Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag(0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface.

Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag (0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface. (C) 2014 Elsevier B.V. All rights reserved.

Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry

BATTISTEL, DARIO;BALDI, Franco;GALLO, Michele;DANIELE, Salvatore
2015-01-01

Abstract

Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag (0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface. (C) 2014 Elsevier B.V. All rights reserved.
2015
132
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0039914014007899-main.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Licenza non definita
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri
Manuscript.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 107.75 kB
Formato Adobe PDF
107.75 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/42257
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact