The competition between toroidal and rod-like conformations as possible ground states for DNA condensation is studied as a function of the stiffness, the length of the DNA, and the form of the long-range interactions between neighboring molecules, using analytical theory supported by Monte Carlo simulations. Both conformations considered are characterized by a local nematic order with hexagonal packing symmetry of neighboring DNA molecules, but differ in global configuration of the chain and the distribution of its curvature as it wraps around to form a condensate. The long-range interactions driving the DNA condensation are assumed to be of the form pertaining to the attractive depletion potential as well as the attractive counterion induced soft potential. In the stiffness-length plane we find a transition between rod-like to toroid condensate for increasing stiffness at a fixed chain length L. Strikingly, the transition line is found to have a L 1/3 dependence irrespective of the details of the long-range interactions between neighboring molecules. When realistic DNA parameters are used, our description reproduces rather well some of the experimental features observed in DNA condensates.

From toroidal to rod-like condensates of semiflexible polymers

GIACOMETTI, Achille;
2014-01-01

Abstract

The competition between toroidal and rod-like conformations as possible ground states for DNA condensation is studied as a function of the stiffness, the length of the DNA, and the form of the long-range interactions between neighboring molecules, using analytical theory supported by Monte Carlo simulations. Both conformations considered are characterized by a local nematic order with hexagonal packing symmetry of neighboring DNA molecules, but differ in global configuration of the chain and the distribution of its curvature as it wraps around to form a condensate. The long-range interactions driving the DNA condensation are assumed to be of the form pertaining to the attractive depletion potential as well as the attractive counterion induced soft potential. In the stiffness-length plane we find a transition between rod-like to toroid condensate for increasing stiffness at a fixed chain length L. Strikingly, the transition line is found to have a L 1/3 dependence irrespective of the details of the long-range interactions between neighboring molecules. When realistic DNA parameters are used, our description reproduces rather well some of the experimental features observed in DNA condensates.
2014
140
File in questo prodotto:
File Dimensione Formato  
Hoang_JCP_14.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 705.39 kB
Formato Adobe PDF
705.39 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/39738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact