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Abstract
The Globaltest is a powerful test for the global null hypothesis that there is
no association between a group of features and a response of interest, which
is popular in pathway testing in metabolomics. Evaluating multiple feature
sets, however, requires multiple testing correction. In this paper, we propose a
multiple testing method, based on closed testing, specifically designed for the
Globaltest. The proposed method controls the familywise error rate simultane-
ously over all possible feature sets, and therefore allows post hoc inference, that
is, the researcher may choose feature sets of interest after seeing the data with-
out jeopardizing error control. To circumvent the exponential computation time
of closed testing, we derive a novel shortcut that allows exact closed testing to
be performed on the scale of metabolomics data. An R package ctgt is avail-
able on comprehensive R archive network for the implementation of the shortcut
procedure, with applications on several real metabolomics data examples.
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1 INTRODUCTION

In high-dimensional data, features may often be meaning-
fully taken together in sets or groups. This is especially
true in metabolomics, where metabolic pathways are sets
of functionally associatedmetabolites. Analysis in the con-
text of pathways provides mechanistic insights into the
underlying biology (Xia et al., 2015).
Manymethods have beenproposed for feature set testing

(Mathur et al., 2018); a popular one is Globaltest (Goeman
et al., 2004), which is locally most powerful on average in
a neighborhood of the null hypothesis and remains valid
and powerful in high-dimensional data withmore features
than observations (Goeman et al., 2006). Furthermore, it
adapts to the correlation structure of data. In Metabo-
Analyst (Xia et al., 2015), a web-based analytical pipeline
for metabolomics data, Globaltest is the default testing
method for pathway analysis.

When many feature sets are tested, multiple testing cor-
rection is necessary. We followMeijer and Goeman (2016),
who argued that familywise error rate (FWER) is more
appropriate for feature set testing than false discovery rate
(FDR), which can be difficult to interpret when feature
sets are nested. To control FWER for multiple Globaltests,
several methods have been proposed based on a Bonfer-
roni correction, such as the Focus Level (FL) procedure
(Goeman and Mansmann, 2008), Directed Acyclic Graph
(DAG) (Meijer and Goeman, 2015), and Structured Holm
(SH; Meijer and Goeman, 2016). All these methods control
FWER for a collection of feature sets thatmust be specified
before the data were seen.
The most common feature set testing in metabolomics

is pathway testing. With the development of high-
throughput technologies, there have been a surge of
metabolic pathway databases, such as “KEGG,” “Bio-
cyc,” and “Wiki.” These databases are different from each
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TABLE 1 FWER for different methods (DAG, FL, and SH at level 5%) per database and simultaneously over all databases

Database KEGG Biocyc SMPDB Biofunction Protein Wiki Overall
No. of pathways 16 18 4 8 12 7 65
DAG 3.9% 3.5% 4.5% 3.4% 4.4% 3.0% 11.9%
FL 3.8% 3.6% 4.5% 3.7% 3.8% 3.1% 12.3%
SH 2.3% 2.9% 3.2% 3.6% 2.7% 2.9% 8.3%

Note: The null data are simulated by permuting the 0/1 response 2000 times based on a real data set with 92 observations and 47 metabolites (Taware et al., 2018).
A total of six annotation databases are used: “KEGG”, “Biocyc”, “SMPDB”, “Biofunction”, “Protein” from Metabolites Biological Role (MBROLE) (López-Ibáñez
et al., 2016), and “Wiki” from “rWikiPathways” (Slenter et al., 2017).

other in pathway content, structure, format, and func-
tionality. Current practice, unfortunately, is to correct for
multiple testing only within each database even when
multiple databases have been used (López-Ibáñez et al.,
2016). This causes an inflation of FWER when, as is com-
mon, multiple databases are explored or when feature
sets of interest are selected in a data-driven way. This
is illustrated in Table 1. The multiplicity issues for post
hoc chosen pathway databases are often overlooked in
practice.
Moreover, post hoc definition of feature sets is also of

interest when—as is common—feature sets overlap.When
two overlapping feature sets are both significant, it is nat-
ural to follow up by looking at their intersection and set
differences, though these derived feature sets are usually
not in any database.
Post hoc inference, in the sense of choosing feature

sets to be tested after seeing the data, is possible with
closed testing (Marcus et al., 1976; Goeman and Solari,
2011). Since this method controls FWER for all possi-
ble feature sets, it allows researchers to postpone the
selection of feature sets of interest after seeing the data.
Goeman et al. (2021) also proved that only closed testing
procedures are admissible for FWER control, that is, all
other procedures either are equivalent to closed testing
or can be improved using closed testing. Closed testing
has been explored for pathway analysis in genomics by
“SEA” (Ebrahimpoor et al., 2020), and building upon appli-
cations in neuroimaging (Rosenblatt et al., 2018). These
methods use Simes test (Simes, 1986) as the local test,
which is fast to implement with closed testing. However,
Simes test is not an established test for feature set testing,
and it is preferable to use Globaltest instead. Simes test
requires assumptions on positive dependence of 𝑝-values,
and may be conservative when 𝑝-values are strongly
dependent.
In this paper, we develop a closed testing procedure

using Globaltest. Our approach allows post hoc choice of
feature sets, the only requirement is that the collection of
all features fromwhich features set are defined is specified

a priori. The major challenge to perform closed testing is
computational: it requires exponentially many tests. To
speed up the closed testing procedure, we develop novel
shortcuts, reducing the exponential number of Globaltests
to linear. We first propose a “single-step” shortcut that is
fast but approximate to the full closed testing procedure. It
guarantees strong FWER control but may be conservative.
To gain power, we then embed the single-step shortcut
within a branch and bound algorithm, leading to an “iter-
ative” shortcut. The iterative shortcut will approximate
the full closed testing procedure closer and closer as we
iterate longer, trading computation time for power, and
converging eventually to the exact closed testing result. On
the scale of typical metabolomics data (≈300 features), the
exact closed testing result for a pathway can be obtained
in seconds on a regular PC.
Although Globaltest is derived in the context of all gen-

eralized linear models we focus in this paper on logistic
regression only, which is the most popular generalized
linear model used with Globaltest.

2 THE GLOBALTEST

Suppose we have 𝑛 independent subjects on which 𝑚 fea-
tures aremeasured.We gather the 𝑛 observations into a 0/1
response vector 𝐲 and a design matrix partitioned into an
𝑛 × 𝑚 matrix 𝐗 of features and an 𝑛 × 𝑧 matrix 𝐙 includ-
ing the intercept term and potential confounderswewould
like to adjust for, for example, age and gender. We allow
𝑚 > 𝑛, although we assume that 𝑧 < 𝑛.
To denote a feature set, we will use the index set 𝑅 ⊂

{1, … ,𝑚} of features it includes, and we will write 𝑟 = |𝑅|
for its cardinality and 𝐗𝑅 for the submatrix of 𝐗 formed
from columns indexed by 𝑅. Globaltest (Goeman et al.,
2004, 2006, 2011) is used to test feature set for associa-
tion with the response. The Globaltest assumes the logistic
model

𝔼(𝐲 ∣ 𝐙, 𝐗𝑅) = ℎ(𝐙𝜸 + 𝐗𝑅𝜷), (1)
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and tests the null hypothesis

𝜷 = 𝟎 (2)

for an 𝑟-dimensional vector 𝜷, where ℎ(𝑡) = exp(𝑡)∕(1 +

exp(𝑡)) is the standard inverse logistic function and 𝜸 is a
𝑧-dimensional vector of nuisance parameters.
The Globaltest statistic for testing 𝜷 = 𝟎 undermodel (1)

is given by

𝑔𝑅 = 𝐲⊺(𝐈 − 𝐇)𝐗𝑅𝐗
⊺

𝑅(𝐈 − 𝐇)𝐲, (3)

where 𝐈 is the identity matrix of size 𝑛 and 𝐇 =

𝐙(𝐙⊺𝐙)−1𝐙⊺. It can be seen from (3) that the Globaltest
statistic is the sum of the test statistics of the individ-
ual features in 𝑅, that is, 𝑔𝑅 =

∑
𝑖∈𝑅

𝑔𝑖 , where 𝑔𝑖 = 𝐲⊺(𝐈 −

𝐇)𝐗𝑖𝐗
⊺

𝑖
(𝐈 − 𝐇)𝐲.

Theorem 1 in Goeman et al. (2011) shows that the
null distribution of 𝑔𝑅 is asymptotically equivalent to a
weighted sum of independent 𝜒2

1
variables, that is,

𝑛∑
𝑖=1

𝜆𝑅
𝑖
𝜒2
1
, (4)

where the weights 𝜆𝑅
1
≥ ⋯ ≥ 𝜆𝑅𝑛 are the eigenvalues of

the positive semidefinite matrix 𝚺1∕2(𝐈 − 𝐇)𝐗𝑅𝐗
⊺

𝑅
(𝐈 −

𝐇)𝚺1∕2. Here, 𝚺 is the diagonal covariance matrix of
𝐲 under the null hypothesis, with entries 𝔼(𝐲 ∣ 𝐙)(1 −

𝔼(𝐲 ∣ 𝐙)). For a prespecified significance level 𝛼, we can
approximate the Globaltest critical value

𝑐𝑅 = 𝑐(𝝀𝑅) (5)

by the 1 − 𝛼 quantile of the asymptotic null distribu-
tion in (4), where we make the dependence of 𝑐𝑅 on
the eigenvalues 𝝀𝑅 = (𝜆𝑅

1
, … , 𝜆𝑅𝑛 ) explicit. To compute the

critical value 𝑐𝑅, we adopt Robbins and Pitman (1949)
algorithm, as suggested in Goeman et al. (2011). Though
it is slightly slower on average, it is numerically more
stable and less vulnerable to the problem of premature
convergence.
Proposition 1 shows that the Globaltest 𝜙𝑅 = 𝟙{𝑔𝑅 ≥ 𝑐𝑅}

is an asymptotically valid 𝛼-level test. The proof of Propo-
sition 1 and of all the following lemmas and theorems can
be found in the Supporting Information.

Proposition 1. Assume that the logistic model in (1) holds
with 𝜷 = 0, then

lim
𝑛→∞

𝔼(𝜙𝑅) ≤ 𝛼, (6)

that is, the Globaltest has asymptotic type I error control.

3 CLOSED TESTING

When testing feature sets, we are interested in finding sets
in which there is evidence of some association between the
signal of the features in the set and the response. We sup-
pose some features are associated with the response and
some features are not associated with the response, that is,
null features. As usual with Globaltest, we adopt the self-
contained paradigm for feature set testing (Goeman and
Bühlmann, 2007), in which a “null-feature” set is defined
as a set containing only null features. Let 𝐹 = {1, … ,𝑚} be
the set of all features, which should be fixed before seeing
the data, and𝑁 ⊆ 𝐹 the set of all null features. For any fea-
ture set 𝑅 ⊆ 𝐹, the self-contained null hypothesis for 𝑅 is

𝐻𝑅 ∶ 𝑅 ⊆ 𝑁. (7)

To allow post hoc inference, we will control FWER for
the family  = 2𝐹 of all 2𝑚 possible feature sets, that is,
2𝐹 = {𝐼 ∶ 𝐼 ⊆ 𝐹}. The collection of null-feature sets is =

2𝑁 . Our goal is to design a test procedure that rejects the
collection of feature sets  ⊆  in such a way that FWER
is controlled, that is,

Pr( ∩ ≠ ∅) ≤ 𝛼. (8)

To obtain such FWER control, we will use the closed
testing procedure (Marcus et al., 1976). Closed testing
requires that the family of hypotheses is closed under inter-
section: for all 𝐻𝐴, 𝐻𝐵 in the family we should have 𝐻𝐴 ∩

𝐻𝐵 in the family. This is easy to check for the hypothesis
family {𝐻𝐼 ∶ 𝐼 ∈  }, since 𝐻𝐴 ∩ 𝐻𝐵 = 𝐻𝐴∪𝐵. Closed test-
ing is a coherent procedure (Goeman et al., 2021), that is,
a null hypothesis is rejected if and only if all hypotheses
that imply it are rejected by a valid level 𝛼 test. Formally,
suppose for every 𝐼 ∈  , 𝜓𝐼 is a test of 𝐻𝐼 with 1 indi-
cating rejection and 0 nonrejection. Closed testing rejects
 = {𝐼 ∈  ∶ 𝜓𝐹

𝐼
= 1}, where

𝜓𝐹𝐼 = min{𝜓𝑆 ∶ 𝐼 ⊆ 𝑆 ⊆ 𝐹}. (9)

The closed testing procedure has FWER control (8) if 𝜓𝑁 is
a valid 𝛼-level test of𝐻𝑁 , that is, when 𝔼(𝜓𝑁) ≤ 𝛼 (Marcus
et al., 1976). This generalizes to asymptotic FWER control
if the test for𝐻𝑁 is asymptotically valid, as we summarize
in Proposition 2:

Proposition 2. If lim𝑛→∞ 𝔼(𝜓𝑁) ≤ 𝛼, then lim𝑛→∞ Pr( ∩

 ≠ ∅) ≤ 𝛼.

Based on the discussion above, to be able to use closed
testingwithGlobaltest (CTGT), we need to assume that the

 15410420, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13693 by C
ochraneItalia, W

iley O
nline L

ibrary on [25/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1106 XU et al.

Globaltest 𝜙𝑁 is an asymptotically valid 𝛼-level test of𝐻𝑁 .
We thus assume that the logistic model holds for model𝑁,
that is,

Assumption 1. 𝔼(𝐲 ∣ 𝐙, 𝐗𝑁) = ℎ(𝐙𝜸).

Note that Assumption 1 implies that a logistic regression
model holds for the distribution of 𝐲 given𝐙. This assump-
tion can be checked for the data at hand by using standard
logistic regression diagnostics. Under this assumption,
Globaltest for 𝐻𝑁 is an asymptotically valid 𝛼 level test,
based on Proposition 1, and consequently FWER con-
trol (8) applies by Proposition 2. We note that we only
need to assume the correct model specification for one
single logistic regression model, that is, model 𝑁. This
is important, since it is not generally possible for sev-
eral nested logistic models to be simultaneously valid
(Gail et al., 1984). This robustness to model misspecifica-
tion is a useful and often overlooked property of closed
testing.

4 SINGLE-STEP SHORTCUT

A hypothesis 𝐻𝑅 can be rejected by closed testing if all
hypotheses𝐻𝑆 with𝑅 ⊆ 𝑆 ⊆ 𝐹 are rejected byGlobaltest at
level𝛼. However, this results in exponential computational
complexity of closed testing, problematic for large-scale
data analysis. Shortcuts, efficient algorithms, are thus nec-
essary to reduce computation burden (Brannath and Bretz,
2010; Gou et al., 2014; Dobriban, 2018). Shortcuts can
be exact or approximate. Approximate shortcuts control
FWER, but sacrifice power relative to the full closed test-
ing procedure. In this paper, we first derive an approximate
single-step shortcut and then an exact iterative shortcut for
CTGT. We start with the single-step shortcut. We remark
that the terminology of “single-step” should not be con-
fused with the corresponding term in multiple testing
procedures based on ordered 𝑝-values.

4.1 Main idea

For any set 𝑅 of interest, closed testing rejects 𝐻𝑅 if and
only if 𝑔𝑆 ≥ 𝑐𝑆, for all 𝑅 ⊆ 𝑆 ⊆ 𝐹. For illustration, we use
a recurring toy example with 𝑛 = 100 observations,𝑚 = 5

features and a binary response. Let 𝐹 = {1, 2, 3, 4, 5} be the
index set of all features. Suppose that we want to test 𝐻𝑅

with 𝑅 = {3}. By closed testing, we have to calculate all test
statistics 𝑔𝑆 and critical values 𝑐𝑆 for all 2𝑚−𝑟 hypotheses
𝐻𝑆 with 𝑅 ⊆ 𝑆 ⊆ 𝐹. All these 𝑔𝑆 and 𝑐𝑆 are presented in
Figure 1a by circles and triangles, respectively. For each

pair of (𝑔𝑆, 𝑐𝑆), if circles are all above the corresponding
triangles, closed testing then rejects𝐻𝑅.
Defining 𝓁𝑆 =

∑𝑛

𝑖=1
𝜆𝑆
𝑖
as the “level” of 𝐻𝑆 , the 𝑥-axis

in Figure 1a, the main idea of the single-step shortcut is as
follows. We propose to construct a minimum test statistic
line 𝑔𝑚𝑖𝑛(𝓁) and amaximal critical value line 𝑐𝑚𝑎𝑥(𝓁), such
that for all 𝓁𝑆 ∈ [𝓁𝑅, 𝓁𝐹]

𝑔𝑆 ≥ 𝑔𝑚𝑖𝑛(𝓁𝑆) (i)

and

𝑐𝑆 ≤ 𝑐𝑚𝑎𝑥(𝓁𝑆). (ii)

If such 𝑔𝑚𝑖𝑛(𝓁) and 𝑐𝑚𝑎𝑥(𝓁) can be established, we then
simply compare the two lines instead of the exponentially
many pairwise comparisons. When 𝑔𝑚𝑖𝑛 is everywhere
above 𝑐𝑚𝑎𝑥, 𝐻𝑅 is certainly rejected by closed testing, as
the following lemma says.

Lemma 1. If 𝑔𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 satisfy (i) and (ii), respec-
tively, then closed testing rejects𝐻𝑅 at level𝛼when 𝑔𝑚𝑖𝑛(𝓁) >
𝑐𝑚𝑎𝑥(𝓁) ∀ 𝓁 ∈ [𝓁𝑅, 𝓁𝐹].

In the following, we will show how to construct 𝑔𝑚𝑖𝑛(𝓁)
and 𝑐𝑚𝑎𝑥(𝓁).

4.2 The minimum test statistic

We will construct the lower bound 𝑔𝑚𝑖𝑛(𝓁) as the lower
convex hull of all the points 𝑔𝑆 , for 𝑅 ⊆ 𝑆 ⊆ 𝐹. We can con-
struct the lower convex hull without evaluating all 𝑔𝑆 by
using the additive structure of Globaltest statistics, given
in (3). We have

𝑔𝑆 = 𝑔𝑅 +
∑
𝑖∈𝐼

𝑔𝑖 = 𝑔𝑅 +
∑
𝑖∈𝐼

𝓁𝑖𝑞𝑖, (10)

where 𝐼 = 𝑆 ⧵ 𝑅 and 𝑞𝑖 = 𝑔𝑖∕𝓁𝑖 . This simple weighted sum
can be minimized for a given sum of weights by simply
minimizing the 𝑞𝑖 ’s. The support of the convex hull can
therefore be found by finding the permutation {𝑢1, … , 𝑢𝑣}

of the elements of 𝑉 = 𝐹 ⧵ 𝑅, with 𝑣 = |𝑉|, that sorts
(𝑞𝑖)𝑖∈𝑉 in ascending order. The supporting “bottommost”
sets are given by

𝐹
𝑅
= {𝑅, 𝑅 ∪ {𝑢1}, … , 𝑅 ∪

𝑣⋃
𝑖=1

{𝑢𝑖}}. (11)

Based on 𝐹
𝑅
, we formulate 𝑔𝑚𝑖𝑛(𝓁), 𝓁 ∈ [𝓁𝑅, 𝓁𝐹] as

𝑔𝑚𝑖𝑛(𝓁) = 𝑔𝐵𝑘𝓁
+ (𝓁 − 𝓁𝐵𝑘𝓁

)𝑞𝑢𝑘𝓁
, (12)
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XU et al. 1107

F IGURE 1 Single-step shortcut for testing𝐻{3}, 𝐻{2}, and𝐻{1}. Circles and triangles denote test statistics and critical values, respectively,
for all𝐻𝑆 with 𝑅 ⊆ 𝑆 ⊆ 𝐹. The solid line represents the minimum test statistic 𝑔𝑚𝑖𝑛(𝓁) and the dashed line represents the maximal critical
value 𝑐𝑚𝑎𝑥(𝓁). Filled circles and triangles represent the exact test statistics and critical values for 𝐵𝑖 ∈ 𝐹

𝑅

where 𝑘𝓁 = max{𝑗 ∈ {1, … , |𝐹
𝑅|} ∶ 𝓁𝐵𝑗 ≤ 𝓁}. The calcula-

tion of 𝑔𝑚𝑖𝑛(𝓁) takes linear time in |𝑉|. We show in
Lemma 2 that Inequality (i) holds for all 𝑆.

Lemma 2. 𝑔𝑚𝑖𝑛(𝓁) satisfies (i) for all 𝑆 with 𝑅 ⊆ 𝑆 ⊆ 𝐹.

4.3 The maximal critical value

For the maximal critical value, we need to find out a
numeric vector for which the corresponding critical value
is maximal among all the critical values at the same level.
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1108 XU et al.

As discussed in Section 2, the critical value is a function of
the eigenvalue vector. To maximize the critical value, we
will need to work through the eigenvalues.
We first introduce the definition of majorization (Horn

and Johnson, 2012):

Definition 1. Let vectors 𝝀 = (𝜆1, … , 𝜆𝑛) with 𝜆1 ≥ ⋯ ≥

𝜆𝑛 and 𝜹 = (𝛿1, … , 𝛿𝑛) with 𝛿1 ≥ ⋯ ≥ 𝛿𝑛 be given. Then 𝝀
is said to majorize 𝜹 , that is, 𝝀 ≻ 𝜹 if

∑𝑠

𝑖=1
𝜆𝑖 ≥

∑𝑠

𝑖=1
𝛿𝑖 for

all 𝑠 = 1,… , 𝑛 with equality for 𝑠 = 𝑛.

By inclusion principle for hermitian and positive
semidefinite matrix (Horn and Johnson, 2012), we learn
that 𝜆𝑅

𝑖
≤ 𝜆𝑆

𝑖
≤ 𝜆𝐹

𝑖
, 𝑖 = 1, … , 𝑛 for 𝑅 ⊆ 𝑆 ⊆ 𝐹, where 𝜆𝑅

𝑖
,

𝜆𝑆
𝑖
, and 𝜆𝐹

𝑖
are the 𝑖th largest eigenvalues of matrices as

defined in Section 2. Thus, 𝝀𝑆 is between the upper bound
𝝀𝐹 and the lower bound 𝝀𝑅. Then at level 𝓁 ∈ [𝓁𝑅, 𝓁𝐹], we
define a “majorizing vector” as

�̂�𝐹
𝑅
(𝓁) = (𝜆𝐹

1
, … , 𝜆𝐹

𝑗𝓁−1
, 𝜂(𝓁), 𝜆𝑅

𝑗𝓁+1
, … , 𝜆𝑅𝑛 ). (13)

Here, 𝑗𝓁 = min{𝑠 ∶
∑𝑠

𝑖=1
𝜆
𝐹|𝑅
𝑖

≥ (𝓁 − 𝓁𝑅)}, where
𝝀𝐹|𝑅 = (𝜆𝐹

1
− 𝜆𝑅

1
, … , 𝜆𝐹𝑛 − 𝜆𝑅𝑛) is the pairwise difference of

𝝀𝐹 and 𝝀𝑅, and 𝜂(𝓁) = 𝜆𝑅
𝑗𝓁
+ (𝓁 − 𝓁𝑅 −

∑𝑗𝓁−1

𝑖=1
𝜆
𝐹|𝑅
𝑖

). For
the special case with 𝑗𝓁 = 1, we let 𝜂(𝓁) = 𝜆𝑅

𝑗𝓁
+ (𝓁 − 𝓁𝑅)

and thus �̂�𝐹
𝑅
(𝓁) = (𝜂(𝓁), 𝜆𝑅

2
, … , 𝜆𝑅𝑛 ). And for 𝓁 = 𝓁𝐹 , it is

obvious that �̂�𝐹
𝑅
(𝓁𝐹) = 𝝀𝐹 .

The majorizing �̂�𝐹
𝑅
(𝓁) simply takes the first few largest

values of the upper bound 𝝀𝐹 as head and the last few
smallest values of the lower bound 𝝀𝑅 as tail, and connect-
ing them by an 𝜂(𝓁) such that �̂�𝐹

𝑅
(𝓁) is in descending order

and its sum is 𝓁. Obviously, �̂�𝐹
𝑅
(𝓁) is still bounded by 𝝀𝐹

and 𝝀𝑅, but it majorizes all other eigenvalue vectors at the
same level.
We argue that the critical value computed by the

majorizing vector is maximal among the ones at the same
level, in terms of the following theorem inBock et al. (1987).

Theorem 1. Suppose that 𝝀 ≻ 𝜹 . Then there exists an 𝛼0
such that, for 𝛼 ≤ 𝛼0, we have 𝑐(𝝀) ≥ 𝑐(𝜹).

A proof of Theorem 1 is in Bock et al. (1987), we only
change notations. To understand the result intuitively,
note that if 𝝀 ≻ 𝜹 , then

∑𝑛

𝑖=1
𝜆𝑖𝜒

2
1
and

∑𝑛

𝑖=1
𝛿𝑖𝜒

2
1
have the

same mean, but the former has larger variance. Moreover,
since

∑𝑛

𝑖=1
𝜆𝑖𝜒

2
1
it puts more weight on a small number

of 𝜒2
1
-variables, its tail is slightly more like that of a 𝜒2

1
,

while the tail of
∑𝑛

𝑖=1
𝛿𝑖𝜒

2
1
is slightly more like that of a

𝜒2𝑛.
By combining Theorem 1 and the definition of the

majorizing vector, we define the maximal critical value

as

𝑐𝑚𝑎𝑥(𝓁) = 𝑐(�̂�𝐹
𝑅
(𝓁)), (14)

which has the property described in the following lemma.

Lemma 3. For 𝛼 ≤ 𝛼0, 𝑐𝑚𝑎𝑥(𝓁) satisfies (ii) for all 𝑆 with
𝑅 ⊆ 𝑆 ⊆ 𝐹.

In the toy example Figure 1a, given the upper bound
𝝀𝐹 and the lower bound 𝝀𝑅 with 𝑅 = {3}, the 𝑐𝑚𝑎𝑥(𝓁) line
and the exact critical values 𝑐𝑆 for all 𝐻𝑆 are presented
as dashed line and triangle points. It is clear that 𝑐𝑚𝑎𝑥(𝓁)
is above all exact critical values. In addition to avoiding
the exponentially many critical value computations, we
further note that calculating �̂�𝐹

𝑅
(𝓁) for all possible levels

only requires calculation of eigenvalues 𝝀𝐹 and 𝝀𝑅 once.
This significantly reduces the computing time especially
for large matrices (ie, large 𝑛). Moreover, it is shown in
Algorithm 1 in the Supporting Information, a fast algo-
rithm for checking intersection of 𝑔𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥, that 𝑐𝑚𝑎𝑥
is calculated only for a few levels, not for all levels between
𝓁𝑅 and 𝓁𝐹 .
In above lemma, we may see that the validity of 𝑐𝑚𝑎𝑥

depends on 𝛼0, which has to be sufficiently large for
Lemma 3 to be useful. Diaconis and Perlman (1990) com-

pared the tail probabilities of
𝑛∑
𝑖=1

𝜆𝑖𝜒
2
1
and

𝑛∑
𝑖=1

𝛿𝑖𝜒
2
1
with

𝝀 ≻ 𝜹 . They conjectured that the corresponding cumula-

tive distribution functions (cdf) of
𝑛∑
𝑖=1

𝜆𝑖𝜒
2
1
and

𝑛∑
𝑖=1

𝛿𝑖𝜒
2
1

cross exactly once, implying that 𝛼0 would be far from 0
or 1. However, their conjecture was disproved by Yu (2017)
who showed that the two cdfs cross an odd number of
times (but sometimesmore than once). However, the cdf of
𝑛∑
𝑖=1

𝜆𝑖𝜒
2
1
will be always below that of

𝑛∑
𝑖=1

𝛿𝑖𝜒
2
1
after the last

crossing point, as Theorem 1 claims. The value of 𝛼0 in the
paper is exactly tail probability corresponding to the last
crossing point. Usually, practitionerswould like to take sig-
nificance level 𝛼 = 5%, which requires 5% ≤ 𝛼0. We tested
this in the real data exampleswith diverse sizes of hypothe-
ses, where we find that 𝛼0 is empirically in the range of
25–30%, see the Supporting Information for more detail.

4.4 The single-step shortcut

With everything set in place, we check whether 𝐻𝑅 can
be rejected by the single-step shortcut via checking if the
minimum test statistic line is above the maximal critical
value line. If 𝑔𝑚𝑖𝑛(𝓁) > 𝑐𝑚𝑎𝑥(𝓁), 𝓁 ∈ [𝓁𝑅, 𝓁𝐹], 𝐻𝑅 is cer-
tainly rejected by the closed testing procedure based on
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XU et al. 1109

Lemma 1. For example, 𝐻{3} in Figure 1a is rejected by
closed testing at level 5%, as the 𝑔𝑚𝑖𝑛 line is totally above
the 𝑐𝑚𝑎𝑥 line indicating that all hypotheses corresponding
to the supersets of {3} are rejected. Otherwise, we can turn
to the conclusion that𝐻𝑅 cannot be rejected so as to guar-
antee the FWER control. We thus summarize the “reject”
and “not reject” rule of the single-step shortcut as:

Reject𝐻𝑅 if 𝑔𝑚𝑖𝑛(𝓁) > 𝑐𝑚𝑎𝑥(𝓁), ∀𝓁 ∈ [𝓁𝑅, 𝓁𝐹]

and do not reject𝐻𝑅 otherwise. (15)

A fast algorithm to efficiently check whether 𝑔𝑚𝑖𝑛 is
totally above 𝑐𝑚𝑎𝑥 is presented in the Supporting Informa-
tion.

5 ITERATIVE SHORTCUT

5.1 Sure or unsure outcomes

While a “reject” decision by the shortcut always indi-
cates a rejection by the full closed testing procedure, a
“not reject,” where 𝑔𝑚𝑖𝑛(𝓁) < 𝑐𝑚𝑎𝑥(𝓁) for some 𝓁 does not
always indicate a “not reject” by the closed testing proce-
dure: the single-step shortcut may be conservative. There
is, however, an easy distinction to be made between non-
rejection that certainly also correspond to nonrejections
by the closed testing procedure, and nonrejections, that
may or may not correspond to rejections by the closed
testing procedure.
To establish this difference in case of a nonrejection by

the single-step shortcut, we check the exact test statistics
and exact critical values for all sets in 𝐹

𝑅
, the bottom-

most points defined in Section 4.2. If there exists a 𝐵𝑖 ∈ 𝐹
𝑅

such that 𝑔𝐵𝑖 < 𝑐𝐵𝑖 , it is conclusive that closed testing does
not reject 𝐻𝑅. For example, 𝐻{2} in Figure 1b, we find that
Globaltest does not reject𝐻{24} and𝐻{245} so that𝐻{2} can-
not be rejected by closed testing. On the other hand, if
𝑔𝐵𝑖 ≥ 𝑐𝐵𝑖 for all 𝐵𝑖 ∈ 𝐹

𝑅
, we will be uncertain about the

“not reject” of 𝐻𝑅 by closed testing, which is the case of
𝐻{1} in Figure 1c, where we cannot determine that 𝐻{1}

is rejected by closed testing or not. In summary, we can
expand the single-step shortcut to give three possible out-
comes: “reject,” “not reject,” and “unsure.” The unsure
outcomes can be further explored by an iterative procedure
that we describe in the following section.

5.2 The iterative shortcut

Clearly, the single-step shortcut is approximate in the
sense that it gives at most the same rejections as the

full closed testing procedure, but possibly fewer because
we might get unsure outcomes. Next, we investigate
how we can make it exact. If an unsure outcome is
obtained from the single-step shortcut, we turn to the
branch and bound algorithm of Land and Doig (1960),
which is commonly used for solving NP-hard optimization
problems.
The branch and bound algorithm consists of two prin-

ciples: a branching rule that partitions the search space
into smaller subspaces and a bounding rule that is used
for tracking the optimization in the subspaces and prun-
ing those subspaces that it can prove will not contain an
optional solution. Westfall and Tobias (2007) has intro-
duced its application in closed testing with max-𝑇 test,
though this algorithm is otherwise unrelated to ours.
We show in this paper how branch and bound can be
used to reduce the conservativeness of the single-step
shortcut at the expense of an increased computational
burden.
Suppose that we get an unsure outcome for 𝐻𝑅. This

means that the 𝑔𝑚𝑖𝑛 line and the 𝑐𝑚𝑎𝑥 line intersect in
the space of {𝑆 ∶ 𝑅 ⊆ 𝑆 ⊆ 𝐹} and 𝑔𝐵𝑖 ≥ 𝑐𝐵𝑖 for all 𝐵𝑖 ∈ 𝐹

𝑅
.

In terms of the branch and bound algorithm, we first
split {𝑆 ∶ 𝑅 ⊆ 𝑆 ⊆ 𝐹} into two disjoint subspaces by distin-
guishing whether or not 𝑢 ∈ 𝐹 ⧵ 𝑅 is included: 𝕊− = {𝑆 ∶

𝑅 ⊆ 𝑆 ⊆ 𝐹 ⧵ {𝑢}} and 𝕊+ = {𝑆 ∶ 𝑅 ∪ {𝑢} ⊆ 𝑆 ⊆ 𝐹}. Here, 𝑢
is the index of the feature for which 𝑞𝑢 is the largest in
𝐹 ⧵ 𝑅, as defined in Section 4.2. Second, we recalculate
the 𝑔𝑚𝑖𝑛 line and the 𝑐𝑚𝑎𝑥 line separately for each sub-
space. If 𝑔𝑚𝑖𝑛 ≥ 𝑐𝑚𝑎𝑥 in both subspaces, we stop branching
and conclude that 𝐻𝑅 is rejected by closed testing, as all
𝐻𝑆 that are split into two subspaces are all rejected by
Globaltest. If there exists a subspace, say 𝕊−, such that
𝑔𝐵𝑖 < 𝑐𝐵𝑖 for some 𝐵𝑖 ∈ 𝕊−, we can stop branching and
conclude that closed testing does not reject𝐻𝑅. Otherwise,
there exists a subspace for which uncertainty remains. In
this case, we can repeat the above steps until we get cer-
tain outcomes or we exceed the allotted computational
capacity.
Illustration of the branch and bound algorithm can

be seen in Figure 2, where we are unsure to reject
𝐻1 or not by closed testing. After splitting the full
space into two: {𝑆 ∶ 𝑅 ⊆ 𝑆 ⊆ 𝐹 ⧵ {3}} and {𝑆 ∶ 𝑅 ∪ {3} ⊆

𝑆 ⊆ 𝐹}, 𝑔𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 lines are recalculated in each
subspace. We see in Figure 2 that 𝑔𝑚𝑖𝑛 > 𝑐𝑚𝑎𝑥 in both
subspaces, thereby 𝐻1 is certainly rejected by closed
testing.
Obviously, the stopping rule of the iterative shortcut

can be determined by the number of iterations: how
many times we iterate the single-step shortcut. The more
iterations, the more power we gain. We allow user to
prespecify the number of iterations to save computation
time but without sacrificing FWER control. If we apply the
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1110 XU et al.

F IGURE 2 Iterative shortcut rejects𝐻{1}

shortcut long enough so that no unsure outcomes left, the
full closed testing solution will be obtained. Pseudocode
for the iterative shortcut with 100 iterations at most is
presented in Algorithm 2 in Supporting Information.
Let  be the rejection set of closed testing, 𝑑 the

rejection set of the iterative shortcut with 𝑑 iterations pre-
specified. Specifically, let 0 be the set of rejections by
the single-step shortcut and ∞ = lim𝑑→∞ 𝑑 the asymp-
totic rejection set of iterative shortcut. We summarize
the convergence property of the iterative shortcut in
Theorem 2.

Theorem 2. 0 ⊆ 𝑑 ⊆ ∞ =  .

There is clearly a trade-off between computing time
and approaching the full closed testing when applying
the branch and bound algorithm. We can trade time for
power. At the worst case, the computational complexity
of the iterative shortcut is still exponential. Nonetheless,
its computing time of iterative shortcut is dramatically
smaller in practice than that of the naive closed testing,
which is computationally difficult to perform in large-
scale problems; we discuss the computation time of the

TABLE 2 Information of four metabolomics data sets

Data set Eisner Bordbar Taware Al-Mutawa
Case/Control 47/30 6/6 53/39 25/19
Metabolite 63 51 47 261
Pathway 187 250 61 760
Mean size 2 3 2 10
Max size 17 38 12 173

shortcut and the full closed testing procedure in the
Supporting Information.

6 REAL DATA APPLICATION

To investigate the power property of CTGT, we apply
it to four real metabolomics data sets, whose role on
regulatory pathways of human pathophysiology, rang-
ing from aging to disease, has been highlighted. The
detailed information of the data sets are listed in
Table 2, named as “Eisner,” “Bordbar,” “Taware,” and
“Al-Mutawa,” see more information in the Supporting
Information.
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XU et al. 1111

TABLE 3 Number of rejections per method on the diagonal
and number of shared rejections of any two methods under the
diagonal for Eisner, Bordbar, Taware, and Al-Mutawa

Eisner Bordbar
CTGT CTST SH FL DAG CTGT CTST FL DAG SH
144 248
130 139 244 244
101 102 102 105 105 105
89 89 88 89 62 62 40 62
88 88 87 84 88 0 0 0 0 0

Taware Al-Mutawa
DAG SH CTST FL CTGT CTST SH DAG FL CTGT
32 704
32 32 693 693
32 32 32 683 681 683
30 30 30 30 653 653 651 653
24 24 24 24 27 585 583 585 580 586

To use CTGT, we need to check Assumption 1. Since
in this case we have no covariates and 𝐙 contains only
the intercept term, the assumption reduces to that 𝑛
responses are marginally independent and identical
Bernoulli.
To be able to compare CTGT with DAG, SH, and FL, we

chose pathway databases of interest a priori: we applied
the methods on the union of all pathways from Bio-
cyc, KEGG, SMPDB, and WikiPathways. The first three
annotation vocabularies are obtained in “MBROLE” and
the last is generated by “rWikiPathways.” We include
individual metabolites (after removing missing values
and filtering out lowly expressed metabolites) as sin-
gle pathways. Information of pathways, including the
total number of pathways after removing repeated ones,
the mean size and the maximal size, is presented in
Table 2. Since DAG, SGH, and FL were applied to the
union of the pathway databases, these methods allow
post hoc choice of pathways, but within the prespecified
databases only. In addition, we consider closed testingwith
Simes test (CTST) as a competitor, which is post hoc as
well.
To compare the power properties of our method with

other methods, we present the total number of rejections
per method on the diagonal of subtables per data set in
Table 3, together with the number of shared rejections of
any two methods under the diagonal. CTGT represents
the exact closed testing with Globaltest, that is, the iter-
ative shortcut without unsure outcomes, which can be
achieved by setting a large enough number of iterations,
we set 20,000 in this analysis. This does not mean that we
have to iterate 20,000 times, since the iterative shortcut

stops immediately when there is no unsure outcomes. For
example, CTGT needs 2645 iterations at worst for Eisner.
It is shown in Table 3 that CTGTmethod discovers more

pathways than its competitors for data sets Eisner and
Bordbar. Especially for Bordbar with only 12 samples but
51 metabolites, the small sample size could weaken the
effects of metabolites to some extent, thereby leading to
good power of Globaltest. Furthermore, the small sample
size influences CTGT method less than the Bonferroni-
based methods and CTST due to their reliance on very
small tail probabilities. We note that not all results are in
favor of CTGT, for example, in Taware, the low dimen-
sionality and relatively few small-size pathways make
DAG, SH, and FL powerful. Remark that we chose the
pathways of interest a priori, but only CTST and CTGT
retain type I error control if pathways are chosen post
hoc. Further insights on comparisons between CTST and
CTGT are made based on artificial data in the next
section.
Results in Table 3 may also shed some light on the

underlying metabolic events. For example, in data set
Eisner, where researchers analyzed urine samples from
patients with cancer to identify metabolites that are asso-
ciated with muscle wasting, CTGT method finds totally
144 pathways are significantly associated with muscle
loss. One hundred and thirty of the pathways are shared
findings with other method and 14 are uniquely discov-
ered by CTGT, for example, a KEGG pathway map00340
in class of amino acid metabolism is uniquely discov-
ered by CTGT and not by the others. This is consis-
tent with what they found in Eisner et al. (2011) that
metabolites associated with amino acid metabolism were
prominent.
To gain more insights into the property of CTGT, we

present in the Supporting Information that the rejected
pathways by CTGT are mainly large ones and it is more
powerful with more iterations.

7 DISCUSSION

We have proposed a novel multiple testing procedure
based on CTGT, with main applications on metabolomics
annotation databases. Our method controls FWER for all
possible feature subsets so that it allows the choice of fea-
ture sets of interest to be made after seeing the data. It is
therefore a selective inference method (Benjamini, 2010).
Still, the new method has comparable power to compet-
ing methods even when a limited number of feature sets
is specified beforehand. To reduce the computational bur-
den of closed testing, we have derived an iterative shortcut
procedure. The iterative shortcut can be stopped at any
point while retaining FWER control, gains power as more
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1112 XU et al.

computation time is spent, and eventually converges to the
full closed testing procedure. We have implemented both
shortcuts in R package ctgt.
A potential limitation of the method is that it is only

valid for small significance level 𝛼, that is, 𝛼 ≤ 𝛼0. How-
ever, we have found that 𝛼0 is heuristically around 30%, so
most values of 𝛼 that are used in practice are typically safe
to use.
In our data analysis examples, we found that closed

testing based on Simes tests (Goeman et al., 2019) was com-
petitive, and perhaps even more robust, in terms of power
to the multiple testing procedure based on Globaltest that
we have developed in this paper. This is a surprising and
interesting finding, as Simes tests have not seen much use
in pathway testing in metabolomics. A small simulation
study has been performed to compare CTGT and CTST in
the Supporting Information. Further research is needed to
assess the relative merits of both methods.
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Data and materials are available at https://dataverse.
harvard.edu/dataverse/ctgt-biom.
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