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Abstract 

The diagnostic assessment of thyroid nodules is hampered by the persistence of uncertainty in 

borderline cases, and further complicated by the inclusion of non-invasive follicular tumor with 

papillary-like nuclear features (NIFTP) as a less aggressive alternative to papillary thyroid 

carcinoma (PTC). In this setting, computational methods might facilitate the diagnostic process 

by unmasking key nuclear characteristics of NIFTPs. The main aims of this work were to (1) 

identify morphometric features of NIFTP and PTC that are interpretable for the human eye, 

and (2) develop a deep learning model for multi-class segmentation as a support tool to reduce 

diagnostic variability. Our findings confirmed that nuclei in NIFTP and PTC share multiple 

characteristics, setting them apart from hyperplastic nodules (HP). The morphometric analysis 

identified 15 features that can be translated into nuclear alterations readily understandable by 

pathologists, such as a remarkable inter-nuclear homogeneity for HP in contrast to a major 

complexity in the chromatin texture of NIFTP, and to the peculiar pattern of nuclear texture 

variability of PTC. A few NIFTP cases with available NGS data were also analyzed to initially 

explore the impact of RAS-related mutations on nuclear morphometry. Finally, a pixel-based 

deep learning model was trained and tested on whole slide images (WSIs) of NIFTP, PTC, and 

HP cases. The model, named NUTSHELL (NUclei from Thyroid tumors Segmentation to 

Highlight Encapsulated Low-malignant Lesions), successfully detected and classified the 

majority of nuclei in all WSIs’ tiles, showing comparable results with already well-established 

pathology nuclear scores. NUTSHELL provides an immediate overview of NIFTP areas and 

can be used to detect microfoci of PTC within extensive glandular samples or identify lymph 

node metastases. NUTSHELL can be run inside WSInfer with an easy rendering in QuPath, 

thus facilitating the democratization of digital pathology.  
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Introduction 

In the last years, the evolving classification of thyroid tumors has made their cytological and 

histological assessment more complex, likewise affecting the clinical management of patients, 

in particular after the recent inclusion of the non-invasive follicular tumor with papillary-like 

nuclear features (NIFTP) as a less aggressive non-invasive alternative to papillary thyroid 

carcinoma (PTC)1–3. Due to the numerous diagnostic nuclear features that they share, NIFTP 

and PTC represent a true challenge for pathologists, especially in the preoperative phase4. To 

address at least partly this challenge, ancillary molecular tools were proposed5 but the 

diagnostic gap of indeterminate cases is still to be filled6. Different nuclear features (size/shape, 

membrane irregularities and chromatin characteristics) were recognized as components of a 

nuclear scoring system to distinguish NIFTPs from other follicular patterned thyroid lesions7. 

However, the nuclear score proved to be useful in distinguishing NIFTPs from benign 

hyperplastic nodules (HP), while having only a limited impact on the NIFTP vs PTC 

discrimination8, and showing a certain degree of interobserver variability9. In this setting, a 

better comprehension of the histological features of NIFTPs at the nuclear level and the 

detection of useful morphometric features associated with the RAS fingerprint10,11 may 

potentially support the diagnostic phase. The application of artificial intelligence (AI) 

approaches to this complex context can overcome the intrinsic limits of the human eye in 

discriminating nuclei from NIFTP and PTC cases, possibly unveiling human interpretable 

features and streamlining the pathologists’ workflow through the development of attention 

maps able to point out even small foci of PTC within larger HP/NIFTP nodules.  

Previous experiences demonstrated the feasibility of image analysis and AI as integrative and 

complementary methods to traditional histopathology in distinguishing malignant vs benign 

thyroid lesions12,13, with interesting results on histological samples14,15. Although promising, 

these reports still fail to differentiate specific subtypes of thyroid tumors16. More generally, a 
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number of deep learning (DL) models were shown to facilitate the analysis of microscopic 

images in different clinical contexts, despite most models still suffer from reproducibility, 

reusability, robustness, and replicability problems17. In the attempt to address this issue, 

Kaczmarzyk et al. developed WSInfer18, an open-source collection of software tools that is 

expected to simplify the sharing and reuse of DL models in digital pathology.  

It is from this perspective that, here, we aim at automatically extracting useful nuclear features 

from HP, NIFTP and PTC lesions and develop a DL tool embedded within WSInfer to reduce 

the diagnostic variability and offer crucial support to pathologists in identifying these cases. 

Simultaneously, we aim at providing an in-depth understanding of the nuclear characteristics 

of NIFTP and explore its heterogeneity with a special focus on molecular features, particularly 

in relation to RAS-mutated neoplasms. 

 

Materials and Methods 

Cases 

The enrollment of cases for the present study involved patients from the Ricerca Finalizzata 

GR-2019-12368592 trial, diagnosed from January 2020 to August 2023. For each case, 

anagraphic data (i.e. gender and age) and pathological information (i.e. preoperative 

cytological class, nodule size, surgery type, final diagnosis, histological subtype, invasiveness, 

oncocytic and high-grade features of PTCs, molecular status) were extracted. Only cases with 

histological diagnosis of HP, NIFTP or PTC were included in the study, and no additional 

histotypes (e.g. follicular adenoma/carcinoma) were part of the analysis.  

A representative hematoxylin and eosin (H&E) slide of the lesion was selected, retrieved from 

the pathology departments archives, and anonymized. Only original slides used to render the 

primary diagnosis were considered, no recuts were employed for the study. Histological slides 

cut at 2-3 μm thickness and mounted with a film coverslip (Tissue-Tek coverslipping film, 
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Sakura Finetek, Nagano, Japan) were scanned using MIDI II or P1000 platforms 

(3DHISTECH, Budapest, Hungary) using a magnification of x58 with resolution of 0.1725 

μm/pixel and .svs or .mrxs file format, and magnification of x20 with resolution of 0.2426 

μm/pixel and .mrxs file format, respectively, to generate whole slide images (WSIs). A total of 

55 WSIs from 53 patients were collected. The diagnoses were based on the morphological, 

immunohistochemical and molecular criteria of the WHO classification19
. The obtained WSIs 

were re-evaluated by an expert thyroid pathologist (FP) for the assignment of the nuclear score, 

as previously defined8, whose interpretation scheme with iconographic examples is reported in 

Supplementary Figure 1. For immunohistochemistry (IHC), NRAS Q61R was tested (rabbit 

monoclonal antibody, clone RST-NRAS, dilution 1:20) on DAKO Omnis (Agilent, Santa 

Clara, CA, US). Representative formalin-fixed, paraffin embedded (FFPE) tissue blocks were 

used for next generation sequencing (NGS) analysis (Supplementary Methods). The IHC and 

NGS analysis were performed on purpose for the present study, to unveil possible correlations 

with the morphometric analysis results obtained by machine learning (ML) models. 

 

Nuclei segmentation and features extraction 

The WSIs were processed with QuPath software to annotate regions of interest (ROIs) by the 

pathologist, that is, areas within tissue samples containing pathological features20. The StarDist 

extension was utilized to segment nuclei within the ROIs21, with optimized parameter settings 

applied by modifying the standard parameters threshold (set at 0.2) and by introducing the 

intensity and shape features calculation using the model for H&E (he_heavy_augment). An 

object classifier was then trained for each WSI through annotations and applied to the nuclei 

to categorize them into one of four distinct classes: “HP”, “NIFTP”, “PTC”, and “Other” 

(encompassing any nucleus of non-thyroid relevance, such as inflammatory cells, endothelium, 
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ecc.). In order to validate the accuracy of this classification process, the results underwent 

rigorous examination by two experienced thyroid pathologists (FP and VL).  

 

Morphometric analysis 

We used the QuPath software to build a dataset of morphometric features22 calculated from 

each classified nuclei appearing in the 55 WSIs. The dataset included shape features (e.g. area, 

length, circularity, solidity, maximum and minimum diameters, perimeter), and intensity 

features computed on the optical density sum (OD Sum) color transform at the resolution of 1 

μm/px (e.g. nuclear OD Sum mean value, Haralick texture features). The full list of 

morphometric features is given in Supplementary Table 1. Highly correlated features were 

discarded using an unsupervised feature selection, whereby we computed the Pearson 

correlation matrix of the morphometric dataset and fed it to a hierarchical clustering algorithm 

coupled with Ward’s minimum variance linkage method37. The linkage matrix produced by the 

clustering algorithm is shown as a dendrogram in Supplementary Figure 2. We identified a 

maximum intercluster distance threshold to flatten the dendrogram, obtaining as a result an 

assignment of the highly correlated features to single clusters. One feature per cluster was 

randomly selected as the representative.  

The reduced set of features were subjected to both unsupervised (principal component analysis, 

PCA) and supervised (random forest, decision tree) ML methods in order to highlight 

differences among the “HP”, “NIFTP” and “PTC” groups, provide insights into the feature 

importance, and enable the comparison with morphologic parameters readily understandable 

to the human eye. 

 

RAS mutant vs wild type NIFTP 
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An additional dataset containing only NIFTP nuclei was derived from the morphometric 

dataset, with labels assigned to either known RAS-mutated cases or known WT (wild type) 

cases. We used both PCA and random forest methods to investigate their capability in readily 

distinguishing between mutated and non mutated cases, leveraging the same nuclear features 

used for the morphometric analysis. 

 

Deep learning model 

A convolutional neural network (CNN) was used for pixel-based predictions, to identify and 

classify each cell nucleus in the WSIs as belonging to one of the four considered classes (i.e., 

“HP”, “NIFTP”, “PTC”, and “Other”). Since the resolution of each WSI is in the order of tens 

of thousands of pixels and the ROIs size varies among the various images, a tiling procedure 

was applied on the ROIs to obtain smaller images—of a fixed size—suitable as input for the 

CNN. Details of the CNN architecture and the tiling procedure are reported in Supplementary 

Methods. The tiling procedure might generate tiles that are either fully contained or partially 

contained within a ROI. To account for the sampling distance heterogeneity of the WSIs 

generated by different scanners, all tiles were downsampled to reach the same pixel size of 0.25 

μm/pixel. The set of fully annotated tiles were split into the training and test sets with a 80-20 

policy, that is, 80% of the tiles were assigned to the training set and the remaining 20% were 

assigned to the test set (named “dense test set”). The partially annotated tiles were set aside—

as they could deceive the training procedure—and included in another test set (named “partial 

test set”) to further assess the generalization capabilities of the CNN. The performance of the 

CNN was first assessed by means of a 5-fold cross-validation (CV) process performed on the 

training set. The creation of the five folds was done in a stratified fashion in order to keep, 

within each fold, similar proportions between tiles that present a majority of nuclei belonging 

to each of the four classes. During the training phase, online data augmentation—consisting in 
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possible mirroring along all axes and random rotations by 90°, 180° or 270°—was applied to 

increase variability of the image source. The CNN was then trained using the training set 

according to a 90-10 split policy, and leveraging the same online data augmentation used for 

CV. The final model was used for nuclei classification on both the dense and the partial test 

sets. The whole pipeline—from tile generation to final prediction—is shown in Figure 1. 

Details of the training procedure and performance metrics are provided in Supplementary 

Methods. Based on the results obtained, a deep learning model named NUTSHELL (NUclei 

from Thyroid tumors Segmentation to Highlight Encapsulated Low-malignant Lesions) was 

developed. To compare the final results of NUTSHELL with the nuclear score assigned by the 

thyroid pathologist, the WSI-level prediction of the CNN model was inferred based on the 

prevalence of nuclei detected as either HP or NIFTP/PTC for each case. The comparison of 

WSI-level CNN prediction and pathologist-derived nuclear score was performed through 

Cohen’s kappa measure. 

 

Code availability 

NUTSHELL was implemented in Python using the PyTorch 2.2 framework. The source code 

of NUTSHELL, together with the extension of WSInfer18, are available under Academic Free 

License v. 3.0 in the GitHub repository at the following URL: 

https://github.com/Vsc0/nutshell. The repository also contains an extension of WSInfer to 

allow the visualization of the predictions made by pixel-based classification models and its 

easy rendering in QuPath. 

 

Results 

Cases 
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The dataset included 19 HPs (35%), 16 NIFTPs (29%), and 20 PTCs (36%), as indicated in 

Table 1. In two PTC cases, both the primary site and the respective lymph node metastasis were 

examined (cases MI_007 and MI_010, see Table 2 for all clinico-pathological characteristics 

of the PTC series).  

 

Morphometric analysis 

A total of 1,002,864 nuclei were extracted and, after the described cleaning phase, the dataset 

included 318,471 HP nuclei (37%), 248,967 NIFTP nuclei (29%) and 296,211 PTC nuclei 

(34%). The unsupervised feature selection resulted in a reduction from 21 to 15 features.  The 

15 features were used to feed the random forest model for the classification of nuclei into the 

three classes “HP”, “NIFTP” and “PTC”, obtaining an overall accuracy, precision, and recall 

of 0.70 and F1 score of 0.69 on the test set. The ranking of the most important features obtained 

from this model is shown in Figure 2a. The application of PCA confirmed the differential 

distribution of the features among the different diagnostic categories (Figure 2b). 

 

Human interpretable features (HIFs) 

A decision tree was applied on the 15 extracted features as an interpretability effort to 

investigate human interpretable features (HIFs). To help explainability, these features were 

grouped based on their impact on three different nuclear domains: shape, clarification, and 

texture (Figure 3). For nuclear shape, HP nuclei were overall smaller but shared similar regular 

contours with NIFTPs, whose nuclei were on average bigger, rounder and more regular than 

those of PTC (Figure 3, first row). A surrogate marker for nuclear clarifications, the “OD sum 

means”, demonstrated comparable whitening for NIFTP and PTC nuclei, which were clearer 

than HP nuclei on average (Figure 3, middle row). The nuclear chromatin texture analysis 

revealed remarkable inter-nuclear homogeneity of HP cases, even with irregular distribution of 

Jo
urn

al 
Pre-

pro
of



 

 
 

11 

chromatin in a finely granular pattern, as opposed to NIFTP nuclei showing higher chromatin 

texture complexity (“Measure of Correlation, F11”) with brightness variation within the same 

nuclei (“Inverse Difference Moment, F4”) (Figure 3, last row). PTC showed intermediate 

texture characteristics between the other two classes (“Difference Entropy, F10”). The 

resulting decision tree is shown in Supplementary Figure 3. 

 

RAS mutant vs wild-type NIFTP 

A subset of 10 NIFTP cases from the initial cohort had available results from genetic testing, 

allowing a subanalysis on the potential impact of RAS-related mutations on the nuclear 

morphometry. Of these, 6 were RAS-mutated (4 NRAS Q16R, 1 HRAS A59T, and 1 HRAS 

Q61K) and 4 were WT (Table 3). The total number of RAS-mutated nuclei was 113,720, while 

the total number of RAS-WT nuclei was 89,770. An initial analysis through random forest 

showed good discrimination capabilities of the nuclear features among RAS mutant and WT 

cases, with an accuracy, precision, recall, and F1 score of 0.72. However, the application of 

PCA showed a lack of segregation between the two groups of RAS-mutant and RAS-WT nuclei 

(Supplementary Figure 4), likely due to the batch effects from staining and scanning 

procedures. These issues should be carefully addressed in future analyses with a larger cohort.  

 

Multi-class segmentation by NUTSHELL 

The CNN model was developed and tested as a diagnostic aid for the differentiation of the three 

classes of this study, further complementing the ML and morphometric approaches. A total of 

14,150 tiles were generated from 55 WSIs (average 257.27 ± 256.33 standard deviation, all 

details on the number of tiles extracted per case/WSI are given in Supplementary Table 2), 

12,180 of which were used to generate the training set (9,744 tiles) and the dense test set (2,436 

tiles), maintaining a balance among tiles extracted for each class (Supplementary Table 3). 
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Approximately 14% of the tiles partially exceeded the ROI boundaries and were considered to 

form the partial test set (1,970 tiles). In all CV iterations, the CNN successfully achieved a 

score of Intersection over Union (IoU) around 0.91 computed on the validation set 

(Supplementary Figure 6, left side); the training phases terminated in about 60 epochs, 

requiring approximately 3 hours on the machine leveraged for this study (Supplementary 

Methods). Finally, the CNN was trained and validated, achieving a loss function value of 

approximately 0.13 and a score of IoU around 0.92 (Supplementary Figure 6, right side). The 

final model was tested on both the dense and partial test sets (Figures 4 and 5), achieving an 

IoU value of 0.92 and of 0.91, respectively. The comparative analysis of the performance 

obtained on the tiles extracted from the different scanners did not show significant differences 

in both the dense test set (IoU of 0.913 on the 352 tiles from MIDI II vs 0.927 on the 2,084 

tiles from P1000) and the partial test set (IoU of 0.892 on the 366 tiles from MIDI II vs. 0.911 

on the 1,604 tiles from P1000). The confusion matrices evaluated on both the dense and partial 

test sets are shown in Supplementary Figure 7. The comparison of the results obtained with the 

nuclear classification using NUTSHELL and the nuclear score given by the pathologist at WSI-

level (Supplementary Table 4) demonstrated a good agreement between the two methods—

kappa = 0.67 (95% CI, 0.48 to 0.86, p<0.0001)—as shown in Table 4. 

 

Discussion 

Discriminating NIFTP lesions from mimickers can be troublesome and challenging, due to the 

significant overlap of nuclear features with the more aggressive PTC, requiring histology and 

occasionally ancillary tools to discriminate among these two similar lesions23. Although 

specific pathological aspects are known for being more PTC-correlated (e.g. over clearing, 

grooves and pseudoinclusions, psammoma bodies and papillae)24, these are only variably 

present. The employment of a nuclear scoring system proposed for the assessment of NIFTPs 
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only partially overcame the intrinsic limitations8. In this direction, the recent application of 

high-resolution 3D-structured illumination microscopy revealed fascinating nuclear 

characteristics of NIFTP, ranging from densely packed DNA and narrower interchromatin 

spaces25, as compared to the more striking nuclear pseudoinclusions, marginal micronucleoli, 

irregular branching sheets, and linear arrangement described for PTC cells, confirming the 

existence of a certain variability between the two entities26. These discoveries, while limited 

by difficult reproducibility and validation in routine practice, hint at the possibility of exploring 

new morphometric pathways. The description of morphometric features that can eventually be 

HIFs, as those obtained through ML in this study, could partly fill the gap in the differential 

diagnosis of thyroid lesions. The findings from our study confirm that nuclei in NIFTP and 

PTC share multiple characteristics, setting them apart from HP in various aspects. Despite 

noticeable overlap, certain subtle features might indicate affiliation with neoplasms displaying 

either a more indolent or aggressive course. Specifically, PTC nuclei tend to be slightly clearer, 

while NIFTP nuclei are generally larger, rounder, and less elongated. Moreover, differences in 

chromatin distribution, though challenging to describe in easily perceptible terms, further 

distinguish NIFTP nuclei from hyperplastic counterparts. 

The introduction of ancillary molecular techniques allowed a morpho-molecular clustering of 

thyroid lesions, with the so-called BRAFV600E-like tumors belonging to the PTC family and 

RAS-like tumors more on the follicular and NIFTP side27,28. This association has already been 

employed to develop AI models (e.g., conditional generative adversarial networks) able to 

generate synthetic images depicting the BRAF/RAS-associate morphology spectrum, 

encompassing nuclear (enlargement, chromatin clearing, membrane irregularities), 

architectural (elongated follicles, papillae), colloid (darkening, scalloping), and stromal 

changes (fibrosis, calcification, ossification)29. Here, the application of supervised ML 

approaches demonstrated a moderate ability to distinguish between RAS-mutated and WT 
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nuclei. Despite these intriguing preliminary results, they were not corroborated by 

unsupervised ML approaches. This discrepancy could stem from the relatively low number of 

available NIFTP cases, potentially leading to the presence of batch effects within the dataset, 

or from subtle differences in nuclear morphology between RAS-mutant and RAS-WT NIFTP, 

suggesting the need for additional investigation of this intriguing aspect on larger cohorts 

characterized by a higher heterogeneity in terms of pre-analytical and scanning procedures of 

the slides. 

Even if the ML-based morphometric approach to NIFTP vs PTC classification gave promising 

results, the application of DL for this task is also stimulating, as shown by the few reports 

available in this setting. AI-based nuclear texture analysis, CNN models, and artificial neural 

networks improved the accuracy of fine-needle aspiration (FNA) in distinguishing between 

benign and malignant nodules14,30,31. ML methods achieved high concordance with expert 

cytopathologists, suggesting their potential to reduce the workload and improve the diagnostic 

accuracy32,33. On the histological side, algorithms were also developed to detect tall cells in 

PTC, a marker of aggressive behavior15, and DL algorithms detected lymph node metastasis in 

thyroid cancer patients34. Here, the CNN model successfully detected and classified the 

majority of nuclei in all tiles, with only a few nuclear misclassifications in a small subset of 

tiles not affecting the proper diagnosis of the WSI’s sample. NUTSHELL is also able to 

generalize the class prediction beyond the ROI boundaries, that is, it detects and classifies 

nuclei that appear in a tile but are not—or only partially—included in a ROI. Moreover, a good 

correlation was found between the WSI-level pathologist assessment of nuclear score and the 

CNN prediction, which further confirms the genuinity of the detections. 

The implications of applying an AI tool on WSIs, freely accessible and compatible with 

QuPath, have numerous practical outcomes. Primarily, it offers a morphological indication to 

complement the stringent and detailed features defining NIFTP, including criteria like non-
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invasion of the capsule and absence of papillae35. NUTSHELL provides an immediate 

overview of NIFTP areas within the WSI, simplifying the identification of capsule infiltration 

zones. Furthermore, the tool’s capability to incorporate nuclei from PTC and HP expands its 

applications. It can be used to detect microfoci of PTC within extensive glandular samples or 

identify lymph node metastases, potentially prioritizing the oncological cases during the 

pathologist screening. We also extended WSInfer—a pipeline to run patch-based classification 

models18—in order to easily and quickly render NUTSHELL pixel-based predictions in 

QuPath. This extension paves the way to the adoption of our DL model—and other pixel-based 

models—inside WSInfer, helping in the democratization of digital pathology among users, and 

allowing the use of NUTSHELL directly on the whole WSIs instead of using single tiles of the 

tissue. Although promising, the application of the DL model on the differentiation of thyroid 

lesions still has some limitations. The creation of a multicentric cohort of cases and the 

employment of different scanners helped in obtaining a heterogeneous dataset, but the full 

generalizability of tools of this kind requires a further validation on external cohorts to tackle 

any additional variability stemming from the pre-analytical phase (e.g., section thickness, 

coverslipping, H&E stain) and scanning procedures. Moreover, the current study was mainly 

focused on the differentiation of HP vs NIFTP vs PTC, and perspective efforts are needed to 

include the capability of other discriminating follicular patterned neoplasms (e.g., 

adenoma/carcinoma) from possible mimickers as NIFTPs. In this direction, the development 

of cytology-based DL-assisted classification systems—also with the aid of recently described 

methods, such as multiple instance learning36, and the implementation of more traditional ML 

tools to provide useful HIFs—can represent the evolution of existing computational pathology 

instruments serving as computer-aided diagnostics. 
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In this work, we proposed a user-friendly digital pathology pipeline to perform multi-class 

segmentation of thyroid nuclei. We are working on the development of another computational 

pipeline able to automatically generate the most suitable set of filters for the standardization of 

WSIs; by doing so, we will simplify the classification task when using pre-trained models. We 

envision that this additional pipeline will partially solve the lack of standards in the generation 

of WSIs currently existing across different centers, laboratories, scanners, and cohorts. 

Moreover, we aim to make both NUTSHELL and the filters generator natively executable in 

QuPath to facilitate their direct use by pathologists in clinical practice. 
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Figure 1: The NUTSHELL pipeline. The WSIs were processed to generate tiles of the same 

size, that is, 512 x 512 pixels, corresponding to 128 μm2 of sample tissue (blue boxes). Partially 

annotated tiles were set aside for model testing (partial test set). Fully annotated tiles were used 

for 5-fold Cross Validation (pink box) as well as for CNN training and validation (yellow box); 

data augmentation was exploited in both cases. Dashed lines depict the partitioning of the tiles 

into training and validation sets according to the 80-20 and 90-10 policies. The final CNN 

model (green box) was used to classify the tiles belonging to both the dense and the partial test 

sets. 

 
 
Figure 2: In panel (a), the feature ranking shows the impact of morphometric features obtained 

from the random forest model. In panel (b), the result of PCA shows the differential distribution 

of the morphometric features among the HP, NIFTP, and PTC classes. 

 

Figure 3: Morphometric characteristics of HP, NIFTP, and PTC nuclei. In the top row: feature 

crossing of the three shape features, “Circularity”, “Area”, and “Length”. PTC nuclei showed 

higher “length/area ratio” and lower “circularity” (how closely a shape resembles a perfect 

circle) as compared to NIFTPs. In the middle row: mean value of “OD Sum”, used as a 

surrogate for nucleus clarification. In the bottom row: feature crossing of the three most 

relevant features of chromatin texture (F5, F0, and F1), with “Angular Second Momentum, F0” 

contributing to a consistent and regular appearance of HP nuclei, and high values of “Sum 

Average, F5” to an irregular distribution of chromatin in a finely granular pattern. 
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Figure 4: Six tiles belonging to the dense test set (first row), their ground truth (second row), 

and the corresponding prediction computed by the CNN (third row). Nuclei belonging to the 

PTC class are depicted in red, to the NIFTP class in blue, and to the HP class in green. In the 

first column a few nuclei of the PTC class (red, white arrowhead) were classified as 

hyperplastic (green, black arrowhead), while in the fifth column a few nuclei of the PTC class 

(red, white arrow) were classified as NIFTP (blue, black arrow). The second and third columns 

show that the NIFTP class (blue nuclei) was perfectly recognized.  

 

Figure 5: Six tiles belonging to the partial test set (first row), their ground truth (second row), 

and the corresponding prediction computed by the CNN (third row). Nuclei belonging to the 

PTC class are depicted in red, to the NIFTP class in blue, and to the HP class in green. In these 

illustrative examples, the CNN correctly identifies and classifies the nuclei that are outside the 

ROIs. 
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Table 1: Description of the characteristics of the analyzed cases.  

Diagnosis n Center 
Age (years) 

(mean ± sd) 

Sex 
Size (cm) 

(mean ± sd) 

Cytology (Bethesda class) 

M F II III IV V VI NA 

HP 5 MB 52 ± 15 1 4 3.1 ± 1.6 4 1 - - - - 

NIFTP 10 MB 57 ± 11 2 8 2.9 ± 0.3 2 1 3 1 - 3 

PTC 4* MB 46 ± 20 1 3 1.3 ± 0.6 - - 2 - 2 - 

HP 9 BG 59 ± 8 2 7 3.6 ± 1.6 6 2 1 - - - 

NIFTP 1 BG 64 0 1 4 - - 1 - - - 

PTC 10 BG 53 ± 14 4 6 1.4 ± 1.1 - 1 - 1 8 - 

HP 5 MI 49 ± 9 1 4 1.4 ± 1 2 3 - - - - 

NIFTP 5 MI 63 ± 14 0 5 0.4 ± 0.1 - 1 3 1 - - 

PTC 4* MI 58 ± 19 1 3 1 ± 0.7 - - - - 4 - 

*Cases in which two different slides were used (one from the thyroid lesion and one from the lymph node 

metastasis). Legend: HP, Hyperplastic; NIFTP, Non Invasive Follicular Thyroid neoplasm with Papillary-like 

nuclear features; PTC, Papillary Thyroid Carcinoma. 
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Table 2: Details on the PTC cases of the cohort, including histological subtype and presence 

of oncocytic variant, invasiveness, and high grade features.  

Case ID Class 
Histological 

subtype 

Oncocytic 

variant 

(Y/N) Invasive (Y/N) 
High Grade 

features (Y/N) 

BG_001 PTC Follicular variant N Y N 

BG_003 PTC Conventional N Y N 

BG_006 PTC Conventional N Y N 

BG_009 PTC Follicular variant N Y N 

BG_011 PTC Follicular variant N Y N 

BG_012 PTC Conventional N Y N 

BG_015 PTC Conventional N Y N 

BG_016 PTC Conventional N Y Y 

BG_017 PTC Conventional N Y N 

BG_018 PTC Follicular variant N Y N 

MI_002 PTC Conventional N Y N 

MI_005 PTC Follicular variant N Y N 

MI_007 PTC Lymph node met N Y N 

MI_010 PTC Conventional N Y N 

MI_011 PTC Conventional N Y N 

MB_012 PTC Conventional N Y N 

MB_014 PTC Follicular variant N Y N 

MB_015 PTC Follicular variant N Y N 

MB_018 PTC Conventional N Y N 

MB_020 PTC Conventional N Y N 
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Table 3: Details on the NIFTP cases with available mutational status. 

 

ID 

Age 

(years) Sex 

Size 

(mm) Lobe Mutational status 

MB_001 58 F 9 Left WT 

MB_002 56 M 2 Left HRAS Q61K 

MB_003 41 F 5.5 Right NRAS Q61R 

MB_004 56 M 2 Right WT 

MB_005 52 F 0.5 Left HRAS A59T 

MB_006 53 F 1 Right WT 

MB_007 50 F 1.3 Right NRAS Q61R 

MB_008 48 M 3 Right NRAS Q61R 

MB_009 65 F 0.3 Left NRAS Q61R 

MB_010 61 F 1.6 Left WT 
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Table 4: Comparison of the disease category assigned to HP and NIFTP/PTC cases based on 

NUTSHELL with the WSI-level nuclear score assigned by the thyroid pathologist. The number 

of concordant and discordant cases is reported in the main diagonal and antidiagonal, 

respectively. 

 

 Nuclear score 

CNN prediction score 0-1 score 2-3 

HP 18 8 

NIFTP/PTC 1 28 
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