The efficiency of enzymatic hydrolysis of lignocellulses can be increased by addition of surfactants and polymers, such as poly(ethylene glycol) (PEG). The effect of PEG addition on the cellulase adsorption was tested on various steam pretreated lignocellulose substrates (spruce, willow, hemp, corn stover, wheat straw, sweet sorghum bagasse). A positive effect of PEG addition was observed, as protein adsorption has decreased and free enzyme activities (FP, β-glucosidase) have increased due to the additive. However, the degree of enhancement differed among the substrates, being highest on steam pretreated spruce. Results of lignin analysis (pyrolysis-GC/MS, 31P NMR) suggest that the effect of PEG addition is in connection with the amount of unsubstituted phenolic hydroxyl groups of lignin in the substrate. Adsorption experiments using two commercial enzyme preparations, Celluclast 1.5L (Trichoderma reesei cellulase) and Novozym 188 (Aspergillus niger β-glucosidase) suggested that enzyme origins affected on the adsorptivity of β-glucosidases. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses

CRESTINI, Claudia
2011-01-01

Abstract

The efficiency of enzymatic hydrolysis of lignocellulses can be increased by addition of surfactants and polymers, such as poly(ethylene glycol) (PEG). The effect of PEG addition on the cellulase adsorption was tested on various steam pretreated lignocellulose substrates (spruce, willow, hemp, corn stover, wheat straw, sweet sorghum bagasse). A positive effect of PEG addition was observed, as protein adsorption has decreased and free enzyme activities (FP, β-glucosidase) have increased due to the additive. However, the degree of enhancement differed among the substrates, being highest on steam pretreated spruce. Results of lignin analysis (pyrolysis-GC/MS, 31P NMR) suggest that the effect of PEG addition is in connection with the amount of unsubstituted phenolic hydroxyl groups of lignin in the substrate. Adsorption experiments using two commercial enzyme preparations, Celluclast 1.5L (Trichoderma reesei cellulase) and Novozym 188 (Aspergillus niger β-glucosidase) suggested that enzyme origins affected on the adsorptivity of β-glucosidases. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
2011
334
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3710828
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 52
social impact