Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.

Civil aviation, air pollution and human health

MASIOL M;
2015-01-01

Abstract

Air pollutant emissions from aircraft have been subjected to less rigorous control than road traffic emissions, and the rapid growth of global aviation is a matter of concern in relation to human exposures to pollutants, and consequent effects upon health. Yim et al (2015 Environ. Res. Lett. 3 034001) estimate exposures globally arising from aircraft engine emissions of primary particulate matter, and from secondary sulphates and ozone, and use concentration-response functions to calculate the impact upon mortality, which is monetised using the value of statistical life. This study makes a valuable contribution to estimating the magnitude of public health impact at various scales, ranging from local, near airport, regional and global. The results highlight the need to implement future mitigation actions to limit impacts of aviation upon air quality and public health. The approach adopted in Yim et al only accounts for the air pollutants emitted by aircraft engine exhausts. Whilst aircraft emissions are often considered as dominant near runways, there are a number of other sources and processes related to aviation that still need to be accounted for. This includes impacts of nitrate aerosol formed from NOx emissions, but probably more important, are the other airport-related emissions from ground service equipment and road traffic. By inclusion of these, and consideration of non-fatal impacts, future research will generate comprehensive estimates of impact related to aviation and airports.
File in questo prodotto:
File Dimensione Formato  
028 Harrison et al 2015 [ERL 10] Civil aviation.pdf

accesso aperto

Descrizione: Publisher's version/PDF
Tipologia: Versione dell'editore
Licenza: Creative commons
Dimensione 116.31 kB
Formato Adobe PDF
116.31 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3724755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 31
social impact