Here we report the genome sequence of Acinetobacter venetianus VE-C3, a strain isolated from the Venice Lagoon and known to be able to degrade n-alkanes. Post sequencing analyses revealed that this strain is relatively distantly related to the other Acinetobacter strains completely sequenced so far as shown by phylogenetic analysis and pangenome analysis (1285 genes shared with all the other Acinetobacter genomes sequenced so far). A. venetianus VE-C3 possesses a wide range of determinants whose molecular functions are probably related to the survival in a strongly impacted ecological niche. Among them, genes probably involved in the metabolism of long-chain n-alkanes and in the resistance to toxic metals (e.g. arsenic, cadmium, cobalt and zinc) were found. Genes belonging to these processes were found both on the chromosome and on plasmids. Also, our analysis documented one of the possible genetic bases underlying the strategy adopted by A. venetianus VE-C3 for the adhesion to oil fuel droplets, which could account for the differences existing in this process with other A. venetianus strains. Finally, the presence of a number of DNA mobilization-related genes (i.e. transposases, integrases, resolvases) strongly suggests an important role played by horizontal gene transfer in shaping the genome of A. venetianus VE-C3 and in its adaptation to its special ecological niche.

The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3

BALDI, Franco;
2013-01-01

Abstract

Here we report the genome sequence of Acinetobacter venetianus VE-C3, a strain isolated from the Venice Lagoon and known to be able to degrade n-alkanes. Post sequencing analyses revealed that this strain is relatively distantly related to the other Acinetobacter strains completely sequenced so far as shown by phylogenetic analysis and pangenome analysis (1285 genes shared with all the other Acinetobacter genomes sequenced so far). A. venetianus VE-C3 possesses a wide range of determinants whose molecular functions are probably related to the survival in a strongly impacted ecological niche. Among them, genes probably involved in the metabolism of long-chain n-alkanes and in the resistance to toxic metals (e.g. arsenic, cadmium, cobalt and zinc) were found. Genes belonging to these processes were found both on the chromosome and on plasmids. Also, our analysis documented one of the possible genetic bases underlying the strategy adopted by A. venetianus VE-C3 for the adhesion to oil fuel droplets, which could account for the differences existing in this process with other A. venetianus strains. Finally, the presence of a number of DNA mobilization-related genes (i.e. transposases, integrases, resolvases) strongly suggests an important role played by horizontal gene transfer in shaping the genome of A. venetianus VE-C3 and in its adaptation to its special ecological niche.
File in questo prodotto:
File Dimensione Formato  
FondietlaRESME.pdf

accesso aperto

Tipologia: Abstract
Licenza: Licenza non definita
Dimensione 1.89 MB
Formato Adobe PDF
1.89 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/37773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact