The use of readily prepared bisphosphonic acids obtained in few steps through a thio-Michael addition of commercially available thiols on tetraethyl vinylidenebisphosphonate enables the straightforward surface modification of amorphous mesoporous zirconia nanoparticles. Simple stirring of the zirconia nanoparticles in a buffered aqueous solution of the proper bisphosphonic acid leads to the surface functionalization of the nanoparticles with different kinds of functional groups, charge and hydrophobic properties. Formation of both chemisorbed and physisorbed layers of the bisphosphonic acid take place, observing after extensive washing a grafting density of 1.1 molecules/nm2 with negligible release in neutral or acidic pH conditions, demonstrating stronger loading compared to monophosphonate derivatives. The modified nanoparticles were characterized by IR, XPS, ζ-potential analysis to investigate the loading of the bisphosphonic acid, FE-SEM to investigate the size and morphologies of the nanoparticles and 31P and 1H MAS NMR to investigate the coordination motif of the phosphonate units on the surface. All these analytical techniques demonstrated the strong affinity of the bisphosphonic moiety for the Zr(IV) metal centers. The functionalization with bisphosphonic acids represents a straightforward covalent approach for tailoring the superficial properties of zirconia nanoparticles, much straightforward compared the classic use of trisalkoxysilane or trichlorosilane reagents typically employed for the functionalization of silica and metal oxide nanoparticles. Extension of the use of bisphosphonates to other metal oxide nanoparticles is advisable.

Modification of Amorphous Mesoporous Zirconia Nanoparticles with Bisphosphonic Acids: A Straightforward Approach for Tailoring the Surface Properties of the Nanoparticles

Hossain K.;Florean L.;Del Tedesco A.;Cattaruzza E.;Canton P.;Benedetti A.;Riello P.;Scarso A.
Project Administration
2021

Abstract

The use of readily prepared bisphosphonic acids obtained in few steps through a thio-Michael addition of commercially available thiols on tetraethyl vinylidenebisphosphonate enables the straightforward surface modification of amorphous mesoporous zirconia nanoparticles. Simple stirring of the zirconia nanoparticles in a buffered aqueous solution of the proper bisphosphonic acid leads to the surface functionalization of the nanoparticles with different kinds of functional groups, charge and hydrophobic properties. Formation of both chemisorbed and physisorbed layers of the bisphosphonic acid take place, observing after extensive washing a grafting density of 1.1 molecules/nm2 with negligible release in neutral or acidic pH conditions, demonstrating stronger loading compared to monophosphonate derivatives. The modified nanoparticles were characterized by IR, XPS, ζ-potential analysis to investigate the loading of the bisphosphonic acid, FE-SEM to investigate the size and morphologies of the nanoparticles and 31P and 1H MAS NMR to investigate the coordination motif of the phosphonate units on the surface. All these analytical techniques demonstrated the strong affinity of the bisphosphonic moiety for the Zr(IV) metal centers. The functionalization with bisphosphonic acids represents a straightforward covalent approach for tailoring the superficial properties of zirconia nanoparticles, much straightforward compared the classic use of trisalkoxysilane or trichlorosilane reagents typically employed for the functionalization of silica and metal oxide nanoparticles. Extension of the use of bisphosphonates to other metal oxide nanoparticles is advisable.
File in questo prodotto:
File Dimensione Formato  
2021ChemEurJ.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3750154
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact