Here we propose spatially explicit predictions of the residual progression of the current Haiti cholera outbreak accounting for the dynamics of susceptible and infected individuals within different local human communities, and for the redistribution among them of Vibrio cholerae, the causative agent of the disease. Spreading mechanisms include the diffusion of pathogens in the aquatic environment and their dissemination due to the movement of human carriers. The model reproduces the spatiotemporal features of the outbreak to date, thus suggesting the robustness of predicted future developments of the epidemic. We estimate that, under unchanged conditions, the number of new cases in the whole country should start to decrease in January. During this month the epidemic should mainly involve the Ouest department (Port-au-Prince) while fading out in northern regions. Our spatially explicit model allows also the analysis of the effectiveness of alternative intervention strategies. To that end our results show that mass vaccinations would have a negligible impact at this stage of the epidemic. We also show that targeted sanitation strategies, providing clean drinking water supply and/or staging educational campaigns aimed at reducing exposure, may weaken the strength of the residual evolution of the infection. © 2011 by the American Geophysical Union.

Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak

BERTUZZO, Enrico;
2011-01-01

Abstract

Here we propose spatially explicit predictions of the residual progression of the current Haiti cholera outbreak accounting for the dynamics of susceptible and infected individuals within different local human communities, and for the redistribution among them of Vibrio cholerae, the causative agent of the disease. Spreading mechanisms include the diffusion of pathogens in the aquatic environment and their dissemination due to the movement of human carriers. The model reproduces the spatiotemporal features of the outbreak to date, thus suggesting the robustness of predicted future developments of the epidemic. We estimate that, under unchanged conditions, the number of new cases in the whole country should start to decrease in January. During this month the epidemic should mainly involve the Ouest department (Port-au-Prince) while fading out in northern regions. Our spatially explicit model allows also the analysis of the effectiveness of alternative intervention strategies. To that end our results show that mass vaccinations would have a negligible impact at this stage of the epidemic. We also show that targeted sanitation strategies, providing clean drinking water supply and/or staging educational campaigns aimed at reducing exposure, may weaken the strength of the residual evolution of the infection. © 2011 by the American Geophysical Union.
2011
38
File in questo prodotto:
File Dimensione Formato  
Bertuzzo_GRL_2011.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3686848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 65
social impact