first one deals with cluster cohesiveness and the second one deals
with clusters of different size.

A nice feature of the dominant set framework is that it naturally provides a
principled measure of a cluster’s cohesiveness as well as a measure of a vertex par-
ticipation to each group. The degree of membership to a cluster is expressed by the
components of the characteristic vector x∗ of the strict local solution of (1.4): if a
component has a small value, then the corresponding node has a small contribution
to the cluster, whereas if it has a large value, the node is strongly associated with
the cluster. Components corresponding to nodes not participating in the cluster are
zero. A good cluster is one where elements that are strongly associated with it also
have large values connecting one another in the similarity matrix.

The cohesiveness C of a cluster is measured by the value of equation (1.4) at its
corresponding characteristic vector, C = f(xc):

C = f(xc) = x⊤
c Axc

A good cluster has high C value. The average global cohesiveness GC of a given
similarity matrix can be computed by fixing the vector x to the barycenter of the
simplex, specifically xi = 1/N where N is the size of the data and i = 1 . . . N .

If the payoff matrix A is symmetric, then f(x) = x⊤Ax is a strictly increas-
ing function along any non-constant trajectory of any payoff-monotonic dynamics
of which replicator dynamics are a special instance. This property together with
cohesiveness measure allowed us modify the dominant set framework for SCOD.

Initializing the dynamics to the barycenter, say xt at a time t = 1, a step at each
iteration implies an increase in f(xt+i) for any i > 1, which again entails that at
convergence at time t = c, the cohesiveness of the cluster, extracted as the support
of xc, is greater than the average global cohesiveness (GC), i.e

GC = x⊤
1 Ax1 < x⊤

c Axc
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.

In the dominant set framework, there are situations where false positive clusters
arise.

First, large number of very loosely coupled objects with similar affinities may
arise as a big cluster. This can be handled using the cohesiveness measure as there
will not be any big step of the point that initializes the dynamics.

Secondly, a small compact set of outliers form a cluster whose cohesiveness is
greater than the average global cohesiveness of the original similarity. In our au-
tomated framework, to address these issues, a new affinity (S) is built from the
original pairwise similarity (A) based on M-estimation from robust statistics.

To every candidate i a weight which intuitively measures its average relationship
with the local neighbors is assigned:

S(i, j) = w(i)w(j)A(i, j) (1.18)

where w(i) = 1
|Ni|

∑
j∈Ni

A(i, j) and Ni is the set of top N similar items, based on the

pairwise similarity (A), of object i. The framework is not sensitive to the setting of
the parameter (N ). In all the experiments we fixed it as 10% of the size of the data.
One may also choose it based on the average distances among the objects. A similar
study, though with a different intention, has been done in [65] and illustrated that
this approach makes the system less sensitive to the parameter sigma to built the
similarity.

The newly built affinity (S) can be used in different ways: first, we can use
it to recheck if the extracted sets are strict local solution of (1.4) setting (A) =
(S). Another simpler and efficient way is using it for the cohesiveness measure i.e,
an extracted set, to be a cluster, should satisfy the cohesiveness criteria in both
affinities A and S.

Figure 1.3 illustrates the second case. The red points in the middle are a compact
outlier sets which forms a dominant set whose cohesiveness (C = 0.952) is greater
than the average global cohesiveness (GC = 0.580). However, its cohesiveness in the
newly built affinity (CL = 0.447) is less than that of the average global cohesiveness.
Observe that the two true positive cluster sets (green and blue) have a cohesiveness
measures (in both affinities C and CL) which are greater than the average global
cohesiveness. Algorithm 3 summarizes the detail.



1.4. Simultaneous Clustering and Outlier Detection 35

Algorithm 3 Cluster Obliterating Outliers

INPUT: Affinity A

1: Outliers ← ∅
2: Clusters ← ∅
3: S ← Build new affinity from A using (1.18)
4: Initialize x to the barycenter and i and j to 1
5: GC ← x⊤Ax
6: while size of A ̸= 0 do xc ← Find local solution of (1.4)
7: if x⊤

c Sxc < GC or x⊤
c Axc < GC then

8: Oj ← σ(xc), find the jth outlier set
9: j ← j + 1
10: else
11: DS i = σ(xc), find the ith dominant set
12: i ← i+ 1
13: end if
14: Remove σ(xc) from the affinity matrices S and A

15: end while

16: Clusters =
i⋃

k=1

DSk

17: Outliers =
j⋃

k=1

Ok

OUTPUT: {Clusters, Outliers}
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Figure 1.3: Examplar plots: Left: Original data points with different colors which show
possible clusters. Right: Extracted clusters and their cohesiveness measures, C with
affinity (A) and (CL) with the learned affinity (S)
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1.4.2 Experiments

In this section we evaluate the proposed approach on both synthetic and real
datasets. First we evaluate our method on a synthetic datasets and present quan-
titative analysis. Then, we present experimental results on real datasets KDD-cup
and SHUTTLE.

A pairwise distance D among individuals is transformed to similarity (edge-
weight) using a standard Gaussian kernel

Aσij = ⊮i ̸=jexp(−D/2σ2)

where σ is choosen as the median distance among the items, and ⊮P = 1 if P is
true, 0 otherwise. We compare our Dominant set clustering based approach result
with k-means-- [63].

1.4.2.1 Synthetic Data

The synthetic datasets are used to see the performance of our approach in a con-
trolled environment and evaluate between different methods. Similar to [63], we
generated synthetic data as follows: K cluster center points are sampled randomly
from the space [0, 1]d and then m cluster member points are generated for each k
clusters by sampling each coordinate from the normal distribution N (0, σ). Finally,
l outliers are sampled uniformly at random from the space [0, 1]d, where d is the
dimensionality of the data.

To assess the performance of our algorithm we use the following metrics:

• The Jaccard coefficient J between the outliers found by our algorithm and
the ground truth outliers. It measures how accurately a method selects the
ground truth outliers. Computed as :

J(O,O∗) =
|O ∩O∗|
|O ∪O∗|

where O is the set of outliers returned by the algorithm while O∗ are the
ground truth outliers. The optimal value is 1.

• V-Measure [66] indicates the quality of the overall clustering solution. The
outliers are considered as an additional class for this measure. Similar to the
first measure, also in this case the optimal value is 1.

• The purity of the results is computed as the fraction of the majority class of
each cluster with respect to the size of the cluster. Again, the optimal value
is 1.

We evaluate the performance of the algorithm by varying different parameters of
the data-generation process. Our objective is to create increasingly difficult settings
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Figure 1.4: Results of the algorithm on synthetic datasets with respect to increasing
number of outliers (l). While fixing parameters as k = 10, m = 100, d = 32, and σ
= 0.2

Figure 1.5: Results of the algorithm on synthetic datasets with respect to increasing
dimension (d). While fixing parameters as k = 10, m = 100, l = 100, and σ = 0.1

so that the outliers eventually become indistinguishable from the points that belong
to clusters. The result of our experiments are shown in Figures 1.4, 1.5 and 1.6 in
which we vary the parameters l, d and σ respectively. For each cases, the rest of the
parameters will be kept fixed. In each Figure we show the three measures described
above Jaccard Index, V-Measure and Purity. Each box-plots indicate results after
running each experiment 30 times. To be fair on the comparison, in each case of the
experiment we run k-means-- 10 times (with different initialization) and report the
best result, since their algorithm depends on the initialization of the centroids.

As we can see from the Figures, the performance of our algorithm is extremely
good. In Figure 1.4, were we vary the number of outliers, our approach scored almost
1 in all measurements. This is mainly because, we introduced a robust criteria, that
takes in to account the cohesiveness of each extracted clusters, which enables our
approach to obliterate outliers in an efficient way. While the results of k-means--
decreases as the number of outliers increases. In Figure 1.5, the case were we vary
the dimension, our approach scores relatively low in most of the measurements when
the dimension is set to 2. But we gate excellent result as the dimension increases.
In the last case, in Figure 1.6, we can see that our method is invariant to the value
of standard deviation and it gates almost close to 1 in most of the measurements.
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Figure 1.6: Results of the algorithm on synthetic datasets with respect to the stan-
dard deviation used to generate the data (σ). While fixing parameters as k = 10,
m = 100, l = 100, and d = 32

1.4.2.2 Real Datasets

In this section we will discuss the performance of our approach on real datasets.

SHUTTLE: We first consider the “SHUTTLE” dataset which is publicly avail-
able on UCI Machine Learning repository [67]. This dataset contains 7 class labels
while the main three classes account 99.6% of the dataset, each with 78.4%, 15.5%,
and 5.6% of frequency. We took these three classes as non-outliers while the rest
(0.4%) are considered as outliers. The dataset contains one categorical attribute,
which is taken as class label, and 9 numerical attribute. We use the training part of
the dataset, which consists of 43500 instances.

The results of our algorithm on this dataset is shown on Table 1.3 . The precision
is computed with respect to the outliers found by the algorithm to the ground truth
outliers. Since the number of outliers l and cluster k, required by k-mean--, is
typically not known exactly we explore how its misspecification affects their results.

To investigate the influence of number of cluster (k) on k-means--, we run the
experiments varying values of k while fixing number of outliers to l = 0.4% (the cor-
rect value). As it can be seen from Table 1.3 miss-specification of number of clusters
has a negative effect on k-means--. The approach performs worst in all measure-
ments as the number of clusters decreases. Our approach has the best result in all
measurements. We can observed how providing k-means-- with different numbers of
k results in worst performance which highlights the advantage of our method which
is capable of automatically selecting the number of clusters and outliers from the
data.

We made further investigation on the sensitivity of k-means-- on the number
of outliers (l) by varying the values from 0.2% to 0.8%, while fixing k = 20. As
the results on table 1.4 shows, as the number of outliers increase the precision of
k-means-- decreases, means their algorithm suffers as more outliers are asked to be
retrieved the more difficult it will become to separate them from the rest of the
data. As we can see from Table 1.4 our approach has stable and prevailing results
over k-means-- in all experiments. Our method is prone to such variations in the
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Method K l precision Purity V-measure

10 0.4% 0.155 0.945 0.39
k-means-- 15 0.4% 0.160 0.957 0.35

20 0.4% 0.172 0.974 0.33
Ours n.a. n.a. 0.29 0.977 0.41

Table 1.3: Results on SHUTTLE dataset with fixed l and varying K

parameters, from the fact that it is able to automatically identify both the number
of cluster and outliers from the data.

Method k l Precision Purity V-measure

20 0.2% 0.207 0.945 0.310
k-means-- 20 0.4% 0.172 0.957 0.305

20 0.8% 0.137 0.974 0.292
Ours n.a. n.a. 0.29 0.977 0.41

Table 1.4: Results on SHUTTLE dataset with fixed k varying l

KDD-CUP: We further evaluate our approach on 1999 KDD-CUP dataset
which contains instances describing connections of tcp packet sequences. Every row
is labeled as intrusion or normal along with their intrusion types. Since the dataset
has both categorical and numerical attributes, for simplicity, we consider only 38
numerical attributes after having normalized each one of them so that they have 0
mean and standard deviation equal to 1. Similar to [63], we used 10% of the dataset
for our experiment, that is, around 494,021 instances. There are 23 classes while
98.3% of the instances belong to only 3 classes, namely the class smurf 56.8%, the
class neptune 21.6% and the class normal 19.6%. We took these three classes as
non-outliers while the rest (1.7%) are considered as outliers.

The result of our algorithm on KDD-CUP dataset is reported in Table 1.5. Here
also we compared our result with k-means-- while taking different values of k. We
see that both techniques perform quit well in purity, that is, they are able to extract
clusters which best matches the ground truth labels. While our algorithm better
performs in identifying outliers with relatively good precision.

1.5 Path-Based Dominant Sets Clustering

Consider the data points shown in Figure 1.7(a). Despite the heavy background
noise, we seem to have no difficulty in extracting a few “natural” clusters represent-
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Method k l Precision Purity

5 1.7% 0.564 0.987
k-means-- 7 1.7% 0.568 0.990

13 1.7% 0.593 0.981
Ours n.a. n.a. 0.616 0.990

Table 1.5: Results on KDD-CUP dataset with fixed number of outliers while varying
cluster number

ing the letters of a familiar word. Unfortunately, standard clustering algorithms,
such as those based on spectral graph theory, while doing a pretty good job in the
noise-free case, perform rather poorly in such situations, as shown in Figure 1.7(c-
d). The main reason behind this disappointing behavior is that they are typically
all based on the idea of partitioning the input data, and hence the clutter points as
well, into coherent classes.

In the last few years, dominant sets have emerged as a powerful alternative to
spectral-based and similar methods [35], and are finding applications in a variety of
different application domains. By focusing on the question “what is a cluster?” dom-
inant sets overcome some of the classical limitations of partition-based approaches
such as the inability to extract overlapping clusters and the need to know the number
of clusters in advance [68]. A typical problem associated to dominant sets, however,
is that they tend to favor compact clusters. The problem therefore remains as to how
to deal with situations involving arbitrarily-shaped clusters in a context of heavy
background noise.

In this thesis we propose a simple yet effective approach to solve this problem,
which is based on the idea of feeding the dominant-set algorithm with a path-
based similarity measure proposed earlier in a different context [69][70][71][72]. This
takes into account connectivity information of the elements being clustered, thereby
transforming clusters exhibiting an elongated structure under the original similarity
function into compact ones. Recently, an approach which combines path-based simi-
larities with spectral clustering has been introduced [72]. It improves the robustness
of a spectral clustering algorithm by developing robust path-based similarity based
on M-estimation from robust statistics. Instead of applying the spectral analysis
directly on the original similarity matrix, they first modify the similarity matrix in
such a way that the connectedness information is allowed for and at the same time
checking if the sample is an outlier. However, the method is robust only against
small number of thinly scattered outliers and, being based on spectral partition-
based methods, it cannot safely extract elements from heavy background noise.
Indeed, dominant sets and spectral clustering seem to exhibit a complementary fea-
tures. On the one hand, spectral-based methods do typically a good job at extracting
elongated clusters but perform poorly in the presence of clutter noise, on the other
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(a) (b)

(c) (d)

Figure 1.7: Results of extracting characters from clutter (a) Characters with uni-
formly distributed clutter elements which do not belong to any cluster (Original
dataset to be clustered) (b) Result of our method (PBD) (c) The result of Path-
based Spectral Clustering (PBS) (d) NJW’s algorithms result.

i

j

k

Figure 1.8: Point ’i’ and point ’k’, even-though they are very far from each other,
are more similar than point ’i’ and point ’j’ as they are connected by a path with
denser region.

hand the dominant-set algorithm prefers compact structures but is remarkably ro-
bust under heavy background noise. With our simple approach we are able to take
the best of the two approaches, namely the ability to extract arbitrarily complex
clusters and, at the same time, to deal with clutter noise. A similar attempt, though
different objective, was done in [73]. Several experiments conducted over both toy
and standard datasets have shown the effectiveness of the proposed approach.

1.5.1 Using Path-Based Similarity

The notion of path based technique, as shown in figure 1.8, is a simple but very
effective way to capture elongated structures. It considers the connectedness infor-
mation to transform elongated structures into compact ones. A path in a graph
is a sequence of distinct edges which connects the vertices of the graph. Let the
similarity between object ’i’ and object ’j’ is denoted as ai,j, and suppose that two
vertices have been connected by a number of different possible paths, which forms
a set denoted by Pi,j. What we set out to do here, to make objects connected by a
path following dense regions, is to define an effective similarity for all the possible
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paths. The effective similarity between object ’i’ and object ’j’ along the path p ∈ P
is set as the minimum edge weight among all the edges contained by the path p. The
final best similarity measure between the two objects is chosen as the maximum of
all the minimum computed edge weights.

api,j = max
p∈P

{
min

(1≤h<|p|)
ao[h],o[h+1]

}
(1.19)

Where o[h] indicates the object at the hth position along the path p and |p| is the
number of objects along the path.
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Figure 1.9: Distance matrices of two spiral datasets with and without noise. (a) in-
put spiral data without any noise; (b) original distance matrix of (a); (c) Path-Based
dissimilarity matrix of (a); (d) Input spiral data with noise (e) original distance ma-
trix of (d); (f) Path-Based dissimilarity matrix of (d)

To observe how path-based technique is suitable for dominant set clustering, the
(dis)similarity measures of the different transitions, for the spiral data set, are dis-
played as gray scale image. As shown from the figure 1.9 , the framework transforms
the data well in such a way that the points of the spiral data set forms two block
on the diagonal as a representative of the two clusters. The clusters of the data
with out noise forms a clear diagonal block as shown on the first row of figure 1.9
which imply that any simple clustering algorithms such as K-Means can extract the
clusters easily. When we come to the second case, it is clear to see, from the sec-
ond row of figure 1.9, that the two cluster representatives do not form a very clear
blocks on the diagonal which can be extracted with simple clustering algorithms.
No existing methods are as accurate as our algorithm in extracting the two spirals
from the clutter noise. While our algorithm uses dominant set as it easily identifies
and extracts the two spirals as two dominant sets leaving the noise as non-dominant
sets, other existing algorithms forces the clutter to one of the clusters.
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1.5.2 Experiments

In this section we report a number of experimental results that are done on both
toy and real datasets from UCI repository [74]. The experiments were conducted
in two different ways. The first way of the experiments tests the performance of
the different techniques without any clutter noise added. The second approach,
which is done by adding a clutter noise samples to the datasets, is performed to see
how much the algorithms are robust against background noise. In the first part of
the experiment, we applied all algorithms to synthetic datasets of different manually
designed structures while in the last part they are tested against real-world datasets.

Our approach was tested against five different approaches: One of the most
successful spectral clustering algorithms (Ng-Jordan-Weiss (NJW) algorithm) [75],
Path-based Spectral Clustering and Robust Path-based Spectral clustering (RPBS)
[72] which outperformed the Path-based Clustering improving its robustness to
noise. We compared against the above existing methods as they address similar
problems: the problem of clustering algorithms to handle complex separable and
elongated structures, and the robustness of clustering algorithms to noisy environ-
ments. All the algorithms, as opposed to our method, require the number of clusters.
As of the standard clustering algorithms, all the methods also require choosing the
scaling parameter σ which has been optimally selected for all the approaches. The
forth and fifth approaches which we have used to compare against our algorithm are
DBSCAN (DBS) and k-means (KM). We assigned the correct number of clusters
for those approaches which require it in advance. For the case of DBSCAN, we used
the implementation presented in [76].

1.5.2.1 Synthetic Data Clustering

In this part of the experiment, we applied our algorithm to eight different manually
designed datasets which have been used by most of the existing algorithms for testing
purpose. As can be seen from figure 1.13, the test had been done on complex
separable structures. It has been shown that, classical clustering techniques such
as K-means and Spectral Clustering can’t solve the clustering problem in most of
the data presented here [72]. However, extended version of the classical spectral
clustering techniques and our proposed approach, as shown, in figure 1.13 are able
to extracts all the clusters.

The robustness of our algorithm against noisy background is shown, using syn-
thetic dataset, here. Similar works have been done to make clustering algorithm
robust to noise [72] [77]. Our algorithm, as it uses dominant set framework, has the
capability of extracting the best dominant sets leaving the clutter. However, other
existing methods consider the background noise as part of the data to be partitioned.

It is clear to see that the existing approaches are vulnerable to applications
where data is affected by clutter elements which do not belong to any cluster (as in
figure/ground separation problems). Indeed, the only way to get rid of outliers is to
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Figure 1.10: Clustering results of NJW algorithm, Path-based Spectral Clustering,
Robust Path-based Spectral Clustering, and Path-based Dominant Set clustering.
All of the four algorithms perform equally in extracting all the clusters

group them in additional clusters. However, since outliers are not mutually similar
and intuitively they do not form a cluster, the performance of all the approaches
but ours drop drastically as the percentage of noise level increases.

Figure 1.11 shows three shapes (Triangle,Square and Circle) together with uni-
formly distributed background noise. As we have described above, other methods
are not able to extract the right clusters, the three shapes. For the same data of
the figure, we have performed an experiment by increasing the level of noise starting
from zero. Zero noise implies that we have only the three shapes with out any clut-
ter with which all the four clustering algorithms extract the right clusters. A noise
level ’N’ implies that a uniformly distributed noise of size of N% of the size of the
data is added as an outlier. Figure 1.12 (a) shows that at the zero noise level the
accuracy of all the methods is 100 %, however, the performance of all the methods
but ours drop drastically as the noise level increases.

Figure 1.12 (b) shows a similar experiment but the noise level which was done
on extracting different characters from clutter. A noise level ’n’ in this case mean
a uniformly distributed n*5 samples put together with the data as a clutter. The
result from this experiment also confirms that our approach outperforms all the
other approaches.

1.5.2.2 Experiments on Real-World Data

We also tested the algorithm on eight commonly used real-world datasets from UCI
repository [74]. All the datasets incorporate cluster structures of complex separable,
and most of them are with multiple scales. The performance of all the methods
tested on the original dataset, refer table 1.6 , is almost comparable.
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(a) (b) (c) (d)

Figure 1.11: Results on three shapes with uniformly distributed clutter elements
which do not belong to any cluster (a) Original dataset to be clustered (b) The
result of our method (c) The result of Path-based Spectral Clustering (d) NJW’s
algorithms result. Observe that only our approach is efficient in extracting all the
shapes from the background noise
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Figure 1.12: Performance of extracting three shapes (a) and letters (b), as of figure
1.11 and 1.7, from noisy background where the noise level is increased starting from
zero.

An experiment has been conducted to show how much our method is robust to
clutter noise added to the real-world datasets.

The experimental results, as can be referred from figure 1.13, consistently show
that the existing approaches are vulnerable to applications where data is affected
by clutter elements which do not belong to any cluster. It is easy to see, from figure
1.13, that the performance of all the approaches but ours drop drastically as noise
is added to the datasets.
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Figure 1.13: Clustering performance of the algorithms when a clutter noise is added
to the dataset. Observe that the performance of all the approaches but ours drop
drastically as the clutter noise is added.
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Data Inst. Atr. PBD PBS NJW RPBS DBS KM

Ionosphere 351 33 0.875 0.869 0.872 0.863 0.849 0.712
Haberman 306 3 0.758 0.745 0.729 0.758 0.735 0.508
Spect Heart 267 8 0.798 0.779 0.794 0.794 0.749 0.571
Blood Trans. 748 10 0.762 0.767 0.767 0.763 0.209 0.730
Pima 768 8 0.663 0.654 0.662 0.652 0.634 0.661
Breast 683 9 0.968 0.950 0.968 0.968 0.818 0.961
Glass 214 10 0.766 0.780 0.752 0.752 0.467 0.553
Liver 345 6 0.615 0.588 0.574 0.586 0.559 0.554

Table 1.6: Accuracy on UCI datasets (Without noise)

1.6 Conclusion

In this chapter, a robust similarity based clustering is proposed. The algorithm
has many interesting properties, convenient for solving many computer vision prob-
lems, such as: it does clustering while obliterating outliers in simultaneous fashion, it
doesn’t need any a prior knowledge on the number of clusters, able to deal with com-
pact clusters and with situations involving arbitrarily-shaped clusters in a context
of heavy background noise, does not have any assumptions with the structure of the
affinity matrix, it is fast and scalable to large scale problems, and others. In section
1.3 of the chapter we have presented a novel approach, constrained dominant-set,
that finds a collection of dominant-set clusters constrained to contain user-defined
elements. The approach is based on some properties of a family of quadratic opti-
mization problems related to dominant sets which show that, by properly selecting
a regularization parameter that controls the structure of the underlying function, we
are able to “force” all solutions to contain user specified elements. The performance
of the proposed system is tested on random graph instances and DIMACS bench-
mark graphs. Section 1.4 deals with outlier detection from the data. Unlike most
of the previous approaches our method requires no prior knowledge on both the
number of clusters and outliers, which makes our approach more convenient for real
application. Moreover, our proposed algorithm is simple to implement and highly
scalable. We first test the performance of SCOD on large scale of synthetic datasets
which confirms that in a controlled set up, the algorithm is able to achieve excellent
result in an efficient manner. We conduct further evaluation on real datasets and
attain prevailing results. The last section of the chapter shows how the path-based
similarity measure, which takes into account connectedness information of the ele-
ments to be clustered, is used together with the dominant set framework to deal with
the problem of extracting arbitrarily complex clusters under severe noise conditions.





2
Interactive Image (Co-)Segmentation

Using Constrained Dominant Sets

I expect of abstraction as much as
what imagery does for me. . . to
carry meaning.

Kay WalkingStick

2.1 Introduction

Image segmentation is arguably one of the oldest and best-studied problems in com-
puter vision, being a fundamental step in a variety of real-world applications, and
yet remains a challenging task [78] [79]. Besides the standard, purely bottom-up
formulation, which involves partitioning an input image into coherent regions, in
the past few years several variants have been proposed which are attracting in-
creasing attention within the community. Most of them usually take the form of a
“constrained” version of the original problem, whereby the segmentation process is
guided by some external source of information.

For example, user-assisted (or “interactive”) segmentation has become quite pop-
ular nowadays, especially because of its potential applications in problems such as
image and video editing, medical image analysis, etc. [80, 2, 81, 82, 83, 84, 85].
Given an input image and some information provided by a user, usually in the form
of a scribble or of a bounding box, the goal is to provide as output a foreground
object in such a way as to best reflect the user’s intent. By exploiting high-level,
semantic knowledge on the part of the user, which is typically difficult to formalize,
we are therefore able to effectively solve segmentation problems which would be
otherwise too complex to be tackled using fully automatic segmentation algorithms.

Existing algorithms fall into two broad categories, depending on whether the user
annotation is given in terms of a scribble or of a bounding box, and supporters of
the two approaches have both good reasons to prefer one modality against the other.
For example, Wu et al. [81] claim that bounding boxes are the most natural and
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economical form in terms of the amount of user interaction, and develop a multiple
instance learning algorithm that extracts an arbitrary object located inside a tight
bounding box at unknown location. Yu et al. [86] also support the bounding-box
approach, though their algorithm is different from others in that it does not need
bounding boxes tightly enclosing the object of interest, whose production of course
increases the annotation burden. They provide an algorithm, based on a Markov
Random Field (MRF) energy function, that can handle input bounding box that
only loosely covers the foreground object. Xian et al. [87] propose a method which
avoids the limitations of existing bounding box methods - region of interest (ROI)
based methods, though they need much less user interaction, their performance is
sensitive to initial ROI.

On the other hand, several researchers, arguing that boundary-based interactive
segmentation such as intelligent scissors [85] requires the user to trace the whole
boundary of the object, which is usually a time-consuming and tedious process,
support scribble-based segmentation. Bai et al. [88], for example, propose a model
based on ratio energy function which can be optimized using an iterated graph cut
algorithm, which tolerates errors in the user input. In general, the input modality
in an interactive segmentation algorithm affects both its accuracy and its ease of
use. Existing methods work typically on a single modality and they focus on how to
use that input most effectively. However, as noted recently by Jain and Grauman
[89], sticking to one annotation form leads to a suboptimal tradeoff between human
and machine effort, and they tried to estimate how much user input is required to
sufficiently segment a novel input.

Another example of a “constrained” segmentation problem is co-segmentation.
Given a set of images, the goal here is to jointly segment same or similar fore-
ground objects. The problem was first introduced by Rother et al. [90] who used
histogram matching to simultaneously segment the foreground object out from a
given pair of images. Recently, several techniques have been proposed which try to
co-segment groups containing more than two images, even in the presence of similar
backgrounds. Joulin et al. [91], for example, proposed a discriminative clustering
framework, combining normalized cut and kernel methods and the framework has
recently been extended in an attempt to handle multiple classes and a significantly
larger number of images [92].

The co-segmentation problem has also been addressed using user interaction
[93, 94]. Here, a user adds guidance, usually in the form of scribbles, on foreground
objects of some of the input images. Batra et al. [93] proposed an extension of the
(single-image) interactive segmentation algorithm of Boykov and Jolly [84]. They
also proposed an algorithm that enables users to quickly guide the output of the co-
segmentation algorithm towards the desired output via scribbles. Given scribbles,
both on the background and the foreground, on some of the images, they cast the
labeling problem as energy minimization defined over graphs constructed over each
image in a group. Dong et al. [94] proposed a method using global and local energy
optimization. Given background and foreground scribbles, they built a foreground
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Figure 2.1: Left: An example of our interactive image segmentation method and its
outputs, with different user annotation. Respectively from top to bottom, tight bounding
box (Tight BB), loose bounding box (Loose BB), a scribble made (only) on the fore-
ground object (Scribble on FG) and scribbles with errors. Right: Blue and Red dash-line
boxes, show an example of our unsupervised and interactive co-segmentation methods,
respectively.

and a background Gaussian mixture model (GMM) which are used as global guide
information from users. By considering the local neighborhood consistency, they
built the local energy as the local smooth term which is automatically learned using
spline regression. The minimization problem of the energy function is then con-
verted into constrained quadratic programming (QP) problem, where an iterative
optimization strategy is designed for the computational efficiency.

In this chapter, we propose a unified approach, based on constrained dominant
sets framework, to address this kind of problems which can deal naturally with
various type of input modality, or constraints, and is able to robustly handle noisy
annotations on the part of the external source. In particular, we shall focus on
interactive segmentation and co-segmentation (in both the unsupervised and the
interactive versions).

The resulting algorithm has a number of interesting features which distinguishes
it from existing approaches. Specifically: 1) it is able to deal in a flexible manner with
both scribble-based and boundary-based input modalities (such as sloppy contours
and bounding boxes); 2) in the case of noiseless scribble inputs, it asks the user to
provide only foreground pixels; 3) it turns out to be robust in the presence of input
noise, allowing the user to draw, e.g., imperfect scribbles (including background
pixels) or loose bounding boxes.

Experimental results on standard benchmark datasets demonstrate the effective-
ness of our approach as compared to state-of-the-art algorithms on a wide variety of
natural images under several input conditions. Figure 2.1 shows some examples of
how our system works in both interactive segmentation, in the presence of different
input annotations, and co-segmentation settings.



2.2. Interactive Image Segmentation using Constrained Dominant Sets 51

2.2 Interactive Image Segmentation using Con-

strained Dominant Sets

In this section, we apply our model (CDS) to the interactive image segmentation
problem. As input modalities we consider scribbles as well as boundary-based ap-
proaches (in particular, bounding boxes) and, in both cases, we show how the system
is robust under input perturbations, namely imperfect scribbles or loose bounding
boxes.

In this application the vertices of the underlying graph G represent the pixels of
the input image (or superpixels, as discussed below), and the edge-weights reflect
the similarity between them. As for the set S, its content depends on whether we
are using scribbles or bounding boxes as the user annotation modality. In particular,
in the case of scribbles, S represents precisely those pixels that have been manually
selected by the user. In the case of boundary-based annotation instead, it is taken
to contain only the pixels comprising the box boundary, which are supposed to
represent the background scene. Accordingly, the union of the extracted dominant
sets, say L dominant sets are extracted which contain the set S, as described in
the previous section and below, UDS = D1 ∪ D2..... ∪ DL, represents either the
foreground object or the background scene depending on the input modality. For
scribble-based approach the extracted set, UDS, represent the segmentation result,
while in the boundary-based approach we provide as output the complement of the
extracted set, namely V \UDS.

Figure 2.2 shows the pipeline of our system. Many segmentation tasks reduce
their complexity by using superpixels (a.k.a. over-segments) as a preprocessing
step [81, 86, 95] [96, 97]. While [81] used SLIC superpixels [98], [86] used a recent
superpixel algorithm [99] which considers not only the color/feature information but
also boundary smoothness among the superpixels. In this work, we used the over-
segments obtained from Ultrametric Contour Map (UCM) which is constructed from
Oriented Watershed Transform (OWT) using globalized probability of boundary
(gPb) signal as an input [1].

We then construct a graph G where the vertices represent over-segments and
the similarity (edge-weight) between any two of them is obtained using a standard
Gaussian kernel

Aσij = ⊮i ̸=jexp(∥fi − fj∥2/2σ2)

where fi, is the feature vector of the ith over-segment, σ is the free scale parameter,
and ⊮P = 1 if P is true, 0 otherwise.

Given the affinity matrix A and the set S as described before, the system con-
structs the regularized matrix M = A− αÎS, with α chosen as prescribed in (1.10).
Then, the replicator dynamics (1.12) are run (starting them as customary from the
simplex barycenter) until they converge to some solution vector x. We then take
the support of x, remove the corresponding vertices from the graph and restart the
replicator dynamics until all the elements of S are extracted.
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Figure 2.2: Overview of our interactive segmentation system. Left: Over-segmented
image (output of the UCM-OWT algorithm [1]) with a user scribble (blue label). Middle:
The corresponding affinity matrix, using each over-segments as a node, showing its two
parts: S, the constraint set which contains the user labels, and V \S, the part of the graph
which takes the regularization parameter α. Right: RRp, starts from the barycenter and
extracts the first dominant set and update x and M, for the next extraction till all the
dominant sets which contain the user labeled regions are extracted.

2.2.1 Experiments and Results

As mentioned above, the vertices of our graph represents over-segments and edge
weights (similarities) are built from the median of the color of all pixels in RGB,
HSV, and L*a*b* color spaces, and Leung-Malik (LM) Filter Bank [100]. The
number of dimensions of feature vectors for each over-segment is then 57 (three for
each of the RGB, L*a*b*, and HSV color spaces, and 48 for LM Filter Bank).

In practice, the performance of graph-based algorithms that use Gaussian ker-
nel, as we do, is sensitive to the selection of the scale parameter σ. In our exper-
iments, we have reported three different results based on the way σ is chosen: 1)
CDS Best Sigma, in this case the best parameter σ is selected on a per-image ba-
sis, which indeed can be thought of as the optimal result (or upper bound) of the
framework. 2) CDS Single Sigma, the best parameter in this case is selected on a
per-database basis tuning σ in some fixed range, which in our case is between 0.05
and 0.2. 3) CDS Self Tuning, the σ2 in the above equation is replaced, based on
[101], by σi ∗σj, where σi = mean(KNN(fi)), the mean of the K Nearest Neighbor
of the sample fi, K is fixed in all the experiment as 7.

Datasets: We conduct four different experiments on the well-known GrabCut
dataset [80] which has been used as a benchmark in many computer vision tasks
[102][2, 103, 104, 81, 86] [105, 106]. The dataset contains 50 images together with
manually-labeled segmentation ground truth. The same bounding boxes as those
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in [2] is used as a baseline bounding box. We also evaluated our scribbled-based
approach using the well known Berkeley dataset which contains 100 images.

Metrics: We evaluate the approach using different metrics: error rate, fraction
of misclassified pixels within the bounding box, Jaccard index which is given by,
following [107], J = |GT∩O|

|GT∪O| , where GT is the ground truth and O is the output. The

third metric is the Dice Similarity Coefficient (DSC), which measures the overlap

between two segmented object volume, and is computed as DSC = 2∗|GT∩O|
|GT |+|O| .

Annotations: In interactive image segmentation, users provide annotations
which guides the segmentation. A user usually provides information in different
forms such as scribbles and bounding boxes. The input modality affects both its
accuracy and ease-of-use [89]. However, existing methods fix themselves to one input
modality and focus on how to use that input information effectively. This leads to
a suboptimal tradeoff in user and machine effort. Jain et al. [89] estimates how
much user input is required to sufficiently segment a given image. In this work as
we have proposed an interactive framework, figure 2.1, which can take any type of
input modalities we will use four different type of annotations: bounding box, loose
bounding box, scribbles - only on the object of interest -, and scribbles with error
as of [88].

2.2.1.1 Scribble Based Segmentation

Given labels on the foreground as constraint set, we built the graph and collect (iter-
atively) all unlabeled regions (nodes of the graph) by extracting dominant set(s) that
contains the constraint set (user scribbles). We provided quantitative comparison
against several recent state-of-the-art interactive image segmentation methods which
uses scribbles as a form of human annotation: [84], Lazy Snapping [83], Geodesic
Segmentation [82], Random Walker [108], Transduction [109] , Geodesic Graph Cut
[105], Constrained Random Walker [106].

We have also compared the performance of our algorithm againts Biased Nor-
malized Cut (BNC) [110], an extension of normalized cut, which incorporates a
quadratic constraint (bias or prior guess) on the solution x, where the final solution
is a weighted combination of the eigenvectors of normalized Laplacian matrix. In
our experiments we have used the optimal parameters according to [110] to obtain
the most out of the algorithm.

Tables 2.1,2.2 and the plots in Figure 2.4 show the respective quantitative and
the several qualitative segmentation results. Most of the results, reported on table
2.1, are reported by previous works [86, 81, 2, 105, 106]. We can see that the
proposed CDS outperforms all the other approaches.

Error-tolerant Scribble Based Segmentation. This is a family of scribble-
based approach, proposed by Bai et. al [88], which tolerates imperfect input scribbles
thereby avoiding the assumption of accurate scribbles. We have done experiments
using synthetic scribbles and compared the algorithm against recently proposed
methods specifically designed to segment and extract the object of interest tolerating
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Methods Error Rate
BNC [110] 13.9
Graph Cut [84] 6.7
Lazy Snapping [83] 6.7
Geodesic Segmentation [82] 6.8
Random Walker [108] 5.4
Transduction [109] 5.4
Geodesic Graph Cut [105] 4.8
Constrained Random Walker [106] 4.1
CDS Self Tuning (Ours) 3.57
CDS Single Sigma (Ours) 3.80
CDS Best Sigma (Ours) 2.72

Table 2.1: Error rates of different scribble-based approaches on the Grab-Cut dataset.

Methods Jaccard Index
MILCut-Struct [81] 84
MILCut-Graph [81] 83
MILCut [81] 78
Graph Cut [80] 77
Binary Partition Trees [111] 71
Interactive Graph Cut [84] 64
Seeded Region Growing [112] 59
Simple Interactive O.E[113] 63
CDS Self Tuning (Ours) 93
CDS Single Sigma (Ours) 93
CDS Best Sigma (Ours) 95

Table 2.2: Jaccard Index of different approaches – first 5 bounding-box-based – on Berke-
ley dataset.
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Figure 2.3: Left: Performance of interactive segmentation algorithms, on Grab-Cut
dataset, for different percentage of synthetic scribbles from the error region. Right:
Synthetic scribbles and error region

the user input errors [88, 114, 115, 116].
Our framework is adapted to this problem as follows. We give for our framework

the foreground scribbles as constraint set and check those scribbled regions which
include background scribbled regions as their members in the extracted dominant
set. Collecting all those dominant sets which are free from background scribbled
regions generates the object of interest.

Experiment using synthetic scribbles. Here, a procedure similar to the
one used in [116] and [88] has been followed. First, 50 foreground pixels and 50
background pixels are randomly selected based on ground truth (see Fig. 2.3).
They are then assigned as foreground or background scribbles, respectively. Then
an error-zone for each image is defined as background pixels that are less than a
distance D from the foreground, in which D is defined as 5 %. We randomly select
0 to 50 pixels in the error zone and assign them as foreground scribbles to simulate
different degrees of user input errors. We randomly select 0, 5, 10, 20, 30, 40, 50
erroneous sample pixels from error zone to simulate the error percentage of 0%, 10%,
20%, 40%, 60%, 80%, 100% in the user input. It can be observed from figure 2.3
that our approach is not affected by the increase in the percentage of scribbles from
error region.

2.2.1.2 Segmentation Using Bounding Boxes

The goal here is to segment the object of interest out from the background based
on a given bounding box. The corresponding over-segments which contain the box
label are taken as constraint set which guides the segmentation. The union of
the extracted set is then considered as background while the union of other over-
segments represent the object of interest.

We provide quantitative comparison against several recent state-of-the-art in-
teractive image segmentation methods which uses bounding box: LooseCut [86],
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GrabCut [80], OneCut [104], MILCut [81], pPBC and [103]. Table 2.3 and the
pictures in Figure 2.4 show the respective error rates and the several qualitative
segmentation results. Most of the results, reported on table 2.3, are reported by
previous works [86, 81, 2, 105, 106].

Segmentation Using Loose Bounding Box. This is a variant of the bound-
ing box approach, proposed by Yu et.al [86], which avoids the dependency of algo-
rithms on the tightness of the box enclosing the object of interest. The approach not
only avoids the annotation burden but also allows the algorithm to use automatically
detected bounding boxes which might not tightly encloses the foreground object. It
has been shown, in [86], that the well-known GrabCut algorithm [80] fails when the
looseness of the box is increased. Our framework, like [86], is able to extract the
object of interest in both tight and loose boxes. Our algorithm is tested against a
series of bounding boxes with increased looseness. The bounding boxes of [2] are
used as boxes with 0% looseness. A looseness L (in percentage) means an increase
in the area of the box against the baseline one. The looseness is increased, unless
it reaches the image perimeter where the box is cropped, by dilating the box by a
number of pixels, based on the percentage of the looseness, along the 4 directions:
left, right, up, and down.

For the sake of comparison, we conduct the same experiments as in [86]: 41
images out of the 50 GrabCut dataset [80] are selected as the rest 9 images contain
multiple objects while the ground truth is only annotated on a single object. As
other objects, which are not marked as an object of interest in the ground truth,
may be covered when the looseness of the box increases, images of multiple objects
are not applicable for testing the loosely bounded boxes [86]. Table 2.3 summarizes
the results of different approaches using bounding box at different level of looseness.
As can be observed from the table, our approach performs well compared to the
others when the level of looseness gets increased. When the looseness L = 0, [81]
outperforms all, but it is clear, from their definition of tight bounding box, that it is
highly dependent on the tightness of the bounding box. It even shrinks the initially
given bounding box by 5% to ensure its tightness before the slices of the positive bag
are collected. For looseness of L = 120 we have similar result with LooseCut [86]
which is specifically designed for this purpose. For other values of L our algorithm
outperforms all the approaches.

Complexity: In practice, over-segmenting and extracting features may be treated
as a pre-processing step which can be done before the segmentation process. Given
the affinity matrix, we used replicator dynamics (1.12) to exctract constrained dom-
inant sets. Its computational complexity per step is O(N2), with N being the total
number of nodes of the graph. Given that our graphs are of moderate size (usually
less than 200 nodes) the algorithm is fast and converges in fractions of a second,
with a code written in Matlab and run on a core i5 6 GB of memory. As for the
pre-processing step, the original gPb-owt-ucm segmentation algorithm was very slow
to be used as a practical tools. Catanzaro et al. [117] proposed a faster alternative,
which reduce the runtime from 4 minutes to 1.8 seconds, reducing the computa-
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Methods L =
0%

L =
120%

L =
240%

L =
600%

GrabCut [80] 7.4 10.1 12.6 13.7
OneCut [104] 6.6 8.7 9.9 13.7
pPBC [103] 7.5 9.1 9.4 12.3
MilCut [81] 3.6 - - -
LooseCut [86] 7.9 5.8 6.9 6.8
CDS Self Tuning
(Ours)

7.54 6.78 6.35 7.17

CDS Single
Sigma (Ours)

7.48 5.9 6.32 6.29

CDS Best Sigma
(Ours)

6.0 4.4 4.2 4.9

Table 2.3: Error rates of different bounding-box approaches with different level of loose-
ness as an input, on the Grab-Cut dataset. L = 0% implies a baseline bounding box as
those in [2]

tional complexity and using parallelization which allow gPb contour detector and
gPb-owt-ucm segmentation algorithm practical tools. For the purpose of our exper-
iment we have used the Matlab implementation which takes around four minutes to
converge, but in practice it is possible to give for our framework as an input, the
GPU implementation [117] which allows the convergence of the whole framework in
around 4 seconds.

2.3 Co-Segmentation Using Constrained Dominant

Sets

In this section, we describe the application of constrained dominant sets (CDS) to
co-segmentation, both unsupervised and interactive. Among the difficulties that
make this problem a challenging one, we mention the similarity among the different
backgrounds and the similarity of object and background [118] (see, e.g., the top row
of Figure 2.5). A measure of “objectness” has proven to be effective in dealing with
such problems and improving the co-segmentation results [118][119]. However, this
measure alone is not enough, especially when one aims to solve the problem using
global pixel relations. One can see from Figure 2.5 (bottom) that the color of the
cloth of the person, which of course is one of the objects, is similar to the color of
the dog which makes systems that are based on objectness measure fail. Moreover
the object may not also be the one which we want to co-segment.

Figure 2.6 and 2.7 show the pipeline of our unsupervised and interactive co-
segmentation algorithms, respectively.
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Figure 2.4: Examplar results of the interactive segmentation algorithm tested on Grab-
Cut dataset. (In each block of the red dashed line) Left: Original image with bounding
boxes of [2]. Middle left: Result of the bounding box approach. Middle: Original image
and scribbles (observe that the scribles are only on the object of interest). Middle right:
Results of the scribbled approach. Right: The ground truth.

In figure 2.6, I1 and I2 are the given pair of images while S1 and S2 represent
the corresponding sets of superpixels. The affinity is built using the objectness
score of the superpixels and using different handcrafted features extracted from the
superpixels. The set of nodes V is then divided into two as the constraint set (S) and
the non-constraint ones, V \S. We run the CDS algorithm twice: first, setting the
nodes of the graph that represent the first image as constraint set and O2 represents
our output. Second we change the constraint set S with nodes that come from
the second image and O1 represents the output. The intersection O refines the two
results and represents the final output of the proposed unsupervised co-segmentation
approach.

Our interactive co-segmentation approach, as shown using Figure 2.7, needs user
interaction which guides the segmentation process putting scribbles (only) on some
of the images with ambiguous objects or background. I1, I2, ...In are the scribbled
images and In+1, ..., In+m are unscribbled ones. The corresponding sets of superpixels
are represented as S1,S2, ...Sn, ...Sn+1, ...Sn+m. A′s and Au are the affinity matrices
built using handcrafted feature-based similarities among superpixels of scribbled and
unscribbled images respectively. Moreover, the affinities incorporate the objectness
score of each node of the graph. Bsp and Fsp are (respectively) the background and
foreground superpixels based on the user provided information. The CDS algorithm
is run twice over A′s using the two different user provided information as constraint
sets which results outputs O1 and O2. The intersection of the two outputs, O, help
us get new foreground and background sets represented by Bs, Fs. Modifying the
affinity A′s, putting the similarities among elements of the two sets to zero, we get
the new affinity As. We then build the biggest affinity which incorporates all images’
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Figure 2.5: The challenges of co-segmentation. Examplar image pairs: (top left)
similar foreground objects with significant variation in background, (top right)
foreground objects with similar background. The bottom part shows why user
interaction is important for some cases. The bottom left is the image, bottom
middle shows the objectness score, and the bottom right shows the user label.

superpixels. As our affinity is symmetric, Aus and Asu are equal and incorporates the
similarities among the superpixels of the scribbled and unscribbled sets of images.
Using the new background and foreground sets as two different constraint sets, we
run CDS twice which results outputs O′

1 and O′
2 whose intersection (O′) represents

the final output.

2.3.1 Experiments and Results

Given an image, we over-segment it to get its superpixels S, which are considered as
vertices of a graph. We then extract different features from each of the superpixels.
The first features which we consider are features from the different color spaces:
RGB, HSV and CIE Lab. Given the superpixels, say size of n, of an image i, Si, F ic
is a matrix of size n× 9 which is the mean of each of the channels of the three color
spaces of pixels of the superpixel. The mean of the SIFT features extracted from
the superpixel F is is our second feature. The last feature which we have considered
is the rotation invariant histogram of oriented gradient (HoG), F ih.

The dot product of the SIFT features is considered as the SIFT similarity among
the nodes, let us say the corresponding affinity matrix is As. Motivated by [120],
the similarity among the nodes of image i and image j (i ̸= j), based on color, is
computed from their Euclidean distance Di×jc as
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Figure 2.7: Overview of our interactive co-segmentation algorithm.

Ai×jc = max(Dc)−Di×jc +min(Dc)

The HoG similarity among the nodes, Ai×jh , is computed in a similar way , as Ac,
from the diffusion distance. All the similarities are then min max normalized.

We then construct the Ai×ic , the similarities among superpixels of image i, which
only considers adjacent superpixels as follows. First, construct the dissimilarity
graph using their Euclidean distance considering their average colors as weight.
Then, compute the geodesic distance as the accumulated edge weights along their
shortest path on the graph, we refer the reader to [14] to see how such type of dis-
tances improve the performance of dominant sets. Assuming the computed geodesic
distance matrix is Dgeo, the weighted edge similarity of superpixel p and superpixel
q, say ep,q, is computed as
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ep,q =

{
0, if p and q are not adjacent,

max(Dgeo)−Dgeo(p, q) +min(Dgeo), otherwise
(2.1)

Ai×ih for HoG is computed in a similar way while and Ai×is for SIFT is built by
just keeping adjacent edge similarities.

Assuming we have I images, the final affinity Aγ (γ can be c, s or h in the case
of color, SIFT or HOG respectively) is built as

Aγ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1×1
γ .. A1×jγ .. A1×Iγ

. . . . .

Aj×1
γ .. Aj×jγ . A1×Iγ

. . . .

AI×1
γ .. AI×jγ .. AI×Iγ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
As our goal is to segment common foreground objects out, we should consider

how related backgrounds are eliminated. As shown in the examplar image pair of
Figure 2.5 (top right), the two images have a related background to deal with it
which otherwise would be included as part of the co-segmented objects. To solve
this problem we borrowed the idea from [121] which proposes a robust background
measure, called boundary connectivity. Given a superpixel SP i, it computes, based
on the background measure, the backgroundness probability P ib. We compute the
probability of the superpixel being part of an object P if as its additive inverse, P if
= 1 - P ib. From the probability Pf we built a score affinity Am as

Am(i, j) = P if ∗ P
j
f

2.3.1.1 Optimization

We model the foreground object extraction problem as the optimization of the simi-
larity values among all image superpixels. The objective utility function is designed
to assign the object region a membership score of greater than zero and the back-
ground region zero membership score, respectively. The optimal object region is
then obtained by maximizing the utility function. Let the membership score of N
superpixels be {xi}Ni=1, the (i, j) entry of a matrix Az is zij. Our utility function,
combining all the aforementioned terms (Ac,As,Ah and Am), is thus defined, based on
equation (1.6), as:

N∑
i=1

N∑
j=1

⎧⎪⎨⎪⎩1

2
xixjmij  

objectness score

+
1

6
xixj (cij + sij + hij)  

feature similarity

−αxixj

⎫⎪⎬⎪⎭ (2.2)
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Figure 2.8: Precision, Recall and F-Measure based performance comparison of our un-
supervised co-segmentation method with the state-of-the art approaches on image pair
dataset

The parameter α is fixed based on the (non-)constraint set of the nodes. For the
case of unsupervised co-segmentation, the nodes of the pairs of images are set (in-
terchangeably) as constraint set where the intersection of the corresponding results
give us the final co-segmented objects.

In the interactive setting, every node i (based on the information provided by
the user) has three states: i ∈ FGL, (i is labeled as foreground label), i ∈ BGL (
i is labeled as background label) or i ∈ V \(FGL ∪BGL) (i is unlabeled). Hence,
the affinity matrix A = (aij) is modified by setting aij to zero if nodes i and j have
different labels (otherwise we keep the original value).

The optimization, for both cases, is represented in the pipelines by ’RRp’ (repli-
cator dynamics).

To evaluate the performance of our algorithms, we conducted extensive exper-
iments on standard benchmark datasets that are widely used to evaluate the co-
segmentation problem: image pairs [122] and MSRC [123]. The image pairs dataset
consists 210 images (105 image pairs) of different animals, flowers, human objects,
buses, etc. Each of the image pairs contains one or more similar objects. Some
of them are relatively simple and some other contains set of complex image pairs,
which contain foreground objects with higher appearance variations or low contrast
objects with complex backgrounds.

MSRC dataset has been widely used to evaluate the performance of image co-
segmentation methods. It contains 14 categories with 418 images in total. We
evaluated our interactive co-segmentation algorithm on nine selected object classes of
MSRC dataset (bird, car, cat, chair, cow, dog, flower, house, sheep), which contains
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Figure 2.9: Examplar qualitative results of our unsupervised method tested on image pair
dataset. Upper row: Original image Lower row: Result of the proposed unsupervised
algorithm.

25~30 images per class. We put foreground and background scribbles on 15~20
images per class. Each image was over-segmented to 78~83 SLIC superpixels using
the VLFeat toolbox.

As customary, we measured the performance of our algorithm using precision,
recall and F-measure, which were computed based on the output mask and human-
given segmentation ground-truth. Precision is calculated as the ratio of correctly
detected object pixels to the number of detected object pixels, while recall is the
ratio of correctly detected object pixels to the number of ground truth pixels. We
have computed the F-measure by setting γ2 to 0.3 as used in [122][124][119].

We have applied Biased Normalized Cut (BNC) [110] on co-segmentation prob-
lem on MSRC dataset by using the same similarity matrix we used to test our
method, and the comparison result of each object class is shown in Figure 2.10. As
can be seen, our method significantly surpasses BNC and [94] in average F-measure.
Furthermore, we have tested our interactive co-segmentation method, BNC and [94]
on image pairs dataset by putting scribbles on one of the two images. As can be
observed from Table 2.4, our algorithm substantially outperforms BNC and [94] in
precision and F-measure (the recall score being comparable among the three com-
peting algorithms).

In addition to that, we have examined our unsupervised co-segmentation algo-
rithm by using image pairs dataset, the barplot in Figure 2.8 shows the quantitative
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Figure 2.10: F-Measure based performance Comparison of our interactive co-
segmentation method with state-of-the-art methods on MSRC dataset.

result of our algorithm comparing to the state-of-the-art methods [119][125][126]. As
shown here, our algorithm achieves the best F-measure comparing to all other state-
of-the-art methods. The qualitative performance of our unsupervised algorithm is
shown in Figure 2.9 on some example images taken from image pairs dataset. As
can be seen, Our approach can effectively detect and segment the common object
of the given pair of images.

Metrics Precision Recall F −measure

[94] 0.5818 0.8239 0.5971
BNC 0.6421 0.8512 0.6564
Ours 0.7076 0.8208 0.7140

Table 2.4: Results of our interactive co-segmentation method on Image pair dataset
putting user scribble on one of the image pairs

2.4 Conclusions

In this chapter, we have demonstrated the applicability of constrained dominant
sets to problems such as interactive image segmentation and co-segmentation (in
both the unsupervised and the interactive flavor). In our perspective, these can
be thought of as “constrained” segmentation problems involving an external source
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of information (being it, for example, a user annotation or a collection of related
images to segment jointly) which somehow drives the whole segmentation process.
The proposed method is flexible and is capable of dealing with various forms of
constraints and input modalities, such as scribbles and bounding boxes, in the case
of interactive segmentation. Extensive experiments on benchmark datasets have
shown that our approach considerably improves the state-of-the-art results on the
problems addressed. This provides evidence that constrained dominant sets hold
promise as a powerful and principled framework to address a large class of computer
vision problems formulable in terms of constrained grouping. Indeed, we mention
that they are already being used successfully in other applications such as content-
based image retrieval [127], multi-target tracking [16] and image geo-localization
[17].





3
Constrained Dominant Sets for

Retrieval

I think you travel to search and
you come back home to find
yourself there.

Chimamanda Ngozi Adichie

3.1 Introduction

Retrieval has recently attracted considerable attention within the computer vision
community, especially because of its potential applications such as database re-
trieval, web and mobile image search. Given a user provided query, the goal is to
provide as output a ranked list of objects that best reflect the user’s intent. Classical
approaches perform the task based on the (dis)similarity between the query and the
database objects. The main limitation of such classical retrieval approaches is that
they do not allow for the intrinsic relation among the database objects.

Recently, various techniques, instead of simply using the pairwise similarity, try
to learn a better similarities that consider manifold structures of the underlying data.
Qin et al. [128] try to alleviate the asymmetry problem of the k-nearest neighbor (k-
NN) using the notion of k-reciprocal nearest neighbor. In [129] the notion of shared
nearest neighbor is used to build secondary similarity measure, which stabilizes the
performance of the search, based on the primary distance measure. In [130] shape
meta-similarity measure, which is computed as the L1 distance between new vector
representation which considers only the k-NN set of similarities fixing all others to
0, was proposed. Choosing the right size of the neighbor is important. In [131], the
notion of shortest path was used to built a new affinity for retrieval.

Diffusion process is one of the recent effective tools in learning the intrinsic
manifold structure of a given data [132, 133, 134]. Given data, a weighted graph is
built where the nodes are the objects and the edge weight is a function of the affinity
between the objects. The pairwise affinities are then propagated following structure
of the weighted edge links in the graph. The result of the affinity propagation highly
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depends on the quality of the pairwise similarity [135, 136]. Inaccurate Pairwise
similarity results in a graph with much noise which negatively affects the diffusion
process. Constraining the diffusion process locally alleviates this issue [136, 134,
132]. Dominant neighbor (DN) and k-NN are two notions used by the recent existing
methods to constrain the diffusion process locally [132, 133, 134]. In [132], it has
been shown that affinity learning constraining relation of an object to its neighbors
effectively improves the retrieval performance and was able to achieve 100 % bull’s
eye score in the well known MPEG datset. The author of [132] put automatically
selecting local neighborhood size (K) as the main limitation of the approach and is
still an open problem. The influence of selecting different K values was also studied
which proved that the parameter is a serious problem of the approach. For MPEG7
dataset, the choice is insignificant while for the other two datasets YALE and ORL
choosing the reasonable K is difficult which resulted in a decrease in performance
for the right value of K. Moreover, it is obvious that the selection of k-NN is prone
to errors in the pairwise similarities [134]. Since any k-NN decision procedure relies
only on affinities of an object to all other objects, k-NN approach is handicapped in
resisting errors in pairwise affinities and in capturing the structure of the underlying
data manifold.

Yang et al. in [134], to avoid the above issues, proposed the notion of dominant
neighbors (DN). Instead of the k-NN, here a compact set from the k-NN which best
explains the intrinsic relation among the neighbors is considered to constrain the
diffusion process. However, the approach follows heuristic based k-NN initialization
scheme. To capture dominant neighbors, the approach first choose a fixed value of
K, collect the K nearest neighbors and then initialize the dynamics, the dynamics
which extracts dense neighbors, to the barycenter of the face of the simplex which
contains the neighbors. It is obvious to see that the approach is still dependent
on K. Moreover, as fixing K limits the dynamics to a specified face of the simplex,
objects out of k-NN(q) which form a dominant neighbor with q will be loosed. The
chosen k-NN may also be fully noisy which might not have a compact structure.

In this chapter, we propose a new approach, using CDS, to retrieval which can
deal naturally with the above problems. The resulting algorithm has a number of
interesting features which distinguishes it from existing approaches. Specifically:
1) it is able to constrain the diffusion process locally extracting dense neighbors
whose local neighborhood size (K) is fixed automatically; different neighbors can
have different value of K. 2) it does not have any initialization step; the dynamics,
to extract the dense neighbors, can start at any point in the standard simplex 3) it
turns out to be robust to noisy affinity matrices.

3.2 Diffusion Process

Given the affinity matrix A, a diffusion process starts from a predefined initialization,
say V and propagates the affinity value through the underlying manifold based on



68 3. Constrained Dominant Sets for Retrieval

a predefined transition matrix, say T , and diffusion scheme (S).
Off-the-shelf diffusion processes, which basically differ based on the choice of V ,

T and S, the most related ones to this work are [134, 137]. In both cases, the
diffusion process is locally constrained. While in [137] the notion of k-NN is used to
constrain the diffusion process locally, dominant neighbor notion (DN ) is used by
[134].

3.2.1 Nearest Neighbors

In the first case, the edge-weights of the k-NN are kept i.e define locally constrained
affinity L = (lij) defined as lij = w(i, j), if (i, j) ∈ k-NN(q), and lij = 0 otherwise.
Then the diffusion process, setting V as the affinity A , is performed by the following
update rule.

Vt+1 = LVL′ (3.1)

Nearest neighbors constrained diffusion process, alleviating the issue of noisy
pairwise similarity, significantly increases the retrieval performance. However, the
approach has two serious limitations: First, automatically selecting local neighbor-
hood size (K) is very difficult and is still an open problem [132]. In [132] the influence
of selecting different K values was studied which proved that the parameter is a se-
rious problem of the approach. For MPEG7 dataset, the choice was insignificant
while for the other two datasets, YALE and ORL, choosing the reasonable K was
difficult which even resulted in a decrease in performance, for ORL from 77.30%
to 73.40% and for YALE 77.08% to 73.39%, for the right value of K. Moreover, it
is obvious that the selection of k-NN is prone to errors in the pairwise similarities
[134].

3.2.2 Dominant Neighbors

Yang et al. in [134], to avoid the above issues, proposed the notion of dominant
neighbors (DN ). Instead of the k-NN, here a compact set from the k-NN which
best explains the intrinsic relation among the neighbors is considered to constrain
the diffusion process. To do so, the author used the dominant set framework by
Pavan and Pelillo [35].

A dominant neighbor (DN ) is set as a dominant set, say DS, from the k-NN
which contains the user provided query q, lets call it DS(q).

Yang et al. in [134], to find a dominant set in the k-NN, DS(q), initialized (1.12)
with the nearest neighbor of q (k-NN(q)). They set, say the initial time is set as
t = 1, xi(1) = 1/K if i ∈ k-NN(q) zero otherwise. After the convergence of (1.12),
say to x∗, DN (q) is set as the support of x∗, i ∈ DN (q) if and only if i ∈ σ(x∗).
The edge-weights of the DN (q) are then kept i.e define locally constrained affinity
L = (lij) defined as lij = w(i, j), if (i, j) ∈ DN (q), and lij = 0 otherwise. Then the
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diffusion process, setting V as the affinity A, is performed by the same update rule
as in (3.1).

The DN approach has proven to be more effective than the k-NN approach
[133, 134, 138]. The approach, while effective, is rather heuristic in nature and
has limitations. The approach initializing (1.12) with the nearest neighbor of q
(k-NN(q)) limits the dynamics to the face of the simplex which contains k-NN(q).
Moreover, a fixed value of K should be chosen for initializing (1.12), the approach, as
it follows k-NN based initializing scheme, is still dependent on K. However number
of nearest neighbors K may be different for different objects. As fixing K limits the
dynamics to a specified face of the simplex, objects out of k-NN(q) which form a
dominant set with q will be loosed. The chosen k-NN may also be fully noisy which
might not have a compact structure.

CDS help us develop a locally constrained diffusion process which, as of existing
methods, has no problems such as choosing optimal local neighbor size and initial-
izing the dynamics to extract dense neighbor which constrain the diffusion process.
The framework alleviates the issues while improving the performance. The two pre-
vious propositions provide us with a simple technique to determine dominant-set
clusters containing user-selected vertices. Indeed, if S is the user provided query q,
by setting

α > λmax(AV \S) (3.2)

we are guaranteed that all local solutions of (1.6) will have a support that necessarily
contains the user specified object.

Given a query q, we scale the affinity and run the replicator (1.12), say the
dynamics converges to x∗. The support of x∗, σ(x∗), is the constrained dominant
set which contains the query q, let us call it CDS(q). The edge-weights of the CDS(q)
are then kept i.e define locally constrained affinity L = (lij) defined as lij = w(i, j),
if (i, j) ∈ CDS(q), and lij = 0 otherwise. The diffusion process is then performed
by the same update rule as in (3.1). For the proof of convergence of the update rule
we refer the reader to [133].

3.3 Experiments

The performance of the approach is presented in this section. The approach was
tested against three well known data sets in the field of retrieval: MPEG7(shape),
YALE(faces) and ORL(faces). For all test data sets the number of iterations for the
update rule is set to 200. A given pairwise distance D is transformed to similarity
(edge-weight) using a standard Gaussian kernel

Aσij = ⊮i ̸=jexp(−D/2σ2)

where σ is the free scale parameter, and ⊮P = 1 if P is true, 0 otherwise. L is then
built, from A, using the constrained dominant set framework. The diffusion process
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is then computed using the update rule (3.1) which resulted in the final learned
affinity for ranking.

A similar experimental analysis as of [132] has been conducted. In [132], a generic
framework with 72 different variant of diffusion processes was defined which are
resulted from three steps: initialization, definition of transition matrix and diffusion
process. In our experiment, the update scheme is fixed to (3.1) which has proven
to be effective. The four different types of initialization schemes are Affinity Matrix
A (A1) [139], Identity Matrix I (A2), Transition Matrix P which is the standard
random walk transition matrix (A3) [140] and Transition Matrix PkNN which is the
random walk transition matrix constrained to the k-nearest neighbors (A4) [140].
Including our transition matrix (B6), we have in total 6 different types of transition
matrices: P (B1), Personalized PageRank Transition Matrix PPPR (B2) [140], PkNN

(B3), Dominant Set Neighbors PDS [134] (B4), and Affinity Matrix A (B5)
Metric: The Bull’s eye score is used as a measure of retrieval accuracy. It

measures the percentage of objects sharing the same class with a query q in the
top R retrieved shapes. Let us say C is the set of objects in the same class of the
query q and O is the set of top R retrieved shapes. The Bull’s eye score (B) is then
computed as B= |O∩C|

|C|
MPEG7: a well known data set for testing performance of retrieval and shape

matching algorithms. It comprises 1400 silhouette shape images of 70 different
categories with 20 images in each categories. Articulated Invariant Representation
(AIR) [141], best performing shape matching algorithm, is used as the input pairwise
distance measure. The retrieval performance is measured fixing R to 40.

MPEG7 B1 B2 B3 B4 B5 B6(Ours)

A1 99.91 99.93 100 100 99.88 100
A2 99.92 99.93 100 100 99.88 100
A3 99.93 99.94 100 100 99.88 100
A4 99.92 99.94 100 100 99.88 100

Table 3.1: Results on MPEG7 dataset. Bull’s eye score for the first 40 elements

Table 3.1 shows bull’s eye score on MPEG7 dataset. Observe that we were
able to achieve 100% bulle’s eye score while alleviating serious problems such as
the problem of selecting a reasonable local neighborhood size and initializing the
dynamics to find dense neighbors.

The retrieval performance has also been tested by varying the first R returned
objects, the set in which instances of the same category are checked in. For the pur-
pose of this experiment we used the best diffusion variants (B3 and B4 initialized
with A2). The performance of the algorithms is shown in Table 3.2. As can be ob-
served, in this case our algorithm, besides giving flexibility, shows a small increment
in the results.
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R 20 25 30 35 40

B3 94.321 97.871 98.614 99.357 100
B4 94.296 97.846 98.614 99.357 100
Ours 94.354 97.896 98.614 99.360 100

Table 3.2: Results on MPEG7 dataset varying the first R returned objects

MPEG7 has been used, most frequently, for testing retrieval algorithms. Table
3.3 shows the comparison against different state-of-the-art approaches. The pro-
posed approach and [132] achieve 100% bulle’s eye score. However, [132] needs to
set an optimal neighborhood size whereas in our approach the number of neighbors
to individual items arises intuitively.

Methods [142] [143] [141] [144] [134] [132] Ours

B 85.40 91.61 93.67 95.96 99.99 100 100

Table 3.3: Retrieval performance comparison on MPEG7 dataset. Up: methods, Down:
Bull’s eye score for the first 40 elements

YALE: [145] a popular benchmark for face clustering which consists of 15 unique
people with 11 pictures for each under different conditions: normal, sad, sleepy, cen-
ter light, right light, etc that include variations of pose, illumination and expression.
Similar procedures of [146, 132] were followed to build the distance matrix. Down
sample the image, normalize to 0-mean and 1-variance, and compute the Euclidean
distance between the vectorized representation. The retrieval performance, mea-
sured fixing R to 15, is demonstrated in table 3.4. Our approach shows a small
improvement in the retrieval performance except in one where the affinity itself
initializes the diffusion process.

YALE B1 B2 B3 B4 B5 B6(Ours)

A1 71.74 71.24 75.59 75.31 70.25 75.15
A2 71.96 70.69 77.30 76.20 69.92 77.41
A3 72.07 70.57 74.93 76.14 70.30 75.37
A4 72.23 70.74 77.08 76.10 70.25 77.36

Table 3.4: Results on YALE dataset. Bull’s eye score for the first 15 elements

Results of the algorithm on YALE data set varying R is shown in Table 3.5.
ORL: face data set of 40 different persons with 10 grayscale images per person

with slight variations of pose, illumination, and expression. Similar procedure as of
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R 11 13 15 17 20

B3 71.240 74.105 77.303 79.559 80.826
B4 70.854 72.176 76.198 77.741 79.063
Ours 71.350 74.050 77.411 80.000 81.653

Table 3.5: Results on YALE dataset varying the first R returned objects

YALE data set was followed and The retrieval performance is measured fixing R to
15.

ORL B1 B2 B3 B4 B5 B6(Ours)

A1 72.75 73.48 74.25 73.90 70.58 74.25
A2 72.75 73.75 77.42 74.82 70.15 77.42
A3 73.12 73.75 75.52 75.35 71.05 75.52
A4 73.12 73.75 77.32 75.50 71.40 77.32

Table 3.6: Results on ORL dataset. Bull’s eye score for the first 15 elements

Results of the algorithm on ORL data set varying R is shown in Table 3.7.

R 10 13 15 17 20

B3 70.950 75.250 77.425 79.275 80.550
B4 68.850 72.900 74.825 76.775 77.700
Ours 70.950 75.250 77.425 79.275 80.550

Table 3.7: Results on ORL dataset varying the first R returned objects

As can be observed from Tables 3.6 and 3.7, the proposed approach and [132]
perform equally on the ORL face dataset.

3.4 Conclusion

In this chapter, we have developed a locally constrained diffusion process which, as
of existing methods, has no problems such as choosing optimal local neighbor size
and initializing the dynamics to extract dense neighbor which constrain the diffusion
process. The framework alleviates the issues while improving the performance. Ex-
perimental results on three well known data sets in the field of retrieval demonstrate
that the approach compares favorably with state-of-the-art algorithms. Future work
will focus on applying the framework on other computer vision problems such as ac-
tion retrieval and video object segmentation and co-segmentation.





4
Multi-Target Tracking in Multiple
Non-Overlapping Cameras using

Constrained Dominant Sets

I don’t have a problem with
stepped-up surveillance as long as
we follow the rule of law.

Bob Beckel

4.1 Introduction

As the need for visual surveillance grow, a large number of cameras have been de-
ployed to cover large and wide areas like airports, shopping malls, city blocks etc..
Since the fields of view of single cameras are limited, in most wide area surveil-
lance scenarios, multiple cameras are required to cover larger areas. Using multiple
cameras with overlapping fields of view is costly from both economical and com-
putational aspects. Therefore, camera networks with non-overlapping fields of view
are preferred and widely adopted in real world applications.

In the work presented in this chapter, the goal is to track multiple targets and
maintain their identities as they move from one camera to the another camera with
non-overlapping fields of views. In this context, two problems need to be solved,
that is, within-camera data association (or tracking) and across-cameras data asso-
ciation by employing the tracks obtained from within-camera tracking. Although
there have been significant progresses in both problems separately, tracking mul-
tiple target jointly in both within and across non-overlapping cameras remains a
less explored topic. Most approaches, which solve multi-target tracking in multi-
ple non-overlapping cameras [147, 148, 149, 150, 151], assume tracking within each
camera has already been performed and try to solve tracking problem only in non-
overlapping cameras; the results obtained from such approaches are far from been
optimal [150].
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Figure 4.1: A general idea of the proposed framework. (a) First, tracks are de-
termined within each camera, then (b) tracks of the same person from different
non-overlapping cameras are associated, solving the across-camera tracking. Nodes
in (a) represent tracklets and nodes in (b) represent tracks. The ith track of camera
j, T ij , is a set of tracklets that form a clique. In (b) each clique in different col-
ors represent tracks of the same person in non-overlapping cameras. Similar color
represents the same person. (Best viewed in color)

In this chapter, we propose a hierarchical approach in which we first determine
tracks within each camera, (Figure 4.1(a)) by solving data association, and later we
associate tracks of the same person in different cameras in a unified approach (Figure
4.1(b)), hence solving the across-camera tracking. Since appearance and motion
cues of a target tend to be consistent in a short temporal window in a single camera
tracking, solving tracking problem in a hierarchical manner is common: tracklets
are generated within short temporal window first and later they are merged to form
full tracks (or trajectories) [152, 153, 37]. Often, across-camera tracking is more
challenging than solving within-camera tracking due to the fact that appearance of
people may exhibit significant differences due to illumination variations and pose
changes between cameras.

Therefore, this chapter proposes a unified three-layer framework to solve both
within- and across-camera tracking. In the first two layers, we generate tracks within
each camera and in the third layer we associate all tracks of the same person across
all cameras in a simultaneous fashion.

To best serve our purpose, a constrained dominant sets clustering (CDSC) tech-
nique, a parametrized version of standard quadratic optimization, is employed to
solve both tracking tasks. The tracking problem is cast as finding constrained domi-
nant sets from a graph. That is, given a constraint set and a graph, CDSC generates
cluster (or clique), which forms a compact and coherent set that contains all or part
of the constraint set. Clusters represent tracklets and tracks in the first and sec-
ond layers, respectively. The proposed within-camera tracker can robustly handle
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long-term occlusions, does not change the scale of original problem as it does not
remove nodes from the graph during the extraction of compact clusters and is sev-
eral orders of magnitude faster (close to real time) than existing methods. Also, the
proposed across-camera tracking method using CDSC and later followed by refine-
ment step offers several advantages. More specifically, CDSC not only considers the
affinity (relationship) between tracks, observed in different cameras, but also takes
into account the affinity among tracks from the same camera. As a consequence, the
proposed approach not only accurately associates tracks from different cameras but
also makes it possible to link multiple short broken tracks obtained during within-
camera tracking, which may belong to a single target track. For instance, in Figure
4.1(a) track T 3

1 (third track from camera 1) and T 4
1 (fourth track from camera 1) are

tracks of same person which were mistakenly broken from a single track. However,
during the third layer, as they are highly similar to tracks in camera 2 (T 3

2 ) and
camera 3 (T 3

3 ), they form a clique, as shown in Figure 4.1(b). Such across-camera
formulation is able to associate these broken tracks with the rest of tracks from
different cameras, represented with the green cluster in Figure 4.1(b).

The contributions of this chapter are summarized as follows:

• We formulate multi-target tracking in multiple non-overlapping cameras as
finding constrained dominant sets from a graph. We propose a three-layer
hierarchical approach, in which we first solve within-camera tracking using the
first two layers, and using the third layer we solve the across-camera tracking
problem.

• We propose a technique to further speed up our optimization by reducing the
search space, that is, instead of running the dynamics over the whole graph,
we localize it on the sub graph selected using the dominant distribution, which
is much smaller than the original graph.

• Experiments are performed on MOTchallenge DukeMTMCT dataset and MARS
dataset, and show improved effectiveness of our method with respect to the
state of the art.

The rest of the chapter is organized as follows. In Section 4.2, we review relevant
previous works. Overall proposed approach for within- and across-cameras tracking
modules is summarized in section 4.3, while sections 4.3.1 and 4.3.2 provide more
in details of the two modules. Experimental results are presented in Section 4.4.
Finally, section 4.5 concludes the chapter.

4.2 Related Work

Object tracking is a challenging computer vision problem and has been one of the
most active research areas for many years. In general, it can be divided in two
broad categories: tracking in single and multiple cameras. Single camera object
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tracking associates object detections across frames in a video sequence, so as to
generate the object motion trajectory over time. Multi-camera tracking aims to solve
handover problem from one camera view to another and hence establishes target
correspondences among different cameras, so as to achieve consistent object labelling
across all the camera views. Early multi-camera target tracking research works fall
in different categories as follows. Target tracking with partially overlapping camera
views has been researched extensively during the last decade [154, 155, 156, 157,
158, 159]. Multi target tracking across multiple cameras with disjoint views has also
been researched in [147, 148, 149, 150, 151]. Approaches for overlapping field of
views compute spatial proximity of tracks in the overlapping area, while approaches
for tracking targets across cameras with disjoint fields of view, leverage appearance
cues together with spatio-temporal information.

Almost all early multi-camera research works try to address only across-camera
tracking problems, assuming that within-camera tracking results for all cameras
are given. Given tracks from each camera, similarity among tracks is computed
and target correspondence across cameras is solved, using the assumption that a
track of a target in one camera view can match with at most one target track
in another camera view. Hungarian algorithm [160] and bipartite graph matching
[149] formulations are usually used to solve this problem. Very recently, however,
researchers have argued that assumptions of cameras having overlapping fields of
view and the availability of intra-camera tracks are unrealistic [150]. Therefore, the
work proposed in this chapter addresses the more realistic problem by solving both
within- and across-camera tracking in one joint framework.

In the rest of this section, we first review the most recent works for single camera
tracking, and then describe the previous related works on multi-camera multi-view
tracking.

Single camera target tracking associates target detections across frames in a video
sequence in order to generate the target motion trajectory over time. Zamir et al.
[152] formulate tracking problem as generalized maximum clique problem (GMCP),
where the relationships between all detections in a temporal window are considered.
In [152], a cost to each clique is assigned and the selected clique maximizes a score
function. Nonetheless, the approach is prone to local optima as it uses greedy
local neighbourhood search. Deghan et al. [153] cast tracking as a generalized
maximum multi clique problem (GMMCP) and follow a joint optimization for all
the tracks simultaneously. To handle outliers and weak-detections associations they
introduce dummy nodes. However, this solution is computationally expensive. In
addition, the hard constraint in their optimization makes the approach impractical
for large graphs. Tesfaye et al. [37] consider all the pairwise relationships between
detection responses in a temporal sliding window, which is used as an input to
their optimization based on fully-connected edge-weighted graph. They formulate
tracking as finding dominant set clusters. Though the dominant set framework is
effective in extracting compact sets from a graph [17][35][13] [161] [41], it follows a
pill-off strategy to enumerate all possible clusters, that is, at each iteration it removes
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the found cluster from the graph which results in a change in scale (number of nodes
in a graph) of the original problem. In this chapter, we propose a multiple target
tracking approach, which in contrast to previous works, does not need additional
nodes to handle occlusion nor encounters change in the scale of the problem.

Across-camera tracking aims to establish target correspondences among trajec-
tories from different cameras so as to achieve consistent target labelling across all
camera views. It is a challenging problem due to the illumination and pose changes
across cameras, or track discontinuities due to the blind areas or miss detections.
Existing across-camera tracking methods try to deal with the above problems using
appearance cues. The variation in illumination of the appearance cues has been
leveraged using different techniques such as Brightness Transfer Functions (BTFs).
To handle the appearance change of a target as it moves from one camera to another,
the authors in [162] show that all brightness transfer functions from a given camera
to another camera lie in a low dimensional subspace, which is learned by employing
probabilistic principal component analysis and used for appearance matching. Au-
thors of [163] used an incremental learning method to model the colour variations
and [164] proposed a Cumulative Brightness Transfer Function, which is a better
use of the available colour information from a very sparse training set. Performance
comparison of different variations of Brightness Transfer Functions can be found in
[165]. Authors in [166] tried to achieve color consistency using colorimetric princi-
ples, where the image analysis system is modelled as an observer and camera-specific
transformations are determined, so that images of the same target appear similar
to this observer. Obviously, learning Brightness Transfer Functions or color cor-
rection models requires large amount of training data and they may not be robust
against drastic illumination changes across different cameras. Therefore, recent ap-
proaches have combined them with spatio-temporal cue which improve multi-target
tracking performance [167, 168, 169, 170, 171, 172]. Chen et al. [167] utilized hu-
man part configurations for every target track from different cameras to describe
the across-camera spatio-temporal constraints for across-camera track association,
which is formulated as a multi-class classification problem via Markov Random
Fields (MRF). Kuo et al. [168] used Multiple Instance Learning (MIL) to learn an
appearance model, which effectively combines multiple image descriptors and their
corresponding similarity measurements. The proposed appearance model combined
with spatio-temporal information improved across-camera track association solving
the “target handover” problem across cameras. Gao et al. [169] employ tracking
results of different trackers and use their spatio-temporal correlation, which help
them enforce tracking consistency and establish pairwise correlation among multi-
ple tracking results. Zha et al. [170] formulated tracking of multiple interacting
targets as a network flow problem, for which the solution can be obtained by the K-
shortest paths algorithm. Spatio-temporal relationships among targets are utilized
to identify group merge and split events. In [171] spatio-temporal context is used
for collecting samples for discriminative appearance learning, where target-specific
appearance models are learned to distinguish different people from each other. And
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the relative appearance context models inter-object appearance similarities for peo-
ple walking in proximity and helps disambiguate individual appearance matching
across cameras.

The problem of target tracking across multiple non-overlapping cameras is also
tackled in [4] by extending their previous single camera tracking method [173], where
they formulate the tracking task as a graph partitioning problem. Authors in [172],
learn across-camera transfer models including both spatio-temporal and appearance
cues. While a color transfer method is used to model the changes of color across
cameras for learning across-camera appearance transfer models, the spatio-temporal
model is learned using an unsupervised topology recovering approach. Recently
Chen et al. [151] argued that low-level information (appearance model and spatio-
temporal information) is unreliable for tracking across non-overlapping cameras, and
integrated contextual information such as social grouping behaviour. They formulate
tracking using an online-learned Conditional Random Field (CRF), which favours
track associations that maintain group consistency. In this chapter, for tracks to be
associated, besides their high pairwise similarity (computed using appearance and
spatio-temporal cues), their corresponding constrained dominant sets should also be
similar.

Another recent popular research topic, video-based person re-identification(ReID)
[174, 175, 176, 177, 9, 5, 6, 7, 8], is closely related to across-camera multi-target
tracking. Both problems aim to match tracks of the same persons across non-
overlapping cameras. However, across-camera tracking aims at 1-1 correspondence
association between tracks of different cameras. Compared to most video-based
ReID approaches, in which only pairwise similarity between the probes and gallery
is exploited, our across-camera tracking framework not only considers the relation-
ship between probes and gallery but it also takes in to account the relationship
among tracks in the gallery.

4.3 Overall Approach

In this section, the constrained dominant sets based formulation of within- and
across-camera tracking is detailed.

In our formulation, in the first layer, each node in our graph represents a short-
tracklet along a temporal window (typically 15 frames). Applying constrained dom-
inant set clustering here aim at determining cliques in this graph, which correspond
to tracklets. Likewise, each node in a graph in the second layer represents a tracklet,
obtained from the first layer, and CDS is applied here to determine cliques, which
correspond to tracks. Finally, in the third layer, nodes in a graph correspond to
tracks from different non-overlapping cameras, obtained from the second layer, and
CDS is applied to determine cliques, which relate tracks of the same person across
non-overlapping cameras.
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4.3.1 Within-Camera Tracking

Figure 4.2 shows proposed within-camera tracking framework. First, we divide a
video into multiple short segments, each segment contains 15 frames, and generate
short-tracklets, where human detection bounding boxes in two consecutive frames
with 70% overlap, are connected [153]. Then, short-tracklets from 10 different non-
overlapping segments are used as input to our first layer of tracking. Here the nodes
are short-tracklets (Figure 4.2, bottom left). Resulting tracklets from the first layer
are used as an input to the second layer, that is, a tracklet from the first layer is now
represented by a node in the second layer (Figure 4.2, bottom right). In the second
layer, tracklets of the same person from different segment are associated forming
tracks of a person within a camera.
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Figure 4.2: The figure shows within-camera tracking where short-tracklets from
different segments are used as input to our first layer of tracking. The resulting
tracklets from the first layer are inputs to the second layer, which determine a
tracks for each person. The three dark green short-tracklets (s21, s

10
1 , s

7
1), shown by

dotted ellipse in the first layer, form a cluster resulting in tracklet (t21) in the second
layer, as shown with the black arrow. In the second layer, each cluster, shown in
purple, green and dark red colors, form tracks of different targets, as can be seen on
the top row. tracklets and tracks with the same color indicate same target. The two
green cliques (with two tracklets and three tracklets) represent tracks of the person
going in and out of the building (tracks T p1 and T 2

1 respectively)
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4.3.1.1 Formulation Using Constrained Dominant Sets

We build an input graph, G(V,E,w), where nodes represent short-tracklet (sji , that
is, jth short-tracklet of camera i) in the case of first layer (Figure 4.2, bottom left)
and tracklet (tlk, that is, l

th tracklet of camera k), in the second layer (Figure 4.2,
bottom right). The corresponding affinity matrix A = {ai,j}, where ai,j = w(i, j)
is built. The weight w(i, j) is assigned to each edge, by considering both motion
and appearance similarity between the two nodes. Fine-tuned CNN features are
used to model the appearance of a node. These features are extracted from the last
fully-connected layer of Imagenet pre-trained 50-layers Residual Network (ResNet
50) [178] fine-tuned using the trainval sequence of DukeMTMC dataset. Similar
to [152], we employ a global constant velocity model to compute motion similarity
between two nodes.

Determining cliques: In our formulation, a clique of graph G represents track-
let(track) in the first (second) layer. Using short-tracklets/tracklets as a constraint
set (in eq. 1.6), we enumerate all clusters, using game dynamics, by utilizing in-
trinsic properties of constrained dominant sets. Note that we do not use peel-off
strategy to remove the nodes of found cliques from the graph, this keeps the scale
of our problem (number of nodes in a graph) which guarantees that all the found
local solutions are the local solutions of the (original) graph. After the extraction
of each cluster, the constraint set is changed in such a way to make the extracted
cluster unstable under the dynamics. The within-camera tracking starts with all
nodes as constraint set. Let us say Γi is the ith extracted cluster, Γ1 is then the
first extracted cluster which contains a subset of elements from the whole set. After
our first extraction, we change the constraint set to a set V \Γ1, hence rendering its
associated nodes unstable (making the dynamics not able to select sets of nodes in
the interior of associated nodes). The procedure iterates, updating the constraint

set at the ith extraction as V \
i⋃
l=1

Γl, until the constraint set becomes empty. Since

we are not removing the nodes of the graph (after each extraction of a compact set),
we may end up with a solution that assigns a node to more than one cluster.

To find the final solution, we use the notion of centrality of constrained dominant
sets. The true class of a node j, which is assigned to K > 1 cluster, ψ = {Γ1 . . .ΓK},
is computed as:

arg max
Γi∈ψ

(
|Γi| ∗ δij

)
,

where the cardinality |Γi| is the number of nodes that forms the ith cluster and
δij is the membership score of node j obtained when assigned to cluster Γi. The
normalization using the cardinality is important to avoid any unnatural bias to a
smaller set.

Algorithm (4), putting the number of cameras under consideration (I) to 1
and Q as short-tracklets(tracklets) in the first(second) layer, is used to determine
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constrained dominant sets which correspond to tracklet(track) in the first (second)
layer.

4.3.2 Across-Camera Tracking

4.3.2.1 Graph Representation of Tracks and the Payoff Function

Given tracks (T ji , that is, the j
th track of camera i) of different cameras from pre-

vious step, we build graph G′(V ′, E ′, w′), where nodes represent tracks and their
corresponding affinity matrix A depicts the similarity between tracks.

Assuming we have I number of cameras and Ai×j represents the similarity among
tracks of camera i and j, the final track based affinity A, is built as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1×1 .. A1×j .. A1×I

. . . . .

Ai×1 .. Ai×j . Ai×I

. . . .

AI×1 .. AI×j .. AI×I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Figure 4.3 shows exemplar graph for across-camera tracking among three cam-
eras. T ij represents the ith track of camera j. Black and orange edges, respectively,
represent within- and across-camera relations of the tracks. From the affinity A,
Ai×j represents the black edges of camera i if i = j, which otherwise represents the
across-camera relations using the orange edges.

The colors of the nodes depict the track ID; nodes with similar color represent
tracks of the same person. Due to several reasons such as long occlusions, severe
pose change of a person, reappearance and others, a person may have more than one
track (a broken track) within a camera. The green nodes of camera 1 (the second
and the pth tracks) typify two broken tracks of the same person, due to reappearance
as shown in Figure 4.2. The proposed unified approach, as discussed in the next
section, is able to deal with such cases.

4.3.2.2 Across-Camera Track Association

In this section, we discuss how we simultaneously solve within- and across-camera
tracking. Our framework is naturally able to deal with the errors listed above. A
person, represented by the green node from our exemplar graph (Figure 4.3), has
two tracks which are difficult to merge during within-camera tracking; however,
they belong to clique (or cluster) with tracks in camera 2 and camera 3, since they
are highly similar. The algorithm applied to a such across-camera graph is able to
cluster all the correct tracks. This helps us linking broken tracks of the same person
occurring during within-camera track generation stage.
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Figure 4.3: Exemplar graph of tracks from three cameras. T ij represents the ith track
of camera j. Black and colored edges, respectively, represent within- and across-camera
relations of tracks. Colours of the nodes depict track IDs, nodes with similar colour
represent tracks of the same person, and the thick lines show both within- and across-
camera association.

Using the graph with nodes of tracks from a camera as a constraint set, data
association for both within- and across-camera are performed simultaneously. Let
us assume, in our exemplar graph (Figure 4.3), our constraint set Q contains nodes
of tracks of camera 1, Q = { T 1

1 , T
2
1 , T

i
1, T

p
1 }. IQ is then n × n diagonal matrix,

whose diagonal elements are set to 1 in correspondence to the vertices contained in
all cameras, except camera 1 which takes the value zero. That is, the sub-matrix IQ,
that corresponds to A1×1, will be a zero matrix of size equal to number of tracks of the
corresponding camera. Setting Q as above, we have guarantee that the maximizer
of program in eq. (1.6) contains some elements from set Q: i.e., C11={T 2

1 , T
p
1 , T

q
2 , T

2
3 }

forms a clique which contains set {T 2
1 , T

p
1 } ∈ Q. This is shown in Figure 4.3, using

the thick green edges (which illustrate across-camera track association) and the
thick black edge (which typifies the within camera track association). The second
set, C21 , contains tracks shown with the dark red color, which illustrates the case
where within- and across-camera tracks are in one clique. Lastly, the C31 = T 1

1

represents a track of a person that appears only in camera 1. As a general case, Ci
j,

represents the ith track set using tracks in camera j as a constraint set and Cj is
the set that contains track sets generated using camera j as a constraint set, e.g.
C1 = {C1

1 , C
2
1 , C

3
1}. We iteratively process all the cameras and then apply track

refinement step.

Though Algorithm (4) is applicable to within-camera tracking also, here we show
the specific case for across-camera track association. Let T represents the set of
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Algorithm 4 Track Association

INPUT: Affinity A, Sets of tracks T from I cameras
C ← ∅ Initialize the set with empty-set
Initialize x to the barycenter and i and p to 1

1: while p ≤ I do
2: Q ← Tp, define constraint set
3: X ← F(Q, A)
4: Ci

p = ← σ(X i), compute for all i = 1 . . .m
5: p ← p+ 1
6: end while

7: C =
I⋃
p=1

Cp

8: OUTPUT: {C}

tracks from all the cameras we have and C is the set which contains sets of tracks,
as Ci

p, generated using our algorithm. T ϑp typifies the ϑth track from camera p and
Tp contains all the tracks in camera p. The function F(Q, A) takes as an input a
constraint set Q and the affinity A, and provides as output all the m local solutions
X n×m of program (1.6) that contain element(s) from the constraint set. This can be
accomplished by iteratively finding a local maximizer of equation (program) (1.6)
in ∆, e.g. using game dynamics, and then changing the constraint set Q, until all
members of the constraint set have been clustered.

4.3.3 Track Refinement

The proposed framework, together with the notion of centrality of constrained dom-
inant sets and the notion of reciprocal neighbours, helps us in refining tracking
results using tracks from different cameras as different constraint sets. Let us as-
sume we have I cameras and Ki represents the set corresponding to track i, while
Kip is the subset of Ki that corresponds to the pth camera. Mli

p is the membership
score assigned to the lth track in the set Cip.

We use two constraints during track refinement stage, which helps us refining
false positive association.
Constraint-1: A track can not be found in two different sets generated using same
constraint set, i.e. it must hold that:

|Kip| ≤ 1

Sets that do not satisfy the above inequality should be refined as there is one or
more tracks that exist in different sets of tracks collected using the same constraint,
i.e. Tp. The corresponding track is removed from all the sets which contain it and
is assigned to the right set based on its membership score in each of the sets. Let us
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say the lth track exists in q different sets, when tracks from camera p are taken as a
constraint set, |Klp| = q. The right set which contains the track, Cr

p , is chosen as:

Cr
p = arg max

Ci
p∈Kl

p

(
|Ci

p| ∗Mli

p

)
.

where i = 1, . . . , |Klp|. This must be normalized with the cardinality of the set to
avoid a bias towards smaller sets.
Constraint-2: The maximum number of sets that contain track i should be the
number of cameras under consideration. If we consider I cameras, the cardinality
of the set which contains sets with track i, is not larger than I, i.e.:

|Ki| ≤ I.

If there are sets that do not satisfy the above condition, the tracks are refined
based on the cardinality of the intersection of sets that contain the track, i.e. by
enforcing the reciprocal properties of the sets.

If there are sets that do not satisfy the above condition, the tracks are refined
based on the cardinality of the intersection of sets that contain the track by enforcing
the reciprocal properties of the sets which contain a track. Assume we collect sets
of tracks considering tracks from camera q as constraint set and assume a track ϑ
in the set Cj

p , p ̸= q, exists in more than one sets of Cq. The right set, Cr
q , for ϑ

considering tracks from camera q as constraint set is chosen as:

Cr
q = arg max

Ci
q∈Kϑ

q

(
Ci
q ∩ Cj

p

)
.

where i = 1, . . . , |Kϑq |.

4.4 Experimental Results

The proposed framework has been evaluated on recently-released large dataset,
MOTchallenge DukeMTMC [4, 179, 173]. Even though the main focus of this chap-
ter is on multi-target tracking in multiple non-overlapping cameras, we also perform
additional experiments on MARS [11], one of the largest and challenging video-based
person re-identification dataset, to show that the proposed across-camera tracking
approach can efficiently solve this task also.

DukeMTMC is recently-released dataset to evaluate the performance of multi-
target multi-camera tracking systems. It is the largest (to date), fully-annotated
and calibrated high resolution 1080p, 60fps dataset, that covers a single outdoor
scene from 8 fixed synchronized cameras, the topology of cameras is shown in Fig.
4. The dataset consists of 8 videos of 85 minutes each from the 8 cameras, with
2,700 unique identities (IDs) in more than 2 millions frames in each video containing
0 to 54 people. The video is split in three parts: (1) Trainval (first 50 minutes of
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the video), which is for training and validation; (2) Test-Hard (next 10 minutes
after Trainval sequence); and (3) Test-Easy, which covers the last 25 minutes of the
video. Some of the properties which make the dataset more challenging include:
huge amount of data to process, it contains 4,159 hand-overs, there are more than
1,800 self-occlusions (with 50% or more overlap), 891 people walking in front of only
one camera.

Figure 4.4: Camera topology for DukeMTMC dataset. Detections from the over-
lapping fields of view are not considered. More specifically, intersection occurred
between camera (8 & 2) and camera (5 & 3).

MARS (Motion Analysis and Re-identification Set) is an extension of the
Market-1501 dataset [11]. It has been collected from six near-synchronized cameras.
It consists of 1,261 different pedestrians, who are captured by at least 2 cameras.
The variations in poses, colors and illuminations of pedestrians, as well as the poor
image quality, make it very difficult to yield high matching accuracy. Moreover, the
dataset contains 3,248 distractors in order to make it more realistic. Deformable Part
Model (DPM) [180] and GMMCP tracker [153] were used to automatically generate
the tracklets (mostly 25-50 frames long). Since the video and the detections are not
available we use the generated tracklets as an input to our framework.

Performance Measures: In addition to the standard Multi-Target Multi-
Camera tracking performance measures, we evaluate our framework using additional
measures recently proposed in [4]: Identification F-measure (IDF1), Identification
Precision (IDP) and Identification Recall (IDR) [4]. The standard performance
measures such as CLEAR MOT report the amount of incorrect decisions made by
a tracker. Ristani et al. [4] argue and demonstrate that some system users may in-
stead be more interested in how well they can determine who is where at all times.
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After pointing out that different measures serve different purposes, they proposed
the three measures (IDF1, IDP and IDR) which can be applied both within- and
across-cameras. These measure tracker’s performance not by how often ID switches
occur, but by how long the tracker correctly tracks targets.

Identification precision IDP (recall IDR): is the fraction of computed
(ground truth) detections that are correctly identified.

Identification F-Score IDF1 : is the ratio of correctly identified detections
over the average number of ground-truth and computed detections. Since MOTA
and its related performance measures under-report across-camera errors [4], we use
them for the evaluation of our single camera tracking results.

The performance of the algorithm for re-identification is evaluated employing
rank-1 based accuracy and confusion matrix using average precision (AP).

Implementation: In the implementation of our framework, we do not have
parameters to tune. The affinity matrix A adapting kernel trick distance function
from [181], is constructed as follows:

Ai,j = 1−
√

K(xi, xi) + K(xj, xj)− 2 ∗ K(xi, xj)
2

,

where K(xi, xj) is chosen as the Laplacian kernel

exp(−γ ∥ xi − xj ∥1).

The kernel parameter γ is set as the inverse of the median of pairwise distances.
In our similarity matrix for the final layer of the framework, which is sparse,

we use spatio-temporal information based on the time duration and the zone of a
person moving from one zone of a camera to other zone of another camera which
is learned from the Trainval sequnece of DukeMTMC dataset. The affinity between
track i and track j is different from zero , if and only if they have a possibility,
based on the direction a person is moving and the spatio-temporal information, to
be linked and form a trajectory (across camera tracks of a person). However, this
may have a drawback due to broken tracks or track of a person who is standing and
talking or doing other things in one camera which results in a track that does not
meet the spatio-temporal constraints. To deal with this problem, we add, for the
across camera track’s similarity, a path-based information as used in [14], i.e if a
track in camera i and a track in camera j have a probability to form a trajectory,
and track j in turn have linkage possibility with a track in camera z, the tracks in
camera i and camera z are considered to have a possibility to be linked.

The similarity between two tracks is computed using the Euclidean distance
of the max-pooled features. The max-pooled features are computed as the row
maximum of the feature vector of individual patch, of the given track, extracted from
the last fully-connected layer of Imagenet pre-trained 50-layers Residual Network
(ResNet 50) [178], fine-tuned using the Trainval sequence of DukeMTMC dataset.
The network is fine-tuned with classification loss on the Trainval sequence, and
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Mthd MOTA↑ MT↑ ML↓ FP↓ FN↓ IDS↓ IDF1↑ IDP↑ IDR↑

C1
[4] 43.0 24 46 2,713 107,178 39 57.3 91.2 41.8

Ours 69.9 137 22 5,809 52,152 156 76.9 89.1 67.7

C2
[4] 44.8 133 8 47,919 53,74 60 68.2 69.3 67.1

Ours 71.5 134 21 8,487 43,912 75 81.2 90.9 73.4

C3
[4] 57.8 52 22 1,438 28,692 16 60.3 78.9 48.8

Ours 67.4 44 9 2,148 21,125 38 64.6 76.3 56.0

C4
[4] 63.2 36 18 2,209 19,323 7 73.5 88.7 62.8

Ours 76.8 45 4 2,860 10,689 18 84.7 91.2 79.0

C5
[4] 72.8 107 17 4,464 35,861 54 73.2 83.0 65.4

Ours 68.9 88 11 9,117 36,933 139 68.3 76.1 61.9

C6
[4] 73.4 142 27 5,279 45,170 55 77.2 87.5 69.1

Ours 77.0 136 11 4,868 38,611 142 82.7 91.6 75.3

C7
[4] 71.4 69 13 1,395 18,904 23 80.5 93.6 70.6

Ours 73.8 64 4 1,182 17,411 36 81.8 94.0 72.5

C8
[4] 60.7 102 53 2,730 52,806 46 72.4 92.2 59.6

Ours 63.4 92 28 4,184 47,565 91 73.0 89.1 61.0

Av
[4] 59.4 665 234 68,147 361,672 300 70.1 83.6 60.4

Ours 70.9 740 110 38,655 268,398 693 77.0 87.6 68.6

Table 4.1: The results show detailed (for each camera C1 to C8) and average per-
formance (Av) of our and state-of-the-art approach [4] on the Test-Easy sequence
of DukeMTMC dataset.

activations of its last fully-connected layer are extracted, L2-normalized and taken
as visual features. Cross-view Quadratic Discriminant Analysis (XQDA) [9] is then
used for pairwise distance computation between instances. For the experiments
on MARS, patch representation is obtained using CNN features used in [11]. The
pairwise distances between instances are then computed in XQDA, KISSME [182]
and euclidean spaces.

4.4.1 Evaluation on DukeMTMC Dataset:

In Table 4.1 and Table 4.2, we compare quantitative performance of our method
with state-of-the-art multi-camera multi-target tracking method on the DukeMTMC
dataset. The symbol ↑ means higher scores indicate better performance, while ↓
means lower scores indicate better performance. The quantitative results of the
trackers shown in table 4.1 represent the performance on the Test-Easy sequence,
while those in table 4.2 show the performance on the Test-Hard sequence. For a
fair comparison, we use the same detection responses obtained from MOTchallenge
DukeMTMC as the input to our method. In both cases, the reported results of row
’Camera 1’ to ’Camera 8’ represent the within-camera tracking performances. The
last row of the tables represent the average performance over 8 cameras. Both tabu-
lar results demonstrate that the proposed approach improves tracking performance
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Mthd MOTA↑ MT↑ ML↓ FP↓ FN↓ IDS↓ IDF1↑ IDP↑ IDR↑

C1
[4] 37.8 6 34 1,257 78,977 55 52.7 92.5 36.8

Ours 63.2 65 17 2,886 44,253 408 67.1 83.0 56.4

C2
[4] 47.3 68 12 26526 46898 194 60.6 65.7 56.1

Ours 54.8 62 16 8,653 54,252 323 63.4 78.8 53.1

C3
[4] 46.7 24 4 288 18182 6 62.7 96.1 46.5

Ours 68.8 18 2 2,093 8,701 11 81.5 91.1 73.7

C4
[4] 85.3 21 0 1,215 2,073 1 84.3 86.0 82.7

Ours 75.6 17 0 1,571 3,888 61 82.3 87.1 78.1

C5
[4] 78.3 57 2 1,480 11,568 13 81.9 90.1 75.1

Ours 78.6 47 2 1,219 11,644 50 82.8 91.5 75.7

C6
[4] 59.4 85 23 5,156 77,031 225 64.1 81.7 52.7

Ours 53.3 68 36 5,989 88,164 547 53.1 71.2 42.3

C7
[4] 50.8 43 23 2,971 38,912 148 59.6 81.2 47.1

Ours 50.8 34 20 1,935 39,865 266 60.6 84.7 47.1

C8
[4] 73.0 34 5 706 9735 10 82.4 94.9 72.8

Ours 70.0 37 6 2,297 9,306 26 81.3 90.3 73.9

Av
[4] 54.6 338 103 39,599 283,376 652 64.5 81.2 53.5

Ours 59.6 348 99 26,643 260,073 1637 65.4 81.4 54.7

Table 4.2: The results show detailed (for each camera) and average performance
of our and state-of-the-art approach [4] on the Test-Hard sequence of DukeMTMC
dataset.

Methods IDF1↑ IDP↑ IDR↑

Multi-Camera
[4] 56.2 67.0 48.4

Ours 60.0 68.3 53.5

Table 4.3: Multi-camera performance of our and state-of-the-art approach [4] on the
Test-Easy sequence of DukeMTMC dataset.

for both sequences. In the Test-Easy sequence, the performance is improved by
11.5% in MOTA and 7% in IDF1 metrics, while in that of the Test-Hard sequence,
our method produces 5% larger average MOTA score than [4], and 1% improvement
is achieved in IDF1. Table 4.3 and Table 4.4 respectively present Multi-Camera per-
formance of our and state-of-the-art approach [4] on the Test-Easy and Test-Hard
sequence (respectively) of DukeMTMC dataset. We have improved IDF1 for both
Test-Easy and Test-Hard sequences by 4% and 3%, respectively.

Figure 4.5 depicts sample qualitative results. Each person is represented by
(similar color of) two bounding boxes, which represent the person’s position at
some specific time, and a track which shows the path s(he) follows. In the first row,
all the four targets, even under significant illumination and pose changes, are suc-
cessfully tracked in four cameras, where they appear. In the second row, target 714
is successfully tracked through three cameras. Observe its significant illumination
and pose changes from camera 5 to camera 7. In the third row, targets that move
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Camera 1 Camera 2 Camera 5 Camera 6

Camera 2 Camera 4 Camera 5

Camera 6 Camera 7 Camera 8

Camera 1 Camera 2 Camera 3 Camera 4

Camera 7

Camera 1

Figure 4.5: Sample qualitative results of the proposed approach on DukeMTMC dataset.
Bounding boxes and lines with the same color indicate the same target (Best viewed in
color).

through camera 1, target six, seven and eight are tracked. The last row shows tracks
of targets that appear in cameras 1 to 4.

4.4.2 Evaluation on MARS Dataset:

In Table 4.5 we compare our results (using the same settings as in [11]) on MARS
dataset with the state-of-the-art methods. The proposed approach achieves 3%
improvement. In table 4.6 the results show performance of our and state-of-the-art
approach [11] in solving the within- (average of the diagonal of the confusion matrix,
Fig. 4.6) and across-camera (off-diagonal average) ReID using average precision.
Our approach shows up to 10% improvement in the across-camera ReID and up to
6% improvement in the within camera ReID.

To show how much meaningful the notion of centrality of constrained dominant
set is, we conduct an experiment on the MARS dataset computing the final ranking
using the membership score and pairwise distances. The confusion matrix in Fig. 4.6
shows the detail result of both the within cameras (diagonals) and across cameras
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Methods IDF1↑ IDP↑ IDR↑

Multi-Camera
[4] 47.3 59.6 39.2

Ours 50.9 63.2 42.6

Table 4.4: Multi-Camera performance of our and state-of-the-art approach [4] on
the Test-Hard sequence of DukeMTMC dataset.

Figure 4.6: The results show the performance of our algorithm on MARS (both
using CNN + XQDA) when the final ranking is done using membership score (left)
and using pairwise euclidean distance (right).

Methods rank 1
HLBP + XQDA 18.60
BCov + XQDA 9.20
LOMO + XQDA 30.70
BoW + KISSME 30.60
SDALF + DVR 4.10
HOG3D + KISSME 2.60
CNN + XQDA [11] 65.30
CNN + KISSME [11] 65.00
Ours 68.22

Table 4.5: The table shows the comparison (based on rank-1 accuracy) of our ap-
proach with the state-of-the-art approaches: SDALF [5], HLBP [6], BoW [7], BCov
[8], LOMO [9], HOG3D [10] on MARS dataset.

(off-diagonals), as we consider tracks from each camera as query. Given a query,
a set which contains the query is extracted using the constrained dominant set
framework. Note that constraint dominant set comes with the membership scores
for all members of the extracted set. We show in Figure 4.6 the results based on the
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Feature+Distance Methods Within Across

CNN + Eucl
[11] 0.59 0.28

Ours (PairwiseDist) 0.59 0.29
Ours (MembershipS) 0.60 0.29

CNN + KISSME
[11] 0.61 0.34

Ours (PairwiseDist) 0.64 0.41
Ours (MembershipS) 0.67 0.44

CNN + XQDA
[11] 0.62 0.35

Ours (PairwiseDist) 0.65 0.42
Ours (MembershipS) 0.68 0.45

Table 4.6: The results show performance of our(using pairwise distance and member-
ship score) and state-of-the-art approach [11] in solving within- and across-camera
ReID using average precision on MARS dataset using CNN feature and different
distance metrics.

final ranking obtained using membership scores (left) and using pairwise Euclidean
distance between the query and the extracted nodes(right). As can be seen from the
results in Table 4.6 (average performance) the use of membership score outperforms
the pairwise distance approach, since it captures the interrelation among targets.

4.4.3 Computational Time.

Figure 4.7 shows the time taken for each track - from 100 randomly selected (query)
tracks - to be associated, with the rest of the (gallery) tracks, running CDSC over
the whole graph (CDSC without speedup) and running it on a small portion of
the graph using the proposed approach (called FCDSC, CDSC with speedup). The
vertical axis is the CPU time in seconds and horizontal axis depicts the track IDs.
As it is evident from the plot,our approach takes a fraction of second (red points
in Fig. 4.7). Conversely, the CDSC takes up to 8 seconds for some cases (green
points in Fig. 4.7). Fig. 5.7 further elaborates how fast our proposed approach is
over CDSC, where the vertical axis represents the ratio between CDSC (numerator)
and FCDSC (denominator) in terms of CPU time. This ratio ranges from 2000 (the
proposed FCDSC 2000x faster than CDSC) to a maximum of above 4500.

4.5 Conclusions

In this chapter we presented a constrained dominant set (CDS) based framework
for solving multi-target tracking problem in multiple non-overlapping cameras. The
proposed method utilizes a three layers hierarchical approach, where within-camera
tracking is solved using first two layers of our framework resulting in tracks for
each person, and later in the third layer the proposed across-camera tracker merges
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Figure 4.7: CPU time taken for each track association using our proposed fast
approach (FCDSC - fast CDSC) and CDSC.
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Figure 4.8: The ratio of CPU time taken between CDSC and proposed fast approach
(FCDSC), computed as CPU time for CDSC/CPU time for FCDSC.

tracks of the same person across different cameras. Experiments on a challenging
real-world dataset (MOTchallenge DukeMTMCT) validate the effectivness of our
model.

We further perform additional experiments to show effectiveness of the proposed
across-camera tracking on one of the largest video-based people re-identification
datasets (MARS). Here each query is treated as a constraint set and its correspond-
ing members in the resulting constrained dominant set cluster are considered as
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possible candidate matches to their corresponding query.
There are few directions we would like to pursue in our future research. In this

work, we consider a static cameras with known topology but it is important for
the approach to be able to handle challenging scenario, were some views are from
cameras with ego motion (e.g., PTZ cameras or taken from mobile devices) with
unknown camera topology. Moreover, here we consider features from static images,
however, we believe video features which can be extracted using LSTM could boost
the performance and help us extend the method to handle challenging scenarios.





5
Large-scale Image Geo-Localization

Using Dominant Sets

Find your place on the planet. Dig
in, and take responsibility from
there.

Gary Snyder

5.1 Introduction

Image geo-localization, the problem of determining the location of an image us-
ing just the visual information, is remarkably difficult. Nonetheless, images often
contain useful visual and contextual informative cues which allow us to determine
the location of an image with variable confidence. The foremost of these cues are
landmarks, architectural details, building textures and colors, in addition to road
markings and surrounding vegetation.

Recently, the geo-localization through image-matching approach was proposed
in [183, 3]. In [183], the authors find the first nearest neighbor (NN) for each local
feature in the query image, prune outliers and use a heuristic voting scheme for
selecting the matched reference image. The follow-up work [3] relaxes the restriction
of using only the first NN and proposed Generalized Minimum Clique Problem
(GMCP) formulation for solving this problem. However, GMCP formulation can
only handle a fixed number of nearest neighbors for each query feature. The authors
used 5 NN, and found that increasing the number of NN drops the performance.
Additionally, the GMCP formulation selects exactly one NN per query feature. This
makes the optimization sensitive to outliers, since it is possible that none of the 5
NN is correct. Once the best NN is selected for each query feature, a very simple
voting scheme is used to select the best match. Effectively, each query feature votes
for a single reference image, from which the NN was selected for that particular
query feature. This often results in identical number of votes for several images
from the reference set. Then, both [183, 3] proceed with randomly selecting one
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reference image as the correct match to infer GPS location of the query image.
Furthermore, the GMCP is a binary-variable NP-hard problem, and due to the high
computational cost, only a single local minima solution is computed in [3].

In this chapter, we propose an approach to image geo-localization by robustly
finding a matching reference image to a given query image. This is done by finding
correspondences between local features of the query and reference images. We first
introduce automatic NN selection into our framework, by exploiting the discrimi-
native power of each NN feature and employing different number of NN for each
query feature. That is, if the distance between query and reference NNs is similar,
then we use several NNs since they are ambiguous, and the optimization is afforded
with more choices to select the correct match. On the other hand, if a query feature
has very few low-distance reference NNs, then we use fewer NNs to save the com-
putation cost. Thus, for some cases we use fewer NNs, while for others we use more
requiring on the average approximately the same amount of computation power, but
improving the performance, nonetheless. This also bypasses the manual tuning of
the number of NNs to be considered, which can vary between datasets and is not
straightforward.

Our approach to image geo-localization is based on Dominant Set clustering
(DSC) - a well-known generalization of maximal clique problem to edge-weighted
graphs- where the goal is to extract the most compact and coherent set. It’s intrigu-
ing connections to evolutionary game theory allow us to use efficient game dynamics,
such as replicator dynamics and infection-immunization dynamics (InImDyn). In-
ImDyn has been shown to have a linear time/space complexity for solving standard
quadratic programs (StQPs), programs which deal with finding the extrema of a
quadratic polynomial over the standard simplex [184, 49]. The proposed approach
is on average 200 times faster and yields an improvement of 20% in the accuracy
of geo-localization compared to [183, 3]. This is made possible, in addition to the
dynamics, through the flexibility inherent in DSC, which unlike the GMCP formu-
lation avoids any hard constraints on memberships. This naturally handles outliers,
since their membership score is lower compared to inliers present in the cluster.
Furthermore, our solution uses a linear relaxation to the binary variables, which in
the absence of hard constraints is solved through an iterative algorithm resulting in
massive speed up.

Since the dynamics and linear relaxation of binary variables allow our method
to be extremely fast, we run it multiple times to obtain several local maxima as
solutions. Next, we use a query-based variation of DSC to combine those solutions
to obtain a final robust solution. The query-based DSC uses the soft-constraint
that the query, or a group of queries, must always become part of the cluster, thus
ensuring their membership in the solution. We use a fusion of several global features
to compute the cost between query and reference images selected from the previous
step. The members of the cluster from the reference set are used to find the geo-
location of the query image. Note that, the GPS location of matching reference
image is also used as a cost in addition to visual features to ensure both visual
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similarity and geographical proximity.
GPS tagged reference image databases collected from user uploaded images on

Flickr have been typically used for the geo-localization task. The query images in
our experiments have been collected from Flickr, however, the reference images were
collected from Google Street View. The data collected through Flickr and Google
Street View differ in several important aspects: the images downloaded from Flickr
are often redundant and repetitive, where images of a particular building, land-
mark or street are captured multiple times by different users. Typically, popular
or tourist spots have relatively more images in testing and reference sets compared
to less interesting parts of the urban environment. An important constraint during
evaluation is that the distribution of testing images should be similar to that of
reference images. On the contrary, Google Street View reference data used in this
chapter contains only a single sample of each location of the city. However, Street
View does provide spherical 360◦ panoramic views, , approximately 12 meters apart,
of most streets and roads. Thus, the images are uniformly distributed over differ-
ent locations, independent of their popularity. The comprehensiveness of the data
ensures that a correct match exists; nonetheless, at the same time, the sparsity or
uniform distribution of the data makes geo-localization difficult, since every location
is captured in only few of the reference images. The difficulty is compounded by the
distorted, low-quality nature of the images as well.

The main contributions of this chapter are summarized as follows:

• We present a robust and computationally efficient approach for the problem of
large-scale image geo-localization by locating images in a structured database
of city-wide reference images with known GPS coordinates.

• We formulate geo-localization problem in terms of a more generalized form
of dominant sets framework which incorporates weights from the nodes in
addition to edges.

• We take a two-step approach to solve the problem. The first step uses local fea-
tures to find putative set of reference images (and is therefore faster), whereas
the second step uses global features and a constrained variation of dominant
sets to refine results from the first step, thereby, significantly boosting the
geo-localization performance.

• We have collected new and more challenging high resolution reference dataset
(WorldCities dataset) of 300K Google street view images.

The rest of the chapter is structured as follows. We present literature relevant to
our problem in Sec. 5.2, followed by technical details of the proposed approach in
Sec. 5.3, while constrained dominant set based post processing step is discussed in
Sec. 5.4. This is followed by dataset description in section 5.5.1. Finally, we provide
results of our extensive evaluation in Sec. 5.5 and conclude in Sec. 5.6.
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5.2 Related Work

The computer vision literature on the problem of geo-localization can be divided
into three categories depending on the scale of the datasets used: landmarks or
buildings [185, 186, 187, 188], city-scale including streetview data [189], and world-
wide [190, 191, 192]. Landmark recognition is typically formulated as an image
retrieval problem [185, 187, 188, 193, 194]. For geo-localization of landmarks and
buildings, Crandall et al. [195] perform structural analysis in the form of spatial
distribution of millions of geo-tagged photos. This is used in conjunction with visual
and meta data from images to geo-locate them. The datasets for this category con-
tain many images near prominent landmarks or images. Therefore, in many works
[185, 187], similar looking images belonging to same landmarks are often grouped
before geo-localization is undertaken.

For citywide geo-localization of query images, Zamir and Shah [183] performed
matching using SIFT features, where each feature votes for a reference image. The
vote map is then smoothed geo-spatially and the peak in the vote map is selected
as the location of the query image. They also compute ’confidence of localization’
using the Kurtosis measure as it quantifies the peakiness of vote map distribution.
The extension of this work in [3] formulates the geo-localization as a clique-finding
problem where the authors relax the constraint of using only one nearest neighbor
per query feature. The best match for each query feature is then solved using Gen-
eralized Minimum Clique Graphs, so that a simultaneous solution is obtained for all
query features in contrast to their previous work [183]. In similar vein, Schindler et
al. [196] used a dataset of 30,000 images corresponding to 20 kilometers of street-
side data captured through a vehicle using vocabulary tree. Sattler et al. [197]
investigated ways to explicitly handle geometric bursts by analyzing the geometric
relations between the different database images retrieved by a query. Arandjelovic´
et al. [198] developed a convolutional neural network architecture for place recog-
nition that aggregates mid-level (conv5) convolutional features extracted from the
entire image into a compact single vector representation amenable to efficient index-
ing. Torii et al. [199] exploited repetitive structure for visual place recognition, by
robustly detecting repeated image structures and a simple modification of weights
in the bag-of-visual-word model. Zeisl et al. [200] proposed a voting-based pose
estimation strategy that exhibits linear complexity in the number of matches and
thus facilitates to consider much more matches.

For geo-localization at the global scale, Hays and Efros [190] were the first to
extract coarse geographical location of query images using Flickr collected across
the world. Recently, Weyand et al. [192] pose the problem of geo-locating images
in terms of classification by subdividing the surface of the earth into thousands of
multi-scale geographic cells, and train a deep network using millions of geo-tagged
images. In the regions where the coverage of photos is dense, structure-from-motion
reconstruction is used for matching query images [201, 202, 203, 204]. Since the dif-
ficulty of the problem increases as we move from landmarks to city-scale and finally
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to worldwide, the performance also drops. There are many interesting variations to
the geo-localization problem as well. Sequential information such as chronological
order of photos was used by [205] to geo-locate photos. Similarly, there are methods
to find trajectory of a moving camera by geo-locating video frames using Bayesian
Smoothing [206] or geometric constraints [207]. Chen and Grauman [208] present
Hidden Markov Model approach to match sets of images with sets in the database for
location estimation. Lin et al. [209] use aerial imagery in conjunction with ground
images for geo-localization. Others [210, 211] approach the problem by matching
ground images against a database of aerial images. Jacob et al. [212] geo-localize a
webcam by correlating its video-stream with satellite weather maps over the same
time period. Skyline2GPS [213] uses street view data and segments the skyline in
an image captured by an upward-facing camera by matching it against a 3D model
of the city.

Feature discriminativity has been explored by [214], who use local density of de-
scriptor space as a measure of descriptor distinctiveness, i.e. descriptors which are in
a densely populated region of the descriptor space are deemed to be less distinctive.
Similarly, Bergamo et al. [215] leverage Structure from Motion to learn discrimi-
native codebooks for recognition of landmarks. In contrast, Cao and Snavely [216]
build a graph over the image database, and learn local discriminative models over the
graph which are used for ranking database images according to the query. Similarly,
Gronat et al. [217] train discriminative classifier for each landmark and calibrate
them afterwards using statistical significance measures. Instead of exploiting dis-
criminativity, some works use similarity of features to detect repetitive structures
to find locations of images. For instance, Torii et al. [218] consider a similar idea
and find repetitive patterns among features to place recognition. Similarly, Hao et
al. [219] incorporate geometry between low-level features, termed ’visual phrases’,
to improve the performance on landmark recognition.

Our work is situated in the middle category, where given a database of images
from a city or a group of cities, we aim to find the location where a test image was
taken from. Unlike landmark recognition methods, the query image may or may
not contain landmarks or prominent buildings. Similarly, in contrast to methods
employing reference images from around the globe, the street view data exclusively
contains man-made structures and rarely natural scenes like mountains, waterfalls
or beaches.

5.3 Image Matching Based Geo-Localization

Fig. 5.1 depicts the overview of the proposed approach. Given a set of reference
images, e.g., taken from Google Street View, we extract local features (hereinafter
referred as reference features) using SIFT from each reference image. We then
organize them in a k-means tree [220].

First, for each local feature extracted from the query image (hereinafter referred
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Figure 5.1: Overview of the proposed method.

as query feature), we dynamically collect nearest neighbors based on how distinctive
the two nearest neighbors are relative to their corresponding query feature. Then,
we remove query features, along with their corresponding reference features, if the
ratio of the distance between the first and the last nearest neighbor is too large
(Sec. 5.3.1). If so, it means that the query feature is not very informative for geo-
localization, and is not worth keeping for further processing. In the next step, we
formalize the problem of finding matching reference features to query features as a
DSC (Dominant Set Clustering) problem, that is, selecting reference features which
form a coherent and most compact set (Sec. 5.3.2). Finally, we employ constrained
dominant-set-based post-processing step to choose the best matching reference image
and use the location of the strongest match as an estimation of the location of the
query image (Sec. 5.4).

5.3.1 Dynamic Nearest Neighbor Selection and Query Fea-
ture Pruning

For each of N query features detected in the query image, we collect their corre-
sponding nearest neighbors (NN ). Let vim be the mth nearest neighbor of ith query
feature qi, and m ∈ N : 1 ≤ m ≤| NN i | and i ∈ N : 1 ≤ i ≤ N , where | · |
represents the set cardinality and NN i is the set of NNs of the ith query feature. In
this work, we propose a dynamic NNs selection technique based on how distinctive
two consecutive elements are in a ranked list of neighbors for a given query feature,
and employ different number of nearest neighbors for each query feature.

As shown in Algorithm (5), we add the (m + 1)th NN of the ith query feature,
vim+1 , if the ratio of the two consecutive NN is greater than θ, otherwise we stop.
In other words, in the case of a query feature which is not very discriminative, i.e.,
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Algorithm 5 Dynamic Nearest Neighbor Selection for ith query feature (qi)

Input: the ith query feature (qi) and all its nearest neighbors extracted from K-
means tree {vi1, vi2.......vi|NN i|}
Output: Selected Nearest Neighbors for the ith query feature (Vi)

1: procedure Dynamic NN Selection()
2: Initialize Vi = {vi1} and m=1
3: while m < |NN i| − 1 do

4: if ∥ξ(qi)−ξ(vim)∥
∥ξ(qi)−ξ(vim+1)∥

> θ then

5: Vi = Vi ∪ vim+1 ▷ If so, add vim+1 to our solution
6: m = m+ 1 ▷ Go to the next neighbor
7: else
8: Break ▷ If not, stop adding and exit
9: end if
10: end while
11: end procedure

most of its NNs are very similar to each other, the algorithm continues adding NNs
until a distinctive one is found. In this way, less discriminative query features will
use more NNs to account for their ambiguity, whereas more discriminative query
features will be compared with fewer NNs.
Query Feature Pruning. For the geo-localization task, most of the query features
that are detected from moving objects (such as cars) or the ground plane, do not
convey any useful information. If such features are coarsely identified and removed
prior to performing the feature matching, that will reduce the clutter and computa-
tion cost for the remaining features. Towards this end, we use the following pruning
constraint which takes into consideration distinctiveness of the first and the last

NN. In particular, if ∥ξ (qi)− ξ (vi1)∥ /
ξ (qi)− ξ (vi|NN i|

) > β, where ξ(·) repre-

sents an operator which returns the local descriptor of the argument node, then qi

is removed, otherwise it is retained. That is, if the first NN is similar to the last NN
(less than β), then the corresponding query feature along with its NNs are pruned
since it is expected to be uninformative.

We empirically set both thresholds, θ and β, in Algorithm (5) and pruning step,
respectively, to 0.7 and keep them fixed for all tests.

5.3.2 Multiple Feature Matching Using Dominant Sets

5.3.2.1 Similarity Function for Multiple Feature Matching

In our framework, the set of nodes, V , represents all NNs for each query feature
which survives the pruning step. The edge set is defined as E = {(vim, vjn) | i ̸= j},
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which signifies that all the nodes in G are connected as long as their corresponding
query features are not the same. The edge weight, ϖ : E −→ R+ is defined as
ϖ(vim, v

j
n) = exp(−∥ψ(vim)−ψ(vjn)∥2/2γ2), where ψ(·) represents an operator which

returns the global descriptor of the parent image of the argument node and γ is
empirically set to 27 . The edge weight, ϖ(vim, v

j
n), represents a similarity between

nodes vim and vjn in terms of the global features of their parent images. The node
score, ζ : V −→ R+, is defined as ζ(vim) = exp(−∥ξ(qi) − ξ(vim)∥2/2γ2). The node
score shows how similar the node vim is with its corresponding query feature in terms
of its local features.

Matching the query features to the reference features requires identifying the
correct NNs from the graph G which maximize the weight, that is, selecting a node
(NN) which forms a coherent (highly compact) set in terms of both global and local
feature similarities.

Affinity matrix B represents the global similarity among reference images, which
is built using GPS locations as a global feature and a node score b which shows how
similar the reference image is with its corresponding query feature in terms of their
local features. We formulate the following optimization problem, a more general
form of the dominant set formulation:

maximize f(x) = x⊤Bx+ b⊤x,
subject to x ∈ ∆.

(5.1)

The affinity B and the score b are computed as follows:

B(vim, v
j
n) =

{
ϖ(vim, v

j
n), for i ̸= j,

0, otherwise,
(5.2)

b(vim) = ζ(vim). (5.3)

General quadratic optimization problems, like (5.1), are known to be NP-hard
[221]. However, in relaxed form, standard quadratic optimization problems can be
solved using many algorithms which make full systematic use of data constellations.
Off-the-shelf procedures find a local solution of (5.1), by following the paths of
feasible points provided by game dynamics based on evolutionary game theory.

Interestingly, the general quadratic optimization problem can be rewritten in
the form of standard quadratic problem. A principled way to do that is to follow
the result presented in [222], which shows that maximizing the general quadratic
problem over the simplex can be homogenized as follows. Maximizing x⊤Bx +
b⊤x, subject to x ∈ ∆ is equivalent to maximizing x⊤Ax, subject to x ∈ ∆, where

A = B + eb⊤ + be⊤ and e =
n∑
i=1

ei = [1, 1, ....1], where ei denotes the ith standard

basis vector in Rn. This can be easily proved by noting that the problem is solved
in the simplex.

x⊤Bx+ 2 ∗ b⊤x = x⊤Bx+ b⊤x+ x⊤b,
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= x⊤Bx+ x⊤eb⊤x+ x⊤be⊤x,

= x⊤(B+ eb⊤ + be⊤)x,

= x⊤Ax.

As can be inferred from the formulation of our multiple NN feature match-
ing problem, DSC can be essentially used for solving the optimization problem.
Therefore, by solving DSC for the graph G, the optimal solution that has the most
agreement in terms of local and global features will be found.

5.4 Post Processing Using Constrained Dominant

Sets

Up to now, we devised a method to collect matching reference features corresponding
to our query features. The next task is to select one reference image, based on feature
matching between query and reference features, which best matches the query image.
To do so, most of the previous methods follow a simple voting scheme, that is, the
matched reference image with the highest vote is considered as the best match.

This approach has two important shortcomings. First, if there are equal votes for
two or more reference images (which happens quite often), it will randomly select
one, which makes it prone to outliers. Second, a simple voting scheme does not
consider the similarity between the query image and the candidate reference images
at the global level, but simply accounts for local matching of features. Therefore,
we deal with this issue by proposing a post processing step, which considers the
comparison of the global features of the images and employs constrained dominant
set, a framework that generalizes the dominant sets formulation and its variant
[35, 43].

In our post processing step, the user-selected query and the matched reference
images are related using their global features and a unique local solution is then
searched which contains the union of all the dominant sets containing the query. As
customary, the resulting solution will be globally consistent both with the reference
images and the query image and due to the notion of centrality, each element in the
resulting solution will have a membership score, which depicts how similar a given
reference image is with the rest of the images in the cluster. So, by virtue of this
property of constrained dominant sets, we will select the image with the highest
membership score as the final best matching reference image and approximate the
location of the query with the GPS location of the best matched reference image.

In this section, we review the basic definitions and properties of constrained
dominant sets, as introduced in [53]. Given a user specified query, Q ⊆ V̂ , we define
the graph Ĝ = (V̂ , Ê, ŵ), where the edges are defined as Ê = {(i, j)|i ̸= j, {i, j} ∈
DSn∨(i ∈ Q∨j ∈ Q)}, i.e., all the nodes are connected as long as they do not belong
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to different local maximizers, DSn, which represents the nth extracted dominant set.
The set of nodes V̂ represents all matched reference images (local maximizers) and
query image, Q. The edge weight ŵ : Ê → R+ is defined as:

ŵ(i, j) =

⎧⎪⎨⎪⎩
ρ(i, j), for i ̸= j, i ∈ Q ∨ j ∈ Q,
An(i, j), for i ̸= j, {i, j} ∈ DSn,
0, otherwise

where ρ(i, j) is an operator which returns the global similarity of two given images i
and j, that is, ρ(i, j) = exp(−∥ψ(i)− ψ(j)∥2/2γ2), An represents a sub-matrix of A,
which contains only members of DSn, normalized by its maximum value and finally
An(i, j) returns the normalized affinity between the ith and jth members of DSn.
The graph Ĝ can be represented by an n× n affinity matrix Â = (ŵ(i, j)), where n
is the number of nodes in the graph.

Given a parameter α > 0, let us define the following parameterized variant of
program (1.4):

maximize fαQ(x) = x⊤(Â− αÎQ)x,
subject to x ∈ ∆,

(5.4)

where ÎQ is the n × n diagonal matrix whose diagonal elements are set to 1 in
correspondence to the vertices contained in V̂ \ Q (a set V̂ without the element Q)
and to zero otherwise.

Let Q ⊆ V̂ , with Q ≠ ∅ and let α > λmax(ÂV̂ \Q), where λmax(ÂV̂ \Q) is the largest

eigenvalue of the principal submatrix of Â indexed by the elements of V̂ \ Q. If x is
a local maximizer of fαQ in ∆, then σ(x) ∩ Q ̸= ∅. A complete proof can be found
in 1.3.

The above result provides us with a simple technique to determine dominant-set
clusters containing user-specified query vertices. Indeed, if Q is a vertex selected by
the user, by setting

α > λmax(ÂV̂ \Q), (5.5)

we are guaranteed that all local solutions of (5.4) will have a support that necessarily
contains elements of Q.

The performance of our post processing may vary dramatically among queries
and we do not know in advance which global feature plays a major role. Figs. 5.2
and 5.3 show illustrative cases of different global features. In the case of Fig. 5.2,
HSV color histograms and GIST provide a wrong match (dark red node for HSV
and dark green node for GIST), while both CNN-based global features (CNN6 and
CNN7) matched it to the right reference image (yellow node). The second example,
Fig. 5.3, shows us that only CNN6 feature localized it to the right location while the
others fail. Recently, fusing different retrieval methods has been shown to enhance
the overall retrieval performance [223, 224].

Motivated by [223] we dynamically assign a weight, based on the effectiveness of
a feature, to all global features based on the area under normalized score between
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Figure 5.2: Exemplar output of the dominant set framework: Left: query, Right:
each row shows corresponding reference images from the first, second and third local
solutions (dominant sets), respectively, from top to bottom. The number under each
image shows the frequency of the matched reference image, while those on the right
side of each image show the min-max normalized scores of HSV, CNN6, CNN7 and
GIST global features, respectively. The filled colors circles on the upper right corner
of the images are used as reference IDs of the images.

the query and the matched reference images. The area under the curve is inversely
proportional to the effectiveness of a feature. More specifically, let us suppose to
have G global features and the distance between the query and the jth matched
reference image ( Nj), based on the ith global feature (Gi), is computed as: f ji =
ψi(Q) − ψi(Nj), where ψi(·) represents an operator which returns the ith global
descriptor of the argument node. Let the area under the normalized score of fi be

Ai. The weight assigned for feature Gi is then computed as wi =
1
Ai
/

|G|∑
j=1

1
Aj
.

Figs. 5.2 and 5.3 show illustrative cases of some of the advantages of having
the post processing step. Both cases show the disadvantage of localization following
heuristic approaches, as in [183, 3], to voting and selecting the reference image that
matches to the query. In each case, the matched reference image with the highest
number of votes (shown under each image) is the first node of the first extracted
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Figure 5.3: Exemplar output of the dominant set framework: Left: query, Right:
each row shows corresponding reference images of the first, second and third local
solutions (dominant sets), respectively, from top to bottom. The number under each
image shows the mode of the matched reference image, while those on the right of
each image show the min-max normalized scores of HSV, CNN6, CNN7 and GIST
global features, respectively.

dominant set, but represents a wrong match. Both cases (Figs. 5.2 and 5.3) also
demonstrate that the KNN-based matching may lead to a wrong localization. For
example, by choosing HSV histogram as a global feature, the KNN approach chooses
as best match the dark red node in Fig. 5.2 and the yellow node in Fig. 5.3 (both
with min-max value to 1.00). Moreover, it is also evident that choosing the best
match using the first extracted local solution (i.e., the light green node in Fig. 5.2
and blue node in Fig. 5.3), as done in [3], may lead to a wrong localization, since one
cannot know in advance which local solution plays a major role. In fact, in the case
of Fig. 5.2, the third extracted dominant set contains the right matched reference
image (yellow node), whereas in the case of Fig. 5.3 the best match is contained in
the first local solution (the light green node).

The similarity between query Q and the corresponding matched reference images
is computed using their global features such as HSV histogram, GIST [225] and
CNN (CNN6 and CNN7 are Convolutional Neural Network features extracted from
ReLU6 and FC7 layers of pre-trained network, respectively [226]). For the different
advantages and disadvantages of the global features, we refer interested readers to
[3].
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Figure 5.4: Exemplar graph for post processing. Top left: reduced graph for Fig.
5.2 which contains unique matched reference images. Bottom left: Part of the full
graph which contains the gray circled nodes of the reduced graph and the query.
Top right: corresponding affinity of the reduced graph. Bottom right: The
outputs of nearest neighbor approach, consider only the node’s pairwise similar-
ity, (KNN(Q)=node 3 which is the dark red node) and constrained dominant sets
approach (CDS(Q) = node 2 which is the yellow node).

Fig. 5.2 shows the top three extracted dominant sets with their corresponding
frequency of the matched reference images (at the bottom of each image). Let Fi be
the number (cardinality) of local features, which belongs to ith reference image from
the extracted sets and the total number of matched reference images be N . We

build an affinity matrix Â of size S =
N∑
i=1

Fi+1 (e.g., for the example in Fig. 5.2, the

size S is 19 ). Fig. 5.4 shows the reduced graph for the matched reference images
shown in Fig. 5.2. Fig. 5.4 upper left, shows the part of the graph for the post
processing. It shows the relation that the query has with matched reference images.
The bottom left part of the figure shows how one can get the full graph from the
reduced graph. For the example in Fig. 5.4, V̂ = {Q, 1, 2, 2, 2, 3, 4, 4.......6}.

The advantages of using constrained dominant sets are numerous. First, it pro-
vides a unique local (and hence global) solution whose support coincides with the
union of all dominant sets of Ĝ, which contains the query. Such solution contains
all the local solutions which have strong relation with the user-selected query. As
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it can be observed in Fig. 5.4 (bottom right), the Constrained Dominant Set which
contains the query Q, CDS(Q), is the union of all overlapping dominant sets (the
query, one green, one dark red and three yellow nodes) containing the query as one
of the members. If we assume to have no cyan link between the green and yellow
nodes, as long as there is a strong relation between the green node and the query,
CDS(Q) will not be affected. In addition, due to the noise, the strong affinity be-
tween the query and the green node may be reduced, while still keeping the strong
relation with the cyan link which, as a result, will preserve the final result. Second,
in addition to fusing all the local solutions leveraging the notion of centrality, one
of the interesting properties of dominant set framework is that it assigns to each
image a score corresponding to how similar it is to the rest of the images in the solu-
tion. Therefore, not only it helps selecting the best local solution, but also choosing
the best final match from the chosen local solution. Third, an interesting property
of constrained dominant sets approach is that it not only considers the pairwise
similarity of the query and the reference images, but also the similarity among the
reference images. This property helps the algorithm avoid assignment of wrong high
pairwise affinities. As an example, with reference to Fig. 5.4, if we consider the
nodes pairwise affinities, the best solution will be the dark red node (score 1.00).
However, using constrained dominant sets and considering the relation among the
neighbors, the solution bounded by the red dotted rectangle can be found, and by
choosing the node with the highest membership score, the final best match is the
yellow node which is more similar to the query image than the reference image
depicted by the dark red node (see Fig. 5.2).

5.5 Experimental Results

5.5.1 Dataset Description

We evaluate the proposed algorithm using publicly available reference data sets of
over 102k Google street view images [3] and a new dataset, WorldCities, of high
resolution 300k Google street view images collected for this work. The 360 degrees
view of each place mark is broken down into one top and four side view images. The
WorldCities dataset is publicly available. 1

The 102k Google street view images dataset covers 204 Km of urban streets and
the place marks are approximately 12 m apart. It covers downtown and the neigh-
boring areas of Orlando, FL; Pittsburgh, PA and partially Manhattan, NY. The
WorldCities dataset is a new high resolution reference dataset of 300k street view
images that covers 14 different cities from different parts of the world: Europe (Am-
sterdam, Frankfurt, Rome, Milan and Paris), Australia (Sydney and Melbourne),
USA (Vegas, Los Angeles, Phoenix, Houston, San Diego, Dallas, Chicago). Exis-

1http://www.cs.ucf.edu/∼haroon/UCF-Google-Streetview-II-Data/
UCF-Google-Streetview-II-Data.zip

http://www.cs.ucf.edu/~haroon/UCF-Google-Streetview-II-Data/UCF-Google-Streetview-II-Data.zip
http://www.cs.ucf.edu/~haroon/UCF-Google-Streetview-II-Data/UCF-Google-Streetview-II-Data.zip
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Figure 5.5: The top four rows are sample street view images from eight different
places of WorldCities dataset. The bottom two rows are sample user uploaded
images from the test set.

tence of similarity in buildings around the world, which can be in terms of their
wall designs, edges, shapes, color etc, makes the dataset more challenging than the
other. Fig. 5.5 (top four rows) shows sample reference images taken from different
place marks.

For the test set, we use 644 and 500 GPS-tagged user uploaded images down-
loaded from Picasa, Flickr and Panoramio for the 102k Google street view images
and WorldCities datasets, respectively. Fig. 5.5 (last two rows) shows sample
test images. Throughout our experiment, we use the all the reference images from
around the world to find the best match with the query image, not just with the
ground truth city only.

5.5.2 Quantitative Comparison With Other Methods

5.5.2.1 Performance on the 102k Google Street View Images Dataset

The proposed approach has been then compared with the results obtained by state-
of-the-art methods. In Fig. 5.6, the horizontal axes shows the error threshold in
meters and the vertical axes shows the percentage of the test set localized within a
particular error threshold. Since the scope of this work is an accurate image local-
ization at a city-scale level, test set images localized above 300 meter are considered
a failure.

The black (-*-) curve shows localization result of the approach proposed in [196]
which uses vocabulary tree to localize images. The red (-o-) curve depicts the
results of [183] where they only consider the first NN for each query feature as
best matches which makes the approach very sensitive to the query features they
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select. Moreover, their approach suffers from lacking global feature information.
The green (-o-) curve illustrates the localization results of [3] which uses generalized
maximum clique problem (GMCP) to solve feature matching problem and follows
voting scheme to select the best matching reference image. The black (-o- and
−♢−) curves show localization results of MAC and RMAC, (regional) maximum
activation of convolutions ([227, 228]). These approaches build compact feature
vectors that encode several image regions without the need to feed multiple inputs
to the network. The cyan (-o-) curve represents localization result of NetVLAD [198]
which aggregates mid-level (conv5) convolutional features extracted from the entire
image into a compact single vector representation amenable to effici,ent indexing.
The cyan (−♢−) curve depicts localization result of NetVLAD but finetuned on our
dataset. The blue (−♢−) curve show localizaton result of approach proposed in
[197] which exploits geometric relations between different database images retrieved
by a query to handle geometric burstness. The blue (-o-) curve shows results from
our baseline approach, that is, we use voting scheme to select best match reference
image and estimate the location of the query image. We are able to make a 10%
improvement w.r.t the other methods with only our baseline approach (without
post processing). The magenta (-o-) curve illustrates geo-localization results of
our proposed approach using dominant set clustering based feature matching and
constrained dominant set clustering based post processing. As it can be seen, our
approach shows about 20% improvement over the state-of-the-art techniques.
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Figure 5.6: Comparison of our baseline (without post processing) and final method,
on overall geo-localization results, with state-of-the-art approaches on the first
dataset (102K Google street view images).
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Computational Time. Fig. 5.7, on the vertical axis, shows the ratio between
GMCP (numerator) and our approach (denominator) in terms of CPU time taken
for each query images to be localized. As it is evident from the plot, this ratio can
range from 200 (our approach 200x faster than GMCP) to a maximum of even 750x
faster.
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Figure 5.7: The ratio of CPU time taken between GMCP based geo-localization [3]
and our approach, computed as CPU time for GMCP/CPU time for DSC.

5.5.2.2 Performance on the WorldCities Dataset

We have also compared the performance of different algorithms on the new dataset
of 300k Google street view images created by us. Similarly to the previous tests,
Fig. 5.8 reports the percentage of the test set localized within a particular error
threshold. Since the new dataset is relatively more challenging, the overall perfor-
mance achieved by all the methods is lower compared to 102k image dataset.

From bottom to top of the graph in Fig. 5.8 we present the results of [227, 228]
black (−♢− and -o-), [197] blue (−♢−), [183] red (-o-), [198] cyan (-o-), fine tuned
[198] cyan (−♢−), [3] green (-o-), our baseline approach without post processing blue
(-o-) and our final approach with post processing magenta (-o-) . The improvements
obtained with our method are lower than in the other dataset, but still noticeable
(around 2% for the baseline and 7% for the final approach).

Some qualitative results for Pittsburgh, PA are presented in Fig. 5.9.
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Figure 5.8: Comparison of overall geo-localization results using DSC with and with-
out post processing and state-of-the-art approaches on the WorldCities dataset.

Figure 5.9: Sample qualitative results taken from Pittsburgh area. The green ones
are the ground truth while yellow locations indicate our localization results.
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5.5.3 Analysis

5.5.3.1 Outlier Handling

In order to show that our dominant set-based feature matching technique is robust in
handling outliers, we conduct an experiment by fixing the number of NNs (disabling
the dynamic selection of NNs) to different numbers. It is obvious that the higher the
number of NNs are considered for each query feature, the higher will be the number
of outlier NNs in the input graph, besides the increased computational cost and an
elevated chance of query features whose NNs do not contain any inliers surviving
the pruning stage.

Fig. 5.10 shows the results of geo-localization obtained by using GMCP and
dominant set based feature matching on 102K Google street view images [3]. The
graph shows the percentage of the test set localized within the distance of 30 meters
as a function of number of NNs. The blue curve shows the results using dominant
sets: it is evident that when the number of NNs increases, the performance improves
despite the fact that more outliers are introduced in the input graph. This is mainly
because our framework takes advantage of the few inliers that are added along with
many outliers. The red curve shows the results of GMCP based localization and as
the number of NNs increase the results begin to drop. This is mainly due to the fact
that their approach imposes hard constraint that at least one matching reference
feature should be selected for each query feature whether or not the matching feature
is correct.
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Figure 5.10: Geo-localization results using different number of NN
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5.5.3.2 Effectiveness of the Proposed Post Processing

In order to show the effectiveness of the post processing step, we perform an exper-
iment comparing our constrained dominant set based post processing with a simple
voting scheme to select the best matching reference image. The GPS information
of the best matching reference image is used to estimate the location of the query
image. In Fig. 5.12, the vertical axis shows the percentage of the test set local-
ized within a particular error threshold shown in the horizontal axis (in meters).
The blue and magenta curves depict geo-localization results of our approach using a
simple voting scheme and constrained dominant sets, respectively. The green curve
shows the results from GMCP based geo-localization. As it is clear from the results,
our approach with post processing exhibits superior performance compared to both
GMCP and our baseline approach.

Since our post-processing algorithm can be easily plugged in to an existing re-
trieval methods, we perform another experiment to determine how much improve-
ment we can achieve by our post processing. We use [199, 227, 228] methods to
obtain candidate reference images and employ as an edge weight the similarity score
generated by the corresponding approaches. Table 5.1 reports, for each dataset, the
first row shows rank-1 result obtained from the existing algorithms while the second
row (w post) shows rank-1 result obtained after adding the proposed post-processing
step on top of the retrieved images. For each query, we use the first 20 retrieved
reference images. As the results demonstrate, Table 5.1, we are able to make up
to 7% and 4% improvement on 102k Google street view images and WorldCities
datasets, respectively. We ought to note that, the total additional time required to
perform the above post processing, for each approach, is less than 0.003 seconds on
average.

NetVLAD NetVLAD* RMAC MAC

Dts 1
Rank1 49.2 56.00 35.16 29.00
w post 51.60 58.05 40.18 36.30

Dts 2
Rank1 50.00 50.61 29.96 22.87
w post 53.04 52.23 33.16 26.31

Table 5.1: Results of the experiment, done on the 102k Google street view images
(Dts1) and WorldCities (Dts2) datasets, to see the impact of the post-processing
step when the candidates of reference images are obtained by other image retrieval
algorithms

The NetVLAD results are obtained from the features generated using the best
trained model downloaded from the author’s project page [199]. It’s fine-tuned
version (NetVLAD*) is obtained from the model we fine-tuned using images within
24m range as a positive set and images with GPS locations greater than 300m as a
negative set.
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Figure 5.11: Comparison of geo-localization results using different global features
for our post processing step.

The MAC and RMAC results are obtained using MAC and RMAC representa-
tions extracted from fine-tuned VGG networks downloaded from the authors web-
page [227, 228].

5.5.3.3 Assessment of Global Features Used in Post Processing Step

The input graph for our post processing step utilizes the global similarity between the
query and the matched reference images. Wide variety of global features can be used
for the proposed technique. In our experiments, the similarity between query and the
corresponding matched reference images is computed between their global features,
using HSV, GIST, CNN6, CNN7 and fine-tuned NetVLAD. The performance of the
proposed post processing technique highly depends on the discriminative ability of
the global features used to built the input graph.

Depending on how informative the feature is, we dynamically assign a weight for
each global feature based on the area under the normalized score between the query
and the matched reference images. To show the effectiveness of this approach,
we perform an experiment to find the location of our test set images using both
individual and combined global features. Fig. 5.11 shows the results attained by
using fine-tuned NetVLAD, CNN7, CNN6, GIST, HSV and by combining them
together. The combination of all the global features outperforms the individual
feature performance, demonstrating the benefits of fusing the global features based
on their discriminative abilities for each query.
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Figure 5.12: The effectiveness of constrained dominant set based post processing
step over simple voting scheme.

5.6 Conclusion and Future Work

In this chapter, we proposed a novel framework for city-scale image geo-localization.
Specifically, we introduced dominant set clustering-based multiple NN feature match-
ing approach. Both global and local features are used in our matching step in order
to improve the matching accuracy. In the experiments, carried out on two large
city-scale datasets, we demonstrated the effectiveness of post processing employing
the novel constrained dominant set over a simple voting scheme. Furthermore, we
showed that our proposed approach is 200 times, on average, faster than GMCP-
based approach [3]. Finally, the newly-created dataset (WorldCities) containing
more than 300k Google Street View images used in our experiments will be made
available to the public for research purposes.

As a natural future direction of research, we can extend the results of this work
for estimating the geo-spatial trajectory of a video in a city-scale urban environment
from a moving camera with unknown intrinsic camera parameters.





6
Conclusion

I think and think for months and
years. Ninety-nine times, the
conclusion is false. The hundredth
time I am right.

Albert Einstein

This thesis proposes a robust similarity-based clustering technique, based on
graph and game theoretic principles, and have demonstrated its applicability to
many problems in computer vision such as interactive image segmentation and co-
segmentation (in both the unsupervised and the interactive flavor), multi-target
tracking in multiple non-overlapping cameras, geo-localization, person re-identification
and retrieval. The proposed clustering approach is with many interesting proper-
ties such as: it does clustering while obliterating outliers in simultaneous fashion,
it doesn’t need any a prior knowledge on the number of clusters, able to deal with
compact clusters and with situations involving arbitrarily-shaped clusters in a con-
text of heavy background noise, does not have any assumptions with the structure
of the affinity matrix, it is fast and scalable to large scale problems, and others.

The proposed constrained dominant set clustering technique, which is based on
some properties of a family of quadratic optimization problems related to dominant
sets, generalizes the dominant sets framework in that putting the regularization
parameter to zero results local solutions that are in one-to-one correspondence with
dominant sets. In particular, we show that by properly selecting a regularization
parameter that controls the structure of the underlying function, we are able to
“force” all solutions to contain the constraint elements. We provide bounds that
allow us to control this process, which are based on the spectral properties of certain
submatrices of the original affinity matrix. This provides us with an increased in
flexibility. A modification in adding a stopping criteria in the sequential search of
clusters enables us to have an algorithm for simultaneous clustering and outliers
detection (SCOD). Unlike most of the previous approaches, the method requires
no prior knowledge on both the number of clusters and outliers, which makes our
approach more convenient for real application. Moreover, our proposed algorithm
is simple to implement and is highly scalable.
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One of the best known class of game dynamics to extract (constrained) dominant
set from a graph is the so-called replicator dynamics whose computational complex-
ity is quadratic per step which makes it handicapped for large-scale applications.
In this thesis, we propose a fast algorithm, based on dynamics from evolutionary
game theory, which is efficient and scalable to large-scale real world applications.
Running any of the dynamics just extracts one (constrained) dominant set at a
time. So, if we want to find more than one (constrained) dominant set, we have
to apply a restarting strategy and run the dynamics again from another state in
the simplex hoping not to converge again towards the same equilibrium. A further
option is to adopt a peeling-off strategy, where we remove the nodes in the support
of the extracted equilibrium and run the dynamics again on the rest of the nodes.
This way, however, there is no guarantee that the clusters extracted after the very
first one still correspond to ESSs of the original problem. In the constrained dom-
inant set formulation, properly selecting a regularization parameter enable us to
enumerate the (constrained) dominant sets, and therefore the clusters of the origi-
nal problem, by iteratively rendering unstable under the evolutionary dynamics the
equilibria that have been already extracted without affecting the set of remaining
(constrained) dominant sets. Moreover, we apply our idea also to the enumeration of
(constrained) maximal cliques of a graph. It enabled us to obtain good performances
on both random graph instances and DIMACS benchmark graphs.

The applicability of the proposed similarity-based clustering technique has been
shown in different chapters of the thesis with extensive experiments on benchmark
datasets which have shown that our approach considerably improves the state-of-
the-art results on the many different problems addressed. This provides evidence
that the proposed techniques hold promise as a powerful and principled framework
to address a large class of vision problems. Chapter four of the thesis shows how CDS
is used to constrain the diffusion process locally to improve the performance of any
retrieval systems. The framework alleviates the limitations of existing approaches
while improving the state-of-the- art results. Moreover, it solves an open computer
vision and machine learning issue which is automatically selecting a reasonable local
neighborhood size [132]. In chapter three of the thesis, CDS is applied effectively
to the problem of ”constrained” segmentation. By exploiting high-level, semantic
knowledge on the part of the user, which is typically difficult to formalize, it is able
to effectively solve segmentation problems which would be otherwise too complex to
be tackled using fully automatic segmentation algorithms. The resulting algorithm,
unlike other state-of-the-art approaches, can deal naturally with any type of input
modality, including scribbles, sloppy contours, and bounding boxes, and is able to
robustly handle noisy annotations on the part of the user, (in the case of interactive
co-segmentation) it needs smaller user interactions in that the user can put scribbles
only on the object of some of the images. The last two chapters of the thesis use CDS
effectively to solve geo-localization, Multi-Target Multi-Person Tracking in Multiple
Non-overlapping Cameras and Person Re -Identification. In all the applications we
were able to improve the state-of-the-art results by a large margin.
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Evaluating CDS on Random graphs

and DIMACS benchmark graphs

Idleness is an appendix to nobility.

Robert Burton

A.1 Experiments on random graphs

Here, we extend the experiments which evaluate the performance of CDS on both
random and DIMACS benchmark graphs.

Our first set of experiments involve randomly generated graphs with varying den-
sities and sizes. In order to verify the correctness of our claim, we needed to output
all maximal cliques of a given graph and, due to the computational complexity of
this problem (which is NP-complete even to approximate), we could work only on
moderate-sized graphs. In particular, we generated graphs with sizes ranging from
50 to 80 (in steps of 10) and densities δ ∈ {0.2, 0.4, 0.5, 0.6}. For each pair (n, δ) we
generated 30 instances of random graphs with the prescribed size-density value. So,
overall, 480 random graphs were generated in this set of experiments. To enumerate
all maximal cliques for a given graph, say C1, C2, .....CL, we used the Bron-Kerbosch
algorithm, a well-known exact algorithm which uses a recursive backtracking proce-
dure [229].

Note that, as Case 2 is a simple generalization of Case 1, we evaluated our
conjecture only for two different situations, namely Case 2 and Case 3.

As for Case 2, the procedure we used is as follows:

1. From the L maximal cliques found by the Bron-Kerbosch algorithm, select one
randomly, say Ci, and take a fraction of its elements to form the set S (the
parameter φ represents the percentage of selected elements).

2. Collect all the maximal cliques which contain the set S and compute the union
UBK = K1 ∪ K1 ∪ ..... ∪ KP .
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3. Run our algorithm using the selected set S, and let O be its output (namely,
the support of the converged solution).

4. Compute FC as follows:

FC =
|O ∩ UBK|2

|UBK| ∗ |O|

Observe that FC = 1 if and only if the two sets are identical which implies that
our conjecture is verified.

As for Case 3, the procedure we used is as follows:

1. From the L maximal cliques found by the Bron-Kerbosch algorithm, select
two randomly, say Ci and Cj, and take a fraction φ of their elements to form
the sets Si and Sj.

2. Take the set S as the union of the two sets, i.e S = Si ∪ Sj.

3. Run our algorithm using the selected set S, and let O be its output (namely,
the support of the converged solution).

4. Denote by So the set of elements of O that are also in S.

5. Collect all the maximal cliques which contain the set So and compute the
union UBK = K1 ∪ K1 ∪ ..... ∪ KP .

6. Compute FC as follows:

FC =
|O ∩ UBK|2

|UBK| ∗ |O|

7. Repeat the process setting the set S as S \ So

As noted above, again note that FC = 1 if and only if the two sets are identical.
We also used another measure, FM, computed as

FM =
|Ci|
|O|

which has some interesting properties. Increasing φ, the fraction of clique elements
chosen randomly, the number of maximal cliques L which contain the chosen set
S decreases. This in turn implies that FM goes to 1. Remember that Ci is the
randomly selected maximal clique from which S is built. Further, in our experiments
we also measured the number of maximal cliques, denoted by N(cliq), which contain
the given set S.

Figures A.1 and A.2 show the average behavior of our measures, together with
the corresponding error bars, as a function of the fraction of the vertices chosen
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randomly from the cliques (namely, φ). Observe that in all our experiments we
got FC = 1 (as reflected by the constant behavior of the FC plots and the zero
variance) which confirms the validity of our claim.

Note also that as expected the FM measure goes from small fractions to 1, and
the N(cliq) measure and its variance V(N Cliq) start with very high value which
goes down to 1 and 0, respectively, as φ gets increased. These confirm that given a
maximal clique, the algorithm converges to the same maximal clique.

Next, we tested our claim over edge-weighted (random) graphs. We generated
them by slightly (randomly) perturbing the entries of the adjacency matrices of
original (unweighted) graphs used in the previous set of experiments, in such a way
that their maximal cliques corresponded to the dominant sets in their weighted
versions. (This can easily be done using the convergence properties of replicator
dynamics [35].) This allowed us to know all dominant sets of these graphs and
hence compute our measures as we did before.

Figures A.3 and A.4 show the average behavior of our measures, together with the
corresponding error bars, as a function of the fraction of the vertices chosen randomly
from the cliques (namely, φ). Again, bbserve that in all our experiments we got
FC = 1 (as reflected by the constant behavior of the FC plots and the zero variance)
which confirms the validity of our claim. The behavior of the other measures is also
consistent with the results obtained on the unweighted case.

As for computational time, given the affinity matrix and the set S, in all the
experiments done, the algorithm took only a fraction of milliseconds to converge.

A.2 Experiments on DIMACS benchmark graphs

In order to be able to enumerate all maximal cliques using the Bron-Kerbosch algo-
rithm, we generated a number of moderate-sized brock graphs using the generator
available on the DIMACS website 1 and repeated the experiments we described be-
fore for random (unweighted and weighted) graphs. The results are shown in Figures
A.5 and A.6, and again they confirm our conjecture as evinced from the constant
value (and zero variance) of the FC measure.

1http://iridia.ulb.ac.be/∼fmascia/maximum clique/DIMACS-benchmark
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Figure A.1: Performance of the algorithm on randomly generated (unweighted) graphs
(part I).
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Figure A.2: Performance of the algorithm on randomly generated (unweighted) graphs
(part II).
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Figure A.3: Performance of the algorithm on randomly generated (weighted) graphs (part
I).
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Figure A.4: Performance of the algorithm on randomly generated (weighted) graphs (part
II).
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Figure A.5: Performance of the algorithm on moderate-sized brock DIMACS graphs.
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Figure A.6: Performance of the algorithm on moderate-sized brock (weighted) DIMACS
graphs.
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[26] Piotr Bojanowski, Rémi Lajugie, Edouard Grave, Francis R. Bach, Ivan
Laptev, Jean Ponce, and Cordelia Schmid. Weakly-supervised alignment of
video with text. In ICCV, pages 4462–4470, 2015.

[27] Armand Joulin, Kevin D. Tang, and Fei-Fei Li. Efficient image and video
co-localization with frank-wolfe algorithm. In ECCV, pages 253–268, 2014.

[28] Guillaume Seguin, Piotr Bojanowski, Rémi Lajugie, and Ivan Laptev.
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[135] Stéphane Lafon and Ann B. Lee. Diffusion maps and coarse-graining: A
unified framework for dimensionality reduction, graph partitioning, and data
set parameterization. IEEE Trans. Pattern Anal. Mach. Intell., 28(9):1393–
1403, 2006.

[136] Martin Szummer and Tommi S. Jaakkola. Partially labeled classification with
markov random walks. In NIPS, pages 945–952, 2001.
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